WorldWideScience

Sample records for changing environmental scenario

  1. Baseline scenarios of global environmental change

    International Nuclear Information System (INIS)

    This paper presents three baseline scenarios of no policy action computed by the IMAGE2 model. These scenarios cover a wide range of coupled global change indicators, including: energy demand and consumption; food demand, consumption, and production; changes in land cover including changes in extent of agricultural land and forest; emissions of greenhouse gases and ozone precursors; and climate change and its impacts on sea level rise, crop productivity and natural vegetation. Scenario information is available for the entire world with regional and grid scale detail, and covers from 1970 to 2100. (author)

  2. Multidecadal Fluvial Sediment Fluxes to Deltas under Environmental Change Scenarios

    Science.gov (United States)

    Dunn, Frances; Darby, Stephen; Nicholls, Robert

    2016-04-01

    Sediment delivery is vital to sustain delta environments on which over half a billion people live worldwide. Due to factors such as subsidence and sea level rise, deltas sink relative to sea level if sediment is not delivered to and retained on their surfaces. Deltas which sink relative to sea level experience flooding, land degradation and loss, which endangers anthropogenic activities and populations. The future of fluvial sediment fluxes, a key mechanism for sediment delivery to deltas, is uncertain due to complex environmental changes which are predicted to occur over the coming decades. This research investigates fluvial sediment fluxes under environmental changes in order to assess the sustainability of delta environments under potential future scenarios up to 2100. Global datasets of climate change, reservoir construction, and population and GDP as proxies for anthropogenic influence through land use changes are used to drive the catchment numerical model WBMsed, which is being used to investigate the effects of these environmental changes on fluvial sediment delivery. This process produces fluvial sediment fluxes under multiple future scenarios which will be used to assess the future sustainability of a selection of 8 vulnerable deltas, although the approach can be applied to deltas worldwide. By modelling potential future scenarios of fluvial sediment flux, this research contributes to the prognosis for delta environments. The future scenarios will inform management at multiple temporal scales, and indicate the potential consequences for deltas of various anthropogenic activities. This research will both forewarn managers of potentially unsustainable deltas and indicate those anthropogenic activities which encourage or hinder the creation of sustainable delta environments.

  3. Salmon Futures: Stakeholder-driven salmon management scenarios under changing environmental conditions on Alaska's Kenai Peninsula

    Science.gov (United States)

    Trammell, E. J.; Krupa, M.

    2015-12-01

    Understanding the adaptive capacity of individuals within natural resource management agencies is a key component of assessing the vulnerability of salmon to future environmental change. We seek to explore the adaptive capacity of natural resource agencies on Alaska's Kenai Peninsula by exploring the drivers and implications of different salmon allocation scenarios through participatory workshops with managers. We present here the initial results from the first workshop, which explores the various drivers responsible for changes in salmon allocation. Ranging from global to local, and biophysical to socioeconomic, these drivers are also linked to specific actors in the region. These complex interactions comprise the Kenai Peninsula's social-ecological system and determine its ability to react to change. Using a stakeholder-driven scenario framework, we aim to: 1) explore the adaptive capacity of natural resource agencies in the region by exploring and exposing managers to different but logically coherent salmon allocation scenarios; 2) build stakeholder confidence in the science of environmental change on the Kenai Peninsula; and 3) develop a decision support tool that helps regional resource managers better understand their changing environment. We utilize and present the scenario framework as a platform for integrating hydrologic, landscape, and cultural change information into actionable decisions, crafted by the stakeholders, so that landscape change on the Kenai becomes more coordinated.

  4. Scenarios of Socioeconomic Development for Studies of Global Environmental Change: A Critical Review

    OpenAIRE

    Toth, F.L.; Hizsnyik, E.; Clark, W.C.

    1989-01-01

    This study (1) critically reviews existing studies of global trends in population, agriculture, and energy with a view toward showing which studies are most useful for which sorts of studies of global environmental change and sustainable development. (2) Synthesizes a single, internally consistent scenario of global changes in population, agriculture, and energy over the next century for use as a "conventional wisdom" reference case for such studies. (3) Creates a number of "surprise-rich" sc...

  5. Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels

    NARCIS (Netherlands)

    van Vuuren, D.P.; Lucas, P.L.; Hilderink, H.

    2007-01-01

    Global environmental change scenarios typically distinguish between about 10–20 global regions. However, various studies need scenario information at a higher level of spatial detail. This paper presents a set of algorithms that aim to fill this gap by providing downscaled scenario data for populati

  6. Evolving practices in environmental scenarios: a new scenario typology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Angela; Eidinow, Esther [James Martin Institute, Said Business School, University of Oxford, Park End Street, Oxford OX1 1HP (United Kingdom)

    2008-10-15

    A new approach to scenarios focused on environmental concerns, changes and challenges, i.e. so-called 'environmental scenarios', is necessary if global environmental changes are to be more effectively appreciated and addressed through sustained and collaborative action. On the basis of a comparison of previous approaches to global environmental scenarios and a review of existing scenario typologies, we propose a new scenario typology to help guide scenario-based interventions. This typology makes explicit the types of and/or the approaches to knowledge ('the epistemologies') which underpin a scenario approach. Drawing on previous environmental scenario projects, we distinguish and describe two main types in this new typology: 'problem-focused' and 'actor-centric'. This leads in turn to our suggestion for a third type, which we call 'RIMA'-'reflexive interventionist or multi-agent based'. This approach to scenarios emphasizes the importance of the involvement of different epistemologies in a scenario-based process of action learning in the public interest. We suggest that, by combining the epistemologies apparent in the previous two types, this approach can create a more effective bridge between longer-term thinking and more immediate actions. Our description is aimed at scenario practitioners in general, as well as those who work with (environmental) scenarios that address global challenges.

  7. Scenario development for reaching urban and environmental planning integration in the context of climate change

    NARCIS (Netherlands)

    Zagare, V.M.E.; Sepulveda Carmona, D.A.

    2014-01-01

    Presentation based on a research done by appointment of Lincoln Institute of Land Policy, Cambridge, MA, USA. Nov 2013. Scenarios for an integral approach to urban and environmental dimensions in the Lower Parana Delta (Argentina). Consortia UBA-SU Buenos Aires-TUD

  8. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed

    International Nuclear Information System (INIS)

    This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+ 20%; high–very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high–very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status

  9. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M. Lourdes, E-mail: mlima@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Romanelli, Asunción, E-mail: aromanel@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina); Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Massone, Héctor E., E-mail: hmassone@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina)

    2015-10-15

    This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+ 20%; high–very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high–very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status

  10. Activation of vegetated parabolic dunes into mobile barchans under potential environmental change scenarios

    Science.gov (United States)

    Yan, Na; Baas, Andreas C. W.

    2016-04-01

    Parabolic dunes are a quintessential example of the co-evolution of soil, landform, and vegetation, and they are found around the world, on coasts, river valleys, lake shores, and margins of deserts and steppes. These areas are often sensitive to changes in natural and anthropogenic forcings and socio-economic activities. Some studies have indicated parabolic dunes can lose vegetation and transform into barchan and transverse dunes by environmental change such as decreased precipitation or lowered water table, as well as anthropogenic stress such as increased burning and grazing. These transformations and shifts between states of eco-geomorphic systems may have significant implications on land management and social-economic development. This study utilises the Extended-DECAL - parameterised by field measurements of dune topography and vegetation characteristics combined with remote sensing - to explore how increases in drought stress, wind strength, and grazing stress may lead to the activation of stabilised parabolic dunes into highly mobile barchans. The modelling results show that the mobility of an initial parabolic dune at the outset of perturbations determines to a large extent the capacity of a system to absorb the environmental change, and a slight increase in vegetation cover of an initial parabolic dune can increase the activation threshold significantly. Plants with a higher deposition tolerance increase the activation threshold for the climatic impact and sand transport rate, whereas the erosion tolerance of plants influences the patterns of resulting barchans. The change in the characteristics of eco-geomorphic interaction zones may indirectly reflect the dune stability and predict an ongoing transformation, whilst the activation angle may be potentially used as a proxy of environmental stresses. In contrast to the natural environmental changes which tend to affect relatively weak and young plants, grazing stress can exert a broader impact on all

  11. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed.

    Science.gov (United States)

    Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E

    2015-10-15

    This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+20%; high-very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high-very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status (i

  12. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed.

    Science.gov (United States)

    Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E

    2015-10-15

    This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+20%; high-very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high-very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status (i

  13. The impacts of climate change and environmental management policies on the trophic regimes in the Mediterranean Sea: Scenario analyses

    Science.gov (United States)

    Lazzari, P.; Mattia, G.; Solidoro, C.; Salon, S.; Crise, A.; Zavatarelli, M.; Oddo, P.; Vichi, M.

    2014-07-01

    The impacts of climate change and environmental management policies on the Mediterranean Sea were analyzed in multi-annual simulations of carbon cycling in a planktonic ecosystem model. The modeling system is based on a high-resolution coupled physical-biogeochemical ocean model that is off-line and forced by medium-resolution global climate simulations and by estimates of continental and river inputs of freshwater and nutrients. The simulations span the periods 1990-2000 and 2090-2100, assuming the IPCC SRES A1B scenario of climatic change at the end of the century. The effects of three different options on land use, mediated through rivers, are also considered. All scenarios indicate that the increase in temperature fuels an increase in metabolic rates. The gross primary production increases approximately 5% over the present-day figures, but the changes in productivity rates are compensated by augmented community respiration rates, so the net community production is stable with respect to present-day figures. The 21st century simulations are characterized by a reduction in the system biomass and by an enhanced accumulation of semi-labile dissolved organic matter. The largest changes in organic carbon production occur close to rivers, where the influence of changes in future nutrient is higher.

  14. Consideration of environmental change in the safety evaluation: Long-term climate scenarios in the Iberian Peninsula

    International Nuclear Information System (INIS)

    The main objective of this report is twofold. On the one hand, to define the most likely sequences of climate states in the Iberian Peninsula for a period of 125 Ka into the future, to the next interglacial stage, 125 Ka AP; on the other hand, to establish potential climate scenarios during such a period of time determining also the variability ranges of primary climate and climate-related variables of interest to the post-closure performance assessment and underground repository safety evaluations. The report reviews the potential effects of environmental changes on the performance of underground radioactive waste repositories, emphasizing the consideration given to long-term climatic changes in radioactive waste disposal system safety evaluations. (Author)

  15. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios; a case study of a Scots pine forest.

    Science.gov (United States)

    Schaubroeck, Thomas; Deckmyn, Gaby; Giot, Olivier; Campioli, Matteo; Vanpoucke, Charlotte; Verheyen, Kris; Rugani, Benedetto; Achten, Wouter; Verbeeck, Hans; Dewulf, Jo; Muys, Bart

    2016-05-15

    For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'. To resolve these matters, this study quantifies the environmental impact (on human health, natural systems and natural resources) in physical units and uses an ecosystem service valuation based on monetary values (including ecosystem disservices with associated negative monetary values). More specifically, the paper also focuses on the assessment of ecosystem services related to pollutant removal/generation flows, accounting for the inflow of eutrophying nitrogen (N) when assessing the effect of N leached to groundwater. Regarding water use/provisioning, evapotranspiration is alternatively considered a disservice because it implies a loss of (potential) groundwater. These approaches and improvements, relevant to all ecosystems, are demonstrated using a Scots pine stand from 2010 to 2089 for a combination of three environmental change and three management scenarios. The environmental change scenarios considered interannual climate variability trends and included alterations in temperature, precipitation, nitrogen deposition, wind speed, Particulate matter (PM) concentration and CO2 concentration. The addressed flows/ecosystem services, including disservices, are as follows: particulate matter removal, freshwater loss, CO2 sequestration, wood production, NOx emissions, NH3 uptake and nitrogen pollution/removal. The monetary

  16. Scenarios of climate change

    International Nuclear Information System (INIS)

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8 C deg., and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10 000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere's greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2 C deg. is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun's supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action. (author)

  17. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    Science.gov (United States)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    Scenarios have become a standard tool in the portfolio of techniques that scientists and policy-makers use to envision and plan for the future. Defined as plausible, challenging and relevant stories about how the future might unfold that integrate quantitative models with qualitative assessments of social and political trends, scenarios are a central component in assessment processes for a range of global issues, including climate change, biodiversity, agriculture, and energy. Yet, despite their prevalence, systematic analysis of scenarios is in its beginning stages. Fundamental questions remain about both the epistemology and scientific credibility of scenarios and their roles in policymaking and social change. Answers to these questions have the potential to determine the future of scenario analyses. Is scenario analysis moving in the direction of earth system governance informed by global scenarios generated through increasingly complex and comprehensive models integrating socio-economic and earth systems? Or will global environmental scenario analyses lose favour compared to more focused, policy-driven, regionally specific modelling? These questions come at an important time for the climate change issue, given that the scenario community, catalyzed by the Intergovernmental Panel on Climate Change (IPCC), is currently preparing to embark on a new round of scenario development processes aimed at coordinating research and assessment, and informing policy, over the next five to ten years. These and related questions about where next to go with global environmental scenarios animated a workshop held at Brown University (Note1) that brought together leading practitioners and scholars of global environmental change scenarios from research, policy-making, advocacy, and business settings. The workshop aimed to provide an overview of current practices/best practices in scenario production and scenario use across a range of global environmental change arenas. Participants

  18. Environmental change

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    of a changing environment is also addressing social and human issues and concerns, and architectural norms and tools. One of the main themes and questions concerns how we relate the built environment and open urban spaces to water. Water plays an important role in Danish culture, tradition. To many Danes...... environmental conditions both in a practical, functional way but also in an aesthetical, spatial way. As professionals we should contribute to the creation of new images, ideas, strategies and solutions able to handle the challenges, to investigate the potentials and interpret these architecturally...

  19. [Environmental management: critical analysis, scenarios and challenges].

    Science.gov (United States)

    Porto, Marcelo Firpo de Souza; Schütz, Gabriel Eduardo

    2012-06-01

    This article discusses the limits, alternatives and challenges of environmental management in contemporary globalized capitalist societies. It is based on a critical analysis supported by authors from social sciences, political ecology and public health. To this end, we systematize the meaning of hegemonic environmental management in terms of eco-efficiency and its limits to tackle environmental risks and construct democratic processes and societies. We developed four ideal scenarios involving possible combinations of environmental management and democracy. This model served as a base, together with academic studies and the theoretical and militant experience of the authors, for a reflection on the current characteristics and future trends of environmental management and democracy, with emphasis on the reality of Latin America, specifically Brazil. Lastly, we discuss possibilities for social transformation taking into consideration the contradictions and emancipatory alternatives resulting from confrontations between hegemonic tendencies of the market and counter-hegemonic utopias and social movements. The latter assume principles of environmental justice, economic solidarity, agro-ecology and sustainability as well as the construction of new epistemologies.

  20. Modeling of Nitrogen Dynamics in an Austrian Alpine Forest Ecosystem on Calcareous Soils: A Scenario-Based Risk Assessment under Changing Environmental Conditions

    OpenAIRE

    Friedl Herman; Stefan Smidt; Klaus Butterbach-Bahl; Michael Englisch; Ernst Gebetsroither; Robert Jandl; Klaus Katzensteiner; Manfred Lexer; Friederike Strebl; Sophie Zechmeister-Boltenstern

    2007-01-01

    We modeled the behavior of an Austrian alpine forest ecosystem on calcareous soils under changing climate and atmospheric nitrogen deposition scenarios. The change of nitrate leaching, emission rates of nitrogen compounds, and forest productivity were calculated using four process-oriented models for the periods 1998–2002 and 2048–2052. Each model reflects with high detail a segment of the ecosystem: PnET-N-DNDC (photosynthesis-evapotranspiration-nitrification-denitrification-decomposition; s...

  1. Biodiversity scenarios neglect future land-use changes.

    Science.gov (United States)

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. PMID:26950650

  2. Environmental change

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    In low-lying regions like Denmark a rising sea level combined with change in rain and wind patterns now cause problems in several coastal cities where open urban spaces, infrastructure, and houses are flooded. The initiatives taken to prevent damages are mainly technical. But the impact of a chan......In low-lying regions like Denmark a rising sea level combined with change in rain and wind patterns now cause problems in several coastal cities where open urban spaces, infrastructure, and houses are flooded. The initiatives taken to prevent damages are mainly technical. But the impact...... of a changing environment is also addressing social and human issues and concerns, and architectural norms and tools. One of the main themes and questions concerns how we relate the built environment and open urban spaces to water. Water plays an important role in Danish culture, tradition. To many Danes...

  3. Maize leaf development under climate change scenarios

    Directory of Open Access Journals (Sweden)

    Nereu Augusto Streck

    2010-11-01

    Full Text Available The objective of this work was to simulate maize leaf development in climate change scenarios at Santa Maria, RS, Brazil, considering symmetric and asymmetric increases in air temperature. The model of Wang & Engel for leaf appearance rate (LAR, with genotype-specific coefficients for the maize variety BRS Missões, was used to simulate tip and expanded leaf accumulated number from emergence to flag leaf appearance and expansion, for nine emergence dates from August 15 to April 15. LAR model was run for each emergence date in 100-year climate scenarios: current climate, and +1, +2, +3, +4 and +5°C increase in mean air temperature, with symmetric and asymmetric increase in daily minimum and maximum air temperature. Maize crop failure due to frost decreased in elevated temperature scenarios, in the very early and very late emergence dates, indicating a lengthening in the maize growing season in warmer climates. The leaf development period in maize was shorter in elevated temperature scenarios, with greater shortening in asymmetric temperature increases, indicating that warmer nights accelerate vegetative development in maize.

  4. Modeling of Nitrogen Dynamics in an Austrian Alpine Forest Ecosystem on Calcareous Soils: A Scenario-Based Risk Assessment under Changing Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Friedl Herman

    2007-01-01

    Full Text Available We modeled the behavior of an Austrian alpine forest ecosystem on calcareous soils under changing climate and atmospheric nitrogen deposition scenarios. The change of nitrate leaching, emission rates of nitrogen compounds, and forest productivity were calculated using four process-oriented models for the periods 1998–2002 and 2048–2052. Each model reflects with high detail a segment of the ecosystem: PnET-N-DNDC (photosynthesis-evapotranspiration-nitrification-denitrification-decomposition; shortterm nitrogen cycling, BROOK90 (water balance for small and homogenous forest watersheds, HYDRUS (water flux in complex and heterogenous soils, and PICUS v1.3 (forest productivity. The nitrogen balance model (NBM combines the individual results into a comprehensive picture and extends the specific values beyond the limits of the individual models. The evaluation of the findings was outlined with TRACE, a model enabling a long-term prognosis of nitrogen cycling in annual time steps.

  5. Climate change scenarios for Canada's national parks : a users manual

    International Nuclear Information System (INIS)

    A screening level impact assessment has shown that the implications of climate change for Canada's national parks are considerable. Climate change scenarios will be an important component in examining the potential climate change impacts and the implications of adaptation strategies. Most climate change scenarios are based on vulnerability, impact and adaptation research. This user's manual describes the development of 3 types of climate change scenarios including scenarios from global climate models (GCMs), bioclimate scenarios and daily scenarios for use by Parks Canada. The manual offers advice to first-time climate change scenario users in choosing and interpreting climate change, bioclimate and daily scenarios. It also addresses the theoretical and practical foundations of each climate scenario and shows how to access data regarding the various scenarios. Hands-on exercises are included as an interpretive aid. 20 refs., 4 tabs., 19 figs

  6. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob;

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper...... with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic...... be obtained for “Global Warming”. For the other impact categories, results are affected by the assumption about the substituted marginal energy. Nevertheless, irrespective of the assumptions on marginal energy, scenario P4, which implies the highest quantities of specific polymer types sent to recycling...

  7. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment

    Science.gov (United States)

    Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.

    2008-01-01

    Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.

  8. Scenarios on future land changes in the West African Sahel

    DEFF Research Database (Denmark)

    Lambin, Eric; D'haen, Sarah Ann Lise; Mertz, Ole;

    2014-01-01

    by the Millennium Ecosystem Assessment: (1) ‘downward spiral’ characterized by rapid climate change, expansion of agriculture and chaotic urban growth; (2) ‘integrated economy’ with integrated land management, food production for local markets and rural–urban exchanges; (3) ‘open doors’ characterized by large......-scale out-migrations, land grabbing by foreign companies and development aid and (4) ‘climate change mitigation’ with an increase in biofuel crops, land management for carbon capture and development of off-farm activities. We conclude that the Sahel region is most likely moving away from being a highly......In an attempt to anticipate possible futures of drylands of West Africa in the face of rapid socio-economic and environmental changes, we developed four scenarios based on recent survey data, the literature and our knowledge of the region. The four scenarios are inspired by those developed...

  9. Environmental impacts of high penetration renewable energy scenarios for Europe

    Science.gov (United States)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  10. Environmental impacts of high penetration renewable energy scenarios for Europe

    International Nuclear Information System (INIS)

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120–140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power. (letter)

  11. An environmentally sustainable transport system in Sweden. A scenario study

    Energy Technology Data Exchange (ETDEWEB)

    Brokking, P.; Emmelin, L.; Engstroem, M-G.; Nilsson, Jan-Evert; Eriksson, Gunnar; Wikberg, O.

    1997-02-01

    This is a short version of a scenario study concerning the possibilities to reach an Environmentally Sustainable Transport system in Sweden in a perspective of 30 years. The aim of the scenario study has been to describe one of several possible paths from today`s transport system to an environmentally adopted one. However, this does not imply that the task is to predict how such a transformation can be accomplished. The aim is rather to illustrate what such transformation require in the form of political decisions. The transformation of the transport system in to an environmentally adopted one, is primarily treated as a political problem, and a political perspective has accordingly been chosen for the study. In this English version of the scenario, the carbon dioxide problem is used to illuminate the many conflicts in goals and other problem that will attend an environmental adoption of the Swedish transport system, and to highlight the analytical points of departure for the scenario study. The analysis shows that it is possible to reach the national environmental goals that characterise, with given definitions, an environmentally sustainable transport system. However, this implies many severe political decisions over a long period of time, which in turn, implies a long term national consensus about the importance to reach the overall goal. Other results the scenario points out, is the risk that a policy focused on one sector leads to `solving` a problem by moving it outside systems limitations, and the limitations on a national environmental policy: Being able to count on assistance from other countries through an environmental adoption of the transport system in the European Union or globally, would drastically facilitate the environmental adoption of the Swedish transport system, through, among other things, a more rapid technological development. This indicates the necessity of promoting issues involving transportation and the environment in international

  12. COASTAL INVERTEBRATES AND FISHES: HOW WILL THEY BE AFFECTED BY CHANGING ENVIRONMENTAL CONDITIONS- INCORPORATING CLIMATE SCENARIOS INTO THE COASTAL BIODIVERSITY RISK ANALYSIS TOOL (CBRAT)

    Science.gov (United States)

    The Coastal Biodiversity Risk Analysis Tool (CBRAT) is a public website that functions as an ecoinformatics platform to synthesize biogeographical distributions, abundances, life history attributes, and environmental tolerances for near-coastal invertebrates and fishes on a broad...

  13. Environmental assessment of spatial plan policies through land use scenarios

    International Nuclear Information System (INIS)

    This paper presents a method based on scenario analysis to compare the environmental effects of different spatial plan policies in a range of possible futures. The study aimed at contributing to overcome two limitations encountered in Strategic Environmental Assessment (SEA) for spatial planning: poor exploration of how the future might unfold, and poor consideration of alternative plan policies. Scenarios were developed through what-if functions and spatial modeling in a Geographical Information System (GIS), and consisted in maps that represent future land uses under different assumptions on key driving forces. The use of land use scenarios provided a representation of how the different policies will look like on the ground. This allowed gaining a better understanding of the policies' implications on the environment, which could be measured through a set of indicators. The research undertook a case-study approach by developing and assessing land use scenarios for the future growth of Caia, a strategically-located and fast-developing town in rural Mozambique. The effects of alternative spatial plan policies were assessed against a set of environmental performance indicators, including deforestation, loss of agricultural land, encroachment of flood-prone areas and wetlands and access to water sources. In this way, critical environmental effects related to the implementation of each policy were identified and discussed, suggesting possible strategies to address them. - Graphical abstract: Display Omitted Research Highlights: ► The method contributes to two critical issues in SEA: exploration of the future and consideration of alternatives. ► Future scenarios are used to test the environmental performance of different spatial plan policies in uncertainty conditions. ► Spatially-explicit land use scenarios provide a representation of how different policies will look like on the ground.

  14. Environmental evaluation of waste management scenarios - significance of the boundaries

    NARCIS (Netherlands)

    Ghinea, C.; Petraru, M.; Bressers, J.T.A.; Gavrilescu, M.

    2012-01-01

    Life cycle concept was applied to analyse and assess some municipal solid waste (MSW) management scenarios in terms of environmental impacts, particularised for Iasi city, Romania, where approximately 380 kg/cap/yr of waste are generated. Currently, the management processes include temporary storage

  15. A new scenario framework for Climate Change Research: scenario matrix architecture

    NARCIS (Netherlands)

    van Vuuren, D.P.; Kriegler, E.; O'Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; Winkler, H.

    2014-01-01

    This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different ad

  16. THE EFFECT OF ENVIRONMENTAL INDICATORS TO THE WASTE TREATMENT SCENARIOS RANKING

    Directory of Open Access Journals (Sweden)

    Biljana Milutinović

    2015-08-01

    Full Text Available The selection of an appropriate waste treatment scenario is a complex problem in which a set of environmental, economic, and social criteria must be taken into account. Different waste treatment scenarios have different effects on the environment, which is expressed through a variety of environmental indicators. The main problem is to determine the indicators that clearly and fully express the most important influential factors. This paper presents a number of different environmental indicators and their influence on the waste treatment scenarios ranking. The study is carried out on the example of waste management in the city of Niš. Four scenarios are developed: the business as a usual scenario (meaning the landfilling of waste and the three other scenarios with energy recovery and preservation of resources including composting organic waste with recycling inorganic waste, incineration of waste, and anaerobic digestion of waste. Four experiments were conducted in order to assess the influence of environmental indicators: the first experiment was done using four indicators, the second by using seven indicators, the third experiment by using nine indicators, and the fourth experiment by twelve indicators. The ranking of each scenario was performed on the basis of a multi-criteria analysis, the Analytic Hierarchy Process (AHP method. The obtained results have shown that the increasing number of environmental indicators has led to a change in the ranking of scenarios in terms of their impact on the environment. Namely, it is necessary to increase the number of environmental indicators to a number which will be sufficient to carry out the relevant waste treatment scenario ranking in terms of the impact on the environment.

  17. Pathways to the Future: Community Dialogues on Adaptive Environmental Management Through Scenario Projection in Google Maps

    OpenAIRE

    Vervoort, J.M.; Kok, K; Lammeren, van, A.A.M.; Janssen, R.; Veldkamp, A.

    2009-01-01

    This paper presents research on the potential of interactive media for regional community dialogues on future uncertainties and complexities in coupled human and natural systems. More adaptive perspectives on natural resources management are needed to respond to rapid environmental and social change. Scenarios are a useful tool for participatory explorations of future issues that are high on uncertainties and complexities. We explore how scenarios can bank on the communicatory effectiveness o...

  18. Marine water quality under climate change conditions/scenarios

    Science.gov (United States)

    Rizzi, Jonathan; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Brigolin, Daniele; Carniel, Sandro; Pastres, Roberto; Marcomini, Antonio

    2016-04-01

    The increase of sea temperature and the changes in marine currents are generating impacts on coastal waters such as changes in water biogeochemical and physical parameters (e.g. primary production, pH, salinity) leading to progressive degradation of the marine environment. With the main aim of analysing the potential impacts of climate change on coastal water quality, a Regional Risk Assessment (RRA) methodology was developed and applied to coastal marine waters of the North Adriatic (i.e. coastal water bodies of the Veneto and Friuli Venezia Giulia regions, Italy). RRA integrates the outputs of regional models providing information on macronutrients (i.e. dissolved inorganic nitrogen e reactive phosphorus), dissolved oxygen, pH, salinity and temperature, etc., under future climate change scenarios with site-specific environmental and socio-economic indicators (e.g. biotic index, presence and extension of seagrasses, presence of aquaculture). The presented approach uses Geographic Information Systems to manage, analyse, and visualize data and employs Multi-Criteria Decision Analysis for the integration of stakeholders preferences and experts judgments into the evaluation process. RRA outputs are hazard, exposure, vulnerability, risk and damage maps useful for the identification and prioritization of hot-spot areas and vulnerable targets in the considered region. Therefore, the main aim of this contribution is to apply the RRA methodology to integrate, visualize, and rank according to spatial distribution, physical and chemical data concerning the coastal waters of the North Adriatic Sea in order to predict possible changes of the actual water quality.

  19. Socio-economic Scenario Development for Climate Change Analysis

    OpenAIRE

    KRIEGLER Elmar; O'Neill, Brian-C; Hallegatte, Stéphane; Kram, Tom; Moss, Richard-H; Lempert, Robert; Wilbanks, Thomas J

    2010-01-01

    Socio-economic scenarios constitute an important tool for exploring the long-term consequences of anthropogenic climate change and available response options. They have been applied for different purposes and to a different degree in various areas of climate change analysis, typically in combination with projections of future climate change. Integrated assessment modeling (IAM) has used them to develop greenhouse gas (GHG) emissions scenarios for the 21st century and to investigate strategies...

  20. A new scenario framework for Climate Change Research: Scenario matrix architecture

    Energy Technology Data Exchange (ETDEWEB)

    Van Vuuren, Detlef; Kriegler, Elmar; O' Neill, Brian; Ebi, Kristie L.; Riahi, Keywan; Carter, Tim; Edmonds, James A.; Hallegatte, Stephane; Kram, Tom; Mathur, Ritu; Winkler, Harald

    2014-02-01

    In this paper, we present the scenario matrix architecture as part of the new scenario framework for climate change research. The matrix architecture focuses on a key question of current climate research, namely the identification of trade-offs and synergies (in terms of risks, costs and other consequences) of different adaptation and mitigation strategies. The framework has two main axes: 1) the level of forcing (as represented by the RCPs) and 2) different socio-economic reference pathways. The matrix can be used as a tool to guide new scenario development and analytical analysis. It can also be used as a heuristic tool for classifying new and existing scenarios for assessment. Key elements of the architecture, in particular the shared socio-economic reference pathways and the shared policy assumptions, are elaborated in other papers in this special issue.

  1. Dental image receptors - the changing scenario

    International Nuclear Information System (INIS)

    Dental radiology has made rapid changes in the recent years. There is overall improvement in quality of the images and reduction in imaging time. But the most important milestone that has been achieved is the reduction in the radiation dose to the patient. There has been a constant effort to reduce the patient dose during dental radiography by several methods. A key challenge is to develop films that require lesser exposure to the radiation. A constant change has been witnessed in the properties of the dental X-ray film to make it more sensitive to X-ray which literally means to achieve a reasonably good image with a minimum possible exposure. A lot of scientific papers in the past decades have highlighted on the importance of film speed and radiation dosage. Western countries have consistently upgraded their dental radiographic films over the years. This has led to high speed films being used in general practice. We have been more slow to react to these changes and have not consistently upgraded to these films. The current paper highlights the importance of film speed in reducing the radiation dosage to the patient in dental radiology. (author)

  2. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  3. Economic impacts of climate change. Flooding and salinity in scenarios, models and cases

    International Nuclear Information System (INIS)

    In this report, climatic and economic scenarios are combined and future risks are calculated for the consequences of climate change, such as a rising sea level, flooding, extreme draughts and salinity. The calculation of these economic effects of climate change are based on climate scenarios of the KNMI (Royal Dutch Meteorological Institute), TNO's RAEM model (Spatial General Economic Model), the high tide information system of the Dutch Ministry of Waterways and Public Works and the Space scanner of the Environmental Assessment Agency. Next to information on scenarios and models, this report also addresses damage calculations of flooding near Lopik and Ter Heide. The report ends with policy recommendations for adaptation policy. [mk

  4. Climate change scenarios and technology transfer protocols

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, Socrates; Turton, Hal [Energy Economics Group, Paul Scherrer Institute, Villigen PSI, CH-5232 (Switzerland)

    2011-02-15

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. (author)

  5. A New Scenario Framework for Climate Change Research

    OpenAIRE

    van Vuuren, Detlef P.; KRIEGLER Elmar; O’Neill, Brian C.; Kristie L. Ebi; Riahi, Keywan

    2014-01-01

    This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different adaptation and mitigation strategies (in terms of their costs, risks and other consequences) and the possible trade-offs and synergies. The two main axes of the matrix are: 1) the level of radiative ...

  6. Mapping Agricultural Land-Use Change in the US: Biofuel scenarios from 2000-2030

    Science.gov (United States)

    West, T. O.; Bandaru, V.; Hellwinckel, C. M.; Brandt, C. C.

    2011-12-01

    Uniform methods for land use assessment from local to continental scales are important for supporting national policies that focus on local management. In an effort to bridge local and national scales, we have been conducting land-use change research for the continental U.S. and doing so using 56-m resolution land use data. We have recently completed five scenarios of agricultural land-use change that represent a range of plausible biomass feedstock production. The scenarios include meeting targets of the Energy Independence and Security Act; alternative scenarios of only corn grain ethanol versus only cellulosic ethanol production; and alternative scenarios of no ethanol production with current agricultural program incentives versus no ethanol production with no monetary incentives for agricultural practices. These scenarios have implications for carbon cycling, greenhouse gas emissions, soil erosion, water quality, and other environmental variables. These scenarios also represent relevant policy issues that are currently being debated. We will present methods used to estimate future land-use change that include use of the USDA Cropland Data Layer, the POLYSYS agricultural economic model, and the Land Use Carbon Allocation model. We will present results that include spatially-explicit changes in crop rotations associated with the aforementioned biofuel scenarios. Results will consist of acreage changes per crop and the expected geographic location of these changes for years 2000-2030.

  7. Long-range scenarios for climate change. Policy analysis. Proceedings

    International Nuclear Information System (INIS)

    Scenarios are conceivable future states of affairs given certain assumptions about the present and the course of events in the intervening period. They are particularly useful for investigating uncertainty and its consequences for decision making. Scenarios explicitly recognize that our ability to forecast the future course of events is very limited. Accordingly they identify the key areas of uncertainty and look at the consequences of different outcomes in those key areas. From the wide-ranging discussion held at the workshop, the criteria and principles listed below were developed to guide the process of scenario building in the particular context of climate change policy analysis. Such criteria should also help to avoid the inappropriate use of scenarios by policy makers and others. (author)

  8. Spatial precision vs large scale uncertainties in climate change scenario

    Science.gov (United States)

    Dubrovsky, M.; Potuznikova, K.

    2009-04-01

    In assessing climate change impacts on various weather dependent processes, weather series representing changed climate are required as an input to the impact models (for example crop growth models). In producing these series, the weather generator (WG) is often employed: WG parameters are derived from the observed series and then modified using the climate change scenario, which defines changes in the relevant climatic characteristics. These scenarios use to be derived either from GCM or RCM simulations. An advantage of using RCMs (with respect to using GCMs) consists in higher spatial resolution of simulated processes and thereby in higher spatial precision of RCM-based climate change scenario. On the other hand, advantage of using GCM-based scenarios consists in larger number of available GCM simulations, which allows to better account for the uncertainty in larger-scale patterns of climate change. This contribution aims to contribute to the discussion on the usefulness of RCMs in developing the climate change scenarios. To show the significancy of high resolution RCM based spatial signal in changes in relevant climatic characteristics, this signal will be compared with the uncertainty in GCM-simulated larger scale patterns of change. The former RCM-based signal will be derived from the RCM simulations made for the PRUDENCE project, the latter GCM based uncertainty will be based on simulations from a larger number of GCMs. The results will be shown in terms of maps for a whole Europe. Acknowledgements: The study is supported by 6th FP EU research project CECILIA (no GOCE 037005) and GAAV grant agency (project IAA300420806 - "PRASCE").

  9. Assessement of user needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  10. Infectious disease, development, and climate change, A scenario analysis

    OpenAIRE

    Tol, R.S.J.; Ebi, K L; Yohe, G. W.

    2007-01-01

    We study the effects of development and climate change on infectious disease in Sub-Saharan Africa. Infant mortality and infectious disease are close related, but there are better data for the former. In an international cross-section, per capita income, literacy, and absolute poverty significantly affect infant mortality. We use scenarios of these three determinants, and of climate change to project the future incidence of malaria, assuming it to change proportionally to infant mortality. Ma...

  11. Risk perception: The social construction of spatial knowledge around climate change-related scenarios in Lima

    NARCIS (Netherlands)

    L. Miranda Sara; S. Jameson; K. Pfeffer; I. Baud

    2016-01-01

    Lima's environmental sustainability is threatened by increasing water scarcity, heavy rain events and limited attention for water vulnerability and climate change scenarios. In this paper we examine how knowledge construction and risk perception on water-related disaster risks and vulnerabilities af

  12. Scenario

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    1996-01-01

    The main purpose of this paper is to give a synthetic presentation of hte well-known scenario method. Different schools and traditions will be shortly presented. In addition guidelines for hte use of this method will be discussed. Finally, applications will also be outlined as well as some critic...

  13. River flood risk in Jakarta under scenarios of future change

    Science.gov (United States)

    Budiyono, Yus; Aerts, Jeroen C. J. H.; Tollenaar, Daniel; Ward, Philip J.

    2016-03-01

    Given the increasing impacts of flooding in Jakarta, methods for assessing current and future flood risk are required. In this paper, we use the Damagescanner-Jakarta risk model to project changes in future river flood risk under scenarios of climate change, land subsidence, and land use change. Damagescanner-Jakarta is a simple flood risk model that estimates flood risk in terms of annual expected damage, based on input maps of flood hazard, exposure, and vulnerability. We estimate baseline flood risk at USD 186 million p.a. Combining all future scenarios, we simulate a median increase in risk of +180 % by 2030. The single driver with the largest contribution to that increase is land subsidence (+126 %). We simulated the impacts of climate change by combining two scenarios of sea level rise with simulations of changes in 1-day extreme precipitation totals from five global climate models (GCMs) forced by the four Representative Concentration Pathways (RCPs). The results are highly uncertain; the median change in risk due to climate change alone by 2030 is a decrease by -46 %, but we simulate an increase in risk under 12 of the 40 GCM-RCP-sea level rise combinations. Hence, we developed probabilistic risk scenarios to account for this uncertainty. If land use change by 2030 takes places according to the official Jakarta Spatial Plan 2030, risk could be reduced by 12 %. However, if land use change in the future continues at the same rate as the last 30 years, large increases in flood risk will take place. Finally, we discuss the relevance of the results for flood risk management in Jakarta.

  14. International policy implications of abrupt climate change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, M.R.

    1997-12-31

    New theoretical and empirical evidence supports the view that in the recent past [Holocene] abrupt climate changes occurred over very short [decadal] time periods. One leading possibility of future changes involves the North Atlantic Ocean conveyor that transfers warm surface waters from the equator to northern latitudes and helps maintain Europe`s climate. The predicted abrupt climate change scenario theorizes that the conveyor may be modified as a result of disruption of the thermohaline circulation driving North, Atlantic Deep Water. This would lead, the theory contends, to a rapid cooling of Europe`s climate. In light of the EPCC`s 1995 Second Assessment Report conclusion that there is a {open_quotes}discernible{close_quotes} human influence on the global climate system, there are many emerging questions concerning possible abrupt climate change scenarios.

  15. Changing paradigms of anti-VEGF in the Indian scenario

    Directory of Open Access Journals (Sweden)

    P Mahesh Shanmugam

    2014-01-01

    Full Text Available Anti-vascular endothelial growth factors (VEGF agents have revolutionized the treatment of retinal diseases. Use of anti-VEGF agents in the Indian Scenario present some unique challenges considering the absence of compounding pharmacies, poor penetrance of health insurance and limited affordability of the citizens of a developing economy. To study the changing paradigms of anti-VEGF use in the Indian scenario, all articles published by Indian authors, data from web-based surveys amongst Indian vitreo-retinal specialists were reviewed. In the paucity of compounding pharmacies in India, fractionation and injection techniques differ from those of developed countries. Frequent anti-VEGF monotherapy offers the best anatomical and visual results, but economics of scale do not allow the same in the Indian scenario, resulting in PRN dosing and combination of anti-VEGF with laser photocoagulation, being the commonly employed treatment protocols.

  16. Scenarios

    Directory of Open Access Journals (Sweden)

    Joao M. Goncalves

    2015-12-01

    Full Text Available Personal information is increasingly gathered and used for providing services tailored to user preferences, but the datasets used to provide such functionality can represent serious privacy threats if not appropriately protected. Work in privacy-preserving data publishing targeted privacy guarantees that protect against record re-identification, by making records indistinguishable, or sensitive attribute value disclosure, by introducing diversity or noise in the sensitive values. However, most approaches fail in the high-dimensional case, and the ones that don't introduce a utility cost incompatible with tailored recommendation scenarios. This paper aims at a sensible trade-off between privacy and the benefits of tailored recommendations, in the context of privacy-preserving data publishing. We empirically demonstrate that significant privacy improvements can be achieved at a utility cost compatible with tailored recommendation scenarios, using a simple partition-based sanitization method.

  17. High resolution scenarios of land-use and land-cover change for the conterminous United States

    Science.gov (United States)

    Sleeter, B. M.; Sohl, T. L.; Bouchard, M. A.; Reker, R. R.; Sayler, K.; Sleeter, R.; Soulard, C. E.; Wilson, T. S.

    2012-12-01

    We describe a series of high resolution maps of past and projected changes in land use and land cover (LULC) for the conterminous United States for the period 1992 to 2100. Four scenarios from the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) were used to create annual maps showing spatially explicit change in 15 LULC classes at a spatial resolution of 250 meters. A modular land-use modeling approach was utilized with distinct demand and spatial allocation components. To quantify demand for future LULC change (i.e. the quantity of changes in land use and land cover classes), a scenario downscaling model was developed to extend global scenarios from the IPCC to hierarchically nested ecoregions of the U.S. The Forecasting Scenarios (FORE-SCE) land use model was then employed to allocate scenario demand on the landscape. Both models were parameterized at the ecoregion scale and relied extensively on land use histories and expert knowledge. Results reveal large differences across IPCC-SRES scenarios. Scenarios prioritizing economic development over environmental protection result in the highest rates of LULC change, particularly in regions with extensive forest management, large urban areas, and/or large investments in agricultural land. Scenarios where environmental protection is emphasized result in slower rates of change and less intensity in regional land use patterns.

  18. Possible climate change over Eurasia under different emission scenarios

    Science.gov (United States)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  19. SITE-94. The central scenario for SITE-94: A climate change scenario

    International Nuclear Information System (INIS)

    The central scenario includes the following main components: a deterministic description of the most probable climatic state for Sweden (with special ref. to the Aespoe area) for the next c. 120,000 years, a description of the likely nature of the surface and geological environment in the area at each stage of the climate sequence selected, and quantitative information on how these changes might affect the disposal system. The climate models suggest glacial maxima at c. 5, 20, 60 and 100 thousand years from now. The Aespoe region is predicted to be significantly affected by the latter three glacial episodes, with the ice sheet reaching and covering the area during the latter two episodes (by up to c 2200m and 1200m thickness of ice, resp.). Permafrost thicknesses over the next 120,000 years have been calculated. Assumptions, estimates and alternatives to the prescribed climate evolution are discussed. Following definition of a realistic, albeit non-unique, climate sequence, the objective of scenario development is to provide an indicator of the physical, chemical and hydrogeological conditions at the front of and beneath the advancing and retreating ice sheets, with the aim of identifying critical aspects for Performance Assessment modelling. The effect of various factors, such as ice loading, development of permafrost, temperature changes and sea level changes are considered in terms of their impact on hydrogeology, groundwater chemistry, rock stress and surface environments. 183 refs

  20. SITE-94. The central scenario for SITE-94: A climate change scenario

    Energy Technology Data Exchange (ETDEWEB)

    King-Clayton, L.M.; Chapman, N.A. [QuantiSci Ltd, Melton Mowbray (United Kingdom); Kautsky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Svensson, N.O. [Lund Univ. (Sweden). Dept. of Quaternary Geology; Marsily, G. de [Univ. VI Paris (France); Ledoux, E. [Ecole Nationale Superieure des Mines, 77 - Fontainebleau (France)

    1995-12-01

    The central scenario includes the following main components: a deterministic description of the most probable climatic state for Sweden (with special ref. to the Aespoe area) for the next c. 120,000 years, a description of the likely nature of the surface and geological environment in the area at each stage of the climate sequence selected, and quantitative information on how these changes might affect the disposal system. The climate models suggest glacial maxima at c. 5, 20, 60 and 100 thousand years from now. The Aespoe region is predicted to be significantly affected by the latter three glacial episodes, with the ice sheet reaching and covering the area during the latter two episodes (by up to c 2200m and 1200m thickness of ice, resp.). Permafrost thicknesses over the next 120,000 years have been calculated. Assumptions, estimates and alternatives to the prescribed climate evolution are discussed. Following definition of a realistic, albeit non-unique, climate sequence, the objective of scenario development is to provide an indicator of the physical, chemical and hydrogeological conditions at the front of and beneath the advancing and retreating ice sheets, with the aim of identifying critical aspects for Performance Assessment modelling. The effect of various factors, such as ice loading, development of permafrost, temperature changes and sea level changes are considered in terms of their impact on hydrogeology, groundwater chemistry, rock stress and surface environments. 183 refs.

  1. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)

    Science.gov (United States)

    Nativi, S.; Santoro, M.

    2009-12-01

    Currently, one of the major challenges for scientific community is the study of climate change effects on life on Earth. To achieve this, it is crucial to understand how climate change will impact on biodiversity and, in this context, several application scenarios require modeling the impact of climate change on distribution of individual species. In the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2), the Climate Change & Biodiversity thematic Working Group developed three significant user scenarios. A couple of them make use of a GEOSS-based framework to study the impact of climate change factors on regional species distribution. The presentation introduces and discusses this framework which provides an interoperability infrastructures to loosely couple standard services and components to discover and access climate and biodiversity data, and run forecast and processing models. The framework is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access

  2. Change Ahead: Transient Scenarios for Long-term Water Management

    Science.gov (United States)

    Haasnoot, Marjolijn; Beersma, Jules; Schellekens, Jaap

    2013-04-01

    While the use of an ensemble of transient scenarios is common in climate change studies, they are rarely used in water management studies. Present planning studies on long-term water management often use a few plausible futures for one or two projection years, ignoring the dynamic aspect of adaptation through the interaction between the water system and society. Over the course of time society experiences, learns and adapts to changes and events, making policy responses part of a plausible future, and thus the success of a water management strategy. Exploring transient scenarios and policy options over time can support decision making on water management strategies in an uncertain and changing environment. We have developed and applied such a method, called exploring adaptation pathways (Haasnoot et al., 2012; Haasnoot et al., 2011). This method uses multiple realisations of transient scenarios to assess the efficacy of policy actions over time. In case specified objectives are not achieved anymore, an adaptation tipping point (Kwadijk et al., 2010) is reached. After reaching a tipping point, additional actions are needed to reach the objectives. As a result, a pathway emerges. In this presentation we describe the development of transient scenarios for long term water management, and how these scenarios can be used for long term water management under uncertainty. We illustrate this with thought experiments, and results from computational modeling experiment for exploring adaptation pathways in the lower Rhine delta. The results and the thought experiments show, among others, that climate variability is at least just as important as climate change for taking decisions in water management. References Haasnoot, M., Middelkoop, H., Offermans, A., Beek, E., Deursen, W.A.v. (2012) Exploring pathways for sustainable water management in river deltas in a changing environment. Climatic Change 115, 795-819. Haasnoot, M., Middelkoop, H., van Beek, E., van Deursen, W

  3. Analysis of Future Streamflow Regimes under Global Change Scenarios in Central Chile for Ecosystem Sustainability

    Science.gov (United States)

    Henriquez Dole, L. E.; Gironas, J. A.; Vicuna, S.

    2015-12-01

    Given the critical role of the streamflow regime for ecosystem sustainability, modeling long term effects of climate change and land use change on streamflow is important to predict possible impacts in stream ecosystems. Because flow duration curves are largely used to characterize the streamflow regime and define indices of ecosystem health, they were used to represent and analyze in this study the stream regime in the Maipo River Basin in Central Chile. Water and Environmental Assessment and Planning (WEAP) model and the Plant Growth Model (PGM) were used to simulate water distribution, consumption in rural areas and stream flows on a weekly basis. Historical data (1990-2014), future land use scenarios (2030/2050) and climate change scenarios were included in the process. Historical data show a declining trend in flows mainly by unprecedented climatic conditions, increasing interest among users on future streamflow scenarios. In the future, under an expected decline in water availability coupled with changes in crop water demand, water users will be forced to adapt by changing water allocation rules. Such adaptation actions would in turns affect the streamflow regime. Future scenarios for streamflow regime show dramatic changes in water availability and temporal distribution. Annual weekly mean flows can reduce in 19% in the worst scenario and increase in 3.3% in the best of them, and variability in streamflow increases nearly 90% in all scenarios under evaluation. The occurrence of maximum and minimum monthly flows changes, as June instead of July becomes the driest month, and December instead of January becomes the month with maximum flows. Overall, results show that under future scenarios streamflow is affected and altered by water allocation rules to satisfy water demands, and thus decisions will need to consider the streamflow regime (and habitat) in order to be sustainable.

  4. Scenarios use to engage scientists and decision-makers in a changing Arctic

    Science.gov (United States)

    Lee, O. A.; Eicken, H.; Payne, J. F.

    2015-12-01

    Scenarios provide a framework to develop more adaptive Arctic policies that allow decision makers to consider the best available science to address complex relationships and key uncertainties in drivers of change. These drivers may encompass biophysical factors such as climate change, socioeconomic drivers, and wild-cards that represent low likelihood but influential events such as major environmental disasters. We outline some of the lessons learned from the North Slope Science Initiative (NSSI) scenarios project that could help in the development of adaptive science-based policies. Three spatially explicit development scenarios were identified corresponding to low, medium and high resource extraction activities on the North Slope and adjacent seas. In the case of the high energy development scenario science needs were focused on new technology, oil spill response, and the effects of offshore activities on marine mammals important for subsistence. Science needs related to community culture, erosion, permafrost degradation and hunting and trapping on land were also identified for all three scenarios. The NSSI science needs will guide recommendations for future observing efforts, and data from these observing activities could subsequently improve policy guidance for emergency response, subsistence management and other issues. Scenarios at pan-Arctic scales may help improve the development of international policies for resilient northern communities and encourage the use of science to reduce uncertainties in plans for adapting to change in the Arctic.

  5. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  6. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  7. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures

    Science.gov (United States)

    Nativi, Stefano; Santoro, Mattia

    2010-05-01

    publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access Transaction server: this component publishes the model outputs. This framework was assessed in two use scenarios of GEOSS AIP-2 Climate Change and Biodiversity WG. Both scenarios concern the prediction of species distributions driven by climatological change forecasts. The first scenario dealt with the Pikas specie regional distribution in the Great Basin area (North America). While, the second one concerned the modeling of the Arctic Food Chain species in the North Pole area -the relationships between different environmental parameters and Polar Bears distribution was analyzed. The scientific patronage was provided by the University of Colorado and the University of Alaska, respectively. Results are published in the GEOSS AIP-2 web site: http://www.ogcnetwork.net/AIP2develop.

  8. Developing Scenarios: Linking Environmental Scanning and Strategic Planning.

    Science.gov (United States)

    Whiteley, Meredith A.; And Others

    1990-01-01

    The multiple scenario analysis technique for organizational planning used by multinational corporations is adaptable for colleges and universities. Arizona State University launched a futures-based planning project using the Delphi technique and cross-impact analysis to produce three alternative scenarios (stable, turbulent, and chaotic) to expand…

  9. Using Rapid-Response Scenario-Building Methodology for Climate Change Adaptation Planning

    Science.gov (United States)

    Ludwig, K. A.; Stoepler, T. M.; Schuster, R.

