WorldWideScience

Sample records for change mitigation analysis

  1. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  2. Web Service Based Approach to Link Heterogeneous Climate-Energy-Economy Models for Climate Change Mitigation Analysis

    NARCIS (Netherlands)

    Belete, Getachew F.; Voinov, Alexey; Bulavskaya, Tatyana; Niamir, Leila; Dhavala, Kishore

    2016-01-01

    Climate change mitigation analysis requires understanding the causes and identifying the possible alternative actions that could be taken. We linked heterogeneous models that focus on climate, energy, and economy for the purpose of climate change mitigation. The models were originally developed to s

  3. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  4. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  5. Land use change and landslide characteristics analysis for community-based disaster mitigation.

    Science.gov (United States)

    Chen, Chien-Yuan; Huang, Wen-Lin

    2013-05-01

    On August 8, 2009, Typhoon Morakot brought heavy rain to Taiwan, causing numerous landslides and debris flows in the Taihe village area of Meishan Township, Chiayi County, in south-central Taiwan. In the Taihe land is primary used for agriculture and land use management may be a factor in the area's landslides. This study explores Typhoon Morakot-induced landslides and land use changes between 1999 and 2009 using GIS with the aid of field investigation. Spot 5 satellite images with a resolution of 2.5 m are used for landslide interpretation and manually digitalized in GIS. A statistical analysis for landslide frequency-area distribution was used to identify the landslide characteristics associated with different types of land use. There were 243 landslides with a total area of 2.75 km(2) in the study area. The area is located in intrinsically fragile combinations of sandstone and shale. Typhoon Morakot-induced landslides show a power-law distribution in the study area. Landslides were mainly located in steep slope areas containing natural forest and in areas planted with bamboo, tea, and betel nut. Land covered with natural forest shows the highest landslide ratio, followed by bamboo, betel nut, and tea. Landslides thus show a higher ratio in areas planted with shallow root vegetation such as bamboo, betel nut, and tea. Furthermore, the degree of basin development is proportional to the landslide ratio. The results show that a change in vegetation cover results in a modified landslide area and frequency and changed land use areas have higher landslide ratios than non-changed. Land use management and community-based disaster prevention are needed in mountainous areas of Taiwan for hazard mitigation.

  6. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  7. Mitigation analysis for Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Martins, A.; Roos, J.; Pesur, A. [Inst. of Energy Research, Tallinn (Estonia)] [and others

    1996-09-01

    The present report provides data on the mitigation analysis of Estonia. The results for energy, forest and agricultural sectors and macro-economic analysis are given. The Government of Estonia has identified the development of energy production as the main strategical means in the movement towards market economy. Now 99% of electricity generation and about 25% of heat production in Estonia is based on oil shale combustion. To increase the efficiency of oil shale-fired power plants and decrease CO{sub 2} emissions, the State Enterprise (SE) Eesti Energia (Estonian Energy) is planning to reconstruct these power plants and introduce the Circulating Fluidized Bed (CFB) combustion technology for oil shale burning to replace the Pulverized Combustion (PC). According to the Estonian Forest Policy, two general objectives are of importance: sustainability in forestry and efficiency in forest management. For the reduction of greenhouse gases (GHG) emissions from agriculture, it is necessary to increase the efficiency of production resource usage. The growth of the GDP in 1995 was 2.9% as a result of large-scale privatization activities in Estonia and re-introduction of the available, but unused production capacities with the help of foreign and domestic investments. It is assumed that the medium growth rate of GDP reaches 6% in 1998.

  8. Energy R and D portfolio analysis based on climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, Graham, E-mail: graham.pugh@hq.doe.gov [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States); Clarke, Leon [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD (United States); Marlay, Robert [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States); Kyle, Page; Wise, Marshall; McJeon, Haewon [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD (United States); Chan, Gabriel [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States)

    2011-07-15

    The diverse nature and uncertain potential of the energy technologies that are or may be available to mitigate greenhouse gas emissions pose a challenge to policymakers trying to invest public funds in an optimal R and D portfolio. This paper discusses two analytical approaches to this challenge used to inform funding decisions related to the U.S. Department of Energy (DOE) applied energy R and D portfolio. The two approaches are distinguished by the constraints under which they were conducted: the need to provide an end-to-end portfolio analysis as input to internal DOE budgeting processes, but with limited time and subject to institutional constraints regarding important issues such as expert judgment. Because of these constraints, neither approach should be viewed as an attempt to push forward the state of the art in portfolio analysis in the abstract. Instead, they are an attempt to use more stylized, heuristic methods that can provide first-order insights in the DOE institutional context. Both approaches make use of advanced technology scenarios implemented in an integrated assessment modeling framework and then apply expert judgment regarding the likelihood of achieving associated R and D and commercialization goals. The approaches differ in the granularity of the scenarios used and in the definition of the benefits of technological advance: in one approach the benefits are defined as the cumulative emission reduction attributable to a particular technology; in the other approach benefits are defined as the cumulative cost reduction. In both approaches a return on investment (ROI) criterion is established based on benefits divided by federal R and D investment. The ROI is then used to build a first-order approximation of an optimal applied energy R and D investment portfolio. Although these methodologies have been used to inform an actual budget request, the results reflect only one input among many used in budget formulation. The results are therefore not

  9. Energy R&D portfolio analysis based on climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, Graham; Clarke, Leon E.; Marlay, Robert; Kyle, G. Page; Wise, Marshall A.; McJeon, Haewon C.; Chan, Gabriel

    2011-07-01

    The diverse nature and uncertain potential of the energy technologies that are or may be available to mitigate greenhouse gas emissions pose a challenge to policymakers trying to invest public funds in an optimal R&D portfolio. This paper discusses two analytical approaches to this challenge used to inform funding decisions related to the U.S. Department of Energy (DOE) applied energy R&D portfolio. The two approaches are distinguished by the constraints under which they were conducted: the need to provide an end-to-end portfolio analysis as input to internal DOE budgeting processes, but with limited time and subject to institutional constraints regarding important issues such as expert judgment. Because of these constraints, neither approach should be viewed as an attempt to push forward the state of the art in portfolio analysis in the abstract. Instead, they are an attempt to use more stylized, heuristic methods that can provide first-order insights in the DOE institutional context. Both approaches make use of advanced technology scenarios implemented in an integrated assessment modeling framework and then apply expert judgment regarding the likelihood of achieving associated R&D and commercialization goals. The approaches differ in the granularity of the scenarios used and in the definition of the benefits of technological advance: in one approach the benefits are defined as the cumulative emission reduction attributable to a particular technology; in the other approach benefits are defined as the cumulative cost reduction. In both approaches a return on investment (ROI) criterion is established based on benefits divided by federal R&D investment. The ROI is then used to build a first-order approximation of an optimal applied energy R&D investment portfolio. Although these methodologies have been used to inform an actual budget request, the results reflect only one input among many used in budget formulation. The results are therefore not representative of an

  10. Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    OpenAIRE

    Veysey, J.; Octaviano, C.; K. Calvin; Herreras Martinez, S.; Kitous, A; McFarland, J; Zwaan, van der, B.C.C.

    2015-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic mo...

  11. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    Science.gov (United States)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    ) within the program SWAT-CUP (SWAT Calibration and Uncertainty Programs). Model performance is assessed against a variety of statistical measures including the Nash-Sutcliffe efficiency coefficient (NSE) and percentage bias (PBIAS). Various mitigation scenarios are modelled within the catchment, including changes in fertiliser application rates and timing and the introduction of different tillage techniques and cover-crop regimes. The effects of the applied measures on water quality are examined and recommendations made on which measures have the greatest potential to be applied within the catchment to improve water quality. This study reports the findings of that analysis and presents techniques by which diffuse agricultural pollution can be reduced within catchments through the implementation of multiple on-farm measures. The methodology presented has the potential to be applied within other catchments, allowing tailored mitigation strategies to be developed. Ultimately, this research provides 'tested' mitigation options that can be applied within the Wensum and similar catchments to improve water quality and to ensure that certain obligatory water quality standards are achieved.

  12. Offshore CCS and ocean acidification : A global long-term probabilistic cost-benefit analysis of climate change mitigation

    NARCIS (Netherlands)

    van der Zwaan, B.C.C.; Gerlagh, Reyer

    2016-01-01

    Public fear over environmental and health impacts of CO2 storage, or over potential leakage of CO2 from geological reservoirs, is among the reasons why over the past decade CCS has not yet been deployed on a scale large enough so as to meaningfully contribute to mitigate climate change. Storage of C

  13. Integrating uncertainties for climate change mitigation

    Science.gov (United States)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  14. Forests and climate change: adaptation and mitigation

    NARCIS (Netherlands)

    Bodegom, van A.J.; Savenije, H.; Wit, de M.

    2009-01-01

    ETFRN news No. 50: Forests and Climate Change: adaptation and mitigation. This newsletter contains interesting materials for those who think about the question how to proceed with forests and climate change after Copenhagen, with or without an agreement. Here below are presented some observations fr

  15. University Leadership in Island Climate Change Mitigation

    Science.gov (United States)

    Coffman, Makena

    2009-01-01

    Purpose: The purpose of this paper is to present the University of Hawaii at Manoa's (UHM's) initiatives in achieving greenhouse gas (GHG) emissions reductions on campus and at the state level. Design/methodology/approach: UHM has taken a "lead by example" approach to climate change mitigation in terms of working to meet the American College &…

  16. A New Strategy for Mitigating Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Y.; Akimoto, K./ Oda, J.

    2007-07-01

    This paper proposes a new strategy for mitigating climate change, both in short term and in long term. The basic character of the strategy is action oriented with multi-country collaboration, while the Framework Convention on Climate Change (FCCC) and Kyoto protocol is numerical target oriented within United Nation Framework. The introductory part of the paper briefly describes deficits of FCCC and Kyoto protocol and the needs of a different strategy for mitigating climate change. Then the short term strategy is focused on energy conservation and its effectiveness for mitigating climate change is illustrated by estimating the potential of reducing CO{sub 2} emission when intense collaboration is achieved for distributing main energy conservation measures in power generation and key industries among Asia Pacific Partnership countries. The long term strategy is developing novel types of renewables among countries. Geoheat and space solar power systems (SSPS) are candidates which may be developed among major developed countries. Necessity of international collaboration is stressed for R and D of these candidate renewables. (auth)

  17. Technologies for Climate Change Mitigation - Agriculture Sector

    DEFF Research Database (Denmark)

    Uprety, D.C.; Dhar, Subash; Hongmin, Dong

    This guidebook describes crop and livestock management technologies and practices that contribute to climate change mitigation while improving crop productivity, reducing reliance on synthetic fertilizers, and lowering water consumption. It is co-authored by internationally recognised experts...... in the areas of crops, livestock, emissions, and economics, and we are grateful for their efforts in producing this cross disciplinary work. This publication is part of a technical guidebook series produced by the UNEP Risø Centre on Energy, Climate and Sustainable Development (URC) as part of the Technology...... Needs Assessment (TNA) project (http://tech-action.org) that is assisting developing countries in identifying and analysing the priority technology needs for mitigating and adapting to climate change. The TNA process involves different stakeholders in a consultative process, enabling all stakeholders...

  18. Can increased organic consumption mitigate climate changes?

    DEFF Research Database (Denmark)

    Heerwagen, Lennart Ravn; Andersen, Laura Mørch; Christensen, Tove

    2014-01-01

    correlation between increasing organic budget shares and decreasing meat budget shares is found. People include food-related behaviour such as the purchase of organic food and reduced meat consumption as ways to mitigate climate change. However, other behavioural modifications such as reduction of car usage...... and household heating are perceived as more important strategies. Research limitations/implications – Other food-related mitigation strategies could be investigated. The climate effect of different diets – and how to motivate consumers to pursue them – could be investigated. Individual as opposed to household...... the climate-friendliness of consumption using consumption of organic food as a case. The authors link stated concerns for climate changes with actual food-related behaviour....

  19. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    Science.gov (United States)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha(-1) yr(-1). Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha(-1) yr(-1). Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  20. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    Science.gov (United States)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  1. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  2. Transport policies related to climate change mitigation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Kappel, Jannik

    and 2009 with a change – not only in the wording and in the political visions – but also in the actual prioritisation of investments and policies to a very large extent. In March 2012 another milestone was set by the Government, to have Denmark based on 100% renewable energy in 2050. This entails large...... and their results are introduced as well. To provide an overview of current trends, related scientific projects and other analyses on climate change mitigation and transport are given in the report. The references used in this report can also serve as a source of data and inspiration for the reader. This report...

  3. Equity Concerns over Climate Change Mitigation

    Institute of Scientific and Technical Information of China (English)

    Chen Ying; Pan Jiahu

    2004-01-01

    As a complicated concept with ethical implications, equity or fairness in the field of climate change mitigation concerns the relations not only between individual human beings but also between human beings and the nature. In this paper, after the review of equity between individuals, market and non-market attributes of emissions rights are distinguished and discussed. Based on the argument of equal per capita emissions rights, three types of emissions rights and the concept of minimum emissions rights as social security are proposed.

  4. Mitigating Climate Change with Earth Orbital Sunshades

    Science.gov (United States)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  5. Predictors and correlates for weight changes in patients co-treated with olanzapine and weight mitigating agents; a post-hoc analysis

    Directory of Open Access Journals (Sweden)

    Heinloth Alexandra N

    2009-03-01

    Full Text Available Abstract Background This study focuses on exploring the relationship between changes in appetite or eating behaviors and subsequent weight change for adult patients with schizophrenia or bipolar disorder treated with olanzapine and adjunctive potential weight mitigating pharmacotherapy. The aim is not to compare different weight mitigating agents, but to evaluate patients' characteristics and changes in their eating behaviors during treatment. Identification of patient subgroups with different degrees of susceptibility to the effect of weight mitigating agents during olanzapine treatment may aid clinicians in treatment decisions. Methods Data were obtained from 3 randomized, double-blind, placebo-controlled, 16-week clinical trials. Included were 158 patients with schizophrenia or bipolar disorder and a body mass index (BMI ≥ 25 kg/m2 who had received olanzapine treatment in combination with nizatidine (n = 68, sibutramine (n = 42, or amantadine (n = 48. Individual patients were analyzed for categorical weight loss ≥ 2 kg and weight gain ≥ 1 kg. Variables that were evaluated as potential predictors of weight outcomes included baseline patient characteristics, factors of the Eating Inventory, individual items of the Eating Behavior Assessment, and the Visual Analog Scale. Results Predictors/correlates of weight loss ≥ 2 kg included: high baseline BMI, low baseline interest in food, and a decrease from baseline to endpoint in appetite, hunger, or cravings for carbohydrates. Reduced cognitive restraint, increase in hunger, and increased overeating were associated with a higher probability of weight gain ≥ 1 kg. Conclusion The association between weight gain and lack of cognitive restraint in the presence of increased appetite suggests potential benefit of psychoeducational counseling in conjunction with adjunctive pharmacotherapeutic agents in limiting weight gain during antipsychotic drug therapy. Trial Registration This analysis was not

  6. Forest Biomass for Climate Change Mitigation

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø

    Awareness of elevated CO2 levels in the atmosphere and resulting climate change has increased focus on renewable energy sources during recent decades. Biomass for energy has been predicted to have the greatest potential for CO2 reductions in the short term and the IPCC assumes that the use...... of biomass for energy is CO2 neutral. Several studies have however criticized this CO2 neutrality assumption and questioned whether CO2 reductions actually are achieved through use of biomass for energy. The purpose of this thesis is to investigate the biomass production potential of poplar plantations...... on southern Scandinavian sites, managed under different systems both in agriculture and in forests. In addition, the objective is to assess the potential of the poplar plantations to mitigate climate change by using poplar biomass for substitution of fossil fuels in comparison to a traditional product...

  7. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  8. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  9. Changing Family Habits: A Case Study into Climate Change Mitigation Behavior in Families

    Science.gov (United States)

    Leger, Michel T.; Pruneau, Diane

    2012-01-01

    A case-study methodology was used to explore the process of change as experienced by 3 suburban families in an attempt to incorporate climate change mitigation behavior into their day to day life. Cross-case analysis of the findings revealed the emergence of three major conceptual themes associated with behavior adoption: collectively applied…

  10. Potentials to mitigate climate change using biochar - the Austrian perspective

    Science.gov (United States)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    production), each year 0.38 megatons CO2e could potentially be mitigated in Austria, which is 0.4% of total or 5% of all GHG emissions caused by agriculture in Austria in 2010. In order to produce this amount of biochar annually, about 27 medium-scale or 220 small-scale pyrolysis plants would be required. The economic analysis revealed that biochar yield, carbon sequestration and feedstock costs have the highest influence on GHG abatement costs. Further reading: Bruckman, V.J. and Klinglmüller, M. (2014): Potentials to Mitigate Climate Change Using Biochar - the Austrian Perspective. In: Bruckman, V.J., Liu, J., Başak, B.B. and Apaydın-Varol, E. (Eds.) Potentials to Mitigate Climate Change Using Biochar. IUFRO Occasional Papers 27.

  11. Carbon Sequestration to Mitigate Climate Change

    Science.gov (United States)

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  12. Mitigating change in the goals and context of capital assets: design of the lifetime impact identification analysis

    NARCIS (Netherlands)

    Ruitenburg, R.J.; Braaksma, A.J.J.

    2016-01-01

    Physical assets are essential in manufacturing, and typically have lifetimes of several decades. Over such a period, many changes in goals and context may occur. Such changes should be dealt with to prevent a premature end to the asset’s useful life. However, current maintenance methodologies focus

  13. The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways

    NARCIS (Netherlands)

    Mouratiadou, Ioanna; Biewald, Anne; Pehl, Michaja; Bonsch, Markus; Baumstark, Lavinia; Klein, David; Popp, Alexander; Luderer, Gunnar; Kriegler, Elmar

    2016-01-01

    Abstract Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land

  14. Climate Change and Water in Vulnerable Agriculture: Impacts - Mitigation - Adaptation

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2016-04-01

    Agriculture highly depends on climate and is adversely affected by climate extremes caused mainly by anthropogenic climate change and increasing climate variability. Moreover, agricultural production risks and vulnerability of agriculture may become an issue in several regions around the world, since they are likely to increase the incidence of crop failure. The aim of this paper is to present the water availability and requirements in Southern Europe and specifically in the Mediterranean region, which is characterized by vulnerable agriculture. Indeed, the climatic trend in the 21st century for this region indicates temperature increase, precipitation decrease combined with an increase in the frequency of climate extremes, such as droughts, heat waves and forest fires. The three major components of climate change are examined, namely impacts, mitigation and adaptation. In particular, precipitation frequency analysis has already indicated a reduction in the precipitation amounts and a shift towards more intense rainstorms. Moreover, time series of drought indices are presented in affected areas. The importance of climate change mitigation measures is also highlighted. Finally, an adaptation scheme for agriculture from climate change in vulnerable and water scarce areas is presented.

  15. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  16. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  17. Climate change mitigation policies and poverty in developing countries

    Science.gov (United States)

    Hussein, Zekarias; Hertel, Thomas; Golub, Alla

    2013-09-01

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation.

  18. Economics of nuclear power and climate change mitigation policies.

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  19. Benefits of interrelationships between climate change mitigation and adaptation

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde; Jacobsen, Jette Bredahl

    2014-01-01

    change mitigation will be estimated on the basis of the amount of carbon sequestrated in the replanted area. The benefits of climate change adaptation are the replanted area’s ability to protect the local community from storms and sea level rise, including the co-benefits of enhanced productivity......The paper demonstrates welfare benefits of climate change mitigation and adaptation as a joint response to climate changes using the theory of multiple-use forestry or joint production by Vincent and Binkley (1993). The production of two products is considered: product 1: climate change mitigation...... and product 2: climate change adaptation. The production possibilities frontier (PPF) summarises the production benefits of the two products. The case study of the paper is the replanting of mangrove forests in the coastal wetland areas of Peam Krasaob Wildlife Sanctuary in Cambodia. The benefits of climate...

  20. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  1. Mitigation and Solar Radiation Management in Climate Change Policies

    OpenAIRE

    Manousi, Vasiliki; Xepapadeas, Anastasios

    2013-01-01

    We couple a spatially homogeneous energy balance climate model with an economic growth model which incorporates two potential policies against climate change: mitigation, which is the traditional policy, and geoengineering. We analyze the optimal policy mix of geoengineering and mitigation in both a cooperative and a noncooperative framework, in which we study open loop and feedback solutions. Our results suggests that greenhouse gas accumulation is relatively higher when geoengineering polic...

  2. Indonesian National Policy on Adaptation and Mitigation of Climate Change

    Directory of Open Access Journals (Sweden)

    Wahyu Yun Santoso

    2015-12-01

    Full Text Available From its arousal, the issue of climate change or global warming has become a distinct global trend setter in multidisciplinary discussion, including in the law perspective. Within legal discourse, the issue of climate change developed rapidly into several aspect, not only about adaptation nor mitigation, especially since the plurality of moral conviction relevant to the climate change facts. As a global matter, each country has the responsibility to adapt and mitigate with its own character and policy. This normative research aims to explore and describe in brief the Indonesian national policy in climate change adaptation and mitigation. Gradually, the contribution of Indonesia is getting firm and solid to the climate change regime, especially after the Bali Action Plan 2007.

  3. Comparative analysis of climate change policy in a trans-Atlantic perspective, The implications of level of governance regarding climate change mitigation effectiveness

    NARCIS (Netherlands)

    Taminiau, Job

    2010-01-01

    The United States and the European Union address climate change in a fundamentally different manner. The US seems uninterested to address climate change from a federal level, but individual states within the US are definitely moving forward with climate c

  4. Climate change and agriculture: Mitigation and Adaptation

    NARCIS (Netherlands)

    Neeteson, J.J.; Verhagen, A.

    2010-01-01

    Human activities have changed the composition of the atmosphere resulting in rising global temperatures and sea levels. Agriculture contributes significantly to climate change through the emission of the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Continuation of th

  5. Decision-support tools for climate change mitigation planning

    DEFF Research Database (Denmark)

    Puig, Daniel; Aparcana Robles, Sandra Roxana

    This document describes three decision-support tools that can aid the process of planning climate change mitigation actions. The phrase ‘decision-support tools’ refers to science-based analytical procedures that facilitate the evaluation of planning options (individually or compared to alternative...... options) against a particular evaluation criterion or set of criteria. Most often decision-support tools are applied with the help of purpose-designed software packages and drawing on specialised databases.The evaluation criteria alluded to above define and characterise each decision-support tool....... For example, in the case of life-cycle analysis, the evaluation criterion entails that the impacts of interest are examined across the entire life-cycle of the product under study, from extraction of raw materials, to product disposal. Effectively, then, the choice of decision-support tool directs...

  6. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Science.gov (United States)

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  7. Mitigating Climate Change in the American Southwest

    Science.gov (United States)

    McCarthy, Patrick D.; Enquist, Carolyn A. F.; Garfin, Gregg

    2008-01-01

    New Mexico Climate Change Ecology and Adaptation Workshop; Albuquerque, New Mexico, 22 October 2007; Climate change has had greater impacts on the American Southwest than perhaps anywhere else in the contiguous United States. The future likely holds even more dramatic impacts for the region's ecosystems. Managers of deserts, forests, grasslands, rivers, and streams in this vast and scenic region are under pressure to respond to the unprecedented wildfires, forest dieback, and insect outbreaks that have resulted from years of record warm temperatures and drought. Already faced with urban encroachment and water shortages, managers need to better understand the regional implications of global climate change in order to take informed action to build the adaptive capacity of the landscapes that provide ecosystem services to our communities and habitat for a great diversity of species.

  8. Implications of climate change mitigation for sustainable development

    Science.gov (United States)

    Jakob, Michael; Steckel, Jan Christoph

    2016-10-01

    Evaluating the trade-offs between the risks related to climate change, climate change mitigation as well as co-benefits requires an integrated scenarios approach to sustainable development. We outline a conceptual multi-objective framework to assess climate policies that takes into account climate impacts, mitigation costs, water and food availability, technological risks of nuclear energy and carbon capture and sequestration as well as co-benefits of reducing local air pollution and increasing energy security. This framework is then employed as an example to different climate change mitigation scenarios generated with integrated assessment models. Even though some scenarios encompass considerable challenges for sustainability, no scenario performs better or worse than others in all dimensions, pointing to trade-offs between different dimensions of sustainable development. For this reason, we argue that these trade-offs need to be evaluated in a process of public deliberation that includes all relevant social actors.

  9. Valuation of climate change mitigation co-benefits

    DEFF Research Database (Denmark)

    Bakhtiari, Fatemeh

    This document describes tools for valuating in monetary terms the co-benefits associated with climate change mitigation actions. The term co-benefits refers to outcomes of those actions other than their primary outcome (reducing greenhouse-gas emissions). Such non-primary outcomes can fall under...... a broad range of economic or, more likely, environmental and social issues. Examples of positive environmental impacts that may not be the primary outcome of a climate change mitigation policy include reduced local air pollution or restored ecosystem health. Examples of positive social impacts include...

