WorldWideScience

Sample records for channel activity protects

  1. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Sørensen, Ulrik S; Nissen, Jakob Dahl; Al-Shahib, Baha; Grunnet, Morten; Hansen, Rie Schultz; Jespersen, Thomas

    2010-01-01

    Recently, evidence has emerged that small-conductance Ca(2+)-activated K(+) (SK) channels are predominantly expressed in the atria in a number of species including human. In rat, guinea pig, and rabbit ex vivo and in vivo models of atrial fibrillation (AF), we used 3 different SK channel inhibito...

  2. Activation of SK2 channels preserves ER Ca(2+) homeostasis and protects against ER stress-induced cell death.

    Science.gov (United States)

    Richter, M; Vidovic, N; Honrath, B; Mahavadi, P; Dodel, R; Dolga, A M; Culmsee, C

    2016-05-01

    Alteration of endoplasmic reticulum (ER) Ca(2+) homeostasis leads to excessive cytosolic Ca(2+) accumulation and delayed neuronal cell death in acute and chronic neurodegenerative disorders. While our recent studies established a protective role for SK channels against excessive intracellular Ca(2+) accumulation, their functional role in the ER has not been elucidated yet. We show here that SK2 channels are present in ER membranes of neuronal HT-22 cells, and that positive pharmacological modulation of SK2 channels with CyPPA protects against cell death induced by the ER stressors brefeldin A and tunicamycin. Calcium imaging of HT-22 neurons revealed that elevated cytosolic Ca(2+) levels and decreased ER Ca(2+) load during sustained ER stress could be largely prevented by SK2 channel activation. Interestingly, SK2 channel activation reduced the amount of the unfolded protein response transcription factor ATF4, but further enhanced the induction of CHOP. Using siRNA approaches we confirmed a detrimental role for ATF4 in ER stress, whereas CHOP regulation was dispensable for both, brefeldin A toxicity and CyPPA-mediated protection. Cell death induced by blocking Ca(2+) influx into the ER with the SERCA inhibitor thapsigargin was not prevented by CyPPA. Blocking the K(+) efflux via K(+)/H(+) exchangers with quinine inhibited CyPPA-mediated neuroprotection, suggesting an essential role of proton uptake and K(+) release in the SK channel-mediated neuroprotection. Our data demonstrate that ER SK2 channel activation preserves ER Ca(2+) uptake and retention which determines cell survival in conditions where sustained ER stress contributes to progressive neuronal death. PMID:26586570

  3. Pharmacological activation of mitochondrial BKCa channels protects isolated cardiomyocytes against simulated reperfusion-induced injury

    Czech Academy of Sciences Publication Activity Database

    Borchert, Gudrun H.; Hlaváčková, Markéta; Kolář, František

    2013-01-01

    Roč. 238, č. 2 (2013), s. 233-241. ISSN 1535-3702 R&D Projects: GA AV ČR(CZ) IAA500110804; GA ČR(CZ) GAP303/12/1162 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : potassium channels * cardiomyocytes * mitochondria * ischemia/reperfusion * cytoprotection * reactive oxygen species Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.226, year: 2013

  4. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

    Science.gov (United States)

    Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X

    2014-11-01

    Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences. PMID:25234320

  5. Optimal channel utilization and service protection in cellular communication systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk

    In mobile communications an efficient utilization of the channels is of great importance.In this paper we consider the basic principles for obtaining the maximum utilization, and we study strategies for obtaining these limits.In general a high degree of sharing is efficient, but requires service...... protection mechanisms for protecting services and subscriber groups.We study cellular systems with overlaid cells, and the effect of overlapping cells, and we show that by dynamic channel allocation we obtain a high utilization.The models are generalizations of the Erlang-B formula, and can be evaluated...

  6. Cardiac ion channels and mechanisms for protection against atrial fibrillation

    DEFF Research Database (Denmark)

    Grunnet, Morten; Bentzen, Bo Hjorth; Sørensen, Ulrik S;

    2011-01-01

    Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different...... the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included....

  7. Quench Protection for the MICE Cooling Channel Coupling Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xing Long; Xu, Feng Yu; Wang, Li; Green, Michael A.; Pan, Heng; Wu, Hong; Liu, X.K.; Jia, Lin Xiang; Amm, Kathleen

    2008-08-02

    This paper describes the passive quench protection system selected for the muon ionization cooling experiment (MICE) cooling channel coupling magnet. The MICE coupling magnet will employ two methods of quench protection simultaneously. The most important method of quench protection in the coupling magnet is the subdivision of the coil. Cold diodes and resistors are put across the subdivisions to reduce both the voltage to ground and the hot-spot temperature. The second method of quench protection is quench-back from the mandrel, which speeds up the spread of the normal region within the coils. Combining quench back with coil subdivision will reduce the hot spot temperature further. This paper explores the effect on the quench process of the number of coil sub-divisions, the quench propagation velocity within the magnet, and the shunt resistance.

  8. BK channel activators and their therapeutic perspectives

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Olesen, Søren-Peter; Rønn, Lars C B;

    2014-01-01

    The large conductance calcium- and voltage-activated K(+) channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increase...... years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.......The large conductance calcium- and voltage-activated K(+) channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases...... in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent...

  9. Reactor core protection system using a 4-channel microcomputer

    International Nuclear Information System (INIS)

    A four channel microcomputer system was fitted in Grafenrheinfeld NPP for local core protection. This system performs continuous on-line monitoring of peak power density, departure from nucleate boiling ratio and fuel duty. The system implements limitation functions with more sophisticated criteria and improved accuracy. The Grafenrheinfeld system points the way to the employment of computer based limitation system, particularly in the field of programming language, demarkation of tasks, commissioning and documentation aids, streamlining of qualification and structuring of the system. (orig.)

  10. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria;

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia....../reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mito......BKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix...

  11. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels.

    Science.gov (United States)

    Zhu, H-L; Luo, W-Q; Wang, H

    2008-12-10

    The rapid and irreversible brain injury produced by anoxia when stroke occurs is well known. Cumulative evidence suggests that the activation of neuronal ATP-sensitive potassium (KATP) channels may have inherent protective effects during cerebral hypoxia, yet little information regarding the therapeutic effects of KATP channel openers is available. We hypothesized that pretreatment with a KATP channel opener might protect against brain injury induced by cerebral hypoxia. In this study, adult Wistar rats were treated with iptakalim, a new KATP channel opener, which is selective for SUR2 type KATP channels, by intragastric administration at doses of 2, 4, or 8 mg/kg/day for 7 days before being exposed to simulated high altitude equivalent to 8000 m in a decompression chamber for 8 h leading to hypoxic brain injury. By light and electron microscopic images, we observed that hypobaric hypoxia-induced brain injury could be prevented by pretreatment with iptakalim. It was also observed that the permeability of the blood-brain barrier, water content, Na+ and Ca2+ concentration, and activities of Na+,K+-ATPase, Ca2+-ATPase and Mg2+-ATPase in rat cerebral cortex were increased and the gene expression of the occludin or aquaporin-4 was down- or upregulated respectively, which could also be prevented by the pretreatment with iptakalim at doses of 2, 4, or 8 mg/kg in a dose-dependent manner. Furthermore, we found that in an oxygen-and-glucose-deprived model in ECV304 cells and rat cortical astrocytes, pretreatment with iptakalim significantly increased survived cell rates and decreased lactate dehydrogenate release, which were significantly antagonized by glibenclamide, a K(ATP) channel blocker. We conclude that iptakalim is a promising drug that may protect against brain injury induced by acute hypobaric hypoxia through multiple pathways associated with SUR2-type K(ATP) channels, suggesting a new therapeutic strategy for stroke treatment. PMID:18951957

  12. Active oxygens and their protection

    International Nuclear Information System (INIS)

    Most of radiation-induced damages to living organisms are thought to be originated from active oxygens produced from water and oxygen in living organisms by irradiation. These active oxygens react with various intracellular components including DNA, proteins, lipids, carbohydrates and other lower molecular weight substances, then finally induce genetic damages, metabolic damages or abnormality of cell functions. Our studies demonstrated that active oxygens produced by radiation caused peroxidation of biological membrane lipids, resulting in destruction of membrane structure and inactivation of membrane-bound enzymes. The lipid peroxidation might be also one of the most important factors to induce radiation carcinogenesis. Protective substances in several rat tissues and yeast against active oxygens produced by radiation were also investigated and a basic protein which have high content of SH group and three different lower molecular weight substances were separated from rat liver cytosol. These substances have functions to suppress not only radiation-induced lipid peroxidation but also radiation-induced inactivation of membrane-bound enzymes. From these data, effect of active oxygens produced by radiation and their protection in organisms are discussed. (author)

  13. A Dual Channel Technique for Content Protection in IPTV

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2013-01-01

    Full Text Available With the introduction of IPTV (Internet Protocol Television, traditional wireline content providers and service providers are entering a new era of delivering broadcast and Video on demand(VOD services to their customers. The Content Protection has becoming an extremely important issue as the use of IPTV services are increasing over the Internet. In this paper, we are proposing a new method for improving the performances of the settop box (STB for video on demand(VOD feature for IPTV. Here we are replacing the traditional complete encryption, partial encryption and selective encryption by a dual channel based encryption scheme, which can resist the content leakage or avoid illegal copying and playing of video.

  14. Single Na+ channels activated by veratridine and batrachotoxin

    OpenAIRE

    1987-01-01

    Voltage-sensitive Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers in the presence of either of the alkaloid toxins veratridine (VT) or batrachotoxin (BTX). Both of these toxins are known to cause persistent activation of Na+ channels. With BTX as the channel activator, single channels remain open nearly all the time. Channels activated with VT open and close on a time scale of 1-10 s. Increasing the VT concentration enhances the probabil...

  15. Fluctuation driven active molecular transport in passive channel proteins

    Science.gov (United States)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  16. Cardioprotective effects of mitochondrial KATP channels activated at different time

    Institute of Scientific and Technical Information of China (English)

    魏珂; 闵苏; 龙村

    2004-01-01

    Backgroud Recent studies in adult hearts have indicated that KATP channels in the inner mitochondrial membrance are responsible for the protection. And we investigated whether opening of mitochondrial KATP channels (mKATP) could provide myocardial protection for immature rabbits and determined its role in cardioprotection.Methods Thirty-four 3-4-week-old rabbits, weighing 300-350 g, were divided randomly into five groups: Group Ⅰ (control group, n=8); Group Ⅱ [diazoxide preconditioning group; n=8; the hearts were pretreated with 100 μmol/L diazoxide for 5 minutes followed by 10-minute wash out with Krebs-Henseleit buffer (KHB)]; Group Ⅲ [diazoxide+5-hydroxydeconate (5-HD) preconditioning group; n=5; the hearts were pretreated with 100 μmol/L diazoxide and 100 μmol/L 5-HD); Group Ⅳ (diazoxide+cardioplegia group; n=8; cardioplegia containing 100 μmol/L diazoxide perfused the hearts for 5 minutes before ischemia); Group Ⅴ (diazoxide+5-HD+cardioplegia group; n=5; the cardioplegia contained 100 μmol/L diazoxide and 100 μmol/L 5-HD). All hearts were excised and connected to langend ?Zrff perfusion system and passively perfused with KHB at 38℃ under a pressure of 70 cmH2O. After reperfusion, the recovery rate of left ventricular diastolic pressure (LVDP), ±dp/dtmax, coronary flow (CF), the creatinine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) in coronary sinus venous effluent and the tissue ATP were measured. Mitochondria were evaluated semiquantitatively by morphology.Results After ischemia and reperfusion (I/R), the two groups that were treated by diazoxide only (Groups Ⅱ and Ⅳ) had a significant improvement in LVDP, ±dp/dtmax, and CF recovery. AST, LDH, and CK were decreased, and the levels of tissue ATP in the two groups were higher. Mitochondria was protected better in Group Ⅳ than in other groups. Conclusions Activating mKATP channels before and during ischemia can similarly protect immature rabbit hearts

  17. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms.

    Science.gov (United States)

    Tang, Qiong-Yao; Zhang, Fei-Fei; Xu, Jie; Wang, Ran; Chen, Jian; Logothetis, Diomedes E; Zhang, Zhe

    2016-01-01

    Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects. PMID:26725113

  18. Evidence for a protective role of the gardos channel againsthemolysis in murine spherocytosis

    Energy Technology Data Exchange (ETDEWEB)

    de Franceschi, Lucia; Rivera, Alicia; Fleming, Mark D.; Honczarenko, Marek; Peters, Luanne L.; Gascard, Philippe; Mohandas,Narla; Brugnara, Carlo

    2005-04-20

    It has been shown that mice with complete deficiency of all4.1R protein isoforms (4.1[-/-]) exhibit moderate hemolytic anemia, withabnormal erythrocyte morphology (spherocytosis) and decreased membranestability. Here, we characterized the Gardos channel function in vitroand in vivo In erythrocytes of 4.1[-/-]mice. Compared with wild-type,the Gardos channel of 4.1[-/-]erythrocytes showed an Increase in V[max](9.75 +- 1.06 vs 6.08 +- 0.09 mM cell x minute; P<.04) and adecrease in K[m](1.01 +- 0.06 vs 1.47 +- 1.02 mu M; P<.03),indicating an increased sensitivity to activation by intracellularcalcium. In vivo function of the Gardos channel was assessed by the oraladministration of clotrimazole, a well-characterized Gardos channelblocker. Clotrimazole treatment resulted in worsening of anemia andhemolysis, with decreased red cell survival and increased numbers ofcirculating hyperchromic spherocytes and microspherocytes. Clotrimazoleinduced similar changes in 4.2[-/-]and band 3[+/-]mice, indicating thatthese effects of the Gardos channel are shared in different models ofmurine spherocytosis. Thus, potassium and water loss through the Gardoschannelmay play an important protective role in compensating for thereduced surface-membrane area of hereditary spherocytosis (HS)erythrocytes and reducing hemolysis in erythrocytes with cytoskeletalimpairments.

  19. KCNQ4 channel activation by BMS-204352 and retigabine

    DEFF Research Database (Denmark)

    Schrøder, Rikke Louise K.; Jespersen, Thomas; Christophersen, P;

    2001-01-01

    Activation of potassium channels generally reduces cellular excitability, making potassium channel openers potential drug candidates for the treatment of diseases related to hyperexcitabilty such as epilepsy, neuropathic pain, and neurodegeneration. Two compounds, BMS-204352 and retigabine, prese...

  20. Swedish radiation protection institute. Information activities

    International Nuclear Information System (INIS)

    The purpose of SSI's information and PR Service is to broaden public awareness of radiation and radiation risks as well as to fulfil other performance goals. SSI achieves this through its advisory, educational and informative activities. SSI publishes two external magazines, Straalskyddsnytt and SSI News. Straalskyddsnytt - which is available in Swedish only - has a circulation of 2,400 and is published four times a year. SSI News - which is in English - is published twice a year and has a circulation of about 1,500. Another important channel of communication is the web site (www.ssi.se). Taking advantage of PUSH technology, SSi also distributes, by e-mail, press releases and other important information of radiation to radiation protection professionals in Sweden. SSI continuously monitors news by subscribing to a press clipping service. SSI Training is a commercial unit within the Information and PR Service. A policy for mass media contacts exists as well as a policy for internal communication. SSI has a graphic profile. SSI has a specialised research library. (au)

  1. Swedish Radiation Protection Institute: information activities

    International Nuclear Information System (INIS)

    The purpose of SSI's Information and PR Service is to broaden public awareness of radiation and radiation risks as well as to fulfill other performance goals. SSI achieves this through its advisory, educational and informative activities. SSI publishes two external magazines, Stralskyddsnytt and SSI News. Stralskyddsnytt - which is available in Swedish only - has a circulation of 2,000 and is published four times a year. SSI News - which is in English - is published twice a year and has a circulation of about 1,800. Another important channel of communication is the web site (www.ssi.se). Taking advantage of PUSH technology, SSI also distributes, by e-mail, press releases and other important information on radiation to radiation protection professionals in Sweden. SSI continuously monitors news by subscribing to a press clipping service. SSI Training is a commercial unit within the Information and PR Service. A policy for mass media contacts exists as well as a policy for internal communication. SSI has a graphic profile. SSI has a specialized research library. (author)

  2. Unequal Error Protection for Compressed Video over Noisy Channels

    OpenAIRE

    Vosoughi, Arash

    2015-01-01

    The huge amount of data embodied in a video signal is by far the biggest burden on existing wireless communication systems. Adopting an efficient video transmission strategy is thus crucial in order to deliver video data at the lowest bit rate and the highest quality possible. Unequal error protection (UEP) is a powerful tool in this regard, whose ultimate goal is to wisely provide a stronger protection for the more important data, and a weaker protection for the less important data carried b...

  3. Radiation Protection Department. Specific activities

    International Nuclear Information System (INIS)

    The Radiation Protection Department is formed of two groups. The physical measurement group is charged with the radioprotection control, radioelement analysis, monitoring the working posts, expertise (accelerators, irradiators, etc), research and development. The dosimetry group is charged with measurements of individual exposure to ionizing radiations, by means of films, dosimeters and FLi

  4. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  5. Hazard rate for a two-channel protective system subject to a high demand rate

    International Nuclear Information System (INIS)

    A basic figure of merit associated with a protective system for an industrial plant is the number of accidents expected to occur in the plant within a given period of time, with the system installed. By definition, in a plant equipped with a protective system, an accident can only happen if an initiating event (a demand) occurs while the protective system is unavailable, that is, while it is in one of its possible failed states. This means that the hazard rate or accident frequency depends on the demand rate and on the unavailability of the protective systems. It has long been recognized that the demand rate influences the unavailability of the protective system, and practical expressions incorporating that effect have been developed for single-channel and multi-channel protective systems. In a previous paper a Markovian approach was used to derive analytical expressions for the evaluation of the plant hazard rate for a single-channel protective system, properly accounting for the effects of the demand and the repair rates. In this paper, we present an extension of that model to the case of a plant equipped with a two-channel protective system. 5 refs., 3 figs

  6. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. Purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing

  7. Activities of Moroccan Radiation Protection Association

    International Nuclear Information System (INIS)

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  8. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    Science.gov (United States)

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  9. A Dual Channel Technique for Content Protection in IPTV

    OpenAIRE

    Ashish Kumar; Jaishree Tanwar; Chandresh Bakliwal

    2013-01-01

    With the introduction of IPTV (Internet Protocol Television), traditional wireline content providers and service providers are entering a new era of delivering broadcast and Video on demand(VOD) services to their customers. The Content Protection has becoming an extremely important issue as the use of IPTV services are increasing over the Internet. In this paper, we are proposing a new method for improving the performances of the settop box (STB) for video on demand(VOD) feature for IPTV. H...

  10. Design and Synthesis of New Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channel Modulators: Identification, Molecular Modeling Analysis, and Pharmacological Characterization of the N-(4-Hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl)butanamide, a Small Molecule Endowed with Agonist TRPV1 Activity and Protective Effects against Oxidative Stress.

    Science.gov (United States)

    Aiello, Francesca; Badolato, Mariateresa; Pessina, Federica; Sticozzi, Claudia; Maestrini, Vanessa; Aldinucci, Carlo; Luongo, Livio; Guida, Francesca; Ligresti, Alessia; Artese, Anna; Allarà, Marco; Costa, Giosué; Frosini, Maria; Schiano Moriello, Aniello; De Petrocellis, Luciano; Valacchi, Giuseppe; Alcaro, Stefano; Maione, Sabatino; Di Marzo, Vincenzo; Corelli, Federico; Brizzi, Antonella

    2016-06-15

    4-(Thiophen-2-yl)butanoic acid was identified as a cyclic substitute of the unsaturated alkyl chain of the natural ligand, capsaicin. Accordingly, a new class of amides was synthesized in good yield and high purity and their molecular recognition against the target was investigated by means of docking experiments followed by molecular dynamics simulations, in order to rationalize their geometrical and thermodynamic profiles. The pharmacological properties of these new compounds were expressed as activation (EC50) and desensitization (IC50) potencies. Several compounds were found to activate TRPV1 channels, and in particular, derivatives 1 and 10 behaved as TRPV1 agonists endowed with good efficacy as compared to capsaicin. The most promising compound 1 was also evaluated for its protective role against oxidative stress on keratinocytes and differentiated human neuroblastoma cell lines expressing the TRPV1 receptor as well as for its cytotoxicity and analgesic activity in vivo. PMID:26942555

  11. Calcium-Activated Potassium Channels in Ischemia Reperfusion: A Brief Update

    Directory of Open Access Journals (Sweden)

    Jean-Yves eTano

    2014-10-01

    Full Text Available Ischemia and reperfusion (IR injury constitutes one of the major causes of cardiovascular morbidity and mortality. The discovery of new therapies to block/mediate the effects of IR is therefore an important goal in the biomedical sciences. Dysfunction associated with IR involves modification of calcium-activated potassium channels (KCa through different mechanisms, which are still under study. Respectively, the KCa family, major contributors to plasma membrane calcium influx in cells and essential players in the regulation of the vascular tone are interesting candidates. This family is divided into two groups including the large conductance (BKCa and the small/intermediate conductance (SKCa/IKCa K+ channels. In the heart and brain, these channels have been described to offer protection against IR injury. BKCa and SKCa channels deserve special attention since new data demonstrate that these channels are also expressed in mitochondria. More studies are however needed to fully determine their potential use as therapeutic targets.

  12. Recombinant goose-type lysozyme in channel catfish: lysozyme activity and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection

    Science.gov (United States)

    The objectives of this study were: 1) to investigate whether recombinant channel catfish lysozyme g (CC-Lys-g) produced in E. coli expression system possesses any lysozyme activity; and 2) to evaluate whether channel catfish lysozyme g plasmid DNA could be used as an immunostimulant to protect chann...

  13. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    OpenAIRE

    Becq, F; Jensen, T J; Chang, X B; Savoia, A.; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epi...

  14. SLO2 Channels Are Inhibited by All Divalent Cations That Activate SLO1 K+ Channels.

    Science.gov (United States)

    Budelli, Gonzalo; Sun, Qi; Ferreira, Juan; Butler, Alice; Santi, Celia M; Salkoff, Lawrence

    2016-04-01

    Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 μmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions. PMID:26823461

  15. Oxidative Stress and Maxi Calcium-Activated Potassium (BK Channels

    Directory of Open Access Journals (Sweden)

    Anton Hermann

    2015-08-01

    Full Text Available All cells contain ion channels in their outer (plasma and inner (organelle membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells, alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  16. Aging assessment for active fire protection systems

    International Nuclear Information System (INIS)

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further

  17. Chloride dependence of hyperpolarization-activated chloride channel gates.

    Science.gov (United States)

    Pusch, M; Jordt, S E; Stein, V; Jentsch, T J

    1999-03-01

    1. ClC proteins are a class of voltage-dependent Cl- channels with several members mutated in human diseases. The prototype ClC-0 Torpedo channel is a dimeric protein; each subunit forms a pore that can gate independently from the other one. A common slower gating mechanism acts on both pores simultaneously; slow gating activates ClC-0 at hyperpolarized voltages. The ClC-2 Cl- channel is also activated by hyperpolarization, as are some ClC-1 mutants (e.g. D136G) and wild-type (WT) ClC-1 at certain pH values. 2. We studied the dependence on internal Cl- ([Cl-]i) of the hyperpolarization-activated gates of several ClC channels (WT ClC-0, ClC-0 mutant P522G, ClC-1 mutant D136G and an N-terminal deletion mutant of ClC-2), by patch clamping channels expressed in Xenopus oocytes. 3. With all these channels, reducing [Cl-]i shifted activation to more negative voltages and reduced the maximal activation at most negative voltages. 4. We also investigated the external halide dependence of WT ClC-2 using two-electrode voltage-clamp recording. Reducing external Cl- ([Cl-]o) activated ClC-2 currents. Replacing [Cl-]o by the less permeant Br- reduced channel activity and accelerated deactivation. 5. Gating of the ClC-2 mutant K566Q in normal [Cl-]o resembled that of WT ClC-2 in low [Cl-]o, i.e. channels had a considerable open probability (Po) at resting membrane potential. Substituting external Cl- by Br- or I- led to a decrease in Po. 6. The [Cl-]i dependence of the hyperpolarization-activated gates of various ClC channels suggests a similar gating mechanism, and raises the possibility that the gating charge for the hyperpolarization-activated gate is provided by Cl-. 7. The external halide dependence of hyperpolarization-activated gating of ClC-2 suggests that it is mediated or modulated by anions as in other ClC channels. In contrast to the depolarization-activated fast gates of ClC-0 and ClC-1, the absence of Cl- favours channel opening. Lysine 556 may be important for the

  18. Neuronal modulation of calcium channel activity in cultured rat astrocytes.

    OpenAIRE

    Corvalan, V; Cole, R; de Vellis, J.; Hagiwara, S.

    1990-01-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca2+ and blocked by either Cd2+ or Co2+ that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron depend...

  19. Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts

    OpenAIRE

    Quindry, John C.; Schreiber, Lindsey; Hosick, Peter; Wrieden, Jenna; Irwin, J. Megan; Hoyt, Emily

    2010-01-01

    The mechanisms responsible for anti-arrhythmic protection during ischemia-reperfusion (IR) in exercised hearts are not fully understood. The purpose of this investigation was to examine whether the ATP-sensitive potassium channels in the mitochondria (mito KATP) and sarcolemma (sarc KATP) provide anti-arrhythmic protection in exercised hearts during IR. Male Sprague-Dawley rats were randomly assigned to cardioprotective treadmill exercise or sedentary conditions before IR (I = 20 min, R = 30 ...

  20. Inhibition of KV7 channels protects against myocardial ischemia and reperfusion injury

    DEFF Research Database (Denmark)

    Hedegaard, Elise Røge; Johnsen, Jacob; Povlsen, Jonas Agerlund;

    2015-01-01

    expression of the KV7 channels in rat hearts by reverse transcriptse PCR. The effect of the KV7 channel inhibitors, XE991 and linopirdine, and the KV7 channel opener, flupirtine on myocardial IR injury in isolated hearts and coronary arteries from Wistar rats was examined. Hearts were subjected to no......Aims: KV7 channel are activated by ischemia and mediate hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion (IR) injury and the interaction with cardioprotection by ischemic preconditioning (IPC). Methods and Results: We investigated the.......1, KV7.4 and KV7.5 were expressed in rat coronary arteries and all KV7 subtypes (KV7.1-5) in the left and right ventricles of the heart. KV7 channel blockade by XE991 and linopirdine reduced infarct size additive to infarct reduction by IPC. Flupirtine abolished infarct size reduction by IPC. In...

  1. Thermal-hydraulic characteristics of the RBMK control and protection system channels

    International Nuclear Information System (INIS)

    The thermal-hydraulic characteristics of the RBMK-1000 control and protection system channel with rod cluster control have been calculated under different operational disturbance regimes. It has been shown that the temperature of the rod cluster control structural materials increases considerably if loss of coolant occurs. The critical element is the sleeve made of CAB1 aluminum alloy

  2. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation.

    Science.gov (United States)

    Hazama, Akihiro; Kozono, David; Guggino, William B; Agre, Peter; Yasui, Masato

    2002-08-01

    Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel. PMID:12034750

  3. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis.

    Science.gov (United States)

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-09-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  4. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45Ca2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45Ca2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd2+, Ni2+, and Mg2+. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  5. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.

    Science.gov (United States)

    Neymotin, S A; McDougal, R A; Bulanova, A S; Zeki, M; Lakatos, P; Terman, D; Hines, M L; Lytton, W W

    2016-03-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium (Ca(2+)) regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused the release of Ca(2+) from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca(2+)-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca(2+) influx via NMDA and voltage-gated Ca(2+) channels (VGCCs). After a delay, mGluR activation led to ER Ca(2+) release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ∼1min. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, Ca(2+) levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca(2+) at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca(2+) could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in

  6. [Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel].

    Science.gov (United States)

    Cao, Huan-Huan; Fang, Fang; Yu, Bo; Luan, Jian; Jiang, Yu; Yang, Hong

    2015-04-25

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation. PMID:25896054

  7. Na(+) -Activated K(+) Channels in Rat Supraoptic Neurones.

    Science.gov (United States)

    Bansal, V; Fisher, T E

    2016-06-01

    The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour. PMID:27091544

  8. Conducting gramicidin channel activity in phospholipid monolayers.

    OpenAIRE

    A. Nelson

    2001-01-01

    Potential step amperometry (chronoamperometry) of the Tl(I)/Tl(Hg) electrochemical reduction process has been used to investigate the underlying mechanisms of gramicidin activity in phospholipid monolayers. The experiments were carried out at gramicidin-modified dioleoyl phosphatidylcholine (DOPC)-coated electrodes. Application of a potential step to the coated electrode system results in a current transient that can be divided into two regions. An initial exponential decay of current corresp...

  9. Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Chen, Cheng-Lung; Liao, Jiunn-Wang; Hu, Oliver Yoa-Pu; Pao, Li-Heng

    2016-09-01

    Tubular cell apoptosis significantly contributes to cisplatin-induced acute kidney injury (AKI) pathogenesis. Although KCa3.1, a calcium-activated potassium channel, participates in apoptosis, its involvement in cisplatin-induced AKI is unknown. Here, we found that cisplatin treatment triggered an early induction of KCa3.1 expression associated with HK-2 cell apoptosis, the development of renal tubular damage, and apoptosis in mice. Treatment with the highly selective KCa3.1 blocker TRAM-34 suppressed cisplatin-induced HK-2 cell apoptosis. We further assessed whether KCa3.1 mediated cisplatin-induced AKI in genetic knockout and pharmacological blockade mouse models. KCa3.1 deficiency reduced renal function loss, renal tubular damage, and the induction of the apoptotic marker caspase-3 in the kidneys of cisplatin-treated KCa3.1 (-/-) mice. Pharmacological blockade of KCa3.1 by TRAM-34 similarly attenuated cisplatin-induced AKI in mice. Furthermore, we dissected the mechanisms underlying cisplatin-induced apoptosis reduction via KCa3.1 blockade. We found that KCa3.1 blockade attenuated cytochrome c release and the increase in the intrinsic apoptotic mediators Bax, Bak, and caspase-9 after cisplatin treatment. KCa3.1 blocking inhibited the cisplatin-induced activation of the endoplasmic reticulum (ER) stress mediator caspase-12, which is independent of calcium-dependent protease m-calpain activation. Taken together, KCa3.1 blockade protects against cisplatin-induced AKI through the attenuation of apoptosis by interference with intrinsic apoptotic and ER stress-related mediators, providing a potential target for the prevention of cisplatin-induced AKI. PMID:26438401

  10. Stretch-activated cation channel from larval bullfrog skin

    OpenAIRE

    Hillyard, Stanley D.; Willumsen, Niels J.; Marrero, Mario B.

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (−1 kPa to −4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed a variable pattern of opening and closing with continuing suction. Current–voltage plots demonstrated linear or inward rectification and single channel conductances of 44–56 pS with NaCl or KCl Ringer...

  11. Ca(2+)-activated K+ channels in human leukemic T cells

    OpenAIRE

    1992-01-01

    Using the patch-clamp technique, we have identified two types of Ca(2+)- activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(C...

  12. The calcium-activated potassium channels of turtle hair cells

    OpenAIRE

    1995-01-01

    A major factor determining the electrical resonant frequency of turtle cochlear hair cells is the time course of the Ca-activated K current (Art, J. J., and R. Fettiplace. 1987. Journal of Physiology. 385:207- 242). We have examined the notion that this time course is dictated by the K channel kinetics by recording single Ca-activated K channels in inside-out patches from isolated cells. A hair cell's resonant frequency was estimated from its known correlation with the dimensions of the hair ...

  13. Atomic basis for therapeutic activation of neuronal potassium channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Yau, Michael C; Galpin, Jason D;

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific...... fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally...... pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators....

  14. Phosphatidylinositol-3-kinase regulates mast cell ion channel activity.

    Science.gov (United States)

    Lam, Rebecca S; Shumilina, Ekaterina; Matzner, Nicole; Zemtsova, Irina M; Sobiesiak, Malgorzata; Lang, Camelia; Felder, Edward; Dietl, Paul; Huber, Stephan M; Lang, Florian

    2008-01-01

    Stimulation of the mast cell IgE-receptor (FcepsilonRI) by antigen leads to stimulation of Ca(2+) entry with subsequent mast cell degranulation and release of inflammatory mediators. Ca(2+) further activates Ca(2+)-activated K(+) channels, which in turn provide the electrical driving force for Ca(2+) entry. Since phosphatidylinositol (PI)-3-kinase has previously been shown to be required for mast cell activation and degranulation, we explored, whether mast cell Ca(2+) and Ca(2+)-activated K(+) channels may be sensitive to PI3-kinase activity. Whole-cell patch clamp experiments and Fura-2 fluorescence measurements for determination of cytosolic Ca(2+) concentration were performed in mouse bone marrow-derived mast cells either treated or untreated with the PI3-kinase inhibitors LY-294002 (10 muM) and wortmannin (100 nM). Antigen-stimulated Ca(2+) entry but not Ca(2+) release from the intracellular stores was dramatically reduced upon PI3-kinase inhibition. Ca(2+) entry was further inhibited by TRPV blocker ruthenium red (10 muM). Ca(2+) entry following readdition after Ca(+)-store depletion with thapsigargin was again decreased by LY-294002, pointing to inhibition of store-operated channels (SOCs). Moreover, inhibition of PI3-kinase abrogated IgE-stimulated, but not ionomycin-induced stimulation of Ca(2+)-activated K(+) channels. These observations disclose PI3-kinase-dependent regulation of Ca(2+) entry and Ca(2+)-activated K(+)-channels, which in turn participate in triggering mast cell degranulation. PMID:18769043

  15. Plasmin in nephrotic urine activates the epithelial sodium channel

    DEFF Research Database (Denmark)

    Svenningsen, Per; Bistrup, Claus; Friis, Ulla G; Bertog, Marko; Haerteis, Silke; Krueger, Bettina; Stubbe, Jane; Jensen, Ole Nørregaard; Thiesson, Helle C; Uhrenholt, Torben R; Jespersen, Bente; Jensen, Boye L; Korbmacher, Christoph; Skøtt, Ole

    2008-01-01

    Proteinuria and increased renal reabsorption of NaCl characterize the nephrotic syndrome. Here, we show that protein-rich urine from nephrotic rats and from patients with nephrotic syndrome activate the epithelial sodium channel (ENaC) in cultured M-1 mouse collecting duct cells and in Xenopus...... plasmin abolished urinary protease activity and the ability to activate ENaC. In nephrotic syndrome, tubular urokinase-type plasminogen activator likely converts filtered plasminogen to plasmin. Consistent with this, the combined application of urokinase-type plasminogen activator and plasminogen...

  16. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model

    Directory of Open Access Journals (Sweden)

    N. Baldev

    2015-12-01

    Full Text Available Purpose: Sodium thiosulfate (STS is clinically reported to be a promising drug in preventing nephrolithiasis. However, its mechanism of action remains unclear. In the present study, we investigated the role of mitochondrial KATP channel in the renal protection mediated by STS. Materials and Methods: Nephrolithiasis was induced in Wistar rats by administrating 0.4% ethylene glycol (EG along with 1% ammonium chloride for one week in drinking water followed by only 0.75% EG for two weeks. Treatment groups received STS, mitochondrial KATP channel opener and closer exclusively or in combination with STS for two weeks. Results: Animals treated with STS showed normal renal tissue architecture, supported by near normal serum creatinine, urea and ALP activity. Diazoxide (mitochondria KATP channel opening treatment to the animal also showed normal renal tissue histology and improved serum chemistry. However, an opposite result was shown by glibenclamide (mitochondria KATP channel closer treated rats. STS administered along with diazoxide negated the renal protection rendered by diazoxide alone, while it imparted protection to the glibenclamide treated rats, formulating a mitochondria modulated STS action. Conclusion: The present study confirmed that STS render renal protection not only through chelation and antioxidant effect but also by modulating the mitochondrial KATP channel for preventing urolithiasis.

  17. Lipid bilayer array for simultaneous recording of ion channel activities

    Science.gov (United States)

    Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2012-07-01

    This paper describes an array of stable and reduced-solvent bilayer lipid membranes (BLMs) formed in microfabricated silicon chips. BLMs were first vertically formed simultaneously and then turned 90° in order to realize a horizontal BLM array. Since the present BLMs are mechanically stable and robust, the BLMs survive this relatively tough process. Typically, a ˜60% yield in simultaneous BLM formation over 9 sites was obtained. Parallel recordings of gramicidin channel activities from different BLMs were demonstrated. The present system has great potential as a platform of BLM-based high throughput drug screening for ion channel proteins.

  18. Computational study of a calcium release-activated calcium channel

    Science.gov (United States)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  19. Control of helium activity in the fuel reactor channels

    International Nuclear Information System (INIS)

    The objective of this task was to study the possibility of detecting a damaged fuel channel, and to introduce automated procedure for continuous control of reactor channels during operation. The existing control systems at the RA reactor (permanent control of heavy water and helium activity, radiation monitoring of heavy water and helium system, measurements of fire damp gas percent) are not sufficient for fast detection of fuel element failures. Since a 'hot' fuel channel cannot be removed from the core because it should be cooled in the core by heavy water circulation, it is not possible to prevent contamination of heavy water by fission products. It is concluded that it is not indispensable to detect the failed fuel element promptly, i.e. that tome is not a critical issue

  20. Connexin 43 channels protect osteocytes against oxidative stress-induced cell death.

    Science.gov (United States)

    Kar, Rekha; Riquelme, Manuel A; Werner, Sherry; Jiang, Jean X

    2013-07-01

    The increased osteocyte death by oxidative stress (OS) during aging is a major cause contributing to the impairment of bone quality and bone loss. However, the underlying molecular mechanism is largely unknown. Here, we show that H₂O₂ induced cell death of primary osteocytes and osteocytic MLO-Y4 cells, and also caused dose-dependent decreased expression of gap junction and hemichannel-forming connexin 43 (Cx43). The decrease of Cx43 expression was also demonstrated with the treatment of other oxidants, rotenone and menadione. Antioxidant reversed the effects of oxidants on Cx43 expression and osteocyte cell death. Cx43 protein was also much lower in the osteocytes from 20-month-old as opposed to the 5-week-old or 20-week old mice. Dye transfer assay showed that H₂O₂ reduced the gap junction intercellular communication (GJIC). In contrast to the effect on GJIC, there was a dose-dependent increase of hemichannel function by H₂O₂, which was correlated with the increased cell surface expression of Cx43. Cx43(E2) antibody, an antibody that specifically blocks Cx43 hemichannel activity but not gap junctions, completely blocked dye uptake induced by H₂O₂ and further exacerbated H₂O₂-induced osteocytic cell death. In addition, knockdown of Cx43 expression by small interfering RNA (siRNA) increased the susceptibility of the cells to OS-induced death. Together, our study provides a novel cell protective mechanism mediated by osteocytic Cx43 channels against OS. PMID:23456878

  1. Atomic basis for therapeutic activation of neuronal potassium channels

    Science.gov (United States)

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-09-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.

  2. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K+ channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K+ channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K+ channel and NFκB activities. This response to TNF-α is dependent on stimulating K+ channel activity because following suppression of K+ channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  3. The GPR55 agonist lysophosphatidylinositol directly activates intermediate-conductance Ca2+-activated K+ channels

    OpenAIRE

    Bondarenko, Alexander I.; Malli, Roland; Graier, Wolfgang F

    2011-01-01

    Lysophosphatidylinositol (LPI) was recently shown to act both as an extracellular mediator binding to G protein-coupled receptor 55 (GPR55) and as an intracellular messenger directly affecting a number of ion channels including large-conductance Ca2+ and voltage-gated potassium (BKCa) channels. Here, we explored the effect of LPI on intermediate-conductance Ca2+-activated K+ (IKCa) channels using excised inside-out patches from endothelial cells. The functional expression of IKCa was confirme...

  4. Stretch-activated cation channel from larval bullfrog skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Willumsen, Niels J; Marrero, Mario B

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (-1 kPa to -4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed a...... markedly reduced with N-methyl-D-glucamide (NMDG)-Cl Ringer's solution in the pipette. Neither amiloride nor ATP, which are known to stimulate an apical cation channel in Ussing chamber preparations of larval frog skin, produced channel activation nor did these compounds affect the response to suction....... Stretch activation was not affected by varying the pipette concentrations of Ca(2+) between 0 mmol l(-1) and 4 mmol l(-1) or by varying pH between 6.8 and 8.0. However, conductance was reduced with 4 mmol l(-1) Ca(2+). Western blot analysis of membrane homogenates from larval bullfrog and larval toad skin...

  5. Inhibition of KV7 Channels Protects the Rat Heart against Myocardial Ischemia and Reperfusion Injury.

    Science.gov (United States)

    Hedegaard, Elise R; Johnsen, Jacob; Povlsen, Jonas A; Jespersen, Nichlas R; Shanmuganathan, Jeffrey A; Laursen, Mia R; Kristiansen, Steen B; Simonsen, Ulf; Bøtker, Hans Erik

    2016-04-01

    The voltage-gated KV7 (KCNQ) potassium channels are activated by ischemia and involved in hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion injury and its interaction with cardioprotection by ischemic preconditioning (IPC). Reverse-transcription polymerase chain reaction revealed expression of KV7.1, KV7.4, and KV7.5 in the left anterior descending rat coronary artery and all KV7 subtypes (KV7.1-KV7.5) in the left and right ventricles of the heart. Isolated hearts were subjected to no-flow global ischemia and reperfusion with and without IPC. Infarct size was quantified by 2,3,5-triphenyltetrazolium chloride staining. Two blockers of KV7 channels, XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone] (10 µM) and linopirdine (10 µM), reduced infarct size and exerted additive infarct reduction to IPC. An opener of KV7 channels, flupirtine (10 µM) abolished infarct size reduction by IPC. Hemodynamics were measured using a catheter inserted in the left ventricle and postischemic left ventricular recovery improved in accordance with reduction of infarct size and deteriorated with increased infarct size. XE991 (10 µM) reduced coronary flow in the reperfusion phase and inhibited vasodilatation in isolated small branches of the left anterior descending coronary artery during both simulated ischemia and reoxygenation. KV7 channels are expressed in rat coronary arteries and myocardium. Inhibition of KV7 channels exerts cardioprotection and opening of KV7 channels abrogates cardioprotection by IPC. Although safety issues should be further addressed, our findings suggest a potential role for KV7 blockers in the treatment of ischemia-reperfusion injury. PMID:26869667

  6. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  7. Protection for work on channel W.19.E of the pile G.2

    International Nuclear Information System (INIS)

    The cartridges stuck in one of the channels, resulting from a canning burst and attempts at unloading, were removed from the front. Contamination was kept under control by the use of vinyl protective equipment, the working areas being defined and corresponding clothing worn. Constant supervision of the irradiation due to scraps and to the cartridges kept the doses absorbed down to a negligible level. As a result of this very strict discipline on the question of radioactive hygiene there was no spread of contamination nor any irradiation accident in the course of this work, which lasted about a month and involved 3,335 trips to the area. (author)

  8. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    In 1995 several operational circumstances required careful watching by the Radiation Protection Group. Most of these were linked with new or recently started CERN activities: for instance the increasing importance assumed by ISOLDE operation and the breakdowns encountered which have given rise to contamination of the target region and to activity releases. In the SPS ring, several difficulties were brought about by a toilsome installation of a new interlock system, while lead ion operation marked the end of the year, as usual, with higher radiation levels in the SPS experimental areas, despite the fact that existing shielding had been improved. Also at the end of the year, the increase of LEP beam energy to 68 GeV caused a rise of dose rate levels from synchrotron radiation. This was expected, but studies are still needed to assess the full implications for different aspects of radiation protection. On the other hand, the ageing of magnet coils and other equipment (insulators, cables, flexible pipes), aggravated by the high proton beam intensities, has resulted in an increasing frequency of failures (mainly water leaks) both at the PS and at the SPS. If the apparent trend is confirmed, difficulties could be expected in the future for two reasons: the shortage of specialized staff, some of them approaching the CERN dose limit of 15 mSv annually, who can be assigned to repair work; and the lack of spare parts to replace the damaged items. Luckily, the long cooling times following high intensity proton runs provided by the operation with heavy-ions and by the winter shutdown mitigate this situation

  9. Using topological insulator proximity to generate perfectly conducting channels in materials without topological protection

    International Nuclear Information System (INIS)

    We show that hybrid structures of topological insulators (TI) and materials without topological protection can be employed to create perfectly conducting channels (PCCs) hosted in the non-topological part. These states inherit the topological protection from the proximity of the TI but are more fragile to time-reversal symmetry breaking because of their extended character. We explore their formation in the band structure of model hybrid systems as well as realistic heterostructures involving HgTe/CdTe-based two-dimensional TIs and show how their appearance can be understood in terms of an effective boundary condition. Using numerical quantum transport calculations for the HgTe/CdTe material system we propose two experimental settings which allow for the detection of the induced PCCs, both in the localized and diffusive regime, by means of magneto conductance and shot noise. (paper)

  10. Paradoxical Contribution of SK3 and GIRK Channels to the Activation of Mouse Vomeronasal Organ

    OpenAIRE

    Kim, Sangseong; Ma, Limei; Jensen, Kristi L.; Kim, Michelle M.; Bond, Chris T.; Adelman, John P.; Yu, C. Ron

    2012-01-01

    The vomeronasal organ (VNO) plays an essential role in intraspecies communication for terrestrial vertebrates. The ionic mechanisms of VNO activation remain unclear. We find that the calcium–activated potassium channel SK3 and G–protein activated potassium channel GIRK are part of an independent pathway for VNO activation. In slice preparations, the potassium channels attenuate inward currents carried by TRPC2 and calcium–activated chloride channels (CACCs). In intact tissue preparations, par...

  11. Fluoxetine protection in decompression sickness in mice is enhanced by blocking TREK-1 potassium channel with the spadin antidepressant.

    Directory of Open Access Journals (Sweden)

    Nicolas eVallée

    2016-02-01

    Full Text Available In mice, disseminated coagulation, inflammation and ischemia induce neurological damages that can lead to the death. These symptoms result from circulating bubbles generated by a pathogenic decompression. An acute fluoxetine treatment or the presence of the TREK-1 potassium channel increased the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50mg/kg in wild-type (WT and TREK-1 deficient mice (Knockout homozygous KO and heterozygous HET. Then, we combined the same fluoxetine treatment with a five-day treatment by spadin, in order to specifically block TREK-1 activity (KO-like mice. KO and KO-like mice could be regarded as antidepressed models.167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux and 4% of mice treated with both spadin and fluoxetine (KO-likeflux died from decompression sickness (DCS symptoms. These values are much lower than those of WT control (62% or KO-like mice (41%. After the decompression protocol, mice showed a significant consumption of their circulating platelets and leukocytes.Spadin antidepressed mice were more likely to declare DCS. Nevertheless, which had both blocked TREK-1 channel and were treated with fluoxetine were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but a concomitant fluoxetine treatment not only decreases DCS severity but increases the survival rate.

  12. Ca(2+)-activated K+ channels in rat thymic lymphocytes: activation by concanavalin A.

    Science.gov (United States)

    Mahaut-Smith, M P; Mason, M J

    1991-08-01

    1. The role of ion channels in the mitogenic response of rat thymic lymphocytes to concanavalin A (ConA) was studied using single-channel patch-clamp recordings and measurements of membrane potential with the fluorescent probe bis-oxonol. 2. ConA (20 micrograms ml-1) evoked a rapid membrane hyperpolarization; Indo-1 measurements indicated a concurrent increase in [Ca2+]i. The hyperpolarization was blocked by cytoplasmic loading with the Ca2+ buffer BAPTA (bis(O-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid), or charybdotoxin, a component of scorpion venom known to block K+ channels in lymphocytes. 3. Cell-attached patch-clamp recordings showed that both ConA and the Ca2+ ionophore ionomycin activated channels with high selectivity for K+. Two conductance levels were observed -6-7 pS and 17-18 pS-measured as inward chord conductance at 60 mV from reversal potential (Erev) with 140 mM-KCl in the pipette. The current-voltage relationship for the larger channel displayed inward rectification and channel open probability was weakly dependent upon membrane potential. 4. These experiments provide the first direct evidence for mitogen-activated Ca(2+)-gated K+ channels (IK(Ca)) in lymphocytes. This conductance is relatively inactive in unstimulated rat thymocytes but following the intracellular Ca2+ rises induced by ConA, IK(Ca) channels are activated and produce a significant hyperpolarization of the cell potential. PMID:1716678

  13. PROTECTIVE EFFECT OF CUTANEOUS ANTIBODY PRODUCED BY CHANNEL CATFISH IMMUNE TO ICHTHYOPHTHIRIUS ON COHABITED NON-IMMUNE CATFISH

    Science.gov (United States)

    Fish recovered from sublethal ichthyophthiriasis acquire protective immunity against Ichthyophthirius (Ich). This study evaluated the protective effect of cutaneous antibody excreted by channel catfish immune to Ich on cohabited non-immune catfish. Non-immune and immune fish controls were separatel...

  14. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-01-01

    The lamina cribrosa (LC) region of the optic nerve head is considered the primary site of damage in glaucomatous optic neuropathy. Resident LC cells have a profibrotic potential when exposed to cyclical stretch. However, the mechanosensitive mechanisms of these cells remain unknown. Here the authors investigated the effects of membrane stretch on cell volume change and ion channel activity and examined the associated changes in intracellular calcium ([Ca(2+)](i)).

  15. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels.

    Science.gov (United States)

    Proks, Peter; Puljung, Michael C; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M

    2016-08-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues-mainly intracellular adenine nucleotide concentrations-to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377720

  16. Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Hay-Schmidt, Anders; Klaerke, Dan A

    2005-01-01

    Big conductance Ca2+ activated K+ channels (BK channels) is an abundant channel present in almost all kind of tissue. The accurate quantity and especially the precise distribution of this channel in kidney epithelia are, however, still debated. The aim of the present study has therefore been...

  17. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes.

    Science.gov (United States)

    Kheradpezhouh, E; Barritt, G J; Rychkov, G Y

    2016-04-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  18. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    E. Kheradpezhouh

    2016-04-01

    Full Text Available Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2 channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  19. Structural elements in the Girk1 subunit that potentiate G protein–gated potassium channel activity

    OpenAIRE

    Wydeven, Nicole; Young, Daniele; Mirkovic, Kelsey; Wickman, Kevin

    2012-01-01

    G protein–gated inwardly rectifying K+ (Girk/KIR3) channels mediate the inhibitory effect of many neurotransmitters on excitable cells. Girk channels are tetramers consisting of various combinations of four mammalian Girk subunits (Girk1 to -4). Although Girk1 is unable to form functional homomeric channels, its presence in cardiac and neuronal channel complexes correlates with robust channel activity. This study sought to better understand the potentiating influence of Girk1, using the GABAB...