    2015-12-01

    Rapid-response scenario-building methodology can be modified to develop scenarios for slow-onset disasters associated with climate change such as drought. Results of a collaboration between the Department of the Interior (DOI) Strategic Sciences Group (SSG) and the Southwest Colorado Social-Ecological Climate Resilience Project are presented in which SSG scenario-building methods were revised and applied to climate change adaptation planning in Colorado's Gunnison Basin, United States. The SSG provides the DOI with the capacity to rapidly assemble multidisciplinary teams of experts to develop scenarios of the potential environmental, social, and economic cascading consequences of environmental crises, and to analyze these chains to determine actionable intervention points. By design, the SSG responds to acute events of a relatively defined duration. As a capacity-building exercise, the SSG explored how its scenario-building methodology could be applied to outlining the cascading consequences of slow-onset events related to climate change. SSG staff facilitated two workshops to analyze the impacts of drought, wildfire, and insect outbreak in the sagebrush and spruce-fir ecosystems. Participants included local land managers, natural and social scientists, ranchers, and other stakeholders. Key findings were: 1) scenario framing must be adjusted to accommodate the multiple, synergistic components and longer time frames of slow-onset events; 2) the development of slow-onset event scenarios is likely influenced by participants having had more time to consider potential consequences, relative to acute events; 3) participants who are from the affected area may have a more vested interest in the outcome and/or may be able to directly implement interventions.

  10. Environmental Impact Assessment of Coal Mining: Indian Scenario

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-09-01

    Full Text Available Coal mining is a development activity, which is bound to damage the natural ecosystem by all its activities direct and ancillary, starting from land acquisition to coal beneficiation and use of the products. This is so because environmental degradation has affected especially the common property resources such as land and water on which depend the subsistence and well-being of the local community. The study area being the foremost coal producing region of the country also ranked high in the record of environmentally degraded region. Huge areas in the Raniganj and Jharia coalfield in India have become ruined due to abandoned and active mine surface and underground mines. In open cast mines, waste resources are usually stacked as huge dumps in the surroundings. These, coupled with coal dumps, cause noteworthy visual impact. Large vicinity of forest, farming land, and pasture land has been transformed into colliery colonies or into uncultivated land due to rapid expansion of the coal mines. As a result, land use pattern has been changed considerably over last three decades. This study is pursued to assess the impact of coal mining activities on local community and environment.

  11. Using the baseline environmental management report (BEMR) to examine alternate program scenarios

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE) Office of Environmental Management (EM) released the first Baseline Environmental Management Report (BEMR) in March, 1995. The Congressionally-mandated report provides life-cycle cost estimates, tentative schedules, and projected activities necessary to complete DOE's Environmental Management Program. This ''base case'' estimate is based on current program assumptions and the most likely set of activities. However, since the future course of the Environmental Management Program depends upon a number of fundamental technical and policy choices, alternate program scenarios were developed. These alternate cases show the potential cost impacts of changing assumptions in four key areas: future land use, program funding and scheduling, technology development, and waste management configurations. Several cost and program evaluation tools were developed to support the analysis of these alternate cases. The objective of this paper is to describe the analytical tool kit developed to support the development of the 1995 Baseline Report and to discuss the application of these tools to evaluate alternate program scenarios

  12. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    Science.gov (United States)

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term. PMID:26308384

  13. Simulating the Impact of Economic and Environmental Strategies on Future Urban Growth Scenarios in Ningbo, China

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2016-10-01

    Full Text Available Coastal cities in China are challenged by multiple growth paths and strategies related to demands in the housing market, economic growth and eco-system protection. This paper examines the effects of conflicting strategies between economic growth and environmental protection on future urban scenarios in Ningbo, China, through logistic-regression-based cellular automata (termed LogCA modeling. The LogCA model is calibrated based on the observed urban patterns in 1990 and 2015, and applied to simulate four future scenarios in 2040, including (a the Norm-scenario, a baseline scenario that maintains the 1990–2015 growth rate; (b the GDP-scenario, a GDP-oriented growth scenario emphasizing the development in city centers and along economic corridors; (c the Slow-scenario, a slow-growth scenario considering the potential downward trend of the housing market in China; and (d the Eco-scenario, a slow-growth scenario emphasizing natural conservation and ecosystem protections. The CA parameters of the Norm- and Slow-scenarios are the same as the calibrated parameters, while the parameters of proximities to economic corridors and natural scenery sites were increased by a factor of 3 for the GDP- and Eco-scenarios, respectively. The Norm- and GDP-scenarios predicted 1950 km2 of new growth for the next 25 years, the Slow-scenario predicted 650 km2, and the Eco-scenario predicted less growth than the Slow-scenario. The locations where the newly built-up area will emerge are significantly different under the four scenarios and the Slow- and Eco-scenarios are preferable to achieve long-term sustainability. The scenarios are not only helpful for exploring sustainable urban development options in China, but also serve as a reference for adjusting the urban planning and land policies.

  14. Evaluating the environmental impacts of a land use scenario for bioenergy production in the Midwest U.S

    Science.gov (United States)

    Sun, J.; Twine, T. E.; Hill, J.

    2012-12-01

    A variety of land use and land cover (LULC) scenarios are being developed in the Midwest United States (U.S.) to meet bioenergy production goals. Differences in these scenarios (e.g., maize vs. perennial grass and areal distribution) could result in different impacts to water resources and carbon emissions. Thus it is important to comprehensively evaluate the potential effects of LULC scenarios on the environment. The U.S. Environmental Protection Agency (EPA) has developed one land cover scenario in the Midwest U.S. to meet the projected bioenergy production demands in 2020. In this study we use Agro-IBIS, a global dynamic ecosystem model, to evaluate how this scenario might affect future water and carbon budgets. The model represents a wide range of processes including leaf and canopy physiology, plant phenology, vegetation dynamics, and nutrient cycling in both natural and managed ecosystems. The model is capable of simulating crop growth and behavior by taking into account management such as irrigation and fertilizer application. By comparing the simulation results from the current land cover and future land cover scenario, we evaluate the potential impact on regional hydrology, carbon sequestration, and biomass production as a result of this particular scenario's land cover change. Future work will evaluate additional scenarios and could contribute to improvements in scenario development.

  15. Climate Change Scenarios in the Yucatan Peninsula to the year 2020

    Science.gov (United States)

    Orellana, R.; Espadas, C.; Conde, C.; Gay, C.

    2010-03-01

    A topic that has not been sufficiently analyzed is that the global warming is already affecting, and that it will have worst consequences in those regions with transitional climates, which have more sensibility to changes. This is the case of the Yucatan Peninsula which is semi-arid in their northern portion, and toward the south is subhumid, with a tendency to be more rainy toward the south. To have an estimation of what could happen in the future, the Intergovernmental Panel of Climatic Change (IPCC) has promoted the use of General Circulation Models (GCM), as well as the construction of possible emission scenarios that integrate different global and regional socioeconomic and demographic conditions, which project then a possible increase of emissions of greenhouse gases. These conditions are recognized as the decisive forces that will determine the variations of temperature and of precipitation. These projections are useful for the analysis of climatic change, and in particular for the assessments of the possible impacts and of the initiatives of adaptation and of mitigation that should be implemented in every country or region. In Mexico, most of those evaluations of climate change have been carried out generally at country level. For that reason, it is necessary to direct the research at regional level. In this work, we evaluated the potential climatic changes on the Yucatan Peninsula, considering the different changes of temperature and precipitation as a consequence for different emission scenarios and for the horizon 2020. To project the environmental responses of the region, we used as a base scenario the available temperature and precipitation information of the period 1961-1990, registered in 85 meteorological stations of the peninsula. With these data, we generated climate change scenarios using the outputs of four General Circulation Models: HADLEY, ECHAM, GFDL and CGCM, and the emission scenarios A1FI, A2, B1 and B2. The outputs of these models were

  16. Operating Water Resources Systems Under Climate Change Scenarios

    Science.gov (United States)

    Ahmad, S.

    2002-12-01

    sustainable management of water resources. The decision support system helps in analyzing the impacts of different reservoir operation scenarios, under changing climate conditions, by exploring multiple- what-if- scenarios. Canadian study areas and data sets are used for the research. However, the proposed approach provides a general framework that can be used in other parts of the world.

  17. Using the New Scenarios Framework to Inform Climate Change Adaptation Policy in Finland

    Science.gov (United States)

    Carter, T. R.

    2013-12-01

    In 2005, Finland was among the first countries in the world to develop a national climate change adaptation strategy (Marttila et al., 2005). This included a characterization of future changes in climate and socioeconomic conditions using scenarios based on the IPCC Special Report on Emissions Scenarios (SRES - IPCC, 2000). Following a government evaluation of the strategy, completion of a national adaptation research programme, and in light of the recent European Union adaptation strategy, the Finnish strategy is now under revision. As part of this revision process, the New Scenario Framework (Moss et al., 2010) is being used to guide the mapping of future conditions in Finland out to the end of the 21st century. Future Finnish climate is being analysed using the CMIP5 climate model simulations (Taylor et al., 2012), including downscaled information based on regional climate model projections in the EURO-CORDEX project (Vautard et al., 2013). All projections are forced by the Representative Concentration Pathways (RCPs - van Vuuren et al., 2011). Socioeconomic scenarios are also being developed by outlining alternative pathways that reflect national social, economic, environmental and planning goals. These are designed according to the Shared Socioeconomic Pathway (SSP) framework of challenges to adaptation and mitigation (Kriegler et al., 2012). Work is in progress to characterize these pathways, mainly qualitatively, for different sectors in Finland. Preliminary results of the conceptual scenario development phase will be presented in this session. These initial ideas will be exchanged with representatives of ministries, regional government and key stakeholder groups. The eventual form and number of scenarios that appear in the revised strategy will be determined following a formal review of the draft document to be prepared in 2014. Future work could include quantification of scenarios, possibly mapping them onto the specific SSP worlds. This would then provide

  18. Assessing the environmental costs and benefits of plantations under future carbon pricing scenarios

    Science.gov (United States)

    Jackson, R. B.; Barrett, D. J.; Farley, K.; Guenther, A.; Jobbágy, E. G.; Murray, B. C.; McCarl, B. A.; Schlesinger, W. H.

    2004-12-01

    Carbon sequestration programs are gaining attention globally as a means to offset increasing fossil fuel emissions and atmospheric carbon dioxide concentrations. We are examining scenarios of C sequestration in four regions of the world: the U.S., South America, China, and Australia. The analysis uses economic models to predict where the plantations will be grown and then categorizes the other biogeochemical changes that will likely occur. The goals of the project include: 1) Evaluating the assumptions behind C sequestration programs for plantations, including the importance of rotation rates, a full accounting of carbon costs (e.g., planting and site preparation), and how the C would be stored and safeguarded. 2) Examining the scale of the process needed to make a substantial contribution to offset fossil fuel emissions (see below). The scenario we have chosen to evaluate is one that addresses the consequences of storing 1 PgC yr-1 for 50 years. 3) Determining and summarizing the evidence for other biogeochemical changes that will likely occur. Some of the factors to be evaluated include soil acidification, changes in water fluxes and water-table dynamics, nutrient losses, changes in soil fauna and biodiversity, volatile organic carbon emissions, and erosion. 4) A final goal of the project is to make concrete recommendations for where plantations may be the most beneficial in terms of C storage and other environmental benefits, such as the amelioration of salinity and groundwater upwelling in Australia.

  19. Potential changes in benthic macrofaunal distributions from the English Channel simulated under climate change scenarios

    Science.gov (United States)

    Rombouts, Isabelle; Beaugrand, Grégory; Dauvin, Jean-Claude

    2012-03-01

    Climate-induced changes in the distribution of species are likely to affect the functioning and diversity of marine ecosystems. Therefore, in economic and ecological important areas, such as the English Channel, projections of the future distributions of key species under changing environmental conditions are urgently needed. Ecological Niche Models (ENMs) have been applied successfully to determine potential distributions of species based on the information of the environmental niche of a species (sensu Hutchinson). In this study, the niches of two commercially exploited benthic species, Pecten maximus and Glycymeris glycymeris, and two ecologically important species, Abra alba and Ophelia borealis were derived using four contemporary hydrographic variables, i.e. sea surface temperature, sea surface salinity, water depth and sediment type. Consequently, using these ecological envelopes, the Non-Parametric Probalistic Ecological Niche model (NPPEN) was applied to calculate contemporary probabilities of occurrence for each species in the North East Atlantic and to predict potential re-distributions under the climate change scenario A2 for two time periods 2050-2059 and 2090-2099. Results show general northern displacements of the four benthic species from the English Channel into the North Sea and southern Norwegian coast. The projections mostly indicate a reduction of suitable habitat for benthic species with a notable disappearance of their distributions in the English Channel, except for A. alba. However, interpretations should be treated with caution since many uncertainties and assumptions are attached to ecological niche models in general. Furthermore, opening up potential habitats for benthic species does not necessarily imply that the species will actually occupy these sites in the future. The displacement and colonisation success of species are a function of many other non-climatic factors such as species life histories, dispersal abilities, adaptability

  20. Anticipating environmental and environmental-health implications of extreme storms: ARkStorm scenario

    Science.gov (United States)

    Plumlee, Geoffrey S.; Alpers, Charles N.; Morman, Suzette A.; San Juan, Carma A.

    2016-01-01

    The ARkStorm Scenario predicts that a prolonged winter storm event across California would cause extreme precipitation, flooding, winds, physical damages, and economic impacts. This study uses a literature review and geographic information system-based analysis of national and state databases to infer how and where ARkStorm could cause environmental damages, release contamination from diverse natural and anthropogenic sources, affect ecosystem and human health, and cause economic impacts from environmental-remediation, liability, and health-care costs. Examples of plausible ARkStorm environmental and health concerns include complex mixtures of contaminants such as petroleum, mercury, asbestos, persistent organic pollutants, molds, and pathogens; adverse physical and contamination impacts on riverine and coastal marine ecosystems; and increased incidences of mold-related health concerns, some vector-borne diseases, and valley fever. Coastal cities, the San Francisco Bay area, the Sacramento-San Joaquin River Delta, parts of the Central Valley, and some mountainous areas would likely be most affected. This type of screening analysis, coupled with follow-up local assessments, can help stakeholders in California and disaster-prone areas elsewhere better plan for, mitigate, and respond to future environmental disasters.

  1. Description of selected global models for scenario studies on environmentally sustainable development

    NARCIS (Netherlands)

    Bakkes JA; Grosskurt J; Ienburg AM; Rothman DS; Vuuren DP van; OECD; ICIS; MNV; ICIS; LAE

    2001-01-01

    This report provides a survey of past and present integrated models that have been used for the generation and analysis of global scenarios. It examines the usefulness of the models for scenario studies on environmentally sustainable development. It does so by evaluating the models in terms of inter

  2. FINADAPT scenarios for the 21st century. Alternative futures for considering adaptation to climate change in Finland. FINADAPT Working Paper 2

    OpenAIRE

    Carter, Timothy R.; JylhÀ, Kirsti; Perrels, Adriaan; Fronzek,Stefan; KankaanpÀÀ, Susanna

    2005-01-01

    A set of three scenarios of environmental and socio-economic conditions in Finland during the 21st century is presented. The scenarios were developed to provide a contextual framework for research into adaptation to climate change in the FINADAPT project. They have similarities to the IPCC SRES global scenarios, but they also differ from SRES because they are national in scope and they account for climate policy. The scenarios are labelled: Global Markets, assuming low greenhouse gas levels, ...

  3. Sustain ability, energy and climate change, future scenarios; Sostenibilidad, energia y cambio climatico, escenarios con futuro

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Beltran, D.

    2009-07-01

    The permanent social and environmental crisis and the nowadays economic and financial ones add only to the reasons for a change in the development models at all levels. The article reviews the preconditions for change at global level, the EU Agenda for Change to be reinforced and above all implemented at EU level, so that the EU can show the way and lead the Change. Also analyses the scenarios with a future for Spain, so that Spain can participate in both changes and act as a showcase , participating and even leading this third industrial revolution and obtaining the competitive advantages of the pioneers, considering in particular the potentials in renewable energy sources and the need, in any case, of a radical change in Spain's ongoing development model. (Author)

  4. Environmental evaluation of carbon capture and storage technology and large scale deployment scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhawna

    2011-03-15

    Carbon capture and storage (CCS) is the most viable option to reduce CO{sub 2} emissions from power plants while continuing the use of fossil fuels required to satisfy the increasing energy demand. However, CCS is an energy intensive process, and demands additional energy, chemicals and infrastructure. The capture processes may also have certain direct emissions to air (NH{sub 3}, aldehydes, solvent vapor etc.) and generate solid wastes from degradation byproducts. A trade-off in environmental impacts is expected, and with the large-scale application of CCS needed to make any significant reduction in CO emissions, these potential trade-offs can become enormous in magnitude. Therefore a systematic process of evaluation of complete life cycle for all available CCS options and large-scale CCS deployment scenarios is needed. Life Cycle Assessment (LCA) methodology is well established and best suited for such analysis. Methodology of hybrid life cycle assessment is used in this work and methodological developments are made to build-up simple approaches for evaluation of future CCS systems and scenarios. The thesis also extends the result presentation to more comprehensible damage indicators and evaluates control potentials for human health, ecosystem damage and resource depletion for the technology. The results of the study shows that the CCS systems achieve significant reduction in global warming impact but have multiple environmental trade-offs depending on the technology. These trade-offs are mainly due to energy penalty from capture process, infrastructure development and waste treatment processes. Damage assessment shows that the CCS systems greatly reduce human health damage and ecosystem damage by mitigating the climate change impact while increasing the resource consumption. Scenario assessment results show the clear advantage of global CCS integration scenarios over the Baseline scenario having significantly lower impact potential scores for all impact and

  5. Management of the Mediterranean Coast in Climate Change Scenarios

    Science.gov (United States)

    Lionello, P.; Conte, D.; Scarascia, L.; Sanchez-Arcilla, A.; Sierra, J. P.; Mosso, C.; Hinkel, J.; Vafeidis, A.

    2015-12-01

    Model projections can provide a rich information on the hazards posed by marine storminess on coastal areas and their evolution in climate change scenarios. When addressing coastal protection issues is however necessary to consider simultaneously different factors, that are usually separately computed, such as sea level rise, storm surges and ocean waves and adopt an approach accounting for their superposition. Further, this information need to be combined with that on the vulnerability of the coastal areas, their morphology and the location of harbors and defenses. This study shows how to use multi-factor projections and geographical information to identify critical parts of the coastline and to suggest to policymaker where to invest resources at country and regional scale. Results are applied to the Mediterranean coastline. Impacts on beaches (e.g. erosion), harbors (e.g. overtopping), human settlements (e.g., flood damage) and their management through enhanced coastal defenses are discussed. This study is part of the RISES-AM project (FP7-EU-603396).

  6. Spatio-temporal distribution of dengue fever under scenarios of climate change in the southern Taiwan

    Science.gov (United States)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2014-05-01

    Dengue fever has been recognized as the most important widespread vector-borne infectious disease in recent decades. Over 40% of the world's population is risk from dengue and about 50-100 million people are infected world wide annually. Previous studies have found that dengue fever is highly correlated with climate covariates. Thus, the potential effects of global climate change on dengue fever are crucial to epidemic concern, in particular, the transmission of the disease. This present study investigated the nonlinearity of time-delayed impact of climate on spatio-temporal variations of dengue fever in the southern Taiwan during 1998 to 2011. A distributed lag nonlinear model (DLNM) is used to assess the nonlinear lagged effects of meteorology. The statistically significant meteorological factors are considered, including weekly minimum temperature and maximum 24-hour rainfall. The relative risk and the distribution of dengue fever then predict under various climate change scenarios. The result shows that the relative risk is similar for different scenarios. In addition, the impact of rainfall on the incidence risk is higher than temperature. Moreover, the incidence risk is associated to spatially population distribution. The results can be served as practical reference for environmental regulators for the epidemic prevention under climate change scenarios.

  7. Modelling regional land change scenarios to assess land abandonment and reforestation dynamics in the Pyrenees (France)

    Science.gov (United States)

    Vacquie, Laure; Houet, Thomas; Sohl, Terry L.; Reker, Ryan; Sayler, Kristi L.

    2015-01-01

    Over the last decades and centuries, European mountain landscapes have experienced substantial transformations. Natural and anthropogenic LULC changes (land use and land cover changes), especially agro-pastoral activities, have directly influenced the spatial organization and composition of European mountain landscapes. For the past sixty years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population. Stakeholders, to better anticipate future changes, need spatially and temporally explicit models to identify areas at risk of land change and possible abandonment. This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains, based on historical LULC trends and a range of future socio-economic drivers. The proposed methodology considers local specificities of the Pyrenean valleys, sub-regional climate and topographical properties, and regional economic policies. Results indicate that some regions are projected to face strong abandonment, regardless of the scenario conditions. Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive (agricultural and/or pastoral) production and profitability. The combination of the results for the four scenarios allows assessments of where encroachment (e.g. colonization by shrublands) and reforestation are the most probable. This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions.

  8. Pelagic resources landings in central-southern Chile under the A2 climate change scenarios

    Science.gov (United States)

    Yáñez, Eleuterio; Plaza, Francisco; Silva, Claudio; Sánchez, Felipe; Barbieri, María Ángela; Aranis, Antonio

    2016-10-01

    Artificial neural networks (ANNs) were used to predict landings of anchovy ( Engraulis ringens), common sardine ( Strangomera bentincki), and jack mackerel ( Trachurus murphyi) in central-southern Chile. Twelve environmental variables were considered along with fishing effort (fe) and landing statistics from 1973 to 2012. During external validation, the best models with all of the selected variables gave r 2 values of 90 % for anchovy, 96 % for common sardine, and 88 % for jack mackerel. The models were simplified by considering only fe and sea surface temperature from NCEP/NCAR reanalysis data (SST-NOAA), and very similar fits were achieved (87, 92, and 88 %, respectively). Future SSTs were obtained from the A2 climate change scenario and regionalized using statistical downscaling techniques. The downscaled SSTs were used as input for landings predictions using ANN simplified models. In addition, three scenarios of future fishing efforts (2010-2012 average, average + 50 %, and average - 50 %) were used as the input data for landing simulations. The results of the predictions show a decrease of 9 % in future landings of sardine and an increase of 17 % for jack mackerel when comparing 2015 and 2065 monthly projections. However, no significant differences are shown when comparing the estimated landings for the three fishing effort scenarios. Finally, more integrative and complex conceptual models that consider oceanographic-biophysical, physiological, environmental-resource, and interspecies processes need to be implemented.

  9. Uncertainties in Predicting Tourist Flows Under Scenarios of Climate Change. Editorial Essay

    International Nuclear Information System (INIS)

    Tourism is largely dependent on climatic and natural resources. For example, 'warmer' climates generally constitute preferred environments for recreation and leisure, and natural resources such as fresh water, biodiversity, beaches or landscapes are essential preconditions for tourism. Global environmental change threatens these foundations of tourism through climate change, modifications of global biogeochemical cycles, land alteration, the loss of non-renewable resources, unsustainable use of renewable resources and loss of biodiversity. This has raised concerns that tourist flows will change to the advantage or disadvantage of destinations, which is of major concern to local and national economies, as tourism is one of the largest economic sectors of the world, and of great importance for many destinations. In consequence, an increasing number of publications have sought to analyse travel flows in relation to climatic and socio-economic parameters. The ultimate goal has been to develop scenarios for future travel flows, possibly including 'most at risk destinations', both in economic and in environmental terms. Such scenarios are meant to help the tourist industry in planning future operations, and they are of importance in developing plans for adaptation

  10. Environmental exposure scenarios: development, challenges and possible solutions.

    Science.gov (United States)

    Ahrens, Andreas; Traas, Theo P

    2007-12-01

    Under the new REACH system, companies importing, producing and marketing chemical substances will be obliged to register the single substances and to carry out a safety assessment for all identified uses during the life cycle of the substance. This duty will apply to about 10,000 existing substances in the EU market exceeding an annual production or import volume of 10 t per company. If the substance is already known to be dangerous or turns out to be dangerous(1) during the hazard assessment, the registrant is obliged to carry out an exposure assessment and a risk characterisation for all identified uses. The goal of the safety assessment is to define the conditions of use that allow for adequate control of risk with regard to health and safety at the work place, consumer safety and protection of the environment. Once the registrant has established and documented these conditions in the Chemicals Safety Report (CSR), that information is to be communicated down the supply chain by means of the Extended Safety Data Sheet (eSDS). The ultimate aim of the new legislation is to establish duties and mechanisms that systematically prevent or limit exposure to dangerous industrial chemicals. The current paper explains this concept with regard to environmental exposure and highlights the challenges and possible solutions.

  11. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios.

    Science.gov (United States)

    Miguel Ayala, Laura; van Eupen, Michiel; Zhang, Guoping; Pérez-Soba, Marta; Martorano, Lucieta G; Lisboa, Leila S; Beltrao, Norma E

    2016-11-01

    Agricultural expansion and intensification are main drivers of land-use change in Brazil. Soybean is the major crop under expansion in the area. Soybean production involves large amounts of water and fertiliser that act as sources of contamination with potentially negative impacts on adjacent water bodies. These impacts might be intensified by projected climate change in tropical areas. A Water Footprint Assessment (WFA) serves as a tool to assess environmental impacts of water and fertiliser use. The aim of this study was to understand potential impacts on environmental sustainability of agricultural intensification close to a protected forest area of the Amazon under climate change. We carried out a WFA to calculate the water footprint (WF) related to soybean production, Glycine max, to understand the sustainability of the WF in the Tapajós river basin, a region in the Brazilian Amazon with large expansion and intensification of soybean. Based on global datasets, environmental hotspots - potentially unsustainable WF areas - were identified and spatially plotted in both baseline scenario (2010) and projection into 2050 through the use of a land-use change scenario that includes climate change effects. Results show green and grey WF values in 2050 increased by 304% and 268%, respectively. More than one-third of the watersheds doubled their grey WF in 2050. Soybean production in 2010 lies within sustainability limits. However, current soybean expansion and intensification trends lead to large impacts in relation to water pollution and water use, affecting protected areas. Areas not impacted in terms of water pollution dropped by 20.6% in 2050 for the whole catchment, while unsustainability increased 8.1%. Management practices such as water consumption regulations to stimulate efficient water use, reduction of crop water use and evapotranspiration, and optimal fertiliser application control could be key factors in achieving sustainability within a river basin. PMID

  12. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios.

    Science.gov (United States)

    Miguel Ayala, Laura; van Eupen, Michiel; Zhang, Guoping; Pérez-Soba, Marta; Martorano, Lucieta G; Lisboa, Leila S; Beltrao, Norma E

    2016-11-01

    Agricultural expansion and intensification are main drivers of land-use change in Brazil. Soybean is the major crop under expansion in the area. Soybean production involves large amounts of water and fertiliser that act as sources of contamination with potentially negative impacts on adjacent water bodies. These impacts might be intensified by projected climate change in tropical areas. A Water Footprint Assessment (WFA) serves as a tool to assess environmental impacts of water and fertiliser use. The aim of this study was to understand potential impacts on environmental sustainability of agricultural intensification close to a protected forest area of the Amazon under climate change. We carried out a WFA to calculate the water footprint (WF) related to soybean production, Glycine max, to understand the sustainability of the WF in the Tapajós river basin, a region in the Brazilian Amazon with large expansion and intensification of soybean. Based on global datasets, environmental hotspots - potentially unsustainable WF areas - were identified and spatially plotted in both baseline scenario (2010) and projection into 2050 through the use of a land-use change scenario that includes climate change effects. Results show green and grey WF values in 2050 increased by 304% and 268%, respectively. More than one-third of the watersheds doubled their grey WF in 2050. Soybean production in 2010 lies within sustainability limits. However, current soybean expansion and intensification trends lead to large impacts in relation to water pollution and water use, affecting protected areas. Areas not impacted in terms of water pollution dropped by 20.6% in 2050 for the whole catchment, while unsustainability increased 8.1%. Management practices such as water consumption regulations to stimulate efficient water use, reduction of crop water use and evapotranspiration, and optimal fertiliser application control could be key factors in achieving sustainability within a river basin.

  13. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    Science.gov (United States)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  14. Acadia National Park Climate Change Scenario Planning Workshop summary

    Science.gov (United States)

    Star, Jonathan; Fisichelli, Nicholas; Bryan, Alexander; Babson, Amanda; Cole-Will, Rebecca; Miller-Rushing, Abraham J.

    2016-01-01

    This report summarizes outcomes from a two-day scenario planning workshop for Acadia National Park, Maine (ACAD). The primary objective of the workshop was to help ACAD senior leadership make management and planning decisions based on up-to-date climate science and assessments of future uncertainty. The workshop was also designed as a training program, helping build participants' capabilities to develop and use scenarios. The details of the workshop are given in later sections. The climate scenarios presented here are based on published global climate model output. The scenario implications for resources and management decisions are based on expert knowledge distilled through scientist-manager interaction during workgroup break-out sessions at the workshop. Thus, the descriptions below are from these small-group discussions in a workshop setting and should not be taken as vetted research statements of responses to the climate scenarios, but rather as insights and examinations of possible futures (Martin et al. 2011, McBride et al. 2012).

  15. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon.

    Science.gov (United States)

    Aguiar, Ana Paula Dutra; Vieira, Ima Célia Guimarães; Assis, Talita Oliveira; Dalla-Nora, Eloi L; Toledo, Peter Mann; Santos-Junior, Roberto Araújo Oliveira; Batistella, Mateus; Coelho, Andrea Santos; Savaget, Elza Kawakami; Aragão, Luiz Eduardo Oliveira Cruz; Nobre, Carlos Afonso; Ometto, Jean Pierre H

    2016-05-01

    Following an intense occupation process that was initiated in the 1960s, deforestation rates in the Brazilian Amazon have decreased significantly since 2004, stabilizing around 6000 km(2) yr(-1) in the last 5 years. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring systems, and credit restriction mechanisms. Nevertheless, other threats remain, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We propose three updated qualitative and quantitative land-use scenarios for the Brazilian Amazon, including a normative 'Sustainability' scenario in which we envision major socio-economic, institutional, and environmental achievements in the region. We developed an innovative spatially explicit modelling approach capable of representing alternative pathways of the clear-cut deforestation, secondary vegetation dynamics, and the old-growth forest degradation. We use the computational models to estimate net deforestation-driven carbon emissions for the different scenarios. The region would become a sink of carbon after 2020 in a scenario of residual deforestation (~1000 km(2) yr(-1)) and a change in the current dynamics of the secondary vegetation - in a forest transition scenario. However, our results also show that the continuation of the current situation of relatively low deforestation rates and short life cycle of the secondary vegetation would maintain the region as a source of CO2 - even if a large portion of the deforested area is covered by secondary vegetation. In relation to the old-growth forest degradation process, we estimated average gross emission corresponding to 47% of the clear-cut deforestation from 2007 to 2013 (using the DEGRAD system data), although the aggregate effects of the postdisturbance regeneration can partially offset these emissions. Both processes (secondary

  16. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon.

    Science.gov (United States)

    Aguiar, Ana Paula Dutra; Vieira, Ima Célia Guimarães; Assis, Talita Oliveira; Dalla-Nora, Eloi L; Toledo, Peter Mann; Santos-Junior, Roberto Araújo Oliveira; Batistella, Mateus; Coelho, Andrea Santos; Savaget, Elza Kawakami; Aragão, Luiz Eduardo Oliveira Cruz; Nobre, Carlos Afonso; Ometto, Jean Pierre H

    2016-05-01

    Following an intense occupation process that was initiated in the 1960s, deforestation rates in the Brazilian Amazon have decreased significantly since 2004, stabilizing around 6000 km(2) yr(-1) in the last 5 years. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring systems, and credit restriction mechanisms. Nevertheless, other threats remain, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We propose three updated qualitative and quantitative land-use scenarios for the Brazilian Amazon, including a normative 'Sustainability' scenario in which we envision major socio-economic, institutional, and environmental achievements in the region. We developed an innovative spatially explicit modelling approach capable of representing alternative pathways of the clear-cut deforestation, secondary vegetation dynamics, and the old-growth forest degradation. We use the computational models to estimate net deforestation-driven carbon emissions for the different scenarios. The region would become a sink of carbon after 2020 in a scenario of residual deforestation (~1000 km(2) yr(-1)) and a change in the current dynamics of the secondary vegetation - in a forest transition scenario. However, our results also show that the continuation of the current situation of relatively low deforestation rates and short life cycle of the secondary vegetation would maintain the region as a source of CO2 - even if a large portion of the deforested area is covered by secondary vegetation. In relation to the old-growth forest degradation process, we estimated average gross emission corresponding to 47% of the clear-cut deforestation from 2007 to 2013 (using the DEGRAD system data), although the aggregate effects of the postdisturbance regeneration can partially offset these emissions. Both processes (secondary

  17. Water Availability in Indus River at the Upper Indus Basin under Different Climate Change Scenarios

    Science.gov (United States)

    Khan, Firdos; Pilz, Jürgen

    2015-04-01

    The last decade of the 20th century and the first decade of the 21st century showed that climate change or global warming is happening and the latter one is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C on May 26, 2010. The changing climate has impact on various areas including agriculture, water, health, among others. There are two main forces which have central role in changing climate: one is natural variability and the other one is human evoked changes, increasing the density of green house gases. The elements in the bunch of Energy-Food-Water are interlinked with one another and among them water plays a crucial role for the existence of the other two parts. This nexus is the central environmental issue around the globe generally, and is of particular importance in the developing countries. The study evaluated the importance and the availability of water in Indus River under different emission scenarios. Four emission scenarios are included, that is, the A2, B2, RCP4.5 and RCP8.5. One way coupling of regional climate models (RCMs) and Hydrological model have been implemented in this study. The PRECIS (Providing Regional Climate for Impact Studies) and CCAM (Conformal-Cubic Atmospheric Model) climate models and UBCWM (University of British Columbia Watershed Model) hydrological model are used for this purpose. It is observed that Indus River contributes 80 % of the hydro-power generation and contributes 44 % to available water annually in Pakistan. It is further investigated whether sufficient water will be available in the Indus River under climate change scenarios. Toward this goal, Tarbela Reservoir is used as a measurement tool using the parameters of the reservoir like maximum operating storage, dead level storage, discharge capacity of tunnels and spillways. The results of this study are extremely important for the economy of Pakistan in various key areas like agriculture, energy, industries and ecosystem

  18. Macroecology of Environmental Change Response

    DEFF Research Database (Denmark)

    Jørgensen, Peter Søgaard

    for co-existence, minimizing local extinctions of coldadapted species during global warming. Effects on biodiversity of human-mediated environmental change feed back to human society by challenging food production, human health and environmental management. These challenges are caused by declines...... with climate change being proposed as one of the causes. The chapter investigates the evidence for recent increases in tropical precipitation and primary productivity to cause a recovery in migrant populations. It presents novel evidence for two dichotomies in the effect of such “re-greening”. Over yearly time...... in species that human societies depend on and due to rapid evolution in species that are considered pests and pathogens. Chapter VIII takes a step back and provides a multidisciplinary review of how biological knowledge of environmental change effects can be turned into solutions to minimize current global...

  19. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios.

    Science.gov (United States)

    da Silva, Vamilson Prudêncio; van der Werf, Hayo M G; Spies, Airton; Soares, Sebastião Roberto

    2010-09-01

    Soybean production and its supply chain are highly dependent on inputs such as land, fertilizer, fuel, machines, pesticides and electricity. The expansion of this crop in Brazil in recent decades has generated concerns about its environmental impacts. To assess these impacts, two representative chains supplying soybeans to Europe were identified: Center West (CW) and Southern (SO) Brazil. Each supply chain was analyzed using Life Cycle Assessment methodology. We considered different levels of use of chemical and organic fertilizers, pesticides and machinery, different distances for transportation of inputs and different yield levels. Because transportation contributed strongly to environmental impacts, a detailed study was performed to identify the routes used to transport soybeans to seaports. Additionally, we considered different levels of land occupation and land transformation to represent the impact of deforestation in the CW region. Environmental impacts were calculated for 1000 kg of soybean up to and including the delivery to Europe at the seaport in Rotterdam, at 13% humidity. Overall results showed that the impacts are greater for CW than for SO for all impact categories studied, including acidification (7.7 and 5.3 kg SO(2) eq., respectively), climate change (959 and 510 kg CO(2) eq.), cumulative energy demand (12,634 and 6,999 MJ) and terrestrial ecotoxicity (4.9 and 3.1 kg 1,4-DCB eq.), except eutrophication and land occupation. The same trend was observed for the crop-production stage. Efforts to reduce chemical fertilizers and diesel consumption can reduce CO(2) emissions. Although deforestation for crop production has decreased in recent years, the contribution of deforestation to climate change and cumulative energy demand remains significant. In the CW scenario deforestation contributed 29% to climate change and 20% to cumulative energy demand. Results also showed that although there are different transportation options in Brazil, the current

  20. Threats and opportunities for freshwater conservation under future land use change scenarios in the United States.

    Science.gov (United States)

    Martinuzzi, Sebastián; Januchowski-Hartley, Stephanie R; Pracheil, Brenda M; McIntyre, Peter B; Plantinga, Andrew J; Lewis, David J; Radeloff, Volker C

    2014-01-01

    Freshwater ecosystems provide vital resources for humans and support high levels of biodiversity, yet are severely threatened throughout the world. The expansion of human land uses, such as urban and crop cover, typically degrades water quality and reduces freshwater biodiversity, thereby jeopardizing both biodiversity and ecosystem services. Identifying and mitigating future threats to freshwater ecosystems requires forecasting where land use changes are most likely. Our goal was to evaluate the potential consequences of future land use on freshwater ecosystems in the coterminous United States by comparing alternative scenarios of land use change (2001-2051) with current patterns of freshwater biodiversity and water quality risk. Using an econometric model, each of our land use scenarios projected greater changes in watersheds of the eastern half of the country, where freshwater ecosystems already experience higher stress from human activities. Future urban expansion emerged as a major threat in regions with high freshwater biodiversity (e.g., the Southeast) or severe water quality problems (e.g., the Midwest). Our scenarios reflecting environmentally oriented policies had some positive effects. Subsidizing afforestation for carbon sequestration reduced crop cover and increased natural vegetation in areas that are currently stressed by low water quality, while discouraging urban sprawl diminished urban expansion in areas of high biodiversity. On the other hand, we found that increases in crop commodity prices could lead to increased agricultural threats in areas of high freshwater biodiversity. Our analyses illustrate the potential for policy changes and market factors to influence future land use trends in certain regions of the country, with important consequences for freshwater ecosystems. Successful conservation of aquatic biodiversity and ecosystem services in the United States into the future will require attending to the potential threats and opportunities

  1. Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project

    Science.gov (United States)

    Keener, V. W.; Brewington, L.; Finucane, M.

    2015-12-01

    For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.

  2. Environmental influences on mate preferences as assessed by a scenario manipulation experiment.

    Directory of Open Access Journals (Sweden)

    Daniele Marzoli

    Full Text Available Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global well-being. An equal number of participants (36 women, 36 men was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions.

  3. Environmental change in the Sahel

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; D'haen, Sarah Ann Lise; Fensholt, Rasmus;

    2016-01-01

    The Sahel has been the object of intensive international research since the drought of the early 1970s. A considerable part of the research has focused on environmental change in general and land degradation, land cover change and climate change in particular. Rich and diverse insights from many...... different scientific disciplines about these three domains have been put forward. One intriguing feature is that an agreement on the overall trends of environmental change does not appear to emerge: questions such as whether the Sahel is greening, cropland is encroaching on rangelands, drought persists...... and choice of indicators, (2) biases, for example, related to selection of study sites, methodological choices, measurement accuracy, perceptions among interlocutors, and selection of temporal and spatial scales of analysis. The analysis of the root causes for different interpretations suggests...

  4. Dynamic Rainfall Patterns and the Simulation of Changing Scenarios: A behavioral watershed response

    Science.gov (United States)

    Chu, M.; Guzman, J.; Steiner, J. L.; Hou, C.; Moriasi, D.

    2015-12-01

    Rainfall is one of the fundamental drivers that control hydrologic responses including runoff production and transport phenomena that consequently drive changes in aquatic ecosystems. Quantifying the hydrologic responses to changing scenarios (e.g., climate, land use, and management) using environmental models requires a realistic representation of probable rainfall in its most sensible spatio-temporal dimensions matching that of the phenomenon under investigation. Downscaling projected rainfall from global circulation models (GCMs) is the most common practice in deriving rainfall datasets to be used as main inputs to hydrologic models which in turn are used to assess the impacts of climate changes on ecosystems. Downscaling assumes that local climate is a combination of large-scale climatic/atmospheric conditions and local conditions. However, the representation of the latter is generally beyond the capacity of current GCMs. The main objective of this study was to develop and implement a synthetic rainfall generator to downscale expected rainfall trends to 1 x 1 km rainfall daily patterns that mimic the dynamic propagation of probability distribution functions (pdf) derived from historic rainfall data (rain-gauge or radar estimated). Future projections were determined based on actual and expected changes in the pdf and stochastic processes to account for variability. Watershed responses in terms of streamflow and nutrients loads were evaluated using synthetically generated rainfall patterns and actual data. The framework developed in this study will allow practitioners to generate rainfall datasets that mimic the temporal and spatial patterns exclusive to their study area under full disclosure of the uncertainties involved. This is expected to provide significantly more accurate environmental models than is currently available and would provide practitioners with ways to evaluate the spectrum of systemic responses to changing scenarios.

  5. Environmental and economic assessment of protected crops in four European scenarios

    NARCIS (Netherlands)

    Torrellas, M.; Antón, A.; Ruijs, M.N.A.; Garcia Victoria, N.; Stanghellini, C.; Montero, J.I.

    2012-01-01

    In this study we analysed the environmental and economic profile of current agricultural practices for greenhouse crops, in cold and warm climates in Europe, using four scenarios as reference systems: tomato crop in a plastic greenhouse in Spain, and in glasshouses in Hungary and the Netherlands, an

  6. Strategies to reduce the environmental impact of an aluminium pressure die casting plant: A scenario analysis

    NARCIS (Netherlands)

    Neto, B.; Kroeze, C.; Hordijk, L.; Costa, C.; Pulles, M.P.J.

    2009-01-01

    This study explores a model (MIKADO) to analyse scenarios for the reduction of the environmental impact of an aluminium die casting plant. Our model calculates the potential to reduce emissions, and the costs associated with implementation of reduction options. In an earlier paper [Neto, B., Kroeze,

  7. Development of water use scenarios as a tool for adaptation to climate change

    Directory of Open Access Journals (Sweden)

    R. Jacinto

    2013-06-01

    Full Text Available The project ADAPTACLIMA, promoted by EPAL, the largest Portuguese Water Supply Utility, aims to provide the company with an adaptation strategy in the medium and long term to reduce the vulnerability of its activities to climate change. We used the four scenarios (A1, A2, B1, B2 adopted in the Special Report Emissions Scenarios (SRES of the IPCC (Intergovernmental Panel on Climate Change to produce local scenarios of water use. Available population SRES for Portugal were downscaled to the study area using a linear approach. Local land use scenarios were produced using the following steps: (1 characterization of the present land use for each municipality of the study area using Corine Land Cover and adaptation of the CLC classes to those used in the SRES; (2 identification of recent tendencies in land use change for the study area; (3 identification of SRES tendencies for land use change in Europe; and (4 production of local scenarios of land use. Water use scenarios were derived considering both population and land use scenarios as well as scenarios of change in other parameters (technological developments, increases in efficiency, climate changes, or political and behavioural changes. The A2 scenario forecasts an increase in population (+16% in the study area while the other scenarios show a reduction in the resident population (−6 to 8%. All scenarios, but especially A1, show a reduction in agricultural area and an increase in urban area. Regardless of the scenario, water use will progressively be reduced until 2100. These reductions are mainly due to increased water use efficiency and the reduction of irrigated land. The results accord with several projects modelling water use at regional and global level.

  8. South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs

    International Nuclear Information System (INIS)

    South Korea is an important case study for understanding the future role of nuclear power in countries with on-going economic growth, and limited renewable energy resources. We compared quantitatively the sustainability of two ‘future-mapping’ exercises (the ‘Governmental’ scenario, which relies on fossil fuels, and the Greenpeace scenario, which emphasises renewable energy and excludes nuclear power). The comparison was based on a range of environmental and technological perspectives, and contrasted against two additional nuclear scenarios that instead envisage a dominant role for nuclear energy. Sustainability metrics included energy costs, external costs (greenhouse-gas emissions, air pollutants, land transformation, water consumption and discharge, and safety) and additional costs. The nuclear-centred scenarios yielded the lowest total cost per unit of final energy consumption by 2050 ($14.37 GJ−1), whereas the Greenpeace scenario has the highest ($25.36 GJ−1). We used probabilistic simulations based on multi-factor distributional sampling of impact and cost metrics to estimate the overlapping likelihoods among scenarios to understand the effect of parameter uncertainty on the integrated recommendations. Our simulation modelling implies that, despite inherent uncertainties, pursuing a large-scale expansion of nuclear-power capacity offers the most sustainable pathway for South Korea, and that adopting a nuclear-free pathway will be more costly and produce more greenhouse-gas emissions. - Highlights: • Nuclear power has a key role to play in mitigating greenhouse-gas emissions. • The Greenpeace scenario has higher total external cost than the nuclear scenarios. • The nuclear-centred scenarios offer the most sustainable option for South Korea. • The similar conclusions are likely to apply to other Asian countries

  9. Scenario Analysis. Toward a Change in the Soil Consumption Paradigm

    Directory of Open Access Journals (Sweden)

    Giuseppe Mazzeo

    2012-04-01

    Full Text Available The processes of urbanization affecting the modern world have seen the explosion of the city and the transformation of compact and well defined structures in agglomerations with a seamlessly expansion. This has sparked a number of social and economic consequences that have impacted on the city, on the urbanized areas, and on the surroundings. The usage of the term “sprawl” to define the process of expansion of the human agglomerations dates back to eighty years ago, about, and from that period countless researches were done on the argument, also if it is open the question about the future trends of the city; if it is clear that the expansive model is still winning, it is equally necessary to identify new models that can better interpret the needs for a new attention to the territory and its environment. For this purpose the paper explores the feasible use of the scenario analysis as tool for defining the potential evolutionary paths of the city. Particular attention is placed on the construction of de-urbanization’s scenarios, namely the set of reorganization’s hypotheses of urban structures focused on the compaction of their physical size and on the maximizing of the number of residents and users. The paper seeks to deepen the possible trajectories of de-urbanization and of urban and territorial reorganization stretched to reverse the diffusion and expansive processes at the metropolitan level. The paper initially defines the characters of the processes of urbanization, also with reference to some research’s models. The second part investigates the use of scenarios for the construction of evolutionary trends. The third, finally, examines the trends comparing the processes of urban growth and of de-urbanization.

  10. Teacher Education in England: Analysing Change through Scenario Thinking.

    Science.gov (United States)

    Halstead, Valerie

    2003-01-01

    Examines changes in England's teacher education over the past 30 years, identifying key changes and relating them to the Association for Teacher Education in Europe's axes of idealism/pragmatism and individualism/social cohesion. These changes are also seen in the contexts of changes made in school and university education. Extracts from political…

  11. Simulating Hydrologic Changes with Climate Change Scenarios in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; XIE Zheng-Hui; LIU Qian; XIA Jun

    2005-01-01

    Climate change scenarios, predicted using the regional climate modeling system of PRECIS (providing regional climates for impacts studies), were used to derive three-layer variable infiltration capacity (VIC-3L) land surface model for the simulation of hydrologic processes at a spatial resolution of 0.25°× 0.25° in the Haihe River Basin. Three climate scenaxios were considered in this study: recent climate (1961-1990), future climate A2 (1991-2100) and future climate B2 (1991-2100) with A2 and B2 being two storylines of future emissions developed with the Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios. Overall, under future climate scenarios A2 and B2, the Haihe River Basin would experience warmer climate with increased precipitation, evaporation and runoff production as compared with recent climate, but would be still likely prone to water shortages in the period of 2031-2070. In addition,under future climate A2 and B2, an increase in runoff during the wet season was noticed, indicating a future rise in the flood occurrence possibility in the Haihe River Basin.

  12. Environmental and climate security: improving scenario methodologies for science and risk assessment

    Science.gov (United States)

    Briggs, C. M.; Carlsen, H.

    2010-12-01

    Governments and popular discussions have increasingly referred to concepts of ‘climate security’, often with reference to IPCC data. Development of effective methodologies to translate complex, scientific data into risk assessments has lagged, resulting in overly simplistic political assumptions of potential impacts. Climate security scenarios have been developed for use by security and military agencies, but effective engagement by scientific communities requires an improved framework. Effective use of data requires improvement both of climate projections, and the mapping of cascading impacts across interlinked, complex systems. In this research we propose a process for systematic generation of subsets of scenarios (of arbitrary size) from a given set of variables with possible interlinkages. The variables could include climatic changes as well as other global changes of concerns in a security context. In coping with possible challenges associated with the nexus of climate change and security - where deep structural uncertainty and possible irreversible changes are of primary interest - it is important to explore the outer limits of the relevant uncertainties. Therefore the proposed process includes a novel method that will help scenario developers in generating scenario sets where the scenarios are in a quantifiable sense maximally different and therefore best ‘span’ the whole set of scenarios. When downscaled onto a regional level, this process can provide guidance to potentially significant and abrupt geophysical changes, where high uncertainty has often prevented communication of risks. Potential physical changes can then be used as starting points for mapping cascading effects across networks, including topological analysis to identify critically vulnerable nodes and fragile systems, the existence of positive or negative feedback loops, and possible intervention points. Advanced knowledge of both potential geo-physical shifts and related non

  13. Modelling soil organic carbon stocks along topographic transects under climate change scenarios using CarboSOIL

    Science.gov (United States)

    Kotb Abd-Elmabod, Sameh; Muñoz-Rojas, Miriam; Jordán, Antonio; Anaya-Romero, María; de la Rosa, Diego

    2014-05-01

    CarboSOIL is a land evaluation model for soil organic carbon (SOC) accounting under global change scenarios (Muñoz-Rojas et al., 2013a; 2013b) and is a new component of the MicroLEIS Decision Support System. MicroLEIS is a tool for decision-makers dealing with specific agro-ecological problems as, for example, soil contamination risks (Abd-Elmabod et al., 2010; Abd-Elmabod et al., 2012)which has been designed as a knowledge-based approach incorporating a set of interlinked data bases. Global change and land use changes in recent decades have caused relevant impacts in vegetation carbon stocks (Muñoz-Rojas et al., 2011) and soil organic carbon stocks, especially in sensible areas as the Mediterranean region (Muñoz-Rojas et al., 2012a; 2012b). This study aims to investigate the influence of topography, climate, land use and soil factors on SOC stocks by the application of CarboSOIL in a representative area of the Mediterranean region (Seville, Spain). Two topographic transects (S-N and W-E oriented) were considered, including 63 points separated 4 km each. These points are associated to 41 soil profiles extracted from the SDBm soil data base (De la Rosa et al., 2001) and climatic information (average minimum temperature, average maximum temperature and average rainfall per month) extracted from raster data bases (Andalusian Environmental Information Network, REDIAM). CarboSOIL has been applied along topographic transects at different soil depths and under different climate change scenarios. Climate scenarios have been calculated according to the global climate model (CNRMCM3) by extracting spatial climate data under IPCC A1B scenario for the current period (average data from 1960-2000), 2040, 2070 and 2100. In the current scenario, results show that the highest SOC stock values located on Typic Haploxeralfs under olive groves for soil sections 0-25 cm and for 25-50 cm, but the highest values were determined on fruit-cropped Rendolic Xerothent in the 50-75cm

  14. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Irene Prisco

    Full Text Available Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  15. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    Science.gov (United States)

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future. PMID:23874787

  16. Modeling the Projected Changes of River Flow in Central Vietnam under Different Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Tuan B. Le

    2015-07-01

    Full Text Available Recent studies by the United Nations Environment Programme (UNEP and the Intergovernmental Panel on Climate Change (IPCC indicate that Vietnam is one of the countries most affected by climate change. The variability of climate in this region, characterized by large fluctuations in precipitation and temperature, has caused significant changes in surface water resources. This study aims to project the impact of climate change on the seasonal availability of surface water of the Huong River in Central Vietnam in the twenty-first century through hydrologic simulations driven by climate model projections. To calibrate and validate the hydrologic model, the model was forced by the rain gage-based gridded Asian Precipitation–Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE V1003R1 Monsoon Asia precipitation data along with observed temperature, humidity, wind speed, and solar radiation data from local weather stations. The simulated discharge was compared to observations for the period from 1951 until present. Three Global Climate Models (GCMs ECHAM5-OM, HadCM3 and GFDL-CM2.1 integrated into Long Ashton Research Station-Weather Generator (LARS-WG stochastic weather generator were run for three IPCC–Special Report on Emissions Scenarios (IPCC-SRES emissions scenarios A1B, A2, and B1 to simulate future climate conditions. The hydrologic model simulated the Huong River discharge for each IPCC-SRES scenario. Simulation results under the three GCMs generally indicate an increase in summer and fall river discharge during the twenty-first century in A2 and B1 scenarios. For A1B scenario, HadCM3 and GFDL-CM2.1 models project a decrease in river discharge from present to the 2051–2080 period and then increase until the 2071–2100 period while ECHAM5-OM model produces opposite projection that discharge will increase until the 2051–2080 period and then decrease for the rest of the century. Water management

  17. Scenario prediction of emerging coastal city using CA modeling under different environmental conditions: a case study of Lingang New City, China.