  10. Methodological Issues on Climate Change Mitigation Studies

    DEFF Research Database (Denmark)

    Sørensen, Lene; Borges, Pedro Castro; Vidal, Rene Victor Valqui

    1999-01-01

    This paper uses national greenhouse gas emission abatement costing studies as a case to discuss influential factors that determine their outcome and achievement. Costing studies are seen as part of an interconnected whole social process where actors (decision makers, clients, facilitators, experts....... Some methodological principles are suggested to address such contradictions, structure, and change th einteractions between the different dimensions of hte social process framework. Two studies are mentioned in which ideas are presented on how to deal with the central contradictions. Applying...

  11. PUBLIC PRIVATE COLLABORATION ON CLIMATE CHANGE MITIGATION

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    ’ activities to combine local business support with the climate and environmental agenda under the concept of green growth • The learning and competences of the municipal officers. The insights from these five analyses are combined into the sixth analysis as an assessment of the competencies needed to assist...

  12. Developments in national climate change mitigation legislation and strategy

    NARCIS (Netherlands)

    Dubash, N.K.; Hagemann, M.; Höhne, N.; Upadhyaya, P.

    2013-01-01

    The results are presented from a survey of national legislation and strategies to mitigate climate change covering almost all United Nations member states between 2007 and 2012. This data set is distinguished from the existing literature in its breadth of coverage, its focus on national policies (ra

  13. China–Europe Relations in the Mitigation of Climate Change

    DEFF Research Database (Denmark)

    Berger, Axel; Fischer, Doris; Lema, Rasmus

    2013-01-01

    Despite the large-scale investments of both China and the EU in climate-change mitigation and renewable-energy promotion, the prevailing view on China–EU relations is one of conflict rather than cooperation. In order to evaluate the prospects of cooperation between China and the EU in these polic...

  14. Biological approaches to global environment change mitigation and remediation.

    Science.gov (United States)

    Woodward, F Ian; Bardgett, Richard D; Raven, John A; Hetherington, Alistair M

    2009-07-28

    One of the most pressing and globally recognized challenges is how to mitigate the effects of global environment change brought about by increasing emissions of greenhouse gases, especially CO(2). In this review we evaluate the potential contribution of four biological approaches to mitigating global environment change: reducing atmospheric CO(2) concentrations through soil carbon sequestration and afforestation; reducing predicted increases in global surface temperatures through increasing the albedo of crop plants; and fertilizing the oceans to increase primary productivity and CO(2) drawdown. We conclude that none of these biological approaches are 'magic bullets' capable of reversing environmental changes brought about by increasing emissions of greenhouse gases. However, it is possible that increasing crop albedo and soil carbon sequestration might contribute towards mitigation on a regional scale. In the absence of legally binding international agreements to reduce CO(2) emissions, we propose that: increased efforts are made to identify novel biological mitigatory strategies; further research is conducted to minimise the uncertainties present in all four of the biological approaches described; and pilot-level field work is conducted to examine the feasibility of the most promising strategies. Finally, it is essential to engage with the public concerning strategies for mitigating the effects of climate change because the majority of the biological approaches have effects, quite possibly of a negative nature, on ecosystem services and land usage.

  15. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  16. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies

    Science.gov (United States)

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-01-01

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies. PMID:27657098

  17. Early action on HFCs mitigates future atmospheric change

    Science.gov (United States)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-11-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 K at 80 hPa. The HFC mitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  18. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Directory of Open Access Journals (Sweden)

    Sara Shields

    2015-05-01

    Full Text Available The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture.

  19. Benefits of interrelationships between climate change mitigation and adaptation

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde; Jacobsen, Jette Bredahl

    2014-01-01

    and product 2: climate change adaptation. The production possibilities frontier (PPF) summarises the production benefits of the two products. The case study of the paper is the replanting of mangrove forests in the coastal wetland areas of Peam Krasaob Wildlife Sanctuary in Cambodia. The benefits of climate...... benefits of climate change mitigation and adaptation are tested under different climate change scenarios, seeing as the impact and frequency of storms can have a significant effect on coastal wetland areas and the replanting of the mangrove forests and therefore also on the joint benefits of climate change...

  20. The Paradox of Climate Change Mitigation and Adaptation in Danish Housing

    DEFF Research Database (Denmark)

    Marsh, Rob

    2012-01-01

    that reducing space heating with high levels of thermal insulation and passive solar energy results in overheating and a growing demand for cooling. Climate change is expected to reduce space heating and increase cooling de-mand in housing. An analysis of new build housing using passive solar energy...... as a climate mitigation strategy has therefore been carried out in relation to future climate change scenarios. It is shown that severe indoor comfort problems can occur, ques-tioning the relevance of passive solar energy as a climate mitigation strategy. In con-clusion, a theoretical study of the interplay......Climate change means that buildings must greatly reduce their energy consumption. It is however paradoxical that climate mitigation in Denmark has created negative energy and indoor climate problems in housing that may be made worse by climate change. A literature review has been carried out...

  1. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    Science.gov (United States)

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  2. Climate change mitigation policy paradigms — national objectives and alignments

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Garg, Amit; Christensen, John M.

    2014-01-01

    in these countries, and in practice a mix of policies reflecting specific priorities and contexts have been pursued. In this way, climate-change mitigation has been aligned with other policy objectives and integrated into broader policy packages, though in many cases specific attention has not been given...... to the achievement of large GHG emission reductions. Based on these experiences with policy implementation, the paper highlights a number of key coordination and design issues that are pertinent to the successful joint implementation of several energy and climate-change policy goals....

  3. Climate change mitigation in Asia and financing Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.R.; Deo, P. [eds.

    1998-12-01

    The three primary objectives of the conference, which was organized by the UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Environment Department of the World Bank, at Goa in India from May 4 to 6, 1998, were: 1) to share the GHG mitigation experiences from Asian developing countries; 2) to disseminate the standard methodological approach for mitigation analysis developed by UNEP and its applications in different countries; and 3) assess the role and efficacy of financial mechanisms and to, specifically, seek feedback on the Prototype Carbon Fund proposed by the World Bank. Follwing these objectives, the workshop presentations and discussions were structured in three parts. In the first part, participants from eleven Asian developing countries made presentations that were followed by discussions. The second part included the presentations by the experts from UCCEE, UNFCCC and other invited experts who presented the mitigation methodology and the issues and experiences relating to various co-operative implementation mechanisms. The third part included the presentations by the World Bank representatives on the Prototype Carbon Fund and the discussions on financial mechanisms. (EG)

  4. Mitigating Climate Change in the Arid Lands of Namibia

    Science.gov (United States)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. management strategies currently used by rural communities. 2. Capture and assess cultural and gender dimensions of management strategies within stakeholder groups using participatory approaches. 3. Determine science-based alternatives for adaptive land management strategies and test their acceptability to local communities and within the current policy framework. 4. Integrate identified indigenous knowledge with appropriate science and new emerging technologies to develop a training toolkit of effective strategies relevant to all stakeholders. 5. Utilize training sessions, education workshops, curriculum revisions, and appropriate information and communication technologies (ICTs) including social media outlets to disseminate the toolkit strategies. 6. Apply a modified logic

  5. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    Directory of Open Access Journals (Sweden)

    Jude C. Dike

    2014-01-01

    Full Text Available This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and South America, the EU, the Middle East, and North America. Results show that there is a positive relationship between crude oil prices and carbon intensity, and a 1% change in carbon intensity is expected to cause about 1.6% change in crude oil prices in the short run and 8.4% change in crude oil prices in the long run while the speed of adjustment is 19%.

  6. Development of bioenergy conversion alternatives for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Derkyi, Nana S.A.; Sekyere, Daniel [CSIR-FORIG, Kwame Nkrumah University of Science and Technology KNUST Box 63 (Ghana); Okyere, Philip Y. [Electrical Engineering Department, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Darkwa, Nicholas A. [FRNR, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Nketiah, Samuel K. [TROPENBOS International (Ghana)

    2011-07-01

    Traditional charcoal production, firewood sourcing and over-dependence on the national grid for electricity are associated with high greenhouse gas emissions relative to other common energy options. However, there have been few attempts to analyze the potential of cogeneration and briquetting as favourable energy options for climate change mitigation. The possibility of utilizing abundant wood residues to produce energy for domestic and industrial application through co-generation and sawdust briquetting was assessed. Annual residues generated in the three mills studied ranged from 19,230 m3 to 32,610 m3. Annual output of semi-carbonized and carbonized sawdust briquette from the briquette factory studied was 1400 tonnes. Heating values of the wood species ranged from 8.2 to 20.3 MJ/kg. Power requirements for the mills, necessary for sizing co-generation units were derived from their monthly electricity bills. Power ratings for co-generation units were specified between 400 kWe to 2000 kWe with heat to power ratios of 19 to 21. The energy generated could be used to produce electrical power and reduce dependency on the national grid. Conversion of sawdust in the briquette factory potentially contributes a saving of 5,600 tonnes of trees/year that would have been cut from the forest. Thus, adoption of co-generation and sawdust briquetting nationwide could be of immense benefit to the country in terms of climate change mitigation.

  7. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  8. Bioenergy, Land Use Change and Climate Change Mitigation. Report for Policy Advisors and Policy Makers

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goran [Chalmers Univ. of Technology (Sweden); Bird, Nell [Joanneum Research (Austria); Cowle, Annette [National Centre for Rural Greenhouse Gas Research (Australia)

    2010-07-01

    The report addresses a much debated issue - bioenergy and associated land use change, and how the climate change mitigation from use of bioenergy can be influenced by greenhouse gas emissions arising from land use change. The purpose of the report was to produce an unbiased, authoritative statement on this topic aimed especially at policy advisors and policy makers.

  9. Ethical implications of co-benefits rationale within climate change mitigation strategy

    Directory of Open Access Journals (Sweden)

    Rita Vasconcellos Oliveira

    2016-10-01

    Full Text Available Climate change mitigation effort is being translated into several actions and discourses that make collateral benefits and their rationale increasingly relevant for sustainability, in such a way that they are now a constant part of the political agenda. Taking a border and consensual perspective, co-benefits are considered here to be emerging advantages of the implementation of measures regarding the lowering of greenhouse gases.Departing from the analysis of policy documents referring to two European urban transportation strategies, the emergent co-benefits are problematized and discussed to better understand their moral aspect. Further ethical reflection is conducted after an analysis of some unintended consequences of co-benefits rationale coming from the mentioned examples. The focus is primarily on the challenges of an integrative moral justification for co-benefits and also for their role in the climate change mitigation effort. We also discuss the limitations of the current normative models that frame co-benefits rationale, from a moral viewpoint and in relation to the overall climate change mitigation strategy.In this article, we propose the concepts of well-being and freedom, as portrayed by Capabilities Approach, as possible guiding notions for the moral and social evaluation of goodness of these emergent benefits and their rationale too. Additionally, some preliminary conclusions are drawn regarding the potential of the presented concepts to favour the climate change mitigation action. Finally, a scenario is drawn where Capabilities Approach is the moral guideline for co-benefits rationale showing this way its potential in terms of enhancing climate change mitigation strategy.

  10. Demographic aspects of climate change mitigation and adaptation.

    Science.gov (United States)

    Lutz, Wolfgang; Striessnig, Erich

    2015-01-01

    This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries.

  11. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    Science.gov (United States)

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  12. Framework for Analysis of Mitigation in Courts

    Science.gov (United States)

    2005-01-01

    examinations in six Swedish (Andenaes, 1968; Inger, 1986) and five Bulgarian (Terziev, 1987) court trials. Altogether the bilingual corpus consists of 46 000...not be mitigated because they do not have unwelcome effect, which is problematic to apply especially in intercultural communication perspective...Acknowledgements I express my gratitude to Jens Allwood and The Swedish Foundation of International Cooperation in Research and Higher Education (STINT) for

  13. Climate change and human health: impacts, vulnerability, and mitigation.

    Science.gov (United States)

    Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C

    2006-06-24

    It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways--eg, as a result of increased frequency and intensity of heat waves, reduction in cold-related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases, and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries might also be adversely affected. Adaptation to climate change requires public-health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing the use of a number of renewable energy technologies should improve health in the near term by reducing exposure to air pollution.

  14. Urban Planning and Climate Change: Adaptation and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Fulvia Pinto

    2014-05-01

    Full Text Available Climate change is a current phenomenon: the temperatures rise, rainfall patterns are changing, glaciers melt and the average global sea level is rising. It is expected that these changes will continue and that the extreme weather events, such as floods and droughts, will become more frequent and intense. The impact and vulnerability factors for nature, for the economy and for our health are different, depending on the territorial, social and economic aspects. The current scientific debate is focused on the need to formulate effective policies for adaptation and mitigation to climate change. The city plays an important role in this issue: it emits the most greenhouse gas emissions (more than 60% of the world population currently lives in urban areas and the city is more exposed and vulnerable to the impacts of climate change. Urban planning and territorial governance play a crucial role in this context: the international debate on the sustainability of urban areas is increasing. It’s necessary to adapt the tools of building regulations to increase the quality of energy - environment of the cities.

  15. Forestry solutions for mitigating climate change in China

    Directory of Open Access Journals (Sweden)

    Guanglei Gao

    2014-03-01

    Full Text Available Aim of study: Forests have vital functions in global carbon cycle, and thus are of prime importance in efforts to curb climate change. This study intends to guide effective forestry solutions to combat climate change in China.Area of study: China, not only a major emitter of greenhouse gases, but also one of the five most-forest richest countries with the largest plantations in the world.Material and methods: We summarize and recommend carbon sequestration forestry by considering two Kyoto Protocol activities: afforestation/reforestation and forest management.Main results: Afforestation has a top priority of carbon sequestration forestry in China. However, the tree-based solution will reach its limits to growth in a predictable near future. Forest management contributes to break the deadlock. When scientifically and sustainably managed, forests still have a central role in climate change mitigation. Research highlights: China’s efforts on carbon sequestration forestry should shift the focus from afforestation to forest management.Key words: climate change; carbon sequestration forestry; afforestation; forest management.

  16. Protected areas' role in climate-change mitigation.

    Science.gov (United States)

    Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P

    2016-03-01

    Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.

  17. Conservation strategies to mitigate impacts from climate change in Amazonia.

    Science.gov (United States)

    Killeen, Timothy J; Solórzano, Luis A

    2008-05-27

    Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.

  18. Renewable Energy Deployment as Climate Change Mitigation in Nigeria

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2016-10-01

    Full Text Available The scientific evidence of climate change as a result of greenhouse gas emissions which causes ozone layer depletion is becoming increasingly obvious and clear. Findings revealed that energy from the fossil fuel is the major source of greenhouse emission which destroys the environment and makes it unhealthy for living beings. In Nigeria, conventional energy (oil and gas with gas flaring has the highest percentage of 52% and liquid fuel of 32% of carbon dioxide (CO2 respectively. This sector contributes revenue of over 70% to Nigeria’s economy and generates an average total 21.8% of greenhouse gas emission. In Nigeria, there is a much more potential for share renewables with 15.4% of total energy production and 8.6 % of energy consumption. In reality with global environmental concern, Nigeria’s carbon dioxide emissions have increased with energy production and consumption. The Integrated Renewable Energy Master Plan of 2008 projects a 26.7% renewable energy contribution to the Nigeria’s energy use and this is expected to reduce CO2 and greenhouse gas emissions at 38% by2025. Nigeria has not been playing significant role by reducing emissions of greenhouse gases. This paper highlights Nigeria’s climate change situation and penetration requirements for various renewable energy deployments as mitigating instrument for climate change towards healthy and productive environment.

  19. Setting priorities for land management to mitigate climate change

    Directory of Open Access Journals (Sweden)

    Böttcher Hannes

    2012-03-01

    Full Text Available Abstract Background No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production. Results In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option. Conclusions When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long

  20. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  1. Air pollution may alter efforts to mitigate climate change

    Science.gov (United States)

    Yassaa, Noureddine

    2016-02-01

    Renewable energy, considered in the past as a mitigation option to climate change by reducing carbon emission, is now becoming a source of energy security and competing fossil fuels in many areas of the world. According to recent reports (e.g., IEA, IRENA, REN21), renewable energy has reached in 2014 a historical record of power generation capacity. With 1712 GW installed capacity in 2014, renewable energy represents 27.7% of the world's power generating capacity. Solar photovoltaic (PV) energy, conversion of solar light to electricity through solar panels, has increased to reach 177 GW mostly due to the political engagement for the deployment of renewable through targeted programs and the decrease of PV panels prize in the market (roughly 80% decrease since 2008 according to IRENA's report). Concentrated Solar Power (CSP), reaching a total capacity of 4.4 GW in 2014 (REN21 Report), is also demonstrating a clear growth and progresses have been made with regards to the efficiency, the storage capacity and the cost. In order to reduce the energy consumption and carbon emissions, water solar heaters are being installed in the rooftop of households and a total capacity of 406 GW thermal was recorded in 2014 (REN21 Report).

  2. Impacts on Canadian Competitiveness of International Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Robin Somerville

    1998-06-01

    Full Text Available This article summarizes and provides additional perspective on a study that contributes to the growing body of analyses of the costs of limiting greenhouse gas emissions. The study estimates the economic costs to Canada of six planning scenarios. Four of these scenarios involve the use of tradable emission permits and two involved a carbon tax. In each case, the mechanism's target is to stabilize greenhouse gas emissions at some percentage of 1990 levels (100% or 90% by either 2010 or 2015. Policies that impose greater constraints on carbon dioxide emissions lead to higher economic costs in terms of foregone output. These costs, however, vary for the same objective, depending on the mechanism chosen and the economic assumptions made. In one typical scenario, in which tradable emission permits are used to achieve stabilization at 1990 levels by 2010, GDP is depressed from the "business-as-usual" scenario by about 2% for the first decade, after which it recovers to business-as-usual levels. Generally, for all scenarios, the economic impact of climate change mitigation imposes a transition cost on the economy, but the long-term productive capacity of the economy is not significantly affected.

  3. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects

    OpenAIRE

    Bird, D. N.; Kunda, M.; Mayer, A.; Schlamadinger, B.; Canella, L.; Johnston, M.

    2008-01-01

    Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation) is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal.

    In this pape...

  4. Yes in my backyard : market based mechanisms for forest conservation and climate change mitigation in La Primavera, México

    NARCIS (Netherlands)

    Balderas Torres, A.

    2012-01-01

    This work makes a multidisciplinary analysis of the potential of market-based mechanisms in the provision of forest carbon services based on local demand in the context of climate change mitigation. The analysis contrasts, from the perspective of an emerging economy (Mexico), the possibilities of lo

  5. Synergies between mitigation of, and adaptation to, climate change in agriculture

    DEFF Research Database (Denmark)

    Smith, P; Olesen, Jørgen E

    2010-01-01

    is two-fold, both to reduce emissions and to adapt to a changing and more variable climate. The primary aim of the mitigation options is to reduce emissions of methane or nitrous oxide or to increase soil carbon storage. All the mitigation options, therefore, affect the carbon and/or nitrogen cycle...... through adding crop residues and manure to arable soils or by adding diversity to the crop rotations. Though some mitigation measures may have negative impacts on the adaptive capacity of farming systems, most categories of adaptation options for climate change have positive impacts on mitigation...... year is equivalent to 420 000, 130 000 and 32 000 million US$/yr for C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. From both the mitigation and economic perspectives, we cannot afford to miss out on this mitigation potential. The challenge of agriculture within the climate change context...

  6. Geography Teachers and Climate Change: Emotions about Consequences, Coping Strategies, and Views on Mitigation

    Science.gov (United States)

    Hermans, Mikaela

    2016-01-01

    It has been indicated that teachers' emotions about climate change and their views on mitigation influence their instruction and students' engagement in mitigation actions. The aim of the study is to explore Finnish secondary geography teachers' emotions about the consequences of climate change, their strategies for coping with these emotions, and…

  7. Impacts of adaptation and responsibility framings on attitudes towards climate change mitigation

    OpenAIRE

    Howell, Rachel; Capstick, Stuart B.; Whitmarsh, Lorraine E.

    2016-01-01

    It is likely that climate change communications and media coverage will increasingly stress the importance of adaptation, yet little is known about whether or how this may affect attitudes towards mitigation. Despite concerns that communicating adaptation could undermine public support for mitigation, previous research has found it can have the opposite effect by increasing risk salience. It is also unclear whether people respond differently to information about mitigation and adaptation depe...

  8. Simulation and Evaluation of Urban Growth for Germany Including Climate Change Mitigation and Adaptation Measures

    Directory of Open Access Journals (Sweden)

    Jana Hoymann

    2016-06-01

    Full Text Available Decision-makers in the fields of urban and regional planning in Germany face new challenges. High rates of urban sprawl need to be reduced by increased inner-urban development while settlements have to adapt to climate change and contribute to the reduction of greenhouse gas emissions at the same time. In this study, we analyze conflicts in the management of urban areas and develop integrated sustainable land use strategies for Germany. The spatial explicit land use change model Land Use Scanner is used to simulate alternative scenarios of land use change for Germany for 2030. A multi-criteria analysis is set up based on these scenarios and based on a set of indicators. They are used to measure whether the mitigation and adaptation objectives can be achieved and to uncover conflicts between these aims. The results show that the built-up and transport area development can be influenced both in terms of magnitude and spatial distribution to contribute to climate change mitigation and adaptation. Strengthening the inner-urban development is particularly effective in terms of reducing built-up and transport area development. It is possible to reduce built-up and transport area development to approximately 30 ha per day in 2030, which matches the sustainability objective of the German Federal Government for the year 2020. In the case of adaptation to climate change, the inclusion of extreme flood events in the context of spatial planning requirements may contribute to a reduction of the damage potential.

  9. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    Science.gov (United States)

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  10. Regional climate change mitigation with crops: context and assessment.

    Science.gov (United States)

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  11. The German contribution to the global forest policy. Analysis and evaluation of the engagement for biodiversity conservation and mitigation measures climatic change; Der deutsche Beitrag zur globalen Waldpolitik. Analyse und Bewertung des Engagements zum Erhalt der Biodiversitaet und zur Eindaemmung des Klimawandels

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Anika

    2013-07-01

    The booklet on the German contribution to the global forest policy covers with analysis and evaluation of the engagement for biodiversity conservation and mitigation measures climatic change. The analysis is based on expert interviews; the theoretical background is the conception on society by Niklas Lehmann. The evaluation includes the issues of allocation of public goods, the improvement of public participation, and improvement of financing resources.

  12. Analysis of the mitigation and adaptation strategies of the transport industry in the city of Mexicali

    Directory of Open Access Journals (Sweden)

    Argelia Melero Hernández

    2013-07-01

    Full Text Available The aim of this paper is to develop an analysis of mitigation and adaptation strategies in the transport sector in the city of Mexicali, Baja California, Mexico. Based on the methodology of the Programs of Action on Climate Change (PACC, we analyzed the Mexicali emissions inventory and generated a diagnosis. Once we analyzed the current situation, we studied mitigation strategies such as Bus Rapid Transit (BRT, the smog check, new importation legislation for used cars, biofuel production, the promotion of lower–emission vehicles and urban planning. On adaptation strategies vehicle recycling and the use of non–motorized transport were studied as an alternative of sustainable mobility.

  13. Blast Mitigation Seat Analysis: Drop Tower Data Review

    Science.gov (United States)

    2014-05-15

    particular seat with green or red, respectively, for the 5 th percentile female during 350 g tests . Lumbar compression is red or yellow (meaning at least...occurs, which is not common in drop tower testing unless a roof structure is installed over the seat. The 5 th percentile female was most sensitive...MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) TECHNICAL SESSION AUGUST 12-14, 2014 - NOVI, MICHIGAN BLAST MITIGATION SEAT ANALYSIS – DROP TOWER

  14. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute...... to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics......, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa...