  20. Maitotoxin activates cation channels distinct from the receptor-activated non-selective cation channels of HL-60 cells

    OpenAIRE

    Musgrave, I. F.; Seifert, Roland; Schultz, Günter

    1994-01-01

    We investigated whether maitotoxin activates non-selective cation channels, as was recently proposed [Soergel, Yasumoto, Daly and Gusovsky (1992) Mol. Pharmacol. 41, 487-493]. Stimulation of dibutyryl cyclic AMP-differentiated HL-60 cells with the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP; 0.1 microM), the Ca(2+)-ATPase inhibitor thapsigargin (0.1 microM) or maitotoxin (25 ng/ml) resulted in an increase in cytoplasmic free calcium concentration ([Ca2+]i). Unlike ...

  1. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels in the regulation of midbrain dopamine systems

    OpenAIRE

    Chu, Hong-Yuan; Zhen, Xuechu

    2010-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated channels (HCN channels) are expressed widely in the brain and invovled in various neuronal activities, including the control of neuronal rhythmic activity, setting the resting membrane potential, as well as dendritic integration. HCN channels also participate in the regulation of spontaneous activity of midbrain dopamine (DA) neurons to some extent. In slice preparations of midbrain, a hyperpolarization-activated non-selective cation curren...

  2. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K;

    1999-01-01

    established. The recent cloning of the Ca(2+)-activated, intermediate-conductance K(+) channel (IK channel) has enabled a detailed investigation of the role of this highly Ca(2+)-sensitive K(+) channel in the calcium signaling and subsequent regulation of T cell proliferation. The role IK channels play in T...... cell activation and proliferation has been investigated by using various blockers of IK channels. The Ca(2+)-activated K(+) current in human T cells is shown by the whole-cell voltage-clamp technique to be highly sensitive to clotrimazole, charybdotoxin, and nitrendipine, but not to ketoconazole...... inhibited after block of IK channels by clotrimazole. Clotrimazole and cyclosporin A act synergistically to inhibit T cell proliferation, which confirms that block of IK channels affects the process downstream from T cell receptor activation. We suggest that IK channels constitute another target for immune...

  3. Sodium Permeability of a Cloned Small-Conductance Calcium-Activated Potassium Channel

    OpenAIRE

    Shin, Narae; Soh, Heun; Chang, Sunghoe; Kim, Do Han; Park, Chul-Seung

    2005-01-01

    Small-conductance Ca2+-activated potassium channels (SKCa channels) are heteromeric complexes of pore-forming main subunits and constitutively bound calmodulin. SKCa channels in neuronal cells are activated by intracellular Ca2+ that increases during action potentials, and their ionic currents have been considered to underlie neuronal afterhyperpolarization. However, the ion selectivity of neuronal SKCa channels has not been rigorously investigated. In this study, we determined the monovalent...

  4. Observations of the Behavior and Distribution of Fish in Relation to the Columbia River Navigation Channel and Channel Maintenance Activities

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Ploskey, Gene R.; Johnson, R. L.; Mueller, Robert P.; Weiland, Mark A.; Johnson, P. N.

    2001-10-19

    This report is a compilation of 7 studies conducted for the U.S. Army Corps of Engineers between 1995 and 1998 which used hydroacoustic methods to study the behavior of migrating salmon in response to navigation channel maintenance activities in the lower Columbia River near river mile 45. Differences between daytime and nighttime behavior and fish densities were noted. Comparisons were made of fish distribution across the river (in the channel, channel margin or near shore) and fish depth upstream and downstream of dikes, dredges, and pile driving areas.

  5. Cell swelling activates K+ and Cl- channels as well as nonselective, stretch-activated cation channels in ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Christensen, Ove; Hoffmann, Else Kay

    1992-01-01

    external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation...... by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches...... in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other...

  6. Research and development activities of physical protection in Japan

    International Nuclear Information System (INIS)

    From 1990 to 1999, Nuclear Material Control Center contracted to be engaged in the R and D theme investigating on establishment of physical protection system of nuclear facilities. The purpose of this activity is to define and propose the requirements which physical protection system applied to the large scale reprocessing plant should meet. Some matters investigated here contain fundamental problems of physical protection and the outcomes are also useful to be applied to other major nuclear facilities. In this context, taking into consideration of the movement of INFCIRC/225, the activity had been carried out to be fed back to physical protection measures which nuclear facilities in Japan should take. The principle outcomes of the activities are as follows: study for evaluation method of physical protection system, and investigation on protection measures for sabotage

  7. Calcium channel blocking activity of fruits of callistemon citrinus

    International Nuclear Information System (INIS)

    Callistemon citrinus is a plant of family myrtaceae that has a great medicinal importance. Traditional uses of the aerial parts of Callistemon citrinus in ethnic tribal communities are in practice, and very little are known about its importance on scientific grounds. Therefore, the crude methanolic extract of fruits of Callistemon citrinus (C.c) was screened for possible spasmolytic activity on isolated rabbit's jejunum preparations. The extract produced a relaxing effect on spontaneous contraction of rabbit's jejunum. Explaining the mode of action, the extract produced a dose dependent relaxant effect and shifted the calcium response curves to the rightward (EC50 +- SEM = -2.05 +- 0.05 vs. control EC50 +- SEM = -2.5 +- 0.05). The effect of extract was comparable with the effect of verapamil, a standard calcium channel blocker and therefore, the plant specie could be a potential target for isolation of calcium antagonist(s). (author)

  8. The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal

    OpenAIRE

    Shahi, Pawan Kumar; Choi, Seok; Zuo, Dong Chuan; Kim, Man Yoo; Park, Chan Guk; Kim, Young Dae; Lee, Jun; Park, Kyu Joo; So, Insuk; Jun, Jae Yeoul

    2013-01-01

    Background Hyperpolarization-activated cyclic nucleotide (HCN) channels are pacemaker channels that regulate heart rate and neuronal rhythm in spontaneously active cardiac and neuronal cells. Interstitial cells of Cajal (ICCs) are also spontaneously active pacemaker cells in the gastrointestinal tract. Here, we investigated the existence of HCN channel and its role on pacemaker activity in colonic ICCs. Methods We performed whole-cell patch clamp, RT-PCR, and Ca2+-imaging in cultured ICCs fro...

  9. Swelling-Activated Anion Channels Are Essential for Volume Regulation of Mouse Thymocytes

    Directory of Open Access Journals (Sweden)

    Ravshan Z. Sabirov

    2011-12-01

    Full Text Available Channel-mediated trans-membrane chloride movement is a key process in the active cell volume regulation under osmotic stress in most cells. However, thymocytes were hypothesized to regulate their volume by activating a coupled K-Cl cotransport mechanism. Under the patch-clamp, we found that osmotic swelling activates two types of macroscopic anion conductance with different voltage-dependence and pharmacology. At the single-channel level, we identified two types of events: one corresponded to the maxi-anion channel, and the other one had characteristics of the volume-sensitive outwardly rectifying (VSOR chloride channel of intermediate conductance. A VSOR inhibitor, phloretin, significantly suppressed both macroscopic VSOR-type conductance and single-channel activity of intermediate amplitude. The maxi-anion channel activity was largely suppressed by Gd3+ ions but not by phloretin. Surprisingly, [(dihydroindenyloxy] alkanoic acid (DIOA, a known antagonist of K-Cl cotransporter, was found to significantly suppress the activity of the VSOR-type single-channel events with no effect on the maxi-anion channels at 10 μM. The regulatory volume decrease (RVD phase of cellular response to hypotonicity was mildly suppressed by Gd3+ ions and was completely abolished by phloretin suggesting a major impact of the VSOR chloride channel and modulatory role of the maxi-anion channel. The inhibitory effect of DIOA was also strong, and, most likely, it occurred via blocking the VSOR Cl− channels.

  10. Localization of Ca2+ -activated big-conductance K+ channels in rabbit distal colon

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders; Grunnet, Morten; Abrahamse, Salomon L;

    2003-01-01

    Big-conductance Ca(2+)-activated K(+) channels (BK channels) may play an important role in the regulation of epithelial salt and water transport, but little is known about the expression level and the precise localization of BK channels in epithelia. The aim of the present study was to quantify...

  11. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    Science.gov (United States)

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  12. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches...

  13. Twenty-four-hour exposure to altered blood flow modifies endothelial Ca2+-activated K+ channels in rat mesenteric arteries

    DEFF Research Database (Denmark)

    Hilgers, Rob H P; Janssen, Ger M J; Fazzi, Gregorio E;

    2010-01-01

    We tested the hypothesis that changes in arterial blood flow modify the function of endothelial Ca2+-activated K+ channels [calcium-activated K+ channel (K(Ca)), small-conductance calcium-activated K+ channel (SK3), and intermediate calcium-activated K+ channel (IK1)] before arterial structural...

  14. Synchronization of Active Atomic Clocks via Quantum and Classical Channels

    CERN Document Server

    Roth, Alexander

    2016-01-01

    Superradiant lasers based on atomic ensembles exhibiting ultra-narrow optical transitions can emit light of unprecedented spectral purity and may serve as active atomic clocks. We consider two frequency-detuned active atomic clocks, which are coupled in a cascaded setup, i.e. as master & slave lasers, and study the synchronization of the slave to the master clock. In a setup where both atomic ensembles are coupled to a common cavity mode such synchronization phenomena have been predicted by Xu et al. [Phys. Rev. Lett. 113, 154101 (2014)] and experimentally observed by Weiner et al. [arXiv:1503.06464 (2015)]. Here we demonstrate that synchronization still occurs in cascaded setups but exhibits distinctly different phase diagrams. We study the characteristics of synchronization in comparison to the case of coupling through a common cavity. We also consider synchronization through a classical channel where light of the master laser is measured phase sensitively and the slave laser is injection locked by feed...

  15. Activation and deactivation of vibronic channels in intact phycocyanin rods

    Science.gov (United States)

    Nganou, C.; David, L.; Meinke, R.; Adir, N.; Maultzsch, J.; Mkandawire, M.; Pouhè, D.; Thomsen, C.

    2014-02-01

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm-1 is assigned to the C-C stretching vibration while the mode at 454 cm-1 is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm-1 does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm-1 rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  16. Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds

    OpenAIRE

    Lisk, Godfrey; Pain, Margaret; Sellers, Morgan; Gurnev, Philip A.; Pillai, Ajay D.; Bezrukov, Sergey M.; Desai, Sanjay A.

    2010-01-01

    Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used t...

  17. The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Nardi, Antonio; Calloe, Kirstine;

    2007-01-01

    . Single-channel analysis revealed that NS11021 increased the open probability of the channel by altering gating kinetics without affecting the single-channel conductance. NS11021 (10 microM) influenced neither a number of cloned Kv channels nor endogenous Na(+) and Ca(2+) channels (L- and T-type) in...... guinea pig cardiac myocytes. In conclusion, NS11021 is a novel KCa1.1 channel activator with better specificity and a 10 times higher potency compared with the most broadly applied KCa1.1 opener, NS1619. Thus, NS11021 might be a valuable tool compound when addressing the physiological and......Large-conductance Ca(2+)- and voltage-activated K(+) channels (Kca1.1/BK/MaxiK) are widely expressed ion channels. They provide a Ca(2+)-dependent feedback mechanism for the regulation of various body functions such as blood flow, neurotransmitter release, uresis, and immunity. In addition, a...

  18. Activation and block of recombinant GABAA receptors by pentobarbitone: a single-channel study

    OpenAIRE

    Akk, Gustav; Steinbach, Joe Henry

    2000-01-01

    Recombinant GABAA receptors (α1β2γ2L) were transiently expressed in HEK 293 cells. We have investigated activation and block of these receptors by pentobarbitone (PB) using cell-attached single-channel patch clamp.Clusters of single-channel activity elicited by 500 μM PB were analysed to estimate rate constants for agonist binding and channel gating. The minimal model able to describe the kinetic data involved two sequential binding steps, followed by channel opening. The estimated channel op...

  19. The radiation protection programme activities of the World Health Organization

    International Nuclear Information System (INIS)

    The radiation protection activities of the World Health Organization are reviewed. They include studies of radiation protection standards and guidelines, and public health aspects of nuclear power. WHO also provides member states with world data on radioactivity in air, water and food, and assessments of population exposure and health effects. (H.K.)

  20. 29 CFR 553.210 - Fire protection activities.

    Science.gov (United States)

    2010-07-01

    ... OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law Enforcement Employees of Public Agencies Exemption Requirements § 553.210 Fire protection activities. (a) As... activities” also refers to employees who work for forest conservation agencies or other public...

  1. Radiation protection for manned space activities

    Science.gov (United States)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  2. Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels.

    Science.gov (United States)

    García-Bereguiaín, Miguel Angel; Samhan-Arias, Alejandro Khalil; Martín-Romero, Francisco Javier; Gutiérrez-Merino, Carlos

    2008-01-01

    Hydrogen sulfide (H(2)S) concentration can be maintained in cell cultures within the range reported for rat brain by repetitive pulses of sodium hydrogen sulfide. Less than 2 h exposure to H(2)S concentrations within 50 and 120 microM (i.e., within the upper segment of the reported physiological range of H(2)S in rat brain), produces a large shift of the intracellular calcium homeostasis in cerebellar granule neurons (CGN) in culture, leading to a large and sustained increase of cytosolic calcium concentration. Only 1 h exposure to H(2)S concentrations within 100 and 300 microM raises intracellular calcium to the neurotoxic range, with nearly 50% cell death after 2 h. L-type Ca(2+) channels antagonists nimodipine and nifedipine block both the H(2)S-induced rise of cytosolic calcium and cell death. The N-methyl-D-aspartate receptor antagonists (+)-MK-801 and DL-2-amino-5-phosphonovaleric acid afforded a nearly complete protection against H(2)S-induced CGN death and largely attenuated the rise of cytosolic calcium. Thus, H(2)S-induced rise of cytosolic calcium eventually reaches the neurotoxic cytosolic calcium range, leading to glutamate-induced excitotoxic CGN death. The authors conclude that H(2)S is a major modulator of calcium homeostasis in neurons as it induces activation of Ca(2+) entry through L-type Ca(2+) channels, and thereby of neuronal activity. PMID:17956188

  3. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture

    Science.gov (United States)

    Liang, M.; Kim, W.; Passalacqua, P.

    2015-12-01

    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  4. Interaction between Cl- channels and CRAC-related Ca2+ signaling during T lymphocyte activation and proliferation

    Institute of Scientific and Technical Information of China (English)

    Guan-lei WANG; Yan QIAN; Qin-ying QIU; Xiu-jian LAN; Hua HE; Yong-yuan GUAN

    2006-01-01

    Aim:To test the hypothesis that Cl- channel blockers affect T cell proliferation through Ca2+-release-activated Ca2+ (CRAC) signaling and examine the effects of the combination of a CRAC channel blocker and a Cl- channel blocker on concanavalin A (ConA;5 mg/mL) -induced Ca2+ signaling,gene expression and cellular proliferation in human peripheral T lymphocytes.Methods:[3H]Thymidine incorporation,Fura-2 fluorescent probe,RNase protection assay,and reverse transcription.polymerase chain reaction were used.Results:The Cl- channel blocker 4,4'-diisothiocvanostilbene-2,2'-disulfonic acid (DIDS) inhibited ConA-induced Ca2+influx.interleukin-2 mRNA expression and T lymphocyte proliferation in a concentration.dependent manner,and also enhanced the inhibitory effects of 1-{beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl}-1H-imidazole (SK&F96365) on the above key events during T cell activation.A combination ofDIDS (1μmol/L) and SK&F96365 (1μmol/L) significantly diminished ConA-induced ClC-3 mRNA expression by 64%,whereas DIDS (1μmol/L) or SK&F96365 (1μmol/L) alone decreased ConA-induced ClC-3 mRNA expression by only 16% and 9%.respectively.Conclusion:These results suggest that there is an interaction between CRAC-mediated Ca2+ signaling and DIDS-sensitive C1-channels during ConA-induced T cell activation and proliferation.Moreover,the DIDS-sensitive Cl-channels may be related to the ClC-3 Cl- channels.

  5. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    The staff of the Survey Section of Radiation Protection (RP) working around the CERN accelerators were as usual very busy. The LEP2 programme is now fully on its way, with the installation of additional superconducting RF cavities carried out during both the winter and summer shutdowns. The LEP energy per beam was thus increased to 80.5 GeV in summer and to 86 GeV in autumn. ACOL and LEAR ended their operational life on 19 December producing, for the last time, antiprotons for the experiments in the South Hall; all experiments will be dismantled in 1997. This programme will be partly replaced by the future Antiproton Decelerator, which was approved by the Research Board in November. Several experiments also came to their end in the North and West Experimental Areas of the SPS. NA44 (in EHN1) and NA47 (in EHN2) ended this year. All experiments installed in beam lines HI, H3, XI and X3 in the West Area also terminated, as these beam lines will be dismantled in the course of 1997 to make room for test facilities for the LHC. Several modifications in the West and North Experimental Areas have already been undertaken at the end of the year and will be continued in 1997. Some equipment installed in the West Area will be moved to the North Area. In addition to routine work, several measurements of synchrotron radiation were made in LEP for the two new energy levels reached in 1996. A number of dedicated measurements were also undertaken in EHN1 (North Area) at the end of the year, during the lead-ion run which closed the physics period. A detailed assessment of releases of radioactivity from the ISOLDE facility was also made

  6. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity.

    Science.gov (United States)

    Wydeven, Nicole; Young, Daniele; Mirkovic, Kelsey; Wickman, Kevin

    2012-12-26

    G protein-gated inwardly rectifying K(+) (Girk/K(IR)3) channels mediate the inhibitory effect of many neurotransmitters on excitable cells. Girk channels are tetramers consisting of various combinations of four mammalian Girk subunits (Girk1 to -4). Although Girk1 is unable to form functional homomeric channels, its presence in cardiac and neuronal channel complexes correlates with robust channel activity. This study sought to better understand the potentiating influence of Girk1, using the GABA(B) receptor and Girk1/Girk2 heteromer as a model system. Girk1 did not increase the protein levels or alter the trafficking of Girk2-containing channels to the cell surface in transfected cells or hippocampal neurons, indicating that its potentiating influence involves enhancement of channel activity. Structural elements in both the distal carboxyl-terminal domain and channel core were identified as key determinants of robust channel activity. In the distal carboxyl-terminal domain, residue Q404 was identified as a key determinant of receptor-induced channel activity. In the Girk1 core, three unique residues in the pore (P) loop (F137, A142, Y150) were identified as a collective potentiating influence on both receptor-dependent and receptor-independent channel activity, exerting their influence, at least in part, by enhancing mean open time and single-channel conductance. Interestingly, the potentiating influence of the Girk1 P-loop is tempered by residue F162 in the second membrane-spanning domain. Thus, discontinuous and sometime opposing elements in Girk1 underlie the Girk1-dependent potentiation of receptor-dependent and receptor-independent heteromeric channel activity. PMID:23236146

  7. Modulation of Neuronal Voltage-Activated Calcium and Sodium Channels by Polyamines and pH

    OpenAIRE

    Chen, Wenyan; Harnett, Mark T.; Smith, Stephen M.

    2007-01-01

    The endogenous polyamines spermine, spermidine and putrescine are present at high concentrations inside neurons and can be released into the extracellular space where they have been shown to modulate ion channels. Here, we have examined polyamine modulation of voltage-activated Ca2+ channels (VACCs) and voltage-activated Na+ channels (VANCs) in rat superior cervical ganglion neurons using whole-cell voltage-clamp at physiological divalent concentrations. Polyamines inhibited VACCs in a concen...

  8. Specific serum antibody responses in channel catfish (Ictalurus punctatus) provide limited protection against Streptococcus ictaluri challenge.

    Science.gov (United States)

    Pasnik, David J; Evans, Joyce J; Klesius, Phillip H

    2011-11-15

    Passive immunization studies were conducted to determine the role of specific antibodies in immunity to Streptococcus ictaluri. Adult channel catfish (Ictalurus punctatus) were injected i.p. with tryptic soy broth as control or with 1.5 × 10(7)colony-forming units (cfu) S. ictaluri/fish at 0, 30, and 60 d, and serum was collected 90 d after the original challenge. Fish were passively immunized by i.p. injection with serum from the tryptic soy broth (TSB) control group, anti-S. ictaluri serum from fish immunized three times and sampled at 90 d (SSI), or heat-inactivated anti-S. ictaluri serum from fish immunized three times and sampled at 90 d (HISSI). These passively immunized fish were then challenged 72 h later with 1.5 × 10(8)cfu S. ictaluri/fish. Over 21 d, the mean cumulative percent survival was 43.3 (TSB), 63.3 (SSI), and 50.0 (HISSI). A significant difference in cumulative percent survival was noted between the TSB and the HISSI groups, and significant differences were noted between these groups and the SSI group. Serum obtained from immunized fish 72 h after passive immunization exhibited increased anti-S. ictaluri antibody levels. Twenty-one days after the challenge, the HISSI and SSI group antibody levels significantly increased above their corresponding pre-challenge levels. No significant (r(2)=0.0806; P<0.5985) correlation between increased pre-challenge specific serum antibody levels and survival after challenge was demonstrated when analyzing the control and passive immunization groups. The results indicate that both specific anti-S. ictaluri antibodies and non-specific immune responses are important for protection against S. ictaluri. PMID:21962634

  9. Regional and national radiation protection activities in Egypt

    International Nuclear Information System (INIS)

    Radiation protection activities in Egypt go back to 1957 where the Egyptian Atomic Energy Commission (EAEC) Law was issued. Radiation protection and civil defense department was one of EAEC eighth departments. Ionizing radiation law was issued in 1960 and its executive regulation in 1962. The main aim of the present work is to through some light on the current radiation protection activities in Egypt. This includes not only the role of governmental organizations but also to the non governmental organizations. Currently a new Nuclear Safety law is understudy. Regional activities such as holding the second all African IRPA regional radiation protection congress which was held in April 2007 and national training and workshops are held regularly through EAEA, AAEA and MERRCAC. (author)

  10. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L; Morera, Francisco J; Latorre, Ramón; Klaerke, Dan A

    . To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK...... current increases with increasing negative hydrostatic pressure (suction) applied to the pipette. Thus, at a pipette pressure of -5.0 +/- 0.1 mmHg the increase amounted to 381 +/- 146% (mean +/- S.E.M., n = 6, P < 0.025). In contrast, in oocytes expressing the strongly volume-sensitive KCNQ1 channel, the...

  11. The inhibitor of volume-regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes

    Czech Academy of Sciences Publication Activity Database

    Minieri, L.; Pivoňková, Helena; Caprini, M.; Harantová, Lenka; Anděrová, Miroslava; Ferroni, S.

    2013-01-01

    Roč. 168, č. 5 (2013), s. 1240-1254. ISSN 0007-1188 R&D Projects: GA ČR GAP303/10/1338 Institutional support: RVO:68378041 Keywords : two-pore-domain potassium channels * patch clamp * neuroprotection Subject RIV: FH - Neurology Impact factor: 4.990, year: 2013

  12. Trafficking and surface expression of hyperpolarization-activated cyclic nucleotide-gated channels in hippocampal neurons

    NARCIS (Netherlands)

    Y. Noam; Q. Zha; L. Phan; R.L. Wu; D.M. Chetkovich; W.J. Wadman; T.Z. Baram

    2010-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate the hyperpolarization-activated current I(h) and thus play important roles in the regulation of brain excitability. The subcellular distribution pattern of the HCN channels influences the effects that they exert on the proper

  13. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle

    DEFF Research Database (Denmark)

    Layne, Jeffrey J; Nausch, Bernhard; Olesen, Søren-Peter;

    2009-01-01

    activation of BK channels has the converse effect of reducing UBSM excitability and contractility. Here, we have sought to investigate this possibility by using the novel BK channel opener NS11021. NS11021 (3 microM) caused an approximately threefold increase in both single BK channel open probability (P......Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether......(o)) and whole cell BK channel currents. The frequency of spontaneous action potentials in UBSM strips was reduced by NS11021 from a control value of 20.9 + or - 5.9 to 10.9 + or - 3.7 per minute. NS11021 also reduced the force of UBSM spontaneous phasic contractions by approximately 50%, and this force...

  14. Regulation of Arterial Tone by Activation of Calcium-Dependent Potassium Channels

    Science.gov (United States)

    Brayden, Joseph E.; Nelson, Mark T.

    1992-04-01

    Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) vascular tone. However, many of the molecular determinants of this response are unknown. Evidence is now presented that the degree of myogenic tone is regulated in part by the activation of large-conductance calcium-activated potassium channels in arterial smooth muscle. Tetraethylammonium ion (TEA^+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone. Both TEA^+ and CTX had little effect on arteries when intracellular calcium was reduced by lowering intravascular pressure or by blocking calcium channels. Elevation of intravascular pressure through membrane depolarization and an increase in intracellular calcium may activate calcium-activated potassium channels. Thus, these channels may serve as a negative feedback pathway to control the degree of membrane depolarization and vasoconstriction.

  15. Low-dose photon irradiation alters cell differentiation via activation of hIK channels.

    Science.gov (United States)

    Roth, Bastian; Gibhardt, Christine S; Becker, Patrick; Gebhardt, Manuela; Knoop, Jan; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-08-01

    To understand the impact of ionizing irradiation from diagnostics and radiotherapy on cells, we examined K(+) channel activity before and immediately after exposing cells to X-rays. Already, low dose in the cGy range caused in adenocarcinoma A549 cells within minutes a hyperpolarization following activation of the human intermediate-conductance Ca(2+)-activated K(+) channel (hIK). The response was specific for cells, which functionally expressed hIK channels and in which hIK activity was low before irradiation. HEK293 cells, which do not respond to X-ray irradiation, accordingly develop a sensitivity to this stress after heterologous expression of hIK channels. The data suggest that hIK activation involves a Ca(2+)-mediated signaling cascade because channel activation is suppressed by a strong cytosolic Ca(2+) buffer. The finding that an elevation of H2O2 causes an increase in the concentration of cytosolic Ca(2+) suggests that radicals, which emerge early in response to irradiation, trigger this Ca(2+) signaling cascade. Inhibition of hIK channels by specific blockers clotrimazole and TRAM-34 slowed cell proliferation and migration in "wound" scratch assays; ionizing irradiation, in turn, stimulated the latter process presumably via its activation of the hIK channels. These data stress an indirect radiosensitivity of hIK channels with an impact on cell differentiation. PMID:25277267

  16. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells.

    Science.gov (United States)

    Tilley, Drew C; Eum, Kenneth S; Fletcher-Taylor, Sebastian; Austin, Daniel C; Dupré, Christophe; Patrón, Lilian A; Garcia, Rita L; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E; Sack, Jon T

    2014-11-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  17. KATP channels modulate intrinsic firing activity of immature entorhinal cortex layer III neurons

    Directory of Open Access Journals (Sweden)

    Maria S. Lemak

    2014-08-01

    Full Text Available Medial temporal lobe structures are essential for memory formation which is associated with coherent network oscillations. During ontogenesis, these highly organized patterns develop from distinct, less synchronized forms of network activity. This maturation process goes along with marked changes in intrinsic firing patterns of individual neurons. One critical factor determining neuronal excitability is activity of ATP-sensitive K+ channels (KATP channels which coupled electrical activity to metabolic state. Here, we examined the role of KATP channels for intrinsic firing patterns and emerging network activity in the immature medial entorhinal cortex (mEC of rats. Western blot analysis of Kir6.2 (a subunit of the KATP channel confirmed expression of this protein in the immature entorhinal cortex. Neuronal activity was monitored by field potential (fp and whole-cell recordings from layer III of the mEC in horizontal brain slices obtained at postnatal day (P 6-13. Spontaneous fp-bursts were suppressed by the KATP channel opener diazoxide and prolonged after blockade of KATP channels by glibenclamide. Immature mEC LIII principal neurons displayed two dominant intrinsic firing patterns, prolonged bursts or regular firing activity, respectively. Burst discharges were suppressed by the KATP channel openers diazoxide and NN414, and enhanced by the KATP channel blockers tolbutamide and glibenclamide. Activity of regularly firing neurons was modulated in a frequency-dependent manner: the diazoxide-mediated reduction of firing correlated negatively with basal frequency, while the tolbutamide-mediated increase of firing showed a positive correlation. These data are in line with an activity-dependent regulation of KATP channel activity. Together, KATP channels exert powerful modulation of intrinsic firing patterns and network activity in the immature mEC.

  18. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten;

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 m...... muscle cells, and that the molecular expression of SK3 channels is higher in non-pregnant compared to pregnant myometrium. On the basis of our previous study and the present findings, we propose that SK3 activators reduce contractility in human myometrium by modulating telocyte function. This is the...

  19. Downregulation of Kv7.4 channel activity in primary and secondary hypertension

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Chadha, Preet S; Davis, Alison J;

    2011-01-01

    Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of...... structurally different activators of Kv7.2 through Kv7.5 channels (BMS-204352, S-1, and retigabine) on blood vessels from normotensive and hypertensive animals.......Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of 3...

  20. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    Science.gov (United States)

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle. PMID:25830485

  1. Radiation protection infrastructure and regulatory activities in Bangladesh

    International Nuclear Information System (INIS)

    The paper describes briefly and in general terms past and present activities regarding radiation protection and the proposed programmes, including setting up an infrastructure with a legal framework in Bangladesh. The peaceful applications of radioactive materials and ionizing radiations, including X rays, for socioeconomic development in diverse sectors have been increasing steadily in Bangladesh over the years. Since 1964, the Atomic Energy Commission has been the only organization in the country offering radiation protection services covering its own activities and, on request, those of some other national organizations, on a very limited scale. As there is no legal framework in the country for controlling and regulating the uses of ionizing radiation there are reports of considerable misuses, particularly in diagnostic X rays and in industry, leading to damage to public health and the environment. In order to ensure safe usage, radiation protection rules, regulations, etc., are to be formulated under the umbrella of a Nuclear Safety and Radiation Protection Act, the promulgation of which has been long awaited. For the enforcement and implementation of the provisions of the Act and the rules, regulations, etc., framed thereunder, the creation of a radiation protection infrastructure with the establishment of an optimum organizational set-up having trained manpower, laboratory equipment and supporting facilities has been suggested. The active co-operation and support of the IAEA and other international communities in the implementation of the proposed radiation protection programmes in Bangladesh are strongly urged. (author). 3 refs, 2 figs, 1 tab

  2. A structural view of ligand-dependent activation in thermoTRP channels

    Directory of Open Access Journals (Sweden)

    SebastianBrauchi

    2014-05-01

    Full Text Available Transient Receptor Potential (TRP proteins are a large family of ion channels, grouped intoseven sub-families. Although great advances have been made regarding the activation andmodulation of TRP channel activity, detailed molecular mechanisms governing TRPchannel gating are still needed. Sensitive to electric, chemical, mechanical, and thermalcues, TRP channels are tightly associated with the detection and integration of sensoryinput, emerging as a model to study the polymodal activation of ion channel proteins.Among TRP channels, the temperature-activated kind constitute a subgroup by itself,formed by Vanilloid receptors 1-4, Melastatin receptors 2, 4, 5 and 8, TRPC5, and TRPA1.Some of the so-called “thermoTRP” channels participate in the detection of noxious stimulimaking them an interesting pharmacological target for the treatment of pain. However, thepoor specificity of the compounds available in the market represents an important obstacleto overcome. Understanding the molecular mechanics underlying ligand-dependentmodulation of TRP channels may help with the rational design of novel syntheticanalgesics. The present review focuses on the structural basis of ligand-dependentactivation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection ofligand-binding sites within TRPV1, PIP 2 -dependent modulation of TRP channels, and thestructure of natural and synthetic ligands.

  3. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Hoffmann, Else Kay

    1994-01-01

    The taurine efflux from Ehrlich ascites tumor cells is stimulated by hypotonic cell swelling. The swelling-activated taurine efflux is unaffected by substitution of gluconate for extracellular Cl– but inhibited by addition of MK196 (anion channel blocker) and 4,4 -diisothiocyanostilbene-2......,2 -disulfonic acid (DIDS; anion channel and anion exchange blocker) and by depolarization of the cell membrane. This is taken to indicate that taurine does not leave the osmotically swollen Ehrlich cells in exchange for extracellular Cl–, i.e., via the anion exchanger but via a MK196- and DIDS-sensitive channel...... that is potential dependent. An additional stimulation of the swelling-activated taurine efflux is seen after addition of arachidonic acid and oleic acid. Cell swelling also activates a Mini Cl– channel. The Cl– efflux via this Cl– channel, in contrast to the swelling-activated taurine efflux, is...

  4. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p  0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons. PMID:27097551

  5. Dystrophin is required for the normal function of the cardio-protective K(ATP channel in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laura Graciotti

    Full Text Available Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx, which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC. In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (K(ATP complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including K(ATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of K(ATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the K(ATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective K(ATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.

  6. Contribution of KV7 Channels to Basal Coronary Flow and Active Response to Ischemia

    DEFF Research Database (Denmark)

    Khanamiri, Saereh; Soltysinska, Ewa; Jepps, Thomas A;

    2013-01-01

    The goal of the present study was to determine the role of KCNQ-encoded KV channels (KV7 channels) in the passive and active regulation of coronary flow in normotensive and hypertensive rats. In left anterior descending coronary arteries from normotensive rats, structurally different KV7.2 to 7....... Overall, these data establish KV7 channels as crucial regulators of coronary flow at resting and after hypoxic insult....

  7. Calcium-Activated Potassium (BK) Channels Are Encoded by Duplicate slo1 Genes in Teleost Fishes

    OpenAIRE

    Rohmann, Kevin N.; Deitcher, David L.; Bass, Andrew H.

    2009-01-01

    Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account ...

  8. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells

    OpenAIRE

    Tilleya, DC; Euma, KS; Fletcher-Taylor, S; Austina, DC; Dupré, C; Patrón, LA; Garcia, RL; Lam, K; Yarov-Yarovoy, V; Cohenc, BE; Sack, JT

    2014-01-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesize...

  9. Inhibition of g protein-activated inwardly rectifying k channels by phencyclidine.

    Science.gov (United States)

    Kobayashi, Toru; Nishizawa, Daisuke; Ikeda, Kazutaka

    2011-03-01

    Addictive drugs, such as opioids, ethanol, cocaine, amphetamine, and phencyclidine (PCP), affect many functions of the nervous system and peripheral organs, resulting in severe health problems. G protein-activated inwardly rectifying K(+) (GIRK, Kir3) channels play an important role in regulating neuronal excitability through activation of various Gi/o protein-coupled receptors including opioid and CB(1) cannabinoid receptors. Furthermore, the channels are directly activated by ethanol and inhibited by cocaine at toxic levels, but not affected by methylphenidate, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) at toxic levels. The primary pharmacological action of PCP is blockade of N-methyl-D-aspartate (NMDA) receptor channels that are associated with its psychotomimetic effects. PCP also interacts with several receptors and channels at relatively high concentrations. However, the molecular mechanisms underlying the various effects of PCP remain to be clarified. Here, we investigated the effects of PCP on GIRK channels using the Xenopus oocyte expression system. PCP weakly but significantly inhibited GIRK channels at micromolar concentrations, but not Kir1.1 and Kir2.1 channels. The PCP concentrations effective in inhibiting GIRK channels overlap clinically relevant brain concentrations in severe intoxication. The results suggest that partial inhibition of GIRK channels by PCP may contribute to some of the toxic effects after overdose. PMID:21886598

  10. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.

    Science.gov (United States)

    Devor, D C; Frizzell, R A

    1993-11-01

    Single-channel recording techniques were used to identify and characterize the K+ channel activated by Ca(2+)-mediated secretory agonists in T84 cells. Carbachol (CCh; 100 microM) and taurodeoxycholate (TDC; 0.75 mM) stimulated oscillatory outward K+ currents. With K gluconate in bath and pipette, cell-attached single-channel K+ currents stimulated by CCh and ionomycin (2 microM) were inwardly rectified and reversed at 0 mV. The single-channel chord conductance was 32 pS at -90 mV and 14 pS at +90 mV. Similar properties were observed in excised inside-out patches in symmetric K+, permitting further characterization of channel properties. Partial substitution of bath or pipette K+ with Na+ gave a K(+)-to-Na+ selectivity ratio of 5.5:1. Channel activity increased with increasing bath Ca2+ concentration in the physiological range of 50-800 nM. Maximal channel activity occurred at intracellular pH 7.2 and decreased at more acidic or alkaline pH values. Extracellular charybdotoxin (CTX; 50 nM) blocked inward but not outward currents. Extracellular tetraethylammonium (TEA; 10 mM) reduced single-channel amplitude at all voltages. No apparent block of the channel was observed with extracellular Ba2+ (1 mM), apamin (1 microM), 4-aminopyridine (4-AP; 4 mM), quinine (500 microM), or glyburide (10 microM). Cytosolic quinine and 4-AP blocked both inward and outward currents, whereas Ba2+ blocked only outward currents. Apamin, CTX, TEA, and glyburide did not affect channel activity. The agonist activation and pharmacological profile of this inwardly rectified K+ channel indicate that it is responsible for the increase in basolateral K+ conductance stimulated by Ca(2+)-mediated agonists in T84 cells. PMID:7694492

  11. Active wireless temperature sensors for aerospace thermal protection systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K. S. G.

    2003-07-01

    Vehicle system health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint effort by NASA Ames and Korteks to develop active "wireless" sensors that can be embedded in the thermal protection system to monitor subsurface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuits to enable non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 25-mm square integrated circuit and can communicate through 7 to 10 cm thickness of thermal protection materials.

  12. Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Phencyclidine

    OpenAIRE

    Kobayashi, Toru; Nishizawa, Daisuke; Ikeda, Kazutaka

    2011-01-01

    Addictive drugs, such as opioids, ethanol, cocaine, amphetamine, and phencyclidine (PCP), affect many functions of the nervous system and peripheral organs, resulting in severe health problems. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability through activation of various Gi/o protein-coupled receptors including opioid and CB1 cannabinoid receptors. Furthermore, the channels are directly activated by ethanol and inhibi...

  13. Let It Go and Open Up, an Ensemble of Ion Channel Active States.

    Science.gov (United States)

    Minor, Daniel L

    2016-02-11

    Ligand binding usually moves the target protein from an ensemble of inactive states to a well-defined active conformation. Matthies et al. flip this scheme around, finding that, for the magnesium channel CorA, loss of ligand binding induces an ensemble of conformations that turn the channel on. PMID:26871624

  14. Role of calcium activated potassium channels in atrial fibrillation pathophysiology and therapy

    DEFF Research Database (Denmark)

    Diness, Jonas G.; Bentzen, Bo H.; S. Sørensen, Ulrik;

    2015-01-01

    Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels since they might constitute a relatively atrial selective target. The present review will give...

  15. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels

    OpenAIRE

    Autoosa Salari; Benjamin S. Vega; Milescu, Lorin S.; Mirela Milescu

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple t...

  16. The Importance of Providing Multiple-Channel Sections in Dredging Activities to Improve Fish Habitat Environments

    Directory of Open Access Journals (Sweden)

    Hung-Pin Chiu

    2016-01-01

    Full Text Available After Typhoon Morakot, dredging engineering was conducted while taking the safety of humans and structures into consideration, but partial stream reaches were formed in the multiple-channel sections in Cishan Stream because of anthropogenic and natural influences. This study mainly explores the distribution of each fish species in both the multiple- and single-channel sections in the Cishan Stream. Parts of the environments did not exhibit significant differences according to a one-way ANOVA comparing the multiple- and single-channel sections, but certain areas of the multiple-channel sections had more diverse habitats. Each fish species was widely distributed by non-metric multidimensional scaling in the multiple-channel sections as compared to those in the single-channel sections. In addition, according to the principal component analysis, each fish species has a preferred environment, and all of them have a wide choice of habitat environments in the multiple-channel sections. Finally, the existence of multiple-channel sections could significantly affect the existence of the fish species under consideration in this study. However, no environmental factors were found to have an influence on fish species in the single-channel sections, with the exception of Rhinogobius nantaiensis. The results show that providing multiple-channel sections in dredging activities could improve fish habitat environments.

  17. pH regulation of amphotericin B channels activity in the bilayer lipid membrane

    Science.gov (United States)

    Shahmoradi, Tahereh; Sepehry, Hamid; Ashrafpour, Manuchehr

    2016-01-01

    Background: Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of systemic fungal infections in spite of its secondary effects. The pH plays a crucial role in modulating biophysical features of ion channels in the bilayer lipid membranes. Aim: In this study, the role of pH in the regulation of AmB channel was assessed by single channel recording of ion channel incorporated in the artificial membrane. Materials and Methods: Bilayer lipid membrane was formed by phosphatidylcholine in a 350 μm diameter aperture between two chambers, cis and trans contained 200/50 mMKCl solutions, respectively; then AmB was incorporated into the bilayer lipid membrane. Single channel recordings were used to indicate the effects of pH changes on AmB channels activity. The records were analyzed by Clamp fit 10 software. Results: A kinetic analysis of single channel currents indicated a cation ion channel with 500 pS conductance and voltage-dependence of the open probability of the AmB channel (Po). A reduction of cis pH to 6 decreased Po and conductance. This effect was also voltage-dependent, being greater at a more positive above −40. The pH changes in the range of 6-8 had no effect on the reversal potential and ion selectivity. Conclusion: Our data indicated that extracellular acidity can reduce AmB activity. PMID:27003977

  18. [Cooperative phenomena in the activity of single ion channels].

    Science.gov (United States)

    Geletiuk, V I; Kazachenko, V N

    1989-01-01

    Using the patch-voltage-clamp method kinetics of the fast potential-dependent K+-channels in molluscan neurones was investigated. It was found that under given experimental conditions the amplitudes of single current impulses have a wide spectrum. The amplitudes are proportional to a number of the current substates involved. Averaged fronts of the current impulses are S-shaped, and have duration greater than 1 ms. Averaged duration of the current impulses increases (from 0.25 to 30-40 ms) with the impulse amplitude (or with the number of the substates involved). There is a sharp bend of the dependence at the impulse amplitude 0.6-0.7 of maximal value. The phenomena investigated reflect, probably, cooperativity of the channel transitions between the substates. The degree of the cooperativity depends on the membrane potential value. PMID:2804147

  19. Structure-activity studies on 1,4-dihydropyridine calcium channel antagonists and activators

    International Nuclear Information System (INIS)

    Four series of 1,4-dihydropyridine Ca2+ channel antagonists related to mifedipine were synthesized by a modified Hantzsch procedure to determine the effects of ester (C3 = CO2Me, C5 = CO2R) and phenyl (C4) substituents on pharmacological and radioligand binding ([H]nitrendipine) activities in guinea pig ileal longitudinal smooth muscle. Two series of Ca2+ channel activator 1,4-dihydropyridines, BAY K 8644 (C3 = NO2, C5 = CO2Me) and CGP 28392 (C2,3 = lactone, C5 = CO2Me) were biochemically evaluated by inhibition of [3H]nitrendipine binding in guinea pig ileal longitudinal smooth muscle membranes to establish fundamental structure-activity requirements. A homologous series of bis-1,4-dihydropyridines were synthesized, pharmacologically and biochemically evaluated in an attempt to explore the distribution of the 1,4-dihydropyridine receptor in guinea pig ileal longitudinal smooth muscle membranes. Several potential affinity labels including ester substituted 3- and 4-fluorosulfonyl benzoyl and isothiocyanate derivatives were synthesized and evaluated by inhibition of [3H]nitrendipine binding

  20. Voltage-dependent Ca2+ channels, not ryanodine receptors, activate Ca2+-dependent BK potassium channels in human retinal pigment epithelial cells

    OpenAIRE

    Wimmers, Sönke; Halsband, Claire; Seyler, Sebastian; Milenkovic, Vladimir; Strauß, Olaf

    2008-01-01

    Purpose In different tissues the activation of large conductance Ca2+-activated (BK) potassium channels has been shown to be coupled to voltage-gated Ca2+ channels as well as ryanodine receptors. As activation of BK channels leads to hyperpolarization of the cell, these channels provide a negative feedback mechanism for Ca2+-induced functions. Many cellular functions of the retinal pigment epithelium (RPE) are coupled to changes in [Ca2+]i. The aim of this study was to identify which Ca2+-ent...

  1. Positive activities as protective factors against mental health conditions

    OpenAIRE

    Layous, K; Chancellor, J; Lyubomirsky, S

    2014-01-01

    Applying Nolen-Hoeksema and Watkins's (2011) transdiagnostic risk factor heuristic to our work on positive activities (i.e., practices that characterize naturally happy people, like expressing gratitude and practicing generosity), we propose that such activities may serve as protective factors that mitigate proximal risk factors both directly and by intervening with the mechanisms that give rise to them. First, we discuss theoretical and empirical support for the importance of well-being and ...

  2. Protected Areas in Tropical Africa : Assessing Threats and Conservation Activities

    OpenAIRE

    Tranquilli, Sandra; Abedi-Lartey, Michael; Abernethy, Katharine; Amsini, Fidèlle; Asamoah, Augustus; Balangtaa, Cletus; Blake, Stephen; Bouanga, Estelle; Breuer, Thomas; Brncic, Terry; Campbell, Geneviève; Chancellor, Rebecca; Chapman, Colin; Davenport, Tim; Dunn, Andrew

    2014-01-01

    Numerous protected areas (PAs) have been created in Africa to safeguard wildlife and other natural resources. However, significant threats from anthropogenic activities and decline of wildlife populations persist, while conservation efforts in most PAs are still minimal. We assessed the impact level of the most common threats to wildlife within PAs in tropical Africa and the relationship of conservation activities with threat impact level. We collated data on 98 PAs with tropical forest cover...

  3. ERROR PROTECTION OF PCA BASED FACE RECOGNITION FOR TRANSMISSION OVER NOISY CHANNELS

    Directory of Open Access Journals (Sweden)

    Gholamreza ANBARJAFARI

    2013-01-01

    Full Text Available In this paper, we have proposed a system for reliable communication of coded grayscale facial images over noisy channels. Principle Component Analysis (PCA is used for face dimensional reduction and face recognition and Repeated Bit Representation (RBR is proposed to code the eigenfaces for mobile communication applications. Recognition obtained with RBR system approach reaches to %82 for 80 test images (2 poses per person and 320 training images (8 poses per person of ORL, by considering only the most important 30 coefficients of principle components in a noisy channel with SNR=-2dB.

  4. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  5. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons.

    Science.gov (United States)

    Gilly, W F; Gillette, R; McFarlane, M

    1997-05-01

    Whole cell patch-clamp recordings of Na current (I(Na)) were made under identical experimental conditions from isolated neurons from cephalopod (Loligo, Octopus) and gastropod (Aplysia, Pleurobranchaea, Doriopsilla) species to compare properties of activation gating. Voltage dependence of peak Na conductance (gNa) is very similar in all cases, but activation kinetics in the gastropod neurons studied are markedly slower. Kinetic differences are very pronounced only over the voltage range spanned by the gNa-voltage relation. At positive and negative extremes of voltage, activation and deactivation kinetics of I(Na) are practically indistinguishable in all species studied. Voltage-dependent rate constants underlying activation of the slow type of Na channel found in gastropods thus appear to be much more voltage dependent than are the equivalent rates in the universally fast type of channel that predominates in cephalopods. Voltage dependence of inactivation kinetics shows a similar pattern and is representative of activation kinetics for the two types of Na channels. Neurons with fast Na channels can thus make much more rapid adjustments in the number of open Na channels at physiologically relevant voltages than would be possible with only slow Na channels. This capability appears to be an adaptation that is highly evolved in cephalopods, which are well known for their high-speed swimming behaviors. Similarities in slow and fast Na channel subtypes in molluscan and mammalian neurons are discussed. PMID:9163364

  6. Mitochondrial BKCa channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats

    Czech Academy of Sciences Publication Activity Database

    Borchert, Gudrun H.; Yang, Ch.; Kolář, František

    2011-01-01

    Roč. 300, č. 2 (2011), H507-H513. ISSN 0363-6135 R&D Projects: GA ČR(CZ) GA305/07/1008; GA AV ČR IAA500110804 Keywords : chronic hypoxia * ventricular myocytes * metabolic inhibition * cell viability * potassium channels Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.708, year: 2011

  7. Study of protective properties of mobile elements in gamma-plants operating channels

    International Nuclear Information System (INIS)

    To ensure radiation safety when designing radioisotope gamma plants, a possibility of using direct cylindrical channels improving the reliability of the source transport system construction is investigated. The experiments were carried out with an operating channel model. The 60Co standard source was used. Apparatus spectra of gamma radiation at the output of the operating channel model of the radiation - chemical facility are obtained. The values of exposure dose rate depending on thickness of mobile shielding, made of steel and lead cylinders are presented. The data are compared with the level of maximum permissible exposure dose rate. Mobile shields of lead encased in steel are the most effective; though is shields of steel spheres is the least effective. It is shown, that the mean rate of exposure dose at the channel output decreases as a result of random shifts in the position of mobile elements made as cylinders. The data obtained were used for optimization of the shields for K-300000 radiation-chemical facility

  8. Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice

    Science.gov (United States)

    Weissmann, Norbert; Sydykov, Akylbek; Kalwa, Hermann; Storch, Ursula; Fuchs, Beate; Schnitzler, Michael Mederos y; Brandes, Ralf P.; Grimminger, Friedrich; Meissner, Marcel; Freichel, Marc; Offermanns, Stefan; Veit, Florian; Pak, Oleg; Krause, Karl-Heinz; Schermuly, Ralph T.; Brewer, Alison C; Schmidt, Harald H.H.W.; Seeger, Werner; Shah, Ajay M.; Gudermann, Thomas; Ghofrani, Hossein A.; Dietrich, Alexander

    2012-01-01

    Lung ischaemia–reperfusion-induced oedema (LIRE) is a life-threatening condition that causes pulmonary oedema induced by endothelial dysfunction. Here we show that lungs from mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2y/−) or the classical transient receptor potential channel 6 (TRPC6−/−) are protected from LIR-induced oedema (LIRE). Generation of chimeric mice by bone marrow cell transplantation and endothelial-specific Nox2 deletion showed that endothelial Nox2, but not leukocytic Nox2 or TRPC6, are responsible for LIRE. Lung endothelial cells from Nox2- or TRPC6-deficient mice showed attenuated ischaemia-induced Ca2+ influx, cellular shape changes and impaired barrier function. Production of reactive oxygen species was completely abolished in Nox2y/− cells. A novel mechanistic model comprising endothelial Nox2-derived production of superoxide, activation of phospholipase C-γ, inhibition of diacylglycerol (DAG) kinase, DAG-mediated activation of TRPC6 and ensuing LIRE is supported by pharmacological and molecular evidence. This mechanism highlights novel pharmacological targets for the treatment of LIRE. PMID:22337127

  9. Novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids as calcium activated chloride channel inhibitors

    OpenAIRE

    Kumar, Satish; Namkung, Wan; A S Verkman; Sharma, Pawan K

    2012-01-01

    Transmembrane protein 16A (TMEM16A) channels are recently discovered membrane proteins that functions as a calcium activated chloride channel (CaCC). CaCCs are major regulators of various physiological processes, such as sensory transduction, epithelial secretion, smooth muscle contraction and oocyte fertilization. Thirty novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids (B01–B30) were synthesized and evaluated for their TMEM16A inhibitory activity by using short circuit curre...