    Science.gov (United States)

    Feng, Yongjiu; Liu, Yan

    2016-09-01

    The world's coastal regions are experiencing rapid urbanization coupled with increased risk of ecological damage and storm surge related to global climate and sea level rising. This urban development issue is particularly important in China, where many emerging coastal cities are being developed. Lingang New City, southeast of Shanghai, is an excellent example of a coastal city that is increasingly vulnerable to environmental change. Sustainable urban development requires planning that classifies and allocates coastal lands using objective procedures that incorporate changing environmental conditions. In this paper, we applied cellular automata (CA) modeling based on self-adaptive genetic algorithm (SAGA) to predict future scenarios and explore sustainable urban development options for Lingang. The CA model was calibrated using the 2005 initial status, 2015 final status, and a set of spatial variables. We implemented specific ecological and environmental conditions as spatial constraints for the model and predicted four 2030 scenarios: (a) an urban planning-oriented Plan Scenario; (b) an ecosystem protection-oriented Eco Scenario; (c) a storm surge-affected Storm Scenario; and (d) a scenario incorporating both ecosystem protection and the effects of storm surge, called the Ecostorm Scenario. The Plan Scenario has been taken as the baseline, with the Lingang urban area increasing from 45.8 km(2) in 2015 to 66.8 km(2) in 2030, accounting for 23.9 % of the entire study area. The simulated urban land size of the Plan Scenario in 2030 was taken as the target to accommodate the projected population increase in this city, which was then applied in the remaining three development scenarios. We used CA modeling to reallocate the urban cells to other unconstrained areas in response to changing spatial constraints. Our predictions should be helpful not only in assessing and adjusting the urban planning schemes for Lingang but also for evaluating urban planning in coastal

  18. Scenario prediction of emerging coastal city using CA modeling under different environmental conditions: a case study of Lingang New City, China.

    Science.gov (United States)

    Feng, Yongjiu; Liu, Yan

    2016-09-01

    The world's coastal regions are experiencing rapid urbanization coupled with increased risk of ecological damage and storm surge related to global climate and sea level rising. This urban development issue is particularly important in China, where many emerging coastal cities are being developed. Lingang New City, southeast of Shanghai, is an excellent example of a coastal city that is increasingly vulnerable to environmental change. Sustainable urban development requires planning that classifies and allocates coastal lands using objective procedures that incorporate changing environmental conditions. In this paper, we applied cellular automata (CA) modeling based on self-adaptive genetic algorithm (SAGA) to predict future scenarios and explore sustainable urban development options for Lingang. The CA model was calibrated using the 2005 initial status, 2015 final status, and a set of spatial variables. We implemented specific ecological and environmental conditions as spatial constraints for the model and predicted four 2030 scenarios: (a) an urban planning-oriented Plan Scenario; (b) an ecosystem protection-oriented Eco Scenario; (c) a storm surge-affected Storm Scenario; and (d) a scenario incorporating both ecosystem protection and the effects of storm surge, called the Ecostorm Scenario. The Plan Scenario has been taken as the baseline, with the Lingang urban area increasing from 45.8 km(2) in 2015 to 66.8 km(2) in 2030, accounting for 23.9 % of the entire study area. The simulated urban land size of the Plan Scenario in 2030 was taken as the target to accommodate the projected population increase in this city, which was then applied in the remaining three development scenarios. We used CA modeling to reallocate the urban cells to other unconstrained areas in response to changing spatial constraints. Our predictions should be helpful not only in assessing and adjusting the urban planning schemes for Lingang but also for evaluating urban planning in coastal

  19. Participatory Scenario Development to Address Potential Impacts of Land Use Change: An Example from the Italian Alps

    Directory of Open Access Journals (Sweden)

    Žiga Malek

    2015-05-01

    Full Text Available Changes to land use such as the removal of natural vegetation and expansion of urban areas can result in degradation of the landscape and an increase in hydro-meteorological risk. This has led to higher interest by decision-makers and scientists in the future consequences of these drivers. Scenario development can be a useful tool for addressing the high uncertainty regarding modeling future land use changes. Scenarios are not exact forecasts, but images of plausible futures. When studying future land dynamics, emphasis should be given to areas experiencing high rates of socioeconomic change. We have focused on the eastern Italian Alps, which face increasing pressure from tourism development. Identified drivers of local land use change are mostly external and difficult to quantify. This area, characterized by a traditional Alpine landscape, is subject to high levels of hydro-meteorological risk, another reason to study potential future land use changes. We tested a scenario generation method based on existing decisions and assumptions about future tourism development. We aimed to develop a framework leading to plausible scenarios that can overcome data inaccessibility and address external drivers. We combined qualitative methods, such as stakeholder interviews and cognitive mapping, with geospatial methods, such as geographic information systems, geostatistics, and environmental modeling. We involved stakeholders from the beginning to support the steps of generating data, understanding the system of land use change, and developing a land use change model for scenario development. In this way, we generated spatio-temporal scenarios that can assist future spatial planning and improve preparedness for possible undesirable development.

  20. Scenarios in society, society in scenarios: toward a social scientific analysis of storyline-driven environmental modeling

    Energy Technology Data Exchange (ETDEWEB)

    Garb, Yaakov [Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990 (Israel); Pulver, Simone [Watson Institute for International Studies, Brown University, Providence, RI 02912 (United States); VanDeveer, Stacy D [Department of Political Science, University of New Hamsphire, Durham, NH 03824 (United States)], E-mail: stacy.vandeveer@unh.edu

    2008-10-15

    Scenario analysis, an approach to thinking about alternative futures based on storyline-driven modeling, has become increasingly common and important in attempts to understand and respond to the impacts of human activities on natural systems at a variety of scales. The construction of scenarios is a fundamentally social activity, yet social scientific perspectives have rarely been brought to bear on it. Indeed, there is a growing imbalance between the increasing technical sophistication of the modeling elements of scenarios and the continued simplicity of our understanding of the social origins, linkages, and implications of the narratives to which they are coupled. Drawing on conceptual and methodological tools from science and technology studies, sociology and political science, we offer an overview of what a social scientific analysis of scenarios might include. In particular, we explore both how scenarios intervene in social microscale and macroscale contexts and how aspects of such contexts are embedded in scenarios, often implicitly. Analyzing the social 'work' of scenarios (i) can enhance the understanding of scenario developers and modeling practitioners of the knowledge production processes in which they participate and (ii) can improve the utility of scenario products as decision-support tools to actual, rather than imagined, decision-makers.

  1. Environmental federalism and US climate change policy

    International Nuclear Information System (INIS)

    Environmental disputes involving states over the proper state and federal roles have grown in number and magnitude over the last several years, with many disputes engaging dozens of states. States with competing views are fully engaged in the ongoing debate over climate change, a textbook case for testing the contours of environmental federalism. The issue has all the necessary components: transboundary environmental impacts; competing state economic and environmental interests; state self-interest; disagreement on first principles including what is the proper role of the states; and a somewhat ill-defined federal role. With those qualities, one would expect the federal government to step in and regulate. Instead, the federal government has declined to regulate, inviting a national discourse on whether and how to reduce greenhouse gas (GHG) emissions. As of Spring 2004, twenty-eight states have launched or are planning initiatives, some of which will directly regulate sources of GHG emissions. As these programs take root, pressure will build for a greater federal role. This paper will advance the position that even with this building momentum, the federal government is not likely to emulate state programs that mandate CO2 emission reductions. In the face of high national cost, uncertain environmental benefits, and a history of federal non-regulatory action, federal regulation at this time appears to be a remote possibility. State efforts to address global climate change add value to the debate, but they do not create the cocoon of consensus the federal government seeks before launching mandatory programs of this magnitude. The more likely scenario is that the federal government will continue on its present course, funding research and development, investing in energy efficient technologies, and supporting voluntary measures. Under this scenario, states and the private sector would continue to function as the 'laboratories' to develop new ideas to improve energy

  2. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    Science.gov (United States)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  3. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly.

    Science.gov (United States)

    Bozinovic, Francisco; Medina, Nadia R; Alruiz, José M; Cavieres, Grisel; Sabat, Pablo

    2016-07-01

    Climate change poses one of the greatest threats to biodiversity. Most analyses of the impacts have focused on changes in mean temperature, but increasing variance will also impact organisms and populations. We assessed the combined effects of the mean and the variance of temperature on thermal tolerances-i.e., critical thermal maxima, critical thermal minima, scope of thermal tolerance, and survival in Drosophila melanogaster. Our six experimental climatic scenarios were: constant mean with zero variance or constant variance or increasing variance; changing mean with zero variance or constant variance or increasing variance. Our key result was that environments with changing thermal variance reduce the scope of thermal tolerance and survival. Heat tolerance seems to be conserved, but cold tolerance decreases significantly with mean low as well as changing environmental temperatures. Flies acclimated to scenarios of changing variance-with either constant or changing mean temperatures-exhibited significantly lower survival rate. Our results imply that changing and constant variances would be just as important in future scenarios of climate change under greenhouse warming as increases in mean annual temperature. To develop more realistic predictions about the biological impacts of climate change, such interactions between the mean and variance of environmental temperature should be considered.

  4. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly.

    Science.gov (United States)

    Bozinovic, Francisco; Medina, Nadia R; Alruiz, José M; Cavieres, Grisel; Sabat, Pablo

    2016-07-01

    Climate change poses one of the greatest threats to biodiversity. Most analyses of the impacts have focused on changes in mean temperature, but increasing variance will also impact organisms and populations. We assessed the combined effects of the mean and the variance of temperature on thermal tolerances-i.e., critical thermal maxima, critical thermal minima, scope of thermal tolerance, and survival in Drosophila melanogaster. Our six experimental climatic scenarios were: constant mean with zero variance or constant variance or increasing variance; changing mean with zero variance or constant variance or increasing variance. Our key result was that environments with changing thermal variance reduce the scope of thermal tolerance and survival. Heat tolerance seems to be conserved, but cold tolerance decreases significantly with mean low as well as changing environmental temperatures. Flies acclimated to scenarios of changing variance-with either constant or changing mean temperatures-exhibited significantly lower survival rate. Our results imply that changing and constant variances would be just as important in future scenarios of climate change under greenhouse warming as increases in mean annual temperature. To develop more realistic predictions about the biological impacts of climate change, such interactions between the mean and variance of environmental temperature should be considered. PMID:27003422

  5. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario.

    Directory of Open Access Journals (Sweden)

    Mathukumalli Srinivasa Rao

    Full Text Available The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM of future data on daily maximum (T.max, minimum (T.min air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1. This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF -2020, Distant future (DF-2050 and Very Distant future (VDF-2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1-2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18-22% over baseline. Analysis of variance (ANOVA was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%, model (1.74% and scenario (0.74%. The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods.

  6. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N;

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...

  7. Effort sharing in ambitious, global climate change mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [TKK Helsinki University of Technology, Espoo (Finland); Soimakallio, Sampo; Syri, Sanna; Savolainen, Ilkka [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); Moltmann, Sara; Hoehne, Niklas [Ecofys Germany GmbH, Cologne (Germany)

    2010-04-15

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either or from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system. (author)

  8. Comparison of environmental performance for different waste management scenarios in East Africa: The case of Kampala City, Uganda

    NARCIS (Netherlands)

    Oyoo, R.; Leemans, R.; Mol, A.P.J.

    2014-01-01

    Poor waste flows management in East African cities has become an environmental and public health concerns to the city authorities and the general public. We assessed the environmental impacts of waste recycling in Kampala City, for four designed waste management scenarios, namely: (1) Scenario S1 re

  9. Environmental and Environmental-Health Implications of the USGS SAFRR California Tsunami Scenario

    Science.gov (United States)

    Plumlee, G. S.; Morman, S. A.; San Juan, C. A.

    2013-12-01

    The California Tsunami Scenario models the impacts of a hypothetical yet plausible tsunami caused by an earthquake offshore from the Alaskan Peninsula. Here, we interpret plausible tsunami-related contamination, environmental impacts, potential for human exposures to contaminants and hazardous materials, and implications for remediation and recovery. Inundation-related damages to major ports, boat yards, and many marinas could release complex debris, crude oil, various fuel types, other petroleum products, some liquid bulk cargo and dry bulk cargo, and diverse other pollutants into nearby coastal marine environments and onshore in the inundation zone. Tsunami-induced erosion of contaminated harbor bottom sediments could re-expose previously sequestered metal and organic pollutants (e.g., organotin, DDT). Inundation-related damage to many older buildings could produce complex debris containing lead paint, asbestos, pesticides, and other legacy contaminants. Intermingled household debris and externally derived debris and sediments would be left in flooded buildings. Post tsunami, mold would likely develop in inundated houses, buildings, and debris piles. Tsunamigenic fires in spilled oil, debris, cargo, vehicles, vegetation, and residential, commercial, or industrial buildings and their contents would produce potentially toxic gases and smoke, airborne ash, and residual ash/debris containing caustic alkali solids, metal toxicants, asbestos, and various organic toxicants. Inundation of and damage to wastewater treatment plants in many coastal cities could release raw sewage containing fecal solids, pathogens, and waste chemicals, as well as chemicals used to treat wastewaters. Tsunami-related physical damages, debris, and contamination could have short- and longer-term impacts on the environment and the health of coastal marine and terrestrial ecosystems. Marine habitats in intertidal zones, marshes, sloughs, and lagoons could be damaged by erosion or sedimentation

  10. A spatially explicit scenario-driven model of adaptive capacity to global change in Europe

    NARCIS (Netherlands)

    Acosta, L.; Klein, R.J.T.; Reidsma, P.; Metzger, M.J.; Rounsevell, M.D.A.; Leemans, R.

    2013-01-01

    Traditional impact models combine exposure in the form of scenarios and sensitivity in the form of parameters, providing potential impacts of global change as model outputs. However, adaptive capacity is rarely addressed in these models. This paper presents the first spatially explicit scenario-driv

  11. A coherent set of future land use change scenarios for Europe

    DEFF Research Database (Denmark)

    Rounsevell, M. D. A.; Reginster, I.; Araújo, Miguel B.;

    2006-01-01

    This paper presents a range of future, spatially explicit, land use change scenarios for the EU15, Norway and Switzerland based on an interpretation of the global storylines of the Intergovernmental Panel on Climate Change (IPCC) that are presented in the special report on emissions scenarios (SRES......). The methodology is based on a qualitative interpretation of the SRES storylines for the European region, an estimation of the aggregate totals of land use change using various land use change models and the allocation of these aggregate quantities in space using spatially explicit rules. The spatial patterns...... are further downscaled from a resolution of 10 min to 250 m using statistical downscaling procedures. The scenarios include the major land use/land cover classes urban, cropland, grassland and forest land as well as introducing new land use classes such as bioenergy crops. The scenario changes are most...

  12. Changes in Stratospheric ClO and HCl Concentrations Under Diff erent Greenhouse Gas Emission Scenarios

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In this study, comparison of model results and satellite observations reveals that the Whole-Atmosphere Community Climate Model (WACCM-3) reasonably well reproduced the distributions and seasonal vari-ations of ClO and HCl concentrations. In three greenhouse gas emission scenarios (A1B, A2, and B1), the ClO, Cl, ClONO2, and HCl concentrations would gradually decrease with time as emissions of ozone depleting substances (ODS) steadily decrease. The rates of the changes in the ClO, Cl, ClONO2, and HCl concentrations are diff erent in the same emission scenario and the rates of change in the same composition concentration are diff erent for diff erent emission scenarios. The ClO, Cl, and ClONO2 concentrations de-crease fastest in scenario A2, next fastest in scenario A1B, and slowest in scenario B1. In contrast, the HCl concentration decreases fastest in scenario B1. The ozone concentration recovers quickly, and is highest in scenario A2. The results show that a rapid decrease in the ClO concentration is an important reason for the accelerated recovery of the ozone layer in scenario A2.

  13. Environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment

    International Nuclear Information System (INIS)

    We investigate the potential environmental impacts of a large-scale adoption of wind power to meet up to 22% of the world’s growing electricity demand. The analysis builds on life cycle assessments of generic onshore and offshore wind farms, meant to represent average conditions for global deployment of wind power. We scale unit-based findings to estimate aggregated emissions of building, operating and decommissioning wind farms toward 2050, taking into account changes in the electricity mix in manufacturing. The energy scenarios investigated are the International Energy Agency’s BLUE scenarios. We estimate 1.7–2.6 Gt CO2-eq climate change, 2.1–3.2 Mt N-eq marine eutrophication, 9.2–14 Mt NMVOC photochemical oxidant formation, and 9.5–15 Mt SO2-eq terrestrial acidification impact category indicators due to global wind power in 2007–50. Assuming lifetimes 5 yr longer than reference, the total climate change indicator values are reduced by 8%. In the BLUE Map scenario, construction of new capacity contributes 64%, and repowering of existing capacity 38%, to total cumulative greenhouse gas emissions. The total emissions of wind electricity range between 4% and 14% of the direct emissions of the replaced fossil-fueled power plants. For all impact categories, the indirect emissions of displaced fossil power are larger than the total emissions caused by wind power.

  14. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses.

    Science.gov (United States)

    Jones, R A C

    2016-01-01

    Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity.

  15. How to manage uncertainty in future Life Cycle Assessment (LCA) scenarios addressing the effect of climate change in crop production

    DEFF Research Database (Denmark)

    Niero, Monia; Ingvordsen, Cathrine Heinz; Bagger Jørgensen, Rikke;

    2015-01-01

    ) level for the selected crop and performance of Life Cycle Impact Assessment (LCIA) including normalization and contribution analysis, in order to identify the focus points in terms of impact categories, unit processes and substances; (2) identification of the main deviations from the baseline scenario......When Life Cycle Assessment (LCA) is used to provide insights on how to pursue future food demand, it faces the challenge to describe scenarios of the future in which the environmental impacts occur. In the case of future crop production, the effects of climate change should be considered...... climate, soil, water loss and production parameters. Secondly, the handling of these factors in the inventory modeling is discussed and finally implemented in the case study. Our approach follows a 3-step procedure consisting of: (1) definition of a baseline scenario at the Life Cycle Inventory (LCI...

  16. Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas

    Directory of Open Access Journals (Sweden)

    Chang-lin CHEN

    2015-10-01

    Full Text Available Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR, it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM, with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs, was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3 under the International Panel on Climate Change (IPCC-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.

  17. Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas

    Institute of Scientific and Technical Information of China (English)

    Chang-lin CHEN; Jun-cheng ZUO; Mei-xiang CHEN; Zhi-gang GAO; C-K SHUM

    2014-01-01

    Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.

  18. Diminished Wastewater Treatment: Evaluation of Septic System Performance Under a Climate Change Scenario

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2015-12-01

    The effects of climate change are expected to reduce the ability of soil-based onsite wastewater treatment systems (OWTS), to treat domestic wastewater. In the northeastern U.S., the projected increase in atmospheric temperature, elevation of water tables from rising sea levels, and heightened precipitation will reduce the volume of unsaturated soil and oxygen available for treatment. Incomplete removal of contaminants may lead to transport of pathogens, nutrients, and biochemical oxygen demand (BOD) to groundwater, increasing the risk to public health and likelihood of eutrophying aquatic ecosystems. Advanced OWTS, which include pre-treatment steps and provide unsaturated drainfields of greater volume relative to conventional OWTS, are expected to be more resilient to climate change. We used intact soil mesocosms to quantify water quality functions for two advanced shallow narrow drainfield types and a conventional drainfield under a current climate scenario and a moderate climate change scenario of 30 cm rise in water table and 5°C increase in soil temperature. While no fecal coliform bacteria (FCB) was released under the current climate scenario, up to 109 CFU FCB/mL (conventional) and up to 20 CFU FCB/mL (shallow narrow) were released under the climate change scenario. Total P removal rates dropped from 100% to 54% (conventional) and 71% (shallow narrow) under the climate change scenario. Total N removal averaged 17% under both climate scenarios in the conventional, but dropped from 5.4% to 0% in the shallow narrow under the climate change scenario, with additional leaching of N in excess of inputs indicating release of previously held N. No significant difference was observed between scenarios for BOD removal. The initial data indicate that while advanced OWTS retain more function under the climate change scenario, all three drainfield types experience some diminished treatment capacity.

  19. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    Directory of Open Access Journals (Sweden)

    González Paula LM

    2009-07-01

    Full Text Available Abstract Background Oligoryzomys longicaudatus (colilargo is the rodent responsible for hantavirus pulmonary syndrome (HPS in Argentine Patagonia. In past decades (1967–1998, trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent

  20. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Science.gov (United States)

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  1. Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies

    Science.gov (United States)

    Qian, Budong; De Jong, Reinder; Huffman, Ted; Wang, Hong; Yang, Jingyi

    2016-02-01

    The potential impact of the rise in atmospheric CO2 concentration and associated climatic change on agricultural productivity needs assessment. Projecting crop yield changes under climate change requires future climate scenarios as input to crop yield models. It is widely accepted that downscaling of climate data is required to bridge the gap between large-scale global climate models (GCMs) and climate change impact models, such as crop growth models. Regional climate models (RCMs) are often used to dynamically downscale GCM simulations to smaller regional scales, while statistical methods, such as regression-based transfer functions and stochastic weather generators, are also widely employed to develop future climate scenarios for this purpose. The methods used in developing future climate scenarios often contribute to uncertainties in the projected impacts of climate change, in addition to those associated with GCMs and forcing scenarios. We employed climate scenarios from the state-of-the-art RCMs in the North American Regional Climate Change Assessment Program (NARCCAP), along with climate scenarios generated by a stochastic weather generator based on climate change simulations performed by their driving GCMs, to drive the CERES-Wheat model in DSSAT to project changes in spring wheat yield on the Canadian Prairies. The future time horizon of 2041-2070 and the baseline period of 1971-2000 were considered. The projected changes showed an average increase ranging from 26 to 37 % of the baseline yield when the effects of the elevated CO2 concentration were simulated, but only up to 15 % if the elevated CO2 effect was excluded. In addition to their potential use in climate change impact assessment, the results also demonstrated that the simulated crop yield changes were fairly consistent whether future climate scenarios were derived from RCMs or they were generated by a stochastic weather generator based on the simulated climate change from the GCMs that were used

  2. Estimation of Crop Coefficient of Corn (Kccorn) under Climate Change Scenarios Using Data Mining Technique

    OpenAIRE

    Kampanad Bhaktikul; Rommanee Anujit; Jongdee To-im

    2012-01-01

    The main objectives of this study are to determine the crop coefficient of corn (Kccorn) using data mining technique under climate change scenarios, and to develop the guidelines for future water management based on climate change scenarios. Variables including date, maximum temperature, minimum temperature, precipitation, humidity, wind speed, and solar radiation from seven meteorological stations during 1991 to 2000 were used. Cross-Industry Standard Process for Data Mining (CRISP-DM) was a...

  3. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE)

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund; Scharff, H.;

    2010-01-01

    The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1...... tonne of wet waste landfilled and the environmental aspects were evaluated for a 100-year period after disposal. The data utilized in the LCA-calculations to model the first 10-20 years of landfilling of the two low-organic waste scenarios make extensive use of site-specific data from the Nauerna...... assessments show that the low-organic waste scenarios achieved better environmental performance than the household waste scenarios with regard to both ordinary and toxicity-related environmental impact categories. This indicates that the reduction of organic matter accepted at landfills (as prescribed...

  4. PREDICTION OF CHANGES IN VEGETATION DISTRIBUTION UNDER CLIMATE CHANGE SCENARIOS USING MODIS DATASET

    Directory of Open Access Journals (Sweden)

    H. Hirayama

    2016-06-01

    Full Text Available The distribution of vegetation is expected to change under the influence of climate change. This study utilizes vegetation maps derived from Terra/MODIS data to generate a model of current climate conditions suitable to beech-dominated deciduous forests, which are the typical vegetation of Japan’s cool temperate zone. This model will then be coordinated with future climate change scenarios to predict the future distribution of beech forests. The model was developed by using the presence or absence of beech forest as the dependent variable. Four climatic variables; mean minimum daily temperature of the coldest month (TMC,warmth index (WI, winter precipitation (PRW and summer precipitation (PRS: and five geophysical variables; topography (TOPO, surface geology (GEOL, soil (SOIL, slope aspect (ASP, and inclination (INCL; were adopted as independent variables. Previous vegetation distribution studies used point data derived from field surveys. The remote sensing data utilized in this study, however, should permit collecting of greater amounts of data, and also frequent updating of data and distribution maps. These results will hopefully show that use of remote sensing data can provide new insights into our understanding of how vegetation distribution will be influenced by climate change.

  5. Prediction of Changes in Vegetation Distribution Under Climate Change Scenarios Using Modis Dataset

    Science.gov (United States)

    Hirayama, Hidetake; Tomita, Mizuki; Hara, Keitarou

    2016-06-01

    The distribution of vegetation is expected to change under the influence of climate change. This study utilizes vegetation maps derived from Terra/MODIS data to generate a model of current climate conditions suitable to beech-dominated deciduous forests, which are the typical vegetation of Japan's cool temperate zone. This model will then be coordinated with future climate change scenarios to predict the future distribution of beech forests. The model was developed by using the presence or absence of beech forest as the dependent variable. Four climatic variables; mean minimum daily temperature of the coldest month (TMC) warmth index (WI) winter precipitation (PRW) and summer precipitation (PRS): and five geophysical variables; topography (TOPO), surface geology (GEOL), soil (SOIL), slope aspect (ASP), and inclination (INCL); were adopted as independent variables. Previous vegetation distribution studies used point data derived from field surveys. The remote sensing data utilized in this study, however, should permit collecting of greater amounts of data, and also frequent updating of data and distribution maps. These results will hopefully show that use of remote sensing data can provide new insights into our understanding of how vegetation distribution will be influenced by climate change.

  6. Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania

    Science.gov (United States)

    Malek, Žiga; Boerboom, Luc; Glade, Thomas

    2015-11-01

    This study focuses on future forest cover change in Buzau Subcarpathians, a landslide prone region in Romania. Past and current trends suggest that the area might expect a future increase in deforestation. We developed spatially explicit scenarios until 2040 to analyze the spatial pattern of future forest cover change and potential changes to landslide risk. First, we generated transition probability maps using the weights of evidence method, followed by a cellular automata allocation model. We performed expert interviews, to develop two future forest management scenarios. The Alternative scenario (ALT) was defined by 67 % more deforestation than the Business as Usual scenario (BAU). We integrated the simulated scenarios with a landslide susceptibility map. In both scenarios, most of deforestation was projected in areas where landslides are less likely to occur. Still, 483 (ALT) and 276 (BAU) ha of deforestation were projected on areas with a high-landslide occurrence likelihood. Thus, deforestation could lead to a local-scale increase in landslide risk, in particular near or adjacent to forestry roads. The parallel process of near 10 % forest expansion until 2040 was projected to occur mostly on areas with high-landslide susceptibility. On a regional scale, forest expansion could so result in improved slope stability. We modeled two additional scenarios with an implemented landslide risk policy, excluding high-risk zones. The reduction of deforestation on high-risk areas was achieved without a drastic decrease in the accessibility of the areas. Together with forest expansion, it could therefore be used as a risk reduction strategy.

  7. Groundwater salinity and environmental change

    International Nuclear Information System (INIS)

    The accumulation and release of salinity from near surface environments takes place naturally as a result of climatic cycles and environmental change. Salinity stratification, both in the saturated and unsaturated zones of aquifers, may be used in certain circumstances to record past recharge events and periods of drought. Chloride, in conjunction with the stable isotopes δ18O, δ2H and other chemical and stable or radioactive indicator parameters, enables the origins of salinity and the timing of these events to be determined. Salinity may be used as a practical tool in water resource investigation to estimate recharge and discharge, to investigate palaeohydrology and in the understanding and management of groundwater in coastal regions. Human impacts have severely disturbed the natural salinity balance, especially in the past 100 years, and examples of human intervention are presented relating to dryland salinity, irrigation effects and overexploitation. (author)

  8. Assessing impact of climate change on season length in Karnataka for IPCC SRES scenarios

    Indian Academy of Sciences (India)

    Aavudai Anandhi

    2010-08-01

    Changes in seasons and season length are an indicator, as well as an effect, of climate change. Seasonal change profoundly affects the balance of life in ecosystems and impacts essential human activities such as agriculture and irrigation. This study investigates the uncertainty of season length in Karnataka state, India, due to the choice of scenarios, season type and number of seasons. Based on the type of season, the monthly sequences of variables (predictors) were selected from datasets of NCEP and Canadian General Circulation Model (CGCM3). Seasonal stratifications were carried out on the selected predictors using K-means clustering technique. The results of cluster analysis revealed increase in average, wet season length in A2, A1B and B1 scenarios towards the end of 21st century. The increase in season length was higher for A2 scenario whereas it was the least for B1 scenario. COMMIT scenario did not show any change in season length. However, no change in average warm and cold season length was observed across the four scenarios considered. The number of seasons was increased from 2 to 5. The results of the analysis revealed that no distinct cluster could be obtained when the number of seasons was increased beyond three.

  9. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    Science.gov (United States)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the

  10. An inquiry into the potential of scenario analysis for dealing with uncertainty in strategic environmental assessment in China

    International Nuclear Information System (INIS)

    Strategic environmental assessment (SEA) inherently needs to address greater levels of uncertainty in the formulation and implementation processes of strategic decisions, compared with project environmental impact assessment. The range of uncertainties includes internal and external factors of the complex system that is concerned in the strategy. Scenario analysis is increasingly being used to cope with uncertainty in SEA. Following a brief introduction of scenarios and scenario analysis, this paper examines the rationale for scenario analysis in SEA in the context of China. The state of the art associated with scenario analysis applied to SEA in China was reviewed through four SEA case analyses. Lessons learned from these cases indicated the word 'scenario' appears to be abused and the scenario-based methods appear to be misused due to the lack of understanding of an uncertain future and scenario analysis. However, good experiences were also drawn on, regarding how to integrate scenario analysis into the SEA process in China, how to cope with driving forces including uncertainties, how to combine qualitative scenario storylines with quantitative impact predictions, and how to conduct assessments and propose recommendations based on scenarios. Additionally, the ways to improve the application of this tool in SEA were suggested. We concluded by calling for further methodological research on this issue and more practices.

  11. Integrating Climate Change Scenarios and Co-developed Policy Scenarios to Inform Coastal Adaptation: Results from a Tillamook County, Oregon Knowledge to Action Network

    Science.gov (United States)

    Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.

    2014-12-01

    Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The

  12. Evaluation of Landscape Impacts and Land Use Change: a Tuscan Case Study for CAP Reform Scenarios

    Directory of Open Access Journals (Sweden)

    Iacopo Bernetti

    2010-07-01

    Full Text Available The study uses information from different sources and on different scales in an integrated set of models in order to analyze possible land use change scenarios arising in response to CAP reform. Five main steps were followed: (1 analysis of past land use changes, (2 multivariate analysis of future land use changes using a neural network time series forecast model (Multi-Layer Perceptron Method, (3 modelization of land use change demand (Markovian Chains Method, (4 allocation of the demand to define transition localization, (5 definition of policy scenarios. The final stage is the comparison of CAP scenarios using a multicriteria decision making approach, in order to supply valuable information to policy makers regarding the possible local effects of key direction changes in CAP.

  13. RISK HABITAT OF THE MONARCH BUTTERFLY (Danaus plexippus BY CLIMATE CHANGE SCENARIOS

    Directory of Open Access Journals (Sweden)

    Araceli Islas-Báez

    2015-07-01

    Full Text Available The change in temperature and precipitation patterns caused by global climate change is altering the ecosystem functioning, so it is important to conduct studies that contribute to the knowledge of species distribution under climate change scenarios, to locate areas vulnerable to the phenomenon. Potential changes were estimated area under climate change scenarios, obtained by downscaling and Regional Assembly Model (RAM for the winter habitat of the Monarch Butterfly (MM in the nucleus zone of the Biosphere Reserve of the Monarch Butterfly area. According to the study, the overwintering habitat of the MM disappears in the A2 and B2 scenarios downscaling 2030. With the RAM, reducing the area of habitat MM 2030 is estimated at 37.59 % and in 2050 will be 49.13 %. Therefore, the downscaling model indicates that MM habitat disappears, and the RAM shows that there will be significant losses of habitat MM.

  14. Transient scenarios for robust climate change adaptation illustrated for water management in The Netherlands

    Science.gov (United States)

    Haasnoot, M.; Schellekens, J.; Beersma, J. J.; Middelkoop, H.; Kwadijk, J. C. J.

    2015-10-01

    Climate scenarios are used to explore impacts of possible future climates and to assess the robustness of adaptation actions across a range of futures. Time-dependent climate scenarios are commonly used in mitigation studies. However, despite the dynamic nature of adaptation, most scenarios for local or regional decision making on climate adaptation are static ‘endpoint’ projections. This paper describes the development and use of transient (time-dependent) scenarios by means of a case on water management in the Netherlands. Relevant boundary conditions (sea level, precipitation and evaporation) were constructed by generating an ensemble of synthetic time-series with a rainfall generator and a transient delta change method. Climate change impacted river flows were then generated with a hydrological simulation model for the Rhine basin. The transient scenarios were applied in model simulations and game experiments. We argue that there are at least three important assets of using transient scenarios for supporting robust climate adaptation: (1) raise awareness about (a) the implications of climate variability and climate change for decision making and (b) the difficulty of finding proof of climate change in relevant variables for water management; (2) assessment of when to adapt by identifying adaptation tipping points which can then be used to explore adaptation pathways, and (3) identification of triggers for climate adaptation.

  15. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Miroslava Garza

    2014-05-01

    Full Text Available BACKGROUND: Chagas disease kills approximately 45 thousand people annually and affects 10 million people in Latin America and the southern United States. The parasite that causes the disease, Trypanosoma cruzi, can be transmitted by insects of the family Reduviidae, subfamily Triatominae. Any study that attempts to evaluate risk for Chagas disease must focus on the ecology and biogeography of these vectors. Expected distributional shifts of vector species due to climate change are likely to alter spatial patterns of risk of Chagas disease, presumably through northward expansion of high risk areas in North America. METHODOLOGY/PRINCIPAL FINDINGS: We forecast the future (2050 distributions in North America of Triatoma gerstaeckeri and T. sanguisuga, two of the most common triatomine species and important vectors of Trypanosoma cruzi in the southern United States. Our aim was to analyze how climate change might affect the future shift of Chagas disease in North America using a maximum entropy algorithm to predict changes in suitable habitat based on vector occurrence points and predictive environmental variables. Projections based on three different general circulation models (CCCMA, CSIRO, and HADCM3 and two IPCC scenarios (A2 and B2 were analyzed. Twenty models were developed for each case and evaluated via cross-validation. The final model averages result from all twenty of these models. All models had AUC >0.90, which indicates that the models are robust. Our results predict a potential northern shift in the distribution of T. gerstaeckeri and a northern and southern distributional shift of T. sanguisuga from its current range due to climate change. CONCLUSIONS/SIGNIFICANCE: The results of this study provide baseline information for monitoring the northward shift of potential risk from Chagas disease in the face of climate change.

  16. Bioclim Deliverable D1: environmental change analysis

    International Nuclear Information System (INIS)

    be transported to the surface environment and lead to the exposure of Man. Several climate scenarios will be explored in the project and selected climate sequences of particular interest for performance assessments will be studied in detail to establish the context for the development of biosphere assessment models. The aim is not to derive mechanistic models of the whole climate sequence for up to a million years but to use output from the climate change models in order to understand the biosphere system responses that are likely to be important in the context of human and environmental safety. Through this work, the basis for undertaking and assessing the radiological safety of deep repositories and confidence in the assessment results will be improved. The objectives of this first BIOCLIM report are to identify the mechanisms and process that cause long-term climate change and the environmental consequences of such changes (Section 2). This information is presented in summary form as an extensive literature already exists on these subjects. Some of these references are also provided in the appendix. The lessons that have been learned by the waste management agencies and the regulator through application of methodologies used to date to represent climate change in biosphere assessments are summarised in Section 3; further details of current national methodologies and approaches are provided in Appendix A. Section 4 summarises the new approaches that will be used in BIOCLIM to develop and improve long-term climate change models and the consequent impacts on the biosphere systems that have to be represented in biosphere assessment models

  17. Scenarios of long-term river runoff changes within Russian large river basins

    Science.gov (United States)

    Georgiadi, A. G.; Koronkevich, N. I.; Milyukova, I. P.; Kislov, A. V.; Barabanova, E. A.

    2010-12-01

    The approach for long-term scenario projection of river runoff changes for Russian large river basins in XXI century includes method for scenario estimations for range of probable climatic changes, based on generalization of results of the calculations executed on ensemble of global climatic models and physical-statistical downscaling of their results are developed for mountain regions; hydrological model; method of alternative scenario estimations for water management complex transformation and GIS technologies. The suggested methodology allows to develop long-term scenario projection for: (1) changes of river runoff in large river basins as a result of climate changes and (2) transformations of the water management complex caused by social-economic changes, occurring in the country and their influence on river runoff. As one of the bases of methodology is used model of monthly water balance of RAS Institute of Geography (Georgiadi, Milyukova, 2000, 2002, 2006, 2009). As the climatic scenario the range of probable climatic changes which is estimated by results of calculations for deviations of climatic elements from their recent values which have been carried out on ensemble of global climatic models based on the two most contrasting scenario globally averaged air temperature changes is used. As ensemble of climatic scenarios results of the calculations executed on 10 global climatic models, included in the program of last experiment 20C3M-20th Century Climate in Coupled Models (Meehl et al., 2007), is used. The method for long-term scenario projection for transformation of water management complex characteristics and water consumption was developed. The method includes several blocks (Koronkevich, 1990, Koronkevich et al., 2009): growth of the population and development of an economy; different ways of use and protection of waters, in view of different technologies of prevention and decreasing of pollution of water resources. Development of scenarios assumes pre

  18. Assessing future changes in pan-European environmental flows

    OpenAIRE

    Laize, Cedric L.R.; Acreman, M.; Dunbar, M.; Houghton-Carr, H.; Florke, M.; Schneider, C; Hannah, D. M.

    2011-01-01

    The potential river flow-driven impact of change on aquatic and riparian ecosystems at the pan-European scale under various climatological and development scenarios was assessed using a methodology based conceptually on the Range of Variability Approach (RVA) using the Indicators of Hydrological Alteration (IHA): a desk-top technique for assessing if environmental flow requirements. This paper presents an adaptation of the IHA approach using monthly flows. European and Mediterranean river net...

  19. Impacts of climate change on erosion of a watershed: Simulation of scenarios

    Directory of Open Access Journals (Sweden)

    Dario Cardoso de Lima

    2011-08-01

    Full Text Available Climate change set to occur in the coming years should have severe effects on erosion process, as factors leading to intensification of the peaks of rainfall and increasing temperature on the entire planet. Several studies have been performed to estimate climate change scenarios. This work was implemented in the Sao Bartolomeu's watershed, in Minas Gerais’ Forest Zone. From the A1B scenario proposed by the Intergovernmental Panel on Climate Change (IPCC, that set a projection for the global mean warming of Earth's surface, sediment production and runoff were estimated using SWAT (Soil and Water Assessment Tool. The simulated scenarios for projected climate changes that could happen in the next 90 years are quite alarming, with soil loss and runoff rates production much higher than those currently found in the cultures analyzed, reaching up to three times more in a critical increase in the rainfall volume and higher peaks of precipitation.

  20. Change in statistics of drought in a land use scenario for Brazil

    Science.gov (United States)

    Kilian, Markus; Chavez, Erik; Lucarini, Valerio

    2016-04-01

    The land use changes due to an intensified and expanding agricultural and industrial activity is affecting regional weather and climate in Brazil. We analyse the results of a land use change driven Weather and Research Forecasting Model (WRF) using classical drought indices and specific agricultural yield loss drought optimum indices. The objective is to assess changes in risk exposure driven by changes in weather patterns subject to different scenarios of land use changes in Brazil. The WRF model is driven by land use changes as well as the ECHAM5 climate model (with the A1B scenario) on a 60km and 30km grid. In order to determine the risk exposure of an important economic sector to changes in land use change we focus on maize as one of the principal crop grown in Brazil.

  1. A new statistical tool to predict phenology under climate change scenarios

    NARCIS (Netherlands)

    Gienapp, P.; Hemerik, L.; Visser, M.E.

    2005-01-01

    Climate change will likely affect the phenology of trophic levels differently and thereby disrupt the phenological synchrony between predators and prey. To predict this disruption of the synchrony under different climate change scenarios, good descriptive models for the phenology of the different sp

  2. Scenario-Led Habitat Modelling of Land Use Change Impacts on Key Species.

    Directory of Open Access Journals (Sweden)

    Matthew Geary

    Full Text Available Accurate predictions of the impacts of future land use change on species of conservation concern can help to inform policy-makers and improve conservation measures. If predictions are spatially explicit, predicted consequences of likely land use changes could be accessible to land managers at a scale relevant to their working landscape. We introduce a method, based on open source software, which integrates habitat suitability modelling with scenario-building, and illustrate its use by investigating the effects of alternative land use change scenarios on landscape suitability for black grouse Tetrao tetrix. Expert opinion was used to construct five near-future (twenty years scenarios for the 800 km2 study site in upland Scotland. For each scenario, the cover of different land use types was altered by 5-30% from 20 random starting locations and changes in habitat suitability assessed by projecting a MaxEnt suitability model onto each simulated landscape. A scenario converting grazed land to moorland and open forestry was the most beneficial for black grouse, and 'increased grazing' (the opposite conversion the most detrimental. Positioning of new landscape blocks was shown to be important in some situations. Increasing the area of open-canopy forestry caused a proportional decrease in suitability, but suitability gains for the 'reduced grazing' scenario were nonlinear. 'Scenario-led' landscape simulation models can be applied in assessments of the impacts of land use change both on individual species and also on diversity and community measures, or ecosystem services. A next step would be to include landscape configuration more explicitly in the simulation models, both to make them more realistic, and to examine the effects of habitat placement more thoroughly. In this example, the recommended policy would be incentives on grazing reduction to benefit black grouse.

  3. Environmental legislation and aquatic ecotoxicology in Mexico: past, present and future scenarios.

    Science.gov (United States)

    Mendoza-Cantú, Ania; Ramírez-Romero, Patricia; Pica-Granados, Yolanda

    2007-08-01

    The consolidation of environmental legislation is fundamental for governments that wish to support and promote different actions focused on reducing pollution and protecting natural water resources in order to maintain the present and future benefits that water provides for human beings and wild life. Environmental laws are essential for sustaining human activities and health, preserving biodiversity and promoting sustainable development. In this context, it is important that environmental regulations concentrate on preventing or reducing the harmful impact of pollutants on organisms and ecosystems. The introduction of toxicity bioassays in environmental regulations is a positive step toward achieving this goal. In Mexico, the development of environmental legislation and the introduction of bioassays in water regulation are part of a very recent and complex journey. This article describes how aquatic ecotoxicology tools, particularly bioassays, have influenced water pollution policies in Mexico. Three scenarios are reviewed: the background of Mexican legislation on water protection and Mexico's participation in the Watertox project; the actual efforts of SEMARNAT to develop bioassay batteries for this country; and, the challenges and perspectives of ecotoxicological bioassays as regulatory instruments.

  4. Scenario planning during rapid ecological change: lessons and perspectives from workshops with southwest Yukon wildlife managers

    Directory of Open Access Journals (Sweden)

    Dylan M. Beach

    2015-03-01

    Full Text Available Scenario planning has been increasingly advocated as a strategic planning tool for enabling natural resource managers to make decisions in the face of uncertainty and rapid change. However, few examples exist that discuss the technique's application in that field. We used a scenario planning approach to develop wildlife management goals and evaluated participants' perceptions of scenario planning as a goal development tool. Study participants emphasized the context-specificity of management goals, and that "no-regrets" management strategies might not be constructive. We found that scenario planning can help resource managers identify needs that have been overlooked but may become important in the future. Scenarios can likely be used to develop management goals for other resources within the same system. Scenario planning provides a way to apply traditional ecological knowledge and local knowledge in a planning process in a respectful manner. Further process-oriented findings may be helpful to practitioners or researchers considering this approach: workshops should to be temporally close together for participants to retain context during the process, and ensuring continuity of workshop participants is important. Study participants judged scenario planning to be an effective tool to stimulate group-thought on longer time scales, facilitate adaptive learning, and enhance institutional linkages. Ultimately such outcomes can help groups comprising diverse participants to develop shared mental models of the future and identify pathways to achieve them.

  5. 2050 Scenarios for Long-Haul Tourism in the Evolving Global Climate Change Regime

    Directory of Open Access Journals (Sweden)

    Jako Volschenk

    2012-12-01

    Full Text Available Tourism and its “midwife”, aviation, are transnational sectors exposed to global uncertainties. This scenario-building exercise considers a specific subset of these uncertainties, namely the impact of the evolving global climate change regime on long-haul tourism (LHT, with a 2050 horizon. The basic problematique is that unconstrained growth in aviation emissions will not be compatible with 2050 climate stabilisation goals, and that the stringency and timing of public policy interventions could have far-reaching impacts — either on the market for future growth of LHT, or the natural ecosystem on which tourism depends. Following an intuitive-logic approach to scenario-building, three meta-level scenarios that can be regarded as “possible” futures for the evolution of LHT are described. Two of these, i.e., the “grim reaper” and the “fallen angel” scenarios, are undesirable. The “green lantern” scenario represents the desired future. Long-haul tourist destinations should heed the early warning signals identified in the scenario narratives, and contribute towards realising the desired future. They should further guard against being passive victims if the feared scenarios materialise, by adapting, repositioning early upon reading the signposts, hedging against risks, and seizing new opportunities.

  6. Generating local scale land use/cover change scenarios: case studies of high-risk mountain areas

    Science.gov (United States)

    Malek, Žiga; Glade, Thomas; Boerboom, Luc

    2014-05-01

    The relationship between land use/cover changes and consequences to human well-being is well acknowledged and has led to higher interest of both researchers and decision makers in driving forces and consequences of such changes. For example, removal of natural vegetation cover or urban expansion resulting in new elements at risk can increase hydro-meteorological risk. This is why it is necessary to study how the land use/cover could evolve in the future. Emphasis should especially be given to areas experiencing, or expecting, high rates of socio-economic change. A suitable approach to address these changes is scenario development; it offers exploring possible futures and the corresponding environmental consequences, and aids decision-making, as it enables to analyse possible options. Scenarios provide a creative methodology to depict possible futures, resulting from existing decisions, based on different assumptions of future socio-economic development. They have been used in various disciplines and on various scales, such as flood risk and soil erosion. Several studies have simulated future scenarios of land use/cover changes at a very high success rate, however usually these approaches are tailor made for specific case study areas and fit to available data. This study presents a multi-step scenario generation framework, which can be transferable to other local scale case study areas, taking into account the case study specific consequences of land use/cover changes. Through the use of experts' and decision-makers' knowledge, we aimed to develop a framework with the following characteristics: (1) it enables development of scenarios that are plausible, (2) it can overcome data inaccessibility, (3) it can address intangible and external driving forces of land use/cover change, and (4) it ensures transferability to other local scale case study areas with different land use/cover change processes and consequences. To achieve this, a set of different methods is applied

  7. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    Science.gov (United States)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This

  8. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks

    Science.gov (United States)

    Euskirchen, Eugénie S.; McGuire, Anthony David; Chapin, F. Stuart, III; Yi, S.; Thompson, Catharine Copass

    2009-01-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003–2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 ± 0.23 W·m−2·10 yr−1 [mean ± SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (−5.1 ± 1.6 d/10 yr) resulted in much greater regional heat

  9. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.

    Science.gov (United States)

    Euskirchen, E S; McGuire, A D; Chapin, F S; Yi, S; Thompson, C C

    2009-06-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003-2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 +/- 0.23 W x m(-2) x 10 yr(-1) [mean +/- SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (-5.1 +/- 1.6 d/10 yr) resulted in much greater regional heat

  10. Potential Environmental and Environmental-Health Implications of the SAFRR Tsunami Scenario in California: Chapter F in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Plumlee, Geoffrey S.; Morman, Suzette A.; San Juan, Carma

    2013-01-01

    The California Tsunami Scenario models the impacts of a hypothetical, yet plausible, tsunami caused by an earthquake offshore from the Alaska Peninsula. In this chapter, we interpret plausible tsunami-related contamination, environmental impacts, potential for human exposures to contaminants and hazardous materials, and implications for remediation and recovery. Inundation-related damages to major ports, boat yards, and many marinas could release complex debris, crude oil, various fuel types and other petroleum products, some liquid bulk cargo and dry bulk cargo, and diverse other pollutants into nearby coastal marine environments and onshore in the inundation zone. Tsunami-induced erosion of contaminated harbor bottom sediments could re-expose previously sequestered metal and organic pollutants (for example, organotin or DDT). Inundation-related damage to many older buildings could produce debris containing lead paint, asbestos, pesticides, and other legacy contaminants. Intermingled household debris and externally derived debris and sediments would be left in flooded buildings. Post tsunami, mold would likely develop in inundated houses, buildings, and debris piles. Tsunamigenic fires in spilled oil, debris, cargo, vehicles, vegetation, and residential, commercial, or industrial buildings and their contents would produce potentially toxic gases and smoke, airborne ash, and residual ash/debris containing caustic alkali solids, metal toxicants, asbestos, and various organic toxicants. Inundation of and damage to wastewater treatment plants in many coastal cities could release raw sewage containing fecal solids, pathogens, and waste chemicals, as well as chemicals used to treat wastewaters. Tsunami-related physical damages, debris, and contamination could have short- and longer-term impacts on the environment and the health of coastal marine and terrestrial ecosystems. Marine habitats in intertidal zones, marshes, sloughs, and lagoons could be damaged by erosion or

  11. Constructing scenarios of regional sea level change using global temperature pathways

    International Nuclear Information System (INIS)

    The effects of sea level change become increasingly relevant for the Dutch coast. Therefore we construct two scenarios for regional sea-level change in the 21st century. They are designed to follow two temperature pathways, in which global mean temperature rises moderately (‘G’, +1.5 K in 2085) or more substantially (‘W’, +3.5 K in 2085). Contributions from all major processes leading to sea level rise are included (ocean expansion, glacier melt, ice-sheet changes, and landwater changes), except glacial isostatic adjustment and surface elevation changes. As input we use data from 42 coupled global climate models that contributed to CMIP5. The approach is consistent with the recent fifth assessment Report of IPCC, but provides an alternative viewpoint based on global temperature changes rather than RCPs. This makes them rather accessible and readily applicable to policy makers and the general public. We find a likely range for the G-scenario of +25–60 cm in 2085, and +45–80 cm for the W-scenario. These numbers have been rounded to 5 cm precision, to emphasise to any end-user of these scenarios that estimated lower and upper limits themselves are uncertain. (paper)

  12. Quantifying Florida Bay Habitat Suitability for Fishes and Invertebrates Under Climate Change Scenarios

    Science.gov (United States)

    Kearney, Kelly A.; Butler, Mark; Glazer, Robert; Kelble, Christopher R.; Serafy, Joseph E.; Stabenau, Erik

    2015-04-01

    The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate ( Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.