  15. Analysis of landslide mitigation effects using Ground Penetrating Radar

    Science.gov (United States)

    Ristic, Aleksandar; Govedarica, Miro; Vrtunski, Milan; Petrovacki, Dusan

    2013-04-01

    Area of Ground Penetrating Radar (GPR) technology applications becomes wider nowadays. It includes utility mapping as important part of civil engineering applications, geological structure and soil analyses, applications in agriculture, etc. Characteristics of the technology make it suitable for structure analysis of shallow landslides, whose number and impact on environment is dominant in the region. Especially when shallow landslide endangers some man-made structures such as buildings, roads or bridges, analysis of GPR data can yield very useful results. The results of GPR data analysis of the shallow landslide are represented here. It is situated on the mountain Fruska Gora in Serbia. Despite its dimensions (50x20m) this landslide was interesting for analysis for two reasons: - The landslide occurred at the part of the single road between the cement factory and the marl mine. The cement factory "Lafarge" in Beocin (Fruska Gora) is the largest cement manufacturer in the country. One of major priorities of the factory management is to keep the function of this road. The road is heavily exploited and over the years it led to landslide movements and damaging of the road itself. - The landslide dates back to earlier period and the mitigation measures were performed twice. Laying the foundation of the retaining wall was not performed during the first mitigation measures. The second mitigation measures were performed in 2010 and included detailed geotechnical analysis of the location with the appropriate foundation laying. Since the GPR technology can produce high resolution images of subsurface it provides clear insight into the current state of surveyed location. That kind of analysis is necessary to maintain permanent functionality of the road and to check the status of mitigation measures. Furthermore, the location characteristics do not allow easy access so the possibilities of other analysis technologies application are limited. In order to assess the effects of

  16. Integrated analysis considered mitigation cost, damage cost and adaptation cost in Northeast Asia

    Science.gov (United States)

    Park, J. H.; Lee, D. K.; Kim, H. G.; Sung, S.; Jung, T. Y.

    2015-12-01

    Various studies show that raising the temperature as well as storms, cold snap, raining and drought caused by climate change. And variety disasters have had a damage to mankind. The world risk report(2012, The Nature Conservancy) and UNU-EHS (the United Nations University Institute for Environment and Human Security) reported that more and more people are exposed to abnormal weather such as floods, drought, earthquakes, typhoons and hurricanes over the world. In particular, the case of Korea, we influenced by various pollutants which are occurred in Northeast Asian countries, China and Japan, due to geographical meteorological characteristics. These contaminants have had a significant impact on air quality with the pollutants generated in Korea. Recently, around the world continued their effort to reduce greenhouse gas and to improve air quality in conjunction with the national or regional development goals priority. China is also working on various efforts in accordance with the international flows to cope with climate change and air pollution. In the future, effect of climate change and air quality in Korea and Northeast Asia will be change greatly according to China's growth and mitigation policies. The purpose of this study is to minimize the damage caused by climate change on the Korean peninsula through an integrated approach taking into account the mitigation and adaptation plan. This study will suggest a climate change strategy at the national level by means of a comprehensive economic analysis of the impacts and mitigation of climate change. In order to quantify the impact and damage cost caused by climate change scenarios in a regional scale, it should be priority variables selected in accordance with impact assessment of climate change. The sectoral impact assessment was carried out on the basis of selected variables and through this, to derive the methodology how to estimate damage cost and adaptation cost. And then, the methodology was applied in Korea

  17. Proposing mitigation strategies for reducing the impact of rice cultivation on climate change in Egypt

    Directory of Open Access Journals (Sweden)

    Eman Hasan

    2013-10-01

    The research results revealed that farmer acceptance or participation in applying different mitigation strategies is the cornerstone of this aspect. Meanwhile farmer awareness is essential for adaptation with climate change.

  18. Climate change, insurance, and the buildings sector: Technological synergisms between adaptation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2002-11-01

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to better understand this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognized are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to significantly expanding these efforts. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups.

  19. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects

    Directory of Open Access Journals (Sweden)

    D. N. Bird

    2008-04-01

    Full Text Available Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal.

    In this paper, we develop a stand-based model that combines changes in surface albedo, solar radiation, latitude, cloud cover and carbon sequestration. As well, we develop a procedure to convert carbon stock changes to equivalent climatic forcing or climatic forcing to equivalent carbon stock changes. Using the model, we investigate the sensitivity of combined affects of changes in surface albedo and carbon stock changes to model parameters. The model is sensitive to amount of cloud, atmospheric absorption, timing of canopy closure, carbon sequestration rate among other factors. The sensitivity of the model is investigated at one Canadian site, and then the model is tested at numerous sites across Canada.

    In general, we find that the change in albedo reduces the carbon sequestration benefits by approximately 30% over 100 years, but this is not drastic enough to suggest that one should not use afforestation or reforestation as a climate change mitigation option. This occurs because the forests grow in places where there is significant amount of cloud in winter. As well, variations in sequestration rate seem to be counterbalanced by the amount and timing of canopy closure.

    We close by speculating that the effects of albedo may also be significant in locations at lower latitudes, where there are less clouds, and where there are extended dry seasons. These conditions make grasses light coloured and when irrigated crops, dark forests or other vegetation such as

  20. Climate change mitigation for agriculture: water quality benefits and costs.

    Science.gov (United States)

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  1. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  2. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    While lasting mitigation solutions are needed to avoid climate change in the long term, temporary solutions may play a positive role in terms of avoiding certain climatic target levels, for preventing the crossing of critical and perhaps irreversible climatic tipping points. While the potential...... contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage...

  3. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  4. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  5. Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a 'business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995-2015) scenario and from the three BAU climate (2040-2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1-3: 2010-2039, 2040-2069, 2070-2098) in which changes in annual average temperature were +0.5, +1.3 and +2.1C, respectively, while critical winter season precipitation changes were -3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040-2060 period was +1.2C and the average winter precipitation change was -3 percent, relative to the RCM control climate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative

  6. Trade-Offs Associated with Soil Carbon Sequestration in ecosystems as Climate Change Mitigation (Invited)

    Science.gov (United States)

    Six, J. W.; Kong, A. Y.

    2010-12-01

    Ecosystems, especially agroecosystems, have been proposed to have the potential to mitigate anthropogenic contributions to climate change through management. It has been suggested that the adoption of agricultural soil management practices that decrease disturbance and/or increase C inputs to soils can transform soils from C ‘sources’ to C ‘sinks’. However, for these management practices to genuinely mitigate climate change, they must slow the increase of atmospheric CO2 levels by establishing a net transfer of C from atmospheric CO2 to the soil or vegetation. Furthermore, a change in land management must not increase the emission of any other greenhouse gases (e.g., nitrous oxide). Here, we expose the global warming ‘costs’ - tradeoffs - associated with management options that have been promoted as soil C sequestration strategies, but may not always achieve their goals of climate change mitigation. We also discuss fundamental mechanistic potentials and constraints to the sequestration of C in soils, which allow but also limit the potential of soil C sequestration as a means of climate change mitigation. Only by using a whole (agro)ecosystems approach that addresses the linked cycles of C, nitrogen, and phosphorous in soils, can management practices genuinely contribute to climate change mitigation.

  7. Sugarcane ethanol: contributions to climate change mitigation and the environment

    NARCIS (Netherlands)

    Zuurbier, P.J.P.; Vooren, van de J.G.

    2008-01-01

    Climate change is a challenge facing human life. It will change mobility and asks for new energy solutions. Bioenergy has gained increased attention as an alternative to fossil fuels. Energy based on renewable sources may offer part of the solution. Bio ethanol based on sugar cane offers advantages

  8. The ancillary benefits and costs of climate change mitigation: a conceptual framework

    Energy Technology Data Exchange (ETDEWEB)

    Krupnick, A.; Burtraw, D.; Markandya, A. [Resources for the Future, Washington, DC (USA)

    2000-07-01

    The paper concentrates on what the authors consider the most important in identifying and measuring ancillary benefits and costs in order to inform national-level policy analysis regarding mitigation of greenhouse gases. It considers ancillary benefits in the context of standard welfare economic theory, examines various types of claimed benefits to determine when they are valid, identifies factors that could change the benefit levels, examines the possibilities that economic behaviour could bring ancillary costs rather than benefits, and pays special attention to these issues in a developing country context. It mentions that reducing output of coal-based electricity by, for example, substituting nuclear or hydroelectric power could introduce health risks and create negative externalities to river ecosystems. Reduction in electricity use could, in developing countries, lead to an increase in indoor air pollution. 56 refs., 2 figs., 3 tabs.

  9. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    Science.gov (United States)

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized.

  10. Focus: relative vulnerability of fossil fuel net exporters to climate change mitigation measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The United Nations Framework Convention on Climate Change contains explicit reference to the need to protect the interests of countries whose economies are particularly vulnerable to climate change mitigation measures. A recent study by the OPEC Secretariat showed that net exporters of fossil fuel in general, and OPEC in particular, would suffer from losses in export revenue as a result of climatic change mitigation measures. In this new study, an attempt is made to identify in more detail those countries that are likely to be most affected by such measures. 3 refs., 3 figs., 2 tabs.

  11. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...... concentration development scenario. The potential mitigation value depends on the timing of sequestration and re-emission of CO2. The suggested CTP approach enables inclusion of the potential benefit from temporary carbon storage in the environmental profile of biomaterials. This should be seen as supplement...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage...

  12. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    Science.gov (United States)

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  13. The Climate Change Challenge in Africa:- Impacts, Mitigation and Adaptation

    OpenAIRE

    Adebamowo Michael; Uduma-Olugu Nnezi; Oginni Adeyemi

    2012-01-01

    Climate change is now a reality, and is already having devastating effects on the natural environment and human populations across the world. Many studies (Maathai, 2006; UNFCC 2006; CCDI 2007; IPCC 2007 and UNDP 2009) have confirmed that Africa contributes the least to global warming but the region is the most vulnerable and most adversely affected by climate change. Unpredictable rains and floods, prolonged droughts, subsequent crop failures and rapid desertification among others have in fa...

  14. Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan

    Directory of Open Access Journals (Sweden)

    Nophea Sasaki

    2011-04-01

    Full Text Available As a member of the Annex 1 countries to the Kyoto Protocol of the United Nations Framework Convention on Climate Change, Japan is committed to reducing 6% of the greenhouse gas emissions. In order to achieve this commitment, Japan has undertaken several major mitigation measures, one of which is the domestic measure that includes ecologically friendly lifestyle programs, utilizing natural energy, participating in local environmental activities, and amending environmental laws. Mitigation policies could be achieved if public responses were strong. As the internet has increasingly become an online platform for sharing environmental information, public responses to the need for reducing greenhouse gas emissions may be assessed using available online tools. We used Google Insights for Search, Google AdWords Keyword Tool, and Google Timeline View to assess public responses in Japan based on the interest shown for five search terms that define global climate change and its mitigation policies. Data on online search interests from January 04, 2004 to July 18, 2010 were analyzed according to locations and categories. Our study suggests that the search interests for the five chosen search terms dramatically increased, especially when new mitigation policies were introduced or when climate change related events were organized. Such a rapid increase indicates that the Japanese public strongly responds to climate change mitigation policies.

  15. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.

    Science.gov (United States)

    Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  16. Kinematic analysis for the implementation of landslide mitigation measures

    Science.gov (United States)

    Delmonaco, Giuseppe; Margottini, Claudio; Spizzichino, Daniele

    2010-05-01

    The present work is finalised at the implementation of a landslide risk mitigation master plan of the ancient citadel of Machu Picchu. After the warning launched in March 2001, by the scientific community on potential collapse of the citadel from a near-disastrous landslide event different studies have been promoted to reconstruct landslide activity and suggest landslide risk mitigation measures for the protection and conservation of Machu Picchu cultural heritage. A site-scale analysis has been implemented following the application and integration of geomechanical classifications, ambient noise measurements and structural and kinematical analysis. The geology of the area is characterized by granitoid bodies that had been emplaced in the axial zones of the main rift system that are now exposed at the highest altitudes, together with country rocks (Precambrian and Lower Paleozoic metamorphics) originally constituting the rift ‘roots'. The bedrock of the Inca citadel of Machu Picchu is mainly composed by granite and subordinately granodiorite. This is mainly located in the lower part of the slopes. Superficially, the granite is jointed in blocks with variable dimensions, promoted by local structural setting. Single blocks vary from 10-1 to about 200 m3. Soil cover, widely outcropping in the area, is mainly composed by individual blocks and subordinately by coarse materials originated by chemical and physical weathering of minerals. Regional tectonic uplift and structural setting rule the general morphological features of the area and as a consequence, landslide type and evolution. Rock falls, rock slides, debris flows and debris slides are the main landslide typologies affecting the citadel slopes. In the last mission in May 2009, elastic and deformation rock parameters have been collected using a passive seismic innovative technique based on natural microtremor measurements and geostructural scan lines elaboration. A landslide zoning of the citadel has been

  17. Governing Carbon Mitigation and Climate Change within Local Councils: A Case Study of Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Heather Zeppel

    2012-08-01

    Full Text Available There is growing concern about climate change impacts on local government areas. In Australia, the federal carbon tax (from 1 July 2012 will also increase costs for local councils. This paper evaluates what carbon mitigation (i.e. energy, water, and waste management actions have been implemented by metropolitan Adelaide councils (n=14 and why (or why not. A survey of environmental officers profiled carbon mitigation actions, emissions auditing, and motives for emissions reduction by Adelaide councils. The main reasons for adopting carbon actions were a climate change plan, climate leadership, and cost savings. Internal council governance of climate change actions was also evaluated. A climate governance framework based on adaptive management, communication, and reflective practice (Nursey-Bray 2010 was applied to assess climate mitigation by Adelaide councils.

  18. Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    CERN Document Server

    Hamwey, R M

    2005-01-01

    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.

  19. Climate change mitigation and adaptation in strategic environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wende, Wolfgang, E-mail: W.Wende@ioer.de [Head of Research Area on Landscape Change and Management, Leibniz Institute of Ecological and Regional Development, Weberplatz 1, D-01217 Dresden (Germany); Bond, Alan, E-mail: alan.bond@uea.ac.uk [InteREAM, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ (United Kingdom); Bobylev, Nikolai, E-mail: nikolaibobylev@gmail.com [School of Innovation Science, Saint Petersburg State Polytechnical University, 195251, Politechnicheskaya, 29, St. Petersburg (Russian Federation); St. Petersburg Research Centre for Ecological Safety of the Russian Academy of Sciences, 197110, Korpusnaya, 18, St. Petersburg (Russian Federation); Stratmann, Lars, E-mail: l.stratmann@ioer.de [Leibniz Institute of Ecological and Regional Development, Weberplatz 1, D-01217 Dresden (Germany)

    2012-01-15

    Countries are implementing CO{sub 2} emission reduction targets in order to meet a globally agreed global warming limit of +2 Degree-Sign C. However, it was hypothesised that these national reduction targets are not translated to regional or state level planning, and are not considered through Strategic Environmental Assessment (SEA) in order to meet emission reduction obligations falling on the transport, energy, housing, agriculture, and forestry sectors. SEAs of land use plans in the German state of Saxony, and the English region of the East of England were examined for their consideration of climate change impacts based on a set of criteria drawn from the literature. It was found that SEAs in both cases failed to consider climate change impacts at scales larger than the boundary of the spatial plan, and that CO{sub 2} reduction targets were not considered. This suggests a need for more clarity in the legal obligations for climate change consideration within the text of the SEA Directive, a requirement for monitoring of carbon emissions, a need for methodological guidance to devolve global climate change targets down to regional and local levels, and a need for guidance on properly implementing climate change protection in SEA. - Highlights: Black-Right-Pointing-Pointer Strategic Environmental Assessments (SEA) of 12 land use plans from Germany and England have been examined. Black-Right-Pointing-Pointer SEA failed to consider climate change impacts at scales larger than the boundary of the land use plans. Black-Right-Pointing-Pointer SEA should be an important instrument for climate protection. Black-Right-Pointing-Pointer Concrete steps for climate protection mainstreaming into SEA at the European Union and national levels have been suggested.

  20. Forestry solutions for mitigating climate change in China

    OpenAIRE

    Guanglei Gao; Guodong Ding; Yuanyuan Zhao; Yanfeng Bao; Minghan Yu

    2014-01-01

    Aim of study: Forests have vital functions in global carbon cycle, and thus are of prime importance in efforts to curb climate change. This study intends to guide effective forestry solutions to combat climate change in China.Area of study: China, not only a major emitter of greenhouse gases, but also one of the five most-forest richest countries with the largest plantations in the world.Material and methods: We summarize and recommend carbon sequestration forestry by considering two Kyoto Pr...

  1. Incorporating climate change mitigation programmes in local administration

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam

    2015-01-01

    of the programme’s implementation in Australia and New Zealand a substantial translation took place, especially in the larger local councils and where energy managers or climate change officers were appointed. This translation was supported by organisational norms related to project ownership and network creation...

  2. Climate change: a call for adaptation and mitigation strategies

    Science.gov (United States)

    Projected climate change is expected to substantially affect crop and livestock production, and water availability and quality. Concomitantly, the agricultural community is faced with a challenge of increasing food production by more than 70% to meet demand from global population increase by the mid...

  3. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    Science.gov (United States)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  4. Data of a willingness to pay survey for national climate change mitigation policies in Germany.

    Science.gov (United States)

    Uehleke, Reinhard

    2016-06-01

    The dataset includes responses from a contingent valuation study about the national climate change mitigation policies in Germany. The online survey was carried out in the spring of 2014. It assesses the willingness to pay for an increase of the national CO2 reduction target by 10 percentage points, which closely represents Germany׳s climate change mitigation strategy. Respondents were randomly allocated to one of the following three question formats: The dichotomous choice referendum, the dissonance minimizing referendum and the two-sided payment ladder. The data can be used to investigate the influence of alternative statistical approaches on the willingness to pay measures and their comparison across question formats.

  5. Framework for Climate Change Mitigation and Adaption in Cities by Utilizing Green Infrastructure

    DEFF Research Database (Denmark)

    Prapaspongsa, Trakarn; Davidson, Cliff I.; Jindal, Ranjina;

    Climate change has threatened global security of ecosystems, human health and natural resources. These threats have increased demand for various mitigation technology solutions as well as effective strategies for adapting to anticipated impacts. Green infrastructure (GI) technologies such as green...... roofs and urban forestry are viewed as ones of the best climate adaptation strategies in cities. This study aims to develop a framework for climate change mitigation and adaptation (CCMA) in cities by using green infrastructure technologies. The framework is established by integrating existing green...

  6. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer.

    Science.gov (United States)

    Li, Li; Xu, Jianhua; Hu, Jianxin; Han, Jiarui

    2014-05-06

    Reducing nitrous oxide (N2O) emissions offers the combined benefits of mitigating climate change and protecting the ozone layer. This study estimates historical and future N2O emissions and explores the mitigation potential for China's chemical industry. The results show that (1) from 1990 to 2012, industrial N2O emissions in China grew by some 37-fold from 5.07 to 174 Gg (N2O), with total accumulated emissions of 1.26 Tg, and (2) from 2012 to 2020, the projected emissions are expected to continue growing rapidly from 174 to 561 Gg under current policies and assuming no additional mitigation measures. The total accumulated mitigation potential for this forecast period is about 1.54 Tg, the equivalent of reducing all the 2011 greenhouse gases from Australia or halocarbon ozone-depleting substances from China. Adipic acid production, the major industrial emission source, contributes nearly 80% of the industrial N2O emissions, and represents about 96.2% of the industrial mitigation potential. However, the mitigation will not happen without implementing effective policies and regulatory programs.

  7. Saltwater Intrusion: Climate change mitigation or just water resources management?

    Science.gov (United States)

    Ferguson, G. A.; Gleeson, T.

    2011-12-01

    Climate change and population growth are expected to substantially increase the vulnerability of global water resources throughout the 21st century. Coastal groundwater systems are a nexus of the world's changing oceanic and hydrologic systems and a critical resource for the over one billion people living in coastal areas as well as for terrestrial and offshore ecosystems. Synthesis studies and detailed simulations predict that rising sea levels could negatively impact coastal aquifers by causing saltwater to intrude landward within coastal aquifers or by saltwater inundation of coastal regions. Saltwater intrusion caused by excessive extraction is already impacting entire island nations and globally in diverse regions such as Nile River delta in Egypt, Queensland, Australia and Long Island, USA. However, the vulnerability of coastal aquifers to sea level rise and excessive extraction has not been systematically compared. Here we show that coastal aquifers are much more vulnerable to groundwater extraction than predicted sea level rise in wide-ranging hydrogeologic conditions and population densities. Low lying areas with small hydraulic gradients are more sensitive to climate change but a review of existing coastal aquifer indicates that saltwater intrusion problems are more likely to arise where water demand is high. No cases studies were found linking saltwater intrusion to sea level rise during the past century. Humans are a key driver in the hydrology of coastal aquifers and that adapting to sea level rise at the expense of better water management is misguided.

  8. MANAGEMENT OF SUSTAINABLE SEAWEED (Kappaphycus alvarezii AQUACULTURE IN THE CONTEXT OF CLIMATE CHANGE MITIGATION

    Directory of Open Access Journals (Sweden)

    Erlania Erlania

    2014-06-01

    Full Text Available Seaweed is an important aquaculture commodity that could contribute on climate change mitigation, related to its ability on absorbing CO2, as one of the green house gases, through photosynthesis. This study aimed to analyze seaweed potencies on carbon sequestration in the context of climate change mitigation while still resulting optimum production as primary purpose and to analyze the carrying capacity of Gerupuk Bay in order to manage sustainability of seaweed aquaculture. Seaweed, (Kappaphycus alvarezii was cultivated with long-line system in Gerupuk Bay, West Nusa Tenggara, during five months for three cultivation cycles. Samplings were conducted at days-15, 30, and 45 with CO2 absorption rates as main parameters. Water carrying capacity was calculated to determine the ability of Gerupuk Bay waters for supporting development of sustainable seaweed aquaculture. The results showed that absorption rates of CO2 by seaweed (K. alvarezii were different at each sampling days of cultivation periods; the highest value was at 10-20 days of cultivation. CO2 absorption analysis resulted based on sampling days of cultivation period could be appl ied to formulate the strategies for management of sustainable seaweed aquaculture, with optimal production and positively contributed to the environment. However, waters carrying capacity should also be considered as major aspect in the application of seaweed cultivation management, thus it can run continuously without causing conflicts with other interests.

  9. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  10. Local climate action plans in climate change mitigation

    DEFF Research Database (Denmark)

    Damsø, Tue Noa Jacques; Kjær, Tyge; Christensen, Thomas Budde

    2016-01-01

    The article examines the climate action plans (CAPs) of local governments (LGs) in Denmark. Applying a quantitative content analysis approach, all available Danish LG action plans within the climate and energy field has been collected and coded, giving insight into the extent of LG CAPs. We asses...... and scope definition are identified and assessed, and the overall contribution of LGs to the Danish energy transition is discussed....

  11. A review of renewable energy sources, sustainability issues and climate change mitigation

    Directory of Open Access Journals (Sweden)

    Phebe Asantewaa Owusu

    2016-12-01

    Full Text Available The world is fast becoming a global village due to the increasing daily requirement of energy by all population across the world while the earth in its form cannot change. The need for energy and its related services to satisfy human social and economic development, welfare and health is increasing. Returning to renewables to help mitigate climate change is an excellent approach which needs to be sustainable in order to meet energy demand of future generations. The study reviewed the opportunities associated with renewable energy sources which includes: Energy Security, Energy Access, Social and Economic development, Climate Change Mitigation, and reduction of environmental and health impacts. Despite these opportunities, there are challenges that hinder the sustainability of renewable energy sources towards climate change mitigation. These challenges include Market failures, lack of information, access to raw materials for future renewable resource deployment, and our daily carbon footprint. The study suggested some measures and policy recommendations which when considered would help achieve the goal of renewable energy thus to reduce emissions, mitigate climate change and provide a clean environment as well as clean energy for all and future generations.

  12. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    Science.gov (United States)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  13. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    Science.gov (United States)

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  14. Reservoir management and environmental protection: The mitigation of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Paul A.

    1998-07-01

    It is widely accepted that human activities which produce greenhouse gases have had a discernible effect upon global mean temperatures over the last 50 years. A number of gases entering the atmosphere as a result of human activities can act as greenhouse gases. The most important is carbon dioxide the atmospheric concentration of which has risen by about 30% compared to pre-industrial concentrations. Energy related emissions arising from the use of fossil fuels account for more than 80% of the CO{sub 2} released to the atmosphere each year with these fuels accounting for around 90% of the world's commercial energy production. The provisions of the 1997 Kyoto protocol go some way to promote reductions in emissions of greenhouse gases and are an important first step. However, according to this presentation, current energy production and consumption patterns violate principles of sustainability. As a result the world is committed to warming as a result of emissions of greenhouse gases from the use of these fuels. Pragmatically, one should limit the use of fossil fuels and eventually replace them by renewable energy sources.and efforts to increase the overall energy efficiency. Given this, proposals to sequester and dump/store carbon dioxide are an unsustainable solution in their own right, but also perpetuate unsustainable energy use based on fossil fuels. Probably attempts to limit the impacts of climate change by the capture and disposal of CO{sub 2} will result in undesirable and unanticipated impacts. The presentation recommends that resources currently deployed in investigating disposal schemes for CO{sub 2} should rather go to the development of renewable energy generation and energy efficiency.