  10. Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle

    OpenAIRE

    1993-01-01

    The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar concentrations to the myoplasmic side (cis), induced an all-or-none flickery block of the ryanodine activated channel. The blocking effect was strongly voltage dependent, as large positive potenti...

  11. Redox Regulation of Large Conductance Ca2+-activated K+ Channels in Smooth Muscle Cells

    OpenAIRE

    Wang, Zhao-Wen; Nara, Masayuki; Wang, Yong-Xiao; Kotlikoff, Michael I.

    1997-01-01

    The effects of sulfhydryl reduction/oxidation on the gating of large-conductance, Ca2+-activated K+ (maxi-K) channels were examined in excised patches from tracheal myocytes. Channel activity was modified by sulfhydryl redox agents applied to the cytosolic surface, but not the extracellular surface, of membrane patches. Sulfhydryl reducing agents dithiothreitol, β-mercaptoethanol, and GSH augmented, whereas sulfhydryl oxidizing agents diamide, thimerosal, and 2,2′-dithiodipyridine inhibited, ...

  12. The effects of neuroleptic and tricyclic compounds on BKCa channel activity in rat isolated cortical neurones

    OpenAIRE

    Lee, K.; McKenna, F; Rowe, I C M; Ashford, M.L.J.

    1997-01-01

    The actions of several neuroleptic and tricyclic compounds were examined on the large conductance Ca2+-activated K+ (BKCa) channel present in neurones isolated from the rat motor cortex.Classical neuroleptic compounds including chlorpromazine and haloperidol applied to the intracellular surface of inside-out patches produced a concentration-dependent reduction in BKCa channel activity. Similar effects were observed when these compounds were applied to the extracellular surface of outside-out ...

  13. Targeting the Small- and Intermediate-Conductance Ca2+-Activated Potassium Channels: The Drug-Binding Pocket at the Channel/Calmodulin Interface

    Directory of Open Access Journals (Sweden)

    Meng Cui

    2014-10-01

    Full Text Available The small- and intermediate-conductance Ca2+-activated potassium (SK/IK channels play important roles in the regulation of excitable cells in both the central nervous and cardiovascular systems. Evidence from animal models has implicated SK/IK channels in neurological conditions such as ataxia and alcohol use disorders. Further, genome-wide association studies have suggested that cardiovascular abnormalities such as arrhythmias and hypertension are associated with single nucleotide polymorphisms that occur within the genes encoding the SK/IK channels. The Ca2+ sensitivity of the SK/IK channels stems from a constitutively bound Ca2+-binding protein: calmodulin. Small-molecule positive modulators of SK/IK channels have been developed over the past decade, and recent structural studies have revealed that the binding pocket of these positive modulators is located at the interface between the channel and calmodulin. SK/IK channel positive modulators can potentiate channel activity by enhancing the coupling between Ca2+ sensing via calmodulin and mechanical opening of the channel. Here, we review binding pocket studies that have provided structural insight into the mechanism of action for SK/IK channel positive modulators. These studies lay the foundation for structure-based drug discovery efforts that can identify novel SK/IK channel positive modulators. © 2014 S. Karger AG, Basel

  14. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  15. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  16. Effect of channel block on the collective spiking activity of coupled stochastic Hodgkin-Huxley neurons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Toxins, such as tetraethylammonium (TEA) and tetrodotoxin (TTX), can make potassium or sodium ion channels poisoned, respectively, and hence reduce the number of working ion channels and lead to the diminishment of conductance. In this paper, we have studied by numerical simulations the effects of sodium and potassium ion channel poisoning on the collective spiking activity of an array of coupled stochastic Hodgkin-Huxley (HH) neurons. It is found for a given number of neurons sodium or potas- sium ion channel block can either enhance or reduce the collective spiking regularity, depending on the membrane patch size. For a given smaller or larger patch size, potassium and sodium ion channel block can reduce or enhance the collective spiking regularity, but they have different patch size ranges for the transformation. This result shows that sodium or potassium ion channel block might have dif- ferent effects on the collective spiking activity in coupled HH neurons from the effects for a single neuron, which represents the interplay among the diminishment of maximal conductance and the in- crease of channel noise strength due to the channel blocks, as well as the bi-directional coupling be- tween the neurons.

  17. Exploring the biophysical evidence that mammalian two-pore channels are NAADP-activated calcium-permeable channels.

    Science.gov (United States)

    Pitt, Samantha J; Reilly-O'Donnell, Benedict; Sitsapesan, Rebecca

    2016-08-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) potently releases Ca(2+) from acidic intracellular endolysosomal Ca(2+) stores. It is widely accepted that two types of two-pore channels, termed TPC1 and TPC2, are responsible for the NAADP-mediated Ca(2+) release but the underlying mechanisms regulating their gating appear to be different. For example, although both TPC1 and TPC2 are activated by NAADP, TPC1 appears to be additionally regulated by cytosolic Ca(2+) . Ion conduction and permeability also differ markedly. TPC1 and TPC2 are permeable to a range of cations although biophysical experiments suggest that TPC2 is slightly more selective for Ca(2+) over K(+) than TPC1 and hence capable of releasing greater quantities of Ca(2+) from acidic stores. TPC1 is also permeable to H(+) and therefore may play a role in regulating lysosomal and cytosolic pH, possibly creating localised acidic domains. The significantly different gating and ion conducting properties of TPC1 and TPC2 suggest that these two ion channels may play complementary physiological roles as Ca(2+) -release channels of the endolysosomal system. PMID:26872338

  18. Fluoxetine Protection in Decompression Sickness in Mice is Enhanced by Blocking TREK-1 Potassium Channel with the “spadin” Antidepressant

    Science.gov (United States)

    Vallée, Nicolas; Lambrechts, Kate; De Maistre, Sébastien; Royal, Perrine; Mazella, Jean; Borsotto, Marc; Heurteaux, Catherine; Abraini, Jacques; Risso, Jean-Jacques; Blatteau, Jean-Eric

    2016-01-01

    In mice, disseminated coagulation, inflammation, and ischemia induce neurological damage that can lead to death. These symptoms result from circulating bubbles generated by a pathogenic decompression. Acute fluoxetine treatment or the presence of the TREK-1 potassium channel increases the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50 mg/kg) in wild-type (WT) and TREK-1 deficient mice (knockout homozygous KO and heterozygous HET). Then, we combined the same fluoxetine treatment with a 5-day treatment protocol with spadin, in order to specifically block TREK-1 activity (KO-like mice). KO and KO-like mice were regarded as antidepressed models. In total, 167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux) constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive) constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux) and 4% of mice treated with both spadin and fluoxetine (KO-likeflux) died from decompression sickness (DCS) symptoms. These values are much lower than those of WT control (62%) or KO-like mice (41%). After the decompression protocol, mice showed significant consumption of their circulating platelets and leukocytes. Spadin antidepressed mice were more likely to exhibit DCS. Nevertheless, mice which had both blocked TREK-1 channels and fluoxetine treatment were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but concomitant fluoxetine treatment not only decreased DCS severity but increased the survival rate. PMID:26909044

  19. Discovery of novel tetrahydroisoquinoline derivatives as orally active N-type calcium channel blockers with high selectivity for hERG potassium channels.

    Science.gov (United States)

    Ogiyama, Takashi; Inoue, Makoto; Honda, Shugo; Yamada, Hiroyoshi; Watanabe, Toshihiro; Gotoh, Takayasu; Kiso, Tetsuo; Koakutsu, Akiko; Kakimoto, Shuichiro; Shishikura, Jun-ichi

    2014-12-15

    N-type calcium channels represent a promising target for the treatment of neuropathic pain. The selective N-type calcium channel blocker ziconotide ameliorates severe chronic pain but has a narrow therapeutic window and requires intrathecal administration. We identified tetrahydroisoquinoline derivative 1a as a novel potent N-type calcium channel blocker. However, this compound also exhibited potent inhibitory activity against hERG channels. Structural optimizations led to identification of (1S)-(1-cyclohexyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-{[(1-hydroxycyclohexyl)methyl]amino}ethanone ((S)-1h), which exhibited high selectivity for hERG channels while retaining potency for N-type calcium channel inhibition. (S)-1h went on to demonstrate in vivo efficacy as an orally available N-type calcium channel blocker in a rat spinal nerve ligation model of neuropathic pain. PMID:25456079

  20. Heterologous expression and purification of an active human TRPV3 ion channel

    DEFF Research Database (Denmark)

    Kol, Stefan; Braun, Christian; Thiel, Gerhard;

    2013-01-01

    The transient receptor potential vanilloid 3 (TRPV3) cation channel is widely expressed in human tissues and has been shown to be activated by mild temperatures or chemical ligands. In spite of great progress in the TRP‐channel characterization, very little is known about their structure and...... interactions with other proteins at the atomic level. This is mainly caused by difficulties in obtaining functionally active samples of high homogeneity. Here, we report on the high‐level Escherichia coli expression of the human TRPV3 channel, for which no structural information has been reported to date. We...... retains its current inducing activity, as shown by electrophysiology experiments. The ability to produce the TRPV3 channel heterologously will aid future functional and structural studies. TRPV3 and TRPV3 bind by molecular sieving (1, 2) TRPV3 and TRPV3 bind by blue native page (1, 2, 3)...

  1. On Application Of Langevin Dynamics In Logarithmic Potential To Model Ion Channel Gate Activity.

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Borys, Przemysław; Grzywna, Zbigniew J

    2015-12-01

    We model the activity of an ion channel gate by Langevin dynamics in a logarithmic potential. This approach enables one to describe the power-law dwell-time distributions of the considered system, and the long-term correlations between the durations of the subsequent channel states, or fractal scaling of statistical characteristics of the gate's movement with time. Activity of an ion channel gate is described as an overdamped motion of the reaction coordinate in a confining logarithmic potential, which ensures great flexibility of the model. Depending on the chosen parameters, it allows one to reproduce many types of gate dynamics within the family of non-Markovian, anomalous conformational diffusion processes. In this study we apply the constructed model to largeconductance voltage and Ca2+-activated potassium channels (BKCa). The interpretation of model assumptions and parameters is provided in terms of this biological system. Our results show good agreement with the experimental data. PMID:26317442

  2. ERROR PROTECTION OF PCA BASED FACE RECOGNITION FOR TRANSMISSION OVER NOISY CHANNELS

    OpenAIRE

    Anbarjafari, Gholamreza; Hasan DEMIREL; Aykut HOCANIN; Cağrı OZCINAR

    2013-01-01

    In this paper, we have proposed a system for reliable communication of coded grayscale facial images over noisy channels. Principle Component Analysis (PCA) is used for face dimensional reduction and face recognition and Repeated Bit Representation (RBR) is proposed to code the eigenfaces for mobile communication applications. Recognition obtained with RBR system approach reaches to %82 for 80 test images (2 poses per person) and 320 training images (8 poses per person) of ORL, by considering...

  3. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: protective efficacy of singlet oxygen quenchers depends on photosensitizer location.

    Science.gov (United States)

    Rokitskaya, T I; Firsov, A M; Kotova, E A; Antonenko, Y N

    2015-06-01

    The impact of double bonds in fatty acyl tails of unsaturated lipids on the photodynamic inactivation of ion channels formed by the pentadecapeptide gramicidin A in a planar bilayer lipid membrane was studied. The presence of unsaturated acyl tails protected gramicidin A against photodynamic inactivation, with efficacy depending on the depth of a photosensitizer in the membrane. The protective effect of double bonds was maximal with membrane-embedded chlorin e6-monoethylenediamine monoamide dimethyl ester, and minimal - in the case of water-soluble tri-sulfonated aluminum phthalocyanine (AlPcS3) known to reside at the membrane surface. By contrast, the protective effect of the hydrophilic singlet oxygen scavenger ascorbate was maximal for AlPcS3 and minimal for amide of chlorin e6 dimethyl ester. The depth of photosensitizer position in the lipid bilayer was estimated from the quenching of photosensitizer fluorescence by iodide. Thus, the protective effect of a singlet oxygen scavenger against photodynamic inactivation of the membrane-inserted peptide is enhanced upon location of the photosensitizer and scavenger molecules in close vicinity to each other. PMID:26531019

  4. Chemerin/ChemR23 signaling axis is involved in the endothelial protection by EATP channel opener iptakalim

    Institute of Scientific and Technical Information of China (English)

    Rui-jun ZHAO; Hai WANG

    2011-01-01

    Aim: To elucidate the modulation of the chemerin/ChemR23 axis by iptakalim-inducecl opening of K channels and to determine the role of the chemerin/ChemR23 axis in the iptakalim-mediated endothelial protection.Methods: Cultured rat aortic endothelial cells (RAECs) were used. Chemerin secretion and ChemR23 protein expression were investi- gated using Western blot analysis. The gene expression level of ChemR23 was examined with RT-PCR. In addition, the release of nitric oxide (NO) was measured with a nitric oxide assay.Results: Homocysteine, uric acid, high glucose, or oxidized low-density lipoprotein (ox-LDL) down-regulated the chemerin secretion and ChemR23 gene/protein expression in RAECs as a function of concentration and time, which was reversed by pretreatment with iptaka- lim (1-10 μmol/L). Moreover, these effects of iptakalim were abolished in the presence of the K channel antagonist glibenclamide (1 μmol/L). Both iptakalim and recombinant chemerin restored the impaired NO production in RAECs induced by uric acid, and the effects were abolished by anti-ChemR23 antibodies.Conclusion: Iptakalim via opening K channels enhanced the endothelial chemerin/ChemR23 axis and NO production, thus improving endothelial function.

  5. Activation of ERG2 potassium channels by the diphenylurea NS1643

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear....... The lack of functional information is at least partly due to the lack of specific pharmacological tools. The compound NS1643 has earlier been reported as an ERG1 channel activator. We found that NS1643 also activates the ERG2 channel; however, the molecular mechanism of the activation differs between...... the ERG1 and ERG2 channels. This is surprising since ERG1 and ERG2 channels have very similar biophysical and structural characteristics. For ERG2, NS1643 causes a left-ward shift of the activation curve, a faster time-constant of activation and a slower time-constant of inactivation as well as an...

  6. HIV-gp120 activates large-conductance apamin-sensitive potassium channels in rat astrocytes.

    Science.gov (United States)

    Bubien, J K; Benveniste, E N; Benos, D J

    1995-06-01

    Central nervous system (CNS) involvement usually occurs in individuals infected with human immunodeficiency virus type 1 (HIV-1). Evidence is now accumulating that neurons and astrocytes may be functionally compromised by exposure to viral components or cellular factors released from HIV-1-infected macrophages and/or microglia. We have previously reported that the HIV coat protein gp120 stimulates Na+/H+ exchange in primary cultured rat astrocytes, which, ultimately, results in the activation of a K+ conductance. In this report we characterize the electrophysiological and biophysical properties of the channels responsible for the gp120-induced increase in K+ conductance. These K+ channels had a relatively large unitary conductance (147 pS), were not gated by voltage, were sensitive to changes in H+ concentration at their cytosolic face, were specifically inhibited by apamin, and were insensitive to charybdotoxin and tetraethylammonium. The activation of these channels by gp120 is referable to cellular alkalinization subsequent to Na+/H+ exchange stimulation; gp120 failed to activate these K+ channels in the absence of external Na+ or in the presence of amiloride, an inhibitor of Na+/H+ exchange. Subsequent K+ loss from the astrocyte into the restricted extracellular space surrounding neurons can then lead to neuronal depolarization, activation of voltage-sensitive Ca2+ channels, and, eventually, cell death. Thus abnormal activation of astrocyte K+ channels by gp120 may contribute to the CNS pathophysiology associated with HIV-1 infection. PMID:7611364

  7. Modulation of Ca2+ oscillation and melatonin secretion by BKCa channel activity in rat pinealocytes.

    Science.gov (United States)

    Mizutani, Hiroya; Yamamura, Hisao; Muramatsu, Makoto; Hagihara, Yumiko; Suzuki, Yoshiaki; Imaizumi, Yuji

    2016-05-01

    The pineal glands regulate circadian rhythm through the synthesis and secretion of melatonin. The stimulation of nicotinic acetylcholine receptor due to parasympathetic nerve activity causes an increase in intracellular Ca(2+) concentration and eventually downregulates melatonin production. Our previous report shows that rat pinealocytes have spontaneous and nicotine-induced Ca(2+) oscillations that are evoked by membrane depolarization followed by Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCCs). These Ca(2+) oscillations are supposed to contribute to the inhibitory mechanism of melatonin secretion. Here we examined the involvement of large-conductance Ca(2+)-activated K(+) (BKCa) channel conductance on the regulation of Ca(2+) oscillation and melatonin production in rat pinealocytes. Spontaneous Ca(2+) oscillations were markedly enhanced by BKCa channel blockers (1 μM paxilline or 100 nM iberiotoxin). Nicotine (100 μM)-induced Ca(2+) oscillations were also augmented by paxilline. In contrast, spontaneous Ca(2+) oscillations were abolished by BKCa channel opener [3 μM 12,14-dichlorodehydroabietic acid (diCl-DHAA)]. Under whole cell voltage-clamp configurations, depolarization-elicited outward currents were significantly activated by diCl-DHAA and blocked by paxilline. Expression analyses revealed that the α and β3 subunits of BKCa channel were highly expressed in rat pinealocytes. Importantly, the activity of BKCa channels modulated melatonin secretion from whole pineal gland of the rat. Taken together, BKCa channel activation attenuates these Ca(2+) oscillations due to depolarization-synchronized Ca(2+) influx through VDCCs and results in a recovery of reduced melatonin secretion during parasympathetic nerve activity. BKCa channels may play a physiological role for melatonin production via a negative-feedback mechanism. PMID:26791489

  8. Identification and characterization of Ca2+-activated K+ channels in granulosa cells of the human ovary

    Directory of Open Access Journals (Sweden)

    Berg Ulrike

    2009-04-01

    Full Text Available Abstract Background Granulosa cells (GCs represent a major endocrine compartment of the ovary producing sex steroid hormones. Recently, we identified in human GCs a Ca2+-activated K+ channel (KCa of big conductance (BKCa, which is involved in steroidogenesis. This channel is activated by intraovarian signalling molecules (e.g. acetylcholine via raised intracellular Ca2+ levels. In this study, we aimed at characterizing 1. expression and functions of KCa channels (including BKCa beta-subunits, and 2. biophysical properties of BKCa channels. Methods GCs were obtained from in vitro-fertilization patients and cultured. Expression of mRNA was determined by standard RT-PCR and protein expression in human ovarian slices was detected by immunohistochemistry. Progesterone production was measured in cell culture supernatants using ELISAs. Single channels were recorded in the inside-out configuration of the patch-clamp technique. Results We identified two KCa types in human GCs, the intermediate- (IK and the small-conductance KCa (SK. Their functionality was concluded from attenuation of human chorionic gonadotropin-stimulated progesterone production by KCa blockers (TRAM-34, apamin. Functional IK channels were also demonstrated by electrophysiological recording of single KCa channels with distinctive features. Both, IK and BKCa channels were found to be simultaneously active in individual GCs. In agreement with functional data, we identified mRNAs encoding IK, SK1, SK2 and SK3 in human GCs and proteins of IK and SK2 in corresponding human ovarian cells. Molecular characterization of the BKCa channel revealed the presence of mRNAs encoding several BKCa beta-subunits (beta2, beta3, beta4 in human GCs. The multitude of beta-subunits detected might contribute to variations in Ca2+ dependence of individual BKCa channels which we observed in electrophysiological recordings. Conclusion Functional and molecular studies indicate the presence of active IK and SK

  9. Calcium-activated potassium channels - a therapeutic target for modulating nitric oxide in cardiovascular disease?

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Simonsen, Ulf

    2010-01-01

    : Opening of SK and IK channels is associated with EDHF-type vasodilatation, but, through increased endothelial cell Ca(2+) influx, L-arginine uptake, and decreased ROS production, it may also lead to increased NO bioavailability and endothelium-dependent vasodilatation. TAKE HOME MESSAGE: Opening of SK and...... IK channels can increase both EDHF and NO-mediated vasodilatation. Therefore, openers of SK and IK channels may have the potential of improving endothelial cell function in cardiovascular disease.......-dependent vasodilatation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarising factor (EDHF), and involves small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels. Therefore, SK and IK channels may be drug targets for the treatment of endothelial dysfunction in cardiovascular...

  10. Active Anti-erosion Protection Strategy in Tamarisk (Tamarix aphylla)

    Science.gov (United States)

    Han, Zhiwu; Yin, Wei; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2013-12-01

    Plants have numerous active protection strategies for adapting to complex and severe environments. These strategies provide endless inspiration for extending the service life of materials and machines. Tamarisk (Tamarix aphylla), a tree that thrives in raging sandstorm regions, has adapted to blustery conditions by evolving extremely effective and robust erosion resistant characteristics. However, the relationships among its surface cracks, internal histology and biomechanics, such as cracks, rings, cells, elasticity modulus and growth stress, which account for its erosion resistance, remain unclear. This present study reveals that the directionally eccentric growth rings of tamarisk, which are attributed to reduced stress and accelerated cell division, promote the formation of surface cracks. The windward rings are more extensive than the leeward side rings. The windward surfaces are more prone to cracks, which improves erosion resistance. Our data provide insight into the active protection strategy of the tamarisk against wind-sand erosion.

  11. Positive activities as protective factors against mental health conditions.

    Science.gov (United States)

    Layous, Kristin; Chancellor, Joseph; Lyubomirsky, Sonja

    2014-02-01

    Applying Nolen-Hoeksema and Watkins's (2011) transdiagnostic risk factor heuristic to our work on positive activities (i.e., practices that characterize naturally happy people, like expressing gratitude and practicing generosity), we propose that such activities may serve as protective factors that mitigate proximal risk factors both directly and by intervening with the mechanisms that give rise to them. First, we discuss theoretical and empirical support for the importance of well-being and the mechanisms that explain how positive activities promote well-being (by boosting positive emotions, positive thoughts, positive behaviors, and need satisfaction; Lyubomirsky & Layous, 2013). Second, we outline examples of how positive activities can mitigate two particular proximal risk factors (rumination and loneliness) and counteract environmental triggers (i.e., moderators) that might amplify them (e.g., through adaptive coping). Third, we argue that positive activities can be taught to youth to instill positive patterns of emotions, thoughts, and behaviors that may serve as protective factors over the course of their lifetimes. Lastly, we propose that certain positive activities might be particularly well-suited to certain individuals and to specific risk factors. PMID:24661154

  12. Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime)

    DEFF Research Database (Denmark)

    Strøbaek, Dorte; Teuber, Lene; Jørgensen, Tino D;

    2004-01-01

    We have identified and characterized the compound NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) as a potent activator of human Ca2+ -activated K+ channels of SK and IK types, whereas it is devoid of effect on BK type channels. IK- and SK-channels have previously been reported to be activated b...

  13. Purification of charybdotoxine, a specific inhibitor of the high-conductance Ca2+-activated K+ channel

    International Nuclear Information System (INIS)

    Charybdotoxim is a high-affinity specific inhibitor of the high-conductance Ca2+-activated K+ channel found in the plasma membranes of many vertebrate cell types. Using Ca2+-activated K+ channels reconstituted into planar lipid bilayer membranes as an assay, the authors have purified the toxin from the venom of the scorpion Leiurus quinquestriatus by a two-step procedure involving chromatofocusing on SP-Sephadex, followed by reversed-phase high-performance liquid chromatography. Charybdotoxin is shown to be a highly basic protein with a mass of 10 kDa. Under the standard assay conditions, the purified toxin inhibits the Ca2+-activated K+ channel with an apparent dissociation constant of 3.5 nM. The protein is unusually stable, with inhibitory potency being insensitive to boiling or exposure to organic solvents. The toxin's activity is sensitive to chymotrypsin treatment and to acylation of lysine groups. The protein may be radioiodinated without loss of activity

  14. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement.

    Science.gov (United States)

    Peiter, Edgar; Maathuis, Frans J M; Mills, Lewis N; Knight, Heather; Pelloux, Jérôme; Hetherington, Alistair M; Sanders, Dale

    2005-03-17

    Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the cytosol from extracellular or intracellular stores. Many classes of Ca2+ current have been characterized electrophysiologically in plant membranes. However, the identity of the ion channels that underlie these currents has until now remained obscure. Here we show that the TPC1 ('two-pore channel 1') gene of Arabidopsis thaliana encodes a class of Ca2+-dependent Ca2+-release channel that is known from numerous electrophysiological studies as the slow vacuolar channel. Slow vacuolar channels are ubiquitous in plant vacuoles, where they form the dominant conductance at micromolar [Ca2+]cyt. We show that a tpc1 knockout mutant lacks functional slow vacuolar channel activity and is defective in both abscisic acid-induced repression of germination and in the response of stomata to extracellular calcium. These studies unequivocally demonstrate a critical role of intracellular Ca2+-release channels in the physiological processes of plants. PMID:15772667

  15. Securitization and Economic Activity: The Credit Composition Channel

    OpenAIRE

    Bertay, Ata Can; Gong, Di; Wagner, Wolf

    2015-01-01

    Using an international panel, we analyze the relationship between country-level securitization and economic activity. Our findings suggest that securitization is negatively related to various proxies of economic activity – even prior to the crisis of 2007-2009. We explain this finding by securitization spurring consumption at the expense of investment and capital formation. Consistent with this, we find that securitization of household loans is negatively associated with economic activity, wh...

  16. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    Science.gov (United States)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  17. GABA/sub B/ receptor activation inhibits Ca2+-activated potassium channels in synaptosomes: involvement of G-proteins

    International Nuclear Information System (INIS)

    86Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca2+-activated K+-channels. Depolarization of 86Rb-loaded synaptosomes in physiological buffer increased Ca2+-activated 86Rb-efflux by 400%. The 86Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La3+ indicating the involvement of Ca2+-activated K+-channels. (-)Baclofen inhibited Ca2+-activated 86Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but not by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca2+-activated K+-channels. These results suggest that baclofen inhibits Ca2+-activated K+-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology

  18. Kv1.3 potassium channel mediates macrophage migration in atherosclerosis by regulating ERK activity.

    Science.gov (United States)

    Kan, Xiao-Hong; Gao, Hai-Qing; Ma, Zhi-Yong; Liu, Lin; Ling, Ming-Ying; Wang, Yuan-Yuan

    2016-02-01

    Ion channels expressed in macrophages have been tightly related to atherosclerosis by coupling cellular function. How the voltage-gated potassium channels (Kv) affect macrophage migration remain unknown. The aim of our study is to investigate whether Kv1.3-ERK signaling pathway plays an important role in the process. We explored the expression of Kv1.3 in coronary atherosclerotic heart disease and found Kv1.3 channel was increased in acute coronary syndrome patients. Treatment of RAW264.7 cells with Kv1.3 small interfering RNA, suppressed cell migration. The expression of phosphorylated ERK1/2 also decreased after knockdown of Kv1.3. On the other hand, overexpression of Kv1.3 channel promoted cell migration and ERK1/2 phosphorylation. U-0126, the mitogen-activated protein kinase inhibitors, could reverse macrophage migration induced by Kv1.3 channel overexpression. Downregulation of Kv1.3 channel by siRNA could not further inhibit cell migration when cells were treated with U-0126. It means that ERK is downstream signal of Kv1.3 channel. We concluded that Kv1.3 may stimulate macrophage migration through the activation of ERK. PMID:26748289

  19. Molecular mechanisms of diabetic coronary dysfunction due to large conductance Ca2+-activated K+ channel impairment

    Institute of Scientific and Technical Information of China (English)

    WANG Ru-xing; ZHENG Jie; GUO Su-xia; LI Xiao-rong; LU Tong; SHI Hai-feng; CHAI Qiang; WU Ying; SUN Wei; JI Yuan; YAO Yong; LI Ku-lin; ZHANG Chang-ying

    2012-01-01

    Background Diabetes mellitus is associated with coronary dysfunction,contributing to a 2- to 4-fold increase in the risk of coronary heart diseases.The mechanisms by which diabetes induces vasculopathy involve endothelial-dependent and -independent vascular dysfunction in both type 1 and type 2 diabetes mellitus.The purpose of this study is to determine the role of vascular large conductance Ca2+-activated K+ (BK) channel activities in coronary dysfunction in streptozotocin-induced diabetic rats.Methods Using videomicroscopy,immunoblotting,fluorescent assay and patch clamp techniques,we investigated the coronary BK channel activities and BK channel-mediated coronary vasoreactivity in streptozotocin-induced diabetic rats.Results BK currents (defined as the iberiotoxin-sensitive K+ component) contribute (65±4)% of the total K+ currents in freshly isolated coronary smooth muscle cells and >50% of the contraction of the inner diameter of coronary arteries from normal rats.However,BK current density is remarkably reduced in coronary smooth muscle cells of streptozotocin-induced diabetic rats,leading to an increase in coronary artery tension.BK channel activity in response to free Ca2+ is impaired in diabetic rats.Moreover,cytoplasmic application of DHS-1 (a specific BK channel β1 subunit activator) robustly enhanced the open probability of BK channels in coronary smooth muscle cells of normal rats.In diabetic rats,the DHS-1 effect was diminished in the presence of 200 nmol/L Ca2+ and was significantly attenuated in the presence of high free calcium concentration,i.e.,1 μmol/L Ca2+.Immunoblotting experiments confirmed that there was a 2-fold decrease in BK-β1 protein expression in diabetic vessels,without altering the BK channel α-subunit expression.Although the cytosolic Ca2+ concentration of coronary arterial smooth muscle cells was increased from (103±23)nmol/L (n=5) of control rats to (193±22) nmol/L (n=6,P<0.05) of STZ-induced diabetic rats,reduced BK

  20. Urinary Bladder-Relaxant Effect of Kurarinone Depending on Potentiation of Large-Conductance Ca2+-Activated K+ Channels.

    Science.gov (United States)

    Lee, Sojung; Chae, Mee Ree; Lee, Byoung-Cheol; Kim, Yong-Chul; Choi, Jae Sue; Lee, Sung Won; Cheong, Jae Hoon; Park, Chul-Seung

    2016-08-01

    The large-conductance calcium-activated potassium channel (BKCa channel) plays critical roles in smooth muscle relaxation. In urinary bladder smooth muscle, BKCa channel activity underlies the maintenance of the resting membrane potential and repolarization of the spontaneous action potential triggering the phasic contraction. To identify novel BKCa channel activators, we screened a library of natural compounds using a cell-based fluorescence assay and a hyperactive mutant BKCa channel (Lee et al., 2013). From 794 natural compounds, kurarinone, a flavanone from Sophora flavescens, strongly potentiated BKCa channels. When treated from the extracellular side, this compound progressively shifted the conductance-voltage relationship of BKCa channels to more negative voltages and increased the maximum conductance in a dose-dependent manner. Whereas kurarinone strongly potentiated the homomeric BKCa channel composed of only the α subunit, its effects were much smaller on heteromeric channels coassembled with auxiliary β subunits. Although the activation kinetics was not altered significantly, the deactivation of BKCa channels was dramatically slowed by kurarinone treatment. At the single-channel level, kurarinone increased the open probability of the BKCa channel without affecting its single-channel conductance. Kurarinone potently relaxed acetylcholine-induced contraction of rat bladder smooth muscle and thus decreased the micturition frequency of rats with overactive bladder symptoms. These results indicate that kurarinone can directly potentiate BKCa channels and demonstrate the therapeutic potentials of kurarinone and its derivatives for developing antioveractive bladder medications and supplements. PMID:27251362

  1. Specific serum antibody responses in channel catfish (Ictalurus punctatus) provide limited protection against Streptococcus ictaluri challenge

    Science.gov (United States)

    Passive immunization has been shown to provide a spectrum of protection against certain piscine pathogens, and studies were conducted to determine the role of specific antibodies in immunity to Streptococcus ictaluri. Adult Nile tilapia (Oreochromis niloticus) were injected i.p. with tryptic soy br...

  2. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. PMID:26721627

  3. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    Directory of Open Access Journals (Sweden)

    Jan Gründemann

    2015-09-01

    Full Text Available Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1 by local, activity-dependent calcium (Ca2+ influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells.

  4. Neutron field for activation experiments in horizontal channel of training reactor VR-1

    International Nuclear Information System (INIS)

    The experimental channels of nuclear reactors often serve for nuclear data measurement and validation. The dosimetry-foils activation technique was employed to measure neutron field parameters in the horizontal radial channel of the training reactor VR-1, and to test the possibility of using the reactor for scientific purposes. The reaction rates, energy spectral indexes, and neutron spectrum at several irradiation positions of the experimental channel were determined. The experimental results show the feasibility of the radial channel for irradiating experiments and open new possibilities for data validation by using this nuclear facility. - Highlights: • Neutron activation analysis of various samples. • Neutron spectrometry and gamma-spectrometry. • Study of keff for various types of reactor core

  5. Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands.

    OpenAIRE

    Trautmann, A; Marty, A.

    1984-01-01

    Electrical properties of the membranes of lacrimal gland cells were investigated using patch-clamp techniques [Hamill, O.P., Marty A., Neher, E., Sakmann, B. & Sigworth, F.J. (1981) Pflügers Arch. 391, 85-100]. The membranes were found to contain a specific kind of voltage- and Ca2+ -activated K+ channel ("BK channels"). These channels account for the strong rectification of the cell current-voltage curve as obtained in tight-seal whole-cell recordings. Application of low concentrations of ca...

  6. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes.

    Science.gov (United States)

    Nicholson, Russell A; David, Laurence S; Pan, Rui Le; Liu, Xin Min

    2010-10-01

    This investigation focuses on the in vitro neuroactive properties of pinostrobin, a substituted flavanone from Cajanus cajan (L.) Millsp. of the Fabaceae family. We demonstrate that pinostrobin inhibits voltage-gated sodium channels of mammalian brain (IC(50)=23 µM) based on the ability of this substance to suppress the depolarizing effects of the sodium channel-selective activator veratridine in a synaptoneurosomal preparation from mouse brain. The resting membrane potential of synaptoneurosomes was unaffected by pinostrobin. The pharmacological profile of pinostrobin resembles that of depressant drugs that block sodium channels. PMID:20472040

  7. Calcium channel blocking activity of calycosin, a major active component of Astragali Radix, on rat aorta

    Institute of Scientific and Technical Information of China (English)

    Xiu-li WU; Yin-ye WANG; Jun CHENG; Yu-ying ZHAO

    2006-01-01

    Aim: To investigate the vasoactivity of calycosin, a major active component of Astragali Radix. Methods: Experiments were performed on isolated rat thoracic aortic rings pre-contracted with phenylephrine (PHE) or KC1. Results: Calycosin produced a concentration-dependent relaxation on the tissue pre-contracted using PHE with 4.46±0.13 of pD2 and 95.85%±2.67% of Emax; or using KC1 with 4.27±0.05 of pD2 and 99.06%±2.15% of Emax, and displaced downwards the concentration-response curves of aortic rings to PHE or KC1. The relaxant effect of calycosin on denuded endothelium aortic rings was the same as on intact endothelium aortic rings, and its vasorelaxant effect was not influenced by L-NAME or indomethacin. In Ca2+-free solution, calycosin (30 μmol/L) did not have an effect on PHE (1×10-6 mol/L)-induced aortic ring contraction. The effects of calycosin and nifedipine where somewhat different; calycosin decreased aortic ring contractions induced by the two agonists, but nifedipine displayed a more potent inhibitory effect on KC1-induced contractions than on PHE-induced contractions, and the vascular relaxing effects of calycosin and nifidipine were additive on PHE-induced contraction but not KC1-induced. Conclusion: Calycosin is a vasorelaxant. Its action is endothelium-independent and is unrelated to intracellular Ca2+release. It is a noncompetitive Ca2+ channel blocker. The effect of calycosin on Ca2+ channel blockade may be different from that of dihydropyridines. This study demonstrated a novel pharmacological activity of calycosin, and supplied a theoretic foundation for Astragali Radix application.

  8. HCN channels in behavior and neurological disease: too hyper, or not active enough?

    OpenAIRE

    Lewis, Alan S.; Chetkovich, Dane M.

    2010-01-01

    The roles of cells within the nervous system are based on their properties of excitability, which are in part governed by voltage-gated ion channels. HCN channels underlie the hyperpolarization-activated current, Ih, an important regulator of excitability and rhythmicity through control of basic membrane properties. Ih is present in multiple neuronal types and regions of the central nervous system, and changes in Ih alter cellular input-output properties and neuronal circuitry important for b...

  9. Keeping active channels in their place: membrane phosphoinositides regulate TRPM channel activity in a compartment-selective manner.

    Science.gov (United States)

    Braun, Andrew P

    2012-01-01

    We have long appreciated that the controlled movement of ions and solutes across the cell surface or plasma membrane affects every aspect of cell function, ranging from membrane excitability to metabolism to secretion, and is also critical for the long-term maintenance of cell viability. Studies examining these physiological transport processes have revealed a vast array of ion channels, transporters and ATPase-driven pumps that underlie these transmembrane ionic movements and how acquired or genetic disruption of these processes are linked to disease. More recently, it has become evident that the ongoing function of intracellular organelles and subcellular compartments also depends heavily on the controlled movement of ions to establish distinct pH or ionic environments. However, limited experimental access to these subcellular domains/structures has hampered scientific progress in this area, due in large part to the difficulty of applying proven functional assays, such as patch clamp and radiotracer methodologies, to these specialized membrane locations. Using both functional and immune-labeling assays, we now know that the types and complement of channels, transporters and pumps located within intracellular membranes and organelles often differ from those present on the plasma membrane. Moreover, it appears that this differential distribution is due to the presence of discrete tags/signals present within these transport proteins that dictate their sorting/trafficking to spatially discrete membrane compartments, where they may also interact with scaffolding proteins that help maintain their localization. Such targeting signals may thus operate in a manner analogous to the way a postal code is used to direct the delivery of a letter. PMID:23151432

  10. ALTERNATIVE EQUATIONS FOR DYNAMIC BEHAVIOR OF IONIC CHANNEL ACTIVATION AND INACTIVATION GATES

    Directory of Open Access Journals (Sweden)

    Mahmut ÖZER

    2003-03-01

    Full Text Available In this paper, alternative equations for dynamics of ionic channel activation and inactivation gates are proposed based on the path probability method. Dynamic behavior of a voltage-gated ionic channel is modeled by the conventional Hodgkin-Huxley (H-H mathematical formalism. In that model, conductance of the channel is defined in terms of activation and inactivation gates. Dynamics of the activation and inactivation gates is modeled by first-order differential equations dependent on the gate variable and the membrane potential. In the new approach proposed in this study, dynamic behavior of activation and inactivation gates is modeled by a firstorder differential equation dependent on internal energy and membrane potential by using the path probability method which is widely used in statistical physics. The new model doesn't require the time constant and steadystate values which are used explicitly in the H-H model. The numerical results show validity of the proposed method.

  11. Activation Effect of Cathartic Natural Compound Rhein to CFTR Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in intestinal exocrine glands, which plays a key role in intestinal fluid secretion. A natural anthraquinone activator of CFTR Cl- channel, rhein, was identified by screening 217 single compounds from Chinese herbs via a cellbased halide-sensitive fluorescent assay. Rhein activates CFTR Cl- transportation in a dose-dependent manner in the presence of cAMP with a physiological concentration. This study provides a novel molecular pharmacological mechanism for the laxative drugs in Traditional Chinese Medicine such as aloe, cascara and senna.

  12. 75 FR 67989 - Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure...

    Science.gov (United States)

    2010-11-04

    ... SECURITY Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure... Infrastructure Protection (IP), will submit the following Information Collection Request (ICR) to the Office of... Infrastructure Protection, Attn.: Michael Beland, Michael.Beland@dhs.gov . Written comments should reach...

  13. 76 FR 22113 - Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure...

    Science.gov (United States)

    2011-04-20

    ... SECURITY Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure... Infrastructure Protection (IP), will submit the following Information Collection Request to the Office of... Collection Request, Infrastructure Protection Stakeholder Input Project. DHS previously published...

  14. Purinergic regulation of CFTR and Ca2+ -activated Cl- channels and K+ channels in human pancreatic duct epithelium

    DEFF Research Database (Denmark)

    Wang, Jing; Haanes, Kristian A; Novak, Ivana

    2013-01-01

    dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have...... mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3.1). The...... receptors both Cl(-) channels (TMEM16A/ANO1 and CFTR) and K(+) channels (IK). The K(+) channels provide the driving force for Cl(-)-channel-dependent secretion, and luminal ATP provided locally or secreted from acini may potentiate secretory processes. Future strategies in augmenting pancreatic duct...

  15. Protecting informative messages over burst error channels in chain-based wireless sensor networks

    OpenAIRE

    Taghikhaki, Zahra; Meratnia, Nirvana; Havinga, Paul

    2015-01-01

    Regardless of the application, the way that data and information are disseminated is an important aspect in Wireless Sensor Networks (WSNs). The wireless data dissemination protocol should often guarantee a minimum reliability requirement. In this regard and to well-balance the energy and reliability, the more important packets should be protected by more powerful error control codes than the less important ones. This information-aware capability allows a system to deliver critical informatio...

  16. Fighting software piracy in Africa: how do legal origins and IPRs protection channels matter?

    OpenAIRE

    Simplice A, Asongu

    2012-01-01

    In the current efforts towards harmonizing IPRs regimes in the African continent, this paper provides answers to four key questions relevant in the policy decision making processes. After empirically examining the questions, the following findings are established. (1) In comparison to common law countries, civil law countries inherently have a significant autonomous rate of software piracy; consistent with the ‘law and property rights’ theory. (2) But for IPRs laws, the other IP protection ch...

  17. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea.

    Science.gov (United States)

    Jiang, Yu; Yu, Bo; Yang, Hong; Ma, Tonghui

    2016-01-01

    Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea. PMID:27601995

  18. Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations

    DEFF Research Database (Denmark)

    Svenningsen, Per; Uhrenholt, Torben R; Palarasah, Yaseelan; Skjødt, Karsten; Jensen, Boye L; Skøtt, Ole

    2009-01-01

    Several pathophysiological conditions, including nephrotic syndrome, are characterized by increased renal activity of the epithelial Na(+) channel (ENaC). We recently identified plasmin in nephrotic urine as a stimulator of ENaC activity and undertook this study to investigate the mechanism by...

  19. Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration

    Directory of Open Access Journals (Sweden)

    Bartley Jeremy W

    2009-09-01

    Full Text Available Abstract This study examined the effect of menthol, an agonist for transient receptor potential melastatin 8 (TRPM8 ion channels, to increase intracellular Ca2+ concentration, [Ca2+]i, in human glioblastoma cells (DBTRG cells, which resulted in activation of the large-conductance Ca2+-activated K+ membrane ion channels (BK channels. Voltage ramps applied over 300 ms from -100 to 100 mV resulted in membrane currents with marked inwardly- and outwardly-rectifying components. Paxilline (2 μM abolished the outwardly-rectifying current. Outwardly-rectifying on-cell patch currents were increased markedly by menthol (100 μM added to the bath. The estimated on-cell conductance of these channels was 253 pS. Kinetic analysis showed that added menthol increased channel open probability and mean open frequency after 5 min. In a similar time course menthol increased [Ca2+]i, and this increase was abolished either by added paxilline, tetraethylammonium ion or by Ca2+-free external solution. Finally, menthol stimulated the rate of DBTRG cell migration into scratch wounds made in confluent cells, and this also was inhibited by paxilline or by tetraethylammonium ion. We conclude that menthol, a TRPM8 agonist, increases DBTRG cell [Ca2+]i that in turn activates membrane BK ion channels. Inhibition of BK channels by paxilline reverses menthol-stimulated increase of [Ca2+]i and of cell migration. Thus, BK channels function to maintain elevations in [Ca2+]i needed to sustain increases in DBTRG cell migration.

  20. Ca2+ Channel Re-localization to Plasma-Membrane Microdomains Strengthens Activation of Ca2+-Dependent Nuclear Gene Expression

    Directory of Open Access Journals (Sweden)

    Krishna Samanta

    2015-07-01

    Full Text Available In polarized cells or cells with complex geometry, clustering of plasma-membrane (PM ion channels is an effective mechanism for eliciting spatially restricted signals. However, channel clustering is also seen in cells with relatively simple topology, suggesting it fulfills a more fundamental role in cell biology than simply orchestrating compartmentalized responses. Here, we have compared the ability of store-operated Ca2+ release-activated Ca2+ (CRAC channels confined to PM microdomains with a similar number of dispersed CRAC channels to activate transcription factors, which subsequently increase nuclear gene expression. For similar levels of channel activity, we find that channel confinement is considerably more effective in stimulating gene expression. Our results identify a long-range signaling advantage to the tight evolutionary conservation of channel clustering and reveal that CRAC channel aggregation increases the strength, fidelity, and reliability of the general process of excitation-transcription coupling.

  1. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation.

    Directory of Open Access Journals (Sweden)

    Darizy Flavia Silva

    Full Text Available In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8 involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries.

  2. Up-Regulation of Pressure-activated Ca2+-permeable Cation Channel in Intact Vascular Endothelium of Hypertensive Rats

    Science.gov (United States)

    Hoyer, J.; Kohler, R.; Haase, W.; Distler, A.

    1996-10-01

    In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2+-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

  3. Layered unequal loss protection for image transmission over packet loss channels with delay constraints

    Science.gov (United States)

    Cai, Jianfei; Li, Xiangjun; Chen, Chang Wen

    2004-10-01

    In the case of high bit rate image transmission or having lots of packets, the FEC (forward error correction) encoding and decoding processes in the ULP (unequal loss protection) based schemes should be applied to individual packet groups instead of all the packets in order to avoid long processing delay. In this paper, we propose a layered ULP (L-ULP) scheme for fast and efficient FEC allocations among different packet groups and also within each packet group. The numerical results show that the proposed L-ULP scheme is quite promising for fast image transmission over packet loss networks.

  4. Oligosaccharide composition of the neurotoxin responsive Na+ channel and the requirement of sialic acid for activity

    International Nuclear Information System (INIS)

    The neurotoxin responsive Na+ channel was purified to homogeneity in an 18% yield from a clonal cell line of mouse neuroblastoma, N-18, metabolically labeled with L-[3H]fucose. The Na+ channel, a glycoprotein, M/sub r/=200,000 (gradient 7-14% PAGE) was digested with Pronase and the glycopeptides were characterized by serial lectin affinity chromatography. greater than 90% of the oligosaccharides contained sialic acid and 18% were biantennary, 39% were triantennary and 30% tetraantennary. The glycoprotein was reconstituted into artificial phospholipid vesicles and 86Rb flux was stimulated (65%) by 200 μM veratridine and 1.2 μg of scorpion venom and was inhibited (95%) by 5 μM tetrodotoxin. The requirement of sialic acid for Na+ channel activity was demonstrated since neuraminidase (0.01 U) treatment of the reconstituted glycoprotein eliminated the response of 86Rb flux to the stimulating neurotoxins. In other experiments, treatment of N-18 cells with 10 μM swainsonine, an inhibitor of glycoprotein processing, altered the oligosaccharide composition of the Na+ channel. When the abnormally glycosylated Na+ channel was reconstituted into artificial phospholipid vesicles, 86Rb flux in response to neurotoxins was impaired. Thus, glycosylation of the polypeptide with oligosaccharides of specific composition and structure is essential for expression of the biological activity of the neurotoxin responsive Na+ channel

  5. Active membrane having uniform physico-chemically functionalized ion channels

    Science.gov (United States)

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  6. 42 CFR 51.31 - Conduct of protection and advocacy activities.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Conduct of protection and advocacy activities. 51... REQUIREMENTS APPLICABLE TO THE PROTECTION AND ADVOCACY FOR INDIVIDUALS WITH MENTAL ILLNESS PROGRAM Protection and Advocacy Services § 51.31 Conduct of protection and advocacy activities. (a) Consistent with...

  7. Activities of Protection against Ionizing Radiation in Niger

    International Nuclear Information System (INIS)

    Niger, sahelian country of Western Africa, is limited to North by Libya and Algeria, to the South by Nigeria and the Benin, to the East by Chad and the West by Mali and Burkina Faso. It covers a surface of 1 267 000 km2 and has a population of approximately 12 000 000 inhabitants. Niger is a large uranium producer with two extraction and treatment development companies of uranium ore which are the company of the mines of Air (SOMAIR) created in 1971 and the mining company of Akouta (COMINAK) created in 1978. Beyond the mining sector, ionizing radiation sources are used in the fields of industry, health, teaching and research. The first lawful text of protection against ionizing radiation was signed on December 5, 1979 and specifically related to the mining activities of uranium. With the multiform assistance of International Atomic Energy Agency (IAEA) protection against radiation knew a significant evolution. A national centre of protection against radiation was created in 1998, two laws relating to the field were adopted in June 2006 and three lawful texts of application of these laws are in the process of finalization

  8. Thalamic Kv7 channels: pharmacological properties and activity control during noxious signal processing

    Science.gov (United States)

    Cerina, Manuela; Szkudlarek, Hanna J; Coulon, Philippe; Meuth, Patrick; Kanyshkova, Tatyana; Nguyen, Xuan Vinh; Göbel, Kerstin; Seidenbecher, Thomas; Meuth, Sven G; Pape, Hans-Christian; Budde, Thomas

    2015-01-01

    Background and Purpose The existence of functional Kv7 channels in thalamocortical (TC) relay neurons and the effects of the K+-current termed M-current (IM) on thalamic signal processing have long been debated. Immunocytochemical evidence suggests their presence in this brain region. Therefore, we aimed to verify their existence, pharmacological properties and function in regulating activity in neurons of the ventrobasal thalamus (VB). Experimental Approach Characterization of Kv7 channels was performed by combining in vitro, in vivo and in silico techniques with a pharmacological approach. Retigabine (30 μM) and XE991 (20 μM), a specific Kv7 channel enhancer and blocker, respectively, were applied in acute brain slices during electrophysiological recordings. The effects of intrathalamic injection of retigabine (3 mM, 300 nL) and/or XE991 (2 mM, 300 nL) were investigated in freely moving animals during hot-plate tests by recording behaviour and neuronal activity. Key Results Kv7.2 and Kv7.3 subunits were found to be abundantly expressed in TC neurons of mouse VB. A slow K+-current with properties of IM was activated by retigabine and inhibited by XE991. Kv7 channel activation evoked membrane hyperpolarization, a reduction in tonic action potential firing, and increased burst firing in vitro and in computational models. Single-unit recordings and pharmacological intervention demonstrated a specific burst-firing increase upon IM activation in vivo. A Kv7 channel-mediated increase in pain threshold was associated with fewer VB units responding to noxious stimuli, and increased burst firing in responsive neurons. Conclusions and Implications Kv7 channel enhancement alters somatosensory activity and may reflect an anti-nociceptive mechanism during acute pain processing. PMID:25684311

  9. Involvement of Ca2+-activated K+ Channels in Receptor-Regulated Sperm Motility in Rats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Previous voltage-clamp studies have demonstrated the modulation of sperm Ca2+-activated K+ (KCa) channels expressed in Xenopus oocytes by angiotensin Ⅱ (Ang Ⅱ)and extracellular ATP via AT1 receptor and P2U receptor, respectively. In the presentstudy, we investigated the involvement of KCa channels in receptor-regulated spermmotility of the rat using a computer-aided sperm analysis system, HTM-IVOS, in con-junction with Ca2+-mobilizing agents, receptor agonists/antagonists and KCa channelsblockers.The percentage of motile sperm was increased by ionomycin (0. 5 μmol/L), whichcould be inhibited by K+ channel blockers, tetraethylammonium (TEA 1 μmol/L ) orcharybdotoxin (ChTX, 300 nmol/L) indicating the presence of KCa channels. AngⅡ, at low concentration, 10 nmol/L, was found to increase motility, however, athigher concentration, 1 μmol/L, percentage of motility was found to be suppressed.Both stimulatory and inhibitory effects of Ang Ⅱ could be reversed by losartan, aspecific antagonist of AT 1 receptors, but not AT 2 antagonist PD123177, indicating theinvolvement of AT1 but not AT2 receptor in mediating both effects. ChTX also abol-ished both stimulatory and inhibitory effects of Ang H, suggesting the involvement ofKCa channels. The percentage of motility was also enhanced by extracellular ATP, afactor known to be involved in sperm activation. The ATP-enhanced sperm motilitywas mimicked by UTP , and inhibited by ChTX and reactive blue, an antagonist of P2receptor, indicating the involvement of both P2U and KCa channels. RT-PCR studywas also conducted to confirm the expression of KCa channels, AT1 receptors and P2Ureceptor, but not AT2 receptor, in rat caudal epididymal sperm. The present findingssuggest an important role of KCa channels in the regulation of sperm motility by AT1and P 2U receptors.