  13. Constructing Consistent Multiscale Scenarios by Transdisciplinary Processes: the Case of Mountain Regions Facing Global Change

    Directory of Open Access Journals (Sweden)

    Fridolin Simon. Brand

    2013-06-01

    Full Text Available Alpine regions in Europe, in particular, face demanding local challenges, e.g., the decline in the agriculture and timber industries, and are also prone to global changes, such as in climate, with potentially severe impacts on tourism. We focus on the Visp region in the Upper Valais, Switzerland, and ask how the process of stakeholder involvement in research practice can contribute to a better understanding of the specific challenges and future development of mountainous regions under global change. Based on a coupled human-environment system (HES perspective, we carried out a formative scenario analysis to develop a set of scenarios for the future directions of the Visp region. In addition, we linked these regional scenarios to context scenarios developed at the global and Swiss levels via an external consistency analysis. This method allows the coupling of both the scenario building process and the scenarios as such. We used a functional-dynamic approach to theory-practice cooperation, i.e., the involvement of key stakeholders from, for example, tourism, forestry, and administration, differed in type and intensity during the steps of the research process. In our study, we experienced strong problem awareness among the stakeholders concerning the impacts of global change and local challenges. The guiding research question was commonly defined and problem ownership was more or less balanced. We arrived at six multiscale scenarios that open up future trajectories for the Visp region, and present generic strategies to cope with global and local challenges. The results show that local identity, spatial planning, community budget, and demographic development are important steering elements in the region’s future development. We suggest that method-guided transdisciplinary processes result in a richer picture and a more systemic understanding, which enable a discussion of critical and surprising issues.

  14. A hybrid approach to incorporating climate change and variability into climate scenario for impact assessments

    OpenAIRE

    Gebretsadik, Yohannes; Strzepek, Kenneth; Schlosser, C. Adam

    2014-01-01

    Traditional 'delta-change' approach of scenario generation for climate change impact assessment to water resources strongly depends on the selected base-case observed historical climate conditions that the climate shocks are to be super-imposed. This method disregards the combined effect of climate change and the inherent hydro-climatological variability in the system. Here we demonstrated a hybrid uncertainty approach in which uncertainties in historical climate variability are combined with...

  15. Current and future niche of North and Central American sand flies (Diptera: psychodidae in climate change scenarios.

    Directory of Open Access Journals (Sweden)

    David Moo-Llanes

    Full Text Available Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i potential change in niche breadth, ii direction and magnitude of niche centroid shifts, iii shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3, for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%, while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases.

  16. Current and future niche of North and Central American sand flies (Diptera: psychodidae) in climate change scenarios.

    Science.gov (United States)

    Moo-Llanes, David; Ibarra-Cerdeña, Carlos N; Rebollar-Téllez, Eduardo A; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M

    2013-01-01

    Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases.

  17. Current and Future Niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change Scenarios

    Science.gov (United States)

    Moo-Llanes, David; Ibarra-Cerdeña, Carlos N.; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M.

    2013-01-01

    Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases. PMID:24069478

  18. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  19. Spatial Simulation Modelling of Future Forest Cover Change Scenarios in Luangprabang Province, Lao PDR

    Directory of Open Access Journals (Sweden)

    Khamma Homsysavath

    2011-08-01

    Full Text Available Taking Luangprabang province in Lao Peoples’s Democratic Republic (PDR as an example, we simulated future forest cover changes under the business-as-usual (BAU, pessimistic and optimistic scenarios based on the Markov-cellular automata (MCA model. We computed transition probabilities from satellite-derived forest cover maps (1993 and 2000 using the Markov chains, while the “weights of evidence” technique was used to generate transition potential maps. The initial forest cover map (1993, the transition potential maps and the 1993–2000 transition probabilities were used to calibrate the model. Forest cover simulations were then performed from 1993 to 2007 at an annual time-step. The simulated forest cover map for 2007 was compared to the observed (actual forest cover map for 2007 in order to test the accuracy of the model. Following the successful calibration and validation, future forest cover changes were simulated up to 2014 under different scenarios. The MCA simulations under the BAU and pessimistic scenarios projected that current forest areas would decrease, whereas unstocked forest areas would increase in the future. Conversely, the optimistic scenario projected that current forest areas would increase in the future if strict forestry laws enforcing conservation in protected forest areas are implemented. The three simulation scenarios provide a very good case study for simulating future forest cover changes at the subnational level (Luangprabang province. Thus, the future simulated forest cover changes can possibly be used as a guideline to set reference scenarios as well as undertake REDD/REDD+ preparedness activities within the study area.

  20. Preparing local climate change scenarios for the Netherlands using resampling of climate model output

    International Nuclear Information System (INIS)

    A method to prepare a set of four climate scenarios for the Netherlands is presented. These scenarios for climate change in 2050 and 2085 (compared to present-day) are intended for general use in climate change adaptation in the Netherlands. An ensemble of eight simulations with the global model EC-Earth and the regional climate model RACMO2 (run at 12 km resolution) is used. For each scenario time horizon, two target values of the global mean temperature rise are chosen based on the spread in the CMIP5 simulations. Next, the corresponding time periods in the EC-Earth/RACMO2 simulations are selected in which these target values of the global temperature rise are reached. The model output for these periods is then resampled using blocks of 5 yr periods. The rationale of resampling is that natural variations in the EC-Earth/RACMO2 ensemble are used to represent (part of the) uncertainty in the CMIP5 projections. Samples are then chosen with the aim of reconstructing the spread in seasonal temperature and precipitation changes in CMIP5 for the Netherlands. These selected samples form the basis of the scenarios. The resulting four scenarios represent 50–80% of the CMIP5 spread for summer and winter changes in seasonal means as well as a limited number of monthly statistics (warm, cold, wet and dry months). The strong point of the method—also in relation to the previous set of the climate scenarios for the Netherlands issued in 2006—is that it preserves nearly all physical inter-variable consistencies as they exist in the original model output in both space and time. (paper)

  1. Runoff scenarios of the Ötz catchment (Tyrol, Austria) considering climate change driven changes of the cryosphere

    Science.gov (United States)

    Helfricht, Kay; Schneeberger, Klaus; Welebil, Irene; Schöber, Johannes; Huss, Matthias; Formayer, Herbert; Huttenlau, Matthias; Schneider, Katrin

    2014-05-01

    The seasonal distribution of runoff in alpine catchments is markedly influenced by the cryospheric contribution (snow and ice). Long-term climate change will alter these reservoirs and consequently have an impact on the water balance. Glacierized catchments like the Ötztal (Tyrol, Austria) are particularly sensitive to changes in the cryosphere and the hydrological changes related to them. The Ötztal possesses an outstanding role in Austrian and international cryospheric research and reacts sensitive to changes in hydrology due to its socio-economic structure (e.g. importance of tourism, hydro-power). In this study future glacier scenarios for the runoff calculations in the Ötztal catchment are developed. In addition to climatological scenario data, glacier scenarios were established for the hydrological simulation of future runoff. Glacier outlines and glacier surface elevation changes of the Austrian Glacier Inventory were used to derive present ice thickness distribution and scenarios of glacier area distribution. Direct effects of climate change (i.e. temperature and precipitation change) and indirect effects in terms of variations in the cryosphere were considered for the analysis of the mean runoff and particularly flood frequencies. Runoff was modelled with the hydrological model HQSim, which was calibrated for the runoff gauges at Brunau, Obergurgl and Vent. For a sensitivity study, the model was driven by separate glacier scenarios. Keeping glacier area constant, variable climate input was used to separate the effect of climate sensitivity. Results of the combination of changed glacier areas and changed climate input were subsequently analysed. Glacier scenarios show first a decrease in volume, before glacier area shrinks. The applied method indicates a 50% ice volume loss by 2050 relative to today. Further, model results show a reduction in glacier volume and area to less than 20% of the current ice cover towards the end of the 21st century. The effect

  2. Joint Environmental and Economical Analysis of Wastewater Treatment Plants Control Strategies: A Benchmark Scenario Analysis

    Directory of Open Access Journals (Sweden)

    Montse Meneses

    2016-04-01

    Full Text Available In this paper, a joint environmental and economic analysis of different Wastewater Treatment Plant (WWTP control strategies is carried out. The assessment is based on the application of the Life Cycle Assessment (LCA as a method to evaluate the environmental impact and the Benchmark Simulation Model No. 1 (BSM1. The BSM1 is taken as the benchmark scenario used to implement the control strategies. The Effluent Quality Index (EQI and the Overall Cost Index (OCI are two indicators provided by BSM1 and used to evaluate the plant’s performance from the effluent quality and the economic points of view, respectively. This work conducts a combined analysis and assessment of ten different control strategies defined to operate a wastewater treatment plant. This analysis includes the usual economic and performance indexes provided by BSM1 joined with the LCA analysis that determines the environmental impact linked to each one of the considered control strategies. It is shown how to get an overall evaluation of the environmental effects by using a normalized graphical representation that can be easily used to compare control strategies from the environmental impact point of view. The use of only the BSM1 indexes provides an assessment that leads to a clustering of control strategies according to the cost/quality tradeoff they show. Therefore, regarding the cost/quality tradeoff, all strategies in the same group are almost equal and do not provide an indication on how to proceed in order to select the appropriate one. It is therefore shown how the fact of adding a new, complementary, evaluation (LCA based allows either to reinforce a decision that could be taken solely on the basis of the EQI/OCI tradeoff or to select one control strategy among the others.

  3. Modelling scenarios of land use change in northern China in the next 50 years

    Institute of Scientific and Technical Information of China (English)

    HEChunyang; LIJinggang; SHIPeijun; CHENJin; PANYaozhong; LIXiaobing

    2005-01-01

    Modelling scenarios of land use change and their impacts in typical regions are helpful to investigate the mechanism between land use and ecological systems and process the land use allocation under the ecological security. A system dynamics (SD) model with the aim to modelling scenarios of land use change and assessing ecological impact in northern China in the next 50 years is developed here. The accuracy assessment with the historic data from 1990 to 2001 indicated the SD model is robust. After the different """"what-if' scenarios controlled by GDP, population, market, and technology advancement were built, the different scenarios of land use change in northern China from 2000 to 2050 were simulated with their ecological impact assessed. The result suggested that such factors as GDP, population, market and technology have a strong relationship with land use structural change innorthern China. It also indicated that such measures as strict controlling of population increase,importing some food to keep the supply-demand balance in the region, and improving agricultural technology will be the guarantee of regional sustainable development with fast economic growth and the obvious land use structural improvement at the same time.

  4. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  5. Modelling Snowmelt Runoff under Climate Change Scenarios in an Ungauged Mountainous Watershed, Northwest China

    Directory of Open Access Journals (Sweden)

    Yonggang Ma

    2013-01-01

    Full Text Available An integrated modeling system has been developed for analyzing the impact of climate change on snowmelt runoff in Kaidu Watershed, Northwest China. The system couples Hadley Centre Coupled Model version 3 (HadCM3 outputs with Snowmelt Runoff Model (SRM. The SRM was verified against observed discharge for outlet hydrological station of the watershed during the period from April to September in 2001 and generally performed well for Nash-Sutcliffe coefficient (EF and water balance coefficient (RE. The EF is approximately over 0.8, and the water balance error is lower than ± 10%, indicating reasonable prediction accuracy. The Statistical Downscaling Model (SDSM was used to downscale coarse outputs of HadCM3, and then the downscaled future climate data were used as inputs of the SRM. Four scenarios were considered for analyzing the climate change impact on snowmelt flow in the Kaidu Watershed. And the results indicated that watershed hydrology would alter under different climate change scenarios. The stream flow in spring is likely to increase with the increased mean temperature; the discharge and peck flow in summer decrease with the decreased precipitation under Scenarios 1 and 2. Moreover, the consideration of the change in cryosphere area would intensify the variability of stream flow under Scenarios 3 and 4. The modeling results provide useful decision support for water resources management.

  6. Environmental management systems and organizational change

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg

    2000-01-01

    The establishment of an environmental management system and its continuous improvements is a process towards a reduction of the companies' and the products' environmental impact. The organizations' ability to change is crucial in order to establish a dynamic environmental management system...... and environmental management systems. The structure of the organizations has changed, the relationships with external partners have strengthened and the implementation of quality and environmental management systems has trimmed the organizations to manage and develop these areas. The organization analysis is based...... and to achieve continuous environmental improvements. The study of changes gives an insight into how organizations function, as well as their forces and barriers. This article focuses on the organizational changes that two companies have undergone from 1992 up until today in connection with their quality...

  7. Potential Implications of PCM Climate Change Scenarios for Sacramento-San Joaquin River Basin Hydrology and Water Resources

    Energy Technology Data Exchange (ETDEWEB)

    Van Rheenen, N.T.; Wood, A.W.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil and Environmental Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Sacramento-San Joaquin River Basin were evaluated using ensemble climate simulations generated by the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). Five PCM scenarios were employed. The first three were ensemble runs from 1995-2099 with a 'business as usual' global emissions scenario, each with different atmospheric initializations. The fourth was a 'control climate' scenario with greenhouse gas emissions set at 1995 levels and run through 2099. The fifth was a historical climate simulation forced with evolving greenhouse gas concentrations from 1870-2000, from which a 50-year portion is taken for use in bias-correction of the other runs. From these global simulations, transient monthly temperature and precipitation sequences were statistically downscaled to produce continuous daily hydrologic model forcings, which drove a macro-scale hydrology model of the Sacramento-San Joaquin River Basins at a ?-degree spatial resolution, and produced daily streamflow sequences for each climate scenario. Each streamflow scenario was used in a water resources system model that simulated current and predicted future performance of the system. The progressive warming of the PCM scenarios (approximately 1.2C at midcentury, and 2.2C by the 2090s), coupled with reductions in winter and spring precipitation (from 10 to 25%), markedly reduced late spring snowpack (by as much as half on average by the end of the century). Progressive reductions in winter, spring, and summer streamflow were less severe in the northern part of the study domain than in the south, where a seasonality shift was apparent. Results from the water resources system model indicate that achieving and maintaining status quo (control scenario climate) system performance in the future would be nearly impossible, given the altered climate scenario

  8. WATER AVAILABILITY IN SOUTHERN PORTUGAL FOR DIFFERENT CLIMATE CHANGE SCENARIOS SUBJECTED TO BIAS CORRECTION

    Directory of Open Access Journals (Sweden)

    Sandra Mourato

    2014-01-01

    Full Text Available Regional climate models provided precipitation and temperature time series for control (1961–1990 and scenario (2071–2100 periods. At southern Portu gal, the climate models in the control period systematically present higher temp eratures and lower precipitation than the observations. Therefore, the direct inpu t of climate model data into hydrological models might result in more severe scenarios for future water availability. Three bias correction methods (Delta Change, Dire ct Forcing and Hybrid are analysed and their performances in water availability impac t studies are assessed. The Delta Change method assumes that the observed series variab ility is maintained in the scenario period and is corrected by the evolution predicted by the climate models. The Direct Forcing method maintains the scenario series variabi lity, which is corrected by the bias found in the control period, and the Hybrid method maintains the control model series variability, which is corrected by the bias found in the control period and by the evolution predicted by the climate models. To assess the climate impacts in the water resources expected for the scenario period, a physically based spatially distributed hydrological model, SHETRAN, is used for runoff pro jections in a southern Portugal basin. The annual and seasonal runoff shows a runoff d ecrease in the scenario period, increasing the water shor tage that is already experienc ed. The overall annual reduction varies between –80% and –35%. In general, the results show that the runoff reductions obtained with climate models corrected with the Delt a Change method are highest but with a narrow range that varies between –80% and –5 2%.

  9. Environmental evaluation of the PIES Trendlong Mid-Mid Scenario: Federal Region V

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This Regional Issues Identification and Assessment (RIIA), is an evaluation of the regional environmental impacts of future energy development. The impacts described for 1985 and 1990 are based on a national energy projection (scenario) that assumes medium energy demand and fuel supply through 1990 but does not incorporate the policies of the 1978 National Energy Act (NEA). The environmental impacts discussed in this volume are for Federal Region V. There are nine companion volumes, one for each of the other federal regions in the nation. The findings of this impact evaluation of the PIES TRENDLONG MID-MID Scenario for Federal Region V (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin) are reported. In those areas of eastern Michigan and southeastern and central Wisconsin that have not attained National Ambient Air Quality Standards (NAAQS), there will be limited opportunities for mitigation of impacts from utility coal growth through emission offsets or improved control efficiencies. In Ohio, 30% of utility coal growth could be restricted primarily because of NAAQS nonattainment. Illinois, Indiana, and Ohio may also experience problems with oil-fired utilities in nonattainment areas, but fuel purchasinhg practices could reduce the air quality impacts. Utility and industrial siting along Lake Erie may require extensive pretreatment of effluents discharged into the Lake. Allocation of water from Lake Michigan for new facilities may become an issue in Wisconsin and Illinois where large water-for-energy demands conflict with other water uses. Surface mining activities in Illinois, Indiana, and Ohio are projected to disturb approximately 200,000 acres in the period 1975 to 1990, causing temporary or permanent shifts in productivity and land use. Much of the land in the mining area is presently in forest and crops. Deaths and illnesses resulting from employment in deep mining in Region V may increase 30 to 40% over 1975 levels.

  10. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  11. Evaluating climate change adaptation options for urban flooding in Copenhagen based on new high‐end emission scenario simulations

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Leonhardsen, Lykke; Madsen, Henrik

    2014-01-01

    Climate change adaptation studies on urban flooding are often based on a model chain approach from climate forcing scenarios to analysis of adaptation measures. Previous analyses of impacts in Denmark using ensemble projections of the A1B scenario are supplemented by two high‐end scenario simulat...

  12. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China

    Directory of Open Access Journals (Sweden)

    Huiran Han

    2015-04-01

    Full Text Available Land use and land cover (LULC models are essential for analyzing LULC change and predicting land use requirements and are valuable for guiding reasonable land use planning and management. However, each LULC model has its own advantages and constraints. In this paper, we explore the characteristics of LULC change and simulate future land use demand by combining a CLUE-S model with a Markov model to deal with some shortcomings of existing LULC models. Using Beijing as a case study, we describe the related driving factors from land-adaptive variables, regional spatial variables and socio-economic variables and then simulate future land use scenarios from 2010 to 2020, which include a development scenario (natural development and rapid development and protection scenarios (ecological and cultivated land protection. The results indicate good consistency between predicted results and actual land use situations according to a Kappa statistic. The conversion of cultivated land to urban built-up land will form the primary features of LULC change in the future. The prediction for land use demand shows the differences under different scenarios. At higher elevations, the geographical environment limits the expansion of urban built-up land, but the conversion of cultivated land to built-up land in mountainous areas will be more prevalent by 2020; Beijing, however, still faces the most pressure in terms of ecological and cultivated land protection.

  13. Analyses of the predicted changes of the global oceans under the increased greenhouse gases scenarios

    Institute of Scientific and Technical Information of China (English)

    MU Lin; WU Dexing; CHEN Xue'en; J Jungclaus

    2006-01-01

    A new climate model (ECHAM5/MPIOM1) developed for the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) at Max-Planck Institute for Meteorology is used to study the climate changes under the different increased CO2 scenarios (B1, A1B and A2). Based on the corresponding model results, the sea surface temperature and salinity structure, the variations of the thermohaline circulation (THC) and the changes of sea ice in the northern hemisphere are analyzed. It is concluded that from the year of 2000 to 2100, under the B1, A1B and A2 scenarios, the global mean sea surface temperatures (SST) would increase by 2.5℃, 3.5℃ and 4.0℃ respectively, especially in the region of the Arctic, the increase of SST would be even above 10.0℃; the maximal negative value of the variation of the fresh water flux is located in the subtropical oceans, while the precipitation in the eastern tropical Pacific increases. The strength of THC decreases under the B1, A1B and A2 scenarios, and the reductions would be about 20%, 25% and 25.1% of the present THC strength respectively. In the northern hemisphere, the area of the sea ice cover would decrease by about 50% under the A1B scenario.

  14. ENVIRONMENTAL SUSTAINABILITY AND SCENARIOS OF URBANIZATION IN ARID AREA -- A Case Study in Wuwei City of Gansu Province

    Institute of Scientific and Technical Information of China (English)

    YOU Fei; LI Yu; DONG Suo-cheng

    2005-01-01

    Based on data of questionnaire and field survey and two developing models of Business As Usual (BAU) and the Intensive Urbanization (IU), this article, taking Wuwei City, a medium size city and typical oasis arid area in Gansu Province with very vulnerable and sensitive natural environment but long history of oasis economy, as an example, evaluated the sustainability of its environment and analyzed the scenarios of Wuwei's household energy consumption, waste discharge in transportation industry, primary industry, secondary industry, tertiary industry, by the integration of the systematical dynamics model Stella and Polestar language to simulate the future development of the research area. The results showed that, first, the developing model ofIU was propitious to Wuwei City named for oasis economy and vulnerable natural environment. The strategy of"Intensive Urbanization" can change the structure of energy utilization, and improve the efficiency of energy utilization. Second, the proportion of domestic energy consumption will decrease with industrialization and economic development, while that of tertiary industry, secondary industry and transportation will gradually grow up according to strategy of"Intensive Urbanization". Third, the Wuwei City is facing a severe eco-environmental crisis under the conventional patterns of development and a better future under a sustainable urbanization scenario, in the next 10 to 20 years. The different developing trends were clarified and the relative countermeasures were put forward for the policy makers according to the driving forces.

  15. Potential environmental benefits of prospective genetic changes in broiler traits.

    Science.gov (United States)

    Leinonen, I; Williams, A G; Kyriazakis, I

    2016-02-01

    A system approach-based Life Cycle Assessment (LCA) framework, combined with a simple mechanistic model of bird energy balance was used to predict the potential effects of 15 y prospective broiler breeding on the environmental impacts of the standard UK broiler production system. The year 2014 Ross 308 genotype was used as a baseline, and a future scenario was specified from rates of genetic improvement predicted by the industry. The scenario included changes in the traits of growth rate (reducing the time to reach a target weight 2.05 kg from 34 d to 27 d), body lipid content, carcass yield, mortality and the number of chicks produced by a breeder hen. Diet composition was adjusted in order to accommodate the future nutrient requirements of the birds following the genetic change. The results showed that predicted changes in biological performance due to selective breeding could lead to reduced environmental impacts of the broiler production chain, most notably in the Eutrophication Potential (by 12%), Acidification Potential (by 10%) and Abiotic Resource Use (by 9%) and Global Warming Potential (by 9%). These reductions were mainly caused by the reduced maintenance energy requirement and thus lower feed intake, resulting from the shorter production cycle, together with the increased carcass yield. However, some environmental benefits were limited by the required changes in feed composition (e.g., increased inclusion of soy meal and vegetable oil) as a result of the changes in bird nutrient requirements. This study is the first one aiming to link the mechanistic animal modeling approach to predicted genetic changes in order to produce quantitative estimates of the future environmental impacts of broiler production. Although a more detailed understanding on the mechanisms of the potential changes in bird performance and their consequences on feeding and husbandry would be still be needed, the modeling framework produced in this study provides a starting point for

  16. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    DEFF Research Database (Denmark)

    Molina Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia;

    2014-01-01

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water...... Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...... and recreational purposes. We also checked for the possible synergistic effects of changes in climate and land use on water flow and nutrient exports from the catchment. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno...

  17. Pathways to the Future: Community Dialogues on Adaptive Environmental Management Through Scenario Projection in Google Maps

    NARCIS (Netherlands)

    Vervoort, J.M.; Kok, K.; Lammeren, van R.J.A.; Janssen, R.; Veldkamp, A.

    2009-01-01

    This paper presents research on the potential of interactive media for regional community dialogues on future uncertainties and complexities in coupled human and natural systems. More adaptive perspectives on natural resources management are needed to respond to rapid environmental and social change

  18. Enhanced adaptive management: integrating decision analysis, scenario analysis and environmental modeling for the Everglades.

    Science.gov (United States)

    Convertino, Matteo; Foran, Christy M; Keisler, Jeffrey M; Scarlett, Lynn; LoSchiavo, Andy; Kiker, Gregory A; Linkov, Igor

    2013-01-01

    We propose to enhance existing adaptive management efforts with a decision-analytical approach that can guide the initial selection of robust restoration alternative plans and inform the need to adjust these alternatives in the course of action based on continuously acquired monitoring information and changing stakeholder values. We demonstrate an application of enhanced adaptive management for a wetland restoration case study inspired by the Florida Everglades restoration effort. We find that alternatives designed to reconstruct the pre-drainage flow may have a positive ecological impact, but may also have high operational costs and only marginally contribute to meeting other objectives such as reduction of flooding. Enhanced adaptive management allows managers to guide investment in ecosystem modeling and monitoring efforts through scenario and value of information analyses to support optimal restoration strategies in the face of uncertain and changing information. PMID:24113217

  19. ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan.

    Science.gov (United States)

    Iizumi, Toshichika; Semenov, Mikhail A; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2012-03-13

    We developed a dataset of local-scale daily climate change scenarios for Japan (called ELPIS-JP) using the stochastic weather generators (WGs) LARS-WG and, in part, WXGEN. The ELPIS-JP dataset is based on the observed (or estimated) daily weather data for seven climatic variables (daily mean, maximum and minimum temperatures; precipitation; solar radiation; relative humidity; and wind speed) at 938 sites in Japan and climate projections from the multi-model ensemble of global climate models (GCMs) used in the coupled model intercomparison project (CMIP3) and multi-model ensemble of regional climate models form the Japanese downscaling project (called S-5-3). The capability of the WGs to reproduce the statistical features of the observed data for the period 1981-2000 is assessed using several statistical tests and quantile-quantile plots. Overall performance of the WGs was good. The ELPIS-JP dataset consists of two types of daily data: (i) the transient scenarios throughout the twenty-first century using projections from 10 CMIP3 GCMs under three emission scenarios (A1B, A2 and B1) and (ii) the time-slice scenarios for the period 2081-2100 using projections from three S-5-3 regional climate models. The ELPIS-JP dataset is designed to be used in conjunction with process-based impact models (e.g. crop models) for assessment, not only the impacts of mean climate change but also the impacts of changes in climate variability, wet/dry spells and extreme events, as well as the uncertainty of future impacts associated with climate models and emission scenarios. The ELPIS-JP offers an excellent platform for probabilistic assessment of climate change impacts and potential adaptation at a local scale in Japan.

  20. A Generalized Deforestation and Land-Use Change Scenario Generator for Use in Climate Modelling Studies.

    Science.gov (United States)

    Tompkins, Adrian Mark; Caporaso, Luca; Biondi, Riccardo; Bell, Jean Pierre

    2015-01-01

    A new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. These rules presently focus on the conversion of forest to agriculture and pasture use, but could be generalized to other land use change conversions. After introducing the model, an evaluation of its performance is shown for the land-cover changes that have occurred in the Central African Basin from 2001-2010 using retrievals from MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the use of the local-scale risk factors enables FOREST-SAGE to improve land use change patterns considerably relative to benchmark scenarios used in the latest Coupled Model Intercomparison Project integrations. The uncertainty to the various risk factors is investigated using an ensemble of investigations, and it is shown that the model is sensitive to the population density, forest fragmentation and reforestation factors specified.

  1. Scenarios to prioritize observing activities on the North Slope, Alaska in the context of resource development, climate change and socio-economic uncertainties

    Science.gov (United States)

    Lee, O. A.; Eicken, H.; Payne, J. F.; Lassuy, D.

    2014-12-01

    The North Slope of Alaska is experiencing rapid changes in response to interacting climate and socioeconomic drivers. The North Slope Science Initiative (NSSI) is using scenarios as a tool to identify plausible, spatially explicit future states of resource extraction activities on the North Slope and adjacent seas through the year 2040. The objective of the scenarios process is to strategically assess research and monitoring needs on the North Slope. The participatory scenarios process involved stakeholder input (including Federal, State, local, academic, industry and non-profit representatives) to identify key drivers of change related to resource extraction activities on the North Slope. While climate change was identified as a key driver in the biophysical system, economic drivers related to oil and gas development were also important. Expert-reviewed informational materials were developed to help stakeholders obtain baseline knowledge and stimulate discussions about interactions between drivers, knowledge gaps and uncertainties. Map-based scenario products will allow mission-oriented agencies to jointly explore where to prioritize research investments and address risk in a complex, changing environment. Scenarios consider multidecadal timescales. However, tracking of indicator variables derived from scenarios can lead to important insights about the trajectory of the North Slope social-environmental system and inform management decisions to reduce risk on much shorter timescales. The inclusion of stakeholders helps provide a broad spectrum of expert viewpoints necessary for considering the range of plausible scenarios. A well-defined focal question, transparency in the participation process and continued outreach about the utility and limitations of scenarios are also important components of the scenarios process.

  2. Modelling land use changes according to transportation scenarios using raster based GIS indicators

    DEFF Research Database (Denmark)

    Fuglsang, Morten; Münier, Bernd; Hansen, Henning Sten

    2012-01-01

    the cellular automata model LUCIA. An Eastern Danish case area was selected, comprising the Copenhagen metropolitan area and its hinterland. The different scenarios are described using a range of different GIS datasets. These include mapping of accessibility based on public and private transportation, urban......The modelling of land use change is a way to analyse future scenarios by modelling different future pathways. This study demonstrates the potential to explore and test the understanding of land use change relations by applying spatial data of different scales, coupled with socio-economic data....... In the EU-FP7 research project PASHMINA (Paradigm Shift modelling and innovative approaches), three storylines of future transportation paradigm shifts towards 2050 are created. These storylines are translated into spatial planning strategies and their implication on land use changes were modelled via...

  3. Estimation of Crop Coefficient of Corn (Kccorn under Climate Change Scenarios Using Data Mining Technique

    Directory of Open Access Journals (Sweden)

    Kampanad Bhaktikul

    2012-01-01

    Full Text Available The main objectives of this study are to determine the crop coefficient of corn (Kccorn using data mining technique under climate change scenarios, and to develop the guidelines for future water management based on climate change scenarios. Variables including date, maximum temperature, minimum temperature, precipitation, humidity, wind speed, and solar radiation from seven meteorological stations during 1991 to 2000 were used. Cross-Industry Standard Process for Data Mining (CRISP-DM was applied for data collection and analyses. The procedures compose of investigation of input data, model set up using Artificial Neural Networks (ANNs, model evaluation, and finally estimation of the Kccorn. Three climate change scenarios of carbon dioxide (CO2 concentration level: 360 ppm, 540 ppm, and 720 ppm were set. The results indicated that the best number of node of input layer - hidden layer - output layer was 7-13-1. The correlation coefficient of model was 0.99. The predicted Kccorn revealed that evapotranspiration (ETcorn pattern will be changed significantly upon CO2 concentration level. From the model predictions, ETcorn will be decreased 3.34% when CO2 increased from 360 ppm to 540 ppm. For the double CO2 concentration from 360 ppm to 720 ppm, ETcorn will be increased 16.13%. The future water management guidelines to cope with the climate change are suggested.

  4. Environmental Pressures on Tourism Companies: Simulation of Scenarios in Golf Course Operators

    Directory of Open Access Journals (Sweden)

    Alfonso Vargas-Sánchez

    2014-03-01

    Full Text Available Andalusia (Spain has become one of the world’s leading regions for receiving golf tourists. In recent years there has been a constant increase in the number of golf courses; as a result an institutional context is developing in respect of environment protection that is conditioning the behaviour of companies operating sports/tourism facilities of this type. In the present study we analyse this organizational context from the perspective of the Institutional Theory; we propose possible future scenarios by simulating the evolution of the normative pressures in respect of environmental protection. For this we have applied the statistical technique of Partial Least Squares. The simulation by means of the ceteris paribus criterion has demonstrated for us that an increase of the normative pressures would not substantially modify the results of our original model. We believe that the relatively weak influence of this type of pressure may be because the wide social debate generated in that Spanish region on the sustainability of sports facilities of this type, has propitiated a substantial body of legislation that has conditioned the environmental behaviour of golf courses. Therefore, the best way to obtain legitimacy and social acceptance is still by complying with the law.

  5. Environmental assessment of amine-based carbon capture Scenario modelling with life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Andreas; Askham, Cecilia; Modahl, Ingunn Saur; Vold, Bjoern Ivar; Johnsen, Fredrik Moltu

    2012-07-01

    This report contains a first attempt at introducing the environmental impacts associated with amines and derivatives in a life cycle assessment (LCA) of gas power production with carbon capture and comparing these with other environmental impacts associated with the production system. The report aims to identify data gaps and methodological challenges connected both to modelling toxicity of amines and derivatives and weighting of environmental impacts. A scenario based modelling exercise was performed on a theoretical gas power plant with carbon capture, where emission levels of nitrosamines were varied between zero (gas power without CCS) to a worst case level (outside the probable range of actual carbon capture facilities). Because of extensive research and development in the areas of solvents and emissions from carbon capture facilities in the latter years, data used in the exercise may be outdated and results should therefore not be taken at face value.The results from the exercise showed: According to UseTox, emissions of nitrosamines are less important than emissions of formaldehyde with regard to toxicity related to operation of (i.e. both inputs to and outputs from) a carbon capture facility. If characterisation factors for emissions of metals are included, these outweigh all other toxic emissions in the study. None of the most recent weighting methods in LCA include characterisation factors for nitrosamines, and these are therefore not part of the environmental ranking.These results shows that the EDecIDe project has an important role to play in developing LCA methodology useful for assessing the environmental performance of amine based carbon capture in particular and CCS in general. The EDecIDe project will examine the toxicity models used in LCA in more detail, specifically UseTox. The applicability of the LCA compartment models and site specificity issues for a Norwegian/Arctic situation will be explored. This applies to the environmental compartments

  6. Climate change and socio-economic scenarios, land use modelling implications on water resources in an inner alpine area, Switzerland

    Science.gov (United States)

    Rey, Emmanuel; Schneider, Flurina; Liniger, Hanspeter; Weingartner, Rolf; Herweg, Karl

    2014-05-01

    them to implement soil moisture and evaporation data for the near-future in the region Sierre-Montana. REFERENCES Niklaus M. 2012. An Object-oriented Approach for Mapping Current Land Use/Land Cover in the Study Area Crans-Montana-Sierre, Valais. MSc, Geography Institute, University of Bern Dolman A.J., Verhagen A. & Rovers C.A. 2003. Global environmental change and land use. Kluwer Academic Publisher. Dordrecht. Schneider F. & Rist S. 2013. Envisioning sustainable water futures in a transdisciplinary learning process: combining normative, explorative, and participatory scenario approaches. Sustainability Science, in press. Georges D. & Thuiller W. 2012. An example of species distribution modelling with biomod2. biomod2 version : 2.0.17

  7. Response of streamflow to projected climate change scenarios in an eastern Himalayan catchment of India

    Indian Academy of Sciences (India)

    K T Senzeba; S Rajkumari; A Bhadra; A Bandyopadhyay

    2016-04-01

    Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios foran eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of ArunachalPradesh with an area of 52 km^2 is selected for the present study with an elevation range of 3143–4946 mabove mean sea level. Satellite images from October to June of the selected hydrological year 2006–2007were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done usingNDSI method. Based on long term meteorological data, temperature and precipitation data of selectedhydrological year are normalized to represent present climatic condition. The projected temperatureand precipitation data are downloaded from NCAR’s GIS data portal for different emission scenarios(SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020,2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired locationby spatially interpolating the gridded data and then by statistical downscaling using linear regression.Snow depletion curves for all projected scenarios are generated for the study area and compared withconventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth fordifferent future years are highest under A1B and lowest under IPCC commitment, whereas A2 andB1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for differentfuture years follows almost the same trend as change in precipitation from present climate under allprojected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snowcover, the total streamflow under projected climatic scenarios in future years will be primarily governedby the change in precipitation and not by change in snowmelt depth. Advancing of depletion curves

  8. Response of streamflow to projected climate change scenarios in an eastern Himalayan catchment of India

    Science.gov (United States)

    Senzeba, K. T.; Rajkumari, S.; Bhadra, A.; Bandyopadhyay, A.

    2016-04-01

    Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios for an eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of Arunachal Pradesh with an area of 52 km2 is selected for the present study with an elevation range of 3143-4946 m above mean sea level. Satellite images from October to June of the selected hydrological year 2006-2007 were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done using NDSI method. Based on long term meteorological data, temperature and precipitation data of selected hydrological year are normalized to represent present climatic condition. The projected temperature and precipitation data are downloaded from NCAR's GIS data portal for different emission scenarios (SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020, 2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired location by spatially interpolating the gridded data and then by statistical downscaling using linear regression. Snow depletion curves for all projected scenarios are generated for the study area and compared with conventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth for different future years are highest under A1B and lowest under IPCC commitment, whereas A2 and B1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for different future years follows almost the same trend as change in precipitation from present climate under all projected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snow cover, the total streamflow under projected climatic scenarios in future years will be primarily governed by the change in precipitation and not by change in snowmelt depth. Advancing of

  9. Environmental change enhances cognitive abilities in fish.

    Directory of Open Access Journals (Sweden)

    Alexander Kotrschal

    Full Text Available Flexible or innovative behavior is advantageous, especially when animals are exposed to frequent and unpredictable environmental perturbations. Improved cognitive abilities can help animals to respond quickly and adequately to environmental dynamics, and therefore changing environments may select for higher cognitive abilities. Increased cognitive abilities can be attained, for instance, if environmental change during ontogeny triggers plastic adaptive responses improving the learning capacity of exposed individuals. We tested the learning abilities of fishes in response to experimental variation of environmental quality during ontogeny. Individuals of the cichlid fish Simochromis pleurospilus that experienced a change in food ration early in life outperformed fish kept on constant rations in a learning task later in life--irrespective of the direction of the implemented change and the mean rations received. This difference in learning abilities between individuals remained constant between juvenile and adult stages of the same fish tested 1 y apart. Neither environmental enrichment nor training through repeated neural stimulation can explain our findings, as the sensory environment was kept constant and resource availability was changed only once. Instead, our results indicate a pathway by which a single change in resource availability early in life permanently enhances the learning abilities of animals. Early perturbations of environmental quality may signal the developing individual that it lives in a changing world, requiring increased cognitive abilities to construct adequate behavioral responses.

  10. Climate change scenarios for precipitation and potential evapotranspiration over central Belgium

    Science.gov (United States)

    Baguis, P.; Roulin, E.; Willems, P.; Ntegeka, V.

    2009-05-01

    In this article, we examine climate model estimations for the future climate over central Belgium. Our analysis is focused mainly on two variables: potential evapotranspiration (PET) and precipitation. PET is calculated using the Penman equation with parameters appropriately calibrated for Belgium, based on RCM data from the European project PRUDENCE database. Next, we proceed into estimating the model capacity to reproduce the reference climate for PET and precipitation. The same analysis for precipitation is also performed based on GCM data from the IPCC AR4 database. Then, the climate change signal is evaluated over central Belgium using RCM and GCM simulations based on several SRES scenarios. The RCM simulations show a clear shift in the precipitation pattern with an increase during winter and a decrease during summer. However, the inclusion of another set of SRES scenarios from the GCM simulations leads to a less clear climate change signal.

  11. Scenarios of regional development under global change (Briefing 1.1)

    OpenAIRE

    Onigkeit, Janina

    2013-01-01

    Uncertainty is a key challenge when developing water management strategies for the long-term future. Three highly uncertain factors determining the future water situation in the Jordan River valley were identified: economic development, the potential for regional cooperation in water management and climate change. These factors shape the range of the four “GLOWA Jordan River Scenarios of Regional Development under Global Change”. The “Story and Simulation” (SAS) approach was applied to integr...

  12. Future Water Resource Scenarios for USA: Effects of Land Use/Cover Change, Climate Change and Human Disturbance

    Science.gov (United States)

    Kumar, S.; Merwade, V.; Pijanowski, B. C.

    2010-12-01

    Spatially distributed and easily interpretable maps of global climate change impacts are valuable information layer for policy makers. The broader objective of this study is to construct future water resource scenarios for USA by combining impacts of land use/cover change, climate change, and human disturbances across a variety of spatial scales. Specifically, Water Resource Availability Change Index (WRACI) and Water Resource Vulnerability Change Index (WRVCI) will be prepared for USA using a multi-scaling based approach. In this approach, Earth System Model outputs are scaled to observations using quantile based mapping. Spatially distributed (0.5 degree x 0.5 degree) maps of land cover change history and population dynamics over past 200 years are synthesized using literature and US census data. Future land use/cover change at a grid cell is a function of (1) land use/cover change potential [topography, soil, and climate] (2) historical land use/cover change rate, and (3) socio-economic condition [e.g. GDP, nearness to major city] and (4) projected population. Spatially distributed data of future population scenarios is obtained from the literature. Initial work towards the development of a land use/cover change model and index mapping (WRACI and WRVCI) will be presented.

  13. How Do Land-Use and Climate Change Affect Watershed Health? A Scenario-Based Analysis

    Science.gov (United States)

    With the growing emphasis on biofuel crops and potential impacts of climate variability and change, there is a need to quantify their effects on hydrological processes for developing watershed management plans. Environmental consequences are currently estimated by utilizing comp...

  14. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Science.gov (United States)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration

  15. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  16. Simulation of salinity intrusion along the Georgia and South Carolina coasts using climate-change scenarios

    Science.gov (United States)

    Conrads, Paul A.; Roehl, Edwin A.; Daamen, Ruby C.; Cook, John B.

    2013-01-01

    Potential changes in climate could alter interactions between environmental and societal systems and adversely affect the availability of water resources in many coastal communities. Changes in streamflow patterns in conjunction with sea-level rise may change the salinity-intrusion dynamics of coastal rivers. Several municipal water-supply intakes are located along the Georgia and South Carolina coast that are proximal to the present day saltwater-freshwater interface of tidal rivers. Increases in the extent of salinity intrusion resulting from climate change could threaten the availability of freshwater supplies in the vicinity of these intakes. To effectively manage these supplies, water-resource managers need estimates of potential changes in the frequency, duration, and magnitude of salinity intrusion near their water-supply intakes that may occur as a result of climate change. This study examines potential effects of climate change, including altered streamflow and sea-level rise, on the dynamics of saltwater intrusion near municipal water-supply intakes in two coastal areas. One area consists of the Atlantic Intracoastal Waterway (AIW) and the Waccamaw River near Myrtle Beach along the Grand Strand of the South Carolina Coast, and the second area is on or near the lower Savannah River near Savannah, Georgia. The study evaluated how future sea-level rise and a reduction in streamflows can potentially affect salinity intrusion and threaten municipal water supplies and the biodiversity of freshwater tidal marshes in these two areas. Salinity intrusion occurs as a result of the interaction between three principal forces—streamflow, mean coastal water levels, and tidal range. To analyze and simulate salinity dynamics at critical coastal gaging stations near four municipal water-supply intakes, various data-mining techniques, including artificial neural network (ANN) models, were used to evaluate hourly streamflow, salinity, and coastal water-level data collected

  17. The hydroclimatological response to global warming based on the dynamically downscaled climate change scenario

    Science.gov (United States)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Felippo

    2010-05-01

    Given the discernable evidences of climate changes due to human activity, there is a growing demand for the reliable climate change scenario in response to future emission forcing. One of the most significant impacts of climate changes can be that on the hydrological process. Changes in the seasonality and increase in the low and high rainfall extremes can severely influence the water balance of river basin, with serious consequences for societies and ecosystems. In fact, recent studies have reported that East Asia including the Korean peninsula is regarded to be a highly vulnerability region under global warming, in particular for water resources. As an attempt accurately assess the impact of climate change over Korea, we performed a downscaling of the ECAHM5-MPI/OM global projection under the A1B emission scenario for the period 1971-2100 using the RegCM3 one-way double-nested system. Physically based long-term (130 years) fine-scale (20 km) climate information is appropriate for analyzing the detailed structure of the hydroclimatological response to climate change. Changes in temperature and precipitation are translated to the hydrological condition in a direct or indirect way. The change in precipitation shows a distinct seasonal variations and a complicated spatial pattern. While changes in total precipitation do not show any relevant trend, the change patterns in daily precipitation clearly show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the future climate. Precipitation, snow, and runoff changes show the relevant topographical modulation under global warming. This study clearly demonstrates the importance of a refined topography for improving the accuracy of the local climatology. Improved accuracy of regional climate projection could lead to an enhanced reliability of the

  18. Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios.

    Science.gov (United States)

    Muñoz-Mas, R; Lopez-Nicolas, A; Martínez-Capel, F; Pulido-Velazquez, M

    2016-02-15

    The impact of climate change on the habitat suitability for large brown trout (Salmo trutta L.) was studied in a segment of the Cabriel River (Iberian Peninsula). The future flow and water temperature patterns were simulated at a daily time step with M5 models' trees (NSE of 0.78 and 0.97 respectively) for two short-term scenarios (2011-2040) under the representative concentration pathways (RCP 4.5 and 8.5). An ensemble of five strongly regularized machine learning techniques (generalized additive models, multilayer perceptron ensembles, random forests, support vector machines and fuzzy rule base systems) was used to model the microhabitat suitability (depth, velocity and substrate) during summertime and to evaluate several flows simulated with River2D©. The simulated flow rate and water temperature were combined with the microhabitat assessment to infer bivariate habitat duration curves (BHDCs) under historical conditions and climate change scenarios using either the weighted usable area (WUA) or the Boolean-based suitable area (SA). The forecasts for both scenarios jointly predicted a significant reduction in the flow rate and an increase in water temperature (mean rate of change of ca. -25% and +4% respectively). The five techniques converged on the modelled suitability and habitat preferences; large brown trout selected relatively high flow velocity, large depth and coarse substrate. However, the model developed with support vector machines presented a significantly trimmed output range (max.: 0.38), and thus its predictions were banned from the WUA-based analyses. The BHDCs based on the WUA and the SA broadly matched, indicating an increase in the number of days with less suitable habitat available (WUA and SA) and/or with higher water temperature (trout will endure impoverished environmental conditions ca. 82% of the days). Finally, our results suggested the potential extirpation of the species from the study site during short time spans. PMID:26674698

  19. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    Energy Technology Data Exchange (ETDEWEB)

    Baruffi, F. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cisotto, A., E-mail: segreteria@adbve.it [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Pretner, A.; Galli, A. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Scarinci, A., E-mail: andrea.scarinci@sgi-spa.it [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Marsala, V.; Panelli, C. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Gualdi, S., E-mail: silvio.gualdi@bo.ingv.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Bucchignani, E., E-mail: e.bucchignani@cira.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Torresan, S., E-mail: torresan@cmcc.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Pasini, S., E-mail: sara.pasini@stud.unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); Critto, A., E-mail: critto@unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); and others

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced

  20. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    International Nuclear Information System (INIS)

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961–1990 and the projection period 2010–2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071–2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble

  1. Historical change and future scenarios of sea level rise in Macau and adjacent waters

    Science.gov (United States)

    Wang, Lin; Huang, Gang; Zhou, Wen; Chen, Wen

    2016-04-01

    Against a background of climate change, Macau is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macau, both historical and, especially, possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macau is now rising at an accelerated rate: 1.35 mm yr-1 over 1925-2010 and jumping to 4.2 mm yr-1 over 1970-2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macau contributes little to local sea level change. In the future, the rate of SLR in Macau will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8-12, 22-51 and 35-118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the +8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario the increase in sea level by 2100 will reach 65-118 cm—double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21st century but begin to diverge thereafter.

  2. Environmental evaluation of the PIES Trendlong Mid-Mid Scenario: Federal Region VII

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Findings of the environmental impact evaluation of the PIES TRENDLONG MID-MID Scenario for Federal Region VII (Iowa, Kansas, Nebraska, and Missouri) are reported. Projected coal-fired utility expansion could be constrained in several areas because of projected TSP and SO/sub 2/ National Ambient Air Quality Standards (NAAQS) violations. Problems will be most pronounced in Iowa and Kansas, but could be incurred in any state in the region. Large coal and nuclear facilities projected for parts of Region VII may experience water availability problems. The Smokey Hill River in Kansas, the Skunk River in Iowa, and the Platte River in Nebraska may have limited water supplies for operating the projected increases in fossil fuel and nuclear generating facilities. Coal surface mining in Missouri (21,000 acres may be disturbed from 1975 to 1990) may create land-use conflicts. Region VII may not have the facilities or legal framework for mitigating the negative socioeconomic impacts that are projected to occur from the proposed energy development. Therefore, the potential for severe and pervasive socioeconomic impacts is great.

  3. Projecting the environmental profile of Singapore's landfill activities: Comparisons of present and future scenarios based on LCA.

    Science.gov (United States)

    Khoo, Hsien H; Tan, Lester L Z; Tan, Reginald B H

    2012-05-01

    This article aims to generate the environmental profile of Singapore's Semakau landfill by comparing three different operational options associated with the life cycle stages of landfilling activities, against a 'business as usual' scenario. Before life cycle assessment or LCA is used to quantify the potential impacts from landfilling activities, an attempt to incorporate localized and empirical information into the amounts of ash and MSW sent to the landfill was made. A linear regression representation of the relationship between the mass of waste disposed and the mass of incineration ash generated was modeled from waste statistics between years 2004 and 2009. Next, the mass of individual MSW components was projected from 2010 to 2030. The LCA results highlighted that in a 'business as usual' scenario the normalized total impacts of global warming, acidification and human toxicity increased by about 2% annually from 2011 to 2030. By replacing the 8000-tonne barge with a 10000-tonne coastal bulk carrier or freighter (in scenario 2) a grand total reduction of 48% of both global warming potential and acidification can be realized by year 2030. Scenario 3 explored the importance of having a Waste Water Treatment Plant in place to reduce human toxicity levels - however, the overall long-term benefits were not as significant as scenario 2. It is shown in scenario 4 that the option of increased recycling championed over all other three scenarios in the long run, resulting in a total 58% reduction in year 2030 for the total normalized results. A separate comparison of scenarios 1-4 is also carried out for energy utilization and land use in terms of volume of waste occupied. Along with the predicted reductions in environmental burdens, an additional bonus is found in the expanded lifespan of Semakau landfill from year 2032 (base case) to year 2039. Model limitations and suggestions for improvements were also discussed. PMID:22257698

  4. Scenario Planning Provides a Framework for Climate Change Adaptation in the National Park Service

    Science.gov (United States)

    Welling, L. A.