  15. Assessment of rainfall-runoff modelling for climate change mitigation

    Science.gov (United States)

    Otieno, Hesbon; Han, Dawei; Woods, Ross

    2015-04-01

    Sustainable water resources management requires reliable methods for quantification of hydrological variables. This is a big challenge in developing countries, due to the problem of inadequate data as a result of sparse gauge networks. Successive occurrence of both abundance and shortage of water can arise in a catchment within the same year, with deficit situations becoming an increasingly occurring phenomenon in Kenya. This work compares the performance of two models in the Tana River catchment in Kenya, in generation of synthetic flow data. One of the models is the simpler USGS Thornthwaite monthly water balance model that uses a monthly time step and has three parameters. In order to explore alternative modelling schemes, the more complex Pitman model with 19 parameters was also applied in the catchment. It is uncertain whether the complex model (Pitman) will do better than the simple model, because a model with a large number of parameters may do well in the current system but poorly in future. To check this we have used old data (1970-1985) to calibrate the models and to validate with recent data (after 1985) to see which model is robust over time. This study is relevant and useful to water resources managers in scenario analysis for water resources management, planning and development in African countries with similar climates and catchment conditions.

  16. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa

    NARCIS (Netherlands)

    Descheemaeker, Katrien; Oosting, Simon J.; Homann-Kee Tui, Sabine; Masikati, Patricia; Falconnier, Gatien N.; Giller, K.E.

    2016-01-01

    African mixed crop–livestock systems are vulnerable to climate change and need to adapt in order to improve productivity and sustain people’s livelihoods. These smallholder systems are characterized by high greenhouse gas emission rates, but could play a role in their mitigation. Although the imp

  17. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to Chi

  18. Framework for multi-scale integrated impact analyses of climate change mitigation options

    NARCIS (Netherlands)

    Perez-Soba, M.; Parr, T.; Roupioz, L.F.S.; Winograd, M.; Peña-Claros, M.; Varela Ortega, C.; Ascarrunz, N.; Balvanera, P.; Bholanath, P.; Equihua, M.; Guerreiro, L.; Jones, L.; Maass, M.; Thonicke, K.

    2013-01-01

    Tropical forest ecosystems are hotspots for biodiversity and represent one of the largest terrestrial carbon stocks, making their role in climate change mitigation (CCM) programmes increasingly important (e.g. REDD+). In Latin America these ecosystems suffer from high land use pressures that have re

  19. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo; Smith, Steven J.; Kyle, Page; Link, Robert; Mignone, Bryan K.; Kheshgi, Haroon S.

    2017-02-28

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.

  20. Challenging the claims on the potential of biochar to mitigate climate change

    NARCIS (Netherlands)

    Francischinelli Rittl, T.

    2015-01-01

    Summary In this PhD thesis I studied the influence of biochar discourses on the political practices in Brazil and the impact of biochar on soil organic carbon (SOC) stocks, thus contributing to the current debate on the potential of biochar to mitigate climate change. Biochar is the solid material o

  1. Mitigation and adaptation within a climate change policy portfolio: A research program

    Science.gov (United States)

    It is now recognized that optimal global climate policy is a portfolio of the two key responses for reducing the risks of climate change: mitigation and adaptation. Significant differences between the two responses have inhibited understanding of how to appropriately view these...

  2. The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation

    Science.gov (United States)

    Gifford, Robert

    2011-01-01

    Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure…

  3. Hand in hand: public endorsement of climate change mitigation and adaptation.

    Science.gov (United States)

    Brügger, Adrian; Morton, Thomas A; Dessai, Suraje

    2015-01-01

    This research investigated how an individual's endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that "localising" climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research.

  4. Accessing international financing for climate change mitigation - A guidebook for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Limaye, D.R.; Zhu, X.

    2012-08-15

    This guidebook has been prepared by the UNEP Risoe Centre (URC) as part of its Technology Needs Assessment (TNA) project. The TNA project assists developing countries to identify national mitigation and adaptation technology priorities and to develop Technology Action Plans (TAPs) for mitigation of greenhouse gas (GHG) emissions and climate change adaptation. This guidebook provides information to help TNA countries better identify and access financial resources for the mitigation activities included in their national TAPs. This guidebook covers both mitigation 'projects' (such as a wind farm or a solar PV generation facility) and 'programmes' (such as a credit line for financing energy efficiency projects in small and medium-sized enterprises (SMEs), or bulk procurement and distribution of compact fluorescent lamps to households). The primary emphasis is on multilateral and bilateral sources of financing but the guidebook also includes an overview of private funding sources and public-private partnerships (PPPs). This guidebook only covers international financing for mitigation actions in developing countries. For example, EU funding for EU member countries and Chinese funding for mitigation in China are not covered in this guidebook. However, the EU funding for mitigation in developing countries and Chinese funding supporting mitigation in other developing countries are included. Special funds established in some developing countries by pooling financing support from developed countries are also covered in this guidebook. Information on the financing sources was compiled in a standard format and reviewed and analysed to categorise the financing sources. For the multilateral and bilateral financing sources, the available information was used to define their major characteristics (such as geographic coverage, technology/sector focus, funding sources, financing objectives, financing mechanisms, and management and governance). In addition, the

  5. Technical Note on Mitigation and Adaptation to Climate Change in Brazil

    OpenAIRE

    Ludena, Carlos E.; Maria Netto

    2011-01-01

    This Mitigation and Adaptation to Climate Change in Brazil sector note has been elaborated as input to the Bank's Country Strategy with Brazil for the 2012-2014 period. Some of the most significant aspects of this note are: background and context, sector problems and priorities, Bank Actions related to climate change, strategic framework, necessary actions to achieve strategic objectives, expected results, risks and indicators.

  6. Manure management and greenhouse gas mitigation techniques : a comparative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Langmead, C.

    2003-09-03

    Alberta is the second largest agricultural producer in Canada, ranking just behind Ontario. Approximately 62 per cent of the province's farm cash receipts are attributable to the livestock industry. Farmers today maintain large numbers of a single animal type. The drivers for more advanced manure management systems include: the trend towards confined feeding operations (CFO) is creating large, concentrated quantities of manure; public perception of CFO; implementation of provincial legislation regulating the expansion and construction of CFO; ratification of the Kyoto Protocol raised interest in the development of improved manure management systems capable of reducing greenhouse gas (GHG) emissions; and rising energy costs. The highest methane emissions factors are found with liquid manure management systems. They contribute more than 80 per cent of the total methane emissions from livestock manure in Alberta. The author identified and analyzed three manure management techniques to mitigate GHG emissions. They were: bio-digesters, gasification systems, and composting. Three recommendations were made to establish a strategy to support emissions offsets and maximize the reduction of methane emissions from the livestock industry. The implementation of bio-digesters, especially for the swine industry, was recommended. It was suggested that a gasification pilot project for poultry manure should be pursued by Climate Change Central. Public outreach programs promoting composting of cattle manure for beef feedlots and older style dairy barns should also be established. 19 refs., 11 tabs., 3 figs.

  7. Balance between climate change mitigation benefits and land use impacts of bioenergy : Conservation implications for European birds

    NARCIS (Netherlands)

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-e

  8. Co-creation of climate change mitigation policies: the superiority of a community-based approach

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam

    research project and spread over the continuum from local government initiated to citizen initiated, and from projects aimed at changing individual behaviour to projects involving bigger communities (housing association, villages, etc.), it will be argued that both from a governance perspective (CO2......-reductions), as well as from a democratic perspective, citizen initiated projects involving communities of different kinds are clearly superior to for example government initiated campaigns aimed at the behaviour of individuals. This finding has clear policy-implications meaning that local climate change...... mitigation policies should be aimed at finding ways to support citizen initiated initiatives to a greater extent than is currently the case. Keywords: climate change mitigation, co-creation, behaviour, communities, citizen driven innovation....

  9. Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study

    Science.gov (United States)

    Mu, Jianhong E.; Wein, Anne; McCarl, Bruce

    2015-01-01

    We examine the effects of crop management adaptation and climate mitigation strategies on land use and land management, plus on related environmental and economic outcomes. We find that crop management adaptation (e.g. crop mix, new species) increases Greenhouse gas (GHG) emissions by 1.7 % under a more severe climate projection while a carbon price reduces total forest and agriculture GHG annual flux by 15 % and 9 %, respectively. This shows that trade-offs are likely between mitigation and adaptation. Climate change coupled with crop management adaptation has small and mostly negative effects on welfare; mitigation, which is implemented as a carbon price starting at $15 per metric ton carbon dioxide (CO2) equivalent with a 5 % annual increase rate, bolsters welfare carbon payments. When both crop management adaptation and carbon price are implemented the effects of the latter dominates.

  10. Potential Roles of Swedish Forestry in the Context of Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Tomas Lundmark

    2014-03-01

    Full Text Available In Sweden, where forests cover more than 60% of the land area, silviculture and the use of forest products by industry and society play crucial roles in the national carbon balance. A scientific challenge is to understand how different forest management and wood use strategies can best contribute to climate change mitigation benefits. This study uses a set of models to analyze the effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and removals through 2105. If the present Swedish forest use strategy is continued, the long-term climate change mitigation benefit will correspond to more than 60 million tons of avoided or reduced emissions of carbon dioxide annually, compared to a scenario with similar consumption patterns in society but where non-renewable products are used instead of forest-based products. On average about 470 kg of carbon dioxide emissions are avoided for each cubic meter of biomass harvested, after accounting for carbon stock changes, substitution effects and all emissions related to forest management and industrial processes. Due to Sweden’s large export share of forest-based products, the climate change mitigation effect of Swedish forestry is larger abroad than within the country. The study also shows that silvicultural methods to increase forest biomass production can further reduce net carbon dioxide emissions by an additional 40 million tons of per year. Forestry’s contribution to climate change mitigation could be significantly increased if management of the boreal forest were oriented towards increased biomass production and if more wood were used to substitute fossil fuels and energy-intensive materials.

  11. The economics of climate change mitigation in developing countries - methodological and empirical results

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.

    1997-12-01

    This thesis presents a methodological and empirical discussion of the costs associated with implementing greenhouse gas reduction strategies in developing countries. It presents a methodological framework for national costing studies and evaluates a number of associated valuation methods. The methodological framework has been applied in several developing countries as part of a UNEP project in which the author has participated, and reference is made to the results of these country studies. Some of the theoretical issues associated with the determination of the costs of emission reductions are discussed with reference to a number of World Bank and UN guidelines for project analysis in developing countries. The use of several accounting prices is recommended for mitigation projects, with a distinction being made between internationally and domestically traded goods. The consequences of using different accounting prices are discussed with respect to the methodology applied in the UNEP country studies. In conclusion the thesis reviews the results of some of the most important international studies of greenhouse gas emissions in developing countries. The review, which encompasses a total of 27 country studies, was undertaken by the author for the Intergovernmental Panel of Climate Change, the IPCC. Its conclusion is that the UNEP methodological framework and associated country study results are consistent with the recommendations and conclusions of the IPCC. (EG) 23 refs.

  12. The role of HFCs in mitigating 21st century climate change

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2013-06-01

    Full Text Available There is growing international interest in mitigating climate change during the early part of this century by reducing emissions of short-lived climate pollutants (SLCPs, in addition to reducing emissions of CO2. The SLCPs include methane (CH4, black carbon aerosols (BC, tropospheric ozone (O3 and hydrofluorocarbons (HFCs. Recent studies have estimated that by mitigating emissions of CH4, BC, and O3 using available technologies, about 0.5 to 0.6 °C warming can be avoided by mid-21st century. Here we show that avoiding production and use of high-GWP (global warming potential HFCs by using technologically feasible low-GWP substitutes to meet the increasing global demand can avoid as much as another 0.5 °C warming by the end of the century. This combined mitigation of SLCPs would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100 from the CO2-only mitigation scenarios, significantly reducing the rate of warming and lowering the probability of exceeding the 2 °C warming threshold during this century.

  13. The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review

    Directory of Open Access Journals (Sweden)

    Luis Berga

    2016-09-01

    Full Text Available Hydropower is a clean, renewable, and environmentally friendly source of energy. It produces 3930 (TW.h.a−1, and yields 16% of the world’s generated electricity and about 78% of renewable electricity generation (in 2015. Hydropower and climate change show a double relationship. On the one hand, as an important renewable energy resource, hydropower contributes significantly to the avoidance of greenhouse gas (GHG emissions and to the mitigation of global warming. On the other hand, climate change is likely to alter river discharge, impacting water availability and hydropower generation. Hydropower contributes significantly to the reduction of GHG emissions and to energy supply security. Compared with conventional coal power plants, hydropower prevents the emission of about 3 GT CO2 per year, which represents about 9% of global annual CO2 emissions. Hydropower projects may also have an enabling role beyond the electricity sector, as a financing instrument for multipurpose reservoirs and as an adaptive measure regarding the impacts of climate change on water resources, because regulated basins with large reservoir capacities are more resilient to water resource changes, less vulnerable to climate change, and act as a storage buffer against climate change. At the global level, the overall impact of climate change on existing hydropower generation may be expected to be small, or even slightly positive. However, there is the possibility of substantial variations across regions and even within countries. In conclusion, the general verdict on hydropower is that it is a cheap and mature technology that contributes significantly to climate change mitigation, and could play an important role in the climate change adaptation of water resource availability. However, careful attention is necessary to mitigate the substantial environmental and social costs. Roughly more than a terawatt of capacity could be added in upcoming decades.

  14. The mitigation of the climate change: discourse and actions in APEC

    Directory of Open Access Journals (Sweden)

    Silvia Guadalupe Figueroa González

    2011-08-01

    Full Text Available Climate change is a shared problem that requires concerted action to meet the challenge on the best terms. The social, economic and political issue, pressed implications for designing mechanisms for cooperation on mitigation and adaptation. In Asia Pacific the largest emitters of greenhouse gases (GHGs that contribute to climate change are located; therefore becomes important convergence of national policies leading to a regional protocol on sustainable development. The Forum Asia Pacific Economic Cooperation (APEC has added to its agenda commitment to sustainable development and addressing climate change from different approaches: energy, agriculture, transport, and from different areas: the city and the region.

  15. Climate benefits of changes in agricultural practices in the context of heat wave mitigation

    Science.gov (United States)

    Davin, E.; Seneviratne, S. I.; Ciais, P.; Olioso, A.; Wang, T.

    2014-12-01

    About half of the terrestrial biosphere is under direct human influence through land management (i.e., agricultural areas and managed forests). Changing management practices is therefore a promising avenue for climate change mitigation. The mitigation potential arising from changes in land management practices has been mainly evaluated in terms of carbon storage and GHG emissions [2]. On the other hand, these practices can also influence climate by altering the physical properties of the land surface, but these effects have received less attention so far. Here we show that peak temperatures during heat heaves can be attenuated through cropland albedo management [2]. We first present observational evidence that a substantial summer albedo increase can be obtained by switching from conventional to no-till agriculture. Then, using a regional climate model, we investigate the biogeophysical effect of a full conversion to no-till management over Europe. The cooling effect owing to albedo increase under no-till farming appears to be strongly amplified during warm events. This is due to the low cloud cover during these events, thus leading to a more efficient radiative cooling from albedo change. This implies a strong potential of no-till farming to mitigate heat wave impacts. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect remains the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 degrees. These findings strongly suggest that the biogeophysical effect of management practices should be considered in the design of climate mitigation policies involving land management. References:[1] Smith, P. et al. (2014): Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel

  16. Implementing climate change mitigation in health services: the importance of context.

    Science.gov (United States)

    Desmond, Sharon

    2016-10-01

    Academic interest in strategies to reduce the impact of health services on climate change is quickening. Research has largely focused on local innovations with little consideration of the contextual and systemic elements that influence sustainable development across health systems. A realistic framework specifically to guide decision-making by health care providers is still needed. To address this deficit, the literature is explored in relation to health services and climate change mitigation strategies, and the contextual factors that influence efforts to mitigate climate effects in health service delivery environments are highlighted. A conceptual framework is proposed that offers a model for the pursuit of sustainable development practice in health services. A set of propositions is advanced to provide a systems approach to assist decision-making by decoding the challenges faced in implementing sustainable health services. This has important implications for health care providers, funders and legislators since the financial, policy and regulatory environment of health care, along with its leadership and models of care generally conflict with carbon literacy and climate change mitigation strategies.

  17. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  18. Assessment of potential greenhouse gas mitigation from changes to crop root mass and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Paustian, Keith [Booz Allen Hamiltion Inc., McLean, VA (United States); Campbell, Nell [Booz Allen Hamiltion Inc., McLean, VA (United States); Dorich, Chris [Booz Allen Hamiltion Inc., McLean, VA (United States); Marx, Ernest [Booz Allen Hamiltion Inc., McLean, VA (United States); Swan, Amy [Booz Allen Hamiltion Inc., McLean, VA (United States)

    2016-01-29

    Reducing (and eventually reversing) the increase in greenhouse gases (GHGs) in the atmosphere due to human activities, and thus reducing the extent and severity of anthropogenic climate change, is one of the great challenges facing humanity. While most of the man-caused increase in GHGs has been due to fossil fuel use, land use (including agriculture) currently accounts for about 25% of total GHG emissions and thus there is a need to include emission reductions from the land use sector as part of an effective climate change mitigation strategy. In addition, analyses included in the recent IPCC 5th Climate Change Assessment report suggests that it may not be possible to achieve large enough emissions reductions in the energy, transport and industrial sectors alone to stabilize GHG concentrations at a level commensurate with a less than 2°C global average temperature increase, without the help of a substantial CO2 sink (i.e., atmospheric CO2 removal) from the land use sector. One of the potential carbon sinks that could contribute to this goal is increasing C storage in soil organic matter on managed lands. This report details a preliminary scoping analysis, to assess the potential agricultural area in the US – where appropriate soil, climate and land use conditions exist – to determine the land area on which ‘improved root phenotype’ crops could be deployed and to evaluate the potential long-term soil C storage, given a set of ‘bounding scenarios’ of increased crop root input and/or rooting depth for major crop species (e.g., row crops (corn, sorghum, soybeans), small grains (wheat, barley, oats), and hay and pasture perennial forages). The enhanced root phenotype scenarios assumed 25, 50 and 100% increase in total root C inputs, in combination with five levels of modifying crop root distributions (i.e., no change and four scenarios with increasing downward shift in root distributions). We also analyzed impacts of greater root

  19. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    Directory of Open Access Journals (Sweden)

    José Manuel Ortega-Egea

    Full Text Available The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change and socio-demographics (especially country-level variables in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  20. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    Science.gov (United States)

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  1. Linking climate change mitigation and coastal eutrophication management through biogas technology

    DEFF Research Database (Denmark)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael

    2016-01-01

    concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under...... and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63tyr.-1 and 9tyr.-1, respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific...... food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total...

  2. The role of coastal plant communities for climate change mitigation and adaptation

    Science.gov (United States)

    Duarte, Carlos M.; Losada, Iñigo J.; Hendriks, Iris E.; Mazarrasa, Inés; Marbà, Núria

    2013-11-01

    Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

  3. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    Science.gov (United States)

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC.

  4. The Social and Behavioural Aspects of Climate Change. Linking Vulnerability, Adaptation and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Martens, P.; Chang, Chiung Ting (eds.) [International Centre for Integrated Assessment and Sustainable Development ICIS, Maastricht University, Maastricht (Netherlands)

    2010-09-15

    Over the past few years, and certainly since the publication of the Stern Report , there has been increasing recognition that climate change is not only an environmental crisis, but one with important social and economic dimensions. There is now a growing need for multi-disciplinary research and for the science of climate change to be usefully translated for policy-makers. Until very recently, scientific and policy emphasis on climate change has focused almost exclusively on mitigation efforts: mechanisms and regulations to reduce greenhouse gas emissions. The success of such efforts to date is debatable. In fact, the impact of ever more stringent emission control programmes could potentially have enormous social consequences. Little effort has been expended on the exploration of a systematic evaluation of climate stabilisation benefits or the costs of adapting to a changed climate, let alone attempting to integrate different approaches. There is an increasing recognition that the key actors in the climate crisis also need to be preparing for change that is unavoidable. This has resulted in a greater consideration of vulnerability and adaptation. The book, based on the research programme 'Vulnerability, Adaptation and Mitigation' (VAM) which ran from 2004 to 2010, funded by the Netherlands Organisation for Scientific Research (NWO), presents a cluster of case studies of industries, communities and institutions which each show how vulnerability, adaptation and mitigation analyses can be integrated using social behavioural sciences. Each chapter makes specific recommendations for the studied industry sector, community or institution, analyses the latest research developments of the field and identifies priorities for future research. The book argues that the inherent complexity of climate change will ultimately require a much more integrated response both scientifically - to better understand multiple causes and impacts - as well as at the scientific

  5. Harmonising climate change adaptation and mitigation: The case of tourist resorts in Fiji

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Susanne [Landcare Research, Canterbury (New Zealand)

    2005-12-01

    Tourism in island states is vulnerable to climate change because it may result in detrimental changes in relation to extreme events, sea level rise, transport and communication interruption. This study analyses adaptation to climate change by tourist resorts in Fiji, as well as their potential to reduce climate change through reductions in carbon dioxide emissions. Interviews, site visitations, and an accommodation survey were undertaken. Many operators already prepare for climate-related events and therefore adapt to potential impacts resulting from climate change. Reducing emissions is not important to operators; however, decreasing energy costs for economic reasons is practised. Recommendations for further initiatives are made and synergies between the adaptation and mitigation approaches are explored. (Author)

  6. U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.

    Science.gov (United States)

    Garcia-Menendez, Fernando; Saari, Rebecca K; Monier, Erwan; Selin, Noelle E

    2015-07-07

    We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.

  7. Low-carbon agriculture in South America to mitigate global climate change and advance food security.

    Science.gov (United States)

    Sá, João Carlos de Moraes; Lal, Rattan; Cerri, Carlos Clemente; Lorenz, Klaus; Hungria, Mariangela; de Faccio Carvalho, Paulo Cesar

    2017-01-01

    The worldwide historical carbon (C) losses due to Land Use and Land-Use Change between 1870 and 2014 are estimated at 148 Pg C (1 Pg=1billionton). South America is chosen for this study because its soils contain 10.3% (160 Pg C to 1-m depth) of the soil organic carbon stock of the world soils, it is home to 5.7% (0.419 billion people) of the world population, and accounts for 8.6% of the world food (491milliontons) and 21.0% of meat production (355milliontons of cattle and buffalo). The annual C emissions from fossil fuel combustion and cement production in South America represent only 2.5% (0.25 Pg C) of the total global emissions (9.8 Pg C). However, South America contributes 31.3% (0.34 Pg C) of global annual greenhouse gas emissions (1.1 Pg C) through Land Use and Land Use Change. The potential of South America as a terrestrial C sink for mitigating climate change with adoption of Low-Carbon Agriculture (LCA) strategies based on scenario analysis method is 8.24 Pg C between 2016 and 2050. The annual C offset for 2016 to 2020, 2021 to 2035, and 2036 to 2050 is estimated at 0.08, 0.25, and 0.28 Pg C, respectively, equivalent to offsetting 7.5, 22.2 and 25.2% of the global annual greenhouse gas emissions by Land Use and Land Use Change for each period. Emission offset for LCA activities is estimated at 31.0% by restoration of degraded pasturelands, 25.6% by integrated crop-livestock-forestry-systems, 24.3% by no-till cropping systems, 12.8% by planted commercial forest and forestation, 4.2% by biological N fixation and 2.0% by recycling the industrial organic wastes. The ecosystem carbon payback time for historical C losses from South America through LCA strategies may be 56 to 188years, and the adoption of LCA can also increase food and meat production by 615Mton or 17.6Mtonyear(-1) and 56Mton or 1.6Mtonyear(-1), respectively, between 2016 and 2050.