  10. Impairment of brain mitochondrial charybdotoxin- and ATP-insensitive BK channel activities in diabetes.

    Science.gov (United States)

    Noursadeghi, E; Jafari, A; Saghiri, R; Sauve, R; Eliassi, A

    2014-12-01

    Existing evidence indicates an impairment of mitochondrial functions and alterations in potassium channel activities in diabetes. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a streptozotocin (STZ) model of diabetes. Using ion channel incorporation of brain mitochondrial inner membrane into the bilayer lipid membrane, we provide in this work evidence for modifications of the mitoBKCa ion permeation properties with channels from vesicles preparations coming from diabetic rats characterized by a significant decrease in conductance. More importantly, the open probability of channels from diabetic rats was reduced 1.5-2.5 fold compared to control, the most significant decrease being observed at depolarizing potentials. Because BKCa β4 subunit has been documented to left shift the BKCa channel voltage dependence curve in high Ca(2+) conditions, a Western blot analysis was undertaken where the expression of mitoBKCa α and β4 subunits was estimated using of anti-α and β4 subunit antibodies. Our results indicated a significant decrease in mitoBKCa β4 subunit expression coupled to a decrease in the expression of α subunit, an observation compatible with the observed decrease in Ca(2+) sensitivity. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from STZ model of diabetic rats, an effect potentially linked to a change in mitoBKCa β4 and α subunits expression and/or to an increase in reactive oxygen species production in high glucose conditions. PMID:25344764

  11. Protected Areas in Tropical Africa: Assessing Threats and Conservation Activities

    Science.gov (United States)

    Tranquilli, Sandra; Abedi-Lartey, Michael; Abernethy, Katharine; Amsini, Fidèle; Asamoah, Augustus; Balangtaa, Cletus; Blake, Stephen; Bouanga, Estelle; Breuer, Thomas; Brncic, Terry M.; Campbell, Geneviève; Chancellor, Rebecca; Chapman, Colin A.; Davenport, Tim R. B.; Dunn, Andrew; Dupain, Jef; Ekobo, Atanga; Eno-Nku, Manasseh; Etoga, Gilles; Furuichi, Takeshi; Gatti, Sylvain; Ghiurghi, Andrea; Hashimoto, Chie; Hart, John A.; Head, Josephine; Hega, Martin; Herbinger, Ilka; Hicks, Thurston C.; Holbech, Lars H.; Huijbregts, Bas; Kühl, Hjalmar S.; Imong, Inaoyom; Yeno, Stephane Le-Duc; Linder, Joshua; Marshall, Phil; Lero, Peter Minasoma; Morgan, David; Mubalama, Leonard; N'Goran, Paul K.; Nicholas, Aaron; Nixon, Stuart; Normand, Emmanuelle; Nziguyimpa, Leonidas; Nzooh-Dongmo, Zacharie; Ofori-Amanfo, Richard; Ogunjemite, Babafemi G.; Petre, Charles-Albert; Rainey, Hugo J.; Regnaut, Sebastien; Robinson, Orume; Rundus, Aaron; Sanz, Crickette M.; Okon, David Tiku; Todd, Angelique; Warren, Ymke; Sommer, Volker

    2014-01-01

    Numerous protected areas (PAs) have been created in Africa to safeguard wildlife and other natural resources. However, significant threats from anthropogenic activities and decline of wildlife populations persist, while conservation efforts in most PAs are still minimal. We assessed the impact level of the most common threats to wildlife within PAs in tropical Africa and the relationship of conservation activities with threat impact level. We collated data on 98 PAs with tropical forest cover from 15 countries across West, Central and East Africa. For this, we assembled information about local threats as well as conservation activities from published and unpublished literature, and questionnaires sent to long-term field workers. We constructed general linear models to test the significance of specific conservation activities in relation to the threat impact level. Subsistence and commercial hunting were identified as the most common direct threats to wildlife and found to be most prevalent in West and Central Africa. Agriculture and logging represented the most common indirect threats, and were most prevalent in West Africa. We found that the long-term presence of conservation activities (such as law enforcement, research and tourism) was associated with lower threat impact levels. Our results highlight deficiencies in the management effectiveness of several PAs across tropical Africa, and conclude that PA management should invest more into conservation activities with long-term duration. PMID:25469888

  12. Protected areas in tropical Africa: assessing threats and conservation activities.

    Science.gov (United States)

    Tranquilli, Sandra; Abedi-Lartey, Michael; Abernethy, Katharine; Amsini, Fidèle; Asamoah, Augustus; Balangtaa, Cletus; Blake, Stephen; Bouanga, Estelle; Breuer, Thomas; Brncic, Terry M; Campbell, Geneviève; Chancellor, Rebecca; Chapman, Colin A; Davenport, Tim R B; Dunn, Andrew; Dupain, Jef; Ekobo, Atanga; Eno-Nku, Manasseh; Etoga, Gilles; Furuichi, Takeshi; Gatti, Sylvain; Ghiurghi, Andrea; Hashimoto, Chie; Hart, John A; Head, Josephine; Hega, Martin; Herbinger, Ilka; Hicks, Thurston C; Holbech, Lars H; Huijbregts, Bas; Kühl, Hjalmar S; Imong, Inaoyom; Yeno, Stephane Le-Duc; Linder, Joshua; Marshall, Phil; Lero, Peter Minasoma; Morgan, David; Mubalama, Leonard; N'Goran, Paul K; Nicholas, Aaron; Nixon, Stuart; Normand, Emmanuelle; Nziguyimpa, Leonidas; Nzooh-Dongmo, Zacharie; Ofori-Amanfo, Richard; Ogunjemite, Babafemi G; Petre, Charles-Albert; Rainey, Hugo J; Regnaut, Sebastien; Robinson, Orume; Rundus, Aaron; Sanz, Crickette M; Okon, David Tiku; Todd, Angelique; Warren, Ymke; Sommer, Volker

    2014-01-01

    Numerous protected areas (PAs) have been created in Africa to safeguard wildlife and other natural resources. However, significant threats from anthropogenic activities and decline of wildlife populations persist, while conservation efforts in most PAs are still minimal. We assessed the impact level of the most common threats to wildlife within PAs in tropical Africa and the relationship of conservation activities with threat impact level. We collated data on 98 PAs with tropical forest cover from 15 countries across West, Central and East Africa. For this, we assembled information about local threats as well as conservation activities from published and unpublished literature, and questionnaires sent to long-term field workers. We constructed general linear models to test the significance of specific conservation activities in relation to the threat impact level. Subsistence and commercial hunting were identified as the most common direct threats to wildlife and found to be most prevalent in West and Central Africa. Agriculture and logging represented the most common indirect threats, and were most prevalent in West Africa. We found that the long-term presence of conservation activities (such as law enforcement, research and tourism) was associated with lower threat impact levels. Our results highlight deficiencies in the management effectiveness of several PAs across tropical Africa, and conclude that PA management should invest more into conservation activities with long-term duration. PMID:25469888

  13. Protected areas in tropical Africa: assessing threats and conservation activities.

    Directory of Open Access Journals (Sweden)

    Sandra Tranquilli

    Full Text Available Numerous protected areas (PAs have been created in Africa to safeguard wildlife and other natural resources. However, significant threats from anthropogenic activities and decline of wildlife populations persist, while conservation efforts in most PAs are still minimal. We assessed the impact level of the most common threats to wildlife within PAs in tropical Africa and the relationship of conservation activities with threat impact level. We collated data on 98 PAs with tropical forest cover from 15 countries across West, Central and East Africa. For this, we assembled information about local threats as well as conservation activities from published and unpublished literature, and questionnaires sent to long-term field workers. We constructed general linear models to test the significance of specific conservation activities in relation to the threat impact level. Subsistence and commercial hunting were identified as the most common direct threats to wildlife and found to be most prevalent in West and Central Africa. Agriculture and logging represented the most common indirect threats, and were most prevalent in West Africa. We found that the long-term presence of conservation activities (such as law enforcement, research and tourism was associated with lower threat impact levels. Our results highlight deficiencies in the management effectiveness of several PAs across tropical Africa, and conclude that PA management should invest more into conservation activities with long-term duration.

  14. Portable single channel analyzer incorporated with a GM counter for radiation protection

    International Nuclear Information System (INIS)

    A compact size of single channel analyzer incorporated with a GM counter has been developed. It measures 8.7 cm (W) x 22.2 cm (L) x 4.4 cm (H) and weighs 0.58 kg excluding the detectors. An adjustable high voltage of 0-1000 V is included with an error of ± 0.1% and powered by three mercury batteries of 9 V each. Both the upper and lower level discriminators are set at 0 - 5 V with an error of ± 1%. The timer can be set at either 0 - 99 sec or 0 - 99 min with a buzzer alarm. The resolution of pulse is 5 μs plus the pulse width. The LCD display is either 3 1/2 or 4 digits. The rise time of shaping circuit is 1 μs with a band width of 350 kHz. The voltage indicator for battery is set at 7.5 V. All integrated circuits are of CMOS with low cost OPAMP. Some examples for field applications are given

  15. Food protection activities of the Pan American Health Organization.

    Science.gov (United States)

    1994-03-01

    One of the most widespread health problems in the Caribbean and Latin America is contaminated food and foodborne illness. The Pan American Health Organization (PAHO) has been a major force in activities to strengthen food protection. The program within the regional Program of Technical Cooperation is administered by the Veterinary Public Health program and under the guidance of the Pan American Institute for Food protection and Zoonoses in Buenos Aires, Argentina. A food action plan for 1986-90 was established at the 1986 Pan American Sanitary Conference, and extended to cover 1991-95. Program activities during the 1990s covered cholera, epidemiologic surveillance, street food vendors, shellfish poisoning, meat, national programs, information systems, air catering, food irradiation, and tourism. The action plan for 1991-95 promoted greater political support and cooperation within and between related sectors and institutions, management, and education. The aims were to organize national integrated programs, to strengthen laboratory services, to strengthen inspection services, to establish epidemiologic surveillance systems, and to promote food protection through community participation. Program activities included the initiatives of the Veterinary Public Health Program in 1991 to distribute literature on the transmission of cholera by foods. Studies were conducted in Bolivia, Colombia, and Peru on food contamination. Microbiologists received training on standard methods for detecting Vibrio cholerae in foods. A working group of experts from 10 countries examined the issues and produced a guide for investigating the incidence of foodborne disease. PAHO has contributed to the formation of an Inter-American Network for Epidemiologic Surveillance of Foodborne Diseases. PAHO has worked to improve hygienic practices among street food vendors. Seminars on paralytic shellfish poisoning were conducted in 1990; the outcome was a network working to strengthen national

  16. Protective effects of iptakalim, a novel ATP-sensitive potassium channel opener, on global cerebral ischemia-evoked insult in gerbils

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN; Yong YANG; Hong-hong YAO; Xing-chun TANG; Jian-hua DING; Hai WANG; Gang HU

    2006-01-01

    Aim: To investigate the protective role of iptakalim, a novel ATP sensitive potassium channel opener, on global cerebral ischemia-evoked insult in gerbils and glutamate-induced PC 12 cell injury. Methods: Global cerebral ischemia was induced by occluding the bilateral common carotid arteries in gerbils for 5 min. The open field maze and T-maze were employed to investigate the experimental therapeutic value of iptakalim on ischemic brain insult (n=8). The pyramidal cells in the hippocampal CA1 regions were counted to assess the protective effects of iptakalim. Glutamate released from the gerbil hippocampus and PC 12 cells were determined by HPLC. Intracellular calcium was measured by Fluo-3 AM with A Bio-Rad Radiance 2100TM confocal system in conjunction with a Nikon TE300 microscope. Astrocyte glutamate uptake measurements were determined by liquid scintillation counting. Results: Iptakalim (0.5-4.0 mg/kg per day, ip) could reduce the high locomotor activity evoked by ischemia and improve global cerebral ischemia-induced working memory impairments. Histological studies revealed that iptakalim could increase the survival neuron in the hippocampus CA1 zone in a dose-dependent manner. Moreover, iptakalim could reverse ischemia-evoked increases of glutamate in the hippocampus of gerbils. In an in vitro study, iptakalim protected PC 12 cells against glutamate-induced excitotoxicity, reduced the [Ca2+]; increases, and enhanced the glutamate uptake activity of primary cultured astrocytes. Conclusions: Iptakalim plays a key role in preventing global cerebral ischemia-evoked insults in gerbils and glutamate-induced PC12 cell injury by anti-excitotoxicity. Iptakalim might be a promising novel candidate for the prevention and/or treatment of stroke.

  17. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  18. SENSITIVE EFFECTS OF POTASSIUM AND CALCIUM CHANNEL BLOCKING AND ATP-SENSITIVE POTASSIUM CHANNEL ACTIVATORS ON SEMINAL VESICLE SMOOTH MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    H SADRAEI

    2000-12-01

    Full Text Available Background. Seminal vesicle smooth muscle contraction is mediated through sympathetic and parasympathetic neurons activity. Although seminal vesicle plays an important role in male fertility, but little attention is given to mechanism involved in contraction of this organ.
    Methods. In this study effects of drugs which activate ATP - sensitive K channels and blockers of K and Ca channels were examined on contraction of guinea - pig isolated seminal vesicle due to electrical filled stimulation (EFS, noradrenaline, carbachol and KCI.
    Results. The K channel blocker tetraethyl ammonium potentate the EFS responses at all frequencies, while, the ATP - sensitive K channel inhibitor glibenclamide and the K channel opener levcromakalim, diazoxide, minoxidil and Ca channel blocker nifedipine all had relaxant effect on guinea - pig seminal vesicle.
    Discussion. This study indicate that activities of K and Ca channels is important in regulation of seminal vesicle contraction due to nerve stimulation, noradrenaline or carbachol.

  19. Calibration activities on the BepiColombo High-Resolution Channel (HRIC) of SIMBIO-SYS instrument

    Science.gov (United States)

    Della Corte, V.; Zusi, M.; Palumbo, P.; Baroni, M.; Ficai Veltroni, I.; Flamini, E.; Mugnuolo, R.

    2015-10-01

    HRIC (High Resolution Imaging Channel) is the high resolution channel of the SIMBIO-SYS instrument on- board the ESA BepiColombo Mission. Calibration activities were performed at SelexES premises in spring- summer 2014 in order to check for Channel performances (radiometric performances, quality image and geometrical performances) and to obtain data necessary to setup a calibration pipeline necessary to process the raw images acquired by the channel when in operative scenario.

  20. Simulation and calculation of the contribution of hyperpolarization-activated cyclic nucleotide-gated channels to action potentials

    OpenAIRE

    Liao Liping; Lin Xianguang; Hu Jielin; Wu Xin; Yang Xiaofei; Wang Wei; Li Chenhong

    2016-01-01

    The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel, which mediates the influx of cations, has an important role in action potential generation. In this article, we describe the contribution of the HCN channel to action potential generation. We simulated several common ion channels in neuron membranes based on data from rat dorsal root ganglion cells and modeled the action potential. The ion channel models employed in this paper were based...

  1. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    Full Text Available Calcium-activated chloride channels of the anoctamin (alias TMEM16 protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  2. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  3. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels.

    Science.gov (United States)

    Salari, Autoosa; Vega, Benjamin S; Milescu, Lorin S; Milescu, Mirela

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b-S4 "paddle motif," which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3-S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173

  4. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  5. Effect of temperature on the activation of myocardial KATP channel in guinea pig ventricular myocytes: a pilot study by whole cell patch clamp recording

    Institute of Scientific and Technical Information of China (English)

    JIN San-qing; NIU Li-jun; DENG Chun-yu; YAO Zhi-bin; ZHOU Ying-jie

    2006-01-01

    Background The myocardial ATP sensitive potassium channel (KATP channel) has been known for more than two decades, the properties of this channel have been intensively investigated, especially the myocardial protection effect by opening this channel. Numerous studies, including hypothermic, using KATP agonists to achieve a hyperpolarizing cardioplegic arrest, have shown a better myocardial protection than potassium arrest.However, there is no evidence showing that KATP channel could be opened by its agonists under profound hypothermia. We investigated the effect of temperature on activation of myocardial KATP channel by nicorandil.Methods Isolated ventricular myocytes were obtained by collagenase digestion of the hearts of guinea pigs and stored in KB solution at 4℃. With a steady ground current, the myocytes were perfused with 1 mmol/L nicorandil until a steady IKATP occurred. Then the cells were perfused with 1 mmol/L nicorandil plus 1 μmol/L glybenclamide. Currents signals were recorded on whole cells using patch clamp technique at several temperatures. The temperature of the bath solution around myocytes was monitored and was controlled at 4℃,10℃, 20℃, 25℃ and 35℃ respectively. About 10 cells were tested at each temperature, the cells were considered useful only when the outward current could be induced by nicorandil and blocked by glybenclamide.All data were analyzed using Graphpad PRISM 3.0 (Graphpad, San Diego, CA, USA). Nonlinear curve fitting was done in Clampfit (Axon) or Sigmaplot (SPSS).Results At 4℃, 10℃, 20℃, 25℃ and 35℃, the time needed to open the myocardial KATP channel was (81.0±0)minutes, (50.5±11.7) minutes, (28.8±2.3) minutes, (9.4±10.2) minutes and (2.3± 1.0) minutes respectively (P=0.003). The linear relationship between temperature and time needed to open the channel was y (min) =(4348.790-124.277x)/60, where y (min) is time needed to open KATP channel, x is temperature, correlation coefficient r =-0.942 (P=0

  6. Role of thromboxane A₂-activated nonselective cation channels in hypoxic pulmonary vasoconstriction of rat.

    Science.gov (United States)

    Yoo, Hae Young; Park, Su Jung; Seo, Eun-Young; Park, Kyung Sun; Han, Jung-A; Kim, Kyung Soo; Shin, Dong Hoon; Earm, Yung E; Zhang, Yin-Hua; Kim, Sung Joon

    2012-01-01

    Hypoxia-induced pulmonary vasoconstriction (HPV) is critical for matching of ventilation/perfusion in lungs. Although hypoxic inhibition of K(+) channels has been a leading hypothesis for depolarization of pulmonary arterial smooth muscle cells (PASMCs) under hypoxia, pharmacological inhibition of K(+) channels does not induce significant contraction in rat pulmonary arteries. Because a partial contraction by thromboxane A(2) (TXA(2)) is required for induction of HPV, we hypothesize that TXA(2) receptor (TP) stimulation might activate depolarizing nonselective cation channels (NSCs). Consistently, we found that 5-10 nM U46619, a stable agonist for TP, was indispensible for contraction of rat pulmonary arteries by 4-aminopyridine, a blocker of voltage-gated K(+) channel (K(v)). Whole cell voltage clamp with rat PASMC revealed that U46619 induced a NSC current (I(NSC,TXA2)) with weakly outward rectifying current-voltage relation. I(NSC,TXA2) was blocked by ruthenium red (RR), an antagonist of the transient receptor potential vanilloid-related channel (TRPV) subfamily. 2-Aminoethoxydiphenyl borate, an agonist for TRPV1-3, consistently activated NSC channels in PASMCs. In contrast, agonists for TRPV1 (capsaicin), TRPV3 (camphor), or TRPV4 (α-PDD) rarely induced an increase in the membrane conductance of PASMCs. RT-PCR analysis showed the expression of transcripts for TRPV2 and -4 in rat PASMCs. Finally, it was confirmed that pretreatment with RR largely inhibited HPV in the presence of U46619. The pretreatment with agonists for TRPV1 (capsaicin) and TRPV4 (α-PDD) was ineffective as pretone agents for HPV. Taken together, it is suggested that the concerted effects of I(NSC,TXA2) activation and K(v) inhibition under hypoxia induce membrane depolarization sufficient for HPV. TRPV2 is carefully suggested as the TXA(2)-activated NSC in rat PASMC. PMID:21998141

  7. Hexachlorophene Is a Potent KCNQ1/KCNE1 Potassium Channel Activator Which Rescues LQTs Mutants

    Science.gov (United States)

    Zheng, Yueming; Zhu, Xuejing; Zhou, Pingzheng; Lan, Xi; Xu, Haiyan; Li, Min; Gao, Zhaobing

    2012-01-01

    The voltage-gated KCNQ1 potassium channel is expressed in cardiac tissues, and coassembly of KCNQ1 with an auxiliary KCNE1 subunit mediates a slowly activating current that accelerates the repolarization of action potential in cardiomyocytes. Mutations of KCNQ1 genes that result in reduction or loss of channel activity cause prolongation of repolarization during action potential, thereby causing long QT syndrome (LQTs). Small molecule activators of KCNQ1/KCNE1 are useful both for understanding the mechanism of the complex activity and for developing therapeutics for LQTs. In this study we report that hexachlorophene (HCP), the active component of the topical anti-infective prescription drug pHisoHex, is a KCNQ1/KCNE1 activator. HCP potently increases the current amplitude of KCNQ1/KCNE1 expressed by stabilizing the channel in an open state with an EC50 of 4.61±1.29 μM. Further studies in cardiomyocytes showed that HCP significantly shortens the action potential duration at 1 μM. In addition, HCP is capable of rescuing the loss of function of the LQTs mutants caused by either impaired activation gating or phosphatidylinositol-4,5-bisphosphate (PIP2) binding affinity. Our results indicate HCP is a novel KCNQ1/KCNE1 activator and may be a useful tool compound for the development of LQTs therapeutics. PMID:23251633

  8. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.

    Science.gov (United States)

    Peigneur, Steve; Yamaguchi, Yoko; Kawano, Chihiro; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-05-31

    Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency. PMID:27159046

  9. Natural and synthetic modulators of SK (Kca2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7

    Science.gov (United States)

    Chubanov, V; Mederos y Schnitzler, M; Meißner, M; Schäfer, S; Abstiens, K; Hofmann, T; Gudermann, T

    2012-01-01

    BACKGROUND AND PURPOSE Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a bifunctional protein comprising a TRP ion channel segment linked to an α-type protein kinase domain. TRPM7 is essential for proliferation and cell growth. Up-regulation of TRPM7 function is involved in anoxic neuronal death, cardiac fibrosis and tumour cell proliferation. The goal of this work was to identify non-toxic inhibitors of the TRPM7 channel and to assess the effect of blocking endogenous TRPM7 currents on the phenotype of living cells. EXPERIMENTAL APPROACH We developed an aequorin bioluminescence-based assay of TRPM7 channel activity and performed a hypothesis-driven screen for inhibitors of the channel. The candidates identified were further assessed electrophysiologically and in cell biological experiments. KEY RESULTS TRPM7 currents were inhibited by modulators of small conductance Ca2+-activated K+ channels (KCa2.1–2.3; SK) channels, including the antimalarial plant alkaloid quinine, CyPPA, dequalinium, NS8593, SKA31 and UCL 1684. The most potent compound NS8593 (IC50 1.6 µM) specifically targeted TRPM7 as compared with other TRP channels, interfered with Mg2+-dependent regulation of TRPM7 channel and inhibited the motility of cultured cells. NS8593 exhibited full and reversible block of native TRPM7-like currents in HEK 293 cells, freshly isolated smooth muscle cells, primary podocytes and ventricular myocytes. CONCLUSIONS AND IMPLICATIONS This study reveals a tight overlap in the pharmacological profiles of TRPM7 and KCa2.1–2.3 channels. NS8593 acts as a negative gating modulator of TRPM7 and is well-suited to study functional features and cellular roles of endogenous TRPM7. PMID:22242975

  10. Quantifying the transition from fluvial- to wave-dominance for river deltas with multiple active channels

    Science.gov (United States)

    Nienhuis, J.; Ashton, A. D.; Giosan, L.

    2012-12-01

    The plan-view morphologies of fluvial- and wave-dominated deltas are clearly distinctive, but transitional forms are numerous. A quantitative, process-based description of this transition remains unexplored, particularly for river deltas with multiple active channels. Previous studies focused on general attributes of the fluvial and marine environment, such as the balance between wave energy and river discharge. Here, we propose that the transition between fluvial and wave dominance is directly related to the magnitude of the fluvial bedload flux to the nearshore region versus the alongshore sediment transport capacity of waves removing sediment away from the mouth. In the case of a single-channel delta, this balance can be computed for a given distribution of waves approaching shore. Fluvial dominance occurs when fluvial sediment input exceeds the wave-sustained maximum alongshore sediment transport for all potential shoreline orientations both up- and downdrift of the river mouth. However, deltaic channels have the tendency to bifurcate with increasing fluvial strength. Initial bifurcation splits the fluvial sediment flux among individual channels, while the potential sediment transport by waves remains constant for both river mouths. At higher bifurcation orders, multiple channels interact with each other alongshore, a situation more complicated than the single channel case and one that cannot be simple addressed analytically. We apply a model of plan-view shoreline evolution to simulate the evolution of a deltaic environment with multiple active channels. A highly simplified fluvial domain is represented by deposition of sediment where channels meet the coast. We investigate two scenarios of fluvial delivery. The first scenario deposits fluvial sediment alongshore on a self-similar predefined network of channels. We analyze the effects of different network geometrical parameters, such as bifurcation length, bifurcation angle, and sediment partitioning. In the

  11. Basolateral K channel activated by carbachol in the epithelial cell line T84.

    Science.gov (United States)

    Tabcharani, J A; Harris, R A; Boucher, A; Eng, J W; Hanrahan, J W

    1994-11-01

    Cholinergic stimulation of chloride secretion involves the activation of a basolateral membrane potassium conductance, which maintains the electrical gradient favoring apical Cl efflux and allows K to recycle at the basolateral membrane. We have used transepithelial short-circuit current (Isc), fluorescence imaging, and patch clamp studies to identify and characterize the K channel that mediates this response in T84 cells. Carbachol had little effect on Isc when added alone but produced large, transient currents if added to monolayers prestimulated with cAMP. cAMP also enhanced the subsequent Isc response to calcium ionophores. Carbachol (100 microM) transiently elevated intracellular free calcium ([Ca2+]i) by approximately 3-fold in confluent cells cultured on glass coverslips with a time course resembling the Isc response of confluent monolayers that had been grown on porous supports. In parallel patch clamp experiments, carbachol activated an inwardly rectifying potassium channel on the basolateral aspect of polarized monolayers which had been dissected from porous culture supports. The same channel was transiently activated on the surface of subconfluent monolayers during stimulation by carbachol. Activation was more prolonged when cells were exposed to calcium ionophores. The conductance of the inward rectifier in cell-attached patches was 55 pS near the resting membrane potential (-54 mV) with pipette solution containing 150 mM KCl (37 degrees C). This rectification persisted when patches were bathed in symmetrical 150 mM KCl solutions. The selectivity sequence was 1 K > 0.88 Rb > 0.18 Na > Cs based on permeability ratios under bi-ionic conditions. The channel exhibited fast block by external sodium ions, was weakly inhibited by external TEA, was relatively insensitive to charybdotoxin, kaliotoxin, 4-aminopyridine and quinidine, and was unaffected by external 10 mM barium. It is referred to as the KBIC channel based on its most distinctive properties (Ba

  12. Functional insights into modulation of BKCa channel activity to alter myometrial contractility

    Directory of Open Access Journals (Sweden)

    RamónALorca

    2014-07-01

    Full Text Available The large-conductance voltage- and Ca2+-activated K+ channel (BKCa is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits, association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.

  13. Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels

    Directory of Open Access Journals (Sweden)

    Rémi Peyronnet

    2012-03-01

    Full Text Available How renal epithelial cells respond to increased pressure and the link with kidney disease states remain poorly understood. Pkd1 knockout or expression of a PC2 pathogenic mutant, mimicking the autosomal dominant polycystic kidney disease, dramatically enhances mechanical stress-induced tubular apoptotic cell death. We show the presence of a stretch-activated K+ channel dependent on the TREK-2 K2P subunit in proximal convoluted tubule epithelial cells. Our findings further demonstrate that polycystins protect renal epithelial cells against apoptosis in response to mechanical stress, and this function is mediated through the opening of stretch-activated K2P channels. Thus, to our knowledge, we establish for the first time, both in vitro and in vivo, a functional relationship between mechanotransduction and mechanoprotection. We propose that this mechanism is at play in other important pathologies associated with apoptosis and in which pressure or flow stimulation is altered, including heart failure or atherosclerosis.

  14. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  15. Observations of the Behavior and Distribution of Fish in Relation to the Columbia River Navigation Channel and Channel Maintenance Activities; FINAL

    International Nuclear Information System (INIS)

    This report is a compilation of 7 studies conducted for the U.S. Army Corps of Engineers between 1995 and 1998 which used hydroacoustic methods to study the behavior of migrating salmon in response to navigation channel maintenance activities in the lower Columbia River near river mile 45. Differences between daytime and nighttime behavior and fish densities were noted. Comparisons were made of fish distribution across the river (in the channel, channel margin or near shore) and fish depth upstream and downstream of dikes, dredges, and pile driving areas

  16. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity?

    Science.gov (United States)

    Wang, Liwei; Alzayady, Kamil J; Yule, David I

    2016-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes. PMID:26486785

  17. Properties of the Ca-activated K+ channel in pancreatic beta-cells.

    Science.gov (United States)

    Atwater, I; Rosario, L; Rojas, E

    1983-12-01

    The existence of [Ca2+]i-activated K+-channels in the pancreatic beta-cell membrane is based in two observations: quinine inhibits K+-permeability and, increasing intracellular Ca2+ stimulates it. The changes in K+-permeability of the beta-cell have been monitored electrically by combining measurements of the dependence of the membrane potential on external K+ concentration and input resistance. The changes in the passive 42K and 86Rb efflux from the whole islet have been measured directly. Intracellular Ca2+ has been increased by various means, including increasing extracellular Ca2+, addition of the Ca2+-ionophore A23187 or noradrenaline and application of mitochondrial uncouplers and blockers. In addition to quinine, many other substances have been found to inhibit or modulate the [Ca2+]i-activated K+-channel. The most important of these is the natural stimulus for insulin secretion, glucose. Glucose may inhibit K+-permeability by lowering intracellular Ca2+. Glibenclamide, a hypoglycaemic sulphonylurea, is about 25 times more active than quinine in blocking the K+-channel in beta-cells. The methylxanthines, c-AMP, various calmodulin inhibitors and Ba2+ also inhibit K+-permeability. Genetically diabetic mice have been studied and show an alteration in the [Ca2+]i-activated K+-channel. It is concluded that the [Ca2+]i-activated K+-channel plays a major role in the normal function of the pancreatic beta-cell. The study of its properties should prove valuable for the understanding and treatment of diabetes. PMID:6323007

  18. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Hsiang-Chin Chen

    Full Text Available TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein's expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE, the product of 5-lipoxygenase, or 5-HPETE's downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of

  19. Hydralazine-induced vasodilation involves opening of high conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Bang, Lone; Nielsen-Kudsk, J E; Gruhn, N;

    1998-01-01

    The purpose of this study was to investigate whether high conductance Ca2+-activated K+ channels (BK(Ca)) are mediating the vasodilator action of hydralazine. In isolated porcine coronary arteries, hydralazine (1-300 microM), like the K+ channel opener levcromakalim, preferentially relaxed......M) suppressed this response by 82% (P < 0.05). In conscious, chronically catheterized rats the hypotensive response tohydralazine (0.6 mg kg(-1) min(-1)) was significantly reduced by 41% during infusion of iberiotoxin (0.1 mg kg(-1)). It is concluded, that opening of BK(Ca) takes part in the mechanism whereby...

  20. Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-01-01

    Full Text Available Cardiovascular disease (CVD causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2, a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.

  1. Effects of calcium channel blocker, nifedipine, on antidepressant activity of fluvoxamine, venlafaxine and tianeptine in mice

    OpenAIRE

    SHARMA, Ashok K.; Anjan Khadka; Navdeep Dahiya

    2015-01-01

    Background: Cardiovascular diseases are commonly associated with depression. Calcium channel blockers (CCBs) form commonly used group of drugs for the treatment of a number of cardiovascular diseases. Nifedipine, a CCB, has been shown to possess antidepressant activity and potentiate antidepressant activity of imipramine and sertraline, however, literature on its interaction with newer antidepressant drugs such as fluvoxamine, venlafaxine and tianeptine is limited. Hence, the present study wa...

  2. Two-channel active high-power X-band pulse compressor

    International Nuclear Information System (INIS)

    A two-channel active pulse compressor has been developed that is able to provide output-pulses of at least 100 MW peak power with pulse duration of 100 nsec at X-band, with a power gain of 12-15 and with an energy efficiency of 60%. This paper describes the design of the compressor and the driving generator-compressor microwave circuit. Each channel of the compressor is connected to the driving generator and the load via a novel 3-dB quasi-optical coupler. Variations in phase of compressed output pulses from this active pulse compressor were measured. The moderate-power tests of a prototype design of such a compressor using 100 kW-level microwaves demonstrated coherent addition of the compressed pulses from each of the compressor channels. The paper also describes design of a modified output reflector, with which the two-channel active pulse compressor can produce output pulses with a peak power of at least 500 MW and a power gain 12-15

  3. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels.

    Science.gov (United States)

    Saam, Jan; Ivanov, Igor; Walther, Matthias; Holzhütter, Hermann-Georg; Kuhn, Hartmut

    2007-08-14

    Cells contain numerous enzymes that use molecular oxygen for their reactions. Often, their active sites are buried deeply inside the protein, which raises the question whether there are specific access channels guiding oxygen to the site of catalysis. Choosing 12/15-lipoxygenase as a typical example for such oxygen-dependent enzymes, we determined the oxygen distribution within the protein and defined potential routes for oxygen access. For this purpose, we have applied an integrated strategy of structural modeling, molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements. First, we computed the 3D free-energy distribution for oxygen, which led to identification of four oxygen channels in the protein. All channels connect the protein surface with a region of high oxygen affinity at the active site. This region is localized opposite to the nonheme iron providing a structural explanation for the reaction specificity of this lipoxygenase isoform. The catalytically most relevant path can be obstructed by L367F exchange, which leads to a strongly increased Michaelis constant for oxygen. The blocking mechanism is explained in detail by reordering the hydrogen-bonding network of water molecules. Our results provide strong evidence that the main route for oxygen access to the active site of the enzyme follows a channel formed by transiently interconnected cavities whereby the opening and closure are governed by side chain dynamics. PMID:17675410

  4. Mechanism of action of a novel human ether-a-go-go-related gene channel activator

    DEFF Research Database (Denmark)

    Casis, Oscar; Olesen, Søren-Peter; Sanguinetti, Michael C

    2005-01-01

    1,3-Bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643) is a newly discovered activator of human ether-a-go-go-related gene (hERG) K(+) channels. Here, we characterize the effects of this compound on cloned hERG channels heterologously expressed in Xenopus laevis oocytes. When assessed with 2-s...... depolarizations, NS1643 enhanced the magnitude of wild-type hERG current in a concentration- and voltage-dependent manner with an EC(50) of 10.4 microM at -10 mV. The fully activated current-voltage relationship revealed that the drug increased outward but not inward currents, consistent with altered inactivation...... gating. NS1643 shifted the voltage dependence of inactivation by +21 mV at 10 microM and +35 mV at 30 microM, but it did not alter the voltage dependence of activation of hERG channels. The effects of the drug on three inactivation-deficient hERG mutant channels (S620T, S631A, and G628C/S631C) were...

  5. EGFR Tyrosine kinase regulates small conductance Ca2+-activated K+ (hSKCa1) channels expressed in HEK 293 cells

    OpenAIRE

    Wu, W.; H. Sun; Deng, XL; Li, GR

    2013-01-01

    SKCa (small-conductance Ca(2+)-activated K(+)) channels are widely distributed in different tissues, including the brain, pancreatic islets and myocardium and play an important role in controlling electrical activity and cellular functions. However, intracellular signal modulation of SKCa channels is not fully understood. The present study was designed to investigate the potential regulation of hSKCa1 (human SKCa1) channels by PTKs (protein tyrosine kinases) in HEK (human embryonic kidney)-29...

  6. Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis.

    Science.gov (United States)

    Nieto-Torres, Jose L; Verdiá-Báguena, Carmina; Castaño-Rodriguez, Carlos; Aguilella, Vicente M; Enjuanes, Luis

    2015-07-01

    Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology. PMID:26151305

  7. Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis

    Directory of Open Access Journals (Sweden)

    Jose L. Nieto-Torres

    2015-07-01

    Full Text Available Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology.

  8. Probenecid protects against oxygen-glucose deprivation injury in primary astrocytes by regulating inflammasome activity.

    Science.gov (United States)

    Jian, Zhihong; Ding, Shuai; Deng, Hongping; Wang, Jun; Yi, Wei; Wang, Lei; Zhu, Shengmei; Gu, Lijuan; Xiong, Xiaoxing

    2016-07-15

    Inflammation is extremely important in the development of cerebral ischemia/reperfusion injury. Pannexin 1 (Panx1) channel has been reported to activate inflammasome in astrocytes and be involved in ischemic injury, but this damage effect is reversed by a Panx1 inhibitor-probenecid. However, the mechanism of probenecid protects against cerebral ischemia/reperfusion injury remains unclear. In present study, we hypothesized that probenecid protected astrocytes from ischemia/reperfusion injury in vitro by modulating the inflammasome. Primary cultured neocortical astrocytes were exposed to oxygen-glucose deprivation/reoxygenation (OGD/RX) and probenecid was added in this model. Viability and nuclear morphology of astrocytes, production of reactive oxygen species (ROS), protein expressions of NLRP3 (NOD-like receptor protein 3), caspase-1, and AQP4 (Aquaporins 4), as well as release of cellular HMGB1 and IL-1β were observed to evaluate the effect and mechanisms of probenecid on OGD/reoxygenated astrocytes. Probenecid did not affect cell viability at concentrations of 1, 5, 10, and 100μM but induced significant astrocytes death at 500μM. Probenecid inhibited cell death and ROS generation in astrocytes subjected to 6h of OGD and 24h of reoxygenation. The expression levels of NLRP3, caspase-1, and AQP4 increased after 6h of OGD, but probenecid treatment attenuated this increase. Moreover, the extracellular release of IL-1β and HMGB1 from OGD/reoxygenated astrocytes increased significantly. However, treatment by probenecid resulted in substantial reduction of these proteins levels in extracellular space. In conclusion, The Panx1 inhibitor, probenecid, which was administered before OGD, provided protective effects on the OGD/reoxygenation model of cultured astrocytes by modulating inflammasome activity and downregulating AQP4 expression. PMID:27154322

  9. Activation of KCNN3/SK3/KCa2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia

    OpenAIRE

    Dolga, Amalia M.; Letsche, Till; Gold, Maike; Doti, Nunzianna; Bacher, Michael; Chiamvimonvat, Nipavan; Dodel, Richard; Culmsee, Carsten

    2012-01-01

    In neurons, small-conductance calcium activated potassium (KCNN/SK/KCa2) channels maintain calcium homeostasis after NMDA receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/KCa2 channels in non-neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/KCa2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation....

  10. Antischistosomal activity of a calcium channel antagonist on schistosomula and adult Schistosoma mansoni worms

    Directory of Open Access Journals (Sweden)

    Vanessa Silva-Moraes

    2013-08-01

    Full Text Available Current schistosomiasis control strategies are largely based on chemotherapeutic agents and a limited number of drugs are available today. Praziquantel (PZQ is the only drug currently used in schistosomiasis control programs. Unfortunately, this drug shows poor efficacy in patients during the earliest infection phases. The effects of PZQ appear to operate on the voltage-operated Ca2+channels, which are located on the external Schistosoma mansoni membrane. Because some Ca2+channels have dihydropyridine drug class (a class that includes nifedipine sensitivity, an in vitro analysis using a calcium channel antagonist (clinically used for cardiovascular hypertension was performed to determine the antischistosomal effects of nifedipine on schistosomula and adult worm cultures. Nifedipine demonstrated antischistosomal activity against schistosomula and significantly reduced viability at all of the concentrations used alone or in combination with PZQ. In contrast, PZQ did not show significant efficacy when used alone. Adult worms were also affected by nifedipine after a 24 h incubation and exhibited impaired motility, several lesions on the tegument and intense contractility. These data support the idea of Ca2+channels subunits as drug targets and favour alternative therapeutic schemes when drug resistance has been reported. In this paper, strong arguments encouraging drug research are presented, with a focus on exploring schistosomal Ca2+channels.

  11. Pungent products from garlic activate the sensory ion channel TRPA1.

    Science.gov (United States)

    Bautista, Diana M; Movahed, Pouya; Hinman, Andrew; Axelsson, Helena E; Sterner, Olov; Högestätt, Edward D; Julius, David; Jordt, Sven-Eric; Zygmunt, Peter M

    2005-08-23

    Garlic belongs to the Allium family of plants that produce organosulfur compounds, such as allicin and diallyl disulfide (DADS), which account for their pungency and spicy aroma. Many health benefits have been ascribed to Allium extracts, including hypotensive and vasorelaxant activities. However, the molecular mechanisms underlying these effects remain unknown. Intriguingly, allicin and DADS share structural similarities with allyl isothiocyanate, the pungent ingredient in wasabi and other mustard plants that induces pain and inflammation by activating TRPA1, an excitatory ion channel on primary sensory neurons of the pain pathway. Here we show that allicin and DADS excite an allyl isothiocyanate-sensitive subpopulation of sensory neurons and induce vasodilation by activating capsaicin-sensitive perivascular sensory nerve endings. Moreover, allicin and DADS activate the cloned TRPA1 channel when expressed in heterologous systems. These and other results suggest that garlic excites sensory neurons primarily through activation of TRPA1. Thus different plant genera, including Allium and Brassica, have developed evolutionary convergent strategies that target TRPA1 channels on sensory nerve endings to achieve chemical deterrence. PMID:16103371

  12. Recent activities of International Commission on Radiological Protection, ICRP

    International Nuclear Information System (INIS)

    This is a review on recent activities of ICRP, starting from a brief history to ground works of 1990 recommendations and ongoing discussions, with reference to radiological aspects. ICRP was founded as a commission of the International Society of Radiology in 1928. The objective of ICRP is to provide recommendations on a standard of radiological protection without unduly limiting the beneficial practices giving rise to radiation exposure. ICRP Recommendations 1990 was issued in line with the objective, based on the scientific knowledge and past experience. The biological basis was also incorporated there. The Recommendations included the framework and concepts like practice and intervention; normal, potential and emergency exposure; occupational (its limit was defined to be 20 mSv a year or 100 mSv for consecutive 5 years), medical and public exposure; justification, optimization and dose limit; and collective dose and dose constraints. After the Recommendations, ICRP has issued nearly 20 publications. As ongoing activities, the task groups in the committee works on low dose radiation effects, on effects of in utero exposure and on review of RBE. ICRP is envisaging to issue new recommendations by 2005 and discussion on controllable dose and others are being made. (K.H.)

  13. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    Science.gov (United States)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  14. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Javier Ampuero

    activity in vitro. Therefore, metformin use seems to be protective against hepatic encephalopathy in diabetic cirrhotic patients.

  15. Ulcer Protective Activity of Jatropha gossypiifolia Linn. in Wistar Rats

    Science.gov (United States)

    Vijayakumar, Arumugam Ramamoorthy; Daniel, Epison Prabu; Ilavarasan, Raju; Venkataraman, S.; Vijayakumar, S.

    2016-01-01

    Background: Several synthetic drugs are useful in the treatment of peptic ulcer, but almost of these drugs are used in prolonging time, it may cause several adverse reactions. However, the herbal medicines are more potent to the treatment and minimize the side effects. Objective: To evaluate the methanol extract of Jatropha gossypiifolia Linn. (MEJG) for gastro protective activity against Wistar rats. Materials and Methods: Anti-ulcer potency of MEJG (100 and 200 mg/kg, b.w.) was assessed using aspirin (200 mg/kg, p.o.) plus pylorus ligation ulcer model and the parameters studied were ulcer index (UI), gastric juice volume, pH, total acidity, and total acid output. Same extract was studied by ethanol-induced (80%, 5 mL/kg, intragastrically) ulcer model, and the UI and biochemical parameters were studied. Results: The oral administration of MEJG (100 and 200 mg/kg) significantly (P < 0.001) attenuated the ulcer score and anti-secretary parameters (such as the volume of gastric content, free acidity, total acidity, and total acid output) in the aspirin plus pylorus ligation rats. The extract also significantly attenuated (P < 0.001) ulcer score in ethanol-induced ulcer model and lipid peroxidation level and significantly increased the level of glutathione peroxides, catalase, and superoxide dismutase activity. The MEJG may possess active constituents such as alkaloids, glycosides, flavonoids, and terpenes, which may play a major role in gastroprotective effect in Wistar rats. Conclusion: The present study provides scientific support for the anti-ulcer activities of extracts of JG and also claimed that antioxidant potential of the extracts. However, substantiates the traditional claims for the usage of this drug in the treatment of gastric ulcer. SUMMARY The methanolic extract of jatropha gossypiifolia Linn. for gastro protective activity against aspirin plus pyloric ligation and ethanol induced ulcer models was studied in Wistar rats. JG shows significantly

  16. Barbiturates inhibit ATP-K+ channels and voltage-activated currents in CRI-G1 insulin-secreting cells.

    OpenAIRE

    Kozlowski, R. Z.; Ashford, M. L.

    1991-01-01

    1. Patch-clamp recording techniques were used to examine the effects of barbiturates upon the ATP-K+ channel, and voltage-activated channels present in the plasma membrane of CRI-G1 insulin-secreting cells. 2. Thiopentone inhibited ATP-K+ channel activity when applied to cell-attached patches or the intracellular or extracellular surface of cell-free patches. Secobarbitone and pentobarbitone were also effective inhibitors of ATP-K+ channels in cell-free patches, whereas phenobarbitone was ine...

  17. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  18. Calcium influx through stretch-activated channels mediates microfilament reorganization in osteoblasts under simulated weightlessness

    Science.gov (United States)

    Luo, Mingzhi; Yang, Zhouqi; Li, Jingbao; Xu, Huiyun; Li, Shengsheng; Zhang, Wei; Qian, Airong; Shang, Peng

    2013-06-01

    We have explored the role of Ca2+ signaling in microfilament reorganization of osteoblasts induced by simulated weightlessness using a random positioning machine (RPM). The RPM-induced alterations of cell morphology, microfilament distribution, cell proliferation, cell migration, cytosol free calcium concentration ([Ca2+]i), and protein expression in MG63 osteoblasts were investigated. Simulated weightlessness reduced cell size, disrupted microfilament, inhibited cellular proliferation and migration, and induced an increase in [Ca2+]i in MG63 human osteosarcoma cells. Gadolinium chloride (Gd), an inhibitor for stretch-activated channels, attenuated the increase in [Ca2+]i and microfilament disruption. Further, the expression of calmodulin was significantly increased by simulated weightlessness, and an inhibitor of calmodulin, W-7, aggravated microfilament disruption. Our findings demonstrate that simulated weightlessness induces Ca2+ influx through stretch-activated channels, then results in microfilament disruption.

  19. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity

    DEFF Research Database (Denmark)

    Zhang, Li Li; Yan Liu, Dao; Ma, Li Qun;

    2007-01-01

    We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect...... of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator......-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced...

  20. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities

    Science.gov (United States)

    Sukharev, S. I.; Blount, P.; Martinac, B.; Kung, C.

    1997-01-01

    Although mechanosensory responses are ubiquitous and diverse, the molecular bases of mechanosensation in most cases remain mysterious MscL, a mechanosensitive channel of large conductance of Escherichia coli and its bacterial homologues are the first and currently only channel molecules shown to directly sense mechanical stretch of the membrane. In response to the tension conveyed via the lipid bilayer, MscL increases its open probability by several orders of magnitude. In the present review we describe the identification, cloning, and first sets of biophysical and structural data on this simplest mechanosensory molecule. We discovered a 2.5-ns mechanosensitive conductance in giant E. coli spheroplasts. Using chromatographies to enrich the target and patch clamp to assay the channel activity in liposome-reconstituted fractions, we identified the MscL protein and cloned the mscL gene. MscL comprises 136 amino acid residues (15 kDa), with two highly hydrophobic regions, and resides in the inner membrane of the bacterium. PhoA-fusion experiments indicate that the protein spans the membrane twice with both termini in the cytoplasm. Spectroscopic techniques show that it is highly helical. Expression of MscL tandems and covalent cross-linking suggest that the active channel complex is a homo-hexamer. We have identified several residues, which when deleted or substituted, affect channel kinetics or mechanosensitivity. Although unique when discovered, highly conserved MscL homologues in both gram-negative and gram-positive bacteria have been found, suggesting their ubiquitous importance among bacteria.

  1. Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells.