    2012-12-01

    Resource management decisions must be based on future expectations. Abundant evidence suggests climate change will have highly consequential effects on the Nation's natural and cultural resources, but specific impacts are difficult to accurately predict. This situation of too much information but not enough specificity can often lead to either paralysis or denial for decision makers. Scenario planning is an emerging tool for climate change adaptation that provides a structured framework for identifying and exploring critical drivers of change and their uncertain outcomes. Since 2007, the National Park Service (NPS) has been working with its partners to develop and apply a scenario-based approach for adaptation planning that integrates quantitative, model-driven, climate change projections with qualitative, participatory exercises to explore management and policy options under a range of future conditions. Major outcomes of this work are (1) increased understanding of key scientific results and uncertainties, (2) incorporation of alternative perspectives into park and landscape level planning, (3) identification of "no brainer" and "no gainer" actions, (4) strengthening of regional science-management partnerships, and (5) overall improved capacity for flexible decision making. The basic approach employed by NPS for scenario planning follows a typical adaptive management process: define the focal question, assess the relevant science, explore plausible futures, identify effective strategies, prioritize and implement actions, and monitor results. Many science and management partners contributed to the process, including NOAA Regional Integrated Science and Assessment teams (RISAs) and Regional Climate Centers (RCCs), USGS Research Centers, and other university and government scientists. The Global Business Network, an internationally recognized leader in scenario development, provided expert facilitation and training techniques. Climate science input is provided

  5. Interpretation of scenario results in terms of described and mapped land change trajectories and archetypes

    DEFF Research Database (Denmark)

    Kuemmerle, Tobias; Stürck, Julia; Levers, Christian;

    of agriculture were projected to be particularly strong in a world with fewer interventions. Nature protection schemes as well as payments for ecosystem services were the most effective policy alternatives constraining future agricultural intensification. Fourth, land systems will likely continue to become more...... polarized with intensified production and abandonment of marginal areas continuing. Fifth, future land changes were projected to be well within the range of longterm historic land system changes. Finally, modelled scenarios generally suggest gradual, though not always linear future land system trends......, overall rather indicating a continuation of prevailing management regimes rather than drastic regime shifts....

  6. Socio-economic scenario development for the assessment of climate change impacts on agricultural land use: a pairwise comparison approach

    DEFF Research Database (Denmark)

    Abildtrup, Jens; Audsley, E.; Fekete-Farkas, M.;

    2006-01-01

    on European agricultural land use. The scenarios are interpreted from the storylines described in the intergovernmental panel on climate change (IPCC) special report on emission scenarios (SRES), which ensures internal consistency between the evolution of socio-economics and climate change. A stepwise...... for each of the four SRES scenario families. In the second step, European agricultural driving forces are derived for each scenario from global driving forces. Finally, parameters for the agricultural land use model are quantified. The stepwise procedure is appropriate when developing socio......Assessment of the vulnerability of agriculture to climate change is strongly dependent on concurrent changes in socio-economic development pathways. This paper presents an integrated approach to the construction of socio-economic scenarios required for the analysis of climate change impacts...

  7. Economic and environmental evaluation of three goal-vision based scenarios for organic dairy farming in Denmark.

    NARCIS (Netherlands)

    Oudshoorn, F.W.; Sorensen, C.A.G.; Boer, de I.J.M.

    2011-01-01

    The objective of this study was to explore the sustainability of future organic dairy farming systems in Denmark, by evaluating the economic and environmental consequences of three scenarios at the farm level based on different visions of future sustainability leading to different farm-based goals.

  8. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    Science.gov (United States)

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J.

    2016-06-01

    The Arctic temperature response to emissions of aerosols -- specifically black carbon (BC), organic carbon (OC), and sulfate -- depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. A properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions -- while simultaneously working toward longer-term goals of CO2 mitigation -- could potentially avoid some amount of short-term Arctic warming.

  9. Education for climate changes, environmental health and environmental justice

    International Nuclear Information System (INIS)

    Full text: The climates changes-health effects-environmental justice nexus is analyzed. The complex issue of climate changes needs to be approached from an interdisciplinary point of view. The nature of the problem necessitates dealing with scientific uncertainty. The health effects caused by climate changes are described and analyzed from a twofold inequalities point of view: health inequalities between rich and poor within countries, and inequalities between northern and southern countries. It is shown thai although the emission of greenhouse gasses is to a large extent caused by the industrialized countries, the effects, including the health effects, will merely impact the South. On the other hand, the southern countries have the highest potential to respond to and offer sustainable energy solutions to counteract climate changes. These inequalities are at the basis to call for environmental justice, of which climate justice is part. This movement calls for diversification of ecologists and their subject of study, more attention for urban ecology, more comprehensive human ecological analyses of complex environmental issues and more participation of stakeholders in the debate and the solution options. The movement advocates a more inclusive ecology targeted to management, sodo-ecological restoration, and comprehensive policies. The fundamental aspects of complexity, inter-disciplinary approaches, uncertainty, and social and natural inequalities should be core issues in environmental health programs. Training on these issues for muitidisciplinary groups of participants necessitates innovative approaches including self-directed, collaborative, and problem oriented learning in which tacit knowledge is important. It is advocated that quality assessments of environmental health programs should take these elements into account. key words: environmental justice, climate changes, sustainable energy solutions

  10. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework.

    Science.gov (United States)

    Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Takahashi, Kiyoshi; Masui, Toshihiko; Tanaka, Akemi

    2014-01-01

    We assessed the impacts of climate change and agricultural autonomous adaptation measures (changes in crop variety and planting dates) on food consumption and risk of hunger considering uncertainties in socioeconomic and climate conditions by using a new scenario framework. We combined a global computable general equilibrium model and a crop model (M-GAEZ), and estimated the impacts through 2050 based on future assumptions of socioeconomic and climate conditions. We used three Shared Socioeconomic Pathways as future population and gross domestic products, four Representative Concentration Pathways as a greenhouse gas emissions constraint, and eight General Circulation Models to estimate climate conditions. We found that (i) the adaptation measures are expected to significantly lower the risk of hunger resulting from climate change under various socioeconomic and climate conditions. (ii) population and economic development had a greater impact than climate conditions for risk of hunger at least throughout 2050, but climate change was projected to have notable impacts, even in the strong emission mitigation scenarios. (iii) The impact on hunger risk varied across regions because levels of calorie intake, climate change impacts and land scarcity varied by region.

  11. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    Science.gov (United States)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  12. Implications of the New UKCP09 Probabilistic Climate Change Scenarios for Water Resource Planning

    Science.gov (United States)

    New, M. G.; Serrano, A.; Wade, S.; Christierson, B.

    2009-12-01

    The UK Met Office (UKMO) has recently released a new set of high-resolution climate change scenarios for the UK, named UKCP09, which are expressed in terms of probability distributions. These scenarios are based on a Bayesian analysis of perturbed-physics ensembles of regional and global versions of the UKMO climate model, combined with the CMIP3 multi-model ensemble. In this paper we compare different approaches to sampling from the UKCP09 distributions for use in strategic water resources planning, using a case study of the Thames catchment in the UK. We compare latin hypercube sampling, bounding box sampling, and the sampling method recommended in current Environment Agency guidelines, and how these differences propagate through a water resources model into calculations of deployable output. We also evaluate shortcomings of the UKCP09 projections with respect to water resources planning.

  13. Climate change scenarios over the Mediterranean Basin; Scenari di cambiamento climatico sul bacino del Mediterraneo

    Energy Technology Data Exchange (ETDEWEB)

    Casaioli, Marco; Sciortino, Maurizio [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1997-11-01

    The results of climatic simulation over the Mediterranean Basin made available by major climate research centres, have been analyzed with the purposes of defining possible future climate scenarios. The validation of modelling results of present climate with observed climatology makes possible to assess capabilities and limitations of the General Circulation Models over the area under consideration. The evaluation of climate change scenarios in conditions of doubling atmospheric concentration of CO 2 gives indications on the expected magnitude of variation of temperature and precipitation. The results available agree to indicate a possible warming of air temperature but as far as concerned precipitation there is still no consensus between the climate projections produced by the different models considered in this study.

  14. Predicting Plausible Impacts of Sets of Climate and Land Use Change Scenario on Water Resources

    Science.gov (United States)

    As the new decade ushers in, there will be new challenges. The world’s population is increasing and the land use patterns are changing. Inevitably with these global changes, there will be various environmental consequences. For example, our water resources, both in terms of qu...

  15. Environmental and socio-economic impacts of global climate change: An overview on mitigation approaches

    OpenAIRE

    Prabhat Kumar Rai; Prashant Kumar Rai

    2013-01-01

    Climate change is expected to bring about major change in freshwater availability, the productive capacity of soils, and in patterns of human settlement. Likewise, climate change is intimately linked to human health either directly or indirectly. However, considerable uncertainties exist with regard to the extent and geographical distribution of these changes. Predicting scenarios for how climate-related environmental change may influence human societies and political systems necessarily invo...

  16. Scenarios of long-term farm structural change for application in climate change impact assessment

    NARCIS (Netherlands)

    Mandryk, M.; Reidsma, P.; Ittersum, van M.K.

    2012-01-01

    Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, ada

  17. On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Medeiros, S. C.

    2013-12-01

    island morphology when considering the hydrodynamics of extreme SLR projections. Aubrey, D. J. and G. S. Giese (1993). "Formation and Evolution of Multiple Tidal Inlets." Coastal Estuarine Stud. 44: 1-61. Browder, A. E. and D. R.G. (1999). "Pensacola Pass, FL Inlet Management Study". Coastal & Oceanographic Engineering Department, University of Florida, Prepared for Florida Department of Environmental Proection Bureau of Beaches and Coastal Systems. Bruun, P. (1962). "Sea-level rise as a cause of shore erosion." Proceedings of the American Society of Civil Engineers, Journal of the Waterways and Harbors Division 88: 117-130. Fitzgerald, D. M., M. S. Fenster, B. A. Argow and I. V. Buynevich (2008). "Coastal Impacts Due to Sea Level Rise." Annual Review Earth Planet Science 36: 601-647. Parris, A., P. Bromirski, V. Burkett, D. Cayan, M. Culver, J. Hall, R. Horton, K. Knuuti, R. Moss, J. Obeysekera, A. Sallenger and J. Weiss (2012). "Global Sea Level Rise Scenarios for the United States National Climate Assessment". NOAA Tech Memo OAR CPO-1: 37. Thieler, E. R. and E. S. Hammer-Klose (1999). "National Assessment of Coastal Vulnerability to Sea Level rise: Preliminary Results for the U.S. Atlantic Coast". Woods Hole, Massachusetts, US Geological Survey.

  18. Climate change scenarios and the effect of sea-level rise for Estonia

    Science.gov (United States)

    Kont, Are; Jaagus, Jaak; Aunap, Raivo

    2003-03-01

    Climate warming due to the enhanced greenhouse effect is expected to have a significant impact on natural environment and human activity in high latitudes. Mostly, it should have a positive effect on human activity. The main threats in Estonia that could be connected with sea-level rise are the flooding of coastal areas, erosion of sandy beaches and the destruction of harbour constructions. Possible climate change and its negative impacts in the coastal regions of Estonia are estimated in this paper. Climate change scenarios for Estonia were generated using a Model for the Assessment of Greenhouse-gas Induced Climate Change (MAGICC) and a regional climate change database—SCENanario GENerator (SCENGEN). Three alternative emission scenarios were combined with data from 14 general circulation model experiments. Climate change scenarios for the year 2100 indicate a significant increase in air temperature (by 2.3-4.5 °C) and precipitation (by 5-30%) in Estonia. The highest increase is expected to take place during winter and the lowest increase in summer. Due to a long coastline (3794 km) and extensive low-lying coastal areas, global climate change through sea-level rise will strongly affect the territory of Estonia. A number of valuable natural ecosystems will be in danger. These include both marine and terrestrial systems containing rare plant communities and suitable breeding places for birds. Most sandy beaches high in recreational value will disappear. However, isostatic land uplift and the location of coastal settlements at a distance from the present coastline reduce the rate of risk. Seven case study areas characterising all the shore types of Estonia have been selected for sea-level rise vulnerability and adaptation assessment. Results and estimates of vulnerability to 1.0-m sea-level rise by 2100 are presented in this paper. This is the maximum scenario according to which the actually estimated relative sea-level rise would vary from 0.9 m (SW Estonia) to 0

  19. National level water quality simulation and climate change scenarios in Finland with WSFS-Vemala model

    Science.gov (United States)

    Huttunen, M.; Huttunen, I.; Seppänen, V.; Vehviläinen, B.

    2012-04-01

    included in the model. For natural background leaching and loading from forestry are used estimated values, process based description is under development. Sedimentation, erosion and denitrification are modelled for rivers. In lakes sedimentation, resuspension, release from sediments and denitrification are modelled. The WSFS-Vemala model is applied for load reduction and country wide climate change scenarios. In load reduction scenarios farming practices and fertilization of each field can be adjusted separately by the characteristics of the field. In climate change scenarios water quality until year 2060 is simulated. For the effects of climate change on agriculture we are using DREMFIA sector model scenarios from MTT Agrifood Research Finland. DREMFIA model gives scenarios as hectars of different crops, fertilization levels and number of cattle in four regions in Finland. Scenarios for point loading, scattered settlements, forestry and background leaching are based on expert estimates. WSFS-Vemala model is then simulated with modified weather, loading and farming input and results include concentrations in rivers and lakes and finally loading into the Baltic Sea. Preliminary scenario results show a slight increase in annual loading and remarkable shift in seasonal loading, with increased loading in winter. WSFS-Vemala model is also applied for real time simulation and forecasting of water quality, including forecasts for chlorophyll-a concentration. Forecasts are provided for the public by www pages at www.environment.fi/waterforecast.

  20. Scalability of regional climate change in Europe for high-end scenarios

    DEFF Research Database (Denmark)

    Christensen, O. B.; Yang, S.; Boberg, F.;

    2015-01-01

    With the help of a simulation using the global circulation model (GCM) EC-Earth, downscaled over Europe with the regional model DMI-HIRHAM5 at a 25 km grid point distance, we investigated regional climate change corresponding to 6°C of global warming to investigate whether regional climate change...... are close to the RCP8.5 emission scenario. We investigated the extent to which pattern scaling holds, i.e. the approximation that the amplitude of any climate change will be approximately proportional to the amount of global warming. We address this question through a comparison of climate change results...... generally scales with global temperature even for very high levels of global warming. Through a complementary analysis of CMIP5 GCM results, we estimated the time at which this temperature may be reached; this warming could be reached in the first half of the 22nd century provided that future emissions...

  1. Effects of Kosovo's energy use scenarios and associated gas emissions on its climate change and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Kabashi, Skender; Bekteshi, Sadik; Ahmetaj, Skender [Faculty of Mathematical and Natural Sciences, University of Prishtina (RS); Kabashi, Gazmend [Faculty of Electric Engineering and Computer Sciences, University of Prishtina, Prishtina (RS); Najdovski, Dimitrij [X3DATA, Novi trg 6, Ljubljana (Slovenia); Zidansek, Aleksander [Jozef Stefan Institute and Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana (Slovenia); Slaus, Ivo [R. Boskovic Institute, Bijenicka 54, Zagreb (Croatia)

    2011-02-15

    Climate change will be the first truly global challenge for sustainability. Energy production and consumption from fossil fuels has central role in respect to climate change, but also to sustainability in general. Because climate change is regionally driven with global consequences and is a result of economic imperatives and social values, it requires a redefinition as to the balance of these outcomes globally and regionally in Kosovo. Kosovo as one of the richest countries with lignite in Europe, with 95-97% of the electric power production from lignite and with 90% of vehicles over 10 years old, represents one of the regions with the greatest ratio of CO{sub 2} emissions per unit of GDP, as well as one of the countries with the most polluted atmosphere in Europe. The modelling is carried out regionally for Kosovo for two dynamical systems which are the main emitters of greenhouse gases (CO{sub 2}, CH{sub 4}, NO{sub x}, etc.) and air pollutants (CO, SO{sub 2}, dust CH{sub x}, etc.): electricity generation and transportation emissions systems, for the time period 2000-2025. Various energy scenarios of the future are shown. We demonstrate that a transition to environmentally compatible sustainable energy use in Kosovo is possible. Implementing the emission reduction policies and introducing new technologies in electrical power production and transportation in Kosovo ensure a sustainable future development in Kosovo, electric power production and transport that become increasingly environmentally compatible. (author)

  2. Agricultural livelihoods in coastal Bangladesh under climate and environmental change - a model framework

    OpenAIRE

    Lazar, A.N.; Clarke, D; Adams, H; Akanda, A.R.; Szabo, S.; Nicholls, R J; Matthews, Z.; Begum, D.; Saleh, A.F.M.; Abedin, A; Payo, A.; Streatfield, P.K.; Hutton, C W; Mondal, M.S.; Moslehuddin , A. Z. Md.

    2015-01-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the c...

  3. Global Environmental change: Understanding the Human Dimensions

    International Nuclear Information System (INIS)

    This book is from the National Research Council's Committee on the Human dimensions of Global Change. The object is to examine what is known about human dimensions of global environmental change, identify the major immediate needs for knowledge, and recommend a strategy over the next 5-10 years. Case studies are used in human causes of global change. issues related to theory, methods, and data are covered, as well as institutional needs for interdicipinary approaches

  4. Climate Change and Corporate Environmental Responsibility

    OpenAIRE

    Dewan Mahboob HOSSAIN; Chowdhury, M. Jahangir Alam

    2012-01-01

    Climate change, as an international environmental issue, is getting a lot of attention. The negative effects of climate change have become one of the most talked about issues among Governments, scientists, environmentalists and others. It is said that business activities are affecting the climate negatively. In order to minimize the negative effects of climate change, the activities of the businesses should be controlled and encouraged to perform in a socially responsible manner. The article ...

  5. CLIMATE AND LULC CHANGE SCENARIOS TO STUDY ITS IMPACT ON HYDROLOGICAL REGIME

    Directory of Open Access Journals (Sweden)

    S. P. Aggarwal

    2012-07-01

    Full Text Available Climate change, whether as a natural cycle variability and/or due to anthropogenic reasons, is affecting and likely to further affect the water resources, which is a vital necessity for existence of life form. The predicted intensification of hydrological cycle would change all of its constituents both in time and space domain. This is a long term phenomenon and the necessity is to understand the intensity of the effects on various aspects of water resources by way of scientific studies backed by the available field data. Therefore, in the present study, the impact of climate and land use land cover change on entire India under different assumed plausible hypothetical scenarios has been studied. These scenarios were developed by increasing; temperature by 1, 2 and 30C; rainfall by 5, 10 and 15%; and then the combination of both. To carry out this analysis, variable infiltration capacity (VIC semi-distributed macroscale hydrological model has been investigated. It was found that slight change in climate may pose huge difference on hydrological cycle and its component.

  6. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    Science.gov (United States)

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction.

  7. Modeling crop responses to environmental change

    Science.gov (United States)

    Rosenzweig, Cynthia

    1993-01-01

    Potential biophysical responses of crops to climate change are studied focusing on the primary environmental variables which define the limits to agricultural crop growth and production, and the principal methods for predicting climate change impacts on crop geography and production. It is concluded that the principal uncertainties in the prediction of the impacts of climate change on agriculture reside in the contribution of the direct effects of increasing CO2, in potential changes inclimate variability, and the effects of adjustments mechanisms in the context of climatic changes.

  8. Environmental Awareness Campaign: The Change It Brings

    Directory of Open Access Journals (Sweden)

    Merlita C. Medallon

    2014-02-01

    Full Text Available The study was conducted to determine the awareness and sensitivity of the younger generation in environmental issues such global warming, climate change and waste management. Data were gathered from selected students who attended the environmental awareness seminar held at Lyceum of the Philippines – Laguna in 2011. There were 54 students who participated in the survey. The respondents had participated in several activities related to environmental issues which include attendance to seminars, and participation in school and community projects. Most of the information about environmental issues was obtained by the students from their teachers. Global warming was the most common issue. There was a significant increase in the level of knowledge after the environmental awareness campaign was made. As a result, the highest level of action proposed by the students is on the proper disposal of wastes and the proper segregation of wastes.

  9. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change

    Institute of Scientific and Technical Information of China (English)

    Matthias; Albert; Jan; Hansen; Jürgen; Nagel; Matthias; Schmidt; Hermann; Spellmann

    2015-01-01

    Background: Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we(1) characterize differences in forest dynamics under three management scenarios,(2) analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and(3) quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress.Methods: In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs(minimum, median, maximum) based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development.Results: The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive.Conclusions: Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario,but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate counter-measures such as

  10. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2012-09-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10–90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the

  11. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios

    International Nuclear Information System (INIS)

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and input data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. This paper extends that analysis to explore a range of plausible socioeconomic scenarios and emission pathways. Results from multiple climate and economic models are combined to examine the global and regional impacts of climate change on agricultural yields, area, production, consumption, prices and trade for coarse grains, rice, wheat, oilseeds and sugar crops to 2050. We find that climate impacts on global average yields, area, production and consumption are similar across shared socioeconomic pathways (SSP 1, 2 and 3, as we implement them based on population, income and productivity drivers), except when changes in trade policies are included. Impacts on trade and prices are higher for SSP 3 than SSP 2, and higher for SSP 2 than for SSP 1. Climate impacts for all variables are similar across low to moderate emissions pathways (RCP 4.5 and RCP 6.0), but increase for a higher emissions pathway (RCP 8.5). It is important to note that these global averages may hide regional variations. Projected reductions in agricultural yields due to climate change by 2050 are larger for some crops than those estimated for the past half century, but smaller than projected increases to 2050 due to rising demand and intrinsic productivity growth. Results illustrate the sensitivity of climate change impacts to differences in socioeconomic and emissions pathways. Yield impacts increase at high emissions levels and vary with changes in population, income and technology, but are reduced in all cases by endogenous changes in prices and other variables. (paper)

  12. Comparison of two soya bean simulation models under climate change : II Application of climate change scenarios

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for 2050 compared to ambient climate) and change in climatic variability on soya bean growth and production at 3 sites in the EU have been calculated. These calculations have been done with both a simple growth model, SOYBEANW, and a comprehensive model, CROPGRO. Compa

  13. Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam

    Science.gov (United States)

    Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.

    2010-01-01

    Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.

  14. Past and future climatic changes in the Mediterranean area under various global warming scenarios

    Science.gov (United States)

    Guiot, Joel

    2016-04-01

    Past climatic changes and their impacts on the natural vegetation can be used as a reference for the climatic changes projected by ensembles of climate models for the 21st century. The study of the Holocene shows that he Mediterranean has known several precipitation falls equivalent to what is projected for the end of the 21st century. These droughts were often correlated with the decline or collapse of Mediterranean civilisations, particularly in the eastern Basin. Nevertheless, while the past droughts were not characterized by particularly high temperature, future temperature increase will more or less significant according to the scenario. This will much intensify the water deficit for natural and artificial ecosystems. As a consequence, the projected climatic change can be considered as unprecedented during the last 10,000 years. We explore how they compare with the various scenarios corresponding to a 1.5°C, 2°C and 3°C global warming according to the pre-industrial mean temperature, and we will determine the degree of dissimilarity of the Mediterranean climate under these global thresholds according to the long term climate variability.

  15. A broad assessment of factors determining Culicoides imicola abundance: modelling the present and forecasting its future in climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Pelayo Acevedo

    Full Text Available Bluetongue (BT is still present in Europe and the introduction of new serotypes from endemic areas in the African continent is a possible threat. Culicoides imicola remains one of the most relevant BT vectors in Spain and research on the environmental determinants driving its life cycle is key to preventing and controlling BT. Our aim was to improve our understanding of the biotic and abiotic determinants of C. imicola by modelling its present abundance, studying the spatial pattern of predicted abundance in relation to BT outbreaks, and investigating how the predicted current distribution and abundance patterns might change under future (2011-2040 scenarios of climate change according to the Intergovernmental Panel on Climate Change. C. imicola abundance data from the bluetongue national surveillance programme were modelled with spatial, topoclimatic, host and soil factors. The influence of these factors was further assessed by variation partitioning procedures. The predicted abundance of C. imicola was also projected to a future period. Variation partitioning demonstrated that the pure effect of host and topoclimate factors explained a high percentage (>80% of the variation. The pure effect of soil followed in importance in explaining the abundance of C. imicola. A close link was confirmed between C. imicola abundance and BT outbreaks. To the best of our knowledge, this study is the first to consider wild and domestic hosts in predictive modelling for an arthropod vector. The main findings regarding the near future show that there is no evidence to suggest that there will be an important increase in the distribution range of C. imicola; this contrasts with an expected increase in abundance in the areas where it is already present in mainland Spain. What may be expected regarding the future scenario for orbiviruses in mainland Spain, is that higher predicted C. imicola abundance may significantly change the rate of transmission of orbiviruses.

  16. Large-scale winds in the southern North Sea region: The wind part of the KNMI'14 climate change scenarios

    OpenAIRE

    Sterl, Andreas; Bakker, A.; Van den Brink, H.; Haarsma, Reindert J.; Stepek, A; Wijnant, I; Winter, R.C. de

    2015-01-01

    The wind climate and its possible change in a warming world are important topics for many applications, among which are marine and coastal safety and wind energy generation. Therefore, wind is an important variable to investigate for climate change scenarios. In developing the wind part of the KNMI'14 climate change scenarios, output from several model categories have been analysed, ranging from global General Circulation Models via regional climate model (RCMs) to suitably re-sampled RCM out...

  17. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina

    Science.gov (United States)

    Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario

    2016-09-01

    Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970-1989) and future (2080-2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural

  18. Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C earth system model

    Directory of Open Access Journals (Sweden)

    P. D. Falloon

    2012-06-01

    Full Text Available The aim of our study was to use the coupled climate-carbon cycle model HadCM3C to quantify climate impact of ecosystem changes over recent decades and under future scenarios, due to changes in both atmospheric CO2 and surface albedo. We use two future scenarios – the IPCC SRES A1B scenario, and a climate stabilisation scenario (2C20, allowing us to assess the impact of climate mitigation on results. We performed a pair of simulations under each scenario – one in which vegetation was fixed at the initial state and one in which vegetation changes dynamically in response to climate change, as determined by the interactive vegetation model within HadCM3C.

    In our simulations with interactive vegetation, relatively small changes in global vegetation coverage were found, mainly dominated by increases in scrub and needleleaf trees at high latitudes and losses of broadleaf trees and grasses across the Amazon. Globally this led to a loss of terrestrial carbon, mainly from the soil. Global changes in carbon storage were related to the regional losses from the Amazon and gains at high latitude. Regional differences in carbon storage between the two scenarios were largely driven by the balance between warming-enhanced decomposition and altered vegetation growth. Globally, interactive vegetation reduced albedo acting to enhance albedo changes due to climate change. This was mainly related to the darker land surface over high latitudes (due to vegetation expansion, particularly during winter and spring; small increases in albedo occurred over the Amazon. As a result, there was a relatively small impact of vegetation change on most global annual mean climate variables, which was generally greater under A1B than 2C20, with markedly stronger local-to-regional and seasonal impacts. Globally, vegetation change amplified future annual temperature increases by 0.24 and 0.15 K (under A1B and 2C20, respectively and increased global precipitation

  19. Changing Social and Environmental Reporting Systems

    DEFF Research Database (Denmark)

    Kaspersen, Mia; Riise Johansen, Thomas

    2016-01-01

    Based on a case study of a large multinational group, this paper addresses the way in which social and environmental reporting (SER) systems were changed and the consequences and controversies associated with this change. Drawing on Power's work on the processes by which things are made auditable...... pursuit of auditability legitimized SER and paved the way for data systems to be changed. The programme borrowed authority from financial accounting technologies not only to make a system change but also to push SER internally, as we suggest that an intraorganizational group used the programme to ensure...

  20. Application of a technique for scenario prediction of climate change impact on the water balance components of northern river basins

    Directory of Open Access Journals (Sweden)

    Gusev Yeugeniy M.

    2014-09-01

    Full Text Available The scenario forecasting technique for assessing changes of water balance components of the northern river basins due to possible climate change was developed. Three IPCC global emission scenarios corresponding to different possible scenarios for economic, technological, political and demographic development of the human civilization in the 21st century were chosen for generating climate change projections by an ensemble of 16 General Circulation Models with a high spatial resolution. The projections representing increments of monthly values of meteorological characteristics were used for creating 3-hour meteorological time series up to 2063 for the Northern Dvina River basin, which belongs to the pan-Arctic basin and locates at the north of the European part of Russia. The obtained time series were applied as forcing data to drive the land surface model SWAP to simulate possible changes in the water balance components due to different scenarios of climate change for the Northern Dvina River basin

  1. A scenario neutral approach to assess low flow sensitivity to climate change

    Science.gov (United States)

    Sauquet, Eric; Prudhomme, Christel

    2015-04-01

    Most impact studies of climate change on river flow regime are performed following top-down approaches, where changes in hydrological characteristics are obtained from rainfall-runoff models forced by downscaled projections provided by GCMs. However, such approaches are not always considered robust enough to bridge the gap between climate research and stake holders needs to develop relevant adaptation strategy (Wilby et al., 2014). Alternatively, 'bottom-up' approaches can be applied to climate change impact studies on water resources to assess the intrinsic vulnerability of the catchments and ultimately help to prioritize adaptation actions for areas highly sensitive to small deviations from the present-day climate conditions. A general framework combining the scenario-neutral methodology developed by Prudhomme et al. (2010) and climate elasticity analyses (Sankarasubramanian et al., 2001) is presented and applied to measure the vulnerability of low flows and droughts on a large dataset of more than 400 French gauged basins. The different steps involved in the suggested framework are: - Calibration of the GR5J rainfall runoff model (Pushpalatha et al., 2011) against observations, - Identification of the main climate factors influencing low flows, - Definition of the sensitivity domain for precipitation (P), temperature (T) and potential evapotranspiration (PE) scenarios consistent with most recent climate change projections, - Derivation of the response surface describing changes in low flow and drought regime in terms of severity, duration and seasonality (Catalogne, 2012), - Uncertainty assessment. Results are the basis for a classification of river basins according to their sensitivity at national scale and for discussions on adaptation requirements with stakeholders. Catalogne C (2012) Amélioration des méthodes de prédétermination des débits de référence d'étiage en sites peu ou pas jaugés. PHD thesis, Université Joseph Fourier, Grenoble, 285 pp

  2. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  3. Analyses on the climate change responses over China under SRES B2 scenario using PRECIS

    Institute of Scientific and Technical Information of China (English)

    XU Yinlong; ZHANG Yong; LIN Erda; LIN Wantao; DONG Wenjie; Richard Jones; David Hassell; Simon Wilson

    2006-01-01

    The PRECIS, a regional climate model system developed at the UK Met Office Hadley Centre for Climate Prediction and Research, which is nested in one-way mode within the HadAM3P, a higher-resolution version of the atmospheric component of the Hadley Centre climate model HadCM3, is employed to simulate the baseline (1961-1990) climate for evaluation of model's capacity of simulating present climate and analyze the future climate change responses in the time-slice of 2071-2100 (2080s) under SRES B2 scenario over China relative to baseline average. It is indicated from the comparison of the simulated baseline climate with in situ observation that PRECIS can simulate the local distribution characteristics of surface air temperature over China quite well; generally speaking, the simulation for precipitation in the north of China and in winter is better than in the south of China and in summer, respectively; the simulation of precipitation in summer is sensitive to topography, and the simulated precipitation values are lower than observations over southeast coastal areas. It is shown from the analyses on the simulated climate change responses in 2080s under SRES B2 scenario relative to baseline that there would be an obvious surface air temperature increase in the north of China relative to that in the south of China, and especially in Northwest China and Northeast China, the amplitude of summer mean surface air temperature increments could reach 5℃; there would be an overall increase of the simulated precipitation in 2080s under SRES B2 scenario over most areas of China, while there would be significant precipitation decreases in South China in winter; there would be obvious precipitation decreases in Northeast China and North China in summer with high surface air temperature increase. However, it presents an obvious precipitation increase over the middle and lower reaches of the Yangtze River in summer.

  4. Quantifying uncertainty in urban flooding analysis caused by the combined effect of climate and land use change scenarios

    Directory of Open Access Journals (Sweden)

    I.-W. Jung

    2010-08-01

    Full Text Available How will the combined impacts of land use change and climate change influence changes in urban flood frequency and what is the main uncertainty source of the results? We attempt to answer to these questions in two catchments with different degrees of urbanization, the Fanno catchment with 84% urban land use and the Johnson catchment with 36% urban land use, both located in the Pacific Northwest of the US. Five uncertainty sources – general circulation model (GCM structures, future greenhouse gas (GHG emission scenarios, land use change scenarios, natural variability, and hydrologic model parameters – are considered to compare the relative source of uncertainty in flood frequency projections. Two land use change scenarios conservation and development, representing possible future land use changes are used for analysis. Results show the highest increase in flood frequency under the combination of medium high GHG emission (A1B and development scenarios, and the lowest increase under the combination of low GHG emission (B1 and conservation scenarios. Although the combined impact is more significant to flood frequency change than individual scenarios, it does not linearly increase flood frequency. Changes in flood frequency are more sensitive to climate change than land use change in the two catchments for 2050s (2040–2069. Shorter term flood frequency change, 2 and 5 year floods, is highly affected by GCM structure, while longer term flood frequency change above 25 year floods is dominated by natural variability. Projected flood frequency changes more significantly in Johnson creek than Fanno creek. This result indicates that, under expected climate change conditions, an adaptive urban planning based on the conservation scenario could be more effective in less developed Johnson catchment than in the already developed Fanno catchment.

  5. Methods for environmental change; an exploratory study

    Directory of Open Access Journals (Sweden)

    Kok Gerjo

    2012-11-01

    Full Text Available Abstract Background While the interest of health promotion researchers in change methods directed at the target population has a long tradition, interest in change methods directed at the environment is still developing. In this survey, the focus is on methods for environmental change; especially about how these are composed of methods for individual change (‘Bundling’ and how within one environmental level, organizations, methods differ when directed at the management (‘At’ or applied by the management (‘From’. Methods The first part of this online survey dealt with examining the ‘bundling’ of individual level methods to methods at the environmental level. The question asked was to what extent the use of an environmental level method would involve the use of certain individual level methods. In the second part of the survey the question was whether there are differences between applying methods directed ‘at’ an organization (for instance, by a health promoter versus ‘from’ within an organization itself. All of the 20 respondents are experts in the field of health promotion. Results Methods at the individual level are frequently bundled together as part of a method at a higher ecological level. A number of individual level methods are popular as part of most of the environmental level methods, while others are not chosen very often. Interventions directed at environmental agents often have a strong focus on the motivational part of behavior change. There are different approaches targeting a level or being targeted from a level. The health promoter will use combinations of motivation and facilitation. The manager will use individual level change methods focusing on self-efficacy and skills. Respondents think that any method may be used under the right circumstances, although few endorsed coercive methods. Conclusions Taxonomies of theoretical change methods for environmental change should include combinations of individual

  6. Forest Policy Scenario Analysis: Sensitivity of Songbird Community to Changes in Forest Cover Amount and Configuration

    Directory of Open Access Journals (Sweden)

    Jim Baker

    2007-06-01

    Full Text Available Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus conservation and delayed harvest areas (created for American marten (Martes americana atrata conservation. This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options

  7. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area.

    Science.gov (United States)

    Viola, F; Francipane, A; Caracciolo, D; Pumo, D; La Loggia, G; Noto, L V

    2016-02-15

    The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. PMID:26674680

  8. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area.

    Science.gov (United States)

    Viola, F; Francipane, A; Caracciolo, D; Pumo, D; La Loggia, G; Noto, L V

    2016-02-15

    The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed.

  9. Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios in a Climate Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The changes in the thermohaline circulation (THC) because of the increased CO2 in the atmosphere play an important role in future climate regimes.In this article, a new climate model developed at the Max-Planck Institute for Meteorology is used to study the variation in THC strength, the changes of North Atlantic deep-water (NADW) formation, and the regional responses of the THC in the North Atlantic to increasing atmospheric CO2.From 2000 to 2100, under increased CO2 scenarios (B1, A1B, and A2), the strength of THC decreases by 4 Sv (106 m3/s), 5.1 Sv, and 5.2 Sv, respectively, equivalent to a reduction of 20%, 25%, and 25.1% of the present THC strength.The analyses show that the oceanic deep convective activity significantly strengthens in the Greenland-Iceland-Norway(GIN) Seas owing to saltier (denser) upper oceans, whereas weakens in the Labrador Sea and in the south of the Denmark Strait region (SDSR) because of surface warming and freshening due to global warming.The saltiness of the GIN Seas is mainly caused by the increase of the saline North Atlantic inflow through the Faro-Bank (FB) Channel.Under the scenario A1B, the deep-water formation rate in the North Atlantic decreases from 16.2 Sv to 12.9 Sv with increasing CO2.

  10. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    Science.gov (United States)

    Mani, Amir; Tsai, Frank T.-C.; Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha

    2016-09-01

    This study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraints.

  11. Measured and CQESTR simulated soil organic carbon changes of dryland agroecosystem under climate change scenarios

    Science.gov (United States)

    The potential effects of global climate change (CC) on C cycling and soil organic carbon (SOC) storage/loss in agroecosystems can be assessed by process-based models such as CQESTR. The CQESTR model was used to simulate the effect of tillage and N fertilization on SOC storage/loss in three long-term...

  12. The EnerGEO Platform of Integrated Assessment (PIA). Environmental assessment of scenarios as a web service

    International Nuclear Information System (INIS)

    With the International Energy Agency estimating that global energy demand will increase between 40 and 50 percent by 2030 (compared to 2003), scientists and policymakers are concerned about the sustainability of the current energy system and what environmental pressures might result from the development of future energy systems. EnerGEO is an ongoing FP7 Project (2009-2013) which assesses the current and future impact of energy use on the environment by linking environmental observation systems with the processes involved in exploiting energy resources. The idea of this European project is to determine how low carbon scenarios, and in particular scenarios with a high share of renewable electricity, affect emissions of air pollutants and greenhouse gases (GHG) and contribute to mitigation of negative energy system impacts on human health and ecosystems. A Platform of Integrated Assessment (PIA) has been elaborated to provide impact results for a selection of scenarios via a set of models (large-scale energy models, Life Cycle Assessment models,..). This PIA is currently available through a web service. The concept of the PIA is detailed and to illustrate its interest, a set of results is given with the use of the simulation mode of the European version of GAINS for a selection of scenarios. (orig.)

  13. The assessment of natural flood management measures as a climate change adaptation option through land use scenarios

    Science.gov (United States)

    Iacob, Oana; Rowan, John; Brown, Iain; Ellis, Chris

    2014-05-01

    Climate change is one of the most pressing issues facing civil society. Greater variability and more frequent extremes of temperature and precipitation will result in increased flood risk and corresponding social, economic and environmental impacts. Complementing more traditional structurally-based engineering interventions an important additional adaptation strategy is through natural flood management (NFM) measures utilising natural soil, wetland and groundwater storage at the catchment scale to attenuate runoff generation and downstream flooding. Such schemes have multiple co-benefits including improved water quality, biodiversity and amenity and so contribute to greater resilience to uncertain climate futures. As a case-study of a more integrated approach to land use planning we here consider the policy target of the Scottish Government to expand woodland in Scotland by 100,000 ha by 2025 from the current 3 000 ha/year. In this paper we examine runoff response under different woodland expansion scenarios using climate projections obtained from the UK Climate Projections (UKCP09). Woodland creation has recognised potential as a NFM measure, but locating this new planting is constrained by physical and cultural constraints. Land use choices in the future will also strongly reflect emergent socio-economic contexts, here assessed through scenario analysis. The distributed hydrological model WaSiM-ETH was utilised for the analysis using the case-study of the Tarland catchment, a tributary of the River Dee. Terrain data were obtained on a 50 m grid and the model calibrated using meteorological and river gauge data from 2005 to 2007 following a manual and an automatic calibration process. This novel approach highlights that land use change should be carefully managed for planned benefits and to avoid unintended consequences, such as changing the timing of tributary flood responses. Whilst woodland expansion may only provide modest gains in flood reductions the co

  14. Future Water Availability from Hindukush-Karakoram-Himalaya upper Indus Basin under Conflicting Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Shabeh ul Hasson

    2016-08-01

    Full Text Available Future of the crucial Himalayan water supplies has generally been assessed under the anthropogenic warming, typically consistent amid observations and climate model projections. However, conflicting mid-to-late melt-season cooling within the upper Indus basin (UIB suggests that the future of its melt-dominated hydrological regime and the subsequent water availability under changing climate has yet been understood only indistinctly. Here, the future water availability from the UIB is presented under both observed and projected—though likely but contrasting—climate change scenarios. Continuation of prevailing climatic changes suggests decreased and delayed glacier melt but increased and early snowmelt, leading to reduction in the overall water availability and profound changes in the overall seasonality of the hydrological regime. Hence, initial increases in the water availability due to enhanced glacier melt under typically projected warmer climates, and then abrupt decrease upon vanishing of the glaciers, as reported earlier, is only true given the UIB starts following uniformly the global warming signal. Such discordant future water availability findings caution the impact assessment communities to consider the relevance of likely (near-future climate change scenarios—consistent to prevalent climatic change patterns—in order to adequately support the water resource planning in Pakistan.

  15. Mediterranean climate modelling: variability and climate change scenarios; Modelisation climatique du Bassin mediterraneen: variabilite et scenarios de changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Somot, S

    2005-12-15

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  16. Contributions to uncertainty in projections of future drought under climate change scenarios

    Directory of Open Access Journals (Sweden)

    I. H. Taylor

    2012-11-01

    Full Text Available Drought is a cumulative event, often difficult to define and involving wide reaching consequences for agriculture, ecosystems, water availability, and society. Understanding how the occurrence of drought may change in the future and which sources of uncertainty are dominant can inform appropriate decisions to guide drought impacts assessments. Uncertainties in future projections of drought arise from several sources and our aim is to understand how these sources of uncertainty contribute to future projections of drought. We consider four sources of uncertainty; climate model uncertainty associated with future climate projections, future emissions of greenhouse gases (future scenario uncertainty, type of drought (drought index uncertainty and drought event definition (threshold uncertainty. Three drought indices (the Standardised Precipitation Index (SPI, Soil Moisture Anomaly (SMA and Palmer Drought Severity Index (PDSI are calculated for the A1B and RCP2.6 future emissions scenarios using monthly model output from a 57 member perturbed parameter ensemble of climate simulations of the HadCM3C Earth system model, for the baseline period, 1961–1990, and the period 2070–2099 (representing the 2080s. We consider where there are significant increases or decreases in the proportion of time spent in drought in the 2080s compared to the baseline and compare the effects from the four sources of uncertainty. Our results suggest that, of the included uncertainty sources, choice of drought index is the most important factor influencing uncertainty in future projections of drought (60%–85% of total included uncertainty. There is a greater range of uncertainty between drought indices than that between the mitigation scenario RCP2.6 and the A1B emissions scenario (5%–6% in the 2050s to 17%–18% in the 2080s and across the different model variants in the ensemble (9%–17%. Choice of drought threshold has the least influence on uncertainty in future

  17. Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios

    International Nuclear Information System (INIS)

    Highlights: • The environmental impacts of two energy policy scenarios in Luxembourg are assessed. • Computable General Equilibrium (CGE) and Partial Equilibrium (PE) models are used. • Results from coupling of CGE and PE are integrated in hybrid Life Cycle Assessment. • Impacts due to energy related production and imports are likely to grow over time. • Carbon mitigation policies seem to not substantially decrease the impacts’ trend. - Abstract: Nowadays, many countries adopt an active agenda to mitigate the impact of greenhouse gas emissions by moving towards less polluting energy generation technologies. The environmental costs, directly or indirectly generated to achieve such a challenging objective, remain however largely underexplored. Until now, research has focused either on pure economic approaches such as Computable General Equilibrium (CGE) and partial equilibrium (PE) models, or on (physical) energy supply scenarios. These latter could be used to evaluate the environmental impacts of various energy saving or cleaner technologies via Life Cycle Assessment (LCA) methodology. These modelling efforts have, however, been pursued in isolation, without exploring the possible complementarities and synergies. In this study, we have undertaken a practical combination of these approaches into a common framework: on the one hand, by coupling a CGE with a PE model, and, on the other hand, by linking the outcomes from the coupling with a hybrid input–output−process based life cycle inventory. The methodological framework aimed at assessing the environmental consequences of two energy policy scenarios in Luxembourg between 2010 and 2025. The study highlights the potential of coupling CGE and PE models but also the related methodological difficulties (e.g. small number of available technologies in Luxembourg, intrinsic limitations of the two approaches, etc.). The assessment shows both environmental synergies and trade-offs due to the implementation of

  18. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. PMID:27341115

  19. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems.

  20. Environmental impact of climate change in pakistan

    International Nuclear Information System (INIS)

    Climate change results in the increase or decrease in temperature and rainfall. These have significant impact on environment - impinge agricultural crop yields, affect human health, cause changes to forests and other ecosystems, and even impact our energy supply. Climate change is a global phenomenon and its impact can be observed on Pakistan's economy and environment. This paper contains details concerning the climate change and environmental impacts. It takes into account current and projected key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and environment. The purpose of the study is to devise national policies and incentive systems combined with national level capacity-building programs to encourage demand-oriented conservation technologies. Recommendations are also made to abate the climate change related issues in country. (author)

  1. Urbanization, Economic Development and Environmental Change

    Directory of Open Access Journals (Sweden)

    Shushu Li

    2014-08-01

    Full Text Available This paper applies the pressure-state-response (PSR model to establish environmental quality indices for 30 administrative regions in China from 2003 to 2011 and employs panel data analysis to study the relationships among the urbanization rate, economic development and environmental change. The results reveal a remarkable inverted-U-shaped relationship between the urbanization rate and changes in regional environmental quality; the “turning point” generally appears near an urbanization rate of 60%. In addition, the degree and mode of economic development have significant, but anisotropic effects on the regional environment. Generally, at a higher degree of economic development, the environment will tend to improve, but an extensive economic growth program that simply aims to increase GDP has a clear negative impact on the environment. Overall, the results of this paper not only further confirm the “environmental Kuznets curve hypothesis”, but also expand it in a manner. The analysis in this paper implies that the inverted-U-shaped evolving relationship between environmental quality and economic growth (urbanization is universally applicable.

  2. Environmental change makes robust ecological networks fragile

    Science.gov (United States)

    Strona, Giovanni; Lafferty, Kevin D.

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722

  3. Environmental change makes robust ecological networks fragile

    Science.gov (United States)

    Strona, Giovanni; Lafferty, Kevin D.

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers’ tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems.

  4. Environmental change makes robust ecological networks fragile.

    Science.gov (United States)

    Strona, Giovanni; Lafferty, Kevin D

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host-parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722

  5. Irreversivle Climate Change Will Also Change Environmental Assessment and Management

    OpenAIRE

    Cairns, John

    2010-01-01

    Currently, the environmental and management methods for climate change will not be effective after irreversible climate change occurs. Without efforts to stabilize greenhouse gases, the temperature will continue to increase leading to: 1) risk to unique and threatened systems, 2) risk of extreme weather events, 3) distribution of impacts, 4) aggregate damages, and 5) risks of large-scaled discontinuities. New management systems must be put in place to protect natural capital and ecosystem se...

  6. Corporate responsiveness to drivers of change : Using scenarios to improve decision making on sustainable management of complex dynamic ecosystems

    OpenAIRE

    Hampus, Pernilla

    2011-01-01

    In order to make robust decisions on how to deal with future ecosystem changes, managers need to be aware of the complexity, uncertainty, thresholds and surprises that are inherent characteristics of social-ecological systems. The subject of this paper is the use of scenarios as a tool to increase corporate responsiveness to change by improving decision making on the sustainable management of complex dynamic ecosystems. Scenarios were shown to be a useful tool to integrate in the systematic m...

  7. Modelling the impact of the environmental scenario on population recovery from chemical stress exposure: a case study using Daphnia magna.

    Science.gov (United States)

    Gabsi, Faten; Preuss, Thomas G

    2014-11-01

    Recovery of organisms is an important attribute for evaluating the acceptability of chemicals' effects in ecological risk assessment in Europe. Recovery in the field does not depend on the chemical's properties and type of exposure only, but it is strongly linked to important environmental variables and biological interactions as well. Yet, these remain only marginally considered in the European risk assessment of chemicals. Here, we use individual-based modelling to investigate how the environmental scenario affects Daphnia magna population recovery from chemical exposure. Simulation experiments were performed for chemicals with lethality levels ranging from 40% to 90% at different food and temperature conditions. The same toxicity levels were then tested in combination with biological interactions including predation or competition. Results show that for the same chemical effect strength, populations often exhibited different recovery times in a different environmental context. The interactions between the chemical and the environmental variables were the strongest determinants of population recovery. Most important, biotic interactions even induced opposite effects on recovery at low and at high mortality levels. Results of this study infer that no specific role can be attributed to any abiotic or biotic variable in isolation. We conclude that unless the complex interactive mechanisms between the different factors constituting the full environmental scenario are taken into account in risk assessment, we cannot achieve a complete understanding of recovery processes from chemical effects. PMID:25261821

  8. Projected Scenarios for Coastal First Nations' Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities.

    Science.gov (United States)

    Weatherdon, Lauren V; Ota, Yoshitaka; Jones, Miranda C; Close, David A; Cheung, William W L

    2016-01-01

    Studies have demonstrated ways in which climate-related shifts in the distributions and relative abundances of marine species are expected to alter the dynamics and catch potential of global fisheries. While these studies assess impacts on large-scale commercial fisheries, few efforts have been made to quantitatively project impacts on small-scale subsistence and commercial fisheries that are economically, socially and culturally important to many coastal communities. This study uses a dynamic bioclimate envelope model to project scenarios of climate-related changes in the relative abundance, distribution and richness of 98 exploited marine fishes and invertebrates of commercial and cultural importance to First Nations in coastal British Columbia, Canada. Declines in abundance are projected for most of the sampled species under both the lower (Representative Concentration Pathway [RCP] 2.6) and higher (RCP 8.5) emission scenarios (-15.0% to -20.8%, respectively), with poleward range shifts occurring at a median rate of 10.3 to 18.0 km decade(-1) by 2050 relative to 2000. While a cumulative decline in catch potential is projected coastwide (-4.5 to -10.7%), estimates suggest a strong positive correlation between the change in relative catch potential and latitude, with First Nations' territories along the northern and central coasts of British Columbia likely to experience less severe declines than those to the south. Furthermore, a strong negative correlation is projected between latitude and the number of species exhibiting declining abundance. These trends are shown to be robust to alternative species distribution models. This study concludes by discussing corresponding management challenges that are likely to be encountered under climate change, and by highlighting the value of joint-management frameworks and traditional fisheries management approaches that could aid in offsetting impacts and developing site-specific mitigation and adaptation strategies derived

  9. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Science.gov (United States)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  10. Changing pattern of heavy rainstorms in the Indus basin of India under global warming scenarios

    Indian Academy of Sciences (India)

    N R Deshpande; B D Kulkarni

    2015-06-01

    Estimation of extremely high rainfall (point or areal) is one of the major components of design storm derivation. The estimation of Probable Maximum Precipitation (PMP) involves selection of heavy rain-storms and its maximization for the moisture content during the rainstorm period. These heavy rain-storms are nothing but the widespread heavy rainfall exceeding a certain threshold value. The present study examines the characteristics of heavy rainstorms in the Indus basin selected from present climate and future scenarios simulated by the regional climate model. Such information on heavy rainfall forms the basis for the hydrologic design projects and also for the water management of a river basin. Emphasis is given to severe rainstorms of 1-day duration covering an area of at least 40,000 km2 with spatial average rainfall of at least 5cm. This analysis also provides the information on the temporal changes in the storm factors such as shape, orientation, and movement, and shows that the model can well simulate the rainstorm pattern in terms of its intensity, orientation, and shape of the rainstorm, but overestimates the frequency of such heavy rainstorms. The future scenario indicates increase in rainfall intensity at the center of the rainstorm with decreasing areal spread. Decrease in the frequency of rainstorms is projected under the global warming conditions.