  8. Strategic and legal framework in forestry and related sectors: Climate change mitigation in European Union and Serbia

    Directory of Open Access Journals (Sweden)

    Ranković Nenad

    2016-01-01

    Full Text Available The important role of forests in mitigating and adapting to climate changes is recognized and widely accepted. Therefore, it becomes a subject of universal interest and support. However, in the national strategies relating to climate change, the importance of the forestry sector in mitigating these changes is quite often not discussed in detail. In addition, the problem of climate change is not fully represented and included in national forestry policies. The aim of this research was to determine the compliance and differences of strategic and legislative frameworks in forestry and related sectors, relating to climate change mitigation in the EU and Serbia. At the EU level, there are two strategies and a policy framework, and in Serbia, eight sectoral strategies, referring and discussing the climate change mitigation through forestry. At the same time, these issues are highlighted as the primary objective, only in the Climate and Energy Package of the EU and the Forestry Development Strategy in Serbia. In terms of legislative framework in Serbia, two laws have climate change mitigation through forestry as the primary objective, while for the analyzed relevant EU legislation, this is a secondary objective. In Serbia, only the Forest law has a direct impact on climate change mitigation through forestry, while at EU level, there is no regulation, directive or communication, with the same direct influence. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Studies of climate changes and their impact on the environment-monitoring impacts, adaptation and mitigation, podprojekat, 43007/16-III: Socio-economic development, mitigation and adaptation to climate change

  9. The role of technological availability for the distributive impacts of climate change mitigation policy

    Energy Technology Data Exchange (ETDEWEB)

    Lueken, Michael, E-mail: bmlueken@web.de [Potsdam Institute for Climate Impact Research (PIK), Research Domain Sustainable Solutions, PO Box 60 12 03, 14412 Potsdam (Germany); Edenhofer, Ottmar; Knopf, Brigitte; Leimbach, Marian; Luderer, Gunnar; Bauer, Nico [Potsdam Institute for Climate Impact Research (PIK), Research Domain Sustainable Solutions, PO Box 60 12 03, 14412 Potsdam (Germany)

    2011-10-15

    The impacts of the availability of low-carbon technologies on the regional distribution of mitigation costs are analyzed in a global multi-regional integrated assessment model. Three effects on regional consumption losses are distinguished: domestic measures, trade of fossil energy carriers and trade of emission permits. Key results are: (i) GDP losses and a redirection of investments in the energy system towards capital-intensive technologies are major contributions to regional consumption losses. (ii) A devaluation of tradable fossil energy endowments contributes largely to the mitigation costs of fossil fuel exporters. (iii) In case of reduced availability of low-carbon technologies, the permit market volume and associated monetary redistributions increase. The results suggest that the availability of a broad portfolio of low-carbon technologies could facilitate negotiations on the permit allocation scheme in a global cap-and-trade system. - Highlights: > We analyze the distribution of climate change mitigation costs among world regions. > We quantify contributions from various effects on regional costs. > The interference of world trade and low-carbon technologies is essential. > A broad portfolio of technologies helps international negotiations.

  10. Greenhouse gas mitigation options in the forestry sector of The Gambia: Analysis based on COMAP model

    Energy Technology Data Exchange (ETDEWEB)

    Jallow, B.P.

    1996-12-31

    Results of the 1993 Greenhouse Gas Emissions Inventory of The Gambia showed net CO{sub 2} emissions of over (1.66 x 10{sup 6} tons) and 1% was due to uptake by plantations (0.01 x 10{sup 6} tons). This is a clear indication that there is need to identify changes in the land-use policy, law and tenure that discourages forest clearing at the same time significantly influencing the sustainable distribution of land among forestry, rangeland and livestock, and agriculture. About 11% of the total area of The Gambia is either fallow or barren flats that once supported vegetation and hence is still capable of supporting vegetation. The US Country Study Programme has provided the Government of The Gambia through the National Climate Committee funds to conduct Assessment of Mitigation Options to Reduce Greenhouse Gas Emissions. The Forestry Sector is one area for which assessment is being conducted. The assessment is expected to end in September 1996. The Comprehensive Mitigation Analysis Process (COMAP) is one of the Models supplied to the National Climate Committee by the Lawrence Berkeley Laboratory, on behalf of the US Country Study Programme, and is being used to conduct the analysis in The Gambia.

  11. Mitigating the Urban Heat Island under Climate Change through Urban Management

    Science.gov (United States)

    Zhao, L.; Lee, X.; Oleson, K. W.; Schultz, N. M.; Smith, R. B.

    2015-12-01

    The urban heat island (UHI) represents ubiquitous urban warmth compared to surrounding rural areas. This phenomenon, when compounded with future climate warming, will exacerbate heat stress on urban residents who will comprise 70% of the world's population by 2070. At the same time, urban climate adaptation plans have shown great potential for reducing the impacts of global change. In this study, we assess three mitigation strategies, including reflective roofs, green roofs, and street trees, to ameliorate the warming under climate change through both "online" and "offline" methods. The "online" method compares modeling results from a modified urban roof albedo configuration (ALB-MOD) where the roof albedo is raised to a high reflective value to the modeling results from the default configuration (CTRL), both using the Community Earth System Model (CESM). Three pairs of simulations under current climate forcing and two future scenarios (RCP4.5 and RCP8.5) are conducted. The "offline" method uses a surface temperature attribution solution derived previously for partitioning the UHI intensity to assess the efficacy of the mitigation strategies. The "offline" method supplements the "online" method in assessing green roof and street tree strategies, because the current design of CESM does not have explicit vegetation in the urban canopy configuration. The excellent agreement between the "online" and "offline" results confirms the validity of the offline scheme, supporting that the "offline" method can be used to predict the impacts of various urban adaptation strategies for development planning. Results show that albedo management is the most effective and viable way to mitigate UHIs, whereas although green roof and street trees strategies have evaporative cooling effects, the cooling is compensated by vegetation's lower albedo, showing much less effectiveness on UHI mitigation. Although convection efficiency associated with the surface roughness is an important

  12. Risk and return of project-based climate change mitigation: a portfolio approach

    Energy Technology Data Exchange (ETDEWEB)

    Laurikka, H. [Helsinki University of Technology (Finland). Laboratory for Energy Economics and Power Plant Engineering; Springer, U. [ECOPLAN, Bern (Switzerland)

    2003-10-01

    We present a framework for evaluating the risks of investments in climate change mitigation projects to generate emission credits. Risk factors that influence the quantity of emission credits are identified for six project types. Since not all project types are affected by the same factors, diversification is a viable risk reduction strategy. We propose a methodology for quantifying risk and return of such investments, discuss data requirements, and illustrate it using a sample of voluntary projects. In our sample, the returns of an optimally diversified low-risk portfolio are up to 10 times higher than those of single projects, holding risk exposure constant. (author)

  13. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment

    Science.gov (United States)

    Johns, T. C.; Royer, J.-F.; Höschel, I.; Huebener, H.; Roeckner, E.; Manzini, E.; May, W.; Dufresne, J.-L.; Otterå, O. H.; van Vuuren, D. P.; Salas Y Melia, D.; Giorgetta, M. A.; Denvil, S.; Yang, S.; Fogli, P. G.; Körper, J.; Tjiputra, J. F.; Stehfest, E.; Hewitt, C. D.

    2011-11-01

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE 2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2 K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative

  14. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment

    Energy Technology Data Exchange (ETDEWEB)

    Johns, T.C.; Hewitt, C.D. [Met Office, Hadley Centre, Exeter (United Kingdom); Royer, J.F.; Salas y. Melia, D. [Centre National de Recherches Meteorologiques-Groupe d' Etude de l' Atmosphere Meteorologique (CNRM-GAME Meteo-France CNRS), Toulouse (France); Hoeschel, I.; Koerper, J. [Freie Universitaet Berlin, Institute for Meteorology, Berlin (Germany); Huebener, H. [Hessian Agency for the Environment and Geology, Wiesbaden (Germany); Roeckner, E.; Giorgetta, M.A. [Max Planck Institute for Meteorology, Hamburg (Germany); Manzini, E. [Max Planck Institute for Meteorology, Hamburg (Germany); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); May, W.; Yang, S. [Danish Meteorological Institute, Danish Climate Centre, Copenhagen (Denmark); Dufresne, J.L. [Laboratoire de Meteorologie Dynamique (LMD/IPSL), UMR 8539 CNRS, ENS, UPMC, Ecole Polytechnique, Paris Cedex 05 (France); Otteraa, O.H. [Nansen Environmental and Remote Sensing Center, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Uni. Bjerknes Centre, Bergen (Norway); Vuuren, D.P. van [Utrecht University, Utrecht (Netherlands); Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands); Denvil, S. [Institut Pierre Simon Laplace (IPSL), FR 636 CNRS, UVSQ, UPMC, Paris Cedex 05 (France); Fogli, P.G. [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Tjiputra, J.F. [University of Bergen, Department of Geophysics, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Stehfest, E. [Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands)

    2011-11-15

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE 2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2 K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative

  15. EFFECT OF CLIMATE CHANGE ON DAIRY PRODUCTION IN BOTSWANA AND ITS SUITABLE MITIGATION STRATEGIES

    Directory of Open Access Journals (Sweden)

    J. C. MOREKI

    2013-11-01

    Full Text Available This paper explores the effects of climate change on dairy production in Botswana and mitigation strategies are suggested. Dairy farming has not experienced growth over time rendering the country heavily dependent on milk imports. National dairy herd is estimated to be approximately 5000 and per capita consumption of milk about 32.5 litres per person per year. Currently, Botswana is experiencing average high temperatures and low rainfall, frequent droughts and scarcity of both ground and surface water, which all contribute to low livestock and crop productivity. Changes in rainfall patterns, frequent droughts, high incidences of animal diseases (e.g., mastitis and FMD and parasites, and high environmental temperatures cause significant decrease in livestock productivity. For dairy animals, there is a decline in milk yield and reduced animal weight gain due mainly to high temperatures and inadequate feeds. Mitigation strategies comprise using smaller dairy breeds such as Jersey and Brown Swiss and local Tswana breed, growing fodder crops and utilization of crop residues and constructing cow sheds. Thus, the effects of climate change on dairy cattle production are real and require immediate attention if they are to be minimized or managed properly to attain higher milk production.

  16. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    Science.gov (United States)

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-06

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  17. Limited potential of no-till agriculture for climate change mitigation

    Science.gov (United States)

    Powlson, David S.; Stirling, Clare M.; Jat, M. L.; Gerard, Bruno G.; Palm, Cheryl A.; Sanchez, Pedro A.; Cassman, Kenneth G.

    2014-08-01

    The Emissions Gap Report 2013 from the United Nations Environment Programme restates the claim that changing to no-till practices in agriculture, as an alternative to conventional tillage, causes an accumulation of organic carbon in soil, thus mitigating climate change through carbon sequestration. But these claims ignore a large body of experimental evidence showing that the quantity of additional organic carbon in soil under no-till is relatively small: in large part apparent increases result from an altered depth distribution. The larger concentration near the surface in no-till is generally beneficial for soil properties that often, though not always, translate into improved crop growth. In many regions where no-till is practised it is common for soil to be cultivated conventionally every few years for a range of agronomic reasons, so any soil carbon benefit is then lost. We argue that no-till is beneficial for soil quality and adaptation of agriculture to climate change, but its role in mitigation is widely overstated.

  18. Four key reasons why climate change adaptation and mitigation need a gendered approach

    Directory of Open Access Journals (Sweden)

    Carla Sarrouy

    2014-09-01

    Full Text Available Climate change is having a growing impact on every human activity, especially on agriculture with altered rainfall patterns and an increased number and intensity of extreme weather events. This article argues that efforts to mitigate and adapt to climate change must consider whole food systems – rather than the sole production of food – whilst embracing a conscious gendered approach. Women are the main victims of hunger, but they are also the main actors of global food systems, they greatly contribute to their household’s and community’s wellbeing and detain a rich and often untapped knowledge of food systems. Promoting the role of women in our global food systems enhances the inclusion of criteria mainly valued by women such as resilience, diversity and nutrition, which are paramount for climate change mitigation and adaptation. Photo credit: By OxFam East Africa [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0], via Wikimedia Commons

  19. Cotton and Climate Change: Impacts and Options to mitigate and adapt.

    Science.gov (United States)

    Ton, P.

    2012-04-01

    Cotton & Climate change: Impacts and Options to mitigate and adapt. Climate change will have major impacts on cotton production and trade depending on production location. This report to be presented analyses the impacts of climate change on cotton production and trade in the main producing areas world-wide, and the options available to mitigate and to adapt to these impacts. Cotton production is both a contributor to climate change and subject to its impacts. Agricultural production, processing, trade and consumption contribute up to 40% of the world's emissions when forest clearance is included in the calculation. Cotton production contributes to between 0.3% and 1% of total global GHG emissions. Cotton has a certain resilience to high temperatures and drought due to its vertical tap root. The crop is, however, sensitive to water availability, particularly at the height of flowering and boll formation. Rising temperatures favour plant development, unless day temperatures exceed 32°C. New production areas may be established where cotton was not grown before. Increases in atmospheric CO2 will also favour plant development. In turn, increased pests, water stress, diseases, and weather extremes will pose adaptation challenges. Overall, the negative impacts of climate change on cotton production relate to the reduced availability of water for irrigation, in particular in Xinjiang (China), Pakistan, Australia and the western United States. Heat stress risks creating depressed yields in Pakistan in particular, while in other countries limited increases in temperatures could favour cotton plant growth and lengthen the cotton growing season. The impacts of climate change on rainfall will likely be positive in the Yellow River area (China), in India, the south-eastern United States and south-eastern Anatolia (Turkey). Impacts on rainfall in Brazil and West and Central Africa are unclear. Mitigation and adaptation to climate change in cotton production, as in agriculture

  20. Accounting for Impacts of Natural Disturbances on Climate Change Mitigation Projects in Tropical Forests (Invited)

    Science.gov (United States)

    Birdsey, R.; Dai, Z.; Hernandez, J.; Johnson, K. D.; Vargas, R.

    2013-12-01

    Most forests in the world are recovering from natural or human-induced disturbances -- the fraction of the world's forests disturbed each year by fire and insects alone is conservatively estimated by FAO to be 2.6%. Natural disturbances are common in many tropical forest areas and have significant impacts on carbon stocks. For example, emissions from wildfires in tropical forests are estimated to exceed 700 TgC yr-1 annually, with significant interannual variability related to global weather cycles. Several lines of evidence point toward long-term climate-induced increases in natural disturbances, with the potential for changing the world's terrestrial ecosystems from a sink to a source of CO2. This raises the important question of whether forests can be an effective part of a climate change mitigation strategy and concurrently, how to account for the effects of disturbances separately from the effects of changes in land use or forest management. Although global and regional studies have made some good progress to quantify the impacts of natural disturbances, it remains a technical challenge to separate or 'factor out' the impacts of natural disturbances from other causes of changes in carbon stocks, such as vegetation regrowth and CO2 fertilization, when developing the accounting and monitoring systems required to support climate change mitigation projects. We tested one approach in the semi-deciduous dry forests of the Yucatan Peninsula of Mexico using the ecosystem process model DNDC. Spatial variability in simulated C stocks reflects variations in stand age, vegetation type, soil characteristics and disturbance. Disturbances that occurred between 1985 and 2010 led to a mean decrease in C stocks of 3.2 Mg C ha-1 in 2012 not including forestland lost to crops and urban land uses. Other approaches may be possible for factoring out specific causes of changes in carbon stocks, but the IPCC has twice determined that none of the currently available alternatives is

  1. Horizontal shaking table tests and analysis on structures with multi-dimensional earthquake isolation and mitigation devices

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The viscoelastic multi-dimensional earthquake isolation and mitigation device is a new kind of passive control device, which has both earthquake isolation and earthquake mitigation abilities. In order to quantify the horizontal earthquake isolation and mitigation effect of this device on structures, shaking table tests on structures with and without the devices and the corresponding analysis on earthquake isolation and mitigation properties are carried out. It can be shown from the experimental and analytical results that the device has both earthquake isolation and earthquake mitigation effects on structures in horizontal direction, and its horizontal earthquake mitigation coefficients can be referred to those of the rubber bearing earthquake isolation structure.

  2. The potential of Indonesian mangrove forests for global climate change mitigation

    Science.gov (United States)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  3. Tooling up urban planning for climate change mitigation in Malaysian cities

    Science.gov (United States)

    Chau, L. W.; Yap, Z. C.; Ho, C. S.

    2014-02-01

    The city's 2-dimensional spatial structure and 3-dimensional form significantly influence its energy and GHG emission intensity. In rapidly developing urban-regions, the ability of the local planning authorities to quantify the spatial structure and form of existing urban areas, new developments and the emergent urban-region in terms of GHG emission is vital to any effective local, national and global climate change mitigation effort. While a wide array of tools has been developed for assessing built environment sustainability at various spatial scales, these are predominantly eco-efficiency rating tools that do not model the 'spatial structure-GHG' relationship and do not illustrate the GHG implications of urban structure and form, which crucially inform local planning decisions with respect to climate change mitigation. This paper takes the first steps in analysing three spatial-based planning models (Envision Tomorrow, GHGProof, URBEMIS) that estimate GHG emissions towards assessing their adaptability for application in Malaysian cities. It looks into the models' "inner working", unpacking the variables and their relationships; assumptions and conversion rates used; and their data requirement and structure. The models' characteristics and features are critically compared to evaluate their capabilities, limitations and relevance to the Malaysian urban planning context, particularly in terms of data availability.

  4. ¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Karena Shaw

    2013-05-01

    Full Text Available Shale gas proponents argue this unconventional fossil fuel offers a “bridge” towards a cleaner energy system by offsetting higher-carbon fuels such as coal. The technical feasibility of reconciling shale gas development with climate action remains contested. However, we here argue that governance challenges are both more pressing and more profound. Reconciling shale gas and climate action requires institutions capable of responding effectively to uncertainty; intervening to mandate emissions reductions and internalize costs to industry; and managing the energy system strategically towards a lower carbon future. Such policy measures prove challenging, particularly in jurisdictions that stand to benefit economically from unconventional fuels. We illustrate this dilemma through a case study of shale gas development in British Columbia, Canada, a global leader on climate policy that is nonetheless struggling to manage gas development for mitigation. The BC case is indicative of the constraints jurisdictions face both to reconcile gas development and climate action, and to manage the industry adequately to achieve social licence and minimize resistance. More broadly, the case attests to the magnitude of change required to transform our energy systems to mitigate climate change.

  5. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  6. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Science.gov (United States)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration

  7. A trinity of sense: Using biomass in the transport sector for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Lindfeldt, Erik G.

    2008-11-15

    This thesis analyses two strategies for decreasing anthropogenic carbon dioxide (CO_2) emissions: to capture and store CO_2, and to increase the use of biomass. First, two concepts for CO_2 capture with low capture penalties are evaluated. The concepts are an integrated gasification combined cycle where the oxygen is supplied by a membrane reactor, and a hybrid cycle where the CO_2 is captured at elevated pressure. Although the cycles have comparatively high efficiencies and low penalties, they illustrate the inevitable fact that capturing CO_2 will always induce significant efficiency penalties. Other strategies are also needed if CO_2 emissions are to be forcefully decreased. An alternative is increased use of biomass, which partially could be used for production of motor fuels (biofuels). This work examines arguments for directing biomass to the transport sector, analyses how biofuels (and also some other means) may be used to reduce CO_2 emissions and increase security of motor fuel supply. The thesis also explores the possibility of reducing CO_2 emissions by comparatively easy and cost-efficient CO_2 capture from concentrated CO_2 streams available in some types of biofuel plants. Many conclusions of the thesis could be associated with either of three meanings of the word sense: First, there is reason in biofuel production - since it e.g. reduces oil dependence. From a climate change mitigation perspective, however, motor fuel production is often a CO_2-inefficient use of biomass, but the thesis explores how biofuels' climate change mitigation effects may be increased by introducing low-cost CO_2 capture. Second, the Swedish promotion of biofuels appears to have been governed more by a feeling for attaining other goals than striving for curbing climate change. Third, it seems to have been the prevalent opinion among politicians that the advantages of biofuels - among them their climate change mitigation benefits - are far greater than the disadvantages

  8. A trinity of sense: Using biomass in the transport sector for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Lindfeldt, Erik G.

    2008-10-15

    This thesis analyses two strategies for decreasing anthropogenic carbon dioxide emissions: to capture and store CO{sub 2}, and to increase the use of biomass. First, two concepts for CO{sub 2} capture with low capture penalties are evaluated. The concepts are an integrated gasification combined cycle where the oxygen is supplied by a membrane reactor, and a hybrid cycle where the CO{sub 2} is captured at elevated pressure. Although the cycles have comparatively high efficiencies and low penalties, they illustrate the inevitable fact that capturing CO{sub 2} will always induce significant efficiency penalties. Other strategies are also needed if CO{sub 2} emissions are to be forcefully decreased. An alternative is increased use of biomass, which partially could be used for production of motor fuels (biofuels). This work examines arguments for directing biomass to the transport sector, analyses how biofuels (and also some other means) may be used to reduce CO{sub 2} emissions and increase security of motor fuel supply. The thesis also explores the possibility of reducing CO{sub 2} emissions by comparatively easy and cost-efficient CO{sub 2} capture from concentrated CO{sub 2} streams available in some types of biofuel plants. Many conclusions of the thesis could be associated with either of three meanings of the word sense: First, there is reason in biofuel production - since it e.g. reduces oil dependence. From a climate change mitigation perspective, however, motor fuel production is often a CO{sub 2}-inefficient use of biomass, but the thesis explores how biofuels' climate change mitigation effects may be increased by introducing low-cost CO{sub 2} capture. Second, the Swedish promotion of biofuels appears to have been governed more by a feeling for attaining other goals than striving for curbing climate change. Third, it seems to have been the prevalent opinion among politicians that the advantages of biofuels - among them their climate change mitigation

  9. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    Directory of Open Access Journals (Sweden)

    Van R Haden

    Full Text Available In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.

  10. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging.

    Science.gov (United States)

    Falegan, Oluyemi S; Vogel, Hans J; Hittel, Dustin S; Koch, Lauren G; Britton, Steven L; Hepple, Russ T; Shearer, Jane

    2017-02-03

    Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy ((1)H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.

  11. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  12. Mitigation method of thermal transient stress by a total analysis of thermal hydraulic and structural phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Naoto [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Jinbo, Masakazu [Toshiba Co., Tokyo (Japan); Hosogai, Hiromi [Joyo Industry Co., Ltd., Tokai, Ibaraki (Japan)

    2002-09-01

    This study proposes a mitigation method of thermal transient loads in fast reactor components by utilizing relationships among plant system parameters and resulting thermal stresses. Conventional design procedure against thermal transient loads has two independent steps: thermal hydraulic analysis to determine conservative thermal transient conditions considering variation of the system parameters and structural analysis to check structural integrity under given conditions. On the other hand, a total analysis procedure of thermal hydraulic and structural phenomena can grasp the relationship among system parameters and thermal stresses. It enables the mitigation of thermal transient loads by adjusting system parameters. (author)

  13. Benefits of collaborative and comparative research on land use change and climate mitigation

    Science.gov (United States)

    Zhu, Zhiliang; Gong, Peng

    2016-04-01

    The world's two largest economies are also the latest greenhouse gas emitters. The United States is committed to reduce the net greenhouse gas emission by 28% below the 2005 level by 2025. Similarly China also announced significant climate mitigation steps at the Paris climate convention. These policy plans will require actions including reduction of GHG emissions as well as protection of carbon stored in biologic pools and increase of carbon sequestration by the natural ecosystems. Major drivers of ecosystem carbon sequestration and protection of existing carbon resources include land use, disturbances, and climate change. Recent studies indicate that vegetated ecosystems in the United States remain as a carbon sink but the sink is weakening due to increased disturbances (such as wildfire and harvesting) and aging of forests. Unique land use policies in China such as large-scale afforestation in the recent decades have reportedly led to significant increase in total forest area and aboveground biomass, although it is not clear to what degree the increase has translated to strengthened net uptake of atmospheric CO2 and the rate of sequestration by vegetated ecosystems. What lessons can we draw from different land management and land use practices in the U.S. and China that can benefit scientific advances and climate mitigation goals? Research conducted collaboratively by the U.S. Geological Survey and China Ministry of Science and Technology has led to improved techniques for tracking and modeling land use change and ecosystem disturbances and improved understanding of consequences of different land use change and management practices on ecosystem carbon sequestration capacities.

  14. Impact of Real-world Factors Influencing Investment Decisions on the Costs and Distribution of Climate Change Mitigation

    Science.gov (United States)

    Edmonds, J.; Iyer, G.; McJeon, H. C.; Leon, C.; Hultman, N.