    Science.gov (United States)

    Cherkashin, Alexander P; Kolesnikova, Alisa S; Tarasov, Michail V; Romanov, Roman A; Rogachevskaja, Olga A; Bystrova, Marina F; Kolesnikov, Stanislav S

    2016-02-01

    Specialized Ca(2+)-dependent ion channels ubiquitously couple intracellular Ca(2+) signals to a change in cell polarization. The existing physiological evidence suggests that Ca(2+)-activated Cl(-) channels (CaCCs) are functional in taste cells. Because Ano1 and Ano2 encode channel proteins that form CaCCs in a variety of cells, we analyzed their expression in mouse taste cells. Transcripts for Ano1 and Ano2 were detected in circumvallate (CV) papillae, and their expression in taste cells was confirmed using immunohistochemistry. When dialyzed with CsCl, taste cells of the type III exhibited no ion currents dependent on cytosolic Ca(2+). Large Ca(2+)-gated currents mediated by TRPM5 were elicited in type II cells by Ca(2+) uncaging. When TRPM5 was inhibited by triphenylphosphine oxide (TPPO), ionomycin stimulated a small but resolvable inward current that was eliminated by anion channel blockers, including T16Ainh-A01 (T16), a specific Ano1 antagonist. This suggests that CaCCs, including Ano1-like channels, are functional in type II cells. In type I cells, CaCCs were prominently active, blockable with the CaCC antagonist CaCCinh-A01 but insensitive to T16. By profiling Ano1 and Ano2 expressions in individual taste cells, we revealed Ano1 transcripts in type II cells only, while Ano2 transcripts were detected in both type I and type II cells. P2Y agonists stimulated Ca(2+)-gated Cl(-) currents in type I cells. Thus, CaCCs, possibly formed by Ano2, serve as effectors downstream of P2Y receptors in type I cells. While the role for TRPM5 in taste transduction is well established, the physiological significance of expression of CaCCs in type II cells remains to be elucidated. PMID:26530828

  2. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E.; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  3. Effect of low dose X-rays on Ca2+-activated K+ channels in mouse-thymic lymphocytes

    International Nuclear Information System (INIS)

    The effect of low dose X-rays on Ca2+-activated K+ channels [K(Ca)[ in mouse thymic lymphocytes was observed using the cell-attached configuration of patch clamp technique. It is shown that low dose X-rays can elevate the open times and open-state probabilities of K(Ca) channels, without apparent influence on the current flowing through the channels. After 3 min exposure of lymphocytes to Con A the open-state probabilities of K(Ca) channels in irradiated group were higher than those in control group. It was observed that from 4 to 24 h after irradiation the activity of K(Ca) channels increased with time. K(Ca) channels are important in the molecular mechanism of immuno enhancement following low dose irradiation

  4. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  5. Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines

    OpenAIRE

    Spurny, R.; Ramerstorfer, J.; Price, K; Brams, M.; M. Ernst; Nury, H.; Verheij, M.; Legrand, P.; Bertrand, D.; Bertrand, S.; Dougherty, D A; de Esch, I. J. P.; Corringer, P.-J.; Sieghart, W.; Lummis, S. C. R.

    2012-01-01

    GABA_A receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA_A receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their conc...

  6. Hydraphiles: A Rigorously Studied Class of Synthetic Channel Compounds with In Vivo Activity

    OpenAIRE

    Saeedeh Negin; Smith, Bryan A.; Alexandra Unger; W Matthew Leevy; Gokel, George W.

    2013-01-01

    Hydraphiles are a class of synthetic ion channels that now have a twenty-year history of analysis and success. In early studies, these compounds were rigorously validated in a wide range of in vitro assays including liposomal ion flow detected by NMR or ion-selective electrodes, as well as biophysical experiments in planar bilayers. During the past decade, biological activity was observed for these compounds including toxicity to bacteria, yeast, and mammalian cells due to stress caused by th...

  7. KIR channel activation contributes to onset and steady-state exercise hyperemia in humans

    OpenAIRE

    Crecelius, Anne R.; Luckasen, Gary J.; Dennis G Larson; Dinenno, Frank A.

    2014-01-01

    We tested the hypothesis that activation of inwardly rectifying potassium (KIR) channels and Na+-K+-ATPase, two pathways that lead to hyperpolarization of vascular cells, contributes to both the onset and steady-state hyperemic response to exercise. We also determined whether after inhibiting these pathways nitric oxide (NO) and prostaglandins (PGs) are involved in the hyperemic response. Forearm blood flow (FBF; Doppler ultrasound) was determined during rhythmic handgrip exercise at 10% maxi...

  8. Evolution of Thermal Response Properties in a Cold-Activated TRP Channel

    OpenAIRE

    Myers, Benjamin R.; Sigal, Yaron M.; David Julius

    2009-01-01

    Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms) or subject to environmental variation (poikilotherms). Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functiona...

  9. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish

    OpenAIRE

    Chen, Shijia; Chiu, Cindy N.; McArthur, Kimberly L.; Fetcho, Joseph R.; Prober, David A.

    2015-01-01

    The zebrafish (Danio rerio) is a useful vertebrate model system in which to study neural circuits and behavior, but tools to modulate neurons in freely behaving animals are limited. As poikilotherms that live in water, zebrafish are amenable to thermal and pharmacological perturbations. We exploit these properties by using transient receptor potential (TRP) channels to activate or ablate specific neuronal populations using the chemical and thermal agonists of heterologously expressed TRPV1, T...

  10. Evolution of thermal response properties in a cold-activated TRP channel.

    Science.gov (United States)

    Myers, Benjamin R; Sigal, Yaron M; Julius, David

    2009-01-01

    Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms) or subject to environmental variation (poikilotherms). Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functional diversity reflecting the characteristics of an organism's ecological niche. PMID:19492038

  11. Evolution of thermal response properties in a cold-activated TRP channel.

    Directory of Open Access Journals (Sweden)

    Benjamin R Myers

    Full Text Available Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms or subject to environmental variation (poikilotherms. Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functional diversity reflecting the characteristics of an organism's ecological niche.

  12. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish.

    Science.gov (United States)

    Chen, Shijia; Chiu, Cindy N; McArthur, Kimberly L; Fetcho, Joseph R; Prober, David A

    2016-02-01

    The zebrafish (Danio rerio) is a useful vertebrate model system in which to study neural circuits and behavior, but tools to modulate neurons in freely behaving animals are limited. As poikilotherms that live in water, zebrafish are amenable to thermal and pharmacological perturbations. We exploit these properties by using transient receptor potential (TRP) channels to activate or ablate specific neuronal populations using the chemical and thermal agonists of heterologously expressed TRPV1, TRPM8 and TRPA1. PMID:26657556

  13. Neutron field for activation experiments in horizontal channel of training reactor VR-1

    Czech Academy of Sciences Publication Activity Database

    Štefánik, Milan; Katovsky, K.; Vinš, M.; Šoltéš, J.; Závorka, L.

    2014-01-01

    Roč. 104, NOV (2014), s. 302-305. ISSN 0969-806X. [1st International Conference on Dosimetry and its Applications (ICDA). Prague, 23.6.2013-28.6.2013] R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : spectral index * neutron spectrometry * dosimetry-foils activation technique * irradiation channel * reaction rate * Gamma-spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.380, year: 2014

  14. Channel and active component abstractions for WSN programming - a language model with operating system support

    OpenAIRE

    P. Harvey; Dearle, A.; Lewis, J.; Sventek, J.

    2012-01-01

    To support the programming of Wireless Sensor Networks, a number of unconventional programming models have evolved, in particular the event-based model. These models are non-intuitive to programmers due to the introduction of unnecessary, non-intrinsic complexity. Component-based languages like Insense can eliminate much of this unnecessary complexity via the use of active components and synchronous channels. However, simply layering an Insense implementation over an existing event-based syst...

  15. Hydraphiles: A Rigorously Studied Class of Synthetic Channel Compounds with In Vivo Activity

    Directory of Open Access Journals (Sweden)

    Saeedeh Negin

    2013-01-01

    Full Text Available Hydraphiles are a class of synthetic ion channels that now have a twenty-year history of analysis and success. In early studies, these compounds were rigorously validated in a wide range of in vitro assays including liposomal ion flow detected by NMR or ion-selective electrodes, as well as biophysical experiments in planar bilayers. During the past decade, biological activity was observed for these compounds including toxicity to bacteria, yeast, and mammalian cells due to stress caused by the disruption of ion homeostasis. The channel mechanism was verified in cells using membrane polarity sensitive dyes, as well as patch clamping studies. This body of work has provided a solid foundation with which hydraphiles have recently demonstrated acute biological toxicity in the muscle tissue of living mice, as measured by whole animal fluorescence imaging and histological studies. Here we review the critical structure-activity relationships in the hydraphile family of compounds and the in vitro and in cellulo experiments that have validated their channel behavior. This report culminates with a description of recently reported efforts in which these molecules have demonstrated activity in living mice.

  16. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  17. Interfacial gating triad is crucial for electromechanical transduction in voltage-activated potassium channels

    Science.gov (United States)

    Chowdhury, Sandipan; Haehnel, Benjamin M.

    2014-01-01

    Voltage-dependent potassium channels play a crucial role in electrical excitability and cellular signaling by regulating potassium ion flux across membranes. Movement of charged residues in the voltage-sensing domain leads to a series of conformational changes that culminate in channel opening in response to changes in membrane potential. However, the molecular machinery that relays these conformational changes from voltage sensor to the pore is not well understood. Here we use generalized interaction-energy analysis (GIA) to estimate the strength of site-specific interactions between amino acid residues putatively involved in the electromechanical coupling of the voltage sensor and pore in the outwardly rectifying KV channel. We identified candidate interactors at the interface between the S4–S5 linker and the pore domain using a structure-guided graph theoretical approach that revealed clusters of conserved and closely packed residues. One such cluster, located at the intracellular intersubunit interface, comprises three residues (arginine 394, glutamate 395, and tyrosine 485) that interact with each other. The calculated interaction energies were 3–5 kcal, which is especially notable given that the net free-energy change during activation of the Shaker KV channel is ∼14 kcal. We find that this triad is delicately maintained by balance of interactions that are responsible for structural integrity of the intersubunit interface while maintaining sufficient flexibility at a critical gating hinge for optimal transmission of force to the pore gate. PMID:25311635

  18. Modulation of activity of the adipocyte aquaglyceroporin channel by plant extracts.

    Science.gov (United States)

    Cals-Grierson, M-M

    2007-02-01

    The plasma membrane protein, aquaglyceroporin-7 (AQP7) is exclusively expressed in adipocytes and appears to be a channel for glycerol entry and exit. It is possible that by facilitating the opening of these channels, the loss of intracellular glycerol could be encouraged and thus reduce the size of the lipid reservoir. Human preadipocytes and mouse 3T3-L1 preadipocytes were induced to develop an adipocytic phenotype by culture in a semi-defined medium. After 7 days, the expression of AQP7 message had increased by 37-fold, a level which could be further up-regulated by troglitazone or retinoic acid or down-regulated by insulin. The mature adipocytes also expressed immunoreactive aquaporin (AQP) channel protein as assessed by immunocytochemistry and Western blot. The addition of adrenaline to the culture medium stimulated the release of glycerol (blockable by HgCl(2)). Plant extracts, with potential anti-cellulite properties, were tested for their effect on glycerol elimination. These included wild yam root (Dioscorea opposita), cocoa bean (Theobroma cacao), horse chestnut tree (Aesculus hippocastanum) seed and bark and tomato (Solanum lycopersicum). Of these, D. opposita appeared to induce a dose-dependent glycerol release. The results show that our assay can help to identify modulators of AQP7 channel expression and activation in adipocytes. PMID:18489306

  19. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    Science.gov (United States)

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. PMID:26919429

  20. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  1. Challenges to the system of radiation protection – role and activities of the International Radiation Protection Association

    International Nuclear Information System (INIS)

    The vision of IRPA as the International Radiation Protection Association of individual radiation protection practitioners organized through national or regional societies is to be recognized by its members, stakeholders and the public as the international voice of the radiation protection profession in the enhancement of radiation protection culture and practice worldwide. It is a key challenge of IRPA to make this vision a reality.The global acceptance of radiation protection principles, in particular in the medical area, is a real challenge. Ensuring that medical procedures are justified and optimized is vital, not least for CT and hybrid imaging examinations and in pediatric medicine. There is a strong responsibility of medical physicists and radiation protection experts to ensure safe and secure application of ionizing radiation. A Technical Agreement with the IOMP (International Organization for Medical Physics) provides the way for a joint approach to enhance radiation safety in the medical field. IRPA started an initiative on Ethics in Radiation Protection and currently IRPA is working closely with ICRP on the development of guidance on Ethical Dimensions of the Radiation Protection System.To encourage and support the Associate Societies in the development of effective means of enhancing public understanding of radiation risk through the sharing of good practice, ideas and resource material, IRPA has established a Task Group on Public Understanding of Radiation Risk. The ultimate goal is to develop and promote a library of good practice activities on public understanding of radiation risk through the sharing of experience across the Associate Societies

  2. ROLE OF H2O2-ACTIVATED TRPM2 CALCIUM CHANNEL IN OXIDANT-INDUCED ENDOTHELIAL INJURY

    OpenAIRE

    Hecquet, Claudie M.; Malik, Asrar B.

    2009-01-01

    The transient receptor potential (melastatin) 2 (TRPM2), is an oxidant-activated nonselective cation channel, that is widely expressed in mammalian tissues including the vascular endothelium. Oxidative stress, through the generation of oxygen metabolites including H2O2, stimulates intracellular ADP-ribose formation which, in turn, opens TRPM2 channels. These channels act as an endogenous redox sensor for mediating oxidative stress/ROS-induced Ca2+ entry and the subsequent specific Ca2+-depend...

  3. TMEM16F is a component of a Ca2+-activated Cl- channel but not a volume-sensitive outwardly rectifying Cl- channel.

    Science.gov (United States)

    Shimizu, Takahiro; Iehara, Takahiro; Sato, Kaori; Fujii, Takuto; Sakai, Hideki; Okada, Yasunobu

    2013-04-15

    TMEM16 (transmembrane protein 16) proteins, which possess eight putative transmembrane domains with intracellular NH2- and COOH-terminal tails, are thought to comprise a Cl(-) channel family. The function of TMEM16F, a member of the TMEM16 family, has been greatly controversial. In the present study, we performed whole cell patch-clamp recordings to investigate the function of human TMEM16F. In TMEM16F-transfected HEK293T cells but not TMEM16K- and mock-transfected cells, activation of membrane currents with strong outward rectification was found to be induced by application of a Ca(2+) ionophore, ionomycin, or by an increase in the intracellular free Ca(2+) concentration. The free Ca(2+) concentration for half-maximal activation of TMEM16F currents was 9.6 μM, which is distinctly higher than that for TMEM16A/B currents. The outwardly rectifying current-voltage relationship for TMEM16F currents was not changed by an increase in the intracellular Ca(2+) level, in contrast to TMEM16A/B currents. The Ca(2+)-activated TMEM16F currents were anion selective, because replacing Cl(-) with aspartate(-) in the bathing solution without changing cation concentrations caused a positive shift of the reversal potential. The anion selectivity sequence of the TMEM16F channel was I(-) > Br(-) > Cl(-) > F(-) > aspartate(-). Niflumic acid, a Ca(2+)-activated Cl(-) channel blocker, inhibited the TMEM16F-dependent Cl(-) currents. Neither overexpression nor knockdown of TMEM16F affected volume-sensitive outwardly rectifying Cl(-) channel (VSOR) currents activated by osmotic swelling or apoptotic stimulation. These results demonstrate that human TMEM16F is an essential component of a Ca(2+)-activated Cl(-) channel with a Ca(2+) sensitivity that is distinct from that of TMEM16A/B and that it is not related to VSOR activity. PMID:23426967

  4. Measurement of Ca channel activity of isolated adult rat heart cells using 54Mn

    International Nuclear Information System (INIS)

    Isolated adult rat heart cells incubated with 5 microM Mn in a medium with 1 mM Ca showed a rapid phase of Mn binding plus a slow phase of Mn uptake. The rapid phase was extracellular binding, as judged by its temperature-insensitive removal by ethylene glycol bis(beta-aminoethyl ether) N, N'-tetraacetic acid. The slow linear phase represented cellular uptake, as judged by its release with digitonin plus the ionophore A23187. Isoproterenol increased the linear rate of Mn uptake and induced spontaneous beating activity in some cells. Both effects were inhibited by nitrendipine. Electrical stimulation of the cells in suspension increased the linear rate of cellular Mn uptake. The increase was potentiated by isoproterenol, and inhibited by nitrendipine or verapamil. Stimulation-dependent Mn uptake (per milligram protein) was greater for cells from 5- to 6-week-old rats than for 8- to 9-month-old female retired breeder rats, in the presence of isoproterenol. Ryanodine increased the stimulation-dependent Mn uptake in the presence of isoproterenol, but not in its absence. We conclude: (i) that cellular uptake of 54Mn is a good probe of Ca channel function; (ii) that isoproterenol promotes Mn influx by the channel in isolated heart cells; (iii) that cells from young rats (5-6 weeks) have a higher beta-adrenergically induced Ca channel activity than cells from mature rats (8-9 months); and (iv) that ryanodine promotes Ca channel activity (perhaps indirectly) in the presence of isoproterenol

  5. Synthesis of [3H]FPL 64176, a potent calcium channel activator

    International Nuclear Information System (INIS)

    Tritium labelled FPL 64176 (1, methyl 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate), a potent calcium channel activator with insulinotropic properties was synthesized from the corresponding bromo derivative (3) using tritium gas and Pd/C catalyst. (3) was in turn prepared from methyl 2,5-dimethylpyrrole-3-carboxylate (4) in a one pot procedure. The specific activity of [3H]FPL 64176 was 38 mCi/mmol and radiochemical purity >98%. (Author)

  6. X-ray irradiation activates K+ channels via H2O2 signaling

    OpenAIRE

    Gibhardt, Christine S.; Bastian Roth; Indra Schroeder; Sebastian Fuck; Patrick Becker; Burkhard Jakob; Claudia Fournier; Anna Moroni; Gerhard Thiel

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1...

  7. Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac)

    OpenAIRE

    Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka

    2003-01-01

    The effects of fluoxetine, a commonly used antidepressant drug, on G protein-activated inwardly rectifying K+ channels (GIRK, Kir3) were investigated using Xenopus oocyte expression assays.In oocytes injected with mRNAs for GIRK1/GIRK2, GIRK2 or GIRK1/GIRK4 subunits, fluoxetine reversibly reduced inward currents through the basal GIRK activity. The inhibition by fluoxetine showed a concentration-dependence, a weak voltage-dependence and a slight time-dependence with a predominant effect on th...

  8. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK channels

    Directory of Open Access Journals (Sweden)

    MichaelJShipston

    2014-08-01

    Full Text Available Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK channels are important determinants of their (pathophysiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs and acyl thioesterases. (APTs. S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signalling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease.

  9. Lemon juice has protective activity in a rat urolithiasis model

    Directory of Open Access Journals (Sweden)

    Oussama Abdelkhalek

    2007-10-01

    Full Text Available Abstract Background The use of herbal medicines (medicinal plants or phytotherapy has recently gained popularity in Europe and the United States. Nevertheless the exact mechanism of the preventive effects of these products is still far to be clearly established, being its knowledge necessary to successfully apply these therapies to avoid stone formation. Methods The effect of oral lemon juice administration on calcium oxalate urolithiasis was studied in male Wistar rats. Rats were rendered nephrolithic by providing drinking water containing 0.75% ethylene glycol [v/v] (EG and 2% ammonium chloride [w/v] (AC for 10 days. In addition to EG/AC treatment, three groups of rats were also gavage-administered solutions containing 100%, 75% or 50% lemon juice [v/v] (6 μl solution/g body weight. Positive control rats were treated with EG/AC but not lemon juice. Negative control rats were provided with normal drinking water, and were administered normal water by gavage. Each group contained 6 rats. After 10 days, serum samples were collected for analysis, the left kidney was removed and assessed for calcium levels using flame spectroscopy, and the right kidney was sectioned for histopathological analysis using light microscopy. Results Analysis showed that the rats treated with EG/AC alone had higher amounts of calcium in the kidneys compared to negative control rats. This EG/AC-induced increase in kidney calcium levels was inhibited by the administration of lemon juice. Histology showed that rats treated with EG/AC alone had large deposits of calcium oxalate crystals in all parts of the kidney, and that such deposits were not present in rats also treated with either 100% or 75% lemon juice. Conclusion These data suggest that lemon juice has a protective activity against urolithiasis.

  10. KIR channel activation contributes to onset and steady-state exercise hyperemia in humans.

    Science.gov (United States)

    Crecelius, Anne R; Luckasen, Gary J; Larson, Dennis G; Dinenno, Frank A

    2014-09-01

    We tested the hypothesis that activation of inwardly rectifying potassium (KIR) channels and Na(+)-K(+)-ATPase, two pathways that lead to hyperpolarization of vascular cells, contributes to both the onset and steady-state hyperemic response to exercise. We also determined whether after inhibiting these pathways nitric oxide (NO) and prostaglandins (PGs) are involved in the hyperemic response. Forearm blood flow (FBF; Doppler ultrasound) was determined during rhythmic handgrip exercise at 10% maximal voluntary contraction for 5 min in the following conditions: control [saline; trial 1 (T1)]; with combined inhibition of KIR channels and Na(+)-K(+)-ATPase alone [via barium chloride (BaCl2) and ouabain, respectively; trial 2 (T2)]; and with additional combined nitric oxide synthase (N(G)-monomethyl-l-arginine) and cyclooxygenase inhibition [ketorolac; trial 3 (T3)]. In T2, the total hyperemic responses were attenuated ~50% from control (P 120 ± 15 ml/min; -29 ± 3%; P < 0.05 vs. T2). In protocol 3 (n = 8), BaCl2 alone reduced FBF during onset (~50%) and steady-state exercise (~30%) as observed in protocols 1 and 2, respectively, and addition of ouabain had no further impact. Our data implicate activation of KIR channels as a novel contributing pathway to exercise hyperemia in humans. PMID:24973385

  11. Synthetic Ciguatoxins Selectively Activate Nav1.8-derived Chimeric Sodium Channels Expressed in HEK293 Cells*

    OpenAIRE

    Yamaoka, Kaoru; Inoue, Masayuki; Miyazaki, Keisuke; Hirama, Masahiro; Kondo, Chie; Kinoshita, Eiji; Miyoshi, Hiroshi; Seyama, Issei

    2009-01-01

    The synthetic ciguatoxin CTX3C has been shown to activate tetrodotoxin (TTX)-sensitive sodium channels (Nav1.2, Nav1.4, and Nav1.5) by accelerating activation kinetics and shifting the activation curve toward hyperpolarization (Yamaoka, K., Inoue, M., Miyahara, H., Miyazaki, K., and Hirama, M. (2004) Br. J. Pharmacol. 142, 879–889). In this study, we further explored the effects of CTX3C on the TTX-resistant sodium channel Nav1.8. TTX-resistant channels have been s...

  12. Blockade of Ca2+-activated K+ channels in T cells: an option for the treatment of multiple sclerosis?

    DEFF Research Database (Denmark)

    Madsen, Lars Siim; Christophersen, Palle; Olesen, Søren-Peter

    2005-01-01

    Voltage- and Ca(2+)-dependent K(+) channels in the membrane of both T and B lymphocytes are important for the cellular immune response. In the current issue of the European Journal of Immunology, Reich et al. demonstrate that selective blockade of the intermediate-conductance Ca(2+)-activated K(+...... of new immune-suppressant drugs for the treatment of autoimmune diseases.......(+) channel (the IK channel encoded by the KCNN4 gene) prevents cytokine production in the spinal chord and ameliorates the development of EAE caused by injection of myelin oligodendrocyte glycoprotein (MOG)(35-55) in mice. These data renew the focus on the IK channel as a potential target for the development...

  13. The Impact of Protected Areas on Deforestation: An Exploration of the Economic and Political Channels for Madagascar’s Rainforests (2001-12)

    OpenAIRE

    DESBUREAUX, Sebastien; Desbureaux, Sébastien; Aubert, Sigrid; Brimont, Laura; Karsenty, Alain; Lohanivo, Alexio Clovis; Rakotondrabe, Manohisoa; Razafindraibe, Andrianjakarivo Henintsoa; Razafiarijaona, Jules

    2016-01-01

    Protected areas (PAs) remain the primary conservation instrument of Madagascar’s unique but threatened biodiversity. We combine matching and panel regressions in a quasi-natural experiment setting to analyze PAs’ environmental effectiveness annually between 2001 and 2012 and study two channels that moderate the impact: initial poverty rates and local variations in law enforcement. Our findings show that PAs have stabilized deforestation around a positive trend without having halted it. Their ...

  14. Jamming Games in the MIMO Wiretap Channel With an Active Eavesdropper

    CERN Document Server

    Mukherjee, Amitav

    2010-01-01

    This paper investigates reliable and covert transmission strategies in a MIMO wiretap channel with a transmitter, receiver and an adversarial wiretapper, each equipped with multiple antennas. In a departure from existing work, the wiretapper possesses the dual capability to act either as a passive eavesdropper or as an active jammer, under a halfduplex constraint. The transmitter therefore faces a choice between allocating all of its power for data, or broadcasting artificial noise along with the information signal in order to selectively jam the eavesdropper (assuming its instantaneous channel state is unknown). To examine the resulting tradeoffs for both agents, we model the network as a two-person zero-sum game with the ergodic MIMO secrecy rate as the payoff function. We first quantify and rank the various possible MIMO secrecy rate outcomes of the actions available to each player, and derive asymptotic expressions for the same. We then examine conditions for the existence of pure and mixed Nash equilibri...

  15. Calcium channel activity of purified human synexin and structure of the human synexin gene

    International Nuclear Information System (INIS)

    Synexin is a calcium-dependent membrane binding protein that not only fuses membranes but also acts as a voltage-dependent calcium channel. The authors have isolated and sequenced a set of overlapping cDNA clones for human synexin. The derived amino acid sequence of synexin reveals strong homology in the C-terminal domain with a previously identified class of calcium-dependent membrane binding proteins. These include endonexin II, lipocortin I, calpactin I heavy chain (p36), protein II, and calelectrin 67K. The Mr 51,000 synexin molecule can be divided into a unique, highly hydrophobic N-terminal domain of 167 amino acids and a conserved C-terminal region of 299 amino acids. The latter domain is composed of alternating hydrophobic and hydrophilic segments. Analysis of the entire structure reveals possible insights into such diverse properties as voltage-sensitive calcium channel activity, ion selectivity, affinity for phospholipids, and membrane fusion

  16. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Skibsbye, Lasse; Jespersen, Thomas;

    2011-01-01

    We have shown previously that inhibition of small conductance Ca(2+)-activated K(+) (SK) channels is antiarrhythmic in models of acutely induced atrial fibrillation (AF). These models, however, do not take into account that AF derives from a wide range of predisposing factors, the most prevalent...... being hypertension. In this study we assessed the effects of two different SK channel inhibitors, NS8593 and UCL1684, in aging, spontaneously hypertensive rats to examine their antiarrhythmic properties in a setting of hypertension-induced atrial remodeling. Male spontaneously hypertensive rats and the...... normotensive Wistar-Kyoto rat strain were divided in 2×3 groups of animals aged 3, 8, and 11 months, respectively. The animals were randomly assigned to treatment with NS8593, UCL1684, or vehicle, and open chest in vivo experiments including burst pacing-induced AF were performed. The aging spontaneously...

  17. Inhibitory effects of SKF96365 on the activities of K(+) channels in mouse small intestinal smooth muscle cells.

    Science.gov (United States)

    Tanahashi, Yasuyuki; Wang, Ban; Murakami, Yuri; Unno, Toshihiro; Matsuyama, Hayato; Nagano, Hiroshi; Komori, Seiichi

    2016-03-01

    In order to investigate the effects of SKF96365 (SKF), which is a non-selective cationic channel blocker, on K(+) channel currents, we recorded currents through ATP sensitive K(+) (IKATP), voltage-gated K(+) (IKv) and Ca(2+) activated K(+) channels (IBK) in the absence and presence of SKF in single small intestinal myocytes of mice with patch-clamp techniques. SKF (10 µM) reversibly abolished IKATP that was induced by cromakalim (10 µM), which is a selective ATP sensitive K(+) channel opener. These inhibitory effects were induced in a concentration-dependent and voltage-independent manner. The 50% inhibitory concentration (IC50) was 0.85 µM, which was obviously lower than that reported for the muscarinic cationic current. In addition, SKF (1 µM ≈ the IC50 value in IKATP suppression) reversibly inhibited the IKv that was induced by repetitive depolarizing pulses from -80 to 20 mV. However, the extent of the inhibitory effects was only ~30%. In contrast, SKF (1 µM) had no significant effects on spontaneous transient IBK and caffeine-induced IBK. These results indicated that SKF inhibited ATP sensitive K(+) channels and voltage-gated K(+) channels, with the ATP sensitive K(+) channels being more sensitive than the voltage-gated K(+) channels. These inhibitory effects on K(+) channels should be considered when SKF is used as a cationic channel blocker. PMID:26498720

  18. Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation.

    Science.gov (United States)

    Resta, Francesco; Masi, Alessio; Sili, Maria; Laurino, Annunziatina; Moroni, Flavio; Mannaioni, Guido

    2016-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have a key role in the control of cellular excitability. HCN2, a subgroup of the HCN family channels, are heavily expressed in small dorsal root ganglia (DRG) neurons and their activation seems to be important in the determination of pain intensity. Intracellular elevation of cAMP levels activates HCN-mediated current (Ih) and small DRG neurons excitability. GPR35, a Gi/o coupled receptor, is highly expressed in small DRG neurons, and we hypothesized that its activation, mediated by endogenous or exogenous ligands, could lead to pain control trough a reduction of Ih current. Patch clamp recordings were carried out in primary cultures of rat DRG neurons and the effects of GPR35 activation on Ih current and neuronal excitability were studied in control conditions and after adenylate cyclase activation with either forskolin or prostaglandin E2 (PGE2). We found that both kynurenic acid (KYNA) and zaprinast, the endogenous and synthetic GPR35 agonist respectively, were able to antagonize the forskolin-induced depolarization of resting membrane potential by reducing Ih-mediated depolarization. Similar results were obtained when PGE2 was used to activate adenylate cyclase and to increase Ih current and the overall neuronal excitability. Finally, we tested the analgesic effect of both GPR35 agonists in an in vivo model of PGE2-induced thermal hyperalgesia. In accord with the hypothesis, both KYNA and zaprinast showed a dose dependent analgesic effect. In conclusion, GPR35 activation leads to a reduced excitability of small DRG neurons in vitro and causes a dose-dependent analgesia in vivo. GPR35 agonists, by reducing adenylate cyclase activity and inhibiting Ih in DRG neurons may represent a promising new group of analgesic drugs. PMID:27131920

  19. Activation of visual cortex in REM sleep measured by 24-channel NIRS imaging.

    Science.gov (United States)

    Igawa, M; Atsumi, Y; Takahashi, K; Shiotsuka, S; Hirasawa, H; Yamamoto, R; Maki, A; Yamashita, Y; Koizumi, H

    2001-06-01

    To visualize dreaming brain functions we studied hemodynamic changes in the visual cortex during the transition from non-rapid eye movement (NREM) to rapid eye movement (REM) sleep, using a 24-channel Near-Infrared Spectroscopy (NIRS) imaging method. Results were compared to the activation in visual cortex by visual stimulation during wakefulness. Subjects were four healthy males between 25 and 49 years of age. Five all-night polysomnographic and NIRS recordings were made. Increases in the oxygenated hemoglobin concentration in visual cortex were observed from nine of 14 REM periods. The activated areas were broader during REM sleep than during visual stimulation. These findings suggest that activation of visual cortex in REM sleep might represent dream-related brain activity. PMID:11422835

  20. Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1.

    Science.gov (United States)

    Wei, Risheng; Wang, Xue; Zhang, Yan; Mukherjee, Saptarshi; Zhang, Lei; Chen, Qiang; Huang, Xinrui; Jing, Shan; Liu, Congcong; Li, Shuang; Wang, Guangyu; Xu, Yaofang; Zhu, Sujie; Williams, Alan J; Sun, Fei; Yin, Chang-Cheng

    2016-09-01

    Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca(2+)-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 Å and a resolution of 4.2 Å for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca(2+) activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family. PMID:27573175

  1. PAD-MAC: primary user activity-aware distributed MAC for multi-channel cognitive radio networks.

    Science.gov (United States)

    Ali, Amjad; Piran, Md Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young

    2015-01-01

    Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084

  2. Airway Hydration, Apical K(+) Secretion, and the Large-Conductance, Ca(2+)-activated and Voltage-dependent Potassium (BK) Channel.

    Science.gov (United States)

    Kis, Adrian; Krick, Stefanie; Baumlin, Nathalie; Salathe, Matthias

    2016-04-01

    Large-conductance, calcium-activated, and voltage-gated K(+) (BK) channels are expressed in many tissues of the human body, where they play important roles in signaling not only in excitable but also in nonexcitable cells. Because BK channel properties are rendered in part by their association with four β and four γ subunits, their channel function can differ drastically, depending on in which cellular system they are expressed. Recent studies verify the importance of apically expressed BK channels for airway surface liquid homeostasis and therefore of their significant role in mucociliary clearance. Here, we review evidence that inflammatory cytokines, which contribute to airway diseases, can lead to reduced BK activity via a functional down-regulation of the γ regulatory subunit LRRC26. Therefore, manipulation of LRRC26 and pharmacological opening of BK channels represent two novel concepts of targeting epithelial dysfunction in inflammatory airway diseases. PMID:27115952

  3. The Inhibition by Oxaliplatin, a Platinum-Based Anti-Neoplastic Agent, of the Activity of Intermediate-Conductance Ca2+-Activated K+ Channels in Human Glioma Cells

    Directory of Open Access Journals (Sweden)

    Mei-Han Huang

    2015-10-01

    Full Text Available Oxaliplatin (OXAL is a third-generation organoplatinum which is effective against advanced cancer cells including glioma cells. How this agent and other related compounds interacts with ion channels in glioma cells is poorly understood. OXAL (100 µM suppressed the amplitude of whole-cell K+ currents (IK; and, either DCEBIO or ionomycin significantly reversed OXAL-mediated inhibition of IK in human 13-06-MG glioma cells. In OXAL-treated cells, TRAM-34 did not suppress IK amplitude in these cells. The intermediate-conductance Ca2+-activated K+ (IKCa channels subject to activation by DCEBIO and to inhibition by TRAM-34 or clotrimazole were functionally expressed in these cells. Unlike cisplatin, OXAL decreased the probability of IKCa-channel openings in a concentration-dependent manner with an IC50 value of 67 µM. No significant change in single-channel conductance of IKCa channels in the presence of OXAL was demonstrated. Neither large-conductance Ca2+-activated K+ channels nor inwardly rectifying K+ currents in these cells were affected in the presence of OXAL. OXAL also suppressed the proliferation and migration of 13-06-MG cells in a concentration- and time-dependent manner. OXAL reduced IKCa-channel activity in LoVo colorectal cancer cells. Taken together, the inhibition by OXAL of IKCa channels would conceivably be an important mechanism through which it acts on the functional activities of glioma cells occurring in vivo.

  4. Endogenous chloride channels of insect sf9 cells. Evidence for coordinated activity of small elementary channel units

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Gabriel, S. E.; Stutts, M. J.;

    1996-01-01

    The endogenous Cl- conductance of Spodoptera frugiperda (Sf9) cells was studied 20-35 h after plating out of either uninfected cells or cells infected by a baculovirus vector carrying the cloned beta-galactosidase gene (beta-Gal cells). With the cation Tris+ in the pipette and Na+ in the bath....../150) of approximately 3.5 pS and approximately 35 pS, respectively. All states reversed near the same membrane potential, and they exhibited similar halide ion selectivity, P1 > PCl approximately PBr. Accordingly, Cl- current amplitudes larger than current flow through the smallest channel unit resolved seem to result...... from simultaneous open/shut events of two or more channel units....

  5. The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hongkyun Kim

    2009-12-01

    Full Text Available Genetic defects in the dystrophin-associated protein complex (DAPC are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and contraction. Here we show that the C. elegans DAPC is essential for proper localization of SLO-1, the large conductance, voltage-, and calcium-dependent potassium (BK channel, which conducts a major outward rectifying current in muscle under the normal physiological condition. Through analysis of mutants with the same phenotype as the DAPC mutants, we identified the novel islo-1 gene that encodes a protein with two predicted transmembrane domains. We demonstrate that ISLO-1 acts as a novel adapter molecule that links the DAPC to SLO-1 in muscle. We show that a defect in either the DAPC or ISLO-1 disrupts normal SLO-1 localization in muscle. Consistent with observations that SLO-1 requires a high calcium concentration for full activation, we find that SLO-1 is localized near L-type calcium channels in muscle, thereby providing a mechanism coupling calcium influx with the outward rectifying current. Our results indicate that the DAPC modulates muscle excitability by localizing the SLO-1 channel to calcium-rich regions of C. elegans muscle.

  6. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Peel Samantha E

    2006-09-01

    Full Text Available Abstract Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC or receptor operated channels (ROC. Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70% of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60% or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.

  7. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins.

    Science.gov (United States)

    Spelbrink, Robert G; Dilmac, Nejmi; Allen, Aron; Smith, Thomas J; Shah, Dilip M; Hockerman, Gregory H

    2004-08-01

    Plant defensins are a family of small Cys-rich antifungal proteins that play important roles in plant defense against invading fungi. Structures of several plant defensins share a Cys-stabilized alpha/beta-motif. Structural determinants in plant defensins that govern their antifungal activity and the mechanisms by which they inhibit fungal growth remain unclear. Alfalfa (Medicago sativa) seed defensin, MsDef1, strongly inhibits the growth of Fusarium graminearum in vitro, and its antifungal activity is markedly reduced in the presence of Ca(2+). By contrast, MtDef2 from Medicago truncatula, which shares 65% amino acid sequence identity with MsDef1, lacks antifungal activity against F. graminearum. Characterization of the in vitro antifungal activity of the chimeras containing portions of the MsDef1 and MtDef2 proteins shows that the major determinants of antifungal activity reside in the carboxy-terminal region (amino acids 31-45) of MsDef1. We further define the active site by demonstrating that the Arg at position 38 of MsDef1 is critical for its antifungal activity. Furthermore, we have found for the first time, to our knowledge, that MsDef1 blocks the mammalian L-type Ca(2+) channel in a manner akin to a virally encoded and structurally unrelated antifungal toxin KP4 from Ustilago maydis, whereas structurally similar MtDef2 and the radish (Raphanus sativus) seed defensin Rs-AFP2 fail to block the L-type Ca(2+) channel. From these results, we speculate that the two unrelated antifungal proteins, KP4 and MsDef1, have evolutionarily converged upon the same molecular target, whereas the two structurally related antifungal plant defensins, MtDef2 and Rs-AFP2, have diverged to attack different targets in fungi. PMID:15299136

  8. Sun protection factor persistence during a day with physical activity and bathing

    DEFF Research Database (Denmark)

    Bodekaer, Mette; Faurschou, Annesofie; Philipsen, Peter Alshede;

    2008-01-01

    The persistence of sunscreens during a day with physical activity and bathing is often debated. We wished to examine the durability of the protection achieved by one sunscreen application.......The persistence of sunscreens during a day with physical activity and bathing is often debated. We wished to examine the durability of the protection achieved by one sunscreen application....

  9. Selective inhibition of phosphodiesterase 1 relaxes urinary bladder smooth muscle: role for ryanodine receptor-mediated BK channel activation

    OpenAIRE

    Xin, Wenkuan; Soder, Rupal P; Cheng, Qiuping; Eric S. Rovner; Petkov, Georgi V.

    2012-01-01

    The large conductance voltage- and Ca2+-activated K+ (BK) channel is a major regulator of detrusor smooth muscle (DSM) excitability and contractility. Recently, we showed that nonselective phosphodiesterase (PDE) inhibition reduces guinea pig DSM excitability and contractility by increasing BK channel activity. Here, we investigated how DSM excitability and contractility changes upon selective inhibition of PDE type 1 (PDE1) and the underlying cellular mechanism involving ryanodine receptors ...

  10. Comparative study between the protective effects of Saudi and Egyptian antivenoms, alone or in combination with ion channel modulators, against deleterious actions of Leiurus quinquestriatus scorpion venom.

    Science.gov (United States)

    Fatani, Amal J; Ahmed, Amany A E; Abdel-Halim, Rabab M; Abdoon, Nozha A; Darweesh, Amal Q

    2010-04-01

    This study compared efficacy of two polyvalent antivenoms (Saudi Arabian and Egyptian), against lethality and pathophysiological changes of Leiurus quinquestriatus quinquestriatus (LQQ) scorpion venom in mice. Additionally, the study examined whether treatment with selected ion channel modulators, lidocaine, nimodipine or amiodarone would be effective, alone or combined with the antivenoms. The protein concentration of the Saudi antivenom was 1/3 of Egyptian, indicating lesser immunogenicity, while both preservative contents were within limits. In immunodiffusion experiments, both exhibited prominent precipitin bands indicating high concentrations of specific antibodies. Neutralizing capacities (60-70 LD(50)) stated on labels were confirmed. Both antivenoms significantly (P < 0.001) prolonged survival time (from 26.9 +/- 1.18 min, 100% dead with venom to 224-300 min, 0-30% dead) of envenomed mice, whether injected iv before or 5 min after venom. Injection of either antivenom plus ion channel modulators, gave comparable results to that observed in mice treated with antivenoms alone. The Na(+) channel blocker lidocaine and the Ca(2+) channel blocker nimodipine on their own significantly protected the animals (P < 0.05), but to a lesser extent. The two antivenoms, significantly ameliorated the venom-evoked changes in serum LDH (P < 0.001) and CKMB (P < 0.01) plus cardiac TNFalpha and nitrate/nitrite levels (P < 0.001). When combined with lidocaine or nimodipine, the effects were not greater than antivenom alone. Moreover, the antivenoms ameliorated characteristic venom-evoked changes in the isolated perfused Langendorff hearts. Lidocaine and amiodarone were more effective than nimodipine. In Conclusion both Saudi and Egyptian antivenoms protected mice from the pathological and lethal effects of LQQ scorpion. Sodium and calcium channel blockers, lidocaine and nimodipine, may be useful when antivenoms are not available. PMID:19931297

  11. X-ray irradiation activates K+ channels via H2O2 signaling.

    Science.gov (United States)

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  12. Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals

    OpenAIRE

    NARAHASHI, Toshio; Zhao, Xilong; Ikeda, Tomoko; Salgado, Vincent L.; Yeh, Jay Z.

    2010-01-01

    Selectivity to insects over mammals is one of the important characteristics for a chemical to become a useful insecticide. Fipronil was found to block cockroach GABA receptors more potently than rat GABAA receptors. Furthermore, glutamate-activated chloride channels (GluCls), which are present in cockroaches but not in mammals, were very sensitive to the blocking action of fipronil. The IC50s of fipronil block were 30 nM in cockroach GABA receptors and 1600 nM in rat GABAA receptors. Moreover...

  13. Calcium channel blocker prevents stress-induced activation of renin and aldosterone in conscious pig

    International Nuclear Information System (INIS)

    A considerable amount of data suggest the involvement of calcium-mediated processes in the activation of the renin-angiotensin-aldosterone (RAA) cascade. To investigate the effect of calcium-channel inhibition on the RAA system, the authors studied 21 conscious pigs. Blood renin and aldosterone levels increased by subjecting animals to 24 hours of immobilization stress. Renin and aldosterone levels were repeatedly measured by radioimmunoassay in blood samples taken periodically over 24 hours from a chronically implanted arterial cannula. Pretreatment of the animals (N = 11) with nisoldipine, 2 x 20 mg p.o. daily for 2 days before and on the day of immobilization, transiently attenuated the stress-induced increase of plasma renin activity and completely prevented the rise of aldosterone, as compared to nontreated controls (N = 10). The finding that nisoldipine suppresses RAA activation induced by a nonpharmacologic stimulus in the conscious intact animal may have clinical implications

  14. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels.

    Science.gov (United States)

    Kapoor, Vikrant; Provost, Allison C; Agarwal, Prateek; Murthy, Venkatesh N

    2016-02-01

    The serotonergic raphe nuclei are involved in regulating brain states over timescales of minutes and hours. We examined more rapid effects of raphe activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. Brief stimulation of the raphe nuclei led to excitation of tufted cells at rest and potentiation of their odor responses. While mitral cells at rest were also excited by raphe activation, their odor responses were bidirectionally modulated, leading to improved pattern separation of odors. In vitro whole-cell recordings revealed that specific optogenetic activation of raphe axons affected bulbar neurons through dual release of serotonin and glutamate. Therefore, the raphe nuclei, in addition to their role in neuromodulation of brain states, are also involved in fast, sub-second top-down modulation similar to cortical feedback. This modulation can selectively and differentially sensitize or decorrelate distinct output channels. PMID:26752161

  15. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    International Nuclear Information System (INIS)

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy

  16. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Soumya C, E-mail: chidambaram.soumya@gmail.com [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Kannan, Anbarasu [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Gopal, Ashidha [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Devaraj, Niranjali [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Halagowder, Devaraj [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India)

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  17. Activation of KCNN3/SK3/K(Ca)2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia.

    Science.gov (United States)

    Dolga, Amalia M; Letsche, Till; Gold, Maike; Doti, Nunzianna; Bacher, Michael; Chiamvimonvat, Nipavan; Dodel, Richard; Culmsee, Carsten

    2012-12-01

    In neurons, small-conductance calcium-activated potassium (KCNN/SK/K(Ca)2) channels maintain calcium homeostasis after N-methyl-D-aspartate (NMDA) receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/K(Ca)2 channels in non-neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/K(Ca)2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation. We found that N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine (CyPPA), a positive pharmacological activator of KCNN/SK/K(Ca)2 channels, significantly reduced LPS-stimulated activation of microglia in a concentration-dependent manner. The general KCNN/SK/K(Ca)2 channel blocker apamin reverted these effects of CyPPA on microglial proliferation. Since calcium plays a central role in microglial activation, we further addressed whether KCNN/SK/K(Ca)2 channel activation affected the changes of intracellular calcium levels, [Ca(2+)](i), in microglial cells. Our data show that LPS-induced elevation of [Ca(2+)](i) was attenuated following activation of KCNN2/3/K(Ca)2.2/K(Ca)2.3 channels by CyPPA. Furthermore, CyPPA reduced downstream events including tumor necrosis factor alpha and interleukin 6 cytokine production and nitric oxide release in activated microglia. Further, we applied specific peptide inhibitors of the KCNN/SK/K(Ca)2 channel subtypes to identify which particular channel subtype mediated the observed anti-inflammatory effects. Only inhibitory peptides targeting KCNN3/SK3/K(Ca)2.3 channels, but not KCNN2/SK2/K(Ca)2.2 channel inhibition, reversed the CyPPA-effects on LPS-induced microglial proliferation. These findings revealed that KCNN3/SK3/K(Ca)2.3 channels can modulate the LPS-induced inflammatory responses in microglial cells. Thus, KCNN3/SK3/K(Ca)2.3 channels may serve as a therapeutic target for reducing microglial

  18. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling

    OpenAIRE

    Britschgi, Adrian; Bill, Anke; Brinkhaus, Heike; Rothwell, Christopher; Clay, Ieuan; Duss, Stephan; Rebhan, Michael; Raman, Pichai; Guy, Chantale T.; Wetzel, Kristie; George, Elizabeth; Popa, M. Oana; Lilley, Sarah; Choudhury, Hedaythul; Gosling, Martin

    2013-01-01

    The calcium-activated chloride channel anoctamin 1 (ANO1) is located within the 11q13 amplicon, one of the most frequently amplified chromosomal regions in human cancer, but its functional role in tumorigenesis has remained unclear. The 11q13 region is amplified in ∼15% of breast cancers. Whether ANO1 is amplified in breast tumors, the extent to which gene amplification contributes to ANO1 overexpression, and whether overexpression of ANO1 is important for tumor maintenance have remained unkn...

  19. Ca2+- and voltage-gated potassium (BK) channel activators in the 5β-cholanic acid-3α-ol analogue series with modifications in lateral chain

    OpenAIRE

    Bukiya, Anna N.; Patil, Shivaputra; Li, Wei; Miller, Duane; Dopico, Alex M.

    2012-01-01

    Large conductance, calcium- and voltage-gated potassium (BK) channels regulate various physiological processes and represent an attractive target for drug discovery. Numerous BK channel activators are available. However, these agents usually interact with the ubiquitously distributed channel-forming subunit and thus cannot selectively target a particular tissue. Here, we performed structure-activity relationship study of lithocholic acid (LCA), a cholane that activates BK channels via the acc...

  20. Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury.

    Science.gov (United States)

    Hecquet, Claudie M; Malik, Asrar B

    2009-04-01

    The transient receptor potential (melastatin) 2 (TRPM2), is an oxidant-activated non-selective cation channel that is widely expressed in mammalian tissues including the vascular endothelium. Oxidative stress, through the generation of oxygen metabolites including H(2)O(2), stimulates intracellular ADP-ribose formation which, in turn, opens TRPM2 channels. These channels act as an endogenous redox sensor for mediating oxidative stress/ROS-induced Ca(2+) entry and the subsequent specific Ca(2+)-dependent cellular reactions such as endothelial hyperpermeability and apoptosis. This review summarizes recent findings on the mechanism by which oxidants induce TRPM2 activation, the role of these channels in the signalling vascular endothelial dysfunctions, and the modulation of oxidant-induced TRPM2 activation by PKCalpha and phospho-tyrosine phosphates L1. PMID:19350103

  1. ROLE OF H2O2-ACTIVATED TRPM2 CALCIUM CHANNEL IN OXIDANT-INDUCED ENDOTHELIAL INJURY

    Science.gov (United States)

    Hecquet, Claudie M.; Malik, Asrar B.