  11. Changing pattern of heavy rainstorms in the Indus basin of India under global warming scenarios

    Science.gov (United States)

    Deshpande, N. R.; Kulkarni, B. D.

    2015-06-01

    Estimation of extremely high rainfall (point or areal) is one of the major components of design storm derivation. The estimation of Probable Maximum Precipitation (PMP) involves selection of heavy rainstorms and its maximization for the moisture content during the rainstorm period. These heavy rainstorms are nothing but the widespread heavy rainfall exceeding a certain threshold value. The present study examines the characteristics of heavy rainstorms in the Indus basin selected from present climate and future scenarios simulated by the regional climate model. Such information on heavy rainfall forms the basis for the hydrologic design projects and also for the water management of a river basin. Emphasis is given to severe rainstorms of 1-day duration covering an area of at least 40,000 km 2 with spatial average rainfall of at least 5cm. This analysis also provides the information on the temporal changes in the storm factors such as shape, orientation, and movement, and shows that the model can well simulate the rainstorm pattern in terms of its intensity, orientation, and shape of the rainstorm, but overestimates the frequency of such heavy rainstorms. The future scenario indicates increase in rainfall intensity at the center of the rainstorm with decreasing areal spread. Decrease in the frequency of rainstorms is projected under the global warming conditions.

  12. Tolerance to copper and to salinity in Daphnia longispina: implications within a climate change scenario.

    Science.gov (United States)

    Leitão, João; Ribeiro, Rui; Soares, Amadeu M V M; Lopes, Isabel

    2013-01-01

    Considering IPPC climate change scenarios, it is pertinent to predict situations where coastal ecosystems already impacted with chemical contamination became exposed to an additional stressor under a future scenario of seawater intrusion. Accordingly, the present study aimed at evaluating if a negative association between tolerance to a metal and to saltwater exists among genotypes of a freshwater organism. For this, five clonal lineages of the cladoceran Daphnia longispina O.F. Müller, exhibiting a differential tolerance to lethal levels of copper, were selected. Each clonal lineage was exposed to lethal and sublethal concentrations of sodium chloride (assumed as a protective surrogate to evaluate the toxicity of increased salinity to freshwater organisms). Mortality, time to release the first brood and total number of neonates per female were monitored and the somatic growth rate and intrinsic rate of natural increase were computed for each clonal lineage. Data here obtained were compared with their lethal responses to copper and significant negative correlations were found. These results suggest that genetically eroded populations of D. longispina, due to copper or salinity, may be particularly susceptible to a later exposure to the other contaminant supporting the multiple stressors differential tolerance.

  13. Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios

    Directory of Open Access Journals (Sweden)

    C. S. Cheng

    2007-01-01

    Full Text Available Freezing rain is a major atmospheric hazard in mid-latitude nations of the globe. Among all Canadian hydrometeorological hazards, freezing rain is associated with the highest damage costs per event. Using synoptic weather typing to identify the occurrence of freezing rain events, this study estimates changes in future freezing rain events under future climate scenarios for south-central Canada. Synoptic weather typing consists of principal components analysis, an average linkage clustering procedure (i.e., a hierarchical agglomerative cluster method, and discriminant function analysis (a nonhierarchical method. Meteorological data used in the analysis included hourly surface observations from 15 selected weather stations and six atmospheric levels of six-hourly National Centers for Environmental Prediction (NCEP upper-air reanalysis weather variables for the winter months (November–April of 1958/59–2000/01. A statistical downscaling method was used to downscale four general circulation model (GCM scenarios to the selected weather stations. Using downscaled scenarios, discriminant function analysis was used to project the occurrence of future weather types. The within-type frequency of future freezing rain events is assumed to be directly proportional to the change in frequency of future freezing rain-related weather types The results showed that with warming temperatures in a future climate, percentage increases in the occurrence of freezing rain events in the north of the study area are likely to be greater than those in the south. By the 2050s, freezing rain events for the three colder months (December–February could increase by about 85% (95% confidence interval – CI: ±13%, 60% (95% CI: ±9%, and 40% (95% CI: ±6% in northern Ontario, eastern Ontario (including Montreal, Quebec, and southern Ontario, respectively. The increase by the 2080s could be even greater: about 135% (95% CI: ±20%, 95% (95% CI: ±13%, and 45% (95% CI: ±9

  14. Estimation of future carbon budget with climate change and reforestation scenario in North Korea

    Science.gov (United States)

    Kim, Damin; Lim, Chul-Hee; Song, Cholho; Lee, Woo-Kyun; Piao, Dongfan; Heo, Seongbong; Jeon, Seongwoo

    2016-09-01

    In terms of climate change, quantifying carbon budget in forest is critical for managing a role of forest as carbon sink. Deforestation in North Korea has been exacerbating at a noticeable pace and caused to worsen the carbon budget. Under the circumstance, this study aimed to assess the impact of climate change and reforestation on the carbon budget in 2020s and 2050s, using the VISIT (Vegetation Integrative SImulator for Trace gases) model. In order to analyze the impact of reforestation, future land cover maps for the 2020s and 2050s were prepared. Among the deforested areas (2.5 × 106 ha) identified by comparing land cover maps for different periods, the potential reforestation areas were selected by a reforestation scenario considering slope, accessibility from residence, and deforestation types. The extracted potential reforestation areas were 1.7 × 106 ha and the increased forest area was spatially distributed to each district. The percentage change in carbon budget caused by climate change from the 2000s to 2020s is 67.60% and that from the 2020s to 2050s is 45.98% on average. Based on the future land cover, NEP (net ecosystem production) with reforestation will increase by 18.18% than that without reforestation in the 2050s, which shows the contribution to carbon balance. In connection with this long term projection, it is revealed that the gross fluxes such as photosynthesis and respiration may be impacted more obviously by the climate change, especially global warming, than the net carbon flux because of the offset between the changes in the gross fluxes. It is analyzed that changes in carbon budget are very sensitive to climate changes, while the impact of reforestation is relatively less sensitive. Although it is impossible to significantly improve carbon sequestration by establishing forest in a short-term, reforestation is imperative in a long-term view as it clearly has a potential mechanism to offset emitted carbon.

  15. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios

    Directory of Open Access Journals (Sweden)

    M. E. Elshamy

    2009-05-01

    Full Text Available This study analyses the output of 17 general circulation models (GCMs included in the 4th IPCC assessment report. Downscaled precipitation and potential (reference crop evapotranspiration (PET scenarios for the 2081–2098 period were constructed for the upper Blue Nile basin. These were used to drive a fine-scale hydrological model of the Nile Basin to assess their impacts on the flows of the upper Blue Nile at Diem, which accounts for about 60% of the mean annual discharge of the Nile at Dongola. There is no consensus among the GCMs on the direction of precipitation change. Changes in total annual precipitation range between −15% to +14% but more models report reductions (10 than those reporting increases (7. Several models (6 report small changes within 5%. The ensemble mean of all models shows almost no change in the annual total rainfall. All models predict the temperature to increase between 2°C and 5°C and consequently PET to increase by 2–14%. Changes to the water balance are assessed using the Budyko framework. The basin is shown to belong to a moisture constrained regime. However, during the wet season the basin is largely energy constrained. For no change in rainfall, increasing PET thus leads to a reduced wet season runoff coefficient. The ensemble mean runoff coefficient (about 20% for baseline simulations is reduced by about 3.5%. Assuming no change or moderate changes in rainfall, the simulations presented here indicate that the water balance of the upper Blue Nile basin may become more moisture constrained in the future.

  16. Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios

    Science.gov (United States)

    Ahn, Joong-Bae; Jo, Sera; Suh, Myoung-Seok; Cha, Dong-Hyun; Lee, Dong-Kyou; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk; Shim, Kyo-Moon

    2016-05-01

    The change of extreme precipitation is assessed with the HadGEM2-AO - 5 Regional Climate Models (RCMs) chain, which is a national downscaling project undertaken cooperatively by several South Korean institutes aimed at producing regional climate change projection with fine resolution (12.5 km) around the Korean Peninsula. The downscaling domain, resolution and lateral boundary conditions are held the same among the 5 RCMs to minimize the uncertainties from model configuration. Climatological changes reveal a statistically significant increase in the mid-21st century (2046- 2070; Fut1) and the late-21st century (2076-2100; Fut2) precipitation properties related to extreme precipitation, such as precipitation intensity and average of upper 5 percentile daily precipitation, with respect to the reference period (1981-2005). Changes depending on the intensity categories also present a clear trend of decreasing light rain and increasing heavy rain. In accordance with these results, the change of 1-in-50 year maximum precipitation intensity over South Korea is estimated by the GEV method. The result suggests that the 50-year return value (RV50) will change from -32.69% to 72.7% and from -31.6% to 96.32% in Fut1 and from -31.97% to 86.25% and from -19.45% to 134.88% in Fut2 under representative concentration pathway (RCP) 4.5 and 8.5 scenarios, respectively, at the 90% confidence level. This study suggests that multi-RCMs can be used to reduce uncertainties and assess the future change of extreme precipitation more reliably. Moreover, future projection of the regional climate change contains uncertainties evoked from not only driving GCM but also RCM. Therefore, multi-GCM and multi-RCM studies are expected to provide more robust projection.

  17. Tropical peatland carbon dynamics simulated for scenarios of disturbance and restoration and climate change

    Science.gov (United States)

    Frolking, S. E.; Warren, M.; Dai, Z.; Kurnianto, S.; Hagen, S. C.

    2015-12-01

    Tropical peatlands contain a globally significant carbon pool. Southeast Asian peatlands are being deforested, drained and burned at very high rates, mostly for conversion to industrial oil palm or pulp and paper plantations. The climate mitigation potential of tropical peatlands has gained increasing attention in recent years as persistent greenhouse gas emissions can be avoided or decreased if peatlands remain intact or are rehabilitated. In addition, peatland conservation or rehabilitation for climate mitigation also includes multiple co-benefits such as maintenance of ecosystem services, biodiversity, and air quality from reduced fire occurrence. Inventory guidelines and methodologies have only recently become available, and are based on few data from a limited number of sites. Few heuristic tools are available to evaluate the impact of management practices on carbon dynamics in tropical peatlands, and the potential climate mitigation benefits of peatland restoration. We used a process based dynamic tropical peatland model to explore the C dynamics of several peatland management trajectories represented by hypothetical scenarios, within the context of simulated 21st century climate change. All scenarios with land use, including those with optimal restoration, simulate C loss over the 21st century, with C losses ranging from 10% to essentially 100% of pre-disturbance values. Fire, either prescribed as part of a crop rotation cycle, or stochastic occurrences in sub-optimally managed degraded land can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. A single 25-year oil palm rotation, with a prescribed initial burn, lost 40-50 kg C/m2, equivalent to accumulation during the previous 500 years, 10-30% of which was restored in 75 years of optimal restoration. Our results indicate that even under the most optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one-third of the carbon

  18. Future generations, environmental ethics, and global environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey, renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.

  19. Brazilian environmental legislation and scenarios for carbon balance in Areas of Permanent Preservation (APP) in dairy livestock regions

    Science.gov (United States)

    Hott, M. C.; Fonseca, L. D.; Andrade, R. G.

    2011-12-01

    maintain a balance between conservation of natural resources, land suitability and demand for food, especially for milk in these regions, which provide inputs for the dairy industry. The brazilian environmental legislation faces a turbulent period of change, but certainly it can contribute to increase carbon sequestration.

  20. Transient scenarios for robust climate change adaptation illustrated for water management in The Netherlands

    NARCIS (Netherlands)

    Haasnoot, M.; Schellekens, J.; Beersma, J.J.; Middelkoop, H.; Kwadijk, J.C.J.

    2015-01-01

    Climate scenarios are used to explore impacts of possible future climates and to assess the robustness of adaptation actions across a range of futures. Time-dependent climate scenarios are commonly used in mitigation studies. However, despite the dynamic nature of adaptation, most scenarios for loca

  1. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.

    Science.gov (United States)

    Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario

    2016-09-01

    Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970-1989) and future (2080-2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural

  2. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  3. The impacts of climate and land-use change scenarios on river ecology: the case of Margaritifera margaritifera

    Science.gov (United States)

    Santos, Regina; Fernandes, Luís; Varandas, Simone; Pereira, Mário; Sousa, Ronaldo; Teixeira, Amilcar; Lopes-Lima, Manuel; Cortes, Rui; Pacheco, Fernando

    2015-04-01

    Climate change is one of the most important causes of biodiversity loss in freshwater ecosystems and it is expected to cause extinctions in many species in the future. Freshwater ecosystems are also highly affected by anthropogenic pressures such as land use/land cover changes, water abstractions and impoundments. The aim of this study is to assess the impacts of future climate and land-use in the Beça River (northern Portugal) namely on the conservation status of the endangered pearl mussel Margaritifera margaritifera (Linnaeus, 1758). This is an environmental indicator and endangered species currently present in several stretches of the Beça River that still hold adequate ecological conditions. However, the species is threatened by the precipitation decrease projected for the 21st century and the deviation of a significant portion of the river water to an adjacent watershed (since 1998). This decrease in river water can be especially acute during the summer months, forming small pools dispersed along the water course where M. margaritifera, and its host (Salmo trutta), barely find biological conditions for survival. The materials and methods used in this study include; (i) the assessment of water quality based on minimum, maximum and average values of relevant physicochemical parameters within the period 2000-2009; (ii) assessment of future climate change settings based on air temperature and precipitation projected by Regional and Global Circulation Models for recent past (1961 - 1990) and future climate scenarios (2071 - 2099); (iii) data processing to remove the model biases; and, (iv) integrated watershed modelling with river-planning (Mike Basin) and broad GIS (ArcMap) computer packages. Our findings comprise: (i); a good relationship between current wildfire incidence and river water quality; (ii) an increase in the future air temperature throughout the year; (iii) increases in future precipitations during winter and decreases during the other seasons

  4. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Joyner

    Full Text Available Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km(2 and 8 km(2 and a 6-variable BioClim data set at 8 km(2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting approximately 14-16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting approximately 15% loss at 55 km(2, approximately 34% loss at 8 km(2, and approximately 30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km(2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B

  5. Potential Impact of Climate Changes on the Inundation Risk Levels in a Dam Break Scenario

    Directory of Open Access Journals (Sweden)

    Sudha Yerramilli

    2013-03-01

    Full Text Available The overall objective of the study is to generate information for an enhanced land use planning with respect to flood hazards. The study assesses the potential impact of climate change by simulating a dam break scenario in a high intensity rainfall event and evaluates the vulnerability risk in the downstream region by integrating ArcGIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS technologies. In the past century, the evidence of climate changes are observed in terms of increase in high intensity rainfall events. These events are of high concern, as increased inflow rates may increase the probability of a dam failure, leading to higher magnitude flooding events involving multiple consequences. The 100 year historical rainfall data for the central Mississippi region reveals an increased trend in the intensity of rainfall rates after the 1970s. With more than 10% of high hazard dams in the central region, the damage can be far accumulative. The study determines occurrence of the high intensity rainfall event in the past 100 years for central Mississippi and simulates a Ross Barnett Reservoir dam break scenario and evaluates the vulnerability risks due to inundation in the immediate downstream region, which happens to be the State Capital. The results indicate that the inundation due to a Ross Barnett Reservoir failure under high intensity rainfall event is comparable to a catastrophic flood event experienced by the region in 1979, which almost equals a 200-year flood magnitude. The results indicate that the extent and depth of flood waters poses a significant destructive threat to the state capital, inundating various infrastructural and transportation networks.

  6. Response of durum wheat to water variability under climate change scenarios in southern Sardinia

    Science.gov (United States)

    Soddu, Antonino; Deidda, Roberto; Marrocu, Marino; Meloni, Roberto; Paniconi, Claudio; Ludwig, Ralf; Sodde, Marcella; Mascaro, Giuseppe; Perra, Enrica

    2013-04-01

    Durum wheat is the most important C3 rainfed crop in southern Sardinia, Italy and is highly vulnerable to climate variability. This region has experienced severe drought conditions and problems of competing water demands during the last decades. Within the framework of European (1) and Regional (2) research projects, a study was conducted to evaluate the effects of increased maximum temperature and high rainfall variability on durum wheat yield, as part of an effort to devise strategies for water management and adaptation at the field and catchment scales in southern Sardinia. Towards this goal, the AquaCrop model was calibrated and its predictive performance was tested in the period from 1995 to 2012 using daily meteorological data and durum wheat (CV Creso) yield measurements from the experimental fields of the Agris Research Agency in Ussana (Sardinia, Italy). During the verification period, the model showed a good performance with a significant correlation between observed and simulated yield for durum wheat and a very good estimation of the water stress conditions during the drought period in 1995. Next, four future scenarios of climate change were simulated with AquaCrop to predict wheat yield responses and to investigate water availability for rainfed and irrigated crops for the 30-year periods 2011-2040, 2041-2070, and 2071-2100. The simulated future scenarios show potential improved productivity arising from the increased CO2 concentration. This positive outlook is however tempered by increased uncertainty and fluctuations in rainfall during the fall and early winter periods (September-December). The possible tradeoffs between these factors, as well as the expected negative effects of increased maximum temperatures, are being further examined. (1) Climate Induced Changes in the Mediterranean Region (CLIMB), funded by the European Commission 7th Framework Program. (2) Valutazione degli impatti sul comportamento idrologico dei bacini idrografici e sulle

  7. National Institute for Global Environmental Change

    Energy Technology Data Exchange (ETDEWEB)

    Werth, G.C.

    1992-04-01

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves.

  8. National Institute for Global Environmental Change

    International Nuclear Information System (INIS)

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves

  9. Scenario analysis of land use change in Horqin Desert and its surrounding area

    NARCIS (Netherlands)

    Zhang, Y.M.; Zhao, S.; Verburg, P.H.

    2004-01-01

    Horqin desert and its surrounding area(41°17'~45°24' N,116°21'~123°30' E),loca-ted in the eastern part of agro-pas ture transitional zone in northern China,is an area sensitive to environmental change due to transitional location and the high potential for sandy desert-if ication.During the past dec

  10. Scenario-Patent Protection Compared to Climate Change: The Case of Green Patents

    OpenAIRE

    Araken Alves de Lima; Patricia Carvalho dos Reis; Julio César Moreira Reis Castelo Branco; Rodrigo Danieli; Cibele Cristina Osawa; Eduardo Winter; Douglas Alves Santos

    2013-01-01

    The United Nations Framework on Climate Change (UNFCCC) took effect as a treaty in 1994 to promote international cooperation in the fight against global warming. Currently, nearly 190 countries are signatories of the UNFCCC, which has had successive additions as the Kyoto Protocol (1997). In 1995, the Climate Technology Initiative was established within the UNFCCC to encourage international cooperation in the accelerated development and diffusion of environmentally Sound Technologies - EST. S...

  11. Constructing climate change scenarios of urban heat island intensity and air quality

    OpenAIRE

    Robert L. Wilby

    2008-01-01

    As the global population becomes increasingly urbanised, so interest has grown in the potential climate change impacts on city infrastructure, services, and environmental quality. However, urban areas are only beginning to be represented explicitly in the land-surface schemes of dynamical climate models through modified energy and moisture budgets. This paper summarises recent evidence of urban impacts on climate and vice versa. The technique of statistical downscaling is then introduced thro...

  12. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2007-09-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. Predicted changes in dissolved organic carbon induced by reductions in acid deposition or increases in temperature may potentially influence the recovery of surface waters from acidification and may offset the increase in pH resulting from S deposition reductions. However, many climate-induced changes in processes are generally not incorporated in current versions of acidification models. To allow more reliable forecasts, the mechanisms by

  13. Scenarios for the environmental impact of fossil fuel power: Co-benefits and trade-offs of carbon capture and storage

    International Nuclear Information System (INIS)

    This study uses a hybrid Life Cycle Assessment approach to evaluate the environmental impacts of large-scale deployment of Carbon dioxide Capture and Storage (CCS) in coal and natural gas based electricity generation, based on IEA scenarios. For the Baseline scenario, all impact categories would increase 2–3-fold in 2050 from 2005 levels. Green House Gas (GHG) emissions are found to decrease by ∼40% in ACTmap scenario and by ∼75% in more CCS-intensive BLUEmap scenario. These climate mitigation scenarios also show significantly reduced impacts of acidification, particulate matter formation and human toxicity, suggesting the existence of co-benefits. For eutrophication, all scenarios indicate substantial increases, but the increases are largest in the Baseline scenario. For photochemical oxidant formation, only the mitigation scenarios manage to stabilize this impact from fossil fuel based power production. This study does not assess the impact of alternative power generation or energy efficiency technology that replaces part of the fossil fuel power in the mitigation scenarios. -- Highlights: ► We perform Life Cycle Assessment of IEA scenarios for fossil fuel power and CCS. ► Used LCA framework incorporates future technical developments and CCS diffusion. ► Significant impact reductions in CCS scenarios compared to Baseline 2050. ► Compared to 2005, modest non-GWP impact reductions in CCS scenarios. ► GWP intensity of fossil fuel power declines by 65 80% in CCS scenarios.

  14. Modelling Wave-Driven Coastal Sediment Transport in a Climate Change Scenario

    Science.gov (United States)

    Bonaldo, Davide; Benetazzo, Alvise; Bergamasco, Andrea; Carniel, Sandro; Marcello Falcieri, Francesco; Sclavo, Mauro

    2013-04-01

    Coastal morphodynamics is the result of a number of processes in which most of the driving factors strongly depend on climatic conditions. Thus, climate change is one of the most impacting constraints in governing long-term coastal landscape evolution: in particular, such influence acts through sea level rise and the effects of changes in atmospheric dynamics. While the former causes a general retreat of the shoreline and the flooding of the underlying coastal zones, with a direct effect on the coastal zone, changes in atmospheric dynamics modify landscape processes via storm surge and wave climate variations. In particular, modifications in wave storminess affect coastal sediment transport, with possibly relevant implications especially in environments with strong morphodynamic activity. In the present work we investigate the impact of a possible climate change scenario on wave-driven coastal sediment transport in a deltaic system in the Northern Adriatic Sea with reference to the period 2070-2099. To this aim, the results of a spectral wave model (SWAN) forced with climatological wind fields have been used. These were obtained by means of a high-resolution Regional Climate Model (COSMO-CLM) with reference to the IPCC A1B emission scenario. The resulting wave climate has been used as a constraint for a hydro- morphodynamic model, which was applied to a test site on the Po Delta (Northern Italy): relevant transport processes have been studied both at decadal and at storm time scales and compared with the corresponding results of a control analysis (1965-1995) representing the actual climate. A predicted reduction of the cyclonic activity in the Northern Adriatic Sea produces a decrease in significant wave height (Benetazzo et al., 2012), thus generating non-negligible impacts on sediment resuspension and transport processes along the western Adriatic coast. In particular, compared to cross-shore transport, long-shore sediment drift appears to be most affected by

  15. Environmental health risk assessment and management for global climate change

    Science.gov (United States)

    Carter, P.

    2014-12-01

    This environmental health risk assessment and management approach for atmospheric greenhouse gas (GHG) pollution is based almost entirely on IPCC AR5 (2014) content, but the IPCC does not make recommendations. Large climate model uncertainties may be large environmental health risks. In accordance with environmental health risk management, we use the standard (IPCC-endorsed) formula of risk as the product of magnitude times probability, with an extremely high standard of precaution. Atmospheric GHG pollution, causing global warming, climate change and ocean acidification, is increasing as fast as ever. Time is of the essence to inform and make recommendations to governments and the public. While the 2ºC target is the only formally agreed-upon policy limit, for the most vulnerable nations, a 1.5ºC limit is being considered by the UNFCCC Secretariat. The Climate Action Network International (2014), representing civil society, recommends that the 1.5ºC limit be kept open and that emissions decline from 2015. James Hansen et al (2013) have argued that 1ºC is the danger limit. Taking into account committed global warming, its millennial duration, multiple large sources of amplifying climate feedbacks and multiple adverse impacts of global warming and climate change on crops, and population health impacts, all the IPCC AR5 scenarios carry extreme environmental health risks to large human populations and to the future of humanity as a whole. Our risk consideration finds that 2ºC carries high risks of many catastrophic impacts, that 1.5ºC carries high risks of many disastrous impacts, and that 1ºC is the danger limit. IPCC AR4 (2007) showed that emissions must be reversed by 2015 for a 2ºC warming limit. For the IPCC AR5 only the best-case scenario RCP2.6, is projected to stay under 2ºC by 2100 but the upper range is just above 2ºC. It calls for emissions to decline by 2020. We recommend that for catastrophic environmental health risk aversion, emissions decline

  16. Changing Pattern of Heavy Rainstorms in Indus Basin of India Under Global Warming Scenario

    Science.gov (United States)

    Deshpande, N. R.; Kulakarni, B. D.

    2012-12-01

    A major concern of the hydraulic design engineers is to determine a practical value for the design storm where maximum protection against structural failure is required. Design of such structures is based on the extremely large values such as 'Probable Maximum Precipitation (PMP)'. The estimation of PMP involves selection of heavy rainstorm, its areal rainfall distribution and maximization of areal rainfall for moisture content. The study attempts to examine the characteristics of heavy rainstorms of Indus basin located in northern parts of India under changing climate and to provide information on heavy rainfall over a large area which serves as a guide in hydrologic design projects in the basin. The Indus river originates in the northern slopes of the Kailash ranges in the Himalaya and flows through India and Pakistan where it meets Arabian sea. Heavy rainstorms occurred in the Indus basin during 1971-2009 are selected and analyzed. Future scenarios of such heavy rainstorms occurring in this basin are projected using regional climate model, PRECIS (Providing REgional Climate for Impact Studies) scenarios for the period 2071-2100. Baseline simulations (1961-1990) generated by this model used to assess the efficiency of the model to generate widespread heavy rainfall in the basin. Primary emphasis is given on the areal distribution of rainfall during severe rainstorms having durations of 24 hours and producing excessive amount of rainfall over an area of at least 25000 square kilometers with rainfall intensity at the centre of rainstorm more than 30cm. Information is also provided on other important storm factors such as its shape, orientation and movement. Fig.1 shows the spatial patterns of severe-most rainstorms from observational data sets, baseline and future simulated datasets from PRECIS. Table gives the average shape factor (ratio of major to minor axis) and average orientation of these rainstorms. In general it is observed that common shape of the

  17. Detecting environmental change using stable isotopes

    International Nuclear Information System (INIS)

    Changing land use is one of the primary causes of increased sedimentation and nutrient levels in aquatic systems, resulting in contamination and reduction of biodiversity. Detecting and quantifying these inputs is the first step of remediation, to enable targeted reduction of transport processes into waterways from human impacted land surfaces. More recently, stable isotope analyses are being used as a detection and quantification tool in aquatic environments. Carbon and nitrogen isotopes of sediments, algae and invertebrates from aquatic systems can be used as proxies to record both short and long term environmental change. Excess nutrients derived from urbanization, industry, forestry, farming and agriculture increase the bio-availability of nitrogen to aquatic organisms, changing their natural 15N isotopic signatures. Allochthonous (terrestrial) input from soil destabilization and human activity in surrounding catchments changes the 13C isotope ratios and increases the C:N ratio of sediments. Heavy metal and other organic pollutants can also be used to indicate urbanization and industrial contamination. The combined use of carbon and nitrogen isotopes, C:N ratios and heavy metals are powerful environmental monitoring tools which are useful indicators of source and transport pathways of terrestrial derived material and anthropogenic pollutants into streams, rivers and estuaries. (author).

  18. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    OpenAIRE

    M. Posch; Aherne, J.; M. Forsius; S. Fronzek; N. Veijalainen

    2008-01-01

    International audience; The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC) was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically) feasible reductions (MFR). Future climate (temperature and precipitation) was derived from the HadAM3 and ECHAM4/OPYC3 general c...

  19. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2008-03-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.

  20. Development of integrated scenarios to attain the environmental aims of the national sustainability strategy; Entwicklung von integrierten Szenarien zur Erreichung der umweltbezogenen Ziele der Nationalen Nachhaltigkeitsstrategie

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Alexander; Rammig, Hanna [ScMI AG Paderborn (Germany)

    2013-02-15

    The national sustainability strategy (NHS) shall significantly shape the direction of the sustainable development in Germany. It is aim of the project ''Development of integrated scenarios to attain the environmental aims of the national sustainability strategy'' to develop different options, of how to possibly approach the environmental aims of the national sustainability strategy. In a first step external scenarios were developed, which describe the national sustainability strategy. In a first step external scenarios were developed, which describe the external context for the embodiment of sustainability. In a second step, option scenarios which show alternatives for different actor groups were built for the three areas ''Leisure time, living and alimentation''. In a third step the combination of the different external scenarios and internal options has been conducted, how do the different solution areas fit to the external scenarios.

  1. Scenario Analysis on Climate Change Impacts of Urban Land Expansion under Different Urbanization Patterns: A Case Study of Wuhan Metropolitan

    Directory of Open Access Journals (Sweden)

    Xinli Ke

    2013-01-01

    Full Text Available Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast model to simulate regional climate change. The results show that: (1 warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2 the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3 the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4 and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period.

  2. Model experiments on climate change in the Tokyo metropolitan area using regional climate scenarios

    Science.gov (United States)

    Tsunematsu, N.; Dairaku, K.

    2011-12-01

    There is a possibility that the future atmospheric warming leads to more frequent heavy rainfall in the metropolitan area, thereby increasing the risk of floods. As part of REsearch Program on Climate Change Adaptation (RECCA) funded by Ministry of Education, Culture, Sports, Science and Technology, Japan, we started numerical model experiments for investigating the vulnerability and adaptation to climate change in water hazard assessments in the metropolitan area by the use of regional climate scenarios. The model experiments adopt dynamical downscaling techniques. Future climate projections obtained from regional climate model simulations at 20 km horizontal grid spacing are downscaled into finer grids (less than 5 km resolutions) of Regional Atmospheric Modeling System Version 6.0 modified by National Research Institute for Earth Science and Disaster Prevention (NIED-RAMS). Prior to performing the dynamical downscaling experiments, the NIED-RAMS model biases are evaluated by comparing long-term surface meteorological observations with results of the model simulations that are carried out by using the Japanese Re-Analysis (JRA) data and Japan Meteorological Agency Meso-Scale Model outputs as the initial and boundary conditions.

  3. Sustainable Supply Chain Management: The Influence of Disposal Scenarios on the Environmental Impact of a 2400 L Waste Container

    Directory of Open Access Journals (Sweden)

    José Eduardo Galve

    2016-06-01

    Full Text Available This paper analyzes the influence of the supply chain management on the environmental impact of a 2400 L waste disposal container used in most cities of Spain. The studied functional unit, a waste disposal container, made up mostly of plastic materials and a metallic structure, and manufactured in Madrid (Spain, is distributed to several cities at an average distance of 392 km. A life cycle assessment of four different scenarios (SC has been calculated with the software EcoTool v4.0 (version 4.0; i+: Zaragoza, Spain, 2015 and using Ecoinvent v3.0 database (version 3.0; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, 2013. The environmental impact has been characterized with two different methodologies, recipe and carbon footprint. In order to reduce the environmental impact, several end of life scenarios have been performed, analyzing the influence of the supply chain on a closed-looped system that increases recycling. Closed loop management of the waste and reuse of parts allows companies to stop selling products and start selling the service that their products give to the consumers.

  4. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario

    Science.gov (United States)

    Pascale, Salvatore; Lucarini, Valerio; Feng, Xue; Porporato, Amilcare; ul Hasson, Shabeh

    2016-02-01

    In this diagnostic study we analyze changes of rainfall seasonality and dry spells by the end of the twenty-first century under the most extreme IPCC5 emission scenario (RCP8.5) as projected by twenty-four coupled climate models contributing to Coupled Model Intercomparison Project 5 (CMIP5). We use estimates of the centroid of the monthly rainfall distribution as an index of the rainfall timing and a threshold-independent, information theory-based quantity such as relative entropy (RE) to quantify the concentration of annual rainfall and the number of dry months and to build a monsoon dimensionless seasonality index (DSI). The RE is projected to increase, with high inter-model agreement over Mediterranean-type regions—southern Europe, northern Africa and southern Australia—and areas of South and Central America, implying an increase in the number of dry days up to 1 month by the end of the twenty-first century. Positive RE changes are also projected over the monsoon regions of southern Africa and North America, South America. These trends are consistent with a shortening of the wet season associated with a more prolonged pre-monsoonal dry period. The extent of the global monsoon region, characterized by large DSI, is projected to remain substantially unaltered. Centroid analysis shows that most of CMIP5 projections suggest that the monsoonal annual rainfall distribution is expected to change from early to late in the course of the hydrological year by the end of the twenty-first century and particularly after year 2050. This trend is particularly evident over northern Africa, southern Africa and western Mexico, where more than 90 % of the models project a delay of the rainfall centroid from a few days up to 2 weeks. Over the remaining monsoonal regions, there is little inter-model agreement in terms of centroid changes.

  5. Quantifying the importance of plant functional diversity for ecosystem functioning and resilience under scenarios of climate change (Invited)

    Science.gov (United States)

    Pavlick, R.; Drewry, D.; Kleidon, A.

    2013-12-01

    Dynamic Global Vegetation Models (DGVMs) typically employ only a small set of Plant Functional Types (PFTs) to represent the vast diversity of observed vegetation forms and functioning. There is growing evidence, however, that this abstraction may not adequately represent the observed variation in plant functional traits, which is thought to play an important role for many ecosystem functions and for ecosystem resilience to environmental change. The geographic distribution of PFTs in these models is also often based on empirical relationships between present-day climate and vegetation patterns. Projections of future climate change, however, point toward the possibility of novel regional climates, which could lead to no-analog vegetation compositions incompatible with the PFT paradigm. Here, we present results from the Jena Diversity-DGVM (JeDi-DGVM), a novel traits-based vegetation model, which simulates a large number of hypothetical plant growth strategies constrained by functional tradeoffs, thereby allowing for a more flexible temporal and spatial representation of the terrestrial biosphere. We run two sets of model experiments forced with the latest bias-corrected climate change scenarios from several different global climate models. In the first set, we simulate a diverse biosphere using a large number of plant growth strategies, allowing the modelled ecosystems to adapt through emergent changes in ecosystem composition. We then aggregate the surviving growth strategies from the first set of diverse simulations to a small number of biome-averaged growth strategies, recreating something akin to PFTs. We use this smaller set of PFT-like growth strategies to represent a sparse or low-diversity biosphere in the second set of model experiments. We quantify the importance of functional diversity by comparing key metrics of ecosystem functioning across the two sets of simulations. The results reveal the implications of using the common PFT vegetation modelling

  6. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2012-02-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern

  7. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2011-08-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland

  8. Large-scale winds in the southern North Sea region: The wind part of the KNMI'14 climate change scenarios

    NARCIS (Netherlands)

    Sterl, Andreas; Bakker, A; van den Brink, H; Haarsma, Reindert J.; Stepek, A; Wijnant, I; de Winter, R.C.

    2015-01-01

    The wind climate and its possible change in a warming world are important topics for many applications, among which are marine and coastal safety and wind energy generation. Therefore, wind is an important variable to investigate for climate change scenarios. In developing the wind part of the KNMI'

  9. The CLUVA project: Climate-change scenarios and their impact on urban areas in Africa

    Science.gov (United States)

    Di Ruocco, Angela; Weets, Guy; Gasparini, Paolo; Jørgensen, Gertrud; Lindley, Sarah; Pauleit, Stephan; Vahed, Anwar; Schiano, Pasquale; Kabisch, Sigrun; Vedeld, Trond; Coly, Adrien; Tonye, Emmanuel; Touré, Hamidou; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its main objective is the estimate of the impacts of climate changes in the next 40 years at urban scale in Africa. The mission of CLUVA is to develop methods and knowledge to assess risks cascading from climate-changes. It downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves and desertification. The project evaluates and links: social vulnerability; vulnerability of in-town ecosystems and urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. A multi-scale and multi-disciplinary quantitative, probabilistic, modelling is applied. CLUVA brings together climate experts, risk management experts, urban planners and social scientists with their African counterparts in an integrated research effort focusing on the improvement of the capacity of scientific institutions, local councils and civil society to cope with climate change. The CLUVA approach was set-up in the first year of the project and developed as follows: an ensemble of eight global projections of climate changes is produced for east and west Africa until 2050 considering the new IPCC (International Panel on Climate Changes; http://www.ipcc.ch/) scenarios. These are then downscaled to urban level, where territorial modeling is required to compute hazard effects on the vulnerable physical system (urban ecosystems, informal settlements, lifelines such as transportation and sewer networks) as well as on the social context, in defined time frames, and risk analysis is then employed to assess expected consequences. An investigation of the existing urban planning and governance systems and its interface with climate risks is performed. With the aid of the African partners, the developed approach

  10. Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands

    Science.gov (United States)

    Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

    2013-12-01

    In California there are over 18 million acres of rangelands in the Central Valley and the interior Coast Range, most of which are privately owned and managed for livestock production. Ranches provide extensive wildlife habitat and generate multiple ecosystem services that carry considerable market and non-market values. These rangelands are under pressure from urbanization and conversion to intensive agriculture, as well as from climate change that can alter the flow of these services. To understand the coupled and isolated impacts of land use and climate change on rangeland ecosystem services, we developed six spatially explicit (250 m) coupled climate/land use/hydrological change scenarios for the Central Valley and oak woodland regions of California consistent with three IPCC emission scenarios - A2, A1B and B1. Three land use land cover (LULC) change scenarios were each integrated with two downscaled global climate models (GCMs) (a warm, wet future and a hot, dry future) and related hydrologic data. We used these scenarios to quantify wildlife habitat, water supply (recharge potential and streamflow) and carbon sequestration on rangelands and to conduct an economic analysis associated with changes in these benefits. The USGS FOREcasting SCEnarios of land-use change model (FORE-SCE), which runs dynamically with downscaled GCM outputs, was used to generate maps of yearly LULC change for each scenario from 2006 to 2100. We used the USGS Basin Characterization Model (BCM), a regional water balance model, to generate change in runoff, recharge, and stream discharge based on land use change and climate change. Metrics derived from model outputs were generated at the landscape scale and for six case-study watersheds. At the landscape scale, over a quarter of the million acres set aside for conservation in the B1 scenario would otherwise be converted to agriculture in the A2 scenario, where temperatures increase by up to 4.5 °C compared to 1.3 °C in the B1 scenario

  11. The sustainable management of ameliorated peatlands on changed land use conditions; scenarios of constrains and possibilities

    Science.gov (United States)

    Shanskiy, , Merrit; Vollmer, Elis; Penu, Priit

    2015-04-01

    The utilization of organic soils for forestry or agriculture requires the land amelioration that could result on the peat losses from 15 to 20 t ha-1 in a year on following five years. After five years, the peat losses will be 5 - 15 t ha-1 in a year. The agricultural land resource on different types of organic soils (including ameliorated bogs) in Estonia is 360 000 ha that comprises 41% of total agricultural land area. The landscape iself is a valuable resource that considered to be a set of characteristics that satisfy needs of people using the landscape: economical or non-economical value; ecological, social, recreational, aesthetical, educational, scientific or even protective value. More diverse landscapes have higher biodiversity and yield more services to public, they are also seen as more sustainable and resilient to short-term changes. In order to maintain landscape diversity, sustainable maintenance is important. The purpose of current study was to estimate the land use potential on three different ameliorated peat areas and to develop the methodology for the futher sustainable utilization in order to secure the best ecological functioning of soil while taking into account maintaining and increasing landscape value. Therefore, site specific soil sampling (n=77) was carried out on predetermined eight study sites. Soil samples were analyzed for main agrochemical parameters (n=17; pHKCl, P, K, C%, N%, S%, ash, main anions and cations). This enables determing site-specific best suitable crops and land use scenarios. For the land resource description (soils type, topology) the digital soil map (1: 10,000) and field sudy based database were used for describing the model areas. For more specific identification of the field layers the Agricultural Registers and Information Board (ARIB) and databases of the Common Agricultural Policy (CAP) payments were used for subsidy schemes chekout. Estonian Nature Information System map tool was used to specify the

  12. Climate change impacts on water availability: developing regional scenarios for agriculture of the Former Soviet Union countries of Central Asia

    Science.gov (United States)

    Kirilenko, A.; Dronin, N.

    2010-12-01

    Water is the major factor, limiting agriculture of the five Former Soviet Union (FSU) of Central Asia. Elevated topography prevents moist and warm air from the Atlantic and Indian Oceans from entering the region.With exception of Kazakhstan, agriculture is generally restricted to oases and irrigated lands along the major rivers and canals. Availability of water for irrigation is the major factor constraining agriculture in the region, and conflicts over water are not infrequent. The current water crisis in the region is largely due to human activity; however the region is also strongly impacted by the climate. In multiple locations, planned and autonomous adaptations to climate change have already resulted in changes in agriculture, such as a dramatic increase in irrigation, or shift in crops towards the ones better suited for warmer and dryer climate; however, it is hard to differentiate between the effects of overall management improvement and the avoidance of climate-related losses. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and

  13. DDF-curves updating in climate change scenarios for Southern Italy

    Science.gov (United States)

    Liuzzoa, L.; Freni, G.

    2015-12-01

    Recently trends in extreme rainfall were investigated on the global, regional and local scales. On the global scale, there is robust observational evidence that the frequency and intensity of extreme events significantly changed over the last decades. For this reason, climate change effects on extreme rainfall should be accounted in the design of hydraulics infrastructures, in particular in the definition of rainfall depth-duration-frequency (DDF) curves. The purpose of this study is to provide an assessment of the effects of statistically significant trends in extreme rainfall on the rainfall depth-duration-frequency (DDF) curves for the return periods typically used in the design of urban drainage systems. The methodology proposed in this study was applied in Southern Italy, specifically in Sicily. Firstly, the detection and quantification of trends in the annual maximum rainfall series of different durations, recorded in 65 rain gauges over the 1950-2008 period, were carried out. For each duration, the moving averages were computed and then the Mann-Kendall test was applied. Results showed that, for all the durations, increasing and decreasing trends occurred over the examined period. The generalized extreme value distribution (GEV) has been employed to compute extreme rainfall with return periods equal to 5, 10 and 20 years. The magnitude of statistically significant trends were used in order to modify the GEV parameters and define the DDF curves in some climate scenarios. The study highlighted the need to revise and update design criteria to account for potential future variations of extreme rainfall due to climate change.

  14. Mapping socio-economic scenarios of land cover change: a GIS method to enable ecosystem service modelling.

    Science.gov (United States)

    Swetnam, R D; Fisher, B; Mbilinyi, B P; Munishi, P K T; Willcock, S; Ricketts, T; Mwakalila, S; Balmford, A; Burgess, N D; Marshall, A R; Lewis, S L

    2011-03-01

    We present a GIS method to interpret qualitatively expressed socio-economic scenarios in quantitative map-based terms. (i) We built scenarios using local stakeholders and experts to define how major land cover classes may change under different sets of drivers; (ii) we formalized these as spatially explicit rules, for example agriculture can only occur on certain soil types; (iii) we created a future land cover map which can then be used to model ecosystem services. We illustrate this for carbon storage in the Eastern Arc Mountains of Tanzania using two scenarios: the first based on sustainable development, the second based on 'business as usual' with continued forest-woodland degradation and poor protection of existing forest reserves. Between 2000 and 2025 4% of carbon stocks were lost under the first scenario compared to a loss of 41% of carbon stocks under the second scenario. Quantifying the impacts of differing future scenarios using the method we document here will be important if payments for ecosystem services are to be used to change policy in order to maintain critical ecosystem services. PMID:20932636

  15. Using scenario planning to evaluate the impacts of climate change on wildlife populations and communities in the Florida Everglades.

    Science.gov (United States)

    Catano, Christopher P; Romañach, Stephanie S; Beerens, James M; Pearlstine, Leonard G; Brandt, Laura A; Hart, Kristen M; Mazzotti, Frank J; Trexler, Joel C

    2015-04-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise. PMID:25371194

  16. Considering changing temporal structures in the construction of scenario-neutral runoff response surfaces

    Science.gov (United States)

    Vormoor, Klaus; Rössler, Ole; Bürger, Gerd; Weingartner, Rolf; Bronstert, Axel

    2016-04-01

    Climate change impact studies are usually based on traditional top-down approaches in which post-processed climate model data serves as input into some kind of impact model. Parallel to these traditional approaches, scenario-neutral bottom-up approaches have been developed as an alternative methodology which assesses the intrinsic vulnerability of a system towards climate change. Such bottom-approaches perform a sensitivity analysis of an impact model towards systematically 'user-defined' changes in the climate system and summarize its response in a two-dimensional matrix: the response surface. The climate change signal is obtained by perturbing observed time series, which serve as inputs into the impact models. The impact model is then run with all possible combinations of perturbed input data series and the result of each combination (i.e. the impact) is plotted as one single realization (i.e. one pixel) of possible climate change impacts over the two dimensional domain. Although the complexity of existing perturbation methods varies, the temporal structure (i.e. the seasonal- and day-to-day-variability) of these time series often remains the same, which is critical, in particular for the simulations of extremes. In this study, we present standardized response surfaces (SRS) that are based on impact simulations using both perturbed climate observations and projections which are scaled to a common domain. We apply this approach within the field of hydrology and estimate different aspects of runoff response, covering mean runoff as well as extremes like low flows and floods in a Nordic catchment with a mixed snowmelt/rainfall regime. Climate observations and projections from eight GCM-RCM combinations, downscaled by two different methods, are used for the perturbation which results in 17 different SRS. A series of linear regression- and linear mixed-effects models is applied to quantify the different effects of perturbing the climate input data and of the varying

  17. Consideration of environmental change in performance assessments.

    Science.gov (United States)

    Pinedo, P; Thorne, M; Egan, M; Calvez, M; Kautsky, U

    2005-01-01

    Depending on the particular circumstances in which a post-closure performance assessment of a radioactive waste repository is made, it may be appropriate to follow simple or more complex approaches in characterising the biosphere. Several different Example Reference Biospheres were explored in BIOMASS Theme 1 to address a range of issues that arise. Here, consideration is given to Example Reference Biospheres relevant to representing the implications of changes that may occur within the biosphere system during the period over which releases of radionuclides from a disposal facility might take place. Mechanisms of change considered include those extrinsic and intrinsic to the system of interest. An overall methodology for incorporating environmental change into assessments is proposed. This includes screening of primary mechanisms of change; identification of possible time sequences of change; development of a coherent description of the regional landscape response for each time sequence; integration of source term and geosphere-biosphere interface information; identification and description of one or more time series of assessment biospheres; and evaluation of the advantages and disadvantages of simulating the effects of sequences of biosphere systems and the transitions between them, or of defining a set of biosphere systems to be represented individually in a non-sequential analysis. The usefulness of the methodology is explored in two site-specific examples and one generic example. PMID:16198459

  18. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change

    DEFF Research Database (Denmark)

    Litchman, Elena; Edwards, Kyle F.; Klausmeier, Christopher A.;

    2012-01-01

    Phytoplankton are major primary producers in aquatic ecosystems and are sensitive to various aspects of global environmental change. They can respond through phenotypic plasticity, species sorting, genetic adaptation, or a combination of these processes. Here we present conceptual, experimental a...... be investigated simultaneously. Novel models of trait evolution in a community context should provide additional insights into potential adaptation trajectories under diverse global change scenarios...

  19. Environmental health implications of global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Robert T.; Patz, Jonathan; Gubler, Duane J.; Parson, Edward A.; Vincent, James H.

    2005-07-01

    This paper reviews the background that has led to the now almost-universally held opinion in the scientific community that global climate change is occurring and is inescapably linked with anthropogenic activity. The potential implications to human health are considerable and very diverse. These include, for example, the increased direct impacts of heat and of rises in sea level, exacerbated air and water-borne harmful agents, and - associated with all the preceding - the emergence of environmental refugees. Vector-borne diseases, in particular those associated with blood-sucking arthropods such as mosquitoes, may be significantly impacted, including redistribution of some of those diseases to areas not previously affected. Responses to possible impending environmental and public health crises must involve political and socio-economic considerations, adding even greater complexity to what is already a difficult challenge. In some areas, adjustments to national and international public health practices and policies may be effective, at least in the short and medium terms. But in others, more drastic measures will be required. Environmental monitoring, in its widest sense, will play a significant role in the future management of the problem. (Author)

  20. Monitoring adaptive genetic responses to environmental change

    DEFF Research Database (Denmark)

    Hansen, M.M.; Olivieri, I.; Waller, D.M.;

    2012-01-01

    to use genetic monitoring to study adaptive responses via repeated analysis of the same populations over time, distinguishing between phenotypic and molecular genetics approaches. After describing monitoring designs, we develop explicit criteria for demonstrating adaptive responses, which include testing...... for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We......% of the studies based on phenotypic variation did not test for selection as opposed to drift. These shortcomings can be addressed via improved experimental designs and statistical testing. We foresee monitoring of adaptive responses as a future valuable tool in conservation biology, for identifying populations...

  1. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    International Nuclear Information System (INIS)

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species–energy and species–area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect. (letter)

  2. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    Science.gov (United States)

    Powell, Thomas W. R.; Lenton, Timothy M.

    2013-06-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species-energy and species-area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect.

  3. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand.

    Science.gov (United States)

    Trisurat, Yongyut; Eawpanich, Piyathip; Kalliola, Risto

    2016-05-01

    The Thadee watershed, covering 112km(2), is the main source of water for agriculture and household consumption in the Nakhon Srithammarat Province in Southern Thailand. As the natural forests upstream have been largely degraded and transformed to fruit tree and rubber plantations, problems with landslides and flooding have resulted. This research attempts to predict how further land-use/land-cover changes during 2009-2020 and conceivable changes in rainfall may influence the future levels of water yield and sediment load in the Thadee River. Three different land use scenarios (trend, development and conservation) were defined in collaboration with the local stakeholders, and three different rainfall scenarios (average rainfall, climate change and extreme wet) were determined on the basis of literature sources. Spatially explicit empirical modelling was employed to allocate future land demands and to assess the contributions of land use and rainfall changes, considering both their separate and combined effects. The results suggest that substantial land use changes may occur from a large expansion of rubber plantations in the upper sub-watersheds, especially under the development land use scenario. The reduction of the current annual rainfall by approximately 30% would decrease the predicted water yields by 38% from 2009. According to the extreme rainfall scenario (an increase of 36% with respect to current rainfall), an amplification of 50% of the current runoff could result. Sensitivity analyses showed that the predicted soil loss is more responsive to changes in rainfall than to the compared land use scenarios alone. However, very high sediment load and runoff levels were predicted on the basis of combined intensified land use and extreme rainfall scenarios. Three conservation activities-protection, reforestation and a mixed-cropping system-are proposed to maintain the functional watershed services of the Thadee watershed region. PMID:26915561

  4. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand.

    Science.gov (United States)

    Trisurat, Yongyut; Eawpanich, Piyathip; Kalliola, Risto

    2016-05-01

    The Thadee watershed, covering 112km(2), is the main source of water for agriculture and household consumption in the Nakhon Srithammarat Province in Southern Thailand. As the natural forests upstream have been largely degraded and transformed to fruit tree and rubber plantations, problems with landslides and flooding have resulted. This research attempts to predict how further land-use/land-cover changes during 2009-2020 and conceivable changes in rainfall may influence the future levels of water yield and sediment load in the Thadee River. Three different land use scenarios (trend, development and conservation) were defined in collaboration with the local stakeholders, and three different rainfall scenarios (average rainfall, climate change and extreme wet) were determined on the basis of literature sources. Spatially explicit empirical modelling was employed to allocate future land demands and to assess the contributions of land use and rainfall changes, considering both their separate and combined effects. The results suggest that substantial land use changes may occur from a large expansion of rubber plantations in the upper sub-watersheds, especially under the development land use scenario. The reduction of the current annual rainfall by approximately 30% would decrease the predicted water yields by 38% from 2009. According to the extreme rainfall scenario (an increase of 36% with respect to current rainfall), an amplification of 50% of the current runoff could result. Sensitivity analyses showed that the predicted soil loss is more responsive to changes in rainfall than to the compared land use scenarios alone. However, very high sediment load and runoff levels were predicted on the basis of combined intensified land use and extreme rainfall scenarios. Three conservation activities-protection, reforestation and a mixed-cropping system-are proposed to maintain the functional watershed services of the Thadee watershed region.