    2015-12-01

    Strategies to mitigate dangerous anthropogenic climate change require a dramatic transformation of the energy system to reduce greenhouse gas emissions, that in turn requires large-scale investments. Investment decisions depend not only on investment capital availability but also on investment risks. A number of factors such as national policy environments, quality of public and private institutions, sector, firm and technology specific characteristics can affect investors' assessments of risks, leading to a wide variation in the business climate for investment. Such heterogeneity in investment risks can have important implications, as investors usually respond to risks by requiring higher returns for riskier projects; delaying or forgoing the investments; or preferring to invest in existing, familiar projects. We study the impact of variation in investment risks on regional patterns of emissions mitigation, the cost of emissions mitigation and patterns of technology deployment. We modify an integrated assessment model, widely used in global climate policy analyses (the Global Change Assessment Model) and incorporate decisions on investments based on risks along two dimensions. Along the first dimension, we vary perceived risks associated with particular technologies. To do so, we assign a higher cost of capital for investment in low-carbon technologies as these involve intrinsically higher levels of regulatory and market risk. The second dimension uses a proxy to vary investment risks across regions, based on an institutional quality metric published by the World Economic Forum. Explicit representation of investment risks has two major effects. First, it raises the cost of emissions mitigation relative to a world with uniform investment risks. Second, it shifts the pattern of emissions mitigation, with industrialized countries mitigating more, and developing countries mitigating less. Our results suggest that institutional reforms aimed at lowering investment

  15. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  16. Mind the gap in SEA: An institutional perspective on why assessment of synergies amongst climate change mitigation, adaptation and other policy areas are missing

    Energy Technology Data Exchange (ETDEWEB)

    Vammen Larsen, Sanne, E-mail: sannevl@plan.aau.dk [Aalborg University, Lautrupvang 1A, 2750 Ballerup (Denmark); Kornov, Lone, E-mail: lonek@plan.aau.dk [Aalborg University, Fibigerstraede 13, 9220 Aalborg O (Denmark); Wejs, Anja, E-mail: wejs@plan.aau.dk [Aalborg University, Fibigerstraede 13, 9220 Aalborg O (Denmark)

    2012-02-15

    This article takes its point of departure in two approaches to integrating climate change into Strategic Environmental Assessment (SEA): Mitigation and adaptation, and in the fact that these, as well as the synergies between them and other policy areas, are needed as part of an integrated assessment and policy response. First, the article makes a review of how positive and negative synergies between a) climate change mitigation and adaptation and b) climate change and other environmental concerns are integrated into Danish SEA practice. Then, the article discusses the implications of not addressing synergies. Finally, the article explores institutional explanations as to why synergies are not addressed in SEA practice. A document analysis of 149 Danish SEA reports shows that only one report comprises the assessment of synergies between mitigation and adaptation, whilst 9,4% of the reports assess the synergies between climate change and other environmental concerns. The consequences of separation are both the risk of trade-offs and missed opportunities for enhancing positive synergies. In order to propose explanations for the lacking integration, the institutional background is analysed and discussed, mainly based on Scott's theory of institutions. The institutional analysis highlights a regulatory element, since the assessment of climate change synergies is underpinned by legislation, but not by guidance. This means that great focus is on normative elements such as the local interpretation of legislation and of climate change mitigation and adaptation. The analysis also focuses on how the fragmentation of the organisation in which climate change and SEA are embedded has bearings on both normative and cultural-cognitive elements. This makes the assessment of synergies challenging. The evidence gathered and presented in the article points to a need for developing the SEA process and methodology in Denmark with the aim to include climate change in the assessments

  17. Enhancing international technology cooperation for climate change mitigation. Lessons from an electromobility case study

    Energy Technology Data Exchange (ETDEWEB)

    Bhasin, Shikha

    2014-07-01

    As a global agreement on climate mitigation and absolute emissions reductions remains grid-locked, this paper assesses whether the prospects for international technology cooperation in low-carbon sectors can be improved. It analyses the case of international cooperation on electric vehicle technologies to elaborate on the trade-offs that cooperation such as this inherently attempts to balance- national growth objectives of industrial and technology development versus the global goods benefit of reducing greenhouse gas (GHG) emissions. It focuses on bilateral German-Chinese programmes for electric vehicle development, as well as multilateral platforms on low-carbon technology cooperation related to electric vehicles. Based on insights from these cases studies, this paper ultimately provides policy recommendations to address gaps in international technology cooperation at a bilateral level for ongoing German-Chinese engagement on electric vehicles; and at a multilateral level with a focus on the emerging technology cooperation framework of the United Nations Framework Convention on Climate Change (UNFCCC).

  18. China–Europe Relations in the Mitigation of Climate Change: A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Axel Berger

    2013-01-01

    Full Text Available Despite the large-scale investments of both China and the EU in climate-change mitigation and renewable-energy promotion, the prevailing view on China–EU relations is one of conflict rather than cooperation. In order to evaluate the prospects of cooperation between China and the EU in these policy fields, empirical research has to go beyond simplistic narratives. This paper suggests a conceptual apparatus that will help researchers better understand the complexities of the real world. The relevant actors operate at different levels and in the public and private sectors. The main message of the paper is that combining the multi-level governance and value-chain approaches helps clarify the multiple relationships between these actors.

  19. Climate change and cities: why urban agendas are central to adaptation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Satterthwaite, David

    2007-12-15

    Cities could hold the key to slowing and eventually stopping global warming. Most greenhouse gas emissions are generated from producing the goods and services used by middle- and upper-income urban consumers. Keeping global warming within safe limits demands far more energy-efficient urban buildings and production systems and urban lifestyles that are far less carbon-intensive. It is up to high-income nations — the biggest contributors to greenhouse gas emissions past and present — to show how such a transformation can be combined with high living standards. However, urgent action is also needed in the urban areas of low- and middleincome countries, both through mitigation to curb greenhouse gas emissions, and adaptation to the serious risks that climate change brings.

  20. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    Science.gov (United States)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  1. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk.

    Science.gov (United States)

    Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon

    2015-02-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).

  2. Combating the effects of climatic change on forests by mitigation strategies

    Directory of Open Access Journals (Sweden)

    Dieter Matthias

    2010-11-01

    Full Text Available Abstract Background Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions. Results We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES. We used the scenarios A1B (rapid and successful economic development and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development. Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management. Conclusions The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.

  3. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    Directory of Open Access Journals (Sweden)

    Eugene L. Chia

    2016-01-01

    Full Text Available There is growing interest in designing and implementing climate change mitigation and adaptation (M + A in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1 the health of forest ecosystems is maintained or enhanced; (2 the adaptive capacity of forest-dependent communities is ensured; (3 carbon and adaptation benefits are monitored and verified; and (4 adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.

  4. The Role of Forests in Mitigating Climate Change – a Case Study for Europe

    Directory of Open Access Journals (Sweden)

    GÁLOS, Borbála

    2012-01-01

    Full Text Available A regional-scale case study has been carried out to assess the possible climatic benefits of forest cover increase in Europe. For the end of the 21st century (2071–2090 it has been investigated, whether the projected climate change could be reduced assuming potential afforestation of the continent. The magnitude of the biogeophysical effects of enhanced forest cover on temperature and precipitation means and extremes have been analyzed relative to the magnitude of the climate change signal applying the regional climate model REMO. The simulation results indicate that in the largest part of the temperate zone potential afforestation may reduce the projected climate change through cooler and moister conditions, thus could contribute to the mitigation of the projected climate change for the entire summer period. The largest relative effect of forest cover increase can be expected in northern Germany, Poland and Ukraine. Here, the projected precipitation decrease could be fully compensated, the temperature increase could be relieved by up to 0.5 °C, and the probability of extremely warm and dry days could be reduced. Results can help to identify the areas, where forest cover increase could be the most effective from climatic point of view. Thus they can build an important basis of the future adaptation strategies and forest policy.

  5. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system.

    Science.gov (United States)

    Lee, J Y; Moon, H J; Kim, T I; Kim, H W; Han, M Y

    2013-10-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design.

  6. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  7. Mitigation options in forestry, land-use change and biomass burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.L. [Univ. of California, Lawrence Berkeley National Lab. (United States)

    1998-10-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs.

  8. Peru mitigation assessment of greenhouse gases: Sector -- Energy. Peru climate change country study; Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The aim of this study is to determine the Inventory and propose Greenhouse Gases Mitigation alternatives in order to face the future development of the country in a clean environmental setting without delaying the development process required to improve Peruvian standard of living. The main idea of this executive abstract is to show concisely the results of the Greenhouse Gases Mitigation for Peru in the period 1990--2015. The studies about mitigation for the Energy Sector are shown in this summary.

  9. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes; Lee, David R.

    2016-10-01

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg-1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg-1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.

  10. Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices.

    Science.gov (United States)

    Stevanović, Miodrag; Popp, Alexander; Bodirsky, Benjamin Leon; Humpenöder, Florian; Müller, Christoph; Weindl, Isabelle; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Kreidenweis, Ulrich; Rolinski, Susanne; Biewald, Anne; Wang, Xiaoxi

    2017-01-03

    The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.

  11. Integrated assessment of global water scarcity over the 21st century – Part 2: Climate change mitigation policies

    Directory of Open Access Journals (Sweden)

    M. I. Hejazi

    2013-03-01

    Full Text Available We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM, a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m−2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively, under two carbon tax regimes (a universal carbon tax (UCT which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT which excludes land use change emissions are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy with radiative forcing reaching 8.8 W m−2 (equivalent to the SRES A1Fi emission scenario by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  12. Identifying and Mitigating the Impacts of Climate Change on Heritage Assets from Site to Catchment-Scale : Developing Landscape Analysis Toolkits within Geoarchaeological Frameworks.An example from the Trent catchment, UK

    Science.gov (United States)

    Howard, Andy; Knight, David

    2016-04-01

    In the UK, the devastating floods of the last few years, both summer and winter, have bought sharply into focus the changing nature of weather patterns, as well as the challenges of future flood risk management under such extreme scenarios. Inevitably, when such disasters happen, focus is often placed on individual localities or groups of built assets, as well as the development of solutions that consider contemporary and modelled future geomorphological processes. Whilst the impact of these major floods on heritage assets has gained some prominence in the media, often due to failure of historic bridges, the majority of the damage to the Historic Record goes unrecognised, since its impact is on (invisible) subsurface remains. As well as being directly affected by these flood events, identifying the character of heritage assets within river catchments has the potential to inform landscape managers of past climatic and environmental changes and human response to key geomorphic processes and events. Particularly in industrial landscapes, it also has the potential to identify the legacy of past pollution that can have significant impacts on ecosystems and future geomorphic thresholds. Clearly, whilst the historic environment record has the potential to greatly inform environmental managers, it is important that those responsible for providing such information (i.e. the archaeological community), take a holistic approach to examining landscapes within clearly identified research frameworks that provide equal weight to individual sites and more expansive terrain units. This paper provides an example of such a framework developed through a number of Historic England funded initiatives in the Trent catchment, UK, which have helped to develop toolkits to characterise geoarchaeological resources, consider their potential for informing environmental managers about past landscape change and therefore offer the potential to shape policy and societal response to future events.

  13. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).

    Science.gov (United States)

    Bogner, Jean; Pipatti, Riitta; Hashimoto, Seiji; Diaz, Cristobal; Mareckova, Katarina; Diaz, Luis; Kjeldsen, Peter; Monni, Suvi; Faaij, Andre; Gao, Qingxian; Zhang, Tianzhu; Ahmed, Mohammed Abdelrafie; Sutamihardja, R T M; Gregory, Robert

    2008-02-01

    . Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline. The commercial recovery of landfill CH4 as a source of renewable energy has been practised at full scale since 1975 and currently exceeds 105 Mt CO2-eq year(-1). Although landfill CH4 emissions from developed countries have been largely stabilized, emissions from developing countries are increasing as more controlled (anaerobic) landfilling practices are implemented; these emissions could be reduced by accelerating the introduction of engineered gas recovery, increasing rates of waste minimization and recycling, and implementing alternative waste management strategies provided they are affordable, effective, and sustainable. Aided by Kyoto mechanisms such as the Clean Development Mechanism (CDM) and Joint Implementation (JI), the total global economic mitigation potential for reducing waste sector emissions in 2030 is estimated to be > 1000 Mt CO2-eq (or 70% of estimated emissions) at costs below 100 US$ t(-1) CO2-eq year(-1). An estimated 20-30% of projected emissions for 2030 can be reduced at negative cost and 30-50% at costs gas recovery in the short- to medium-term--at the present time, there are > 130 Mt waste year(-1) incinerated at more than 600 plants. Current uncertainties with respect to emissions and mitigation potentials could be reduced by more consistent national definitions, coordinated international data collection, standardized data analysis, field validation of models, and consistent application of life-cycle assessment tools inclusive of fossil fuel offsets.

  14. Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation

    Science.gov (United States)

    Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.

    2015-12-01

    The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of

  15. Public Perception of Climate Change and Mitigation Technologies; Percepcion Publica del Cambio Climatico y las Tecnologias de Mitigacion

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R.; Sala, R.; Oltra, C.

    2007-09-27

    Public perception and understanding of climate change and mitigation policies may have a significant influence on the development of political programs as well as on individual behavioral intentions to address climate change. The study of public attitudes and beliefs about climate change and energy policy may be useful in the design of suitable communication strategies and in the efficient implementation of climate change mitigation and adaptation strategies. Based on a survey to the Spanish population, we analyze different issues such as the level of concern towards climate change, the existing knowledge about the contribution of different energy technologies to global warming, the attitudes toward energy technologies and the beliefs about potential adaptation strategies. Comparisons with other countries based on similar public opinion surveys are established to obtain a broader view of policy preferences and attitudes regarding climate change. (Author) 5 refs.

  16. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai; Makarov, Yuri V.; McKinstry, Craig A.; Brothers, Alan J.; Jin, Shuangshuang

    2009-09-18

    Task report detailing low probability tail event analysis and mitigation in BPA control area. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, causing the imbalance between generation and load to become very significant.

  17. Implications of electric power sector restructuring on climate change mitigation in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Hasson, G.; Bouille, D. [Instituto de Economia Energetica, (Argentina); Redlinger, R. [UNEP, (Denmark)

    2000-05-01

    The Argentine electricity industry has undergone fundamental reforms since 1992, involving large-scale privatisation, and competition in generation and wholesale power markets. In terms of climate change mitigation, these reforms have had the beneficial effect of encouraging improved generation efficiency among thermal power plants and improved end-use consumption efficiency among large industrial firms. However, the reforms have also had the negative effect (from a climate change perspective) of encouraging an ever-increasing use of natural gas combustion for electricity generation, greatly diminishing the role of hydroelectric power which had previously played an important role in the Agentine electricity sector. This report examines the current structure and regulations of the Argentine electricity system and analyses the forces at work which are influencing current technology choices, both in terms of power generation and end-use consumption. The report goes on to examine international experiences in promoting renewable energy and energy efficiency technologies; and finally, the report considers the applicability of these various policy mechanisms within the Agentine context. (EHS)

  18. Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism

    Directory of Open Access Journals (Sweden)

    Sasaki N

    2011-01-01

    Full Text Available Inclusion of improved forest management as a way to enhance carbon sinks in the Copenhagen Accord of the United Nations Framework Convention on Climate Change (December 2009 suggests that forest restoration will play a role in global climate change mitigation under the post-Kyoto agreement. Although discussions about restoration strategies often pertain solely to severely degraded tropical forests and invoke only the enrichment planting option, different approaches to restoration are needed to counter the full range of degrees of degradation. We propose approaches for restoration of forests that range from being slightly to severely degraded. Our methods start with ceasing the causes of degradation and letting forests regenerate on their own, progress through active management of natural regeneration in degraded areas to accelerate tree regeneration and growth, and finally include the stage of degradation at which re-planting is necessary. We argue that when the appropriate techniques are employed, forest restoration is cost-effective relative to conventional planting, provides abundant social and ecological co-benefits, and results in the sequestration of substantial amounts of carbon. For forest restoration efforts to succeed, a supportive post-Kyoto agreement is needed as well as appropriate national policies, institutional arrangements, and local participation.

  19. US/Japan workshop on mitigation and adaptation technologies related to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bernthal, F.M.

    1993-12-31

    It is a great pleasure for me to have the honor of delivering the keynote address for this important gathering, an honor enhanced further because of the many activities and historic relationships represented by this workshop. First of all, it represents the spirit of continuing cooperation and good relations between the United States and Japan. With the aid of the framework provided by the U.S./Japan Science and Technology Agreement, our two nations can come together to address a problem that has no national boundaries {hor_ellipsis} and we can think about solutions of potential benefit to all citizens of the global community. This workshop also symbolizes the spirit of cooperation so characteristic of the conduct of research in science and technology -- cooperation between us as individual scientists and engineers, between the various institutions we represent, and across our diverse disciplines. This workshop is only the second of its kind. The first US/Japan Workshop on global climate change was held last year in Japan. That workshop focused on cooperative scientific research in the United States and Japan. Out of it came a general agreement to continue collaborative work and to extend cooperation into the area of global change-related technologies, in particular those technologies that hold promise for mitigation and adaptation.

  20. The potential of carbon sequestration to mitigate against climate change in forests and agro ecosystems of Zimbabwe

    OpenAIRE

    2014-01-01

    Climate change adversely affects human livelihoods and the environment through alteration of temperatures, rainfall patterns, sea level rise and ecosystem productivity. Developing countries are more vulnerable to climate change because they directly depend on agriculture and natural ecosystem products for their livelihoods. Mitigation of climate change impacts includes practices that can store carbon (C) in soil and biomass thus, reducing concentrations of atmospheric carbon dioxide (CO2) and...

  1. Potential for Climate Change Mitigation in Degraded Forests: A Study from La Primavera, México

    Directory of Open Access Journals (Sweden)

    Arturo Balderas Torres

    2013-11-01

    Full Text Available Forests contribute to climate change mitigation by removing atmospheric carbon dioxide and storing it in biomass and other carbon pools. Additionally, since appropriate forest management can reduce emissions from deforestation and forest degradation, it is important to estimate the magnitude of these services to include them into climate policy. We used a forest inventory stratified by canopy cover in the oak-pine forest of La Primavera Biosphere Reserve in México (30,500 ha, to assess the potential provision of forest carbon services. Inventory results were used in combination with a Landsat image to estimate carbon stocks in arboreal biomass. Potential carbon removals were calculated from published allometric equations and models estimating tree growth rates, for enhancements in forested areas and for reforestation/afforestation. Carbon stocks estimated in arboreal biomass at the time of the inventory were 4.16 MtCO2eq (3.42–4.89. The potential for further carbon sequestration and enhancement could take the level of stocks up to 9.77 MtCO2eq (7.66–11.89, 95% confidence interval; previous fires have degraded carbon stocks below their natural potential. The results present a gradient of carbon stocks for different degradation levels and are consistent with national and international estimates and previous local research. The baseline for the estimation of reduced emissions is critical for assessing the overall contribution of forests to mitigate climate change. The local baseline of emissions might be around 1% according to historical data; however, when enhancements and reduced emissions are valuated together, a baseline of 3.7% is required to prevent the creation of perverse incentives favouring previously degraded areas; considering these figures for reduced emissions, the yearly carbon services provided by La Primavera, including enhancements, sequestration and reduced emissions, could be between 169.4 ktCO2eq/year (134.8–204.5 and

  2. Crop-Cattle Integrated Farming System: An Alternative of Climatic Change Mitigation

    Directory of Open Access Journals (Sweden)

    Munandar

    2015-08-01

    Full Text Available An integrated farming system is one of the alternatives for climatic change mitigation. This paper reports the application of corn-cattle based integrated farming system in Agrotechno Park Center of Palembang, and discusses its impact on CO2 fixation and the reduction of methane emissions. The study was based on the data of the first 6 yr from 2003 until 2009. The CO2 fixed in the soil and plants was determined based on the content of organic C which was multiplied by the index of 3.67. The methane gas produced by Balinese cattle and its dung was observed and modified into feed rations. The results showed that soil organic C increased from 40.80 tons C/ha in the 1st yr to 66.40 tons C/ha in the 6th yr. In addition, there was organic C fixation equivalent to 93.95 tons of CO2e. Corn biomass increased from 6.67 tons/ha to 18.66 tons/ha, equivalent to an increase in the fixation of atmospheric CO2e as much as 19.80 tons CO2e/ha. The supplementation of 60%-80% grass fodder with concentrate lowered the concentration of methane gas in cattle breathing by 28.7%, from 617 ppm to 440 ppm, while the methane emissions from cattle manure decreased by 31%, from 1367 mL/head/d to 943 mL/head/d. Installing a bio digester that generates biogas served to accommodate methane gas emissions from cattle dung and used it for bioenergy. Composting reduced the formation of methane gas from cattle manure through a regular process of turning over that gives aeration and forms aerobic condition in the heap of cattle dung. Recycling produces a variety of organic products that store carbon for a longer period of time and slowed the conversion of organic C into CO2. This study showed that the diverse activities of an integrated crop-cattle farming could be an alternative solution to climatic change mitigation.

  3. The Future of Tourism: Can Tourism Growth and Climate Policy be Reconciled? A Climate Change Mitigation Perspective

    NARCIS (Netherlands)

    Gössling, S.; Hall, C.M.; Peeters, P.M.; Scott, D.

    2010-01-01

    Tourism is an increasingly significant contributor to greenhouse gas (GHG) emissions. Emissions growth in the sector is in substantial conflict with global climate policy goals that seek to mitigate climate change through deep emission reductions. This article discusses the role of various tourism s

  4. The role of interactions in a world implementing adaptation and mitigation solutions to climate change.

    Science.gov (United States)

    Warren, Rachel

    2011-01-13

    The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world.

  5. Climate Change Mitigation and Adaptation in the Land Use Sector: From Complementarity to Synergy

    Science.gov (United States)

    Duguma, Lalisa A.; Minang, Peter A.; van Noordwijk, Meine

    2014-09-01

    Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity—i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.

  6. The Land Use and Cover Change in Miombo Woodlands under Community Based Forest Management and Its Implication to Climate Change Mitigation: A Case of Southern Highlands of Tanzania

    Directory of Open Access Journals (Sweden)

    Z. J. Lupala

    2015-01-01

    Full Text Available In Tanzania, miombo woodland is the most significant forest vegetation with both ecological and socioeconomic importance. The vegetation has been threatened from land use and cover change due to unsustainable utilization. Over the past two decades, community based forest management (CBFM has been practiced to address the problem. Given the current need to mitigate global climate change, little is known on the influence of CBFM to the land use and cover change in miombo woodlands and therefore compromising climate change mitigation strategies. This study explored the dynamic of land use and covers change and biomass due to CBFM and established the implication to climate change mitigation. The study revealed increasing miombo woodland cover density with decreasing unsustainable utilization. The observed improvement in cover density and biomass provides potential for climate change mitigation strategies. CBFM also developed solidarity, cohesion, and social control of miombo woodlands illegal extraction. This further enhances permanence, reduces leakage, and increases accountability requirement for carbon credits. Collectively with these promising results, good land use plan at village level and introduction of alternative income generating activities can be among the best options to further reduce land use change and biomass loss in miombo woodlands.

  7. Impact and Mitigation of Nutrient Pollution and Overland Water Flow Change on the Florida Everglades, USA

    Directory of Open Access Journals (Sweden)

    Kristin Schade-Poole

    2016-09-01

    Full Text Available A subtropical watershed and wetland covering nearly 47,000 km2 in the southeastern United States, the Florida Everglades is a degraded, human-dominated environment. As a unique and important ecosystem, the Everglades provide a variety of important environmental services for society and nature. Over the past century and a half, anthropogenic actions have severely impacted the Everglades by disrupting the natural water flow and causing water pollution. As a result, the native flora and fauna have been displaced, important habitats have been lost, invasive species have become prevalent, and water contaminant concentrations have increased. Accelerating efforts are being made towards preserving the Everglades ecosystem by restoring water flow and improving water quality. To explore this complex and important aquatic ecosystem, we critically review the relevant environmental history, major terrestrial and aquatic characteristics and dynamics, engineered changes to water flow, major sources and impacts of nutrient pollution, trends in system response to pollution and mitigation actions, and recent regulatory efforts driving restoration.

  8. Market of innovative timber products in Europe and Serbia and their contribution to climate change mitigation

    Directory of Open Access Journals (Sweden)

    Sretenović Predrag

    2014-01-01

    Full Text Available The paper shows results of researching the market of glued laminated timber as the most frequent innovative timber product in constructing timber framed residential facilities in Europe and Serbia. The research included the development of production, consumption and trade flows for the most significant countries in the European Union and Serbia. Additionally, the paper gives characteristics of this innovative timber product regarding dimensions, allowed deviations of dimensions defined in adequate European standard, wood species it is made of and fire resistance. The last part of the paper shows results of econometric modeling of the impact of building timber-framed houses on the consumption of glued laminated timber in Austria as one of the countries belonging to the group of the largest consumers of this innovative timber product in Europe. Taking into consideration that the substitution of classic building materials, primarily concrete, steel and aluminum, with glued laminated timber in residential construction contributes to the reduction of carbon-dioxide emission and climate change mitigation, research results of the effects of such substitution are presented in the last chapter in this paper. [Projekat Ministarstva nauke Republike Srbije, br. III43007: Istraživanje klimatskih promena na životnu sredinu: praćenje uticaja, adaptacija i ublažavanje

  9. Developed and developing world responsibilities for historical climate change and CO2 mitigation.

    Science.gov (United States)

    Wei, Ting; Yang, Shili; Moore, John C; Shi, Peijun; Cui, Xuefeng; Duan, Qingyun; Xu, Bing; Dai, Yongjiu; Yuan, Wenping; Wei, Xin; Yang, Zhipeng; Wen, Tijian; Teng, Fei; Gao, Yun; Chou, Jieming; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Jiang, Yundi; Gao, Xuejie; Wang, Kaicun; Zheng, Xiaogu; Ren, Fumin; Lv, Shihua; Yu, Yongqiang; Liu, Bin; Luo, Yong; Li, Weijing; Ji, Duoying; Feng, Jinming; Wu, Qizhong; Cheng, Huaqiong; He, Jiankun; Fu, Congbin; Ye, Duzheng; Xu, Guanhua; Dong, Wenjie

    2012-08-07

    At the United Nations Framework Convention on Climate Change Conference in Cancun, in November 2010, the Heads of State reached an agreement on the aim of limiting the global temperature rise to 2 °C relative to preindustrial levels. They recognized that long-term future warming is primarily constrained by cumulative anthropogenic greenhouse gas emissions, that deep cuts in global emissions are required, and that action based on equity must be taken to meet this objective. However, negotiations on emission reduction among countries are increasingly fraught with difficulty, partly because of arguments about the responsibility for the ongoing temperature rise. Simulations with two earth-system models (NCAR/CESM and BNU-ESM) demonstrate that developed countries had contributed about 60-80%, developing countries about 20-40%, to the global temperature rise, upper ocean warming, and sea-ice reduction by 2005. Enacting pledges made at Cancun with continuation to 2100 leads to a reduction in global temperature rise relative to business as usual with a 1/3-2/3 (CESM 33-67%, BNU-ESM 35-65%) contribution from developed and developing countries, respectively. To prevent a temperature rise by 2 °C or more in 2100, it is necessary to fill the gap with more ambitious mitigation efforts.