    2013-01-01

    The transient receptor potential (melastatin) 2 (TRPM2), is an oxidant-activated nonselective cation channel, that is widely expressed in mammalian tissues including the vascular endothelium. Oxidative stress, through the generation of oxygen metabolites including H2O2, stimulates intracellular ADP-ribose formation which, in turn, opens TRPM2 channels. These channels act as an endogenous redox sensor for mediating oxidative stress/ROS-induced Ca2+ entry and the subsequent specific Ca2+-dependent cellular reactions such as endothelial hyper-permeability and apoptosis. This review summarizes recent findings on the mechanism by which oxidants induce TRPM2 activation, the role of these channels in the signaling vascular endothelial dysfunctions, and the modulation of oxidant-induced TRPM2 activation by PKCα and phospho-tyrosine phosphates L1. PMID:19350103

  2. A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing.

    Science.gov (United States)

    Linder, B; Raschke, K

    1992-11-16

    Slowly activating anion channel currents were discovered at micromolar 'cytoplasmic' Ca2+ during patch-clamp measurements on guard-cell protoplasts of Vicia faba and Xanthium strumarium. They activated at potentials as low as -200 mV, with time constants between 5 and 60 s, and no inactivation. The broad voltage dependence exhibited a current maximum near -40 mV. The single-channel open time was in the order of seconds, and the unitary conductance was 33 ps, similar to that of the already described 'quick' anion channel of guard cells. Because of its activity at low potentials, the slow anion channel may be essential for the depolarization of the plasmalemma that is required for salt efflux during stomatal closing. PMID:1385219

  3. Prokineticin 2 potentiates acid-sensing ion channel activity in rat dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Qiu Chun-Yu

    2012-05-01

    Full Text Available Abstract Background Prokineticin 2 (PK2 is a secreted protein and causes potent hyperalgesia in vivo, and is therefore considered to be a new pronociceptive mediator. However, the molecular targets responsible for the pronociceptive effects of PK2 are still poorly understood. Here, we have found that PK2 potentiates the activity of acid-sensing ion channels in the primary sensory neurons. Methods In the present study, experiments were performed on neurons freshly isolated from rat dorsal root ganglion by using whole-cell patch clamp and voltage-clamp recording techniques. Results PK2 dose-dependently enhanced proton-gated currents with an EC50 of 0.22 ± 0.06 nM. PK2 shifted the proton concentration-response curve upwards, with a 1.81 ± 0.11 fold increase of the maximal current response. PK2 enhancing effect on proton-gated currents was completely blocked by PK2 receptor antagonist. The potentiation was also abolished by intracellular dialysis of GF109203X, a protein kinase C inhibitor, or FSC-231, a protein interacting with C-kinase 1 inhibitor. Moreover, PK2 enhanced the acid-evoked membrane excitability of rat dorsal root ganglion neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, PK2 exacerbated nociceptive responses to the injection of acetic acid in rats. Conclusion These results suggest that PK2 increases the activity of acid-sensing ion channels via the PK2 receptor and protein kinase C-dependent signal pathways in rat primary sensory neurons. Our findings support that PK2 is a proalgesic factor and its signaling likely contributes to acidosis-evoked pain by sensitizing acid-sensing ion channels.

  4. Controllable liquid colour-changing lenses with microfluidic channels for vision protection, camouflage and optical filtering based on soft lithography fabrication.

    Science.gov (United States)

    Zhang, Min; Li, Songjing

    2016-01-01

    In this work, liquid colour-changing lenses for vision protection, camouflage and optical filtering are developed by circulating colour liquids through microfluidic channels on the lenses manually. Soft lithography technology is applied to fabricate the silicone liquid colour-changing layers with microfluidic channels on the lenses instead of mechanical machining. To increase the hardness and abrasion resistance of the silicone colour-changing layers on the lenses, proper fabrication parameters such as 6:1 (mass ration) mixing proportion and 100 °C curing temperature for 2 h are approved for better soft lithography process of the lenses. Meanwhile, a new surface treatment for the irreversible bonding of silicone colour-changing layer with optical resin (CR39) substrate lens by using 5 % (volume ratio) 3-Aminopropyltriethoxysilane solution is proposed. Vision protection, camouflage and optical filtering functions of the lenses are investigated with different designs of the channels and multi-layer structures. Each application can not only well achieve their functional demands, but also shows the advantages of functional flexibility, rapid prototyping and good controllability compared with traditional ways. Besides optometry, some other designs and applications of the lenses are proposed for potential utility in the future. PMID:27247877

  5. L-type voltage-operated calcium channels contribute to astrocyte activation In vitro.

    Science.gov (United States)

    Cheli, Veronica T; Santiago González, Diara A; Smith, Jessica; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2016-08-01

    We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415. PMID:27247164

  6. Hypotonicity-induced TRPV4 function in renal collecting duct cells: modulation by progressive cross-talk with Ca2+-activated K+ channels

    Science.gov (United States)

    Jin, Min; Berrout, Jonathan; Chen, Ling; O’Neil, Roger G.

    2011-01-01

    The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca2+-activated K+ channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca2+-activated K+ channels, the small conductance SK3 (KCa2.3) channel and large conductance BKα channel (KCa1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K+ channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca2+ influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca2+ influx on activation of both K+ channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca2+ influx would first activate the highly Ca2+-sensitive SK3 channel which, in turn, would lead to enhanced Ca2+ influx and activation of the less Ca2+-sensitive BK channel. PMID:22204737

  7. Protective Activity Against Oxidative Stress of Plants Indigenous to Korea

    International Nuclear Information System (INIS)

    We have screened the cytoprotective effect against Ha, Oa, and γ-ray radiation induced oxidative stress from 32 Korean plants. Betula ermani var, saitoana (caulis, leaves), Rosa wichuraiana (caulis), Sorbus commixta (caulis), Weigela florida (leaves), Cirsium rhinoceros (whole plant), and Viburnum erosum (caulis) were found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and intracellular reactive oxygen species (ROS). As a result, extracts of six plants reduced cell death of Chinese hamster lung fibroblast (V79-4) cells induced by Ha,Oa, treatment. In addition, these extracts protected cell death of V79-4 cells damaged by γ-ray radiation. In addition, these extracts scavenged ROS generated by radiation. Taken together, the results suggest that Betula ermani var. saitoana, Rosa wichuraiana, Sorbus commixta, Weigela florida, Cirsium rhinoceros, and Viburnum erosum protect V79-4 cells against oxidative damage by radiation through scavenging ROS

  8. Rhamnolipids as active protective agents for microorganisms against toxic substances

    OpenAIRE

    Marta Woźniak; Roman Marecik; Łukasz Ławniczak; Łukasz Chrzanowski

    2012-01-01

    The presence of microbial biosurfactants decreases the toxicity of chlorophenols towards Pseudomonas putida 2A cells. The rhamnolipid-originating micelles selectively entrapped chlorophenol molecules, which resulted in their lower bioavailability to microbial cells. It was observed that the effective concentrations causing 50% growth inhibition increased by 0.5, 0.35 and 0.15 for phenol, 4-chlorophenol and 2.4-dichlorophenol, accordingly. The application of surfactants as protective agents...

  9. The current activities of the international commission on radiological protection

    International Nuclear Information System (INIS)

    ICRP was established in 1928 as the International X-ray and Radium Protection Committee. In 1950 the name was changed to reflect the wider scope of radiological protection. The present memberships of the Main Commission and its four Committees serve until July 2001. The four Committees are concerned with: (a) Biological Effects, Chaired by Roger Cox (UK); (b) Dosimetric Conversion Communicants, Chaired by Alexander Kaul (Germany); (c) Protection in Medicine, with Fred Mettler (USA) chairing; and (d) Application of the Commission's Recommendations, Chaired by Bert Winkler (South Africa). An outline of the progress of the four Committees is given here which represents the present priorities that ICRP has set during its four-year term. This will cover the recent publications approved by the Commission, but not yet published, together with reports on the progress of the Task Groups of each Committee. The way by which the Commission works is that, when any Committee has identified a subject on which it wishes to develop guidance, it proposes that the Main Commission appoints a Task Group. This will be Chaired by a Member of the Committee that proposed it, and composed of Members most of whom are likely not to be members of the Committee. The work of the Task Groups thus gives an indication of the topics which the Main Commission and the Committees consider to be the most important over their term of office. In addition, the Committees have working Parties composed solely of members of that Committee and which review topics that may eventually be proposed as Task Groups. The programmes of the Working Parties will also be described. The Main Commission itself is beginning to think about developing a position on the protection of the environment from radiation as well as consolidating its recommendations to incorporate policy points that have been promulgated since Publication 60. (author)

  10. Studies of the voltage-sensitive calcium channels in smooth muscle, neuronal, and cardiac tissues using 1,4-dihydropyridine calcium channel antagonists and activators

    International Nuclear Information System (INIS)

    This study describes the investigation of the voltage-sensitive Ca+ channels in vascular and intestinal smooth muscle, chick neural retina cells and neonatal rat cardiac myocytes using 1,4-dihydropyridine Ca2+ channel antagonists and activators. In rat aorta, the tumor promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) produced Ca2+-dependent contractile responses. The responses to TPA were blocked by the Ca2+ channel antagonists. The effects of the enantiomers of Bay K 8644 and 202-791 were characterized in both rat tail artery and guinea pig ileal longitudinal smooth muscle preparations using pharmacologic and radioligand binding assays. The (S)-enantiomers induced contraction and potentiated the responses to K+ depolarization. The (R)-enantiomers inhibited the tension responses to K+. All the enantiomers inhibited specific [3H]nitrendipine binding. The pharmacologic activities of both activator and antagonist ligands correlated on a 1:1 basis with the binding affinities. In chick neural retina cells the (S)-enantiomers of Bay K 8644 and 202-791 enhanced Ca2+ influx. In contrast, the (R)-enantiomers inhibited Ca2+ influx. The enantiomers of Bay K 8644 and 202-791 inhibited specific [3H]PN 200-110 binding competitively. Binding of 1,4-dihydropyridines was characterized in neonatal rat heart cells

  11. Transport of a dilute active suspension in pressure-driven channel flow

    CERN Document Server

    Ezhilan, Barath

    2015-01-01

    Confined suspensions of active particles show peculiar dynamics characterized by wall accumulation, as well as upstream swimming, centerline depletion and shear-trapping when a pressure-driven flow is imposed. We use theory and numerical simulations to investigate the effects of confinement and non-uniform shear on the dynamics of a dilute suspension of Brownian active swimmers by incorporating a detailed treatment of boundary conditions within a simple kinetic model where the configuration of the suspension is described using a conservation equation for the probability distribution function of particle positions and orientations, and where particle-particle and particle-wall hydrodynamic interactions are neglected. Based on this model, we first investigate the effects of confinement in the absence of flow, in which case the dynamics is governed by a swimming Peclet number, or ratio of the persistence length of particle trajectories over the channel width, and a second swimmer-specific parameter whose inverse...

  12. Structural insights into the mechanism of activation of the TRPV1 channel by a membrane-bound tarantula toxin.

    Science.gov (United States)

    Bae, Chanhyung; Anselmi, Claudio; Kalia, Jeet; Jara-Oseguera, Andres; Schwieters, Charles D; Krepkiy, Dmitriy; Won Lee, Chul; Kim, Eun-Hee; Kim, Jae Il; Faraldo-Gómez, José D; Swartz, Kenton J

    2016-01-01

    Venom toxins are invaluable tools for exploring the structure and mechanisms of ion channels. Here, we solve the structure of double-knot toxin (DkTx), a tarantula toxin that activates the heat-activated TRPV1 channel. We also provide improved structures of TRPV1 with and without the toxin bound, and investigate the interactions of DkTx with the channel and membranes. We find that DkTx binds to the outer edge of the external pore of TRPV1 in a counterclockwise configuration, using a limited protein-protein interface and inserting hydrophobic residues into the bilayer. We also show that DkTx partitions naturally into membranes, with the two lobes exhibiting opposing energetics for membrane partitioning and channel activation. Finally, we find that the toxin disrupts a cluster of hydrophobic residues behind the selectivity filter that are critical for channel activation. Collectively, our findings reveal a novel mode of toxin-channel recognition that has important implications for the mechanism of thermosensation. PMID:26880553

  13. Expression of stretch-activated two-pore potassium channels in human myometrium in pregnancy and labor.

    Directory of Open Access Journals (Sweden)

    Iain L O Buxton

    Full Text Available BACKGROUND: We tested the hypothesis that the stretch-activated, four-transmembrane domain, two pore potassium channels (K2P, TREK-1 and TRAAK are gestationally-regulated in human myometrium and contribute to uterine relaxation during pregnancy until labor. METHODOLOGY: We determined the gene and protein expression of K2P channels in non-pregnant, pregnant term and preterm laboring myometrium. We employed both molecular biological and functional studies of K2P channels in myometrial samples taken from women undergoing cesarean delivery of a fetus. PRINCIPAL FINDINGS: TREK-1, but not TREK-2, channels are expressed in human myometrium and significantly up-regulated during pregnancy. Down-regulation of TREK-1 message was seen by Q-PCR in laboring tissues consistent with a role for TREK-1 in maintaining uterine quiescence prior to labor. The TRAAK channel was unregulated in the same women. Blockade of stretch-activated channels with a channel non-specific tarantula toxin (GsMTx-4 or the more specific TREK-1 antagonist L-methionine ethyl ester altered contractile frequency in a dose-dependent manner in pregnant myometrium. Arachidonic acid treatment lowered contractile tension an effect blocked by fluphenazine. Functional studies are consistent with a role for TREK-1 in uterine quiescence. CONCLUSIONS: We provide evidence supporting a role for TREK-1 in contributing to uterine quiescence during gestation and hypothesize that dysregulation of this mechanism may underlie certain cases of spontaneous pre-term birth.

  14. Abnormal activation of potassium channels in aortic smooth muscle of rats with peritonitis-induced septic shock.

    Science.gov (United States)

    Kuo, Jiunn-Horng; Chen, Shiu-Jen; Shih, Chih-Chin; Lue, Wei-Ming; Wu, Chin-Chen

    2009-07-01

    This study was conducted to examine the role of membrane hyperpolarization in mediating vascular hyporeactivity induced by cecal ligation and puncture (CLP) in endothelial-denuded strips of rat thoracic aorta ex vivo. The CLP for 18 h elicited a significant fall of blood pressure and a severe vascular hyporeactivity to norepinephrine as seen in severe sepsis. At the end of the in vivo experiments, thoracic aortas were removed from both CLP-treated and control rats. After removal of the endothelium, aortic segments were mounted in myographs for the recording of isometric tension and smooth muscle membrane potential. The membrane potential recording showed that a hyperpolarization was observed in the CLP-treated rats when compared with the control rats. This hyperpolarization was reversed by iberiotoxin (a large-conductance Ca2+-activated K+ channel blocker), 4-aminopyridine (a voltage-dependent K+ channel blocker), barium (an inward rectifier K+ channels blocker), N-(1-adamantyl)-N'-cyclohexyl-4-morpholinecarboxamidine hydrochloride (a pore-forming blocker of adenosine triphosphate (ATP)-sensitive K+ channels [KATP]), or methylene blue (a nonspecific guanylyl cyclase [GC] inhibitor). However, this hyperpolarization was not significantly affected by apamin (a small-conductance Ca2+-activated K+ channel blocker), glibenclamide (a sulfonylurea blocker of KATP), N(omega)-nitro-L-arginine methyl ester (a NOS inhibitor), or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an NO-sensitive GC inhibitor). In addition, the basal tension of the tissues obtained from CLP rats was increased simultaneously, whereas membrane potential was reversed. In contrast, none of these inhibitors had significant effects on the membrane potential or the basal tension in control tissues. Thus, we provide electrophysiological and functional evidence demonstrating that an abnormal activation of K+ channels in vascular smooth muscle in animals with septic shock induced by CLP. Our observations

  15. International activities in environmental radiation protection - a radiation biologists perspective

    International Nuclear Information System (INIS)

    The evolving integration of environmental impact assessments into the regulatory process together with Society's concern about environmental protection have emphasised the importance of developing a common international approach that demonstrates protection of the environment from ionising radiation. ICRP has expressed their wish to play a key role, both in advising and in providing the basic interpretation of existing scientific knowledge for such an approach. The European Union launched a research project three years ago, aiming at developing a methodology to be used for environmental risk assessments for ionising radiation (Framework for ASSessment of Environmental impacT). The main objective of FASSET has been to produce a system for the environmental risk assessments which links together exposures, doses and effects. This is accomplished by use of reference organisms including radioecological and dosimetric modelling. Within FASSET a database on biological effects was also set up including more than thousand references and ca 25 000 data entries. Most of the information in the database, however, originates from studies on acute exposures while the focus for non-human organisms must be on chronic exposures to long-lived radionuclides in the environment. It therefore seems necessary to perform several extrapolation tasks in order to characterize the risks. The heterogeneity of exposure conditions in the environment along with non-uniform deliverance of doses of main practical relevance must be considered. This will have great impact on the final biological effects. Applications of weighting factors may be anticipated which are already an established method in radiation protection dosimetry. A summary of the work that has been completed to date in FASSET and ICRP will be presented. Some aspects will be further given on the RBE key issues

  16. Chloroquine stimulates Cl- secretion by Ca2+ activated Cl- channels in rat ileum.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chloroquine (CQ, a bitter tasting drug widely used in treatment of malaria, is associated gastrointestinal side effects including nausea or diarrhea. In the present study, we investigated the effect of CQ on electrolyte transport in rat ileum using the Ussing chamber technique. The results showed that CQ evoked an increase in short circuit current (ISC in rat ileum at lower concentration (≤5×10(-4 M but induced a decrease at higher concentrations (≥10(-3 M. These responses were not affected by tetrodotoxin (TTX. Other bitter compounds, such as denatoniumbenzoate and quinine, exhibited similar effects. CQ-evoked increase in ISC was partly reduced by amiloride(10(-4 M, a blocker of epithelial Na(+ channels. Furosemide (10(-4 M, an inhibitor of Na(+-K(+-2Cl(- co-transporter, also inhibited the increased ISC response to CQ, whereas another Cl(- channel inhibitor, CFTR(inh-172(10(-5 M, had no effect. Intriguingly, CQ-evoked increases were almost completely abolished by niflumic acid (10(-4 M, a relatively specific Ca(2+-activated Cl(- channel (CaCC inhibitor. Furthermore, other CaCC inhibitors, such as DIDS and NPPB, also exhibited similar effects. CQ-induced increases in ISC were also abolished by thapsigargin(10(-6 M, a Ca(2+ pump inhibitor and in the absence of either Cl(- or Ca(2+ from bathing solutions. Further studies demonstrated that T2R and CaCC-TMEM16A were colocalized in small intestinal epithelial cells and the T2R agonist CQ evoked an increase of intracelluar Ca(2+ in small intestinal epithelial cells. Taken together, these results demonstrate that CQ induces Cl(- secretion in rat ileum through CaCC at low concentrations, suggesting a novel explanation for CQ-associated gastrointestinal side-effects during the treatment of malaria.

  17. Functional remodeling of Ca2+-activated Cl- channel in pacing induced canine failing heart

    Institute of Scientific and Technical Information of China (English)

    Ning Li; Kejuan Ma; Siyong Teng; Jonathan C.Makielski; Jielin Pu

    2008-01-01

    Objective To determine whether Ca2+ activated Cl- current(Icl(Ca)) contributes to the functional remodeling of the failing heart.Methods Whole cell patch-clamp recording technique was employed to record the Icl(Ca) in cardiac myocytes enzymatically isolatedfrom rapidly pacing induced canine failing hearts at room temperature and compared that of the normal hearts (Nor).Results Thecurrent density of DIDS(200M)sensitive Icl(Ca) induced by intracellular Ca2+ release trigged by L-type Ca2+ current(Ica,L)wassignificantly decreased in heart failare(HE)cells compared to Nor cells.At membrane voltage of 20mV,the Icl(Ca) density was 3.02±0.54 pA/pF in Nor(n=6)vs.1.31±0.25 pA/pF in HF(n=8)cells,(P<0.01),while the averaged Ica,L density did not show differencebetween two groups.The time constant of current decay of Icl(Ca) was similar in both types of cells.On the other hand,in intra cellularCa2+ clamped mode,where the[Ca2+];was maintained at 100nmol/L,Icl(Ca) density be increased significantly in HF cells when themembrane voltage at+30mV or higher.Conclusions Our results suggest that Icl(Ca) density was decreased in pacing induced failingheart but the channel function be enhanced.Impaired Ca2+ handing in HF cells rather than reduced,Icl(Ca) channel function itself may havecaused this abnormality.The Icl(Ca) density reduction might contribute to the prolongation of action potential in failing heart.The Icl(Ca)channel function up-rugulation is likely to cause cardiac arrhythmia by inducing a delayed after depolarization,when Ca2+ overloadoccurred in diastolic failing heart cells.

  18. New insights into the activation mechanism of store-operated calcium channels:roles of STIM and Orai

    Institute of Scientific and Technical Information of China (English)

    Rui-wei GUO; Lan HUANG

    2008-01-01

    The activation of Ca2+ entry through store-operated channels by agonists that deplete Ca2+ from the endoplasmic reticulum (ER)is a ubiquitous signaling mechanism,the molecular basis of which has remained elusive for the past two decades.Store-operated Ca2+-release-activated Ca2+(CRAC)channels constitute the sole pathway for Ca2+ entry following antigen-receptor engagement.In a set of breakthrough studies over the past two years,stromal interaction molecule l(STIM1,tbe ER Ca2+ sensor) and Orail(a pore-forming subunit of the CRAC channel)have been identified.Here we review these recent studies and the insights they provide into the mechanism of store-operated Ca2+ channels(SOCCs).

  19. Rhamnolipids as active protective agents for microorganisms against toxic substances

    Directory of Open Access Journals (Sweden)

    Marta Woźniak

    2012-12-01

    Full Text Available The presence of microbial biosurfactants decreases the toxicity of chlorophenols towards Pseudomonas putida 2A cells. The rhamnolipid-originating micelles selectively entrapped chlorophenol molecules, which resulted in their lower bioavailability to microbial cells. It was observed that the effective concentrations causing 50% growth inhibition increased by 0.5, 0.35 and 0.15 for phenol, 4-chlorophenol and 2.4-dichlorophenol, accordingly. The application of surfactants as protective agents for microorganisms brings about new possibilities of using this phenomenon in bioremediation techniques.

  20. Organization activities for protection of the railway from exogenous processes

    Directory of Open Access Journals (Sweden)

    Makhamadjan MIRAKHMEDOV

    2014-06-01

    Full Text Available The paper focuses on the reduction of negative effects on the railway exogenous processes (sand bars, landslides, etc.. Proposed to introduce a system of design, construction and operation of natural and technical objects set of organizational and technical measures, consisting of techniques: the choice of method, to map the distribution of exogenous events, the development of a program of measures for the protection and the optimization of the work program, assess the quality and effectiveness. Methodological elements are developed by the author of the complex method of risk assessment exogenous expression and scale of priorities of road elements of the defense.

  1. Activated Natural Zeolites on Textiles: Protection from Radioactive Contamination

    Science.gov (United States)

    Grancaric, A. M.; Prlic, I.; Tarbuk, A.; Marovic, G.

    Clothing designed to protect against radioactive contamination was based on a simple principle. It was important not to inhale contaminated dust and air and to ensure that contaminated particles could not reach the skin. Therefore, the density of the textile was crucial. New developments, keeping in mind that textile should be lightweight, are focused on textiles which can chemically bind the contamination particles and not allow them either to diffuse to the skin or spread back into the environment. A great success would be if the clothing were made reusable (e.g., for use in the space station). Therefore, new methods (or chemical preparations) are being proposed for developing intelligent textiles.

  2. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis

    DEFF Research Database (Denmark)

    Köhler, Ralf; Wulff, Heike; Eichler, Ines;

    2003-01-01

    BACKGROUND: Angioplasty stimulates proliferation and migration of vascular smooth muscle cells (VSMC), leading to neointimal thickening and vascular restenosis. In a rat model of balloon catheter injury (BCI), we investigated whether alterations in expression of Ca2+-activated K+ channels (KCa......) channels. Two weeks after BCI, expression of BKCa was significantly reduced in neointimal VSMC, whereas expression of intermediate-conductance KCa (IKCa1) channels was upregulated. In the aortic VSMC cell line, A7r5 epidermal growth factor (EGF) induced IKCa1 upregulation and EGF-stimulated proliferation...

  3. Regulation of substantia nigra pars reticulata GABAergic neuron activity by hydrogen peroxide via flufenamic acid-sensitive channels and KATP channels

    Directory of Open Access Journals (Sweden)

    Christian R Lee

    2011-04-01

    Full Text Available Substantia nigra pars reticulata (SNr GABAergic neurons are key output neurons of the basal ganglia. Given the role of these neurons in motor control, it is important to understand factors that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H2O2, a reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine how H2O2 affects the activity of these neurons and to explore the classes of ion channels underlying those effects. Elevation of H2O2 levels caused an increase in the spontaneous firing rate of SNr GABAergic neurons, whether by application of exogenous H2O2 or amplification of endogenous H2O2 through inhibition of glutathione peroxidase with mercaptosuccinate. This effect was reversed by flufenamic acid, implicating transient receptor potential (TRP channels. Conversely, depletion of endogenous H2O2 by catalase, a peroxidase enzyme, decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic control of firing rate by H2O2. Elevation of H2O2 in the presence of flufenamic acid revealed an inhibition of tonic firing that was prevented by blockade of ATP-sensitive K+ (KATP channels with glibenclamide. In contrast to guinea-pig SNr neurons, the dominant effect of H2O2 elevation in mouse SNr GABAergic neurons was hyperpolarization, indicating a species difference in H2O2-dependent regulation. Thus, H2O2 is an endogenous modulator of SNr GABAergic neurons, acting primarily through presumed TRP channels in guinea pig, with additional modulation via KATP channels to regulate SNr output.

  4. A 160 μW 8-Channel Active Electrode System for EEG Monitoring.

    Science.gov (United States)

    Jiawei Xu; Yazicioglu, R F; Grundlehner, B; Harpe, P; Makinwa, K A A; Van Hoof, C

    2011-12-01

    This paper presents an active electrode system for gel-free biopotential EEG signal acquisition. The system consists of front-end chopper amplifiers and a back-end common-mode feedback (CMFB) circuit. The front-end AC-coupled chopper amplifier employs input impedance boosting and digitally-assisted offset trimming. The former increases the input impedance of the active electrode to 2 GΩ at 1 Hz and the latter limits the chopping induced output ripple and residual offset to 2 mV and 20 mV, respectively. Thanks to chopper stabilization, the active electrode achieves 0.8 μVrms (0.5-100 Hz) input referred noise. The use of a back-end CMFB circuit further improves the CMRR of the active electrode readout to 82 dB at 50 Hz. Both front-end and back-end circuits are implemented in a 0.18 μm CMOS process and the total current consumption of an 8-channel readout system is 88 μA from 1.8 V supply. EEG measurements using the proposed active electrode system demonstrate its benefits compared to passive electrode systems, namely reduced sensitivity to cable motion artifacts and mains interference. PMID:23852553

  5. Intercellular Odontoblast Communication via ATP Mediated by Pannexin-1 Channel and Phospholipase C-coupled Receptor Activation

    OpenAIRE

    Sato, Masaki; Furuya, Tadashi; Kimura, Maki; Kojima, Yuki; Tazaki, Masakazu; Sato, Toru; Shibukawa, Yoshiyuki

    2015-01-01

    Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected from rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate ...

  6. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity

    OpenAIRE

    Anderson, U. A.; Carson, C.; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K. D.

    2013-01-01

    Background and Purpose: The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach: KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activ...

  7. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction

    OpenAIRE

    Padula, Audrey E.; Griffin, William C.; Lopez, Marcelo F; Nimitvilai, Sudarat; Cannady, Reginald; McGuier, Natalie S.; Elissa J Chesler; Miles, Michael F.; Robert W Williams; Randall, Patrick K.; Woodward, John J.; Howard C Becker; Patrick J Mulholland

    2015-01-01

    Small-conductance Ca2+-activated K+ (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kc...

  8. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    OpenAIRE

    2007-01-01

    Background The blood-brain tumor barrier (BTB) impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa) channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB perm...

  9. Activities on calibration of radiation protection instruments in Indonesia

    International Nuclear Information System (INIS)

    As the use of the ionizing radiation emitted by radionuclides or produced by modern machines in Indonesia has increased significantly in the past two decades, the demand for radiation protection measures has also grown up very rapidly. In the mind of Indonesian people, ionizing radiation is always associated with atomic bombs. Indonesian government has set up National Atomic Energy Agency (BATAN) through the Act No. 31/1964. The BATAN has responsibility in the research and development, implementation and inspection of the safe use of ionizing radiation for peaceful purposes, and always put a great concern on radiation protection matter. The Center for Standardization and Radiation Safety Research (CSRSR) has been founded to implement research and services in the fields of radiation safety, standardization, dosimetry, radiation health, as well as the application of nuclear techniques to medicine. In order to provide the national reference in terms of radiation dosimetry and calibration, the Secondary Standard Dosimetry Laboratory was completely set up in Jakarta by 1984. As available facilities, radiation instruments and radiation sources are described. Calibration and personal monitoring services are reported. (K.I.)

  10. Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity.

    Science.gov (United States)

    Fatehi, Mohammad; Carter, Chris R J; Youssef, Nermeen; Hunter, Beth E; Holt, Andrew; Light, Peter E

    2015-01-01

    ATP-sensitive K(+) (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but the molecular mechanisms remain to be determined. Therefore, we hypothesized that residue-residue interactions between 1369 and 1372, predicted from in silico modelling, influence MgATPase activity, as well as sensitivity to the clinically used drug diazoxide that is known to increase MgATPase activity. We employed a point mutagenic approach with patch-clamp and direct biochemical assays to determine interaction between residues 1369 and 1372. Mutations in residues 1369 and 1372 predicted to decrease the residue interaction elicited a significant increase in MgATPase activity, whereas mutations predicted to possess similar residue interactions to wild-type (WT) channels elicited no alterations in MgATPase activity. In contrast, mutations that were predicted to increase residue interactions resulted in significant decreases in MgATPase activity. We also determined that a single S1369K substitution in SUR1 caused MgATPase activity and diazoxide pharmacological profiles to resemble those of channels containing the SUR2A subunit isoform. Our results provide evidence, at the single residue level, for a molecular mechanism that may underlie the association of the S1369A variant with type 2 diabetes. We also show a single amino acid difference can account for the markedly different diazoxide sensitivities between channels containing either the SUR1 or SUR2A subunit isoforms. PMID:26181369

  11. Pentachlorophenol-Induced Cytotoxic, Mitogenic, and Endocrine-Disrupting Activities in Channel Catfish, Ictalurus punctatus

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2004-09-01

    Full Text Available Pentachlorophenol (PCP is an organochlorine compound that has been widely used as a biocide in several industrial, agricultural, and domestic applications. Although it has been shown to induce systemic toxicity and carcinogenesis in several experimental studies, the literature is scarce regarding its toxic mechanisms of action at the cellular and molecular levels. Recent investigations in our laboratory have shown that PCP induces cytotoxicity and transcriptionally activates stress genes in human liver carcinoma (HepG2 cells [1]. In this research, we hypothesize that environmental exposure to PCP may trigger cytotoxic, mitogenic, and endocrine-disrupting activities in aquatic organisms including fish. To test this hypothesis, we carried out in vitro cultures of male channel catfish hepatocytes, and performed the fluorescein diacetate assay (FDA to assess for cell viability, and the Western Blot analysis to assess for vitellogenin expression following exposure to PCP. Data obtained from FDA experiments indicated a strong dose-response relationship with respect to PCP cytotoxicity. Upon 48 hrs of exposure, the chemical dose required to cause 50% reduction in cell viability (LD50 was computed to be 1,987.0 + 9.6 μg PCP/mL. The NOAEL and LOAEL were 62.5 + 10.3 μg PCP/mL and 125.0+15.2 μg PCP/mL, respectively. At lower levels of exposure, PCP was found to be mitogenic, showing a strong dose- and time-dependent response with regard to cell proliferation. Western Blot analysis demonstrated the potential of PCP to cause endocrine-disrupting activity, as evidenced by the up regulation of the 125-kDa vitellogenin protein the hepatocytes of male channel catfish.

  12. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Directory of Open Access Journals (Sweden)

    Petter Storm

    Full Text Available Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2, preventing the changes in free cellular Na(+ and K(+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  13. Ligand determinants of fatty acid activation of the pronociceptive ion channel TRPA1

    Directory of Open Access Journals (Sweden)

    William John Redmond

    2014-01-01

    Full Text Available Background and purpose. Arachidonic acid (AA and its derivatives are important modulators of cellular signalling. The transient receptor potential cation channel subfamily A, member 1 (TRPA1 is a cation channel with important functions in mediating cellular responses to noxious stimuli and inflammation. There is limited information about the interactions between AA itself and TRPA1, so we investigated the effects of AA and key ethanolamide and amino acid/neurotransmitter derivatives of AA on hTRPA1. Experimental approach. HEK 293 cells expressing hTRPA1 were studied by measuring changes in intracellular calcium ([Ca]i with a fluorescent dye and by standard whole cell patch clamp recordings. Key results. AA (30 μM increased fluorescence in hTRPA1 expressing cells by 370% (notional EC50 13 μM. The covalent TRPA1 agonist cinnamaldehyde (300 μM increased fluorescence by 430% (EC50, 11 μM. Anandamide (230% and N-arachidonoyl tyrosine (170% substantially activated hTRPA1 at 30 μM, however, N-arachidonoyl conjugates of glycine and taurine were less effective while N-acyl conjugates of 5-HT did not affect hTRPA1. Changing the acyl chain length or the number and position of double bonds reduced fatty acid efficacy at hTRPA1. Mutant hTRPA1 (Cys621, Cys641 and Cys665 changed to Ser could be activated by AA (100 μM, 40% of wild type but not by cinnamaldehyde (300 μM. Conclusions and implications. AA is a more potent activator of TRPA1 than its ethanolamide or amino acid/neurotransmitter derivatives and acts via a mechanism distinct from that of cinnamaldehyde, further underscoring the likelyhood of multiple pharmacologically exploitable sites on hTRPA1.

  14. Active lifestyle protects against incident low back pain in seniors

    DEFF Research Database (Denmark)

    Hartvigsen, Jan; Christensen, Kaare

    2007-01-01

    STUDY DESIGN: Prospective cohort study of twins. OBJECTIVES: To investigate associations between physical activity, physical function, and incident low back pain (LBP) in an elderly population. SUMMARY OF BACKGROUND DATA: The relationship between an active lifestyle and LBP in seniors is unknown....... METHODS: Participants in the population-based Longitudinal Study of Aging Danish Twins free from LBP at baseline (no LBP during the past month) were included, and interview data on physical activity, overall physical function, and LBP at baseline and follow-up were obtained. Associations between levels of...... or lower than average physical function at baseline. Absolute risk for LBP was also calculated for participants based on whether they remained active or inactive between baseline and follow-up or changed activity level. RESULTS: A total of 1387 persons aged 70-100 at baseline were included in the...

  15. Ca2+-induced activation and irreversible inactivation of chloride channels in the perfused plasmalemma of Nitellopsis obtusa.

    Science.gov (United States)

    Kataev, A A; Zherelova, O M; Berestovsky, G N

    1984-12-01

    Experiments were carried out on the algal cells with removed tonoplast using both continuous intracellular perfusion and voltage clamp on plasmalemma. The transient plasmalemma current induced by depolarization disappeared upon perfusion with the Ca2+-chelating agent, EGTA, since the voltage-dependent calcium channels lost their ability to activate. Subsequent replacement of the perfusion medium containing EGTA by another with Ca2+ for clamped plasmalemma (-100 mV) induced an inward C1- current which showed both activation and inactivation. The maximal amplitude of the current at [C1-]in = 15 mmol/l (which is similar to that in native cells) was approximately twice that in electrically excited cell in vivo. The inactivation of C1 channels in the presence of internal Ca2+ was irreversible and had a time constant of 1-3 min. This supports our earlier suggestion (Lunevsky et al. 1983) that the inactivation of C1 channels in an intact cell (with a time constant of 1-3 s) is due to a decrease in Ca2+ concentration rather than to the activity of their own inactivation mechanism. The C1 channel selectivity sequence was following: C1- much greater than CH3SO-4 approximately equal to K+ much greater than SO2-4 (PK/PSO4 approximately 10). Activation of one half the channels occurs at a Ca2+ concentration of 2 X 10(-5) mol/l. Sr2+ also (though to a lesser extent) activated C1 channels but had to be present in a much more higher concentration than Ca2+. Mg2+ and Ba2+ appeared ineffective. Ca2+ activation did not, apparently, require participation of water-soluble intermediator including ATP. Thus, C1 channel functioning is controlled by Ca2+-, Sr2+-sensitive elements of the subplasmalemma cytoskeleton. PMID:6099298

  16. Antispasmodic and antidiarrheal activities of rhizomes of Polygonatum verticillatum maneuvered predominately through activation of K+ channels: Components identification through TLC.

    Science.gov (United States)

    Khan, Haroon; Saeed, Muhammad; Gilani, Anwarul-Hassan; Muhammad, Naveed; Ur Rehman, Najeeb; Mehmood, Malik Hassan; Ashraf, Nadeem

    2016-04-01

    Polygonatum verticillatumhas traditionally been used for various purposes. The present study was aimed to validate the antispasmodic and antidiarrheal properties of crude methanolic extract of rhizomes ofP. verticillatum(PR). Isolated rabbit jejunum preparations were suspended in tissue baths to measure the isotonic responses using Power Lab data acquisition system for the antispasmodic activity of PR, while the antidiarrheal activity was conducted in vivo in mice. PR caused complete relaxation of the spontaneous contractions of isolated rabbit jejunum preparations in a dose-dependent mode. A complete inhibition was observed against low potassium (K(+); 25 mM)-induced contractions, while the plant extract partially inhibited the high K(+)(80 mM)-induced contractions. From a mechanistic point of view, the spasmolytic effect of PR against low K(+)was antagonized by glibenclamide similar to the effect of cromakalim, thus showing the presence of constituents in PR mediating spasmolytic activity predominantly through the activation of adenosine triphosphate-sensitive K(+)channels. When tested against castor oil-induced diarrhea in mice, oral administration of the plant extract manifested marked antidiarrheal activity at the doses of 500 and 1000 mg/kg similar to loperamide. This study provided a pharmacological basis for the medicinal use of PR in abdominal colic and diarrhea. PMID:24215061

  17. Inhibitors of swelling-activated chloride channels increase infarct size and apoptosis in rabbit myocardium.

    Science.gov (United States)

    Souktani, Rachid; Ghaleh, Bijan; Tissier, Renaud; d'Anglemont de Tassigny, Alexandra; Aouam, Karim; Bedossa, Pierre; Charlemagne, Danièle; Samuel, Janelyse; Henry, Patrick; Berdeaux, Alain

    2003-10-01

    Apoptosis is a significant contributor to myocardial cell death during ischemia-reperfusion and swelling-activated chloride channels (I(Cl,swell)) contribute to apoptosis. However, the relationship between I(Cl,swell) ischemia-reperfusion and apoptosis remains unknown. To further investigate this, New Zealand rabbits underwent a 20-min coronary artery occlusion (CAO) followed by 72 h of coronary artery reperfusion (CAR). Two I(Cl,swell) blockers, 5-nitro-2-[3-phenylpropylamino]benzoic acid (NPPB) and indanyloxyacetic acid 94 (IAA-94) (both 1 mg/kg), were administered prior to CAO and throughout the 72 h CAR. Infarct size (IS) was increased with NPPB and IAA-94 compared with control (vehicle) rabbits (51 +/- 2% and 48 +/- 3% and vs. 35 +/- 2%, respectively, P < 0.05). Similar results were found when NPPB was administered only during the reperfusion period. The percentage of TUNEL-positive nuclei in the border zone of the infarct was increased with NPPB compared with control (37 +/- 2% vs. 25 +/- 31%, P < 0.05) as well as the number of cytoplasmic histone-associated DNA fragments (0.45 +/- 0.06 vs. 0.33 +/- 0.04 absorbance units, P < 0.05). These findings support the concept that I(Cl,swell) channels play an important role in the determination of myocardial infarct size and apoptosis during ischemia-reperfusion. PMID:14703716

  18. A High-affinity Activator of G551D-CFTR Chloride Channel Identified By High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lu; HE Cheng-yan; LIU Yan-li; ZHOU Hong-lan; ZHOU Jin-song; SHANG De-jing; YANG Hong

    2004-01-01

    A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(Kd=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.

  19. Natural features of the Polimske Prokletije mountains from the point of their active protection

    Directory of Open Access Journals (Sweden)

    Knežević Marko

    2004-01-01

    Full Text Available This paper deals with basic natural values and features of the Prokletije range and points out the need for their active protection. Their value is that of natural treasure according to all criteria. They are a priceless contribution to science, culture, education, art and tourism. Therefore, it is important to preserve them and protect them as a national park.

  20. Natural features of the Polimske Prokletije mountains from the point of their active protection

    OpenAIRE

    Knežević Marko; Kićović Dragomir M.

    2004-01-01

    This paper deals with basic natural values and features of the Prokletije range and points out the need for their active protection. Their value is that of natural treasure according to all criteria. They are a priceless contribution to science, culture, education, art and tourism. Therefore, it is important to preserve them and protect them as a national park.

  1. Effects of acidosis and NO on nicorandil-activated KATP channels in guinea-pig ventricular myocytes

    OpenAIRE

    Moncada, Gustavo A; Kishi, Yukio; Numano, Fujio; Hiraoka, Masayasu; Sawanobori, Tohru

    2000-01-01

    Nicorandil is a hybrid compound of K+ channel opener and nitrate. We investigated a possible interaction of acidosis and nitric oxide (NO)-donors on the nicorandil-activated ATP-sensitive K+ channel (KATP) in guinea-pig ventricular myocytes using the patch-clamp technique.In whole-cell recordings, external application of 300 μM nicorandil activated KATP in the presence of 2 mM intracellular ATP concentration ([ATP]i) at external pH (pHo) 7.4, but the activated current was decreased by reducin...

  2. Complex role of STIM1 in the activation of store-independent Orai1/3 channels

    Science.gov (United States)

    Zhang, Wei; González-Cobos, José C.; Jardin, Isaac; Romanin, Christoph; Matrougui, Khalid

    2014-01-01

    Orai proteins contribute to Ca2+ entry into cells through both store-dependent, Ca2+ release–activated Ca2+ (CRAC) channels (Orai1) and store-independent, arachidonic acid (AA)-regulated Ca2+ (ARC) and leukotriene C4 (LTC4)-regulated Ca2+ (LRC) channels (Orai1/3 heteromultimers). Although activated by fundamentally different mechanisms, CRAC channels, like ARC and LRC channels, require stromal interacting molecule 1 (STIM1). The role of endoplasmic reticulum–resident STIM1 (ER-STIM1) in CRAC channel activation is widely accepted. Although ER-STIM1 is necessary and sufficient for LRC channel activation in vascular smooth muscle cells (VSMCs), the minor pool of STIM1 located at the plasma membrane (PM-STIM1) is necessary for ARC channel activation in HEK293 cells. To determine whether ARC and LRC conductances are mediated by the same or different populations of STIM1, Orai1, and Orai3 proteins, we used whole-cell and perforated patch-clamp recording to compare AA- and LTC4-activated currents in VSMCs and HEK293 cells. We found that both cell types show indistinguishable nonadditive LTC4- and AA-activated currents that require both Orai1 and Orai3, suggesting that both conductances are mediated by the same channel. Experiments using a nonmetabolizable form of AA or an inhibitor of 5-lipooxygenase suggested that ARC and LRC currents in both cell types could be activated by either LTC4 or AA, with LTC4 being more potent. Although PM-STIM1 was required for current activation by LTC4 and AA under whole-cell patch-clamp recordings in both cell types, ER-STIM1 was sufficient with perforated patch recordings. These results demonstrate that ARC and LRC currents are mediated by the same cellular populations of STIM1, Orai1, and Orai3, and suggest a complex role for both ER-STIM1 and PM-STIM1 in regulating these store-independent Orai1/3 channels. PMID:24567509

  3. Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons.

    Science.gov (United States)

    Constantin, Stephanie; Wray, Susan

    2016-08-01

    GnRH neurons are regulated by hypothalamic kisspeptin neurons. Recently, galanin was identified in a subpopulation of kisspeptin neurons. Although the literature thoroughly describes kisspeptin activation of GnRH neurons, little is known about the effects of galanin on GnRH neurons. This study investigated whether galanin could alter kisspeptin signaling to GnRH neurons. GnRH cells maintained in explants, known to display spontaneous calcium oscillations, and a long-lasting calcium response to kisspeptin-10 (kp-10), were used. First, transcripts for galanin receptors (GalRs) were examined. Only GalR1 was found in GnRH neurons. A series of experiments was then performed to determine the action of galanin on kp-10 activated GnRH neurons. Applied after kp-10 activation, galanin 1-16 (Gal1-16) rapidly suppressed kp-10 activation. Applied with kp-10, Gal1-16 prevented kp-10 activation until its removal. To determine the mechanism by which galanin inhibited kp-10 activation of GnRH neurons, Gal1-16 and galanin were applied to spontaneously active GnRH neurons. Both inhibited GnRH neuronal activity, independent of GnRH neuronal inputs. This inhibition was mimicked by a GalR1 agonist but not by GalR2 or GalR2/3 agonists. Although Gal1-16 inhibition relied on Gi/o signaling, it was independent of cAMP levels but sensitive to blockers of G protein-coupled inwardly rectifying potassium channels. A newly developed bioassay for GnRH detection showed Gal1-16 decreased the kp-10-evoked GnRH secretion below detection threshold. Together, this study shows that galanin is a potent regulator of GnRH neurons, possibly acting as a physiological break to kisspeptin excitation. PMID:27359210

  4. Contamination monitoring in radiation protection activities in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Thin, K.T.; Htoon, S. [Yangon Univ. (Myanmar). Dept. of Physics

    1997-06-01

    The radioactive contamination in rainwater, seawater, air, milk powder and other eatables were measured with low level counter assembly. The measured activities are found to be very low and well within the maximum permissible level. (author)

  5. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling

    OpenAIRE

    Moore, Carlene; Cevikbas, Ferda; Pasolli, H. Amalia; Chen, Yong; Kong, Wei; Kempkes, Cordula; Parekh, Puja; Lee, Suk Hee; Kontchou, Nelly-Ange; Yeh, Iwei; Jokerst, Nan Marie; Fuchs, Elaine; Steinhoff, Martin; Liedtke, Wolfgang B.

    2013-01-01

    Skin protects against harmful external cues, one of them UV radiation, which, upon overexposure, causes sunburn as part of the UVB response. Using genetically engineered mice and cultured skin epithelial cells, we have identified the calcium-permeable TRPV4 ion channel in skin epithelial cells as critical for translating the UVB stimulus into intracellular signals and also into signals from epithelial skin cell to sensory nerve cell that innervates the skin, causing pain. These signaling mech...

  6. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon.

    Science.gov (United States)

    McNamara, B; Winter, D C; Cuffe, J E; O'Sullivan, G C; Harvey, B J

    1999-08-15

    1. In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. 2. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. 3. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin DeltaISC = 63.8+/-6.2 microA cm(-2), n = 6; for PGE2 DeltaISC = 34.3+/-5.2 microA cm(-2), n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid DIDS). 4. The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 microM) and tetraethylammonium (10 mM). 5. The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts 6. In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  7. Spontaneous physical activity protects against fat mass gain

    OpenAIRE

    Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.

    2011-01-01

    It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-b...

  8. Activation, Permeability, and Inhibition of Astrocytic and Neuronal Large Pore (Hemi)channels

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Ye, Zu-Cheng; Calloe, Kirstine;

    2014-01-01

    overlapping sensitivity to the inhibitors Brilliant Blue, gadolinium, and carbenoxolone. These results demonstrated isoform-specific characteristics among the large pore membrane channels; an open (hemi)channel is not a nonselective channel. With these isoform-specific properties in mind, we characterized the...

  9. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    International Nuclear Information System (INIS)

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  10. Evidence for a new class of scorpion toxins active against K+ channels.

    Science.gov (United States)

    Legros, C; Céard, B; Bougis, P E; Martin-Eauclaire, M F

    1998-07-24

    cDNAs encoding novel long-chain scorpion toxins (64 amino acid residues, including only six cysteines) were isolated from cDNA libraries produced from the venom glands of the scorpions Androctonus australis from Old World and Tityus serrulatus from New World. The encoded peptides were very similar to a recently identified toxin from T. serrulatus, which is active against the voltage-sensitive 'delayed-rectifier' potassium channel, but they were completely different from the long-chain and short-chain scorpion toxins already characterised. However, there was some sequence similarity (42%) between these new toxins, Aa TX Kbeta and Ts TX Kbeta, and scorpion defensins purified from the hemolymph of Buthidae scorpions Leiurus quinquestriatus and A. australis. Thus, according to a multiple sequence alignment using CLUSTAL, these new toxins seem to be related to the scorpion defensins. PMID:9714546

  11. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis

    DEFF Research Database (Denmark)

    Stutzin, A; Hoffmann, E K

    2006-01-01

    physiological control. Thus, cell volume is under a tight and dynamic control and abnormal cell volume regulation will ultimately lead to severe cellular dysfunction, including alterations in cell proliferation and cell death. This review describes the different swelling-activated ion channels that participate...... as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis.......Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under...

  12. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    International Nuclear Information System (INIS)

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of γ-glutamylcysteine synthetase-heavy subunit (γ-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis

  13. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  14. Production of activated carbon from cellulosic fibers for environment protection

    International Nuclear Information System (INIS)

    Activated carbon fibers (ACF) have received an increasing attention in recent years as an adsorbent for purifying polluted gaseous and aqueous streams. Their preparation, characterization and application have been reported in many studies [1], which show that the porosity of ACF is dependent on activation conditions, as temperature, time or gas. ACF provide adsorption rates 2 to 50 times higher than Granular Activated Carbon [2], because of their low diameter (∼10 m) providing a larger external surface area in contact with the fluid compared with that of granules. Furthermore, their potential for the removal of various pollutants from water was demonstrated towards micro-organics like phenols [3], pesticides or dyes [4]. Generally, fibrous activated carbons are produced from natural or synthetic precursors by carbonization at 600-1000 C followed by an activation step by CO2 oe steam at higher temperature [2]. Another way to produce the fibrous activated carbons is chemical activation with H3PO4, HNO3, KOH...[5]. Different types of synthetic or natural fibers have been used as precursors of fibrous activated carbons since 1970: polyacrylonitrile (PAN), polyphenol, rayon, cellulose phosphate, pitch, etc. Each of them has its own applications and limitations. The synthetic fibers being generally expensive, it would be interesting to find out low-cost precursors from local material resources. This work is a part of a research exchange program between the Vietnamese National Center of Natural Sciences and Technology (Vietnam) and the Ecole des Mines de Nantes (Gepea, France), with the aim to find some economical solutions for water treatment. Fibrous activated carbons are produced from natural cellulose fibers, namely jute and coconut fibers, which are abundant in Vietnam as well as in other tropical countries, have a low ash content and a low cost in comparison with synthetic fibers. Two methods are compared to produce activated carbons: 1) a physical activation with

  15. Role of the active viscosity and self-propelling speed in channel flows of active polar liquid crystals.

    Science.gov (United States)

    Yang, Xiaogang; Wang, Qi

    2016-01-28

    We study channel flows of active polar liquid crystals (APLCs) focusing on the role played by the active viscosity (β) and the self-propelling speed (ω) on the formation and long time evolution of spontaneous flows using a continuum model. First, we study the onset of spontaneous flows by carrying out a linear stability analysis on two special steady states subject to various physical boundary conditions. We identify a single parameter b1, proportional to a linear combination of the active viscosity and the self-propelling speed, and inversely proportional to a Frank elastic constant, the solvent viscosity, and the liquid crystal relaxation time. We show that the active viscosity and the self-propelling speed influence the onset of spontaneous flows through b1 in that for any fixed value of the bulk activity parameter ζ, large enough |b1| can suppress the spontaneous flow. We then follow spontaneous flows in long time to further investigate the role of β and ω on spatial-temporal structures in the nonlinear regime numerically. The numerical study demonstrates a strong correlation between the most unstable eigenfunction obtained from the linear analysis and the terminal steady state or the persistent, traveling wave structure, revealing the genesis of flow and orientational structures in the active matter system. In the nonlinear regime, a nonzero b1 facilitates the formation of traveling waves in the case of boundary anchoring (the Dirichlet boundary condition) so long as the linear stability analysis predicts an onset of spontaneous flows; in the case of the free boundary condition (the Neumann boundary condition), a stable, spatially homogeneous tilted state always emerges in the presence of two active effects. Finally, we note that various fully out-of-plane spatio-temporal structures can emerge in long time dynamics depending on the boundary condition as well as the initial state of the polarity vector field. PMID:26583506

  16. Analytic estimation and numerical modeling of actively cooled thermal protection systems with nickel alloys

    OpenAIRE

    Wang Xinzhi; He Yurong; Zheng Yan; Ma Junjun; H. Inaki Schlaberg

    2014-01-01

    Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and numerical modeling are performed in this paper to investigate the behavior of an actively cooled thermal protection system. The analytic estimation is based on the electric analogy method and finite element analysis (FEA) is applied to the numerical simulation. Temperature and stres...