  5. Atmospheric Aspects of Recent Arctic Environmental Change

    Science.gov (United States)

    Serreze, M. C.

    2002-12-01

    Evidence assembled over the past several decades shows the Arctic system as in the midst of significant environmental change. This includes pronounced warming over most land areas, reductions in sea ice extent, alterations in precipitation, river discharge and sea ice circulation, and warming and increased areal extent of the Arctic Ocean's Atlantic layer. The accepted paradigm is that these changes relate to general dominance of the positive phase of the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO). The AO is defined as the leading mode of Northern Hemisphere sea level pressure variability. It can be considered as an index of the strength of the circumpolar vortex. Circulation variability associated with the AO is most pronounced over the Atlantic sector, such that its index is strongly correlated with that of the NAO, which describes mutual strengthening and weakening of the Icelandic Low and Azores High. Whether the AO is a more fundamental mode than the NAO is acontinuing issue of debate. In the broadest sense, environmental changes associated with the dominant positive phase of the AO/NAO are responses to alterations in surface wind regimes and transports of heat and moisture. However, linkages with some variables, such as winter discharge from the Siberian rivers, appear to be indirect. Furthermore, while the AO/NAO is best expressed in winter, many Arctic changes, such as reduced sea ice extent, are most apparent during summer. Variability in other key variables, such as precipitation over the Eurasian Arctic watersheds, exhibit only weak links. The AO/NAO are natural modes of variability which operate on a spectrum of time scales. There is ample evidence that multidecadal variability in the AO/NAO relates to variability in sea surface temperatures. However, growing evidence suggests that the recent positive tendency may contain an anthropogenic component. A leading contender is stratospheric ozone loss. In this framework, the atmospheric

  6. Development of flood regressions and climate change scenarios to explore estimates of future peak flows

    Science.gov (United States)

    Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.

    2015-12-31

    A new Web-based application, titled “Application of Flood Regressions and Climate Change Scenarios To Explore Estimates of Future Peak Flows”, has been developed by the U.S. Geological Survey, in cooperation with the New York State Department of Transportation, that allows a user to apply a set of regression equations to estimate the magnitude of future floods for any stream or river in New York State (exclusive of Long Island) and the Lake Champlain Basin in Vermont. The regression equations that are the basis of the current application were developed in previous investigations by the U.S. Geological Survey (USGS) and are described at the USGS StreamStats Web sites for New York (http://water.usgs.gov/osw/streamstats/new_york.html) and Vermont (http://water.usgs.gov/osw/streamstats/Vermont.html). These regression equations include several fixed landscape metrics that quantify aspects of watershed geomorphology, basin size, and land cover as well as a climate variable—either annual precipitation or annual runoff.

  7. The Guayas Estuary and sea level corrections to calculate flooding areas for climate change scenarios

    Science.gov (United States)

    Moreano, H. R.; Paredes, N.

    2011-12-01

    The Guayas estuary is the inner area of the Gulf of Guayaquil, it holds a water body of around 5000 km2 and the Puna island divides the water flow in two main streams : El Morro and Estero Salado Channel (length: 90 Km.) and Jambeli and Rio Guayas Channel (length: 125km.). The geometry of the estuarine system with the behavior of the tidal wave (semidiurnal) makes tidal amplitude higher at the head than at the mouth, whereas the wave crest at the head is delayed from one and a half to two hours from that at the mouth and sea level recorded by gages along the estuary are all different because of the wave propagation and mean sea level (msl) calculated for each gage show differences with that of La Libertad which is the base line for all altitudes on land (zero level). A leveling and calculations were made to correct such differences in a way that all gages (msl) records were linked to La Libertad and this in turn allowed a better estimates of flooding areas and draw them on topographic maps where zero level corresponds to the mean sea level at La Libertad. The procedure and mathematical formulation could be applied to any estuary or coastal area and it is a useful tool to calculate such areas especially when impacts are on people or capital goods and related to climate change scenarios.

  8. Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios

    Science.gov (United States)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2016-01-01

    We project glacier surface mass balances of the Altai Mountains over the period 2006-2100 for the representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios using daily near-surface air temperature and precipitation from 12 global climate models in combination with a surface mass balance model. The results indicate that the Altai glaciers will undergo sustained mass loss throughout the 21st for both RCPs and reveal the future fate of glaciers of different sizes. By 2100, glacier area in the region will shrink by 26 ± 10 % for RCP4.5, while it will shrink by 60 ± 15 % for RCP8.5. According to our simulations, most disappearing glaciers are located in the western part of the Altai Mountains. For RCP4.5, all glaciers disappearing in the twenty-first century have a present-day size smaller than 5.0 km2, while for RCP8.5, an additional ~7 % of glaciers in the initial size class of 5.0-10.0 km2 also vanish. We project different trends in the total meltwater discharge of the region for the two RCPs, which does not peak before 2100, with important consequences for regional water availability, particular for the semi-arid and arid regions. This further highlights the potential implications of change in the Altai glaciers on regional hydrology and environment.

  9. A study assessing patient satisfaction in a tertiary care hospital in India: the changing healthcare scenario.

    Science.gov (United States)

    Agarwal, Aashima; Garg, Shalini; Pareek, Udai

    2009-06-01

    The healthcare service scenario in India is expected to evolve into a more developed stage. More emphasis has been given on patient satisfaction as this is an important consideration for the assessment of the hospital services. The concept of patient satisfaction is also rapidly changing and the hospitals are using variety of techniques to improve patient care and organizational efficiency. Patient satisfaction questionnaire is a validated instrument to assess the level of the satisfaction of adult patients. The questionnaire was administered on those patients who were admitted in hospital for at least three days. In our study 88% patients were satisfied with treatment and medical care they had received. About 86% patients found that the hospital services were excellent. However, it is felt that patient values and culture should be explored for further improving patient doctor communication. There is hence a scope for improvement in meeting patient's needs and preferences and rendering hospital services. This can be achieved by some feedback system which could be available to the patients and later worked upon by the management, to improve the patient care by bridging the gap between senior management and patients. PMID:22010498

  10. Forecasting sudden changes in environmental pollution patterns

    Science.gov (United States)

    Olascoaga, María J.; Haller, George

    2012-01-01

    The lack of reliable forecasts for the spread of oceanic and atmospheric contamination hinders the effective protection of the ecosystem, society, and the economy from the fallouts of environmental disasters. The consequences can be dire, as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010. We present a methodology to predict major short-term changes in environmental contamination patterns, such as oil spills in the ocean and ash clouds in the atmosphere. Our approach is based on new mathematical results on the objective (frame-independent) identification of key material surfaces that drive tracer mixing in unsteady, finite-time flow data. Some of these material surfaces, known as Lagrangian coherent structures (LCSs), turn out to admit highly attracting cores that lead to inevitable material instabilities even under future uncertainties or unexpected perturbations to the observed flow. These LCS cores have the potential to forecast imminent shape changes in the contamination pattern, even before the instability builds up and brings large masses of water or air into motion. Exploiting this potential, the LCS-core analysis developed here provides a model-independent forecasting scheme that relies only on already observed or validated flow velocities at the time the prediction is made. We use this methodology to obtain high-precision forecasts of two major instabilities that occurred in the shape of the Deepwater Horizon oil spill. This is achieved using simulated surface currents preceding the prediction times and assuming that the oil behaves as a passive tracer. PMID:22411824

  11. Estimating Soil Organic Carbon Sequestration in Rice Paddies as Influenced by Climate Change under Scenario A2 and B2 of an i-EPIC model of Thailand

    Directory of Open Access Journals (Sweden)

    Noppol Arunrat

    2014-01-01

    Full Text Available Carbon sequestration in soils constitutes an important option that can be used to reduce CO2 emissions to the atmosphere and reduce environmental impacts. Soil organic carbon (SOC is both a source of carbon release and a sink for carbon sequestration. Our objectives in this study were to validate the interactive Environmental Policy Impact Calculator (i-EPIC model version 0509, as well as to estimate SOC sequestration under climate change scenarios A2 and B2 SRES emission scenarios in Thailand. The SOC estimated by i-EPIC was compared with data from the Office of Soil Resources Survey and Research, Land Development Department. The results indicated that performance testing of i-EPIC is able to estimate SOC. Validation of SOC proved to be satisfactory with a resulting root mean square error (RMSE % value of 34.60. The SOC content showed a decreasing trend under B2 and A2 climate scenarios (average 0.87% and 0.85%, respectively compared to the reference from 2007 (average 0.92%. Stepwise regression analysis also revealed that carbon from residue decomposition, biomass pool carbon, and the total change of the carbon pool were directly correlated with the SOC (R2= 0.99, p< 0.01. Furthermore, the change from rain supplied water to irrigation also resulted in an increase of carbon inputs but a decrease in the SOC sequestered during the 2007-2017 period. Regression analyses indicated that soil carbon sequestration responds linearly to carbon input. Significant changes in carbon input as well as decreases in SOC levels were observed as temperature and precipitation increased. Based on the testing and analysis, we concluded that i-EPIC is capable of reliably simulating effects of climate change on SOC sequestration. Based on the results, this knowledge and information can increase effectiveness in the promotion of integrated rice management for rice production in Thailand.

  12. Winter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indices

    Science.gov (United States)

    Hong, Ja-Young; Ahn, Joong-Bae; Jhun, Jong-Ghap

    2016-03-01

    The changes in the winter climatology and variability of the East Asian winter monsoon (EAWM) for the late 21st century (2070-2099) under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected in terms of EAWM indices (EAWMIs). Firstly, the capability of the climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating the boreal winter climatology and the interannual variability of the EAWM for the late 20th century (1971-2000) is examined. Nine of twenty-three climate models are selected based on the pattern correlations with observation and a multi-model ensemble is applied to the nine model data. Three of twelve EAWMIs that show the most significant temporal correlations between the observation and CMIP5 surface air temperatures are utilized. The ensemble CMIP5 is capable of reproducing the overall features of the EAWM in spite of some biases in the region. The negative correlations between the EAWMIs and boreal winter temperature are well reproduced and 3-5 years of the major interannual variation observed in this region are also well simulated according to power spectral analyses of the simulated indices. The fields regressed onto the indices that resemble the composite strong winter monsoon pattern are simulated more or less weakly in CMIP5 compared to the observation. However, the regressed fields of sea level pressure, surface air temperature, 500-hPa geopotential height, and 300-hPa zonal wind are well established with pattern correlations above 0.83 between CMIP5 and observation data. The differences between RCPs and Historical indicate strong warming, which increases with latitude, ranging from 1 to 5 °C under RCP4.5 and from 3 to 7 °C under RCP8.5 in the East Asian region. The anomalous southerly winds generally become stronger, implying weaker EAWMs in both scenarios. These features are also identified with fields regressed onto the indices in RCPs. The future projections reveal

  13. Changing women's roles, changing environmental knowledges: evidence from Upper Egypt

    OpenAIRE

    Briggs, J.; Sharp, J.; Hamed, N.; Yacoub, H.

    2003-01-01

    The aim of this paper is to investigate the ways in which changing gender roles in a Bedouin community in Upper Egypt, brought about by settlement over the last 20 years on the shores of Lake Nasser, have impacted on the accumulation and development of indigenous environmental knowledges by Bedouin women. The research was carried out among four groups of Ababda Bedouin in the Eastern Desert of Egypt and involved in-depth monthly conversations carried out over a period of 12 months. The main c...

  14. Integrating Collaboration, Adaptive Management, and Scenario-Planning to Address Rapid Change: Experiences at Las Cienegas National Conservation Area

    Science.gov (United States)

    Caves, J. K.; Bodner, G.; Simms, K.; Fisher, L.; Robertson, T.

    2012-12-01

    There is growing recognition that public lands cannot be managed as islands; rather, land management must address the ecological, social, and temporal complexity that often spans jurisdictions and traditional planning horizons. Collaborative decision-making and adaptive management (CAM) have been promoted as methods to reconcile competing societal demands and respond to complex ecosystem dynamics. We present the experiences of land managers and stakeholders in using CAM at Las Cienegas National Conservation Area (LCNCA), a highly valued site under the jurisdiction of the Bureau of Land Management (BLM). The CAM process at Las Cienegas is marked by strong stakeholder engagement, with four core elements: 1) shared watershed goals with measurable resource objectives; 2) mechanisms to incorporate new information into decision-making; 3) efforts to make information increasingly relevant and reliable; and 4) shared learning to improve both the process and management actions. The combination of stakeholder engagement and adaptive management has led to agreement on contentious issues, more innovative solutions, and more effective land management. Yet the region is now experiencing rapid changes outside managers' control—including climate change, human population growth, and reduced federal budgets—with large but unpredictable impacts on natural resources. While CAM experience provides a strong foundation for making the difficult and contentious management decisions that such changes are likely to require, neither collaboration nor adaptive management provides a sufficient structure for addressing uncontrollable and unpredictable change. As a result, LCNCA is exploring two specific modifications to CAM that may better address emerging challenges, including: 1) Creating nested resource objectives to distinguish between those objectives which may be crucial from those which may hinder a flexible response to climate change, and 2) Incorporating scenario planning into CAM

  15. Moving past framing climate change as an environmental issue (Invited)

    Science.gov (United States)

    Ebi, K. L.

    2013-12-01

    Continuing to frame climate change as an environmental issue can limit understanding by decision-makers and the public of the magnitude of the challenges faced by human and natural systems as the climate continues to change. Environmental issues are typically researched and managed using methods and tools that have been effective in dealing with other environmental concerns, from tropospheric ozone to lead exposure. Risk assessment is a commonly used approach to understanding the risk(s) posed by an agent, with four basic steps: (1) hazard identification; (2) dose-response assessment; (3) exposure assessment; and (4) risk characterization. This framing does not fully capture the complex interrelationships and feedbacks that often characterize the risks of climate change; understanding these can lead to better-informed decisions. Challenges with using traditional risk assessment to understand the health risks of climate change, for example, include the 'exposure' can range from increases in the mean and/or variance of temperature, precipitation, and other weather variables, to ocean acidification. Each is associated with a range of adverse health outcomes, with many associations indirect and/or nonlinear. Further, uncertainty about the magnitude, timing, and nature of changes in the climate system results in a need to estimate the potential impacts under a range of possible scenarios. In addition, most climate-sensitive health outcomes have multiple, contributing causes that may be interrelated, making it difficult to single out the influence of climate change against a backdrop of other risk factors, including socioeconomic factors, that also will change over time. In short, the primary assumption underlying traditional risk assessment -- that a defined exposure to a specific agent causes an adverse health outcome to identifiable exposed populations -- does not apply to climate change. Climate literacy can be improved by moving the framing from a relatively linear

  16. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    Directory of Open Access Journals (Sweden)

    Karine Princé

    Full Text Available Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform

  17. Quantifying and valuing potential climate change impacts on coral reefs in the United States: comparison of two scenarios.

    Directory of Open Access Journals (Sweden)

    Diana R Lane

    Full Text Available The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a "business as usual" (BAU greenhouse gas (GHG emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers' recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated "avoided loss" from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100.

  18. Hydrological projections of climate change scenarios in the Lena and the Mackenzie basins: modeling and uncertainty issues

    Science.gov (United States)

    Gelfan, Alexander; Gustafsson, David; Motovilov, Yury; Arheimer, Berit; Kalugin, Andrei; Krylenko, Inna; Lavrenov, Alexander

    2016-04-01

    The ECOMAG and the HYPE regional hydrological models were setup to assess possible impacts of climate change on the hydrological regime of two pan-Arctic great drainage basins: the Lena and the Mackenzie rivers. We firstly assessed the reliability of the hydrological models to reproduce the historical streamflow series and analyse the hydrological projections from the climate change scenarios. The impacts were assessed in three 30-year periods: early- (2006-2035), mid- (2036-2065) and end-century (2070-2099) using an ensemble of five GCMs and four Representative Concentration Pathways (RCP) scenarios. Results show, particularly, that the basins react with multi-year delay to changes in the RCP2.6 mitigation (peak-and-decline) scenario, and consequently to the potential mitigation measures. Then we assessed the hydrological projections' uncertainty, which is caused by the GCM's and RCP's variabilities, and indicated that the uncertainty rises with the time horizon of the projection and, generally, the uncertainty interval is wider for Mackenzie than for Lena. We finally compare the potential future hydrological impacts predicted based on the GCM-scenario ensemble approach and the delta-change transformation method of the historical observations. We found that the latter method can produce useful information about the climate change impact in the great Arctic rivers, at least for the nearest decades.

  19. Hydrologic response of Upper Ganga basin under changing land use and climate scenarios

    Science.gov (United States)

    Mujumdar, P.; Chawla, I.

    2013-12-01

    In the backdrop of recent devastation caused by flooding of the Ganga River in the upstream reaches of Uttarakhand region, India, it has become necessary to understand the implications of climate variability and human induced changes in landscape on the hydrology of the region. The present study assesses the effect of changing land use and climate on the hydrology of the Upper Ganga basin (UGB) using the Variable Infiltration Capacity (VIC) model. Initially, the temporal changes in land use and land cover (LULC) of the region are identified using high resolution multispectral satellite imageries from Landsat, for the years 1973, 1980, 2000 and 2011. The LULC analysis results show an increase in crop land and urban area in the region by 47% and 122% respectively from 1973 to 2011. After an initial decline in dense forest for three decades (from 14.5% in 1973 to 11.44% in 2000), a slight increase in dense forest is observed between 2000- 2011,from 11.44% to 14.8%. The scrub forest area and the barren land are observed to decline in the study region by 62% and 96% respectively since 1973. The land cover information along with meteorological data and soil data are used to drive the VIC model to investigate the impact of LULC changes on hydrological processes such as streamflow, baseflow, evapotranspiration (ET) and soil moisture in the UGB. For the simulation purpose, the basin is divided into three regions: (1) upstream, (2) midstream and (3) downstream. The VIC model is calibrated and validated for all the three regions independently at monthly time scale. The model outputs from the three regions are aggregated appropriately to generate the hydrologic response of the entire UGB. Using the calibrated model for the three regions of the UGB, sensitivity analysis is performed by generating hydrologic scenarios corresponding to different land use (LU) and climate conditions. The results from an experiment in which the climate is held constant at 1971 level and effect of

  20. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    Science.gov (United States)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  1. The impacts of climate and land-use change scenarios on river ecology: the case of Margaritifera margaritifera

    Science.gov (United States)

    Santos, Regina; Fernandes, Luís; Varandas, Simone; Pereira, Mário; Sousa, Ronaldo; Teixeira, Amilcar; Lopes-Lima, Manuel; Cortes, Rui; Pacheco, Fernando

    2015-04-01

    Climate change is one of the most important causes of biodiversity loss in freshwater ecosystems and it is expected to cause extinctions in many species in the future. Freshwater ecosystems are also highly affected by anthropogenic pressures such as land use/land cover changes, water abstractions and impoundments. The aim of this study is to assess the impacts of future climate and land-use in the Beça River (northern Portugal) namely on the conservation status of the endangered pearl mussel Margaritifera margaritifera (Linnaeus, 1758). This is an environmental indicator and endangered species currently present in several stretches of the Beça River that still hold adequate ecological conditions. However, the species is threatened by the precipitation decrease projected for the 21st century and the deviation of a significant portion of the river water to an adjacent watershed (since 1998). This decrease in river water can be especially acute during the summer months, forming small pools dispersed along the water course where M. margaritifera, and its host (Salmo trutta), barely find biological conditions for survival. The materials and methods used in this study include; (i) the assessment of water quality based on minimum, maximum and average values of relevant physicochemical parameters within the period 2000-2009; (ii) assessment of future climate change settings based on air temperature and precipitation projected by Regional and Global Circulation Models for recent past (1961 - 1990) and future climate scenarios (2071 - 2099); (iii) data processing to remove the model biases; and, (iv) integrated watershed modelling with river-planning (Mike Basin) and broad GIS (ArcMap) computer packages. Our findings comprise: (i); a good relationship between current wildfire incidence and river water quality; (ii) an increase in the future air temperature throughout the year; (iii) increases in future precipitations during winter and decreases during the other seasons

  2. Detecting environmental change using stable isotopes

    International Nuclear Information System (INIS)

    Changing land use is one of the primary causes of increased sedimentation and nturient levels in aquqatic systems, resulting in contamiantion and reduction of biodiversity. Detecting and quantifying these inputs is the first step of remediation, to enable targeted reduction of transport processes into waterways from human impacted land surfaces. More recently, stable isotope analyses are being used as a detection and quantification tool in aquatic environments. Carbon and nitrogen isotopes of sediments, algae and invertebrates from aquatic systems can be used as proxies to record both short and long term enviornmental cahgne. Excess nutrients derived from urbanization, industry, forestry, farming and agriculture increase the bio-availability of nitrogen to aquatic organisms, changing their natural 15N isotopic signatures. Allochthonous (terrestrial) input from soil destabilization and human activity in surrounding catchments changes the 13C isotope ratios and increases the C:N ratio of sediments. Heavy metal and other organic pollutants can also be used to indicate urbanization and industrial contamination. The comined use of carbon and nitrogen isotopes, C:N ratios and heavy metals are powerful environmental monitoring tools which are useful indicators of source and transport pathways of terrestrial derive dmaterial and anthropogenic pollutants into streams, rivers and estuaries. (author). 56 refs., 10 figs., 3 tabs.

  3. Environmental hazard of selected TiO 2 nanomaterials under consideration of relevant exposure scenarios

    OpenAIRE

    Wyrwoll, Anne

    2015-01-01

    In the last decades the production and use of nanomaterials, such as titanium dioxide nanomaterials (nano-TiO2), increased extensively. To support a sustainable nanotechnology, it is essential to investigate the environmental risks of nanomaterials. However, it remains unclear whether in the context of the European Chemical Regulation Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) the nano and bulk form of a substance have to be registered separately or not, ...

  4. Environmental effects on advanced cladding materials under normal and accident scenarios

    International Nuclear Information System (INIS)

    Environmental aspects for the performance of advanced accident tolerant fuel candidate clad materials are examined. Specifically, high-temperature steam oxidation and hydrothermal corrosion in LWR environments is considered. As the current understanding of many of the mechanisms underlying these degradation mechanisms are not fully understood, the current program to be described is a combination of practical data generation and fundamental materials science. Some preliminary observations are summarized in this manuscript. (author)

  5. Evolution of extreme temperatures over western Iberia; reporting on recent changes and future scenarios

    Science.gov (United States)

    Ramos, Alexandre M.; Trigo, Ricardo M.; Santo, Fátima E.

    2010-05-01

    We report on changes in surface air temperature extremes over mainland Portugal during the period 1941-2006 using daily maximum and minimum temperatures (Tmax and Tmin) from 23 of the most reliable Portuguese station records. Here we have used indices corresponding to the number of days above the 90th and below the 10th percentile for both Tmax and Tmin. This allowed us, to compute trends for the entire period of data (1941-2006) as well as for two consecutive 31-year periods: 1945-1975 (relative cooling period) and 1976-2006 (relative warming period), based on results found by Karl et al, 2000. The most striking results are related with the last period (1976-2006) that reveal a significant increase in extreme heat events for both spring and summer seasons, and a decrease in extreme cold events in winter. In the second part of this work we present an analysis of climate change over Portugal simulated by the Hadley Centre regional climate model (HadRM3) with data obtained from Project PRUDENCE. The ability of the model to reproduce the present climate (1961-1990) is tested and evaluated. For this purpose, values of Tmax and Tmin of all 23 climatological weather stations (1961-1990 climate normals) were aggregated into a new time series. Additionally we have computed the seasonal percentiles in 1% steps (ranging from 1% to 99%). For comparison purposes we have aggregated HadRM3 values into a new time series averaging grid points located closest to the 23 climatological weather stations considered, and computed the corresponding seasonal percentiles in 1% steps. This procedure allowed an objective comparison between the two probability distributions (climatological and simulated by the model), using standard q-q plots. Finally we have evaluated changes of probability distributions for future climate projections under the IPCC emission scenarios (B2 and A2), for the period between 2071-2100 when compared to the present climate (1961-1990) simulated by the model. The

  6. Amphibians as models for studying environmental change.

    Science.gov (United States)

    Hopkins, William A

    2007-01-01

    The use of amphibians as models in ecological research has a rich history. From an early foundation in studies of amphibian natural history sprang generations of scientists who used amphibians as models to address fundamental questions in population and community ecology. More recently, in the wake of an environment that human disturbances rapidly altered, ecologists have adopted amphibians as models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change. Some of the characteristics of amphibians that make them useful models for studying these environmental problems are highlighted, including their trophic importance, environmental sensitivity, research tractability, and impending extinction. The article provides specific examples from the recent literature to illustrate how studies on amphibians have been instrumental in guiding scientific thought on a broad scale. Included are examples of how amphibian research has transformed scientific disciplines, generated new theories about global health, called into question widely accepted scientific paradigms, and raised awareness in the general public that our daily actions may have widespread repercussions. In addition, studies on amphibian declines have provided insight into the complexity in which multiple independent factors may interact with one another to produce catastrophic and sometimes unpredictable effects. Because of the complexity of these problems, amphibian ecologists have been among the strongest advocates for interdisciplinary research. Future studies of amphibians will be important not only for their conservation but also for the conservation of other species, critical habitats, and entire ecosystems.

  7. Introduction to Holocene environmental change in Kamchatka

    Science.gov (United States)

    Brooks, S. J.; Diekmann, B.; Jones, V. J.; Hammarlund, D.

    2015-11-01

    This volume brings together a collection of papers on Holocene environmental change in the Kamchatka Peninsula, in the Russian Far East. Much of the work that appears in these papers was completed under the auspices of two major research activities: a UK NERC-funded project Influence of global teleconnections on Holocene climate in Kamchatka, which dealt with the analysis of lake records collected during the Swedish Beringia 2005 expedition organised by the Swedish Polar Research Secretariat; and a Russian-German multidisciplinary research project KALMAR - Kurile-Kamchatka and Aleutian Marginal Sea-Island Arc Systems: Geodynamic and Climate Interaction in Space and Time, funded by the German Federal Ministry of Education and Research (BMBF).

  8. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    Science.gov (United States)

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in

  9. Phytoremdiation Species And Their Modification Under By Weed Varying Climatic Condition A Changing Scenario

    Directory of Open Access Journals (Sweden)

    Anita Singh

    2015-08-01

    Full Text Available Abstract The major reasons for environmental contamination are population explosion increase in industrial and other urban activities. One of the consequent effect of these activities is heavy metal pollution. It is one of the serious issue to be discussed by the scientists and academicians that how to solve this problem to protect the environment. As heavy metals are non-biodegradable so they require effective cleanup technology. Most of the traditional methods such as excavation solidification and burial are very costly or they simply involve the isolation of the metals from contaminated sites. Among different technologies phytoremediation is best approach for removing metal contamination from environment. It involves plants to remove detoxify or immobilize metals from environment. Weed plants are found to be play very important role in metal remediation. They get affected by climatic variation which is also a consequent effect of environmental pollution. The physiology of plants as well as physiochemical properties of soil gets affected by varying climatic condition. Therefore the present review gives the information on metal remediation processes and how these process particularly phytoremediation by weed plants get affected by climatic changes.

  10. Surgical interventions in intracranial arteriovenous malformations: Indications and outcome analysis in a changing scenario

    Directory of Open Access Journals (Sweden)

    Thapa Amit

    2009-01-01

    Full Text Available Background : Intracranial arteriovenous malformations (AVM are being increasingly managed by multimodality approach. This changing scenario encouraged us to study the present state of surgery in intracranial AVMs and the outcomes. Materials and Methods : Of a total of 868 patients evaluated for suspected or known AVMs between January 2000 and July 2008, 790 had intracranial AVMs. The clinical characteristics and surgical outcomes of the 111 opeated patients were analyzed. Results : Of the 111 patients, 73 were males. Clinical features included: Headache (70%, loss of consciousness (48% and seizures (32%. The commonest AVM grade was Spetzler-Martin (SM grade II (41%, 7% had AVM> 6 cm and 78% had evidence of bleed. In total 143 surgeries were performed and 22% of patients required multiple interventions. The types of surgical interventions included elective excision of AVM in 23%, emergency surgery (either AVM excision or evacuation of hematoma in 55%, surgery following radiosurgery/embolization in 5% and palliative non-definitive surgeries (e.g. shunt in 15%. Post-operative angiography was done in 67% of patients. Obliteration rates for elective excision of AVM in Spetzler Martin Grade I, II, IIIa, IIIb and IV were 100%, 71%, 33%, 50% and 67% respectively (mean follow-up:31.6 months. Of 39 patients with residual AVMs, 33 received gamma knife and four underwent embolization. Outcome was modified Rankin scale (mRS grade 1 in 34% of paitnets and the overall favorable outcome was 83% and there were six deaths. Conclusion : In our patients′ cohort one in every eight patients required surgery. In intracranial AVMs, surgery still plays an important role. In developing countries like India it may be beneficial to electively excise Grade I and II AVMs if cost is a consideration.

  11. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.

    Science.gov (United States)

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-04-01

    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness.

  12. Future changes in atmospheric condition for the baiu under RCP scenarios

    Science.gov (United States)

    Okada, Y.; Takemi, T.; Ishikawa, H.

    2015-12-01

    This study focuses on atmospheric circulation fields during the baiu in Japan with global warming projection experimental data conducted using a 20-km mesh global atmospheric model (MRI-AGCM3.2) under Representative Concentration Pathways (RCP) scenarios. This model also used 4 different sea surface temperature (SST) initial conditions. Support of this dataset is provided by the Meteorological Research Institute (MRI). The baiu front indicated by the north-south gradient of moist static energy moves northward in present-day climate, whereas this northward shift in future climate simulations is very slow during May and June. In future late baiu season, the baiu front stays in the northern part of Japan even in August. As a result, the rich water vapor is transported around western Japan and the daily precipitation amount will increase in August. This northward shift of baiu front is associated with the westward expansion of the enhanced the North Pacific subtropical high (NPSH) into Japan region. However, the convective activity around northwest Pacific Ocean is inactive and is unlikely to occur convective jump (CJ). These models show that the weak trough exists in upper troposphere around Japan. Therefore, the cold advection stays in the northern part of Japan during June. In July, the front due to the strengthening of the NPSH moves northward, and then it stays until August. This feature is often found between the clustered SSTs, Cluster 2 and 3. The mean field of future August also show the inflow of rich water vapor content to Japan islands. In this model, the extreme rainfall suggested tends to almost increase over the Japan islands during future summer. This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).

  13. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.

    Science.gov (United States)

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-04-01

    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness. PMID:26841292

  14. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget

    NARCIS (Netherlands)

    Karjalainen, T.; Pusinen, A.; Liski, J.; Nabuurs, G.J.; Eggers, T.; Lapveteläinen, T.; Kaipainen, T.

    2003-01-01

    Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of

  15. Analysis of climate change scenarios in an olive orchard microcatchment in Spain using the model WIMMED

    Science.gov (United States)

    Guzmán, Enrique; Aguilar, Cristina; José Polo, María; Taguas, Encarnación V.

    2015-04-01

    Olive orchards constitute traditional systems in the Mediterranean Basin. In Andalusia, Southern Spain, more than 1.5Mha are dedicated to olive crop land use, which represent a production of 1Mt of olive oil per year. This is a strategic economic sector with environmental and social relevance. In the context of climate change in Andalusia, the Intergovernmental Panel on Climate Change has highlighted that an increase of temperatures and rainfall intensities as well as the reduction of cumulated rainfall might be expected. This may mean serious detrimental economic and environmental risks associated to floods and the reduction of available water resources which would be convenient to quantify. The objective of this work is to analyse the rainfall-runoff relationships in an olive orchard catchment by the application of the distributed hydrological model WIMMED (Herrero et al., 2009) simulating the effects of climate change, with a special emphasis on extreme events. Firstly, the model was calibrated and validated with 9 maximum annual events of a datasets from 2005-2012 obtained in an olive orchard catchment in Spain (Taguas et al., 2010). In this stage, only the saturated hydraulic conductivity and soil moisture in saturation were adjusted after a sensitivity analysis where 68 simulations were carried out. A good agreement was obtained between observed and simulated hydrographs. The mean errors and the root mean square errors were 0.18 mm and 2.19 mm for the calibration and 0.18 and 1.94 mm, for the validation. Finally, the catchment response to the increase of intensity and temperature and the reduction of cumulated rainfall were simulated for the maximum event of the series. The results showed a rise of 11% of the runoff coefficient quantifying the possible impact of climate change. REFERENCES Herrero J, Polo M., Moñino A., Losada MA (2009). An energy balance snowmelt model in a Mediterranean site. J. Hydrol. 371, pp. 98-107 Taguas EV, Peña A, Ayuso JL, Yuan Y

  16. A change navigation-based, scenario planning process within a developing world context from an Afro-centric leadership perspective

    Directory of Open Access Journals (Sweden)

    Chris A. Geldenhuys

    2011-02-01

    Full Text Available Orientation: In the hyper turbulent context faced currently by organisations, more flexible strategic planning approaches, such as scenario planning which take into account a more comprehensive range of possible futures for an organisation, will position organisations better than conventional forecast and estimates that depend only on a single, linearly extrapolated, strategic response.Research purpose: This study aimed to investigate how scenario-based planning (a strictly cognitive management tool can be combined with organisational change navigation (a practice addressing the emotionality of change and how this integrated process should be aligned with the prerequisites imposed by a developing country context and an Afro-centric leadership perspective in order to make the process more context relevant and aligned.Motivation for the study: The integration of organisational change navigation with conventional scenario based planning, as well as the incorporation of the perquisites of a developing countries and an Afro-centric leadership perspective, will give organisations a more robust, holistic strategic management tool that will add significantly more value within a rapidly, radically and unpredictably changing world.Research design, approach and method: The adopted research approach comprised a combination of the sourcing of the latest thinking in the literature (the ‘theory’ as well as the views of seasoned practitioners of scenario planning (the ‘practice’ through an iterative research process, moving between theory and practice, back to practice and finally returning to theory in order to arrive at a validated expanded and enhanced scenario-based planning process which is both theory and practice ‘proof’.Main findings: A management tool incorporating the change navigation and the unique features of developing countries and Afro-centric leadership was formulated and empirically validated. This management tool is referred to as

  17. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on river basin sediment yield

    Directory of Open Access Journals (Sweden)

    T. J. Coulthard

    2012-07-01

    Full Text Available Precipitation intensities and the frequency of extreme events are projected to increase under climate change. These rainfall changes will lead to increases in the magnitude and frequency of flood events that will, in turn, affect patterns of erosion and deposition within river basins. These geomorphic changes to river systems may affect flood conveyance, infrastructure resilience, channel pattern, and habitat status, as well as sediment, nutrient and carbon fluxes. Previous research modelling climatic influences on geomorphic changes has been limited by how climate variability and change are represented by downscaling from Global or Regional Climate Models. Furthermore, the non-linearity of the climatic, hydrological and geomorphic systems involved generate large uncertainties at each stage of the modelling process creating an uncertainty "cascade".

    This study integrates state-of-the-art approaches from the climate change and geomorphic communities to address these issues in a probabilistic modelling study of the Swale catchment, UK. The UKCP09 weather generator is used to simulate hourly rainfall for the baseline and climate change scenarios up to 2099, and used to drive the CAESAR landscape evolution model to simulate geomorphic change. Results show that winter rainfall is projected to increase, with larger increases at the extremes. The impact of the increasing rainfall is amplified through the translation into catchment runoff and in turn sediment yield with a 100% increase in catchment mean sediment yield predicted between the baseline and the 2070–2099 High emissions scenario. Significant increases are shown between all climate change scenarios and baseline values. Analysis of extreme events also shows the amplification effect from rainfall to sediment delivery with even greater amplification associated with higher return period events. Furthermore, for the 2070–2099 High emissions scenario, sediment discharges from 50 yr

  18. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario

    Science.gov (United States)

    Stempniewicz, Lech; Błachowiak-Samołyk, Katarzyna; Węsławski, Jan M.

    2007-11-01

    Many arctic terrestrial ecosystems suffer from a permanent deficiency of nutrients. Marine birds that forage at sea and breed on land can transport organic matter from the sea to land, and thus help to initiate and sustain terrestrial ecosystems. This organic matter initiates the emergence of local tundra communities, increasing primary and secondary production and species diversity. Climate change will influence ocean circulation and the hydrologic regime, which will consequently lead to a restructuring of zooplankton communities between cold arctic waters, with a dominance of large zooplankton species, and Atlantic waters in which small species predominate. The dominance of large zooplankton favours plankton-eating seabirds, such as the little auk ( Alle alle), while the presence of small zooplankton redirects the food chain to plankton-eating fish, up through to fish-eating birds (e.g., guillemots Uria sp.). Thus, in regions where the two water masses compete for dominance, such as in the Barents Sea, plankton-eating birds should dominate the avifauna in cold periods and recess in warmer periods, when fish-eaters should prevail. Therefore under future anthropogenic climate scenarios, there could be serious consequences for the structure and functioning of the terrestrial part of arctic ecosystems, due in part to changes in the arctic marine avifauna. Large colonies of plankton-eating little auks are located on mild mountain slopes, usually a few kilometres from the shore, whereas colonies of fish-eating guillemots are situated on rocky cliffs at the coast. The impact of guillemots on the terrestrial ecosystems is therefore much smaller than for little auks because of the rapid washing-out to sea of the guano deposited on the seabird cliffs. These characteristics of seabird nesting sites dramatically limit the range of occurrence of ornithogenic soils, and the accompanying flora and fauna, to locations where talus-breeding species occur. As a result of climate

  19. Climate Change Impacts on Agriculture and Food Security in 2050 under a Range of Plausible Socioeconomic and Emissions Scenarios

    Science.gov (United States)

    Wiebe, K.; Lotze-Campen, H.; Bodirsky, B.; Kavallari, A.; Mason-d'Croz, D.; van der Mensbrugghe, D.; Robinson, S.; Sands, R.; Tabeau, A.; Willenbockel, D.; Islam, S.; van Meijl, H.; Mueller, C.; Robertson, R.

    2014-12-01

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. New work extends that analysis to cover a range of plausible socioeconomic scenarios and emission pathways. Results from three general circulation models are combined with one crop model and five global economic models to examine the global and regional impacts of climate change on yields, area, production, prices and trade for coarse grains, rice, wheat, oilseeds and sugar to 2050. Results show that yield impacts vary with changes in population, income and technology as well as emissions, but are reduced in all cases by endogenous changes in prices and other variables.

  20. Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Hernandez, R.; Koohafkan, P.; Antoine, J. (eds.)

    2004-07-01

    This publication presents a methodology and software tools for assessing carbon stocks and modelling scenarios of carbon sequestration that were developed and tested in pilot field studies in Mexico and Cuba. The models and tools enable the analysis of land use change scenarios in order to identify in a given area (watershed or district) land use alternatives and land management practices that simultaneously maximize food production, maximize soil carbon sequestration, maximize biodiversity conservation and minimize land degradation. The objective is to develop and implement 'win-win' options that satisfy the multiple goals of farmers, land users and other stakeholders in relation to food security, carbon sequestration, biodiversity and land conservation.

  1. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models

    NARCIS (Netherlands)

    Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Ittersum, van M.K.

    2015-01-01

    Exploring adaptation strategies for different climate change scenarios to support agricultural production and food security is a major concern to vulnerable regions, including Ethiopia. This study assesses the potential impacts of climate change on maize yield and explores specific adaptation option

  2. Targeting the impact of agri-environmental policy - Future scenarios in two less favoured areas in Portugal.

    Science.gov (United States)

    Jones, Nadia; Fleskens, Luuk; Stroosnijder, Leo

    2016-10-01

    Targeting agri-environmental measures (AEM) improves their effectiveness in the delivery of public goods, provided the necessary coordination with other incentives. In less favoured areas (LFA) measures focusing on the conservation of extensive farming contribute to sustainable land management in these areas. In this paper we investigate the implementation of a possible AEM supporting the improvement of permanent pastures coordinated with the extensive livestock and single farm payments actually in place. Through applying a spatially-explicit mixed integer optimisation model we simulate future land use scenarios for two less favoured areas in Portugal (Centro and Alentejo) considering two policy scenarios: a 'targeted AEM', and a 'non-targeted AEM'. We then compare the results with a 'basic policy' option (reflecting a situation without AEM). This is done with regard to landscape-scale effects on the reduction of fire hazard and erosion risk, as well as effects on farm income. The results show that an AEM for permanent pastures would be more cost-effective for erosion and fire hazard mitigation if implemented within a spatially targeted framework. However when cost-effectiveness is assessed with other indicators (e.g. net farm income and share of grazing livestock) 'non-targeted AEM' implementation delivers the best outcome in Alentejo. In Centro the implementation of an AEM involves important losses of income compared to the 'basic policy'. 'Targeted AEM' tends to favour farms in very marginal conditions, i.e. targeting is demonstrated to perform best in landscapes where spatial heterogeneity is higher. The results also show the risk of farm abandonment in the two studied less favoured areas: in all three scenarios more than 30% of arable land is deemed to be abandoned. PMID:27444720

  3. Scenario analysis

    NARCIS (Netherlands)

    Li, L.; Braat, L.C.; Lei, G.; Arets, E.J.M.M.; Liu, J.; Jiang, L.; Fan, Z.; Liu, W.; He, H.; Sun, X.

    2014-01-01

    This chapter presents the results of the scenario analysis of China’s ecosystems focusing on forest, grassland, and wetland ecosystems. The analysis was undertaken using Conversion of Land Use Change and its Effects (CLUE) modeling and an ecosystem service matrix (as explained below) complemented by

  4. GIS analysis to apply theoretical Minimal Model on glacier flow line and assess glacier response in climate change scenarios

    OpenAIRE

    M. Moretti; Mattavelli, M; De Amicis, Mattia; Maggi, V

    2014-01-01

    The development of theoretical work about glacier dynamics has given rise to the construction of mathematical models to assess glacier response in climate change scenarios. Glacier are sentinels of climate condition and the Project of Interest NextData will favour new data production about the present and past climatic variability and future climate projections, as well as new assessments of the impact of climate change on environment. The aim of this specific research program is to develo...

  5. Evaluation of mitigation scenarios of climate change in the electric sector

    International Nuclear Information System (INIS)

    The electricity generation contributes to development and to improve the quality of life, But it is ones of the most important contributors to the Greenhouse Gas and particle emissions particularly in Cuba where 99.4% of electricity in the National Electric System is generated from fossil fuels. In the paper from mitigation measures three mitigation scenarios are evaluated for the Expansion of the Cuban electric system using DECADES Tools. Evaluated scenarios include the Use of 60% of the biomass potential, the combinations of this with nuclear power reactors, Hydraulic energy and combined cycle power plants. Finally in the paper the Greenhouse Gas level reduction, investment, fuel, operation and Maintenance costs and Carbon Intensity in generation are analyzed for evaluated mitigation Scenarios and conclusions are offered

  6. Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario and climate model choice.

    Science.gov (United States)

    Ziter, Carly; Robinson, Emily A; Newman, Jonathan A

    2012-09-01

    Experimental studies of the impact of climatic change are hampered by their inability to consider multiple climate change scenarios and indeed often consider no more than simple climate sensitivity such as a uniform increase in temperature. Modelling efforts offer the ability to consider a much wider range of realistic climate projections and are therefore useful, in particular, for estimating the sensitivity of impact predictions to differences in geographical location, and choice of climate change scenario and climate model projections. In this study, we used well-established degree-day models to predict the voltinism of 13 agronomically important pests in California, USA. We ran these models using the projections from three Atmosphere-Ocean Coupled Global Circulation Models (AOCGCMs or GCMs), in conjunction with the SRES scenarios. We ran these for two locations representing northern and southern California. We did this for both the 2050s and 2090s. We used anova to partition the variation in the resulting voltinism among time period, climate change scenario, GCM and geographical location. For these 13 pest species, the choice of climate model explained an average of 42% of the total variation in voltinism, far more than did geographical location (33%), time period (17%) or scenario (1%). The remaining 7% of the variation was explained by various interactions, of which the location by GCM interaction was the strongest (5%). Regardless of these sources of uncertainty, a robust conclusion from our work is that all 13 pest species are likely to experience increases in the number of generations that they complete each year. Such increased voltinism is likely to have significant consequences for crop protection and production. PMID:24501055

  7. Actores sociales y ambitos de construccion de politicas ambientales Social actors and scenarios in the generation of environmental politics

    Directory of Open Access Journals (Sweden)

    Eduardo Gudynas

    2001-06-01

    Full Text Available Se analiza el concepto de "actores claves" en la generación de políticas ambientales. Independientemente de la definición de actor social que se maneje, el asumir la existencia de actores claves ofrece limitaciones conceptuales y prácticas, ya que éstos son coyunturales a cada situación específica. Todos pueden ser actores claves en generar políticas ambientales cumpliendo papeles diferenciales. Como alternativa se utiliza el término de "actores destacados" y se revisan aspectos sobresalientes de varios de ellos en América Latina. Seguidamente se postula que el análisis se debe centrar en los escenarios sociales donde esos actores se pueden manifestar. Se ofrece una distinción preliminar de escenarios que permite integrar a nuevos y viejos movimientos sociales y establecer relaciones de articulación y equivalencia.The concept of "key actors" in the field of environmental politics is analyzed. Beyond the definition of social actor, the assumption of the existence of key actors implies conceptual and practical limitations, as it depends of each specific situation. Everyone could be a key actor under differential roles in the generation of environmental politics. As an alternative, the term "noteworthy actors" is used and a brief review of them in Latin America is presented. The relevant question should address the social scenarios from where these actors can express themselves. A preliminary distinction of scenarios is presented, in which old and new social movements could be integrated and relationships of articulation and equivalence could be established.

  8. Coupling urban growth scenarios with nearshore biophysical change models to inform coastal restoration planning in Puget Sound, Washington

    Science.gov (United States)

    Byrd, K. B.; Kreitler, J.; Labiosa, W.

    2010-12-01

    A scenario represents an account of a plausible future given logical assumptions about how conditions change over discrete bounds of space and time. Development of multiple scenarios provides a means to identify alternative directions of urban growth that account for a range of uncertainty in human behavior. Interactions between human and natural processes may be studied by coupling urban growth scenario outputs with biophysical change models; if growth scenarios encompass a sufficient range of alternative futures, scenario assumptions serve to constrain the uncertainty of biophysical models. Spatially explicit urban growth models (map-based) produce output such as distributions and densities of residential or commercial development in a GIS format that can serve as input to other models. Successful fusion of growth model outputs with other model inputs requires that both models strategically address questions of interest, incorporate ecological feedbacks, and minimize error. The U.S. Geological Survey (USGS) Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that supports land use and restoration planning in Puget Sound, Washington, a 35,500 sq. km region. The PSEPM couples future scenarios of urban growth with statistical, process-based and rule-based models of nearshore biophysical changes and ecosystem services. By using a multi-criteria approach, the PSEPM identifies cross-system and cumulative threats to the nearshore environment plus opportunities for conservation and restoration. Sub-models that predict changes in nearshore biophysical condition were developed and existing models were integrated to evaluate three growth scenarios: 1) Status Quo, 2) Managed Growth, and 3) Unconstrained Growth. These decadal scenarios were developed and projected out to 2060 at Oregon State University using the GIS-based ENVISION model. Given land management decisions and policies under each growth scenario, the sub-models predicted changes in 1) fecal

  9. Enhanced Adaptive Management: Integrating Decision Analysis, Scenario Analysis and Environmental Modeling for the Everglades

    OpenAIRE

    Convertino, Matteo; Christy M. Foran; Jeffrey M. Keisler; Scarlett, Lynn; LoSchiavo, Andy; Gregory A. Kiker; Linkov, Igor

    2013-01-01

    We propose to enhance existing adaptive management efforts with a decision-analytical approach that can guide the initial selection of robust restoration alternative plans and inform the need to adjust these alternatives in the course of action based on continuously acquired monitoring information and changing stakeholder values. We demonstrate an application of enhanced adaptive management for a wetland restoration case study inspired by the Florida Everglades restoration effort. We find tha...

  10. Impacts of Global Change Scenarios on Ecosystem Services from the World's Rivers

    Science.gov (United States)

    Vorosmarty, C. J.

    2012-12-01

    Water is an essential building block of the Earth system and is critical to human prosperity. At the same time, humans are rapidly embedding themselves into the basic character of the water cycle without full knowledge of the consequences. Major sources of water system change include mismanagement and overuse, river flow distortion, pollution, watershed disturbance, invasive species, and greenhouse warming. A pandemic syndrome of risk to rivers-the chief renewable water supply supporting humans and aquatic biodiversity—is evident at the fully global scale, with a costly price-tag ($0.5Tr/yr) required for engineering-based management solutions aimed at fixing rather than preventing problems before they arise. A new project funded under the NSF's Coupled Natural-Human Systems program aims to improve our current understanding of the geography of water-related ecosystem services, accounting for both biophysical and economic controls on these services, and assessing how new management strategies could enhance the resiliency of the global water system over a 100-year time horizon. Within the context of the many sources of threat summarized above, we see the coupling of human-natural systems to be intrinsic to the science at hand, through which we have formulated our central hypothesis: Human-derived stresses imposed on the global water system will intensify over the 21st century, reducing water-related freshwater ecosystem provisioning and supporting services, increasing the costs of their remediation, limiting and shifting the geography of key economic sector outputs, and threatening biodiversity. Addressing this hypothesis has forced a substantial advancement in current capabilities, namely to (i) extend analysis into the 21st century through scenarios, (ii) develop explicit links to freshwater ecosystem services, (iii) assess how the condition of ecosystem services influences the world economy through individual sectors (food, energy, domestic water supply

  11. Winds of change: How will windstorms and forest harvesting affect C cycling in northern MN under different climate scenarios?

    Science.gov (United States)

    Lucash, M. S.; Scheller, R. M.; Gustafson, E.; Sturtevant, B.

    2013-12-01

    Forest managers struggle to manage timber resources while integrating the complex interactions that exist among disturbances with the novel conditions produced by a changing climate. To help forest managers better integrate climate change and disturbance projections into their forest management plans, we are using a forest landscape disturbance and succession model (LANDIS-II, Century extension) to project carbon sequestration in northern Minnesota under multiple climate change, management and disturbance scenarios. The model was calibrated and validated using empirical estimates of aboveground productivity and net ecosystem exchange. Our simulations suggest that windstorms will decrease tree biomass and soil organic matter and will increase dead C, resulting in an overall decrease in total C and C sink strength under the GFDL A1FI climate scenario. However the direct effects of climate change on C via altered production and heterotrophic respiration were larger than the impacts of wind. In contrast, forest harvesting will remain the dominant determinant of C dynamics under A1FI, even under management scenarios of more selective logging and longer rotation periods. Recovery from historic (late 1800s and early 1900s) disturbance - clearcut logging and wildfire - remain an important, though declining, driver of long-term C dynamics. Our research results will inform regional planning efforts and help forest managers evaluate the relative importance of disturbances (e.g. wind) and forest harvesting under a changing climate.