  10. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Chengzhang Liao

    Full Text Available Uncertainties remain in the potential of forest plantations to sequestrate carbon (C. We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests. Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years, stand types (broadleaved vs. coniferous and deciduous vs. evergreen, tree species origin (native vs. exotic of plantations, land-use history (afforestation vs. reforestation and site preparation for plantations (unburnt vs. burnt, and study regions (tropic vs. temperate. The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  11. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Science.gov (United States)

    Liao, Chengzhang; Luo, Yiqi; Fang, Changming; Li, Bo

    2010-05-27

    Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1) in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years), stand types (broadleaved vs. coniferous and deciduous vs. evergreen), tree species origin (native vs. exotic) of plantations, land-use history (afforestation vs. reforestation) and site preparation for plantations (unburnt vs. burnt), and study regions (tropic vs. temperate). The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  12. Political Challenges and Opportunities to Climate Change Mitigation: A View from the Front Lines

    Science.gov (United States)

    Weaver, A. J.

    2014-12-01

    Subsequent to the release of the 2007 Report of the Intergovernmental Panel on Climate Change, the Province of British Columbia in Canada became an international leader in the development and implementation of innovative climate change mitigation policies. These include, but are not limited to, the 2008 Greenhouse Gas Reductions Target Act, the 2008 Carbon Tax Act and the 2010 Clean Energy Act. British Columbia's Cleantech sector quickly responded to, and thrived as a result of, the signal sent by government to the market. But with a change in Premier in 2011 came a change in priorities. A number of the previous initiatives have either been weakened or no longer followed through with as the Province sets its vision of being a major exporter of Liquified Natural Gas. As a member of the British Columbia Climate Action Team set up by Premier Gordon Campbell in 2007 to provide advice to government on a variety of policy-related matters, I was fortunate to be able to watch first hand as the Province aggressively moved towards reducing its Greenhouse gas emissions. Rather than stand on the sidelines as the government lost its direction on the climate file I chose to run with the BC Green Party in the 2013 provincial election. I was subsequently elected as a Member of the Legislative Assembly representing the constituents of Oak Bay Gordon Head. While science can and should inform policy deliberations, in and of itself, science cannot and should not prescribe policy outcomes. Whether or not we deal with today's challenge of climate change boils down to a question of intergeneration equity. Does the present generation owe anything to future generations in terms of the quality of the environment that they inherit? Many of today's elected decision-makers are focused on short-term decision-making. Yet those who will be affected by the consequences of these decisions are not part of the decision making process — hence the political conundrum. In this presentation I detail

  13. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    Directory of Open Access Journals (Sweden)

    C. E. Smyth

    2014-01-01

    Full Text Available The potential of forests and the forest sector to mitigate greenhouse gas (GHG emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3, a harvested wood products model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base-case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. We conclude that (i national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii because of the time

  14. Soil management system for water conservation and mitigation of global change effect

    Science.gov (United States)

    Ospina, A.; Florentino, A.; Lorenzo, V.

    2012-04-01

    One of the main constraints in rained agriculture is the water availability for plant growth which depends largely on the ability of the soil to allow water flow, infiltration and its storage. In Venezuela, the interaction between aggressive climatic conditions, highly susceptible soils and inadequate management systems have caused soil degradation which together with global change threatened the food production sustainability. To address this problem, we need to implement conservationist management strategies that improve infiltration rate, permeability and water holding capacity in soil and reduce water loss by protecting the soil surface. In order to study the impact of different management systems on soil water balance in a Fluventic Haplustept, the effects of 11 years of tillage and crops rotation management were evaluated in a long term field experiment located in Turén (Portuguesa state). The evaluated tillage systems were no tillage (NT) and conventional tillage (CT) and crop rotation treatments were maize (Zea mays)-cotton (Gossypium hirsutum) and maize-bean (Vigna unguiculata). Treatments were established in plots arranged in a randomized block design with three replicates. The gravimetric moisture content was determined in the upper 20 cm of soil, at eight different sampling dates. Results showed increased in time of the water availability with the use of tillage and corn-cotton rotation and, better protection of the soil against raindrop impact with crop residues. Water retention capacity also increased and improved structural condition on soil surface such as infiltration, storage and water flow distribution in the rooting zone. We conclude that these strategies of land use and management would contribute to mitigate the climate change effects on food production in this region of Venezuela. Key words: Soil quality; rained agriculture; plant water availability

  15. Developing Carbon Sequestration Forestry for Mitigating Climate Change: Practice and Management of Carbon Sequestration Forestry in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elaborating the functions and effects of forestry in mitigating climate change, introducing the concepts and significance of forest carbon sink, forestry carbon sequestration, and carbon sequestration forestry, and summarizing the practices of carbon sequestration forestry in China, the paper came up with the outline for strengthening the management of carbon sequestration forestry, i.e. implementing the Climate Change Forestry Action Plan, reinforcing the accounting and monitoring of national forest car...

  16. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-02

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  17. Mitigation : Closed Basin Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The upcoming meeting on waterfowl mitigation for the Closed Basin Project will have several people talk about possible changes to the waterfowl mitigation program. A...

  18. CONTRACTUAL RISKS IN THE NEW ZEALAND CONSTRUCTION INDUSTRY: ANALYSIS AND MITIGATION MEASURES

    Directory of Open Access Journals (Sweden)

    Jasper Mbachu

    2014-12-01

    Full Text Available While tendering for jobs, a contractor is expected to analyse the various risks in each prospective project and price them appropriately. Contingencies are included in the tender price to cater for the various risks based on their impacts on the project targets and profit margin. Currently in New Zealand (NZ, there is little or no information on the various contractual risks and their mitigation measures. This has led to contractors over compensating or under compensating for risks with costly consequences. This study aimed to establish priority contractual risks in the NZ construction industry, and their mitigation measures. The research was based on a questionnaire survey of consultants and contractors. Descriptive statistics and multi-attribute techniques were used in the data analysis. Results showed 21 risk factors which were segregated into 6 broad categories in diminishing levels of significance as follows: Site conditions, main contractor, pricing, subcontractor, external and client- related risks. Putting tags and conditions to risky price items in the tender bids, and transferring the risks onto other parties were analysed as the 2 most effective out of the 5 key risk mitigation measures identified. Being cautious of the priority risks and application of the identified effective risk mitigation measures could guide contractors and the project team to more appropriately budget for and respond to risks, thereby ensuring more satisfactory project outcomes.

  19. Climate Change Mitigation Activities in the Philippine Forestry Sector. Application of the COMAP Model

    Energy Technology Data Exchange (ETDEWEB)

    Lasco, Rodel D.; Pulhin, Florencia B. [Environmental Forestry Programme (ENFOR), College of Forestry and Natural Resources, University of the Philippines at Los Banos College, 4031 Laguna (Philippines)

    2001-07-01

    The forest sector in the Philippines has the potential to be a major sink for carbon (C). The present study was conducted to evaluate potential forestry mitigation options in the Philippines using the Comprehensive Mitigation Assessment Process (COMAP) model. The baseline scenario (BAU) assumes that current trends continue up to the year 2030 ('business-as-usual'). Two mitigation scenarios were evaluated: high scenario (HS) and low scenario (LS). The former is patterned largely from the government's forest master plan while the latter assumes a 50% lower success rate of the master plan. The results of the analyses show that by 2030, the total C stock of the Philippine forest sector in the baseline scenario decreases to 814 x 10{sup 6} Mg C, down by 37% compared to the 1990 level. The C stocks of the HS and LS mitigation scenarios were 22% and 18% higher than the BAU, respectively. Of the mitigation options assessed, long rotation plantations and forest protection activities produce the greatest C gain (199 and 104 x 10{sup 6} Mg, respectively under HS). The not present value (NPV) of benefits is highest in the bioenergy option with $24.48 per Mg C (excluding opportunity costs) at a real discount rate of 12%. However, the investment and life cycle costs are also highest using bioenergy. The study also estimated potential investments needed under the mitigation scenarios. The investment requirement for the LS amounts to $263 x 10{sup 6} while for the HS it is $748 x 10{sup 6}. Finally, policy issues and decisions that may be useful for the Philippines to evaluate LULUCF mitigation options under the UNFCCC Kyoto Protocol, are identified and discussed. 30 refs.

  20. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    Science.gov (United States)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  1. Mitigating Future Avian Malaria Threats to Hawaiian Forest Birds from Climate Change

    Science.gov (United States)

    Atkinson, Carter T.; LaPointe, Dennis A.; Samuel, Michael D.

    2017-01-01

    Avian malaria, transmitted by Culex quinquefasciatus mosquitoes in the Hawaiian Islands, has been a primary contributor to population range limitations, declines, and extinctions for many endemic Hawaiian honeycreepers. Avian malaria is strongly influenced by climate; therefore, predicted future changes are expected to expand transmission into higher elevations and intensify and lengthen existing transmission periods at lower elevations, leading to further population declines and potential extinction of highly susceptible honeycreepers in mid- and high-elevation forests. Based on future climate changes and resulting malaria risk, we evaluated the viability of alternative conservation strategies to preserve endemic Hawaiian birds at mid and high elevations through the 21st century. We linked an epidemiological model with three alternative climatic projections from the Coupled Model Intercomparison Project to predict future malaria risk and bird population dynamics for the coming century. Based on climate change predictions, proposed strategies included mosquito population suppression using modified males, release of genetically modified refractory mosquitoes, competition from other introduced mosquitoes that are not competent vectors, evolved malaria-tolerance in native honeycreepers, feral pig control to reduce mosquito larval habitats, and predator control to improve bird demographics. Transmission rates of malaria are predicted to be higher than currently observed and are likely to have larger impacts in high-elevation forests where current low rates of transmission create a refuge for highly-susceptible birds. As a result, several current and proposed conservation strategies will be insufficient to maintain existing forest bird populations. We concluded that mitigating malaria transmission at high elevations should be a primary conservation goal. Conservation strategies that maintain highly susceptible species like Iiwi (Drepanis coccinea) will likely benefit

  2. USDA Southwest Regional Hub for Adaptation to and Mitigation of Climate Change

    Science.gov (United States)

    Rango, A.; Elias, E.; Steele, C. M.; Havstad, K.

    2014-12-01

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up of six states: New Mexico, Arizona, Utah, Nevada, California and Hawaii (plus the Trust Territories of the Pacific Islands). The SW Climate Hub has a subsidiary hub located in Davis, California. The Southwest region has high climatic diversity, with the lowest and highest average annual rainfall in the U.S.(6.0 cm in Death Valley, CA and 1168 cm at Mt. Waialeale, HI). There are major deserts in five of the six states, yet most of the states, with exception of Hawaii, depend upon the melting of mountain snowpacks for their surface water supply. Additionally, many of the agricultural areas of the SW Regional Hub depend upon irrigation water to maintain productivity. Scientific climate information developed by the Hub will be used for climate-smart decision making. To do this, the SW Regional Hub will rely upon existing infrastructure of the Cooperative Extension Service at Land-Grant State Universities. Extension service and USDA-NRCS personnel have existing networks to communicate with stakeholders (farmers, ranchers, and forest landowners) through meetings and workshops which have already started in the six states. Outreach through the development of a weather and climate impact modules designed for seventh grade students and their teachers will foster education of future generations of rural land managers. We will be synthesizing and evaluating existing reports, literature and information on regional climate projections, water resources, and agricultural adaptation strategies related to climate in the Southwest. The results will be organized in a spatial format and provided through the SW Hub website (http://swclimatehub.info) and peer-reviewed articles.

  3. Mulching as a mitigation agricultural technology against land degradation in the wake of climate change

    Directory of Open Access Journals (Sweden)

    Bhanooduth Lalljee

    2013-12-01

    Full Text Available The sloping topography of the island of Rodrigues (an outer island dependency of the Republic of Mauritius makes it very prone to soil erosion, and loss of fertile topsoil. Climate variability and climate change in the form of increasing temperatures, long periods of drought followed by short periods of torrential rains are exacerbating this situation. Mulching is a cheap, affordable, sustainable agricultural technology for sustainable soil and land management and reducing soil erosion, which can be adopted by small as well as large farmers. The present work on mulching was carried out in Rodrigues in farmers’ fields that were prone to severe soil erosion (8% slope Banana (Musa sp leaves, coconut (Cocos nucifera leaves, and vetiver (Vetiveria zizanoides grass, at 0 t ha −1, 10 t ha −1, 20 t ha −1 and 40 t ha −1, were used as natural organic mulches after seeding the plots with maize in a randomised block design with four replicates. Runoff and sediment were collected from the treated and control plots, and analysed for total sediments, total runoff, and nutrient content (N, P, K. Results showed that all the mulches tested contributed to lowering of soil and nutrient losses, albeit in varying amounts. Coconut leaves mulch was found to be the most efficient, followed by vetiver and then banana leaves. Percentage mitigation in soil and nutrient erosion was found to be 28. 9% for banana leaves at 10 t ha −1, and 57. 3% for coconut leaves at 40 t ha −1. The reduction of soil and nutrient losses was attributed to the mechanical barrier provided by the mulches, and also to the reduction in the momentum of raindrops acting on the soil aggregates. Mulching also contributed to increasing infiltration rate, lowering temperature and therefore lowering evaporation.

  4. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2013-10-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  5. Are changes in weather masking the efficacy of measures aimed at mitigating diffuse pollution?

    Science.gov (United States)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2016-04-01

    Interpretations of the efficacy of mitigation measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies are challenged by the temporal variability of air temperature and rainfall. Influences are different depending on flow controls, associated time lags and nutrient transformations that may occur along the pathways. In Europe weather patterns and trends are influenced by large-scale weather systems over the North Atlantic. One of the most prominent teleconnection patterns that affect the weather across all seasons is the North Atlantic Oscillation (NAO). In northwestern Europe a positive phase in the NAO index over the winter period is often associated with elevated air temperatures in summer and more frequent large rain events in winter than normal. The objective of this study was to investigate the catchment-scale influences and relationships of naturally altered hydro-meteorological processes on the diffuse N and P losses to waters, in order to distinguish natural climate effects from those caused by adaptive management (increased agricultural intensity, decreased nutrient use etc.). Here we present six years of monthly nitrate-N and total reactive P concentrations in stream water (aggregated from sub-hourly monitoring) in six, ca. 10 km2, Irish agricultural catchments with different hydrological flow controls and land use. The locations of the catchments make them susceptible to sudden and/or seasonal shifts in weather. Changes in long term air temperatures and rainfall were investigated and annual N and P concentrations were compared to the NAO. During the monitored period (2009-2015) there was a steady increase in wintertime NAO index, reaching positive values in recent years, resulting in higher air temperatures and more frequent large rain events in winter. In some settings annual N and/or P concentrations were positively correlated to the three-year moving average NAO index (R2 > 0.90). Catchments with free

  6. Special report on renewable energy sources and climate change mitigation, (SRREN). Summary for policy makers; FNs klimapanel: Spesialrapport om fornybar energi, sammendrag for beslutningstakere

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-15

    In May 2011 the Intergovernmental Panel on Climate Change published a report on six renewable energy sources and their role in climate change mitigation. This is a Norwegian, unofficial translation of the Summary for Policy makers. (Author)

  7. Flood hazard mitigation by actions in the hillslopes: does the context change the assessment of efficiency?

    Directory of Open Access Journals (Sweden)

    Benmamar Saâdia

    2016-01-01

    Full Text Available For sustainable and integrated flood management, small actions in the hillslopes and non-structural measures appear interesting, either to diminish the need for large flood mitigation infrastructures (whether sewerage networks or hydraulic structures in the river – which may have severe impact on the river ecosystems, or as complementary to these structures. However, the effect on flood mitigation of land-use modification and small storage or runoff control facilities is still debated in scientific literature. The effect of various structures spread over the catchment is difficult to assess, and hazardous to generalize from one studied catchment to another, which explains why the debate is still open. This study contributes to identify context features that could also explain constrasting results. Focusing on a West-Mediterranean Northern and Southern countries literature, we compare first traditionnal and modern hillslope actions against runoff in both countries. Then, we search in the physical contexts differences that might explain why actions in the hillslopes are more studied in Europe than in Maghreb. But the priorities of national or regional policies also explain differences in the perception of efficiency: the interest of hillslope actions is different if the aim is to limit erosion and pollutant transfer and/or to mitigate large floods. Pollution and how ecological status is taken into account in flood mitigation project assessment are also crucial points.

  8. Climate Change under aggressive mitigation: The ENSEMBLES multi-model experiment

    NARCIS (Netherlands)

    Johns, T.C.; Royer, J.F.; Hoeschel, I.; Huebener, H.; Roeckner, E.; Manzini, E.; May, W.; Dufresne, J.L.; Ottera, O.H.; van Vuuren, D.P.; Salas y Melia, D.; Giorgetta, M.A.; Denvil, S.; Yang, S.; Fogli, P.G.; Koerper, J.; Tjiputra, J.F.; Stehfest, E.; Hewitt, C.D.

    2011-01-01

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental

  9. Mitigating greenhouse gas emissions with agricultural land management changes: What practices hold the best potential?

    Science.gov (United States)

    Eagle, A. J.; Olander, L.; Rice, C. W.; Haugen-Kozyra, K.; Henry, L. R.; Baker, J. S.; Jackson, R. B.

    2010-12-01

    Agricultural land management practices within the United States have significant potential to mitigate greenhouse gases (GHGs) in voluntary market or regulatory contexts - by sequestering soil carbon or reducing N2O or CH4 emissions. Before these practices can be utilized in active protocols or within a regulatory or farm bill framework, we need confidence in our ability to determine their impact on GHG emissions. We develop a side-by-side comparison of mitigation potential and implementation readiness for agricultural GHG mitigation practices, with an extensive literature review. We also consider scientific certainty, environmental and social co-effects, economic factors, regional specificity, and possible implementation barriers. Biophysical GHG mitigation potential from agricultural land management activities could reach more than 500 Mt CO2e/yr in the U.S. (7.1% of annual emissions). Up to 75% of the total potential comes from soil C sequestration. Economic potential is lower, given necessary resources to incentivize on-farm adaptations, but lower cost activities such as no-till, fertilizer N management, and cover crops show promise for near-term implementation in certain regions. Scientific uncertainty or the need for more research limit no-till and rice water management in some areas; and technical or other barriers need to be addressed before biochar, advanced crop breeding, and agroforestry can be widely embraced for GHG mitigation. Significant gaps in the current research and knowledge base exist with respect to interactions between tillage and N2O emissions, and with fertilizer application timing impacts on N2O emissions.

  10. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.

    Science.gov (United States)

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-07-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.

  11. Analysis and Mitigation of Shunt Capacitor Bank Switching Transients on 132 kV Grid Station, Qasimabad Hyderabad

    Directory of Open Access Journals (Sweden)

    Sunny Katyara

    2015-10-01

    Full Text Available In this paper analysis and mitigation methods of capacitor bank switching transients on 132KV Grid station, Qasimabad Hyderabad are simulated through the MATLAB software (Matrix Laboratory. Analysis of transients with and without capacitor bank is made. Mathematical measurements of quantities such as transient voltages and inrush currents for each case are discussed. Reasons for these transients, their impact on utility and customer systems and their mitigation are provided.

  12. Analysis and Mitigation of Shunt Capacitor Bank Switching Transients on 132 kV Grid Station, Qasimabad Hyderabad

    OpenAIRE

    Sunny Katyara; Ashfaque Ahmed Hashmani; Bhawani Shankar Chowdhry

    2015-01-01

    In this paper analysis and mitigation methods of capacitor bank switching transients on 132KV Grid station, Qasimabad Hyderabad are simulated through the MATLAB software (Matrix Laboratory). Analysis of transients with and without capacitor bank is made. Mathematical measurements of quantities such as transient voltages and inrush currents for each case are discussed. Reasons for these transients, their impact on utility and customer systems and their mitigation are provided.

  13. iRESM INITIATIVE UNDERSTANDING DECISION SUPPORT NEEDS FOR CLIMATE CHANGE MITIGATION AND ADAPTATION --US Midwest Region—

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Jennie S.; Runci, Paul J.; Moss, Richard H.; Anderson, Kate L.

    2010-10-01

    The impacts of climate change are already affecting human and environmental systems worldwide, yet many uncertainties persist in the prediction of future climate changes and impacts due to limitations in scientific understanding of relevant causal factors. In particular, there is mounting urgency to efforts to improve models of human and environmental systems at the regional scale, and to integrate climate, ecosystem and energy-economic models to support policy, investment, and risk management decisions related to climate change mitigation (i.e., reducing greenhouse gas emissions) and adaptation (i.e., responding to climate change impacts). The Pacific Northwest National Laboratory (PNNL) is developing a modeling framework, the integrated Regional Earth System Model (iRESM), to address regional human-environmental system interactions in response to climate change and the uncertainties therein. The framework will consist of a suite of integrated models representing regional climate change, regional climate policy, and the regional economy, with a focus on simulating the mitigation and adaptation decisions made over time in the energy, transportation, agriculture, and natural resource management sectors.

  14. Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)

    Science.gov (United States)

    Lorenz, K.

    2010-12-01

    long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.

  15. Sustainment in the Army 2020: Using the Army’s Sustainment Principles to Identify and Mitigate Risks Associated with Organizational Change

    Science.gov (United States)

    2015-06-12

    SUSTAINMENT IN THE ARMY 2020: USING THE ARMY’S SUSTAINMENT PRINCIPLES TO IDENTIFY AND MITIGATE RISKS ASSOCIATED WITH ORGANIZATIONAL CHANGE ...Army 2020: Using the Army’s Sustainment Principles to Identify and Mitigate Risks Associated with Organizational Change 5a. CONTRACT NUMBER 5b...with these organizational changes and provide DOTMLPF recommendations to reduce risk and enhance capabilities of the sustainment force. The

  16. Climate Change and Air Pollution: Exploring the Synergies and Potential for Mitigation in Industrializing Countries

    Directory of Open Access Journals (Sweden)

    Frances C. Moore

    2009-03-01

    Full Text Available Air pollutants such as tropospheric ozone and black carbon (soot also contribute to the greenhouse effect. Black carbon is thought to be the second or third most important anthropogenic contributor to global warming, while troposheric ozone is the fourth most important. Both are also major components of indoor and outdoor air pollution. This paper reviews the existing literature of the health, economic, and climatic impacts of tropospheric ozone and black carbon emissions, together with mitigation options. The local nature of many of the impacts, combined with their short atmospheric lifetime and the existence of cost-effective abatement technologies that are already widely deployed in developed countries means reducing these emissions provides a highly climatically-effective mitigation option that is also appropriate to the development strategy of industrializing countries.