  17. Organization of accounting for expenditures connected with the environmental protection activity based on responsibility centers

    OpenAIRE

    Корнєєва, Тетяна Іванівна

    2015-01-01

    Organization of accounting for expenditures connected with environmental protection activity based on responsibility centers at the enterprises of coal industry depending on the level of influence and managerial decision-making has been improved. The detailed description of expenditures connected with environmental protection activity depending on the places of their origin and cost centers in the context of sources of contaminants’ appearance, technological processes and levels of danger for...

  18. Characteristics of teacher's health protecting activities in the modern secondary school environment

    OpenAIRE

    Yefimova V.M.

    2010-01-01

    The paper considers general approaches to the definition of the notion of anomia. It analyzes different aspects of the term's modern interpretation and discusses the main problems connected with the formation of the social context of the future teacher professional training for health protecting activities. The features of health protecting activity are exposed in the conditions of anomia. Certainly its influences on the social, psychical and physical health of young people. It is well-proven...

  19. Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats.

    Science.gov (United States)

    Kanyshkova, Tatyana; Ehling, Petra; Cerina, Manuela; Meuth, Patrick; Zobeiri, Mehrnoush; Meuth, Sven G; Pape, Hans-Christian; Budde, Thomas

    2014-07-01

    The polygenic origin of generalized absence epilepsy results in dysfunction of ion channels that allows the switch from physiological asynchronous to pathophysiological highly synchronous network activity. Evidence from rat and mouse models of absence epilepsy indicates that altered Ca(2+) channel activity contributes to cellular and network alterations that lead to seizure activity. Under physiological circumstances, high voltage-activated (HVA) Ca(2+) channels are important in determining the thalamic firing profile. Here, we investigated a possible contribution of HVA channels to the epileptic phenotype using a rodent genetic model of absence epilepsy. In this study, HVA Ca(2+) currents were recorded from neurons of three different thalamic nuclei that are involved in both sensory signal transmission and rhythmic-synchronized activity during epileptic spike-and-wave discharges (SWD), namely the dorsal part of the lateral geniculate nucleus (dLGN), the ventrobasal thalamic complex (VB) and the reticular thalamic nucleus (NRT) of epileptic Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) and non-epileptic August Copenhagen Irish (ACI) rats. HVA Ca(2+) current densities in dLGN neurons were significantly increased in epileptic rats compared with non-epileptic controls while other thalamic regions revealed no differences between the strains. Application of specific channel blockers revealed that the increased current was carried by L-type Ca(2+) channels. Electrophysiological evidence of increased L-type current correlated with up-regulated mRNA and protein expression of a particular L-type channel, namely Cav1.3, in dLGN of epileptic rats. No significant changes were found for other HVA Ca(2+) channels. Moreover, pharmacological inactivation of L-type Ca(2+) channels results in altered firing profiles of thalamocortical relay (TC) neurons from non-epileptic rather than from epileptic rats. While HVA Ca(2+) channels influence tonic and burst firing in ACI and WAG

  20. GABA/sub B/ receptor activation inhibits Ca/sup 2 +/-activated potassium channels in synaptosomes: involvement of G-proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ticku, M.K.; Delgado, A.

    1989-01-01

    /sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but not by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.

  1. Relationships of Sun-Protection Habit Strength with Sunscreen Use During Outdoor Sport and Physical Activity

    Directory of Open Access Journals (Sweden)

    Neville Owen

    2012-03-01

    Full Text Available The objective of this cross-sectional questionnaire study was to assess associations of a self-report index of sun protection habit strength with sunscreen use in sporting environments and outdoor physical activity. Participants (n = 234 in field hockey, soccer, tennis and surf sports in Queensland, Australia, completed a self-administered survey on sun protection during organized sport, and during general outdoor physical activity during 2005/2006. The sun protection habit strength index was dichotomized into two categories. Multinomial logistic regression analyses assessed the associations of low versus high sun protection habit strength with three categories of sunscreen use (no or rare use; inadequate use; and adequate use. Compared to participants with low sun protection habit strength, those with high sun protection habit strength had significantly greater odds of any sunscreen use during organized sport and during general outdoor physical activity. This association was strongest for adequate sunscreen use in both settings. In conclusion, this study suggests that the measure of sun protection habit strength is a potentially useful assessment tool for future sun protection studies.

  2. Definition of two agonist types at the mammalian cold-activated channel TRPM8.

    Science.gov (United States)

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. PMID:27449282

  3. The Economic Value regarding the Protection Activities of Critical Infrastructures

    Directory of Open Access Journals (Sweden)

    Valentin-Bogdan DĂNILĂ

    2011-11-01

    Full Text Available In the past two years, a number of European countries, members of EU, Australia and Canada have initiated substantive actions in PIC area, establishing bodies responsible, defining procedures and methodologies, allocating significant resources to protect critical infrastructure considered essential or vital. The security concept, and implicit, the economical and energetic ones have different use and defining in relation to the history and organizational culture of every nation. A decisive contribution in the process of defining those concepts is identifying the set of values and national interests, elements that usually are the result of the public opinion perception. The increased share of non-military risks and threats has determined the national security management reconsideration, becoming more obvious the necessity of “public-private partnership” approach. Anew concept is becoming more and more present and gains maximum generality significations. This kind of process reconfigures the position and the role of social state actors: the political class, thebusiness and scientific environment, civil society and citizens.

  4. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    Science.gov (United States)

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-01-01

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels. PMID:26501253

  5. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception

    Directory of Open Access Journals (Sweden)

    Giuseppe Mancuso

    2015-10-01

    Full Text Available Ruta graveolens (rue is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  6. Activities of the Environmental Protection Agency concerning phthalate esters

    OpenAIRE

    Newburg-Rinn, Steven D.

    1982-01-01

    EPA's activities concerning phthalate esters have been in four general areas, namely: (1) their status as toxic pollutants under the Clean Water Act; (2) their status as “new chemicals” under Section 5 of TSCA; (3) the potential risk to human beings posed by DEHP; and (4) finally, the need for testing phthalates with respect to their health and environmental effects.

  7. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development

    NARCIS (Netherlands)

    Berbeé, J.F.P.; Boon, M.R.; Khedoe, P.P.S.J.; Bartelt, A.; Schlein, C.; Worthmann, A.; Kooijman, S.; Hoeke, G.; Mol, I.M.; John, C.; Jung, C.; Vazirpanah, N.; Brouwers, L.P.J.; Gordts, P.L.S.M.; Esko, J.D.; Hiemstra, P.S.; Havekes, L.M.; Scheja, L.; Heeren, J.; Rensen, P.C.N.

    2015-01-01

    Brown adipose tissue (BAT) combusts high amounts of fatty acids, thereby lowering plasma triglyceride levels and reducing obesity. However, the precise role of BAT in plasma cholesterol metabolism and atherosclerosis development remains unclear. Here we show that BAT activation by b3-adrenergic rece

  8. Activation of endothelial and epithelial KCa2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    Science.gov (United States)

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm; Laursen, Britt E; Pilegaard, Hans; Köhler, Ralf; Simonsen, Ulf

    2012-01-01

    BACKGROUND AND PURPOSE Small (KCa2) and intermediate (KCa3.1) conductance calcium-activated potassium channels (KCa) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we investigated the expression of KCa2.3 and KCa3.1 channels, and hypothesized that activation of these channels would produce relaxation of human bronchioles and pulmonary arteries. EXPERIMENTAL APPROACH Channel expression and functional studies were conducted in human isolated small pulmonary arteries and bronchioles. KCa2 and KCa3.1 currents were examined in human small airways epithelial (HSAEpi) cells by whole-cell patch clamp techniques. RESULTS While KCa2.3 expression was similar, KCa3.1 protein was more highly expressed in pulmonary arteries than bronchioles. Immunoreactive KCa2.3 and KCa3.1 proteins were found in both endothelium and epithelium. KCa currents were present in HSAEpi cells and sensitive to the KCa2.3 blocker UCL1684 and the KCa3.1 blocker TRAM-34. In pulmonary arteries contracted by U46619 and in bronchioles contracted by histamine, the KCa2.3/ KCa3.1 activator, NS309, induced concentration-dependent relaxations. NS309 was equally potent in relaxing pulmonary arteries, but less potent in bronchioles, than salbutamol. NS309 relaxations were blocked by the KCa2 channel blocker apamin, while the KCa3.1 channel blocker, charybdotoxin failed to reduce relaxation to NS309 (0.01–1 µM). CONCLUSIONS AND IMPLICATIONS KCa2.3 and KCa3.1 channels are expressed in the endothelium of human pulmonary arteries and epithelium of bronchioles. KCa2.3 channels contributed to endo- and epithelium-dependent relaxations suggesting that these channels are potential targets for treatment of pulmonary hypertension and chronic obstructive pulmonary disease. PMID:22506557

  9. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    Science.gov (United States)

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia. PMID:26946972

  10. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wu, Zhong [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Yin, Gang; Liu, Haifeng; Guan, Xiaojun; Zhao, Xiaoqiang [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wang, Jianguang, E-mail: jianguangwang@163.com [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Jianguo, E-mail: gehujianguo68@163.com [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China)

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but little is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.

  11. Use of activation analysis of hair in environmental protection

    International Nuclear Information System (INIS)

    Human hair is very suitable for use in environmental control monitoring because trace elements concentrate in it at higher levels than in most other organs. Unlike in other biological materials, the trace element contents in hair can be determined by instrumental neutron activation analysis (INAA), as the interference by 24Na can be eliminated by appropriate washing of hair, e.g., using the procedure recommended by IAEA. The methods of sampling, washing and sample analysis using INAA and neutron activation analysis with radiochemical separation are described including the recommended way of the presentation of results. The results are presented of analyses for trace elements in hair from both little and highly polluted areas. (Ha)

  12. Chernobyl related research and radiological protection activities in Ireland

    International Nuclear Information System (INIS)

    Following the Chernobyl accident a programme of monitoring and research was initiated in the Radiological Protection Institute of Ireland to address questions concerning the immediate and longer term impact of the fallout. Prior to the Chernobyl accident the scientific literature contained limited information on the behaviour of radionuclides in the environment and their entry into food-chains. In response to this lack of information the monitoring programme assessed the contamination status following the accident, while the research programme was aimed at gaining a fuller understanding of the processes of radionuclide transfer. Investigations were undertaken into the pathways through which Chernobyl radionuclides may be transferred to man i.e. via agricultural crops, meat and milk production. The results showed that the behaviour of the fallout radionuclides is complex and highly variable, being influenced by weather, topography, season, crop type, land management etc. The research continues today and its aim is to identify pathways of radiation dose transfer to man and to determine strategies for minimising risk and cost to man and the environment. Examination of the factors which control radionuclide behaviour has revealed practical strategies for dealing with contaminated lands and foods. A significant factor controlling the behaviour of radionuclides in ecosystems is the physico-chemical characteristics of the soil. These physico-chemical characteristics have proved to be useful parameters which can be manipulated to reduce the transfer of radionuclides in agricultural systems. In semi-natural ecosystems (peatlands and commercial forests) the controls on the behaviour of radionuclides are generally more complicated and intervention is more difficult. These ecosystems present a challenge in terms of the identification of possible practical rehabilitation measures. The task for the future is to compile the experience gained to date to establish a management

  13. Legal aspects of provision and protection informations in entrepreneurial activities

    OpenAIRE

    Švarc, Zbyněk

    2002-01-01

    Conscious and carefully planned decision making is a part of management containing planning, organization, operative management, motivation and control. All these components of management as well as their effective functioning are dependent on knowledge, data transfer and information processing and holding. If their acquisition is not or cannot be dependent on an activity of deciding subject itself (or dependent on an optional cooperation with other subjects) and data and information are esse...

  14. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase

    OpenAIRE

    Fonfria, Elena; Marshall, Ian C B; Benham, Christopher D; Boyfield, Izzy; Brown, Jason D; Hill, Kerstin; Hughes, Jane P; Skaper, Stephen D.; McNulty, Shaun

    2004-01-01

    TRPM2 (melastatin-like transient receptor potential 2 channel) is a nonselective cation channel that is activated under conditions of oxidative stress leading to an increase in intracellular free Ca2+ concentration ([Ca2+]i) and cell death. We investigated the role of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) on hydrogen peroxide (H2O2)-mediated TRPM2 activation using a tetracycline-inducible TRPM2-expressing cell line.In whole-cell patch-clamp recordings, intracellular adenine...

  15. Activation of human ether-a-go-go related gene (hERG) potassium channels by small molecules

    Institute of Scientific and Technical Information of China (English)

    Ping-zheng ZHOU; Joseph BABCOCK; Lian-qing LIU; Min LI; Zhao-bing GAO

    2011-01-01

    Human ether-a-go-go related gene (hERG) potassium (K+) channels play a critical role in cardiac action potential repolarlzatlon. Mutations that reduce hERG conductance or surface expression may cause congenital long QT syndrome (LQTS). Moreover, the channels can be inhibited by structurally diverse small molecules, resulting in an acquired form of LQTS. Consequently, small molecules that increase the hERG current may be of value for treatment of LQTS. So far, nine hERG activators have been reported. The aim of this review is to discuss recent advances concerning the identification and action mechanism of hERG activators.

  16. [The effect of charged local anesthetics on the inactivation of Ca2+-activated Cl-channels of characean algae].

    Science.gov (United States)

    Kataev, A A; Zherelova, O M; Berestovskiĭ, G N

    1988-01-01

    Effects of local anesthetics (LA) and a number of organic cations on Ca2+-activated Cl-channels in plasmalemma of intracellularly perfused giant algae Nitellopsis obtusa were studied using voltage-clamp technique. It was shown earlier that Ca2+ ions cause irreversible inactivation of Cl-channels with a characteristic time equal to a few minutes, but not only activate Cl-channels. It has been found that amphiphilic cations (AC), including LA+, introduced intracellularly together with Ca2+ produced delayed action on the beginning of the inactivation process (approximately ten minutes) producing no effect on activation during this period. The time of delayed action was linearly dependent on the concentrations ratio alpha = [AC]/[Ca2+]. Procaine is the most effective agent in this respect, the time of its delayed action on the inactivation process being 20 min at alpha = 1. LA in the neural form, hydrophilic AC of tetraethylammonium, as well as LA+ from the outside had no effect on Cl-channels. Cl-channels inactivated "irreversibly" by Ca2+ ions may be restored after addition of AC in Ca2+-containing perfusion medium. PMID:2470412

  17. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  18. OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    Science.gov (United States)

    Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.

    2016-09-01

    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.

  19. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  20. Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A

    OpenAIRE

    Zhen Yao; Wan Namkung; Ko, Eun A; Jinhong Park; Lukmanee Tradtrantip; Verkman, A.S.

    2012-01-01

    The Ca(2+)-activated Cl(-) channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl(-) conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of...

  1. ASSESSMENT OF LOCAL ANESTHETIC ACTIVITY OF LIGNOCAINE BY SIMULTANEOUS ADMINISTRATION OF POTASSIUM CHANNEL AGONISTS NICORANDIL IN ALBINO RATS

    OpenAIRE

    Lakkol Kiran J; Umakant Patil N; Kallappa Shivashankaramurthy G; VinodKumar C.S

    2013-01-01

    There are reports about a possible weak local anaesthetic activity of nicorandil, a potassium channel agonist (PCA). In addition, modification of local anesthetic activity of lignocaine by PCA is not clearly defined. The objective of the present study is to evaluate local anesthetic activity of nicorandil and to evaluate the influence of nicorandil on the efficacy and duration of local anesthesia by lignocaine. A total number of 84 albino rats of either sex were divided into 14 groups of 6 an...

  2. Radiation protection activities after closure of geological repositories

    International Nuclear Information System (INIS)

    Although the safety of repositories for radioactive waste should not depend of active controls such as monitoring, several control measures may be required for a variety of societal reasons. It is possible that the reporting of environmental monitoring to international treaties and conventions, already in place today, may be of value in meeting those requirements. To prepare for passive institutional control includes taking measures today that may be of use for future institutional control, including the possibility that future societies may initiate or renew active control measures. Passive institutional control may be of use to prevent or reduce the likelihood of human intrusion, to allow for remedial action, or to serve as a source of information in future societies, in the form of accurate historical documents. In the process of reporting within international conventions, including the most important reporting within the so-called Waste Convention, a large body of information will be built up by a process already in place today. This information is in itself a source for passive institutional control. (author)

  3. Structural basis of slow activation gating in the cardiac IKs channel complex

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Pusch, Michael; Wolf, Steffen;

    2011-01-01

    Accessory ß-subunits of the KCNE gene family modulate the function of various cation channel a-subunits by the formation of heteromultimers. Among the most dramatic changes of biophysical properties of a voltage-gated channel by KCNEs are the effects of KCNE1 on KCNQ1 channels. KCNQ1 and KCNE1 are...... believed to form nativeI(Ks) channels. Here, we characterize molecular determinants of KCNE1 interaction with KCNQ1 channels by scanning mutagenesis, double mutant cycle analysis, and molecular dynamics simulations. Our findings suggest that KCNE1 binds to the outer face of the KCNQ1 channel pore domain......, modifies interactions between voltage sensor, S4-S5 linker and the pore domain, leading to structural modifications of the selectivity filter and voltage sensor domain. Molecular dynamics simulations suggest a stable interaction of the KCNE1 transmembrane a-helix with the pore domain S5/S6 and part of the...

  4. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    CERN Document Server

    Li, Ting; Ji, Haisheng

    2015-01-01

    We make a comparative analysis for two filaments that showed quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) are carried out to analyze the two filaments on 2013 August 17-20 and September 29. The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4*10^21 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed within 3 days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2*10^20 Mx, about one ...

  5. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy.

    Science.gov (United States)

    Ievglevskyi, O; Isaev, D; Netsyk, O; Romanov, A; Fedoriuk, M; Maximyuk, O; Isaeva, E; Akaike, N; Krishtal, O

    2016-08-01

    Acid-sensing ion channels (ASICs) play an important role in numerous functions in the central and peripheral nervous systems ranging from memory and emotions to pain. The data correspond to a recent notion that each neuron and many glial cells of the mammalian brain express at least one member of the ASIC family. However, the mechanisms underlying the involvement of ASICs in neuronal activity are poorly understood. However, there are two exceptions, namely, the straightforward role of ASICs in proton-based synaptic transmission in certain brain areas and the role of the Ca(2+)-permeable ASIC1a subtype in ischaemic cell death. Using a novel orthosteric ASIC antagonist, we have found that ASICs specifically control the frequency of spontaneous inhibitory synaptic activity in the hippocampus. Inhibition of ASICs leads to a strong increase in the frequency of spontaneous inhibitory postsynaptic currents. This effect is presynaptic because it is fully reproducible in single synaptic boutons attached to isolated hippocampal neurons. In concert with this observation, inhibition of the ASIC current diminishes epileptic discharges in a low Mg(2+) model of epilepsy in hippocampal slices and significantly reduces kainate-induced discharges in the hippocampus in vivo Our results reveal a significant novel role for ASICs.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377725

  6. Sediment transport in an active erodible channel bend of Brahmaputra river

    Indian Academy of Sciences (India)

    Tapas Karmaker; Y Ramprasad; Subashisa Dutta

    2010-12-01

    Spatial variation of sediment transport in an alluvial sand-bed river bend needs to be understood with its influencing factors such as bank erosion, secondary current formation, land spur and bed-material characteristics. In this study, detailed hydrographic surveys with Acoustic Doppler Current Profiler (ADCP) were conducted at an active erodible river bend to measure suspended load, velocity, bathymetric profile and characteristics of the bed material. Study indicates the presence of multi-thread flow in the channel bend. Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar formation. Vertical distribution of suspended sediment concentration follows a power function with normalized depth. Average bed-material concentration at the reach level is computed from observed sediment profiles, and is compared against various sediment transport functions. Results show that the sediment transport function suggested by Yang gives better predictions for this reach. Transverse bed slopes at critical survey transects were computed from the bathymetric data and evaluated with analytical approaches. Out of three analytical approaches used, Odgaard’s approach estimates the bed slopes fairly close to the observed one. These two functions are suitable in the Brahmaputra river for further morphological studies.

  7. KATP-channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1-receptor stimulation

    OpenAIRE

    Ford, William R.; Lopaschuk, Gary D.; Schulz, Richard; Clanachan, Alexander S

    1998-01-01

    Optimization of myocardial energy substrate metabolism improves the recovery of mechanical function of the post-ischaemic heart. This study investigated the role of KATP-channels in the regulation of the metabolic and mechanical function of the aerobic and post-ischaemic heart by measuring the effects of the selective KATP-channel activator, cromakalim, and the effects of the KATP-channel antagonist, glibenclamide, in rat fatty acid perfused, working hearts in vitro. The role of KATP channels...

  8. Environmental protection activities at the ARAMAR experimental centre

    International Nuclear Information System (INIS)

    In the course of Isotopic Enrichment Laboratory (IEL) pre-operational and operational phase, uranium, fluoride and pH were measured in the Ipanema river, and no increase was observed since the beginning of the operational phase,. Measurements on Sorocaba river show a fluoride concentration above the limits for a class 2 river. All the other parameters such as chemical, radiochemical and biological ones did not receive any influence from IEL. The paper provides an overview of the activities that were carried out at ARAMAR experimental centre, ministry of naval affairs and covers the Isotopic Enrichment Laboratory (IEL) operational phase as well as the pre-operational phase, for both,reactor and fuel cycle units to be installed. (B.C.A.). 01 ref, 01 tab, 01 fig

  9. Hypotonicity-induced TRPV4 function in renal collecting duct cells: modulation by progressive cross-talk with Ca2+-activated K+ channels

    OpenAIRE

    Jin, Min; Berrout, Jonathan; Chen, Ling; O’Neil, Roger G.

    2011-01-01

    The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca2+-activated K+ channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca2+-activated K+ channels, the small conductance SK3 (KCa2.3) channel and large conductance BKα channel (KCa1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K+ channels on TRPV4. However, acti...

  10. Identification of channel-forming activity in the cell wall of Corynebacterium glutamicum.

    OpenAIRE

    Niederweis, M.; Maier, E. (Eva Maria); Lichtinger, T; Benz, R; Krämer, R

    1995-01-01

    The cell wall of the gram-positive Corynebacterium glutamicum was prepared. It contained an ion-permeable channel with a single-channel conductance of about 6 nS in 1 M KCl. The mobility sequence of the ions in the channel is similar to that in the aqueous phase, suggesting that it is a water-filled channel wide enough to allow unhindered diffusion of ions. The results indicate that we have identified the hydrophilic pathway through the mycolic acid layer of C. glutamicum.

  11. Identification of both GABAA receptors and voltage-activated Na+ channels as molecular targets of anticonvulsant α-asarone

    Directory of Open Access Journals (Sweden)

    Ze-JunWang

    2014-03-01

    Full Text Available Alpha (α-asarone, a major effective component isolated from the Chinese medicinal herb Acorus tatarinowii, is clinically used as medication for treating epilepsy, cough, bronchitis, and asthma. In the present study, we demonstrated that α-asarone targets central nervous system GABAA receptor as well as voltage-gated Na+ channels. Using whole-cell patch-clamp recording, -asarone inhibited spontaneous firing of output neurons, mitral cells (MCs, in mouse olfactory bulb brain slice preparations and hyperpolarized the membrane potential of MCs. The inhibitory effect of α-asarone persisted in the presence of ionotropic glutamate receptor blockers but was eliminated after adding a GABAA receptor blocker, suggesting that GABAA receptors mediated the inhibition of MCs by α-asarone. This hypothesis was supported by the finding that α-asarone evoked an outward current, but did not influence inhibitory postsynaptic currents (IPSCs. In addition to inhibiting spontaneous firing, α-asarone also inhibited the Nav1.2 channel, a dominant rat brain Na+ channel subtype. The effects of α-asarone on a defined Nav1.2 were characterized using transfected cells that stably expressed the Nav1.2 channel isoform. α-Asarone displayed strong tonic inhibition of Nav1.2 currents in a concentration- and membrane potential-dependent fashion. α-Asarone reduced channel availability in steady-state inactivation protocols by enhancing or stabilizing Na+ channel inactivation. Both Na+ channel blockade and activation of GABAA receptors provide a possible mechanism for the known anti-epileptic effects of α-asarone. It also suggests that α-asarone could benefit patients with cough possibly through inhibiting a Na+ channel subtype to inhibit peripheral and/or central sensitization of cough reflexes.

  12. Leaf senescence and protective enzyme activities of a xantha mutant rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    The relationship between leaf senescence and the activities of protective enzymes was studied through comparion of a xanthan rice mutant HuangyuB with its wild type parent Longtefu B. During 5-25 days after flowering, compared to the wild type the decreases in the contents of chlorophyll and protein, and increases in the content of malondialdehyde (MDA) were significantly slower in the mutant. The activities of three protective enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), were relatively stable in the mutant, indicating the stronger ability in removing free radicals and active oxygen in HuangyuB than the wild type. The criterion of rice senescence was also discussed. (authors)

  13. The risk of self-protection: the role of bank bailout guarantees in channelling sovereign credit risk internationally

    OpenAIRE

    Gori, Filippo

    2014-01-01

    This paper investigates the role of banks’ foreign asset holdings in transmitting credit risk internationally. Foreign exposure in risky assets might severely affect the solvability of credit institutions. Credit risk, in turn, transfers from banks to public accounts as a consequence of implicit or explicit bailout guarantees to distressed banking systems. This paper articulates this mechanism with a simple model where governments choose to fill banks' capital gaps to self-protect from the se...

  14. Prolactin potentiates the activity of acid-sensing ion channels in female rat primary sensory neurons.

    Science.gov (United States)

    Liu, Ting-Ting; Qu, Zu-Wei; Ren, Cuixia; Gan, Xiong; Qiu, Chun-Yu; Hu, Wang-Ping

    2016-04-01

    Prolactin (PRL) is a polypeptide hormone produced and released from the pituitary and extrapituitary tissues. It regulates activity of nociceptors and causes hyperalgesia in pain conditions, but little is known the molecular mechanism. We report here that PRL can exert a potentiating effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons. First, PRL dose-dependently increased the amplitude of ASIC currents with an EC50 of (5.89 ± 0.28) × 10(-8) M. PRL potentiation of ASIC currents was also pH dependent. Second, PRL potentiation of ASIC currents was blocked by Δ1-9-G129R-hPRL, a PRL receptor antagonist, and removed by intracellular dialysis of either protein kinase C inhibitor GF109203X, protein interacting with C-kinase 1(PICK1) inhibitor FSC-231, or PI3K inhibitor AS605240. Third, PRL altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Four, PRL exacerbated nociceptive responses to injection of acetic acid in female rats. Finally, PRL displayed a stronger effect on ASIC mediated-currents and nociceptive behavior in intact female rats than OVX female and male rats and thus modulation of PRL may be gender-dependent. These results suggest that PRL up-regulates the activity of ASICs and enhances ASIC mediated nociceptive responses in female rats, which reveal a novel peripheral mechanism underlying PRL involvement in hyperalgesia. PMID:26188144

  15. Propacetamol-Induced Injection Pain Is Associated with Activation of Transient Receptor Potential Vanilloid 1 Channels.

    Science.gov (United States)

    Schillers, Florian; Eberhardt, Esther; Leffler, Andreas; Eberhardt, Mirjam

    2016-10-01

    Propacetamol (PPCM) is a prodrug of paracetamol (PCM), which was generated to increase water solubility of PCM for intravenous delivery. PPCM is rapidly hydrolyzed by plasma esterases to PCM and diethylglycine and shares some structural and metabolic properties with lidocaine. Although PPCM is considered to be comparable to PCM regarding its analgesic properties, injection pain is a common side effect described for PPCM but not PCM. Injection pain is a frequent and unpleasant side effect of numerous drugs in clinical use, and previous reports have indicated that the ligand gated ion channels transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) can mediate this effect on sensory neurons. This study aimed to investigate molecular mechanisms by which PPCM, in contrast to PCM, causes injection pain. Therefore, human TRPV1 and TRPA1 receptors were expressed in human embryonic kidney 293 cells and investigated by means of whole-cell patch clamp and ratiometric calcium imaging. PPCM (but not PCM) activated TRPV1, sensitized heat-induced currents, and caused an increase in intracellular calcium. In TRPA1-expressing cells however, both PPCM and PCM evoked calcium responses but failed to induce inward currents. Intracutaneous injection of PPCM, but not of PCM, in human volunteers induced an intense and short-lasting pain and an increase in superficial blood flow, indicating activation of nociceptive C fibers and subsequent neuropeptide release. In conclusion, activation of human TRPV1 by PPCM seems to be a relevant mechanism for induction of pain upon intracutaneous injection and thus also for pain reported as an adverse side effect upon intravenous administration. PMID:27457427

  16. Molecular and functional expression of high conductance Ca 2+ activated K+ channels in the eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Rizzello, Antonia; Giordano, Maria E;

    2008-01-01

    ) by increasing intracellular Ca(2+) concentration with the Ca(2+) ionophore ionomycin (1 microM). BK(Ca) channels were also activated on both membranes by hypotonic swelling of the epithelium and their inhibition by 100 nM iberiotoxin (specific BK(Ca) inhibitor) abolished the Regulatory Volume Decrease (RVD...

  17. Hyperpolarization-activated cation and T-type calcium ion channel expression in porcine and human renal pacemaker tissues.

    Science.gov (United States)

    Hurtado, Romulo; Smith, Carl S

    2016-05-01

    Renal pacemaker activity triggers peristaltic upper urinary tract contractions that propel waste from the kidney to the bladder, a process prone to congenital defects that are the leading cause of pediatric kidney failure. Recently, studies have discovered that hyperpolarization-activated cation (HCN) and T-type calcium (TTC) channel conductances underlie murine renal pacemaker activity, setting the origin and frequency and coordinating upper urinary tract peristalsis. Here, we determined whether this ion channel expression is conserved in the porcine and human urinary tracts, which share a distinct multicalyceal anatomy with multiple pacemaker sites. Double chromagenic immunohistochemistry revealed that HCN isoform 3 is highly expressed at the porcine minor calyces, the renal pacemaker tissues, whereas the kidney and urinary tract smooth muscle lacked this HCN expression. Immunofluorescent staining demonstrated that HCN(+) cells are integrated within the porcine calyx smooth muscle, and that they co-express TTC channel isoform Cav3.2. In humans, the anatomic structure of the minor calyx pacemaker was assayed via hematoxylin and eosin analyses, and enabled the visualization of the calyx smooth muscle surrounding adjacent papillae. Strikingly, immunofluorescence revealed that HCN3(+) /Cav3.2(+) cells are also localized to the human minor calyx smooth muscle. Collectively, these data have elucidated a conserved molecular signature of HCN and TTC channel expression in porcine and human calyx pacemaker tissues. These findings provide evidence for the mechanisms that can drive renal pacemaker activity in the multi-calyceal urinary tract, and potential causes of obstructive uropathies. PMID:26805464

  18. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity.

    NARCIS (Netherlands)

    Gkika, D.; Lemonnier, L.; Shapovalov, G.; Gordienko, D.; Poux, C.; Bernardini, M.; Bokhobza, A.; Bidaux, G.; Degerny, C.; Verreman, K.; Guarmit, B.; Benahmed, M.; Launoit, Y. de; Bindels, R.J.M.; Fiorio Pla, A.; Prevarskaya, N.

    2015-01-01

    TRPM8 is a cold sensor that is highly expressed in the prostate as well as in other non-temperature-sensing organs, and is regulated by downstream receptor-activated signaling pathways. However, little is known about the intracellular proteins necessary for channel function. Here, we identify two pr

  19. Relating Field Observed Changes in the Active Stream Channel Network to Features of dQ/dt-Q Recession Curves

    Science.gov (United States)

    Shaw, S. B.

    2013-12-01

    Hydrologists have long plotted the rate of recession (dQ/dt) versus the absolute discharge (Q) to infer aquifer hydraulic properties. In recent years, these dQ/dt-Q plots have been examined in new ways, in particular, looking at individual event curves within the full dQ/dt-Q plot. When examining individual curves (in log-log space), in many cases one observes relatively constant slopes (usually near two) but finds that intercept values shift seasonally. Some have hypothesized that these two features of the dQ/dt-Q plots can be explained by the nature of the contraction of the stream channel network as flow diminishes (e.g. Biswal and Marani, 2010, GRL). To investigate this hypothesis, I have been mapping changes in the active channel network in a 250 ha catchment nested within the larger 69,000 ha Six Mile Creek watershed in central NY. Direct observations of the active channel network have been supplemented with streamflow measurements at 1st and 2nd order channels and the main channel. The larger Six Mile Creek watershed exhibits the expected constant dQ/dt-Q slopes and varying intercepts. However, the 250 ha catchment (assumed to be representative of the upland areas in the larger watershed) maintains a relatively constant active channel network, even during dry periods, and exhibits no systematic contraction of channel lengths. Most 1st order channels appear to be at least in part spring fed from their upper most point of origin. These field observations suggest that at least in this basin, the slope of two in log(dQ/dt) vs log(Q) plots is not directly related to contraction of the channel network. The fractional contribution of subbasins to total basin flow does indicate that these small upland basins contribute a decreased portion of total watershed flow during drier periods, supporting the notion that shifts in intercept may occur because of spatial changes in dominant contributing zones.

  20. A dually active anthrax vaccine that confers protection against both bacilli and toxins

    OpenAIRE

    Rhie, Gi-eun; Roehrl, Michael H.; Mourez, Michael; Collier, R. John; Mekalanos, John J.; Wang, Julia Y.

    2003-01-01

    Systemic anthrax is caused by unimpeded bacillar replication and toxin secretion. We developed a dually active anthrax vaccine (DAAV) that confers simultaneous protection against both bacilli and toxins. DAAV was constructed by conjugating capsular poly-γ-d-glutamic acid (PGA) to protective antigen (PA), converting the weakly immunogenic PGA to a potent immunogen, and synergistically enhancing the humoral response to PA. PGA-specific antibodies bound to encapsulated bacilli and promoted the k...

  1. Pneumatic system for an intelligent article of clothing with active thermal protection:

    OpenAIRE

    Bartoš, Milivoj; Dragčević, Zvonko; Firšt Rogale, Snježana; Nikolić, Gojko; Rogale, Dubravko

    2008-01-01

    The actuator system of an article of clothing with thermal protection is described as a unit that adjusts the optimum level of the necessary thermal protection of an article of clothing. The system consists of a microcontrollerassembly that makes decisions on activating the actuator, measuring the amplifier and pressure sensors in the thermo-insulating chambers, the air fill and release electrovalves for the thermo-insulating chambers and the compressed-air microcompressor. All the elements c...

  2. Pneumatic system for an intelligent article of clothing with active thermal protection

    OpenAIRE

    Nikolić, Gojko

    2015-01-01

    The actuator system of an article of clothing with thermal protection is described as a unit that adjusts the optimum level of the necessary thermal protection of an article of clothing. The system consists of a microcontrollerassembly that makes decisions on activating the actuator, measuring the amplifier and pressure sensors in the thermo-insulating chambers, the air fill and release electrovalves for the thermo-insulating chambers and the compressed-air microcompressor. All the elements c...

  3. Synthesis, Characterization and Antimicrobial activity of protected dipeptides and their deprotected analogs

    OpenAIRE

    Jatinder Pal Kaur Gill; Simranjeet Singh; Nidhi Sethi

    2015-01-01

    Peptides are the chemical compounds which consist of amino acids coupled together by peptide linkage. Peptide derivatives are synthesized by coupling the carboxyl group of one amino acid with amino group of other. Due to the possibilities of fortuitous and unintentional reactions, various protecting groups are used to protect the carboxylic acid as well as amino groups of both the amino acids. These peptide derivatives are associated with a variety of pharmacological activities including anti...

  4. 适用主动配电网的差动保护方案研究%Differential protection scheme to apply to active distribution network

    Institute of Scientific and Technical Information of China (English)

    李瑞生

    2015-01-01

    为了解决主动配电网双向潮流对电缆型配电网保护影响,分析了DER接入电缆型配电网对保护带来的问题,提出了适用于主动配电网的差动保护方案。差动保护方案配置集中式线路差动与就地式母线差动保护,适用于电缆线路的配电自动化。DTU 采用内置以太网通信技术,采用专用光纤通道“手拉手”连接。基于光纤通道实现DTU 数据同步,DTU 进出电流传输至集中式差动保护装置,由集中式差动保护装置实现配电网线路保护,DTU就地实现环网柜母线保护,能很好地满足电缆线路ADN接入DG对保护的要求。设计开发了相应的DTU及集中式差动保护装置,应用在实际的电缆线路ADN系统,具有很好的应用前景。%To solve the cable line distribution network protection impact of active distribution network bi-directional current, this paper analyzes the protection problem of the DER access and puts forward the scheme adapt to active distribution network differential protection. The scheme disposes centralized line differential protection and decentralized bus differential protection locally, which is suitable for cable line distribution automation. DTU adopts built-in Ethernet port technology, uses dedicated fiber channel hand in hand to connect. Based on fiber channel to realize synchronous sampling, DTU transfers current-in line and current-out line to centralized differential protection device, centralized differential protection device realizes distribution network line protection, DTU realizes ring main unit bus protection, which can well solve those problems of DG access. Corresponding DTU and centralized protection device are designed and used in the practical cable line ADN system, which has good application prospect.

  5. SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity

    Directory of Open Access Journals (Sweden)

    Carrasquillo Robert

    2012-11-01

    Full Text Available Abstract Background Transient receptor potential canonical (TRPC channels are non-selective cation channels involved in receptor-mediated calcium signaling in diverse cells and tissues. The canonical transient receptor potential 6 (TRPC6 has been implicated in several pathological processes, including focal segmental glomerulosclerosis (FSGS, cardiac hypertrophy, and pulmonary hypertension. The two large cytoplasmic segments of the cation channel play a critical role in the proper regulation of channel activity, and are involved in several protein-protein interactions. Results Here we report that SNF8, a component of the endosomal sorting complex for transport-II (ESCRT-II complex, interacts with TRPC6. The interaction was initially observed in a yeast two-hybrid screen using the amino-terminal cytoplasmic domain of TRPC6 as bait, and confirmed by co-immunoprecipitation from eukaryotic cell extracts. The amino-terminal 107 amino acids are necessary and sufficient for the interaction. Overexpression of SNF8 enhances both wild-type and gain-of-function mutant TRPC6-mediated whole-cell currents in HEK293T cells. Furthermore, activation of NFAT-mediated transcription by gain-of-function mutants is enhanced by overexpression of SNF8, and partially inhibited by RNAi mediated knockdown of SNF8. Although the ESCRT-II complex functions in the endocytosis and lysosomal degradation of transmembrane proteins, SNF8 overexpression does not alter the amount of TRPC6 present on the cell surface. Conclusion SNF8 is novel binding partner of TRPC6, binding to the amino-terminal cytoplasmic domain of the channel. Modulating SNF8 expression levels alters the TRPC6 channel current and can modulate activation of NFAT-mediated transcription downstream of gain-of-function mutant TRPC6. Taken together, these results identify SNF8 as a novel regulator of TRPC6.

  6. Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A.

    Science.gov (United States)

    Yao, Zhen; Namkung, Wan; Ko, Eun A; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A S

    2012-01-01

    The Ca(2+)-activated Cl(-) channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl(-) conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl(-) conductance with single-site IC(50)~150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl(-) channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  7. Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A.

    Directory of Open Access Journals (Sweden)

    Zhen Yao

    Full Text Available The Ca(2+-activated Cl(- channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl(- conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol, the major component of clove oil. Eugenol fully inhibited TMEM16A Cl(- conductance with single-site IC(50~150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl(- channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities.

  8. In vivo evidence for nitric oxide-mediated calcium-activated potassium-channel activation during human endotoxemia.

    NARCIS (Netherlands)

    Pickkers, P.; Dorresteijn, M.J.; Bouw, M.P.W.J.M.; Hoeven, J.G. van der; Smits, P.

    2006-01-01

    BACKGROUND: During septic shock, the vasoconstrictor response to norepinephrine is seriously blunted. Animal experiments suggest that hyperpolarization of smooth muscle cells by opening of potassium (K) channels underlies this phenomenon. In the present study, we examined whether K-channel blockers

  9. Proteolytic activation of the epithelial sodium channel ENaC in preeclampsia examined with urinary exosomes

    DEFF Research Database (Denmark)

    Nielsen, Maria Ravn; Rytz, Mie; Frederiksen-Møller, Britta;

    2015-01-01

    of ENaC by proteolytic cleavage of the γ-subunit ectodomain and release of a 43-aminoacid inhibitory tract from the channel. Exosomes are membrane vesicles released into the urine from apical membranes of the kidney epithelial cells. OBJECTIVES: (1) To investigate if the proteolytic state of the ENaC γ......-subnit can be studied in urine exosomes from pregnant women. (2) To investigate if the ENaC γ-subunit ectodomain is abnormally activated by proteolysis in preeclamptic women. METHODS: 100 mL spot urine samples from 14 preeclamptic women, 17 pregnant women and 9 non-pregnant women were collected with protease...... inhibitors. Plasmin/plasminogen was measured. Exosomes were recovered by ultracentrifugation at 220,000×g at 4°C for 100 min. The exosome fraction was used for western blotting with a newly developed monoclonal antibody, mAb3C7, directed against the "inhibitory" tract in γ-ENaC. Aquaporin-2 (AQP2) was used...

  10. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation

    DEFF Research Database (Denmark)

    Kirkegaard, Signe Skyum; Lambert, Ian Henry; Gammeltoft, Steen; Hoffmann, Else Kay

    2010-01-01

    (K,vol) indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel to a...... lower cell volume. Swelling-activated K(+) efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium, it is...... demonstrated that mpV(pic) increased the volume-sensitive part of the K(+) efflux 1.3 times. To exclude K(+) efflux via a KCl cotransporter, cellular Cl(-) was substituted with NO(3)(-). Also under these conditions K(+) efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved in...

  11. Store-Operated Ca2+ Release-Activated Ca2+ Channels Regulate PAR2-Activated Ca2+ Signaling and Cytokine Production in Airway Epithelial Cells.

    Science.gov (United States)

    Jairaman, Amit; Yamashita, Megumi; Schleimer, Robert P; Prakriya, Murali

    2015-09-01

    The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines. PMID:26238490

  12. Synthetic Ciguatoxins Selectively Activate Nav1.8-derived Chimeric Sodium Channels Expressed in HEK293 Cells*

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyazaki, Keisuke; Hirama, Masahiro; Kondo, Chie; Kinoshita, Eiji; Miyoshi, Hiroshi; Seyama, Issei

    2009-01-01

    The synthetic ciguatoxin CTX3C has been shown to activate tetrodotoxin (TTX)-sensitive sodium channels (Nav1.2, Nav1.4, and Nav1.5) by accelerating activation kinetics and shifting the activation curve toward hyperpolarization (Yamaoka, K., Inoue, M., Miyahara, H., Miyazaki, K., and Hirama, M. (2004) Br. J. Pharmacol. 142, 879–889). In this study, we further explored the effects of CTX3C on the TTX-resistant sodium channel Nav1.8. TTX-resistant channels have been shown to be involved in transducing pain and related sensations (Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) Nature 379, 257–262). Thus, we hypothesized that ciguatoxin-induced activation of the Nav1.8 current would account for the neurological symptoms of ciguatera poisoning. We found that 0.1 μm CTX3C preferentially affected the activation process of the Nav1.8 channel compared with those of the Nav1.2 and Nav1.4 channels. Importantly, without stimulation, 0.1 μm CTX3C induced a large leakage current (IL). The conductance of the IL calculated relative to the maximum conductance (Gmax) was 10 times larger than that of Nav1.2 or Nav1.4. To determine the molecular domain of Nav1.8 responsible for conferring higher sensitivity to CTX3C, we made two chimeric constructs from Nav1.4 and Nav1.8. Chimeras containing the N-terminal half of Nav1.8 exhibited a large response similar to wild-type Nav1.8, indicating that the region conferring high sensitivity to ciguatoxin action is located in the D1 or D2 domains. PMID:19164297

  13. Thermodynamic coupling between activation and inactivation gating in potassium channels revealed by free energy molecular dynamics simulations

    OpenAIRE

    Pan, Albert C.; Cuello, Luis G.; Perozo, Eduardo; Roux, Benoît

    2011-01-01

    The amount of ionic current flowing through K+ channels is determined by the interplay between two separate time-dependent processes: activation and inactivation gating. Activation is concerned with the stimulus-dependent opening of the main intracellular gate, whereas inactivation is a spontaneous conformational transition of the selectivity filter toward a nonconductive state occurring on a variety of timescales. A recent analysis of multiple x-ray structures of open and partially open KcsA...

  14. Involvement of TRPV1 channels in the activity of the cannabinoid WIN 55,212-2 in an acute rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Carletti, Fabio; Gambino, Giuditta; Rizzo, Valerio; Ferraro, Giuseppe; Sardo, Pierangelo

    2016-05-01

    The exogenous cannabinoid agonist WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN), has revealed to play a role on modulating the hyperexcitability phenomena in the hippocampus. Cannabinoid-mediated mechanisms of neuroprotection have recently been found to imply the modulation of transient receptor potential vanilloid 1 (TRPV1), a cationic channel subfamily that regulate synaptic excitation. In our study, we assessed the influence of pharmacological manipulation of TRPV1 function, alone and on WIN antiepileptic activity, in the Maximal Dentate Activation (MDA) acute model of temporal lobe epilepsy. Our results showed that the TRPV1 agonist, capsaicin, increased epileptic outcomes; whilst antagonizing TRPV1 with capsazepine exerts a protective role on paroxysmal discharge. When capsaicin is co-administered with WIN effective dose of 10mg/kg is able to reduce its antiepileptic strength, especially on the triggering of MDA response. Accordingly, capsazepine at the protective dose of 2mg/kg managed to potentiate WIN antiepileptic effects, when co-treated. Moreover, WIN subeffective dose of 5mg/kg was turned into effective when capsazepine comes into play. This evidence suggests that systemic administration of TRPV1-active drugs influences electrically induced epilepsy, with a noticeable protective activity for capsazepine. Furthermore, results from the pharmacological interaction with WIN support an interplay between cannabinoid and TRPV1 signaling that could represent a promising approach for a future pharmacological strategy to challenge hyperexcitability-based diseases. PMID:26970948

  15. Protection of lactoperoxidase activity with sugars during lyophilization and evaluation of its antibacterial properties

    OpenAIRE

    Shariat, SZ. Samsam; N Jafari; Tavakoli, N.; Najafi, R. Bahri

    2015-01-01

    The purpose of the present study was to compare the stabilizing effect of four disaccharides alone or in combination on the lactoperoxidase (LP) derived from bovine milk during lyophilization. Sucrose, lactose, maltose, and trehalose at different concentrations (5-500 mM) were used to compare their protective effects on LP activity. The activity of lyophilized and native LP enzyme was evaluated using the procedure of Schindler with slight modifications. The antibacterial activity of the lyoph...

  16. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    International Nuclear Information System (INIS)

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity

  17. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  18. Ion channel activity of the CSFV p7 viroporin in surrogates of the ER lipid bilayer.

    Science.gov (United States)

    Largo, Eneko; Verdiá-Báguena, Carmina; Aguilella, Vicente M; Nieva, José L; Alcaraz, Antonio

    2016-01-01

    Viroporins comprise a family of non-structural proteins that play significant and diverse roles during the replication cycle of many animal viruses. Consequently, they have become promising targets for inhibitory drug and vaccine development. Structure–function traits common to all members of the family are their small size (ca. 60–120 aa), high hydrophobicity, and the presence of helical domains that transverse the membrane and assemble into oligomeric-permeating structures therein. The possibility that viroporins show in particular conditions any kind of specificity in the transport of ions and small solutes remains a point of contention in the field. Here we have approached this issue using the Classical Swine Fever Virus (CSFV) protein p7 viroporin as a model. We have previously reported that CSFV-p7 induces release of ANTS (MW: 427.33) from lipid vesicles that emulate the Endoplasmic Reticulum (ER) membrane, and that this process is dependent on pH, modulated by the lipid composition, and recreated by a C-terminal transmembrane helix. Here we have assayed CSFV-p7 for its capacity to form ion-conducting channels in ER-like planar lipid membranes, and established whether this activity is subject to regulation by the same factors. The analysis of electrophysiological recordings in ER membrane surrogates suggests that CSFV-p7 forms pores wide enough to allow ANTS release. Moreover, we were able to discriminate between two pore structures with slightly different sizes and opposite ion selectivities. The fact that the relative abundances of each pore type depend crucially on membrane composition strengthens the view that the physicochemical properties of the lipid bilayers present in the cell endomembrane system modulate viroporin activity. PMID:26464198

  19. Activation of the skeletal muscle Ca2+ release channel by the triazine dyes cibacron blue F3A-G and reactive red 120

    International Nuclear Information System (INIS)

    Vesicle-45Ca2+ ion flux and planar lipid bilayer single-channel measurements have shown that the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (SR) is activated by micromolar concentrations of Cibacron Blue F3A-G (Reactive Blue 2) and Reactive Red 120. Cibacron Blue increased the 45Ca2+ efflux rate from heavy SR vesicles by apparently interacting with both the adenine nucleotide and caffeine activating sites of the channel. Dye-induced 45Ca2+ release was inhibited by Mg2+ and ruthenium red. In single channel recordings with the purified channel protein complex, Cibacron Blue increased the open time of the Ca2+ release channel without an apparent change in the conductance of the main and subconductance states of the channel

  20. Active Immunity Induced by Passive IgG Post-Exposure Protection against Ricin

    Directory of Open Access Journals (Sweden)

    Charles Chen Hu

    2014-01-01

    Full Text Available Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab’2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab’2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab’2 could rescue 100% of the mice by one dose (3 nmol administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50, only the IgG-treated mice survived; the F(ab’2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection.