  12. Life under Climate Change Scenarios: Sea Urchins’ Cellular Mechanisms for Reproductive Success

    Directory of Open Access Journals (Sweden)

    Desislava Bögner

    2016-03-01

    Full Text Available Ocean Acidification (OA represents a major field of research and increased efforts are being made to elucidate its repercussions on biota. Species survival is ensured by successful reproduction, which may be threatened under detrimental environmental conditions, such as OA acting in synergy with other climate change related stressors. Achieving successful gametogenesis, fertilization, and the development of larvae into healthy juveniles and adults is crucial for the perpetuation of species and, thus, ecosystems’ functionality. The considerable vulnerability of the abovementioned developmental stages to the adverse conditions that future OA may impose has been shown in many species, including sea urchins which are commonly used due to the feasibility of their maintenance in captivity and the great amount of gametes that a mature adult is able to produce. In the present review, the latest knowledge about the impact of OA on various stages of the life cycle of sea urchins is summarized with remarks on the possible impact of other stressors. The cellular physiology of the gametes before, at fertilization and, at early development, is extensively described with a focus on the complex enzymatic machinery and the intracellular pH (pHi and Ca2+ homeostasis for their vulnerability when facing adverse conditions such as acidification, temperature variations, or hypoxia.

  13. From Eutrophic to Mesotrophic: Modelling Watershed Management Scenarios to Change the Trophic Status of a Reservoir

    Directory of Open Access Journals (Sweden)

    Marcos Mateus

    2014-03-01

    Full Text Available Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive, the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making.

  14. Report of a seminar on natural environmental change

    International Nuclear Information System (INIS)

    This document reports the presentations given at a seminar on Natural Environmental Change: Processes Affecting the Deep Disposal of Radioactive Waste in Britain and the ensuing discussion. Following introductory summaries of the Department of the Environment research programme into radioactive waste management and Nirex-funded research into long-term environmental change, four topical presentations were given, namely, ''Climatic Change'', ''Surface Processes'', and ''Stress and Seismicity''. These presentations and the consequent discussion have served to clarify many key aspects of long-term environmental change and have provided direction to the ongoing studies of the effects of environmental change on the performance of deep radioactive waste disposal facilities. (author)

  15. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios.

    Science.gov (United States)

    Byrne, Maria; Ho, Melanie; Selvakumaraswamy, Paulina; Nguyen, Hong D; Dworjanyn, Symon A; Davis, Andy R

    2009-05-22

    Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20-26 degrees C, pH 7.6-8.2) were tested in all combinations for the 'business-as-usual' scenario, with 20 degrees C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4 degrees C reduced cleavage by 40 per cent and +6 degrees C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6 degrees C. At 26 degrees C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean. PMID:19324767

  16. Bioenergy production from perennial energy crops: A consequential LCA of 12 bioenergy scenarios including land use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik;

    2012-01-01

    and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow...... and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO2-eq. ha-1, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO2-eq. ha-1, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty...

  17. Improved data for integrated modeling of global environmental change

    Science.gov (United States)

    Lotze-Campen, Hermann

    2011-12-01

    Ethiopia. Together with data from household studies, the new dataset could provide the basis for improved assessments of targeted infrastructure investment, which could help to reduce environmental degradation, promote economic development and alleviate poverty. References Alcamo J et al 1996 Baseline scenarios of global environmental change Glob. Environ. Change—Human Policy Dimens. 6 261-303 CIESIN, IFPRI and WRI 2000 Gridded Population of the World (GPW), Version 2 (available at http://sedac.ciesin.columbia.edu/plue/gpw, accessed March 2004) Erb K-H et al 2007 A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data J. Land Use Sci. 2 191-224 Heistermann M, Müller C and Ronneberger K 2006 Land in sight? Achievements, deficits and potentials of global land-use modeling Agric. Ecosyst. Environ. 114 141-58 Lambin E F and Meyfroidt P 2011 Global land use change, economic globalization, and the looming land scarcity Proc. Natl Acad. Sci. USA 108 3465-72 Leemans R et al 1996 The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source Glob. Environ. Change 6 335-57 Lotze-Campen H, Reusswig F and Stoll-Kleemann S 2008 Socio-ecological monitoring of biodiversity change: building upon the world network of biosphere reserves GAIA—Ecological Perspectives for Science and Society 17 (Suppl. 1) 107-15 Nelson A 2008 Estimated travel time to the nearest city of 50,000 or more people in year 2000 (Ispra: Global Environment Monitoring Unit, Joint Research Centre of the European Commission) (available at http://bioval.jrc.ec.europa.eu/products/gam/download.htm, accessed August 2011) Nordhaus W D 2006 Geography and macroeconomics: new data and new findings Proc. Natl Acad. Sci. USA 103 3510-7 Popp A et al 2011 The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system Environ. Res. Lett. 6 034017 Schneider U A et al

  18. Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise

    Directory of Open Access Journals (Sweden)

    D. Di Nitto

    2013-02-01

    Full Text Available Mangrove forests prominently occupy an intertidal boundary position where the effects of sea level rise will be fast and well visible. This study in East Africa (Gazi Bay, Kenya addresses the question whether mangroves can be resilient to a rise in sea level by focusing on their potential to migrate towards landwards areas. The combinatory analysis between remote sensing, DGPS-based ground truth and digital terrain models (DTM unveils how real vegetation assemblages can shift under different projected (minimum (+9 cm, relative (+20 cm, average (+48 cm and maximum (+88 cm scenarios of sea level rise (SLR. Under SLR scenarios up to 48 cm by the year 2100, the landward extension remarkably implies an area increase for each of the dominant mangrove assemblages, except for Avicennia marina and Ceriops tagal, both on the landward side. On one hand, the increase of most species in the first 3 scenarios, including the socio-economically most important species in this area, Rhizophora mucronata and C. tagal on the seaward side, strongly depends on the colonisation rate of these species. On the other hand, a SLR scenario of +88 cm by the year 2100 indicates that the area flooded only by equinoctial tides strongly decreases due to the topographical settings at the edge of the inhabited area. Consequently, the landward Avicennia-dominated assemblages will further decrease as a formation if they fail to adapt to a more frequent inundation. The topography is site-specific; however non-invadable areas can be typical for many mangrove settings.

  19. Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios

    Science.gov (United States)

    Rana, Arun; Moradkhani, Hamid

    2016-07-01

    Uncertainties in climate modelling are well documented in literature. Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional scale. In the present work, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from statistically downscaled GCM projections in Columbia River Basin (CRB). Analysis is performed using two different statistically downscaled climate projections (with ten GCMs downscaled products each, for RCP 4.5 and RCP 8.5, from CMIP5 dataset) namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. The two datasets for BCSD and MACA are downscaled from observed data for both scenarios projections i.e. RCP4.5 and RCP8.5. Analysis is performed using spatial change (yearly scale), temporal change (monthly scale), percentile change (seasonal scale), quantile change (yearly scale), and wavelet analysis (yearly scale) in the future period from the historical period, respectively, at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice versa for temperature. Most of the models have indicated considerate positive change in quantiles and percentiles for both precipitation and temperature. Wavelet analysis provided insights into possible explanation to changes in precipitation.

  20. Sustainable Water Resources Management in a Complex Watershed Under Climate Change Scenarios

    Science.gov (United States)

    Schuster, J. P.; McPhee, J.

    2007-05-01

    The Aconcagua River Basin in central Chile supplies water for over one million people, high-return agriculture, mining and hydropower industries. The Aconcagua river basin has Mediterranean/semi-arid climate, its hydrologic regime varies along its path from snow- to a rainfall-dominated, and significant stream-aquifer interaction is observed throughout the river path. A complex water market operates in the Aconcagua River Basin, where private owners hold surface and subsurface water rights independently of land ownership and/or intended use. The above yield integrated watershed management critical for the sustainability of basin operations, moreover under conditions of significant precipitation interannual variability and uncertain future climatic scenarios. In this work we propose an integrated hydrologic-operational model for the Aconcagua River in order to evaluate sustainable management scenarios under conditions of climatic uncertainty. The modeling software WEAP (Water Evaluation and Planning System) serves as the platform for decision support, allowing the assessment of diverse scenarios of water use development and hydrologic conditions. The hydrologic component of the adopted model utilizes conceptual functions for describing the relations between different hydrologic variables. The management component relies on economic valuation for characterizing the space of efficient operational policies.

  1. Methods for interfacing IPCC climate change scenarios with higher resolution watershed management models in the Ethiopian Blue Nile Basin

    Science.gov (United States)

    Easton, Z. M.; MacAlister, C.; Fuka, D. R.

    2013-12-01

    As much as 90% of the Nile River flow that reaches Egypt originates in the Highlands of the Ethiopian Blue Nile Basin. This imbalance in water availability poses a threat to water security in the region, and could be severely impacted by projected climate change. This analysis coupled hydrodynamic/watershed models with the Intergovernmental Panel on Climate Change (IPCC) AR4 climate change scenarios to assess the potential impact on water resources and sediment dynamics. Specific AR4 scenarios include the A1B, B1, B2 and COMMIT, which were used to force the baseline hydrodynamic models calibrated against 1979-2011 streamflow for 20 sub-watersheds in the Tana and Beles basins. Transfer functions were developed to distribute the model parameters from the calibrated sub-watersheds to un-gauged portions of the basins based on a similarity index of hydrologic response units. We analyzed the scenario in two manners: first we ran all of the seven individual Global Circulation Model results in the IPCC AR4 report though our watershed models to asses the potential spread of climate change predictions; then we assessed the mean value produced for each IPCC AR4 scenario to better estimate convergence. Results indicate that the Tana basin is expected to experience an increase in mean annual flow. The Beles basin is predicted to experience a small decrease in mean annual flow. Sediment concentrations in the Tana basin increase proportionally more than the flow increase. Interestingly, and perhaps counter to what might be expected for a decrease in flow in the Beles basin, sediment concentrations increase.

  2. Changes in land cover and carbon emissions to 2050 from African tropical forests using policy scenarios

    Science.gov (United States)

    Laporte, N.; Galford, G. L.; Soares Filho, B. S.

    2011-12-01

    Africa has the second largest block of rainforest in the world, next to the Amazon basin, with the majority of the carbon being stored in the dense humid forests of the Democratic Republic of the Congo (DRC). Historically, political instability in the DRC kept development and deforestation low, with primary forest uses being extensive logging and small scale agriculture. In the last decade, political stability has opened the country to foreign investment in forested areas, largely for industrial-scale oil palm plantations and more recently to rice production. The DRC ranks worst on the IFPRI global hunger index, scoring "extremely serious" based on the proportion of undernourished population, prevalence of underweight in children under 5 and the mortality rates of children under 5. In fact, DRC saw its hunger score increase (worsen) from 1990 to 2010, with a 66% gain compared to the other 8 worsening countries increasing only 21% or less. This is a critical time for policy in the DRC, where business-as-usual (relatively low deforestation rates) is unlikely to continue given today's relative political stability and economic stabilization compared to the 1990s. The country must examine options for forest conservation in balance with foreign investment for use of forest resources, national development of rural livelihoods and domestic production of food. Here we present deforestation trajectories simulated through the year 2050 under a set of scenarios. The scenarios consider the relative carbon emissions from business-as-usual (no new policy), conservation (policy favoring protection and enforcement for forest areas), and a food security scenario (favoring clearing for industrial agriculture, extractive timber resources and development of new agricultural areas). Carbon emissions for each scenario are estimated with a coupled bookkeeping model. These scenarios are not predictive of the future, rather, they are meant to provide an understanding of the outcomes of

  3. Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    Science.gov (United States)

    Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  4. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios

    International Nuclear Information System (INIS)

    Highlights: • A comprehensive evaluation of alternative LUC and fertilization schemes. • The GHG intensity of palm oil greatly depends on the LUC scenario. • Colombian palm area expansion resulted in negative or low palm oil GHG intensity. • GHG emissions from plantation vary significantly with N2O emission parameters. - Abstract: The main goal of this article is to assess the life-cycle greenhouse gas (GHG) intensity of palm oil produced in a specific plantation and mill in Colombia. A comprehensive evaluation of the implications of alternative land use change (LUC) scenarios (forest, shrubland, savanna and cropland conversion) and fertilization schemes (four synthetic and one organic nitrogen-fertilizer) was performed. A sensitivity analysis to field nitrous oxide emission calculation, biogas management options at mill, time horizon considered for global warming and multifunctionality approach were also performed. The results showed that the GHG intensity of palm oil greatly depends on the LUC scenario. Significant differences were observed between the LUC scenarios (−3.0 to 5.3 kg CO2eq kg−1 palm oil). The highest result is obtained if tropical rainforest is converted and the lowest if palm is planted on previous cropland, savanna and shrubland, in which almost all LUC from Colombian oil palm area expansion occurred between 1990 and 2009. Concerning plantation and oil extraction, it was shown that field nitrous oxide emissions and biogas management options have a high influence on GHG emissions

  5. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  6. Historical and projected environmental impacts of land cover change in the Midwest USA

    Science.gov (United States)

    Sun, J.; Twine, T. E.; Hill, J.; Keeler, B.; Noe, R.

    2013-12-01

    There is a long history of land use and land cover (LULC) change for agriculture in the Midwest USA. This change has been in response to many factors, including advances in technology, improved fertilizer and pest management, and changing market forces. The change of LULC leads to a variety of impacts on near surface dynamics such as the water budget and watershed hydrology, local weather conditions and future climate trends, carbon balance, nutrient cycling and water quality, and ecosystem goods and services. Environmental consequences of LULC change are distributed unevenly due to the heterogeneity of land surface characteristics; therefore, it is critical to assess the impacts of LULC change regionally. We used Agro-IBIS, a dynamic global vegetation model, to evaluate the historical effects of LULC change in the Midwest USA with a focus on water, energy, and carbon budgets as well as biomass production for 2007-2012. We also predicted LULC effects as a consequence of meeting projected bioenergy production demand from corn grain ethanol in 2020. Scenarios include expansion of land for corn production as well as the removal of different amounts of crop residue from fields. Simulation results show that evapotranspiration, soil carbon, and net ecosystem productivity will increase in the future due to the corn expansion without corn residue removal. The effects of removing corn residue on soil carbon and net ecosystem productivity vary with the removal rates. Future work will evaluate additional scenarios and will contribute to scenario development.

  7. Possible Scenarios of Impacts of Climatic Change on Potential Evapotranspiration in the Watershed of the Conchos River, Mexico

    Science.gov (United States)

    Raynal-Villasenor, J. A.; Rodriguez-Pineda, J. A.

    2007-12-01

    The watershed of the Conchos River is the main watershed of the state of Chihuahua, Mexico, and it is the main source of water of the watershed of the Grande river downstream El Paso, Texas. Such part of the watershed of the Grande River is also the border between Mexico and the United States of America, from El Paso-Ciudad Juarez up to Brownsville-Matamoros. It is very important for the state of Chihuahua and Mexico as a whole, to construct possible scenarios of the effects of the global climatic change in the potential evapotranspiration in such watershed and to construct likely scenarios which results will help to define an integrated watershed management to mitigate those global climate change impacts. The results of a recent study sponsored by the alliance between WWF-Fundacion Gonzalo Rio Arronte, are presented in the paper. The study was conducted to construct possible scenarios on the effects of the global climatic change on the potential evapotranspiration in the watershed of the Conchos River in Mexico. Three watershed characteristic meteorological stations were selected to conduct such study. The predictions of change of the surface air temperature and the change of the rainfall produced by the global climatic change, by the end of the XXI Century, were those published by the Hadley Center. The results show that air temperature increment of one degree centigrade increases evapotranspiration values between 3 and 3.5% with respect current values. As a consequence moisture deficiency increases from 9% to 40%. With an air temperature increment of three degrees centigrades, the potential evapotranspiration increases between 8.8% and 10% increasing moisture deficiency from 27.5% up to 116%. The expected rainfall increment values show a negligible contribution for the potential evapotranspiration reduction in the Rio Conchos watershed. These results conclude that immediate actions need to be taken to mitigate climate change impacts all along the watershed.

  8. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    Science.gov (United States)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  9. The Response of Environmental Capacity for Malaria Transmission in West Africa to Climate Change

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2011-12-01

    The climate of West Africa is characterized by north-south gradients in temperature and rainfall. Environmental capacity for malaria transmission (e.g. as measured by vectorial capacity) is strongly tied to these two variables; temperature affects the development rate of the malaria parasite, as well as the lifespan of the mosquitoes that transmit the disease, and rainfall is tied to mosquito abundance, as the vector lays its eggs in rain-fed water pools. A change in climate is therefore expected to lead to changes in the distribution of malaria transmission. Current general circulation models agree that the temperature in West Africa is expected to increase by several degrees in the next century. However they predict a wide range of possible rainfall scenarios in the future, from intense drying to significant increases in rainfall (Christensen et al., 2007). The effects these changes will have on environmental capacity for malaria transmission depend on the magnitude and direction of the changes, and on current conditions. For example, malaria transmission will be more sensitive to positive changes in rainfall in dry areas where mosquito populations are currently limited by water availability than in relatively wet areas. Here, we analyze combinations of changes in rainfall and temperature within the ranges predicted by GCMs, and assess the impact these combinations will have on the environmental capacity for malaria transmission. In particular, we identify climate change scenarios that are likely to have the greatest impact on environmental capacity for malaria transmission, as well as geographic "hot spots" where the greatest changes are to be expected. Christensen, J. H., Busuioc, A., & et al. (2007). Regional climate projections. In S. Solomon (Ed.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  10. Integration of environmental indicators in the optimization of industrial energy management using phase change materials

    International Nuclear Information System (INIS)

    Highlights: • Phase change materials are a feasible option for energy management. • Net Zero Environmental Metrics Times is defined as an environmental payback time. • Coal, heavy fuel and lignite scenarios show a time around one year. • The potassium nitrate application provides the highest environmental values. - Abstract: This work addresses the potential environmental effects of thermal energy storage using the life cycle assessment to perform an optimal system framework. The study assesses the recovery of waste thermal energy at medium temperatures through the application of phase change materials and the recovered heat use in other industrial processes avoiding the heat production from fossil fuel. To this end, twenty different situations were analysed in terms of energy and environmentally combining four thermal energy storage systems varying the type of phase change material incorporated (potassium nitrate, potassium hydroxide, potassium carbonate/sodium carbonate/lithium carbonate and lithium hydroxide/potassium hydroxide) which were defined as cases and five scenarios were the heat can be released based on the type of fossil fuel consumed (coal, heavy fuel, light fuel, lignite and natural gas). Moreover, a net zero environmental metric time parameter was calculated to assess the time period in which the environmental impacts associated to the thermal energy system were equal to the avoided impacts by the use of the heat recovered. Values that were lower than the thermal energy system lifetime were obtained in more than 40% of the total study situations. Finally, an additional analysis was performed to identify the most significant parameters for the further development of a mathematical model to predict the net zero environmental metric time

  11. Simulating daily water temperatures of the Klamath River under dam removal and climate change scenarios

    Science.gov (United States)

    Perry, Russell W.; Risley, John C.; Brewer, Scott J.; Jones, Edward C.; Rondorf, Dennis W.

    2011-01-01

    A one-dimensional daily averaged water temperature model was used to simulate Klamath River temperatures for two management alternatives under historical climate conditions and six future climate scenarios. The analysis was conducted for the Secretarial Determination on removal of four hydroelectric dams on the Klamath River. In 2012, the Secretary of the Interior will determine if dam removal and implementation of the Klamath Basin Restoration Agreement (KBRA) (Klamath Basin Restoration Agreement, 2010) will advance restoration of salmonid fisheries and is in the public interest. If the Secretary decides dam removal is appropriate, then the four dams are scheduled for removal in 2020.

  12. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2013-04-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high

  13. Hydrological responses of a watershed to historical land use evolution and future land use scenarios under climate change conditions

    Directory of Open Access Journals (Sweden)

    R. Quilbé

    2008-01-01

    Full Text Available Watershed runoff is closely related to land use but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec, Canada and had two objectives: (i to quantify the influence of historical agricultural land use evolution on watershed runoff; and (ii to assess the effect of future land use evolution scenarios under climate change conditions (CC. To achieve this, we used the integrated modeling system GIBSI. Past land use evolution was constructed using satellite images that were integrated into GIBSI. The general trend was an increase of agricultural land in the 80's, a slight decrease in the beginning of the 90's and a steady state over the last ten years. Simulations showed strong correlations between land use evolution and water discharge at the watershed outlet. For the prospective approach, we first assessed the effect of CC and then defined two opposite land use evolution scenarios for the horizon 2025 based on two different trends: agriculture intensification and sustainable development. Simulations led to a wide range of results depending on the climatologic models and gas emission scenarios considered, varying from a decrease to an increase of annual and monthly water discharge. In this context, the two land use scenarios induced opposite effects on water discharge and low flow sequences, especially during the growing season. However, due to the large uncertainty linked to CC simulations, it is difficult to conclude that one land use scenario provides a better adaptation to CC than another. Nevertheless, this study shows that land use is a key factor that has to be taken into account when predicting potential future hydrological responses of a watershed.

  14. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  15. Projection in Future Drought Hazard of South Korea Based on RCP Climate Change Scenario 8.5 Using SPEI

    OpenAIRE

    Byung Sik Kim; In Gi Chang; Jang Hyun Sung; Hae Jin Han

    2016-01-01

    The Standardized Precipitation Evapotranspiration Index (SPEI) analysis was conducted using monthly precipitation data and temperature data on a 12.5 km × 12.5 km resolution based on a Representative Concentration Pathways (RCP) 8.5 climate change scenario, and the characteristics of drought were identified by the threshold. In addition, the changes in drought severity and intensity were projected using the threshold based on the run-length concept and frequency analysis. As a result of the a...

  16. Environmental and socio-economic impacts of global climate change: An overview on mitigation approaches

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2013-12-01

    Full Text Available Climate change is expected to bring about major change in freshwater availability, the productive capacity of soils, and in patterns of human settlement. Likewise, climate change is intimately linked to human health either directly or indirectly. However, considerable uncertainties exist with regard to the extent and geographical distribution of these changes. Predicting scenarios for how climate-related environmental change may influence human societies and political systems necessarily involves an even higher degree of uncertainty. Societies have a long record of adapting to climate risks and, climate changes. Household asset portfolios and livelihood choices are shaped by the need to manage climatic risks, especially in rural areas and for lowincome households. Likewise, disaggregated analysis revealed that demographic and environmental variables have a very profound effect on the risk of civil conflict and hence peace. In nutshell, we can say that there may be multifaceted impact of climate change in its totality. Further, different views, issues and mitigation measures are discussed particularly in Indian scenario. In this direction, The "National Action Plan on Climate Change" was set by Indian Prime Minister which encompasses a broad and extensive range of measures, and focuses on eight missions, which will be pursued as key components of the strategy for sustainable development. These include missions on solar energy, enhanced energy efficiency, sustainable habitat, conserving water, sustaining the Himalayan ecosystem, creating a "Green India," sustainable agriculture and, finally, establishing a strategic knowledge platform for climate change. Finally, different steps/approaches pertaining to green, eco-friendly and sustainable technology has been discussed in order to mitigate the impact of global environmental damage originating from increased industrialization and hence appropriately address this global disaster which is being the

  17. Civil war, climate change and development: A scenario study for Sub-Saharan Africa

    OpenAIRE

    Devitt, Conor; Tol, Richard S.J.

    2010-01-01

    We construct a model of development, civil war, and climate change. There are multiple interactions. Economic growth reduces the probability of civil war and the vulnerability to climate change. Climate change increases the probability of civil war. The impacts of climate change, civil war, and civil war in the neighbouring countries reduce economic growth. The model has two potential poverty traps ? a climate-change-induced one and a civil-war-induced one ? and the two poverty traps may rein...

  18. What Is Climate Change? (Environmental Health Student Portal)

    Science.gov (United States)

    ... climate change, which can seriously affect our: Health Economy Crops Water resources Coastlines Energy usage Wildlife Outdoor ... A Student's Guide to Global Climate Change (U.S. Environmental Protection Agency) - Information about causes, detrimental global impact ...

  19. Modelling runoff response from Hindukush-Karakoram-Himalaya, Upper Indus Basin under prevailing and projected climate change scenarios

    Science.gov (United States)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2015-04-01

    We, analyzing observations from high altitude automated weather stations from the Hindukush-Karakoram-Himalaya (HKH) within upper Indus basin (UIB), assess prevailing state of climatic changes over the UIB and whether such state is consistently represented by the latest generation climate model simulations. We further assess impacts of future climate change on the hydrology of the UIB, and changes in its snow and glacier melt regimes, separately. For this, a semi-distributed watershed model (UBC - University of British Columbia) has been calibrated/validated for UIB at Besham Qila (just above the Tarbela reservoir) using daily historical climate (Tmax, Tmin and Precipitation) and river flow data for the period 1995-2012. Our results show that the UIB stands out the anthropogenic climate change signal, featuring a significant cooling (warming) during the mid-to-late (early) melt season and an enhanced influence of the westerly and monsoonal precipitation regimes. We also show that such phenomena, particularly the summer cooling is largely absent from the latest generation climate model simulations, suggesting their irrelevance for at least near-future assessment of climate change impacts on the hydrology of UIB. Therefore, we construct a hypothetical but more relevant near-future climate change scenario till 2030 based on prevailing state of climate change over UIB. We additionally obtain climate change scenario as projected by five high-resolution CMIP5 climate models under an extreme representative concentration pathway RCP8.5 for the period 2085-2100, assuming that such a scenario may only be realized in the far-future, if at all. Under the hypothetical near-future scenario, our modelling results show that the glacier melt (snowmelt) contribution will decrease (increase) due to cooling (warming) in mid-to-late (early) melt season, though the overall flows will drop. Consequently, the overall hydrological regime will experience an early snow- but a delayed glacier

  20. Predicting Future European Breeding Distributions of British Seabird Species under Climate Change and Unlimited/No Dispersal Scenarios

    Directory of Open Access Journals (Sweden)

    Deborah J.F. Russell

    2015-11-01

    Full Text Available Understanding which traits make species vulnerable to climatic change and predicting future distributions permits conservation efforts to be focused on the most vulnerable species and the most appropriate sites. Here, we combine climate envelope models with predicted bioclimatic data from two emission scenarios leading up to 2100, to predict European breeding distributions of 23 seabird species that currently breed in the British Isles. Assuming unlimited dispersal, some species would be “winners” (increase the size of their range, but over 65% would lose range, some by up to 80%. These “losers” have a high vulnerability to low prey availability, and a northerly distribution meaning they would lack space to move into. Under the worst-case scenario of no dispersal, species are predicted to lose between 25% and 100% of their range, so dispersal ability is a key constraint on future range sizes. More globally, the results indicate, based on foraging ecology, which seabird species are likely to be most affected by climatic change. Neither of the emissions scenarios used in this study is extreme, yet they generate very different predictions for some species, illustrating that even small decreases in emissions could yield large benefits for conservation.

  1. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to investigating the change of the East Asian climate in the last three decades of the 21st century with an atmosphere-ocean coupled general circulation model. The global warming enlarges the land-sea thermal contrast and, hence, enhances (reduces) the East Asian summer (winter) monsoon circulation. The precipitation from the Yangtze and Huaihe river valley to North China increases significantly. In particular, the strong rainfall increase over North China implies that the East Asian rainy area would expand northward. In addition, from the southeastern coastal area to North China, the rainfall would increase significantly in September, implying that the rainy period of the East Asian monsoon would be prolonged about one month. In July, August and September, the interannual variability of the precipitation enhances evidently over North China, meaning a risk of flooding in the future.

  2. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    Science.gov (United States)

    Tobin, Isabelle; Jerez, Sonia; Vautard, Robert; Thais, Françoise; van Meijgaard, Erik; Prein, Andreas; Déqué, Michel; Kotlarski, Sven; Fox Maule, Cathrine; Nikulin, Grigory; Noël, Thomas; Teichmann, Claas

    2016-03-01

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales.

  3. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    International Nuclear Information System (INIS)

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales. (letter)

  4. Application of the new scenario framework for climate change research: Future social vulnerability in large urban areas

    Science.gov (United States)

    Rohat, Guillaume; Flacke, Johannes; Dao, Hy

    2016-04-01

    It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the influence of socio-economic developments in the construction of vulnerability. To enhance the use of socio-economic projections into climate change impacts, adaptation and vulnerability assessments, the climate change research community has been recently involved in the development of a new model for creating scenarios that integrate future changes in climate as well as in society, known under the name of the new scenario framework for climate change research. This theoretical framework is made of a set of alternative futures of socio-economic developments (known as shared socio-economic pathways - SSPs), a set of hypothesis about future climate policies (known as shared policy assumptions - SPAs) and a set of greenhouse gas concentration trajectories (known as representative concentration pathways - RCPs), which are all combined into a scenario matrix architecture (SMA) whose aim is to facilitate the use of this framework. Despite calls by the climate change research community for the use of this conceptual framework in impacts, adaptation and vulnerability research, its use and its assessment has been very limited. Focusing on case-studies (i.e. specific cities as well as specific climate impacts and their associated human exposures and vulnerabilities), the study presented here will attempt to operationalize this theoretical framework for the assessment of future social vulnerability in large urban areas. A particular attention will be paid to less advanced and more

  5. Hazardous waste storage facility accident scenarios for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    This paper presents the methods for developing accident categories and accident frequencies for internally initiated accidents at hazardous waste storage facilities (HWSFs) at US Department of Energy (DOE) sites. This categorization is a necessary first step in evaluating the risk of accidents to workers and the general population at each of the sites. This risk evaluation is part of the process of comparing alternative management strategies in DOE's Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Such strategies involve regionalization, decentralization, and centralization of waste treatment, storage, and disposal activities. Potential accidents at the HWSFs at the DOE sites are divided into categories of spill alone, spill plus fire, and other event combinations including spill plus fire plus explosion, fire only, spill and explosion, and fire and explosion. One or more accidents are chosen to represent the types of accidents for FY 1992 for 12 DOE sites were studied to determine the most representative set of possible accidents at all DOE sites. Each accident scenario is given a probability of occurrence that is adjusted, depending on the throughput and waste composition that passes through the HWSF at the particular site. The justification for the probabilities chosen is presented

  6. Adaption strategies to the effect of climate change on a coastal area in Northwest Germany with different land management scenarios

    Science.gov (United States)

    Graeff, Thomas; Krause, Stefan; Maier, Martin; Oswald, Sascha

    2015-04-01

    Coastal areas are highly vulnerable to the impact of climate change and handling is difficult. Adaption to two different situations has to be taken into account. On the one hand, increasing global sea level in combination with increased precipitation and higher storm surge frequency has to be handled. On the other hand, in summer periods due to the increase of temperature, enhanced evapotranspiration and an increase of salty seawater intrusion into groundwater have to be managed. In this study we present different landuse management scenarios on a coastal area in Northwest Germany, East Frisia, and their effect on the hydrological response. Landuse is dominated by dairy farming and intensive crop farming. 30 percent of the area lies below sea level. A dense channel network in combination with several pumping stations allows permeant drainage. The soils are characterised by marsh soils and impermeable layers which prevent an interaction with the confined brackish aquifer. Observations in those areas indicate a high salinity with concentrations peaking during the summer period. The landuse strategies include a scenario that the technological level of the management will be adapted to rainfall and sea level but without additional drainage from the hinterland to reduce salt water concentration. A second scenario includes the adaptation to increasing precipitation and the sea level with a polder system and wetland areas designated as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods. Two scenarios use large polder areas in the future as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods, additional usage for nature conservation and as the storage of carbon sequestration or extensive farming are planned. Also, stakeholders have developed a system of several smaller polders in combination with an intensification of the water resource management, and this is

  7. Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios.

    Science.gov (United States)

    Takao, Shintaro; Kumagai, Naoki H; Yamano, Hiroya; Fujii, Masahiko; Yamanaka, Yasuhiro

    2015-01-01

    Seaweed beds play a key role in providing essential habitats and energy to coastal areas, with enhancements in productivity and biodiversity and benefits to human societies. However, the spatial extent of seaweed beds around Japan has decreased due to coastal reclamation, water quality changes, rising water temperatures, and heavy grazing by herbivores. Using monthly mean sea surface temperature (SST) data from 1960 to 2099 and SST-based indices, we quantitatively evaluated the effects of warming seawater on the spatial extent of suitable versus unsuitable habitats for temperate seaweed Ecklonia cava, which is predominantly found in southern Japanese waters. SST data were generated using the most recent multiple climate projection models and emission scenarios (the Representative Concentration Pathways or RCPs) used in the Coupled Model Intercomparison Project phase 5 (CMIP5). In addition, grazing by Siganus fuscescens, an herbivorous fish, was evaluated under the four RCP simulations. Our results suggest that continued warming may drive a poleward shift in the distribution of E. cava, with large differences depending on the climate scenario. For the lowest emission scenario (RCP2.6), most existing E. cava populations would not be impacted by seawater warming directly but would be adversely affected by intensified year-round grazing. For the highest emission scenario (RCP8.5), previously suitable habitats throughout coastal Japan would become untenable for E. cava by the 2090s, due to both high-temperature stress and intensified grazing. Our projections highlight the importance of not only mitigating regional warming due to climate change, but also protecting E. cava from herbivores to conserve suitable habitats on the Japanese coast.

  8. Antarctic terrestrial ecosystems: responses to environmental change

    OpenAIRE

    Convey, Peter

    2006-01-01

    The consequences of climate change are exciting considerable concern worldwide. Parts of Antarctica are facing the most rapid rates of anthropogenic climate change currently seen on the planet. This paper sets out to introduce contemporary ecosystems of the Antarctic, and the factors that have influenced them and their biodiversity over evolutionary timescales. Contemporary climate change processes significant to terrestrial biota, and the biological consequences of these changes seen t...

  9. Paleoecology: An Untapped Resource for Teaching Environmental Change

    Science.gov (United States)

    Raper, Diana J.; Zander, Holli

    2009-01-01

    Global warming and climate change have become hot topics that incite debate, inspire scientific research, and influence international policy. However, the scientific research that provides the past climate and environmental information upon which contemporary environmental change is measured, receives little attention in high school curriculum.…

  10. Environmental sub models for a macroeconomic model: Agricultural contribution to climate change and acidification in Denmark

    DEFF Research Database (Denmark)

    Jensen, T.S.; Jensen, J.D.; Hasler, B.;

    2007-01-01

    of emission coefficients is described. Emission dependent parameters are identified in order to perform model projections. The model system is demonstrated by projections of agricultural-related emissions in Denmark under two alternative sets of assumptions: a baseline projection and a policy scenario...... economic model, environmental satellite models of energy and waste related emissions contributing to climate change and acidification. The model extension allows the main Danish contribution to climate change and acidification to be modelled. The existing model system is extended by environmental satellite...... models, in which emission coefficients are linked to economic activity variables as modelled by the agricultural sector model ESMERALDA. Agricultural emission sources related to the activity variables in ESMERALDA are mapped in order to develop the environmental satellite models and the development...

  11. Investigations into a plankton population model: Mortality and its importance in climate change scenarios

    OpenAIRE

    Cropp, Roger; Norbury, John

    2006-01-01

    The potential for marine plankton ecosystems to influence climate by the production of dimethylsulphide (DMS) has been an important topic of recent research into climate change. Several General Circulation Models, used to predict climate change, have or are being modified to include interactions of ecosystems with climate. Climate change necessitates that parameters within ecosystem models must change during long-term simulations, especially mortality parameters that increase as organisms are...

  12. Scenarios for biofuels in the road transport sector - environmental and welfare economic consequences. Synthesis report from the REBECa project

    Energy Technology Data Exchange (ETDEWEB)

    Frederiksen, P.

    2013-01-15

    The project, Renewable energy in the transport sector using biofuel as energy carrier (REBECa), aimed to investigate the potentials for providing biofuels for the road transport sector based on domestically cultivated bioenergy crops, and to analyse the consequences for air quality, land use, GHG emission and welfare economy. Moreover, a review of international perspectives on sustainability of biofuels was carried out. Different scenarios for the introduction of biofuels were developed - one aiming at 10 % share of biofuels in 2020, and another aiming at 25 % share in 2030. A forecast of the road transport until 2030 was produced and ensuing energy demand modelled. Estimates of the resulting demand for biomass, based on wheat grain, straw and rape, were introduced in agricultural scenarios of production and land use, and the possibilities for responding to the biomass requirements were analysed. Wellto-wheel emissions to air were calculated and impacts on air quality and health hazard investigated. Welfare economic effects corresponding to the well-to-wheel analytical framework were analysed. Results show that changes in air emissions (apart from CO{sub 2}) resulting from substitution of fossil fuel with biofuel were small, due to the general reduction of air emissions owing to EU policy implementation and technological development. The provision of sufficient home-grown bioenergy crops would at some stage influence the production of fodder. The overall results for fossil fuel reductions, CO{sub 2} emissions and the welfare economic costs using rape, wheat grain and straw as bioenergy crops, may point in opposite directions for the different fuels. While the largest gains in fossil fuel saving is related to the Rape Methyl Ester (RME) production chain, the welfare economic benefits show the largest positive results for 2{sup nd} generation biofuel. Results are highly dependent on decisions related to the analysis of co-products, and the prices of oil and wheat

  13. Climatic change effects on agriculture. A future scenario; Auswirkungen des Klimawandels auf die Landwirtschaft. Ein Zukunftsszenario

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Udo [Deutscher Wetterdienst, Offenbach (Germany). Abt. Agrarmeteorologie

    2014-07-01

    The contribution on the effect of the climatic change on agriculture covers the topics meteorology - agriculture, modeling of the climate, observation of projected changes - temperature, precipitation and extreme weather conditions; effects of the climatic change on selected agro-meteorological parameters in agriculture - surface temperature, shift of the growing period, corn and other energy plants for biogas production, droughts.

  14. Downscaling of land use change scenarios to assess the dynamics of European landscapes

    NARCIS (Netherlands)

    Verburg, P.H.; Schulp, C.J.E.; Witte, N.; Veldkamp, A.

    2006-01-01

    Europe's rural areas are expected to witness massive and rapid changes in land use due to changes in demography, global trade, technology and enlargement of the European Union. Changes in demand for agricultural products and agrarian structure are likely to have a large impact on landscape quality a

  15. Mathematical model for the formulation of runoff scenarios before possible variants of the climatic change

    International Nuclear Information System (INIS)

    The application of mathematical modelling to evaluate the hydrological response of different river basins under multiple climate scenarios has become a wide spread tool. However, most of the existing models demand high volumes of data and high data quality. Usually, in Latin America not only the amount of data is scarce, but also the quality of it is very poor, so it is difficult to implement mathematical models with good validation results. Additionally, those models have to be applied over big geographical regions making the hydrological modelling process an almost impossible task. All these factors are pointing to the necessity to develop low data demanding models with few data quality requirements. In this light, this paper shows an attempt to develop a hydrological model under these restrictions. The results shown are concerned with the validation assessment of a study case in Colombia over an extensive region for the Catatumbo watershed. Finally, the improvements currently under implementation are shown

  16. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  17. Sustainability and environmental enhancement in changing cirumstances

    Institute of Scientific and Technical Information of China (English)

    LU Yong-long; SHI Ya-juan

    2007-01-01

    @@ Natural environment has endured fast economic growth and population explosion sine the 20th century,which has soil erosion,land desertification,ozone layer depletion,bio-diversity reduction and persistent toxic and harmful pollutants are among the major environmental challenges.

  18. Scenario uncertainties in estimating direct land-use change emissions in biomass-to-energy life cycle assessment

    International Nuclear Information System (INIS)

    The use of biomass for energy production has increasingly been encouraged in the United States, in part motivated by the potential to reduce greenhouse gas (GHG) emissions relative to fossil fuels. However, the GHG-intensity of biomass-derived energy is highly dependent on how the biomass is obtained and used. We explore scenario uncertainty in GHG estimates in the Calculating Uncertainty in Biomass Emissions (CUBE) model and find that direct land-use change emissions that result during the biomass production often dominate the total “farm-to-hopper” GHGs. CUBE represents each land-use change decision as a conversion of land from one of four specified baseline ecosystem to produce one of seven feedstock crops, both distinct by geographic region, and then determines the implied changes in soil organic carbon, root carbon, and above-ground biomass. CUBE therefore synthesizes and organizes the existing literature to represent direct land-use change emissions in a way that can be more readily incorporated into life cycle assessment. Our approach to representing direct land-use change literature has been applied to a specific set of data and offers immediate implications for decisionmakers, but it can also be generalized and replicated in the future, making use of improved scientific data on the magnitude and rates of direct land-use change emissions as it becomes available. -- Highlights: ► The GHG-intensity of bioenergy depends on how the biomass is obtained and used. ► Total GHG emissions may be dominated by direct land-use change emissions. ► There is significant scenario uncertainty in emissions based on the location of production. ► Emissions vary based on time elapsed since land-use change conversions. ► Our approach can be generalized to use improved scientific data in the future.

  19. Climate Change and its Impacts on Water Resources and Management of Tarbela Reservoir under IPCC Climate Change Scenarios in Upper Indus Basin, Pakistan

    Science.gov (United States)

    Khan, Firdos; Pilz, Jürgen

    2014-05-01

    Water resources play a vital role in agriculture, energy, industry, households and ecological balance. The main source of water to rivers is the Himalaya-Karakorum-Hindukush (HKH) glaciers and rainfall in Upper Indus Basin (UIB). There is high uncertainty in the availability of water in the rivers due to the variability of the monsoon, Western Disturbances, prolonged droughts and melting of glaciers in the HKH region. Therefore, proper management of water resources is undeniably important. Due to the growing population, urbanization and increased industrialization, the situation is likely to get worse. For the assessment of possible climate change, maximum temperature, minimum temperature and precipitation were investigated and evidence was found in favor of climate change in the region. Due to large differences between historical meteorological data and Regional Climate Model (RCM) simulated data, different statistical techniques were used for bias correction in temperature and precipitation. The hydrological model was calibrated for the period of 1995-2004 and validated for the period of 1990-1994 with almost 90 % efficiencies. After the application of bias correction techniques output of RCM, Providing Regional Climate for Impact Studies (PRECIS) were used as input data to the hydrological model to produce inflow projections at Tarbela reservoir on Indus River. For climate change assessment, the results show that the above mentioned variables have greater increasing trend under A2 scenario compared to B2 scenario. The projections of inflow to Tarbela reservoir show that overall 59.42 % and 34.27 % inflow increasing to Tarbela Reservoir during 2040-2069 under A2 and B2 scenarios will occur, respectively. Highest inflow and comparatively more shortage of water is noted in the 2020s under A2 scenario. Finally, the impacts of changing climate are investigated on the operation of the Tarbela reservoir. The results show that there will be shortage of water in some

  20. Climate change and future scenarios for palisade grass production in the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    André Santana Andrade

    2014-10-01

    Full Text Available The objective of this work was to analyze future scenarios for palisade grass yield subjected to climate change for the state of São Paulo, Brazil. An empirical crop model was used to estimate yields, according to growing degree-days adjusted by one drought attenuation factor. Climate data from 1963 to 2009 of 23 meteorological stations were used for current climate conditions. Downscaled outputs of two general circulation models were used to project future climate for the 2013-2040 and 2043-2070 periods, considering two contrasting scenarios of temperature and atmospheric CO2 concentration increase (high and low. Annual dry matter yield should be from 14 to 42% higher than the current one, depending on the evaluated scenario. Yield variation between seasons (seasonality and years is expected to increase. The increase of dry matter accumulation will be higher in the rainy season than in the dry season, and this result is more evident for soils with low-water storage capacity. The results varied significantly between regions (60%. Despite their higher climate potential, warmer regions will probably have a lower increase in future forage production.

  1. Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models

    Directory of Open Access Journals (Sweden)

    A-Ra Choi

    2013-06-01

    Full Text Available In this study we investigated changes in the Tsushima Warm Current (TWC under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program’s (WCRP Coupled Model Intercomparison Project Phase 5 (CMIP5. Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.

  2. Global change impacts on wheat production along an environmental gradient in south Australia.

    Science.gov (United States)

    Reyenga, P J; Howden, S M; Meinke, H; Hall, W B

    2001-09-01

    Crop production is likely to change in the future as a result of global changes in CO2 levels in the atmosphere and climate. APSIM, a cropping system model, was used to investigate the potential impact of these changes on the distribution of cropping along an environmental transect in south Australia. The effects of several global change scenarios were studied, including: (1) historical climate and CO2 levels, (2) historic climate with elevated CO2 (700 ppm), (3) warmer climate (+2.4 degrees C) +700 ppm CO2, (4) drier climate (-15% summer, -20% winter rainfall) +2.4 degrees C +700 ppm CO2, (5) wetter climate (+10% summer rainfall) +2.4 degrees C +700 ppm CO2 and (6) most likely climate changes (+1.8 degrees C, -8% annual rainfall) +700 ppm CO2. Based on an analysis of the current cropping boundary, a criterion of 1 t/ha was used to assess potential changes in the boundary under global change. Under most scenarios, the cropping boundary moved northwards with a further 240,000 ha potentially being available for cropping. The exception was the reduced rainfall scenario (4), which resulted in a small retreat of cropping from its current extent. However, the impact of this scenario may only be small (in the order of 10,000-20,000 ha reduction in cropping area). Increases in CO2 levels over the current climate record have resulted in small but significant increases in simulated yields. Model limitations are discussed. PMID:11697669

  3. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire

    Science.gov (United States)

    Bjerklie, David M.; Ayotte, Joseph D.; Cahillane, Matthew J.

    2015-01-01

    The State of New Hampshire has initiated a coordinated effort to proactively prepare for the effects of climate change on the natural and human resources of New Hampshire. An important aspect of this effort is to develop a vulnerability assessment of hydrologic response to climate change. The U.S. Geological Survey, in cooperation with the New Hampshire Department of Health and Human Services, is developing tools to predict how projected changes in temperature and precipitation will affect change in the hydrology of watersheds in the State. This study is a test case to assemble the information and create the tools to assess the hydrologic vulnerabilities in four specific watersheds.

  4. World Wind Tools Reveal Environmental Change

    Science.gov (United States)

    2012-01-01

    Originally developed under NASA's Learning Technologies program as a tool to engage and inspire students, World Wind software was released under the NASA Open Source Agreement license. Honolulu, Hawaii based Intelesense Technologies is one of the companies currently making use of the technology for environmental, public health, and other monitoring applications for nonprofit organizations and Government agencies. The company saved about $1 million in development costs by using the NASA software.

  5. ENSO Teleconnection Pattern Changes over the Southeastern United States under a Climate Change Scenario in CMIP5 Models

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Oh

    2014-01-01

    Full Text Available A strong teleconnection exists between the sea surface temperature (SST over the tropical Pacific and the winter precipitation in the southeastern United States (SE US. This feature is adopted to validate the fidelity of Coupled Model Intercomparison Project Phase 5 (CMIP5 in this study. In addition, the authors examine whether the teleconnection pattern persists in the future under a global warming scenario. Generally, most of the eight selected models show a positive correlation between November SST over Niño 3 region and December–February (DJF mean daily precipitation anomalies over the SE US, consistent with the observation. However, the models with poor realization of skewness of Niño indices fail to simulate the realistic teleconnection pattern in the historical simulation. In the Representative Concentration Pathways 8.5 (RCP8.5 run, all of the models maintain positive and slightly increased correlation patterns. It is noteworthy that the region with strong teleconnection pattern shifts northward in the future. Increased variance of winter precipitation due to the SST teleconnection is shown over Alabama and Georgia rather than over Florida under the RCP8.5 scenario in most of the models, differing from the historical run in which the precipitation in Florida is the most attributable to the eastern Pacific SST.

  6. Hydrological responses of a watershed to historical land use evolution and future land use scenarios under climate change conditions

    Directory of Open Access Journals (Sweden)

    R. Quilbé

    2007-06-01

    Full Text Available Watershed runoff is closely related to land use, but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec, Canada and had two objectives: (i to quantify the influence of historical agricultural land use evolution on watershed runoff; and (ii to assess the effect of future land use evolution scenarios under climate change conditions (CC. To achieve this, we used the integrated modeling system GIBSI. Past land use evolution was constructed using satellite images that were integrated into GIBSI. The general trend was an increase of agricultural land in the 1980s, a slight decrease in the beginning of the 1990s and a steady state over the last ten years. Simulations based on thirty years of daily meteorological series showed strong correlations between land use evolution and water discharge at the watershed outlet, especially for summer and fall seasons. For the prospective approach, we first assessed the effect of CC and then defined two opposite land use evolution scenarios for the horizon 2025 based on two different trends: agriculture intensification or sustainable development. Simulation results showed that CC would induce an increase of water discharge during winter and a decrease the rest of the year, while land use scenarios would have a more drastic effect, agriculture intensification counterbalancing the effect of CC during summer and fall. Due to the large uncertainty linked to CC simulations, it is difficult to conclude that one land use scenario provides a better adaptation to CC than another, but this study shows that land use is a key factor that has to be taken into account when predicting potential future hydrological responses of a watershed.

  7. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China

    Science.gov (United States)

    Zhang, Yuqing; You, Qinglong; Chen, Changchun; Ge, Jing

    2016-09-01

    Researchers often examine hydro-climatological processes via Global Circulation Model (GCM) and hydrological model, which have been shown to benefit water resources management and prediction, especially at the basin scale. In this study, the Soil and Water Assessment Tool (SWAT) and Statistical Downscaling Method (SDSM) were integrated and applied to estimate streamflows in the Xin River Basin, China, based on climate change scenarios downscaled from different GCMs (BCC-CSM1.1, CanESM2, and NorESM1-M) under three Representative Concentration Pathways (RCPs). Results confirmed that the calibrated SWAT model accurately depicts hydrological processes features at daily, monthly, and yearly scales. Three GCMs based on the calibrated SDSM showed that temperature is continually increasing in the region, however, future precipitation is highly complex and uncertain; there were significant differences among various GCM RCP scenarios. The average of the precipitation in three models showed slight and steady increase trends under RCP2.6 and RCP4.5, but a significant increase under the RCP8.5 scenario. The ensemble average of streamflow in GCMs demonstrated that many RCPs significantly decrease from May to June but increase from August to September relative to the baseline period. The ensemble mean of the multi-GCM indicated that future streamflows under RCP2.6 and RCP4.5 scenarios will be closer to the current streamflow volume. Many RCPs also revealed a significant increase in monthly streamflow dispersion coefficient in October, reflecting a tendency for drought and flood events in that month. The BCC-CSM1.1 and NorESM1-M models showed that streamflows are higher than the baseline with median probability in the future. The low monthly streamflow (10th percentile) processes for each GCM were altogether similar to the baseline, whereas the high monthly streamflows (90th percentile) showed various levels of disparity compared to the baseline.

  8. Changes in Winter Stratospheric Circulation in CMIP5 Scenarios Simulated by the Climate System Model FGOALS-s2

    Institute of Scientific and Technical Information of China (English)

    REN Rongcai; YANG Yang

    2012-01-01

    Diagnosis of changes in the winter stratospheric circulation in the Fifth Coupled Model Intercomparison Project (CMIP5) scenarios simulated by the Flexible Global Ocean-Atmosphere-Land System model,second version spectrum (FGOALS-s2),indicates that the model can generally reproduce the present climatology of the stratosphere and can capture the general features of its long-term changes during 1950 2000,including the global stratospheric cooling and the strengthening of the westerly polar jet,though the simulated polar vortex is much cooler,the jet is much stronger,and the projected changes are generally weaker than those revealed by observation data.With the increase in greenhouse gases (GHGs) effect in the historical simulation from 1850 to 2005 (called the HISTORICAL run) and the two future projections for Representative Concentration Pathways (called the RCP4.5 and RCP8.5 scenarios) from 2006 to 2100,the stratospheric response was generally steady,with an increasing stratospheric cooling and a strengthening polar jet extending equatorward.Correspondingly,the leading oscillation mode,defined as the Polar Vortex Oscillation (PVO),exhibited a clear positive trend in each scenario,confirming the steady strengthening of the polar vortex.However,the positive trend of the PVO and the strengthening of the polar jet were not accompanied by decreased planetary-wave dynamical heating,suggesting that the cause of the positive PVO trend and the polar stratospheric cooling trend is probably the radiation cooling effect due to increase in GHGs.Nevertheless,without the long-term linear trend,the temporal variations of the wave dynamic heating,the PVO,and the polar stratospheric temperature are still closely coupled in the interannual and decadal time scales.