  1. Novel Mechanism for Suppression of Hyperpolarization-activated Cyclic Nucleotide-gated Pacemaker Channels by Receptor-like Tyrosine Phosphatase-α*

    OpenAIRE

    Huang, Jianying; Huang, Aijie; Zhang, Qi; Lin, Yen-Chang; Yu, Han-Gang

    2008-01-01

    We have previously reported an important role of increased tyrosine phosphorylation activity by Src in the modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here we provide evidence showing a novel mechanism of decreased tyrosine phosphorylation on HCN channel properties. We found that the receptor-like protein-tyrosine phosphatase-α (RPTPα) significantly inhibited or eliminated HCN2 channel expression in HEK293 cells. Biochemical eviden...

  2. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction.

    Science.gov (United States)

    Padula, Audrey E; Griffin, William C; Lopez, Marcelo F; Nimitvilai, Sudarat; Cannady, Reginald; McGuier, Natalie S; Chesler, Elissa J; Miles, Michael F; Williams, Robert W; Randall, Patrick K; Woodward, John J; Becker, Howard C; Mulholland, Patrick J

    2015-07-01

    Small-conductance Ca(2+)-activated K(+) (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kcnn3 transcript levels in the nucleus accumbens (NAc) of genetically diverse BXD strains of mice predicted voluntary alcohol consumption. Transcript levels of Kcnn3 in the NAc negatively correlated with alcohol intake levels in BXD strains, and alcohol dependence enhanced the strength of this association. Microinjections of the KCa2 channel inhibitor apamin into the NAc increased alcohol intake in control C57BL/6J mice, while spontaneous seizures developed in alcohol-dependent mice following apamin injection. Consistent with this finding, alcohol dependence enhanced the intrinsic excitability of medium spiny neurons in the NAc core and reduced the function and protein expression of KCa2 channels in the NAc. Altogether, these data implicate the family of KCNN genes in alcohol, nicotine, and drug addiction, and identify KCNN3 as a mediator of voluntary and excessive alcohol consumption. KCa2.3 channels represent a promising novel target in the pharmacogenetic treatment of alcohol and drug addiction. PMID:25662840

  3. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Los Alamos National Laboratory; Velappan, Nileena [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  4. Functional Expression of a Ca(2+)-activated Cl(-) Channel Modulator Involved in Ion Transport and Epithelial Cell Differentiation.

    Science.gov (United States)

    Yamazaki, Jun

    2016-01-01

      Cl(-)-permeable channels and transporters expressed on the cell membranes of various mammalian cell types play pivotal roles in the transport of electrolytes and water, pH regulation, cell volume and membrane excitability, and are therefore expected to be useful molecular targets for drug discovery. Both TMEM16A (a possible candidate for Ca(2+)-regulated Cl(-) channels recently identified) and cystic fibrosis transmembrane conductance regulator (CFTR) (or cAMP-regulated Cl(-) channels) have been known to be involved in Cl(-) secretion and reabsorption in the rat salivary gland. Crosstalk between two types of regulatory pathways through these two types of channels has also been described. Previously, we demonstrated that CLCA, a Ca(2+)-activated Cl(-) channel modulator, was involved in Cl(-) absorption in rat salivary ducts. In addition to Ca(2+), basal NF-κB activity in a mouse keratinocyte line was shown to be involved in the transcriptional regulation of CLCA. Conversely, a truncated isoform of CLCA was found in undifferentiated epithelial cells present in the rat epidermal basal layers. Under regulation by Ca(2+) and PKC, the surface expression of β1-integrin and cell adhesion were decreased in the CLCA-overexpressing cells. Knockdown of this isoform elevated the expression of β1-integrin in rat epidermis in vivo. These results indicate that the specific differentiation-dependent localization of CLCA, and transcriptional regulation through Ca(2+), are likely to affect ion permeability and the adhesive potential of epithelial cells. In summary, these types of Cl(-) channels and their modulators may function in a coordinated manner in regulating the functions of epithelial cells under different physiological conditions. PMID:26935091

  5. Research on laser protection: an overview of 20 years of activities at Fraunhofer IOSB

    Science.gov (United States)

    Ritt, G.; Walter, D.; Eberle, B.

    2013-10-01

    Since the advent of the laser in 1960, the protection of human eyes and sensors against intended or unintended damage by laser radiation is a hot research topic. As long as the parameters of a laser source such as the wavelength and the output power are known, adequate laser safety can be ensured simply by utilizing conventional laser protection filters which are based on absorption or interference effects. This is typically the case in cooperative environments like a laboratory or industrial facilities. A very different situation prevails in military defense or civil security. There, the parameters of encountering laser threats are usually unknown. Protection measures, helping against all types of laser threats, are the long desired objective of countless research activities. The biggest challenge in finding an effective measure arises from single laser pulses of unknown wavelength. The problem demands for a passive protection concept and may be based for example on intensity dependent effects. Moreover, the requested solutions shall comprise add-on possibilities like thin films to be put on existing optics, windshields or glasses. Unfortunately, such an all-embracing solution is still far out of reach. The Fraunhofer IOSB has been working on the evaluation and development of non-conventional laser protection methods for more than 20 years. An overview of the past and present research activities shall be presented, comprising protection measures against laser damaging and laser dazzling.

  6. The physical protection of nuclear material and nuclear facilities including activities to combat nuclear terrorism

    International Nuclear Information System (INIS)

    The paper describes present of physical protection of nuclear facilities and materials in the Czech Republic; the basic concept and regulation in physical protection and the effort made to strengthen the national regulatory programmes; the role of the police as a response force and the role of the new private security companies; the upgrading of the physical protection systems at the different types of the nuclear installations to fulfill the more strict requirements of the new Atomic Law No. 18/1997 Coll. and Regulation No. 144/1997 Coll., on physical protection of nuclear materials and nuclear facilities; activities carried out in connection with governmental decision No. 479 dated 19 May 2004 on National action plan to combat terrorism. (author)

  7. The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons

    Science.gov (United States)

    Miller-Fleming, Tyne W; Petersen, Sarah C; Manning, Laura; Matthewman, Cristina; Gornet, Megan; Beers, Allison; Hori, Sayaka; Mitani, Shohei; Bianchi, Laura; Richmond, Janet; Miller, David M

    2016-01-01

    Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons. DOI: http://dx.doi.org/10.7554/eLife.14599.001 PMID:27403890

  8. Passive and Active Protective Clothing against High-Power Laser Radiation

    Science.gov (United States)

    Hennigs, C.; Hustedt, M.; Kaierle, S.; Wenzel, D.; Markstein, S.; Hutter, A.

    The main objective of the work described in this paper was the development of passive and active protective clothing for the protection of the human skin against accidental laser irradiation and of active protective curtains. Here, the passive systems consist of functional multi-layer textiles, providing a high level of passive laser resistance. In addition, the active functional multi-layer textiles incorporate sensors that detect laser exposure and are, by means of a safety control, able to deactivate the laser beam automatically.Due to the lack of regulations for testing and qualifying textiles to be used as laser PPE, test methods were defined and validated. Additionally, corresponding testing set-ups were developed.Finally, the gap with respect to standardization was bridged by the definition of a test procedure and the requirements with respect to laser PPE.The developments were demonstrated by a set of tailored functional passive and active laser-protective clothing prototypes (gloves, jackets, aprons, trousers) and active curtains as well as by a prototype testing rig, providing the possibility to perform the specified low-power and high-power textile test procedure.

  9. Radio protective effects of calcium channel blockers (Deltiazem) on survival of Saccharomyces cerevisiae cells irradiated with different doses of gamma rays

    International Nuclear Information System (INIS)

    Investigations of radioprotective effects of Deltiazem (as one of the commonly used calcium channel blockers, which is used in the treatment of acute and chronic angina and spasmo angina, in addition to the treatment of different types of essential hypertension) has been carried on Saccharomyces Cerevisiae cells. Cells cultures of the most famous yeast Saccharomyces Cerevisiae (bakers yeast) were irradiated with different doses of gamma rays. Results revealed that the necessary dose of gamma rays that leads to 10% of survived cellular population (D10 value) was about 256 Gy. This irradiation dose was used then in all irradiation experiments on culture of S. Cerevisiae cells in which different concentrations of Deltiazem (55, 110, 165 mg/Kg medium) were added before and after irradiation in order to study the radio protective effect of Deltiazem. Results showed that Deltiazem enhances survival percentage of irradiated S. Cerevisiae cultures in a concentration dependent manner. This study confirmed our previous works, which had demonstrated that Deltiazem protects lethally and supralethally irradiated rats, and enhances survival of pre-irradiated Deltiazem treated animals.(author)

  10. Reduced prefrontal cortex activation during divergent thinking in schizophrenia: a multi-channel NIRS study.

    Science.gov (United States)

    Takeshi, Kiyoaki; Nemoto, Takahiro; Fumoto, Masaki; Arita, Hideho; Mizuno, Masafumi

    2010-10-01

    Relationships between deficits in verbal fluency and poor social functioning have been revealed in patients with schizophrenia. In previous studies, we demonstrated that deficits in idea fluency, which is ranked as a more complex type of verbal fluency and reflects divergent thinking ability, were more closely related to social dysfunction than deficits in simple word fluency. Although functional neuroimaging studies have provided detailed data regarding prefrontal dysfunction during word fluency tasks, the regions that relate to deficits in fluency of ideas and thoughts have not yet been clarified in schizophrenia patients. The purpose of the present study was to identify the prefrontal sub-regions responsible for deficits in idea fluency using near-infrared spectroscopy (NIRS), which is more practical than other imaging methods, and to investigate the relationships between lesions and idea fluency deficits and social dysfunction in patients with schizophrenia. Eighteen outpatients with schizophrenia and 16 healthy subjects were recruited for this case-controlled study. Using 24-channel NIRS, we measured changes in hemoglobin concentration in the prefrontal cortical surface area during idea and letter fluency tests. The analyses revealed that schizophrenia patients generally exhibited a smaller increase in the concentration of oxyhemoglobin in the frontopolar region than the controls during both the tests. However, the areas in which reduced activations were demonstrated in the patients differed remarkably between the idea and letter fluency tests: reduced activations were observed in the ventral region during the former test and in the dorsal region of the frontopolar cortex during the latter test. The reduced activations in each sub-region appeared to affect the related cognitive impairment, since the patients showed significant poorer performances than the controls on both the tests. Moreover, hypoactivity during idea fluency was significantly correlated with

  11. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes

    International Nuclear Information System (INIS)

    Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [3H]PN200-110, and the alkaloid, [3H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling

  12. Synthesis, Characterization and Antimicrobial activity of protected dipeptides and their deprotected analogs

    Directory of Open Access Journals (Sweden)

    Jatinder Pal Kaur Gill

    2015-03-01

    Full Text Available Peptides are the chemical compounds which consist of amino acids coupled together by peptide linkage. Peptide derivatives are synthesized by coupling the carboxyl group of one amino acid with amino group of other. Due to the possibilities of fortuitous and unintentional reactions, various protecting groups are used to protect the carboxylic acid as well as amino groups of both the amino acids. These peptide derivatives are associated with a variety of pharmacological activities including antibacterial and antifungal activities. While doing our analysis some of the dipeptides were synthesized in a reasonable yield and purity which were fully characterised by FTIR and H1 NMR. The antimicrobial activity of these derivatives was studied and these were found to be active against two strains of fungi (Aspergillus fumigatus & Pencillium chrysogenum and two strains of bacteria (E. coli and Salmonella typhimurium. This provides for a future insight to work on the synthesisof these dipeptide derivatives to achieve their stability.

  13. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    Science.gov (United States)

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment. PMID:26362752

  14. Sun protection factor persistence on human skin during a day without physical activity or ultraviolet exposure

    DEFF Research Database (Denmark)

    Beyer, Ditte Maria; Faurschou, Annesofie; Philipsen, Peter Alshede;

    2010-01-01

    Recently, we showed that the sun protection factor (SPF) decreases by a constant factor to reach 55% during a day with activities. Organic sunscreens but not inorganic ones are absorbed through the skin. We wished to determine the SPF decrease caused by absorption by investigating the difference in...

  15. Effect of the microfiltration process on antioxidant activity and lipid peroxidation protection capacity of blackberry juice

    OpenAIRE

    Gabriela Azofeifa; Silvia Quesada; Ana-Mercedes Pérez

    2011-01-01

    Phytochemicals are highly concentrated in berries, especially polyphenols as anthocyanins and ellagitannins. These compounds have been associated with antioxidant capacity, lipid peroxidation protection, anti-inflammatory activity, anti-carcinogenic activity, obesity prevention and others. Blackberries are commonly grown and consumed as juice in Latin-American countries. However, blackberry juice is easily fermented and different industrial techniques are being applied to enable the juice to ...

  16. Intrinsic oscillatory activity arising within the electrically coupled AII amacrine-ON cone bipolar cell network is driven by voltage-gated Na + channels

    OpenAIRE

    Trenholm, S; Borowska, J; Zhang, J; Hoggarth, A; Johnson, K.; Barnes, S.; Lewis, TJ; Awatramani, GB

    2012-01-01

    In the rd1 mouse model for retinal degeneration, the loss of photoreceptors results in oscillatory activity (∼10-20 Hz) within the remnant electrically coupled network of retinal ON cone bipolar and AII amacrine cells. We tested the role of hyperpolarization-activated currents (I h), voltage-gated Na + channels and gap junctions in mediating such oscillatory activity. Blocking I h (1 mm Cs +) hyperpolarized the network and augmented activity, while antagonizing voltage-dependent Na + channels...

  17. Effect of the microfiltration process on antioxidant activity and lipid peroxidation protection capacity of blackberry juice

    Directory of Open Access Journals (Sweden)

    Gabriela Azofeifa

    2011-10-01

    Full Text Available Phytochemicals are highly concentrated in berries, especially polyphenols as anthocyanins and ellagitannins. These compounds have been associated with antioxidant capacity, lipid peroxidation protection, anti-inflammatory activity, anti-carcinogenic activity, obesity prevention and others. Blackberries are commonly grown and consumed as juice in Latin-American countries. However, blackberry juice is easily fermented and different industrial techniques are being applied to enable the juice to be stored for longer periods. One important issue required for these techniques is to preserve the health-promoting capacities of blackberries. This study compared the antioxidant activity and the lipid peroxidation protector effect between a fresh blackberry juice (FJ and a microfiltrated blackberry juice (MJ. Chemical analysis of both juices show less polyphenols concentration in the MJ. Despite this difference, values for biological activities, such as protection of lipid peroxidation, was not significantly different between FJ and MJ. These results suggest that the compounds responsible for the antioxidant activity are maintained even after microfiltration and the free radical scavenging capacity of these compounds could protect the initiation of lipid peroxidation. Microfiltration could be used as an industrial technique to produce blackberry juice that maintains biological activities of polyphenols.

  18. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities.

    Science.gov (United States)

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Agnes; Antoni, Ferenc A; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na(+) and organic cations through gramicidin channels and detecting the Cl(-)-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  19. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities.

    Directory of Open Access Journals (Sweden)

    Inna Székács

    Full Text Available Optical waveguide lightmode spectroscopic (OWLS techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na(+ and organic cations through gramicidin channels and detecting the Cl(--channel functions of the (α5β2γ2 GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline.

  20. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne;

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in...... extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx......43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium....

  1. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Sørensen, Belinda Halling; Sauter, Daniel Rafael Peter;

    2015-01-01

    Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown to be...... an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g. secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas...... important cellular functions as well as their role in cancer and drug resistance....

  2. (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels.

    Science.gov (United States)

    Akbulut, Yasemin; Gaunt, Hannah J; Muraki, Katsuhiko; Ludlow, Melanie J; Amer, Mohamed S; Bruns, Alexander; Vasudev, Naveen S; Radtke, Lea; Willot, Matthieu; Hahn, Sven; Seitz, Tobias; Ziegler, Slava; Christmann, Mathias; Beech, David J; Waldmann, Herbert

    2015-03-16

    Current therapies for common types of cancer such as renal cell cancer are often ineffective and unspecific, and novel pharmacological targets and approaches are in high demand. Here we show the unexpected possibility for the rapid and selective killing of renal cancer cells through activation of calcium-permeable nonselective transient receptor potential canonical (TRPC) calcium channels by the sesquiterpene (-)-englerin A. This compound was found to be a highly efficient, fast-acting, potent, selective, and direct stimulator of TRPC4 and TRPC5 channels. TRPC4/5 activation through a high-affinity extracellular (-)-englerin A binding site may open up novel opportunities for drug discovery aimed at renal cancer. PMID:25707820

  3. Derivation of Hodgkin-Huxley equations for a Na+ channel from a master equation for coupled activation and inactivation

    CERN Document Server

    Vaccaro, S R

    2016-01-01

    The Na+ current in nerve and muscle membranes may be described in terms of the activation variable m(t) and the inactivation variable h(t), which are dependent on the transitions of S4 sensors in each of the ion channel domains DI to DIV. The time-dependence of the Na+ current and the rate equations satisfied by m(t) and h(t) may be derived from the solution to a master equation which describes the coupling between two activation sensors regulating the Na+ channel conductance and a two stage inactivation process. The voltage dependence of the rate functions for inactivation and recovery from inactivation are consistent with the empirically determined Hodgkin-Huxley expressions, and exhibit saturation for both depolarized and hyperpolarized clamp potentials.

  4. Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS).

    Science.gov (United States)

    Kelly, Martin J; Qiu, Jian; Wagner, Edward J; Rønnekleiv, Oline K

    2002-12-01

    Estrogen rapidly alters the excitability of hypothalamic neurons that are involved in regulating numerous homeostatic functions including reproduction, stress responses, feeding and motivated behaviors. Some of the neurons include neurosecretory neurons such as gonadotropin-releasing hormone (GnRH) and dopamine neurons, and local circuitry neurons such as proopiomelanocortin (POMC) and gamma-aminobutyric acid (GABA) neurons. We have elucidated several non-genomic pathways through which the steroid alters synaptic responses in these hypothalamic neurons. We have examined the modulation by estrogen of the coupling of various receptor systems to inwardly-rectifying and small-conductance, Ca(2+)-activated K(+) (SK) channels using intracellular sharp-electrode and whole-cell recording techniques in hypothalamic slices from ovariectomized female guinea pigs. Estrogen rapidly uncouples mu-opioid receptors from G protein-gated inwardly-rectifying K(+) (GIRK) channels in POMC neurons and GABA(B) receptors from GIRK channels in dopamine neurons as manifested by a reduction in the potency of mu-opioid and GABA(B) receptor agonists to hyperpolarize their respective cells. This effect is blocked by inhibitors of protein kinase A (PKA) and protein kinase C (PKC). In addition, after 24h following steroid administration in vivo, the GABA(B)/GIRK channel uncoupling observed in GABAergic neurons of the preoptic area is associated with reduced agonist efficacy. Conversely, estrogen enhances the efficacy of alpha(1)-adrenergic receptor agonists to inhibit apamin-sensitive SK currents in these preoptic GABAergic neurons, and does so in both a rapid and sustained fashion. Finally, we observed a direct, steroid-induced hyperpolarization of GnRH neurons. These findings indicate a richly complex yet coordinated steroid modulation of K(+) channel activity in hypothalamic (POMC, dopamine, GABA, GnRH) neurons that are involved in regulating numerous homeostatic functions. PMID:12650715

  5. A Peroxisome Proliferator-Activated Receptor-α Activator Induces Renal CYP2C23 Activity and Protects from Angiotensin II-Induced Renal Injury

    OpenAIRE

    Muller, Dominik N.; Theuer, Juergen; Shagdarsuren, Erdenechimeg; Kaergel, Eva; Honeck, Horst; Park, Joon-Keun; Markovic , Marija; Barbosa-Sicard, Eduardo; Dechend, Ralf; Wellner, Maren; Kirsch, Torsten; Fiebeler, Anette; Rothe, Michael; Haller, Hermann; Luft, Friedrich C.

    2004-01-01

    Cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolites are involved in the regulation of renal vascular tone and salt excretion. The epoxygenation product 11,12-epoxyeicosatrienoic acid (EET) is anti-inflammatory and inhibits nuclear factor-κB activation. We tested the hypothesis that the peroxisome proliferator-activated receptor-α-activator fenofibrate (Feno) induces CYP isoforms, AA hydroxylation, and epoxygenation activity, and protects against inflammatory organ damage. Double...

  6. Effects of Transient Receptor Potential Channel Blockers on Pacemaker Activity in Interstitial Cells of Cajal from Mouse Small Intestine

    OpenAIRE

    Kim, Byung Joo; Nam, Joo Hyun; Kim, Seon Jeong

    2011-01-01

    The interstitial cells of Cajal (ICCs) are pacemakers in the gastrointestinal tract and transient receptor potential melastatin type 7 (TRPM7) is a candidate for pacemaker channels. The effect of the 5-lipoxygenase (5-LOX) inhibitors NDGA, AA861, MK886 and zileuton on pacemaking activity of ICCs was examined using the whole cell patch clamp technique. NDGA and AA861 decreased the amplitude of pacemaker potentials in ICC clusters, but the resting membrane potentials displayed little change, re...

  7. Synthesis and Calcium Channel Blocking Activity of 1, 4-Dihydropyridine Derivatives Containing Ester Substitute and Phenyl Carbamoyl Group

    Directory of Open Access Journals (Sweden)

    Bassem Sadek

    2011-01-01

    Full Text Available Problem statement: Several studies on the synthesis of new nifedipine analogs have been carried out, but the literature reveled that no study on the synthesis and calcium channel blocking activity of the substituted ester with an amide (5-phenylcarbamoyl moiety has been reported. Approach: Six new derivatives of m-nifedipine have been successfully synthesized by substituting an ester moiety with an amide (5-phenylcarbamoyl moiety, using a modified Hantzsch reactions and tested for their pharmacological activities. The nifedipine analogs 1-6 were characterized and confirmed using elemental analysis, Infrared spectroscopy (IR, Nuclear Magnetic Resonance (1H NMR and Mass spectroscopy. The purity of the compounds was ascertained by melting point and TLC. The in vitro calcium channel blocking activities were evaluated using the high K+ concentration of Porcine Coronary Artery Smooth Muscles (PCASM assay. Results: The compounds (1-2 failed to exhibit any blocking activity (IC50 = 10−7 to 10−5 M range, while the compounds 3-6 relaxed precontracted porcine coronary artery smooth muscles with pEC50 values ranging between 4.37±0.10 (compound 3 and 6.46±0.07 (compound 5, indicating that compounds 3-6 exhibit comparable potencies in blocking calcium channels to reference drug varapamil (6.97±0.15 and m-nifedipine (6.48±0.05. Conclusion: The results of this study showed that some of the developed new compounds possess maximal calcium channel blocking effects comparable to m-nifedipine. The developed compounds in the present study will predicatively show an increased metabolic stability and consequently longer duration of actions compared to m-nifedipine and could be, therefore, suitable candidates for further optimization to be evaluated as a new class of antihypertensive drugs.

  8. The hyperpolarization-activated cyclic nucleotide-gated HCN2 channel transports ammonium in the distal nephron

    OpenAIRE

    Carrisoza-Gaytán, Rolando; Rangel, Claudia; Salvador, Carolina; Saldaña-Meyer, Ricardo; Escalona, Christian; Satlin, Lisa M.; Liu, Wen; Zavilowitz, Beth; Trujillo, Joyce; Bobadilla, Norma A.; Escobar, Laura I.

    2011-01-01

    Recent studies have identified Rhesus proteins as important molecules for ammonia transport in acid-secreting intercalated cells in the distal nephron. Here, we provide evidence for an additional molecule that can mediate NH3/NH4 excretion, the subtype 2 of the hyperpolarization-activated cyclic nucleotide-gated channel family (HCN2), in collecting ducts in rat renal cortex and medulla. Chronic metabolic acidosis in rats did not alter HCN2 protein expression but downregulated the relative abu...

  9. Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells.

    Science.gov (United States)

    Meyer, K; Korbmacher, C

    1996-09-01

    In the present study we used whole-cell patch clamp recordings to investigate swelling-activated Cl-currents (ICl-swell) in M-1 mouse cortical collecting duct (CCD) cells. Hypotonic cell swelling reversibly increased the whole-cell Cl- conductance by about 30-fold. The I-V relationship was outwardly-rectifying and ICl-swell displayed a characteristic voltage-dependence with relatively fast inactivation upon large depolarizing and slow activation upon hyperpolarizing voltage steps. Reversal potential measurements revealed a selectivity sequence SCN- > I- > Br- > Cl- > > gluconate. ICl-swell was inhibited by tamoxifen, NPPB (5-nitro-2(3-phenylpropylamino)-benzoate), DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid), flufenamic acid, niflumic acid, and glibenclamide, in descending order of potency. Extracellular cAMP had no significant effect. ICl-swell was Ca2+ independent, but current activation depended on the presence of a high-energy gamma-phosphate group from intracellular ATP or ATP gamma S. Moreover, it depended on the presence of intracellular Mg2+ and was inhibited by staurosporine, which indicates that a phosphorylation step is involved in channel activation. Increasing the cytosolic Ca2+ concentration by using ionomycin stimulated Cl- currents with a voltage dependence different from that of ICl-swell. Analysis of whole-cell current records during early onset of ICl-swell and during final recovery revealed discontinuous step-like changes of the whole-cell current level which were not observed under nonswelling conditions. A single-channel I-V curve constructed using the smallest resolvable current transitions detected at various holding potentials and revealed a slope conductance of 55, 15, and 8 pS at +120, 0, and -120 mV, respectively. The larger current steps observed in these recordings had about 2, 3, or 4 times the size of the putative single-channel current amplitude, suggesting a coordinated gating of several individual channels or channel

  10. Design and characterisations of double-channel GaAs pHEMT Schottky diodes based on vertically stacked MMICs for a receiver protection limiter

    Science.gov (United States)

    Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.

    2016-07-01

    A microwave receiver protection limiter circuit has been designed, fabricated and tested using vertically stacked GaAs MMIC technology. The limiter circuit with a dimension of 2.5 × 1.3 mm2 is formed by using double-channel AlGaAs/InGaAs pseudomorphic HEMT (pHEMT) Schottky diodes integrated with a low-loss V-shaped coplanar waveguide multilayer structure. The electrical parameter characteristics of the pHEMT Schottky diodes are presented including the C–V profile showing the presence of a double channel in the device layer structure. This unique feature can also be seen from the double-peak responses of the electron density as a function of the device layer width, which represent the high electron concentration at two different 2-DEG layers of the structure. An equivalent circuit model of pHEMT Schottky diodes is demonstrated showing good agreement with the measurement results. At zero-bias condition, the devices show high performance in diode detector applications with voltage sensitivities of more than 89 mV μW‑1 at 10 GHz and at least 5.4 mV μW‑1 at 35 GHz. The measurement results of the limiter circuit demonstrated the blocking of input power signals greater than 20 dBm input power at 3 GHz. To the best of our knowledge this is the first demonstration of the use of pHEMT Schottky diodes in microwave power limiter applications.

  11. Biophysical characterization of KV3.1 potassium channel activating compounds

    DEFF Research Database (Denmark)

    Taskin, Bahar; von Schoubye, Nadia Lybøl; Sheykhzade, Majid; Frank Bastlund, Jesper; Grunnet, Morten; Jespersen, Thomas

    2015-01-01

    The effect of two positive modulators, RE1 and EX15, on the voltage-gated K(+) channel Kv3.1 was investigated using the whole-cell patch-clamp technique on HEK293 cells expressing Kv3.1a. RE1 and EX15 increased the Kv3.1 currents in a concentration-dependent manner with an EC50 value of 4.5 and 1...... present study introduces the first detailed biophysical characterization of two new Kv3.1 channel modifying compounds with different modulating properties....

  12. Cpt-cAMP activates human epithelial sodium channels via relieving self-inhibition

    OpenAIRE

    Molina, Raul; Han, Dong-Yun; Su, Xue-Feng; Zhao, Run-Zhen; Zhao, Meimi; Sharp, Gretta M.; Chang, Yongchang; Ji, Hong-Long

    2011-01-01

    External Na+ self-inhibition is an intrinsic feature of epithelial sodium channels (ENaC). Cpt-cAMP regulates heterologous guinea pig but not rat αβγ ENaC in a ligand-gated manner. We hypothesized that cpt-cAMP may eliminate the self-inhibition of human ENaC thereby open channels. Regulation of self-inhibition by this compound in oocytes was analyzed using the two-electrode voltage clamp and Ussing chamber setups. External cpt-cAMP stimulated human but not rat and murine αβγ ENaC in a dose- a...

  13. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity.

    Science.gov (United States)

    Iordanov, Iordan; Mihályi, Csaba; Tóth, Balázs; Csanády, László

    2016-01-01

    Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca(2+)-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s(-1)), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. PMID:27383051

  14. The role and activities of the ILO concerning the radiation protection of workers (ionizing radiation)

    International Nuclear Information System (INIS)

    The 1984 International Labour Conference Resolution concerning the improvement of the working conditions and the environment laid down the fundamental objectives and principles on which the Infocus Programme on Safety and Health and the Environment (SafeWork) of the International Labour Organization (ILO) is based. The protection of the worker against ionizing radiations falls naturally within the scope of this programme which uses, in a co-ordinated manner, the various means of action available to the ILO to give governments and employers' and workers' organizations the necessary help in drawing up and implementing programmes for the improvement of working conditions and the environment. These include international standards in the form of conventions and recommendations, codes of practice, dissemination of information through, for example, the International Safety and Health Information Centre and technical co-operation activities. In June 1960, the International Labour Conference adopted Convention No.115 and recommendation No.114 concerning the protection of workers against ionizing radiations. Convention No.115, which provides that each Member of the ILO ratifying it shall give effect to its provisions by means of laws, regulations, or other appropriate methods, has been ratified by 47 countries. There has been a long standing history of efficient interagency co-operation on radiation protection and the current activities of the ILO are centred on the promotion of the active involvement of employers' and workers' organizations in occupational radiation protection and the implementation of the International Basic Safety Standards and Safety Fundamentals at both international and national levels. (author)

  15. Melanocortin 1 receptor agonist protects podocytes through catalase and RhoA activation.

    Science.gov (United States)

    Elvin, Johannes; Buvall, Lisa; Lindskog Jonsson, Annika; Granqvist, Anna; Lassén, Emelie; Bergwall, Lovisa; Nyström, Jenny; Haraldsson, Börje

    2016-05-01

    Drugs containing adrenocorticotropic hormone have been used as therapy for patients with nephrotic syndrome. We have previously shown that adrenocorticotropic hormone and a selective agonist for the melanocortin 1 receptor (MC1R) exert beneficial actions in experimental membranous nephropathy with reduced proteinuria, reduced oxidative stress, and improved glomerular morphology and function. Our hypothesis is that MC1R activation in podocytes elicits beneficial effects by promoting stress fibers and maintaining podocyte viability. To test the hypothesis, we cultured podocytes and used highly specific agonists for MC1R. Podocytes were subjected to the nephrotic-inducing agent puromycin aminonucleoside, and downstream effects of MC1R activation on podocyte survival, antioxidant defense, and cytoskeleton dynamics were studied. To increase the response and enhance intracellular signals, podocytes were transduced to overexpress MC1R. We showed that puromycin promotes MC1R expression in podocytes and that activation of MC1R promotes an increase of catalase activity and reduces oxidative stress, which results in the dephosphorylation of p190RhoGAP and formation of stress fibers through RhoA. In addition, MC1R agonists protect against apoptosis. Together, these mechanisms protect the podocyte against puromycin. Our findings strongly support the hypothesis that selective MC1R-activating agonists protect podocytes and may therefore be useful to treat patients with nephrotic syndromes commonly considered as podocytopathies. PMID:26887829

  16. Actively Biased p-Channel MOSFET Studied with Scanning Capacitance Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DE WOLF,P.; DODD,PAUL E.; HETHERINGTON,DALE L.; NAKAKURA,CRAIG Y.; SHANEYFELT,MARTY R.

    1999-09-22

    Scanning capacitance microscopy (SCM) was used to study the cross section of an operating p-channel MOSFET. We discuss the novel test structure design and the modifications to the SCM hardware that enabled us to perform SCM while applying dc bias voltages to operate the device. The results are compared with device simulations performed with DAVINCI.

  17. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    the ion channel. To investigate the physiological relevance of this pathway, we characterized the mAHP present after action potentials in spinal motoneurons recorded in a slice preparation from the lumbar spinal cord of the adult turtle. By performing current and voltage clamp recordings, we showed...

  18. Activation energies for fragmentation channels of anthracene dications : Experiment and theory

    NARCIS (Netherlands)

    Reitsma, G.; Zettergren, H.; Martin, S.; Bredy, R.; Chen, L.; Bernard, J.; Hoekstra, R.; Schlathölter, Thomas

    2012-01-01

    We have studied the fragmentation of the polycyclic aromatic hydrocarbon anthracene (C14H10) after double electron transfer to a 5 keV proton. The excitation energies leading to the most relevant dissociation and fission channels of the resulting molecular dication were directly determined experimen

  19. Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352

    DEFF Research Database (Denmark)

    Dupuis, Delphine S; Schrøder, Rikke L; Jespersen, Thomas;

    2002-01-01

    steady state current at -30 mV by 12-fold, in contrast to the 2-fold increase observed for the other KCNQ channels [Schrøder et al., 2001]. Retigabine ((D-23129; N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester) induced a smaller, yet qualitatively similar effect on KCNQ5. Furthermore...

  20. Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352

    DEFF Research Database (Denmark)

    Dupuis, Delphine S.; Schrøder, Rikke Louise K.; Jespersen, Thomas;

    2002-01-01

    state current at -30 mV by 12-fold, in contrast to the 2-fold increase observed for the other KCNQ channels [Schrphider ct al., 2001]. Retigabine ((D-23129; N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester) induced a smaller, yet qualitatively similar effect on KCNQ5. Furthermore...

  1. Aspects of UN Activities on the International Protection of Women's Rights

    Directory of Open Access Journals (Sweden)

    Jana Maftei

    2015-05-01

    Full Text Available Human rights and their protection represent the regulation object of a major part of all the legal rules encompassing the international public law. The Members’ efforts to protect women's rights and to promote gender equality have resulted in the adoption of important documents, fundamental to all mankind. In the light of these international regulations, States have assumed obligations and they have created mechanisms to achieve them. Through the analytical approach we have highlighted the activities of the United Nations and international bodies for protecting women's rights and gender equality in all sectors of public and private life. In preparing this article we used as research methods the analysis of problems generated by the subject in question with reference to the doctrinal views expressed in the Treaties and specialized articles, documentary research, interpretation of legal norms in the field.

  2. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide (PACAP in the retina

    Directory of Open Access Journals (Sweden)

    Tomoya eNakamachi

    2012-11-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP, which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.

  3. Appraisal of Passive and Active Fire Protection Systems in Student’s Accommodation

    Directory of Open Access Journals (Sweden)

    Ismail I.

    2014-03-01

    Full Text Available Fire protection systems are very important systems that must be included in buildings. They have a great significance in reducing or preventing the occurrences of fire. This paper presents an assessment of fire protection systems in student’s accommodation. Student accommodation is a particular type of building that provides shelter for students at University. In addition, it is also supposed to be an attractive environment, conducive to learning, and importantly, safe for occupation. The fire safety of occupants in a building, must be in accordance with the requirements of the building’s code. Therefore, the design of the building must comply with the Uniform Building By-Law (UBBL 1984 of Malaysia, and provide all of the required safety features. This paper describes the findings from investigations of passive and active fire protection systems installed in buildings, based on fire safety requirements, UBBL (1984.

  4. Combination of Ca2+-activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery

    Science.gov (United States)

    Stankevičius, E; Lopez-Valverde, V; Rivera, L; Hughes, A D; Mulvany, M J; Simonsen, Ulf

    2006-01-01

    Background and purpose: The present study investigated whether calcium-activated K+ channels are involved in acetylcholine-evoked nitric oxide (NO) release and relaxation. Experimental approach: Simultaneous measurements of NO concentration and relaxation were performed in rat superior mesenteric artery and endothelial cell membrane potential and intracellular calcium ([Ca2+]i) were measured. Key results. A combination of apamin plus charybotoxin, which are, respectively, blockers of small-conductance and of intermediate- and large-conductance Ca2+-activated K channels abolished acetylcholine (10 μM)-evoked hyperpolarization of endothelial cell membrane potential. Acetylcholine-evoked NO release was reduced by 68% in high K+ (80 mM) and by 85% in the presence of apamin plus charybdotoxin. In noradrenaline-contracted arteries, asymmetric dimethylarginine (ADMA), an inhibitor of NO synthase inhibited acetylcholine-evoked NO release and relaxation. However, only further addition of oxyhaemoglobin or apamin plus charybdotoxin eliminated the residual acetylcholine-evoked NO release and relaxation. Removal of extracellular calcium or an inhibitor of calcium influx channels, SKF96365, abolished acetylcholine-evoked increase in NO concentration and [Ca2+]i. Cyclopiazonic acid (CPA, 30 μM), an inhibitor of sarcoplasmic Ca2+-ATPase, caused a sustained NO release in the presence, but only a transient increase in the absence, of extracellular calcium. Incubation with apamin and charybdotoxin did not change acetylcholine or CPA-induced increases in [Ca2+]i, but inhibited the sustained NO release induced by CPA. Conclusions and Implications: Acetylcholine increases endothelial cell [Ca2+]i by release of stored calcium and calcium influx resulting in activation of apamin and charybdotoxin-sensitive K channels, hyperpolarization and release of NO in the rat superior mesenteric artery. PMID:16967048

  5. Dynamics of an Array of Hydraulic Jumps in an Active Submarine Channel

    Science.gov (United States)

    Dorrell, R. M.; Peakall, J.; Sumner, E. J.; Parsons, D. R.; Darby, S. E.; Wynn, R. B.; Ozsoy, E.; Tezcan, D.

    2014-12-01

    Hydraulic jumps, or bores, are formed when a flow rapidly thickens and slows down, passing from a Froude number defined super to subcritical state. Such transitional behaviour occurs as a flow responds to changes in bed slope or channel geometry. Hydraulic jumps are thought to be ubiquitous features formed in submarine channelized flows, as well as in river channels. Here, for the first time, we present integrated velocity and density measurements across an array of hydraulic jumps. The velocity data were collected using an Autonomous Underwater Vehicle (AUV) mounted Acoustic Doppler Current Profiler (ADCP)), and the density data were collected using a Conductivity, Temperature Depth (CTD) probe. The hydraulic jumps were generated by scour features, in a channelized, density stratified flow exiting the Bosphorus Strait onto the continental shelf region in South West Black Sea. It is observed that with stratification of the flow the dilute upper layer completely bypasses any forcing arising from the changing bed slope, whilst the denser lower layer responds by generating an internal hydraulic jump. Such flow behaviour is distinct to that observed in open-channel systems, where flows are rarely sufficiently stratified to generate internal hydraulic jumps. This direct field evidence supports previous experimental and theoretical analysis of hydraulic jumps in stratified shear flow. However, the field data raise several fundamental physical questions relating to the mechanics of internal hydraulic jumps. Firstly, it is observed that surface rollers, resulting in upstream flow velocity, are consistently found hundreds of metres before the slope break initiating the hydraulic jump. Secondly it is observed that the Froude criticality of the upper dilute layer is inversely related to that of the lower layer. Thirdly, it is noted that with a bypassing upper flow layer, sediment transport dynamics of coarse versus fine grained sediment past the slope break will be

  6. Child Protection in Sport: Reflections on Thirty Years of Science and Activism

    Directory of Open Access Journals (Sweden)

    Celia H. Brackenridge

    2014-07-01

    Full Text Available This paper examines the responses of state and third sector agencies to the emergence of child abuse in sport since the mid-1980s. As with other social institutions such as the church, health and education, sport has both initiated its own child protection interventions and also responded to wider social and political influences. Sport has exemplified many of the changes identified in the brief for this special issue, such as the widening of definitional focus, increasing geographic scope and broadening of concerns to encompass health and welfare. The child protection agenda in sport was initially driven by sexual abuse scandals and has since embraced a range of additional harms to children, such as physical and psychological abuse, neglect and damaging hazing (initiation rituals. Whereas in the 1990s, only a few sport organisations acknowledged or addressed child abuse and protection (notably, UK, Canada and Australia, there has since been rapid growth in interest in the issue internationally, with many agencies now taking an active role in prevention work. These agencies adopt different foci related to their overall mission and may be characterised broadly as sport-specific (focussing on abuse prevention in sport, children’s rights organisations (focussing on child protection around sport events and humanitarian organisations (focussing on child development and protection through sport. This article examines how these differences in organisational focus lead to very different child protection approaches and “solutions”. It critiques the scientific approaches used thus far to inform activism and policy changes and ends by considering future challenges for athlete safeguarding and welfare.

  7. Protective effect of the KCNQ activator flupirtine on a model of repetitive febrile seizures.

    Science.gov (United States)

    Yu, Fang; Liu, Yanlan; Wang, Yuncui; Yin, Jun; Wang, Hui; Liu, Wanhong; Peng, Biwen; He, Xiaohua

    2011-11-01

    Activation of KCNQ-channels has been shown to decrease or reduce the propagation of neuronal excitation in the immature central nervous system, and KCNQ activators represent a new class of anticonvulsant compounds. Their effectiveness has been demonstrated in many seizure models but not in repetitive febrile seizures (RFS) models. This study aimed to test whether the KCNQ channel activator flupirtine is also effective for RFS in rats. RFS were induced in Sprague-Dawley (SD) rats at postnatal day 10 (P10) in a warm water bath for eight consecutive days with or without the pre-administration of flupirtine or phenobarbital. As results, both drugs significantly increased the latency and decreased the rate of febrile seizures. Furthermore, seizures in the flupirtine group had a significantly shorter duration and were less severe compared with the phenobarbital group. The flupirtine-treated group showed less impairment in learning and memory and less obvious pathological changes in the brain following RFS compared with the phenobarbital-treated group. In summary, flupirtine appears to be effective in RFS prophylaxis and may merit further study as a candidate for the treatment of RFS in infants and children. PMID:21831598

  8. Interference with Ca2+ release activated Ca2+ (CRAC) channel function delays T-cell arrest in vivo

    OpenAIRE

    Waite, Janelle C.; Vardhana, Santosh; Shaw, Patrick J.; Jang, Jung-Eun; McCarl, Christie-Ann; Cameron, Thomas O; Feske, Stefan; Dustin, Michael L

    2013-01-01

    Entry of lymphocytes into secondary lymphoid organs (SLOs) involves intravascular arrest and intracellular calcium ion ([Ca2+]i) elevation. TCR activation triggers increased [Ca2+]i and can arrest T-cell motility in vitro. However the requirement for [Ca2+]i elevation in arresting T cells in vivo has not been tested. Here, we have manipulated the Ca2+ release-activated Ca2+ (CRAC) channel pathway required for [Ca2+]i elevation in T cells through genetic deletion of stromal interaction molecul...

  9. Amplified spontaneous emission in active channel waveguides produced by electron-beam lithography in LiF crystals

    International Nuclear Information System (INIS)

    In this letter we report the observation of amplified spontaneous emission of the red light from LiF:F2 centers in active channel waveguides realized by electron-beam lithography in lithium fluoride crystals. Low pumping power densities have been used in quasi-continuous-wave regime at room temperature; the appreciable values of the gain coefficients, 4.67 cm-1 with an exciting power density of 0.31 W/cm2 at 458 nm, make this material a good candidate for the realization of active integrated optical devices. [copyright] 2001 American Institute of Physics

  10. Strengthening activity measurement quality in radiation protection - from metrological science to reliable end-user application

    International Nuclear Information System (INIS)

    In many fields of radiation protection - e.g. internal dosimetry, nuclear medicine, radioecology, NORM - accurate and reliable activity measurements are of fundamental significance on meaningful evaluation of radiation exposure caused by radioactivity. Although the physical quantity activity and its SI unit Becquerel are very easy to define theoretically, the real practical activity measurement of radionuclides in different media is always a highly sophisticated and challenging task. Effective ways to ensure traceability of unit Bq for all radionuclides of interest from national metrological standards to qualified end-user measurements are calibration and/or verification of instruments and methods. The surveillance of competence and quality of activity measurements is additionally ensured by intercomparison exercises on national, regional or international levels. In this paper, recent improvements, developments and practical implementation on the quantification of activity of radionuclides in the field of radiation protection from fundamental metrology to robust end-user applications in Austria are covered. The Austrian experience in verification and calibration of activity measurement instruments is as much addressed as the conclusions on intercomparison exercises on gamma-ray spectrometry and radon measurement methods. Different evaluation methods are shown with regard to the statistical evaluation basis. Reasonable and practically applicable statistical modelling and parameterization based on the results and experience is proposed. Statistically based criteria for the evaluation of conformity of activity measurement instruments and methods with technical and legal requirements are presented. Eventually cooperation within the European and international networks in radionuclide metrology, EURAMET and ICRM respectively, is discussed. (author)

  11. Cav1.4 L-Type Calcium Channels Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice

    Science.gov (United States)

    Schön, Christian; Paquet-Durand, François; Michalakis, Stylianos

    2016-01-01

    Retinitis pigmentosa is an inherited blinding disorder characterized by progressive degeneration and loss of photoreceptors. The exact mechanism of degeneration and cell death of photoreceptors is not known, but is thought to involve disturbed Ca2+—signaling. Ca2+ can enter the photoreceptor cell via outer segment cyclic nucleotide-gated (CNG) channels or synaptic Cav1.4 L-type voltage-gated calcium channels (VGCC). Previously, we have shown that genetic ablation of the Cngb1 gene encoding the B subunit of the rod CNG channel delays the fast progressing degeneration in the rd1 mutant mouse model of retinitis pigmentosa. In this study, we crossbred rd1 mice with the Cacna1f-deficient mouse lacking the Cav1.4 α1 subunit of the L-type VGCC. Longitudinal in vivo examinations of photoreceptor layer thickness by optical coherence tomography revealed a significant, but not sustained delay of retinal degeneration in Cacna1f x rd1 double mutant mice compared to rd1 mice. This was accompanied by a reduction of TUNEL positive cells in the early phase of rod degeneration. Remarkably, Cacna1f x rd1 double mutant mice displayed a strong decrease in the activation of the Ca2+-dependent protease calpain during photoreceptor loss. Our results show that genetic deletion of the synaptic Cav1.4 L-type VGCCs impairs calpain activation and leads to a short-term preservation of photoreceptors in the rd1 mouse. PMID:27270916

  12. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Beatriz Beltrán-Beck

    Full Text Available Tuberculosis (TB remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV. Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.

  13. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    International Nuclear Information System (INIS)

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury

  14. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Xu [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Ren, Dongmei [Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, Jinan 250012 (China); Wei, Xinbing; Shi, Huanying; Zhang, Xiumei [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Perez, Ruth G. [Health Science Center, Paul L. Foster School of Medicine, Texas Tech University, El Paso, TX, 79905 (United States); Lou, Haiyan, E-mail: louhaiyan@sdu.edu.cn [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Lou, Hongxiang [Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, Jinan 250012 (China)

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  15. Increased expression of T-cell KV1.3 and KCa3.1 channels in the inflamed intestinal wall from patients with active ulcerative colitis

    DEFF Research Database (Denmark)

    Hansen, Lars Koch; Larsen, Dorte; Sadda, Veeranjaneyulu; Nielsen, Gorm; Klinge, Lone; Schaffalitzky de Muckadell, Ove B.; Knudsen, Torben; Kjeldsen, Jens; Köhler, Ralf

    INTRODUCTION: T-cell KV1.3 and KCa3.1 channels have been proposed to be important effector proteins during T-cell activation and also in autoimmune disease by controlling T-cell motility, cytokine production, and proliferation. The role of KV1.3 channels in ulcerative colitis (UC) has not been...

  16. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders;

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...

  17. Characterization of Ca(2+)-activated 86Rb+ fluxes in rat C6 glioma cells: a system for identifying novel IKCa-channel toxins.

    OpenAIRE

    de-Allie, F. A.; Bolsover, S. R.; Nowicky, A. V.; Strong, P N

    1996-01-01

    1. The pharmacological characteristics of a putative Ca2+ activated K+ channel (IKCa channel) in rat glioma C6 cells were studied in the presence of the Ca2+ ionophore, ionomycin and various K+ channel blockers, 86Rb+ being used as a radioisotopic tracer for K+. 2. The resting 86Rb+ influx into C6 cells was 318 +/- 20 pmol s-1. The threshold for ionomycin activation of 86Rb+ influx was approx. 100 nM. At ionomycin concentrations above the activation threshold, the initial rate of 86Rb+ influx...

  18. Equol increases cerebral blood flow in rats via activation of large-conductance Ca(2+)-activated K(+) channels in vascular smooth muscle cells.

    Science.gov (United States)

    Yu, Wei; Wang, Yan; Song, Zheng; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2016-05-01

    The present study was designed to investigate the effect of equol on cerebral blood flow and the underlying molecular mechanisms. The regional cerebral blood flow in parietal lobe of rats was measured by using a laser Doppler flowmetry. Isolated cerebral basilar artery and mesenteric artery rings from rats were used for vascular reactivity measurement with a multi wire myography system. Outward K(+) current in smooth muscle cells of cerebral basilar artery, large-conductance Ca(2+)-activated K(+) (BK) channel current in BK-HEK 293 cells stably expressing both human α (hSlo)- and β1-subunits, and hSlo channel current in hSlo-HEK 293 cells expressing only the α-subunit of BK channels were recorded with whole cell patch-clamp technique. The results showed that equol significantly increased regional cerebral blood flow in rats, and produced a concentration-dependent but endothelium-independent relaxation in rat cerebral basilar arteries. Both paxilline and iberiotoxin, two selective BK channel blockers, significantly inhibited equol-induced vasodilation in cerebral arteries. Outward K(+) currents in smooth muscle cells of cerebral basilar artery were increased by equol and fully reversed by washout or blockade of BK channels with iberiotoxin. Equol remarkably enhanced human BK current in BK-HEK 293 cells, but not hSlo current in hSlo-HEK 293 cells, and the increase was completely abolished by co-application of paxilline. Our findings provide the first information that equol selectively stimulates BK channel current by acting on its β1 subunit, which may in turn contribute to the equol-mediated vasodilation and cerebral blood flow increase. PMID:26995303

  19. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Diana Machado

    Full Text Available Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction

  20. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their