  17. Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations

    Science.gov (United States)

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841

  18. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  19. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  20. Chapter 5. Assessing the Need for High Impact Technology Research, Development & Deployment for Mitigating Climate Change

    Directory of Open Access Journals (Sweden)

    David Auston

    2016-12-01

    Full Text Available Technology is a centrally important component of all strategies to mitigate climate change. As such, it encompasses a multi-dimensional space that is far too large to be fully addressed in this brief chapter. Consequently, we have elected to focus on a subset of topics that we believe have the potential for substantial impact. As researchers, we have also narrowed our focus to address applied research, development and deployment issues and omit basic research topics that have a longer-term impact. This handful of topics also omits technologies that we deem to be relatively mature, such as solar photovoltaics and wind turbines, even though we acknowledge that additional research could further reduce costs and enhance performance. These and other mature technologies such as transportation are discussed in Chapter 6. This report and the related Summit Conference are an outgrowth of the University of California President’s Carbon Neutrality Initiative, and consequently we are strongly motivated by the special demands of this ambitious goal, as we are also motivated by the corresponding goals for the State of California, the nation and the world. The unique feature of the UC Carbon Neutrality Initiative is the quest to achieve zero greenhouse gas emissions by 2025 at all ten 10 campuses. It should be emphasized that a zero emission target is enormously demanding and requires careful strategic planning to arrive at a mix of technologies, policies, and behavioral measures, as well as highly effective communication – all of which are far more challenging than reducing emissions by some 40% or even 80%. Each campus has a unique set of requirements based on its current energy and emissions. Factors such as a local climate, dependence on cogeneration, access to wholesale electricity markets, and whether a medical school is included shape the specific challenges of the campuses, each of which is a “living laboratory” setting a model for others to

  1. RENEWABLE ENERGY SOURCES AND THEIR POTENTIAL ROLE IN MITIGATION OF CLIMATE CHANGES AND AS A SUSTAINABLE DEVELOPMENT DRIVER IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Petar M Gvero

    2010-01-01

    Full Text Available Bosnia and Herzegovina have significant physical potential regarding to renewable energy sources. Hydro, biomass, geothermal, wind, and solar potential can play important role in the whole state economy. Bosnia and Herzegovina is Non-Annex I country according to UNFCCC and according to that it is obligated to participate in the global efforts in order to reduce green house gases emission. This paper gives some analysis of the physical, technological, economic, and market potential of renewable energy sources in Bosnia and Herzegovina and their potential role in mitigation of climate changes. Paper also gives the analysis of the potential connections between renewable energy sources and sustainable development of the economy, taking in to consideration specific political structure of the state. Bosnia and Herzegovina is consisting from two entities: Republic of Srpska and Federation of Bosnia and Herzegovina, and Brcko District; energy sector and climate changes mitigation measures are under their jurisdiction. According to that some of this paper results can be useful for the improvement of entity and state strategies with the final aim to place renewable energy sources on the right position, as some of the major economy drivers, not only in Bosnia and Herzegovina, but in whole region.

  2. Protecting the historic centre of Venice. A coordinated analysis of the physical and perceived wear processes to define mitigating actions

    Directory of Open Access Journals (Sweden)

    Renata Codello

    2014-05-01

    Full Text Available The research aims to identify "physical" and "perceptual" wear factors of the historic center of Venice (with particular attention to the effects of anthropogenic pressure related to the phenomenon of tourism and to assess the damages they could produce to identify criteria and tools of mitigation and control. Research is part of the Action Plan "Protection and conservation of the heritage", established by the Plan of Management for the UNESCO Site of Venice and its Lagoon. Through a systemic reading and analysis of the forces of change in place, this study identifies the " macro-emergencies", i.e. the main factors that adversely affect the site’s safeguarding. The research project "Evaluation of wear processes and critical factors of the City of Venice and its lagoon, and its impact on the site’s protection" is part of the actions set out by the Management Plan of the UNESCO site of Venice and its Lagoon. The main objective of the project is the identification of physical and perceptual factors of wear, which threaten the conservation of the historical and artistic heritage of the historic center of Venice, with a particular focus on the effects of anthropogenic pressure linked to tourism, and the evaluation of their level of danger. A further objective is the recognition of measurable parameters (indicators for monitoring and, subsequently, mitigation strategies for the most significant phenomena.

  3. Land use and desertification in the Binh Thuan Province of Southeastern Vietnam: mitigation and adaptation options now and under climate change

    Science.gov (United States)

    Gobin, A.; Le Trinh, H.; Pham Ha, L.; Hens, L.

    2012-04-01

    Desertification and drought affects approximately 300,000 ha of land in the southeastern provinces of Vietnam, much of which is located on agricultural land and forest in the Binh Thuan Province. The methodology for analysing mitigation and adaptation options follows a chain of risk approach that includes a spatio-temporal characterisation of (1) the hazard, (2) the bio-physical and socio-economic impact, (3) the vulnerability to different activities as related to land uses, and (4) risk management options. The present forms of land degradation include sand dune formation and severe erosion (63%), degradation due to laterisation (14%), salinisation (13%), and rock outcrops (10%). The climate is characterized by a distinct dry season with high temperatures, a lot of sunshine and a warm land wind resulting in high evapotranspiration rates. Delays in the onset of the rainy season, e.g. with 20 days in 2010, cause a shift in the growing season. Damages due to drought are estimated at hundreds billion VND (US 1 = VND 20,8900) and contribute to poverty in the rural areas. The current risk-exposure is exacerbated further by climate change. Combined effects of desertification and climate change cause increased degradation of natural resources including land cover. At the same time land use changes are crucial in influencing responses to climate change and desertification. A further SWOT analysis combined with spatio-temporal analysis for each of the major sectors (agriculture, forestry and nature protection, urban and rural development, water resources and fisheries, industry) demonstrates a series of adaptation and mitigation options. Land is a valuable and limited resource. An integrated approach to land use and management is therefore essential to combat environmental hazards such as desertification and climate change.

  4. Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach.

    Science.gov (United States)

    Fossey, M; Rousseau, A N

    2016-12-15

    The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows.

  5. Future state of the climate change, mitigation and development of sustainable agriculture in Bulgaria

    Science.gov (United States)

    Kazandjiev, V.; Georgieva, V.; Moteva, M.; Marinova, T.; Dimitrov, P.

    2010-09-01

    The farming is one of the most important branches that bring the increase to the gross internal production in Bulgaria. At the same time, the agriculture is the only branch, as in home, so in world scale in which the made as well direct production spending and investing regenerating (or not) only in the frameworks to one vegetative season. In addition on this, development of the intensive farming without using the most advanced technologies such as irrigation, automation, selection - for obtaining stable cultivars and hybrids, permanent weather monitoring and agroclimatic zoning and integrated and biochemical protection to the cultures and plantations had not possible. Analysis of long-term meteorological data from different regions shows clear tendencies to warming and drying for the period of contemporary climate (1971-2000) as well in Bulgaria. Hydro-meteorological conditions in the country are worsened. The most entire estimate is made from the Intergovernmental Panel for Climate Change (IPCC) 2007. Most of authors proven that the last decades are really warmest for last century, even for the entire period of the most instrumental observations. The causes for global warming was long time debatable, but the last investigations prove it anthropogenetic derive. The main goal of the paper is framing in conditions of the expected climate changes in our country for period 2020-2050-2070 and the most likely impacts on the agriculture with inspection padding to the consequences in them and making physical conditions for development of proof farming in production regions of the country. By the means of the systematized database of meteorological and agrometeorological data which we have at disposition for the period of this survey (1971-2000); Provide assignment of the expected climatic changes according to the scenarios in the centers for observing and investigations of climatic changes in Europe, US., Canada and Australia (ECHAM 4, HadCM 2, CGCM 1, CSIRO-MK2 Bs and

  6. Dealing with uncertainty: Response-resilient climate change mitigation polices for long-lived and short-lived climate pollutants

    Science.gov (United States)

    Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.

    2015-12-01

    Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.

  7. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    Science.gov (United States)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions.

  8. Integrating climate change mitigation, adaptation, communication and education strategies in Matanzas Province, Cuba: A Citizen Science Approach

    Science.gov (United States)

    Rodriguez Bueno, R. A.; Byrne, J. M.

    2015-12-01

    The Environment Service Center of Matanzas (ESCM), Cuba and the University of Lethbridge are collaborating on the development of climate mitigation and adaptation programs in Matanzas province. Tourism is the largest industry in Matanzas. Protecting that industry means protecting coastal zones and conservation areas of value to tourism. These same areas are critical to protecting the landscape from global environmental change: enhanced tropical cyclones, flooding, drought and a range of other environmental change impacts. Byrne (2014) adapted a multidisciplinary methodology for climate adaptation capacity definition for the population of Nicaragua. A wide array of adaptive capacity skills and resources were integrated with agricultural crop modeling to define regions of the country where adaptive capacity development were weakest and should be improved. In Matanzas province, we are developing a series of multidisciplinary mitigation and adaptation programs that builds social science and science knowledge to expand capacity within the ESCM and the provincial population. We will be exploring increased risk due to combined watershed and tropical cyclone flooding, stresses on crops, and defining a range of possibilities in shifting from fossil fuels to renewable energy. The program will build ongoing interactions with thousands of Matanzas citizens through site visits carried out by numerous Cuban and visiting students participating in a four-month education semester with a number of Lethbridge and Matanzas faculty. These visits will also provide local citizens with better access to web-based interactions. We will evaluate mitigation and adaptive capacities in three municipalities and some rural areas across the province. Furthermore, we will explore better ways and means to communicate between the research and conservation staff and the larger population of the province.

  9. Investigation of the impact of climate change on river water temperature: possible mitigation measures using riparian vegetation

    Science.gov (United States)

    Weihs, Philipp; Trimmel, Heidelinde; Formayer, Herbert; Kalny, Gerda; Rauch, Hans Peter; Leidinger, David

    2016-04-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influence the sensitive and latent heat flux. The present study investigates the influence of climate change on water temperature of streams and the potential of riparian vegetation to mitigate its effects. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz were performed from spring 2012 until autumn 2014. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity were carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. This time period also includes the heat episode of summer 2013 during which the highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. The influence of riparian vegetation on water temperature, leading to lower water temperature by shading, is also detectable

  10. Review: Soil management in mitigating the adverse effects of climate change

    Directory of Open Access Journals (Sweden)

    Aman Ullah BhattI

    2012-05-01

    Full Text Available Emission of Green House Gases (GHGs from various sources into the atmosphere causes rise in air temperature. This addition of GHGs has a great impact on the environment. Among the GHGs, carbon dioxide (CO2 is the major contributor. A variety of options exists for mitigation of GHGs emissions in agriculture. The most prominent options are improved soil management practices viz. integrated plant nutrient management, precision agriculture (variable rate fertilizer technology, use of nitrification inhibitors, crop residue management, moisture restoration and restoration of crop productivity of degraded lands, which increase crop production per unit area, enhancing crop production and withdraw atmospheric CO2 through enhanced photosynthesis. This paper shows that such improved soil management practices can restore the crop productivity of marginal lands and purify the air by withdrawing atmospheric CO2.

  11. Health co-benefits of climate change mitigation policies in the transport sector

    Science.gov (United States)

    Shaw, Caroline; Hales, Simon; Howden-Chapman, Philippa; Edwards, Richard

    2014-06-01

    Theory, common sense and modelling studies suggest that some interventions to mitigate carbon emissions in the transport sector can also have substantial short-term benefits for population health. Policies that encourage active modes of transportation such as cycling may, for example, increase population physical activity and decrease air pollution, thus reducing the burden of conditions such as some cancers, diabetes, heart disease and dementia. In this Perspective we systematically review the evidence from 'real life' transport policies and their impacts on health and CO2 emissions. We identified a few studies that mostly involved personalized travel planning and showed modest increases in active transport such as walking, and reductions in vehicle use and CO2 emissions. Given the poor quality of the studies identified, urgent action is needed to provide more robust evidence for policies.

  12. A ranking of net national contributions to climate change mitigation through tropical forest conservation.

    Science.gov (United States)

    Carrasco, L R; Papworth, S K

    2014-12-15

    Deforestation in tropical regions causes 15% of global anthropogenic carbon emissions and reduces the mitigation potential of carbon sequestration services. A global market failure occurs as the value of many ecosystem services provided by forests is not recognised by the markets. Identifying the contribution of individual countries to tropical carbon stocks and sequestration might help identify responsibilities and facilitate debate towards the correction of the market failure through international payments for ecosystem services. We compare and rank tropical countries' contributions by estimating carbon sequestration services vs. emissions disservices. The annual value of tropical carbon sequestration services in 2010 from 88 tropical countries was estimated to range from $2.8 to $30.7 billion, using market and social prices of carbon respectively. Democratic Republic of Congo, India and Sudan contribute the highest net carbon sequestration, whereas Brazil, Nigeria and Indonesia are the highest net emitters.

  13. Agroforestry, livestock, fodder production and climate change adaptation and mitigation in East Africa: issues and options

    DEFF Research Database (Denmark)

    Dawson, Ian K; Carsan, Sammy; Franzel, Steve

    Agroforestry and livestock-keeping both have the potential to promote anthropogenic climate changeresilience, and understanding how they can support each other in this context is crucial. Here, we discuss relevant issues in East Africa, where recent agroforestry interventions to support livestock......Agroforestry and livestock-keeping both have the potential to promote anthropogenic climate changeresilience, and understanding how they can support each other in this context is crucial. Here, we discuss relevant issues in East Africa, where recent agroforestry interventions to support...... livestockkeeping have included the planting of mostly-exotic tree-fodders, and where most parts of the region are expected to become drier in the next decades, although smaller areas may become wetter. Wider cultivation and improved management of fodder trees provides adaptation and mitigation opportunities......- and future-climate tree species distribution modelling, important areas for future research....

  14. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.

    Science.gov (United States)

    Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.

  15. Policy Directions Addressing the Public Health Impact of Climate Change in South Korea: The Climate-change Health Adaptation and Mitigation Program.

    Science.gov (United States)

    Shin, Yong Seung; Ha, Jongsik

    2012-01-01

    Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationally, particularly as it relates to climate change health adaptation and mitigation programs (such as C-CHAMP of Korea), in order to assess and elicit directions for a robust environmental health policy that is adaptive to the health impacts of climate change. In Korea, comprehensive measures to prevent or mitigate overall health effects are limited, and the diffusion of responsibility among various government departments makes consistency in policy execution very difficult. This paper proposes integration, synergy, and utilization as the three core principles of policy direction for the assessment and adaptation to the health impacts of climate change. For specific action plans, we suggest policy making based on scientifically integrated health impact assessments and the prioritization of environmental factors in climate change; the development of practical and technological tools that support policy decisions by making their political implementation more efficient; and customized policy development that deals with the vulnerability of local communities.

  16. Life cycle analysis of mitigation methodologies for railway rolling noise and groundbourne vibration.

    Science.gov (United States)

    Tuler, Mariana Valente; Kaewunruen, Sakdirat

    2017-04-15

    Negative outcomes such as noise and vibration generated by railways have become a challenge for both industry and academia in order to guarantee that the railway system can accomplish its purposes and at the same time provide comfort for users and people living in the neighbourhood along the railway corridor. The research interest on this field has been increasing and the advancement in noise and vibration mitigation methodologies can be observed using various engineering techniques that are constantly put into test to solve such effects. In contrast, the life cycle analysis of the mitigation measures has not been thoroughly carried out. There is also a lack of detailed evaluation in the efficiency of various mechanisms for controlling rolling noise and ground-borne vibration. This research is thus focussed on the evaluation of materials used, the total cost associated with the maintenance of such the measures and the carbon footprint left for each type of mechanism. The insight into carbon footprint together with life cycle cost will benefit decision making process for the industry in the selection of optimal and suitable mechanism since the environmental impact is a growing concern around the world.

  17. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    Science.gov (United States)

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.

  18. Governance and networks for health co-benefits of climate change mitigation: Lessons from two Indian cities.

    Science.gov (United States)

    Puppim de Oliveira, Jose A; Doll, Christopher N H

    2016-12-01

    Health has been the main driver for many urban environmental interventions, particularly in cases of significant health problems linked to poor urban environmental conditions. This paper examines empirically the links between climate change mitigation and health in urban areas, when health is the main driver for improvements. The paper aims to understand how systems of urban governance can enable or prevent the creation of health outcomes via continuous improvements in the environmental conditions in a city. The research draws on cases from two Indian cities where initiatives were undertaken in different sectors: Surat (waste) and Delhi (transportation). Using the literature on network effectiveness as an analytical framework, the paper compares the cases to identify the possible ways to strengthen the governance and policy making process in the urban system so that each intervention can intentionally realize multiple impacts for both local health and climate change mitigation in the long term as well as factors that may pose a threat to long-term progress and revert back to the previous situation after initial achievements.

  19. Mitigation/adaptation and health: health policymaking in the global response to climate change and implications for other upstream determinants.

    Science.gov (United States)

    Wiley, Lindsay F

    2010-01-01

    The time is ripe for innovation in global health governance if we are to achieve global health and development objectives in the face of formidable challenges. Integration of global health concerns into the law and governance of other, related disciplines should be given high priority. This article explores opportunities for health policymaking in the global response to climate change. Climate change and environmental degradation will affect weather disasters, food and water security, infectious disease patterns, and air pollution. Although scientific research has pointed to the interdependence of the global environment and human health, policymakers have been slow to integrate their approaches to environmental and health concerns. A robust response to climate change will require improved integration on two fronts: health concerns must be given higher priority in the response to climate change and threats associated with climate change and environmental degradation must be more adequately addressed by global health law and governance. The mitigation/adaptation response paradigm developing within and beyond the United Nations Framework Convention on Climate Change provides a useful framework for thinking about global health law and governance with respect to climate change, environmental degradation, and possibly other upstream determinants of health as well.

  20. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems.

    Science.gov (United States)

    Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A

    2013-06-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.

  1. Evaluating the demand for carbon sequestration in olive grove soils as a strategy toward mitigating climate change.

    Science.gov (United States)

    Rodríguez-Entrena, Macario; Barreiro-Hurlé, Jesús; Gómez-Limón, José A; Espinosa-Goded, María; Castro-Rodríguez, Juan

    2012-12-15

    In this paper we present an estimate of the economic value of carbon sequestration in olive grove soils derived from the implementation of different agricultural management systems. Carbon sequestration is considered jointly with other environmental co-benefits, such as enhanced erosion prevention and increased biodiversity. The estimates have been obtained using choice experiments and show that there is a significant demand from society for these environmental services. From a policy perspective, an agri-environmental scheme that delivers the highest level of each environmental service would be valued by society at 121 Euros per hectare. If we focus on carbon sequestration, each ton of CO(2) would be valued at 17 Euros. These results show that there is scope to include agricultural soil carbon sequestration in climate change mitigation strategies and to provide guidance for setting payments for agri-environmental schemes promoting soil management changes.

  2. Managing and Mitigating the Health Risks of Climate Change: Calling for Evidence-Informed Policy and Action

    Science.gov (United States)

    Tong, Shilu; Confalonieri, Ulisses; Ebi, Kristie; Olsen, Jorn

    2016-01-01

    Summary: Climate change affects many natural and social systems and processes that are essential for life. It disrupts the Earth’s life-support systems that underpin the world’s capacity to supply adequate food and fresh water, and it disturbs the eco-physical buffering against natural disasters. Epidemiologists need to develop and improve research and monitoring programs to better understand the scale and immediacy of the threat of climate change to human health and to act within a much larger and more comprehensive framework. To address one of the greatest environmental issues of our lifetime, the scientific and policy-making communities should work together to formulate evidence-informed public policy to mitigate greenhouse gas emissions and adapt to its inevitable impacts in this generation and, more importantly, in future generations to come. PMID:27689449

  3. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    Science.gov (United States)

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  4. Transport-related measures to mitigate climate change in Basel, Switzerland

    DEFF Research Database (Denmark)

    Perez, L.; Trüeb, S.; Cowie, H.

    2015-01-01

    Background: Local strategies to reduce green-house gases (GHG) imply changes of non-climatic exposure patterns. Objective: To assess the health impacts of locally relevant transport-related climate change policies in Basel, Switzerland. Methods: We modelled change in mortality and morbidity...

  5. Ecotourism and Climates changes: the ecolodge contribution in global warming mitigation

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2014-01-01

    Full Text Available Global attention to the global warming reduction has invite numerous strategy implemented with the objectives is mitigating greenhouse gasses emission which threats to the future of living in biosphere. Essentially, absorbing CO2 from atmosphere and sequestering in terrestrial ecosystem is one of the significant strategy. While in developing countries it is become essential, support for forest conservation, afforestation and effort to increase terrestrial ability to capture and storage carbon is poor. Ecotourism offer potential key to solved such problems by promoting ecolodge as a sustainable tourism accomodations. This paper aims to explore the potential of ecotourism sector to alleviate global warming and establishing framework for ecolodge planning and development in tropical developing countries. This paper highlight the significant of ecolodge attraction and development management to meet proper carbon capture and sequestration mechanism. The attraction management and developing programs ultimately able to increase plants biomass while accommodation able to practicing energy efficient and optimizing reuse and recycle approach. It will become the potential solution for reducing greenhouse gas emissions and create clean development strategy.

  6. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.

    Science.gov (United States)

    Vetter, Sylvia H; Sapkota, Tek B; Hillier, Jon; Stirling, Clare M; Macdiarmid, Jennie I; Aleksandrowicz, Lukasz; Green, Rosemary; Joy, Edward J M; Dangour, Alan D; Smith, Pete

    2017-01-16

    Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO2eq kg(-1) rice, 45.54 kg CO2eq kg(-1) mutton meat and 2.4 kg CO2eq kg(-1) milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with <1 kg CO2eq kg(-1) product. These findings suggest that a shift towards dietary patterns with greater consumption of animal source foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

  7. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects

    Science.gov (United States)

    Kreidenweis, Ulrich; Humpenöder, Florian; Stevanović, Miodrag; Bodirsky, Benjamin Leon; Kriegler, Elmar; Lotze-Campen, Hermann; Popp, Alexander

    2016-08-01

    Ambitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions.

  8. Mitigating Climate Change by the Development and Deployment of Solar Water Heating Systems

    Directory of Open Access Journals (Sweden)

    S. T. Wara

    2013-01-01

    Full Text Available Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in Water Heating Systems. Ogun State in Nigeria was used as a case study. The solar radiation for the state was explored with an annual average of 4.775 kWh/m2 recorded. The designed system comprised storage tanks and the collector unit which comprises wooden casing, copper tube, and aluminium foil. Test results for the unlagged and lagged storage tanks for water temperature at various angles of inclination (2.500°–20.000° were on the average 27.800°C and 28.300°C, respectively, for the inlet temperature and 60.100°C and 63.000°C for the outlet temperature, respectively. The efficiency of the Solar Water Heating System was 72.500% and the power saved 2.798 kW. The cost of the unit is put at 1121,400 ($145 as at August 2012. The unit developed can be applied for the purpose of reducing the cost of energy, dealing with environmental challenges, and improving the use of energy, hence serving as a climate mitigation process as this can be extended for water heating for domestic and other industrial purposes.

  9. Climate Change And Mitigation Measures For The Hydrometerological Disaster In Himachal Pradesh India- In Light Of Dams.

    Directory of Open Access Journals (Sweden)

    Vinay K. Pandey

    2015-01-01

    Full Text Available Abstract Continuing climate change is predicted to lead to major changes in the climate of the Himalayan region. Casualties and damage due to hazards in mountain regions will increase irrespective of global warming especially where populations are growing and infrastructure is developed at exposed locations. But climate change will definitely increase risk due to the fact that expected increases of heavy rainfall heat waves and glacier melt will amplify hazards in Himalayan region. The rapid release of melt water and rainfall may combine to trigger debris flows and flash flood in higher ranges including the formation of potentially dangerous lakes. These lakes may breach suddenly resulting in discharge of huge volume of water and debris. Himachal Pradesh had experienced a large number of incidences of Hydro-meteorological disaster HMD since its inception in 1971. Flash flood of March 1975 Dec 1988 Satluj flash flood of August 2000 July 2001 June 2005 Flash flood of July 2005 and Cloud burst in June 2013 are the major natural calamities in Himachal Pradesh. Due to continuous HMD brought heavy toll to the state as the loss was estimated in several thousand millions of rupees and also killed several hundreds of people besides large number of cattle heads. Through this paper we carried out a comprehensive study of past HMD and mitigation measures solution and concluded that these disaster are by their nature difficult to predict and control but it is possible to reduce the risk to lives and property through develop mitigation strategy and plan to construct damsbarrages with awareness and knowledge among local communities about the impacts of global warming natural disaster and the threat to the ecosystem communities and infrastructure are generally inadequate.

  10. Change point analysis and assessment

    DEFF Research Database (Denmark)

    Müller, Sabine; Neergaard, Helle; Ulhøi, John Parm

    2011-01-01

    The aim of this article is to develop an analytical framework for studying processes such as continuous innovation and business development in high-tech SME clusters that transcends the traditional qualitative-quantitative divide. It integrates four existing and well-recognized approaches to stud...... to studying events, processes and change, mamely change-point analysis, event-history analysis, critical-incident technique and sequence analysis....

  11. Numerical and probabilistic analysis of asteroid and comet impact hazard mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Plesko, Catherine S [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2010-09-09

    The possibility of asteroid and comet impacts on Earth has received significant recent media and scientific attention. Still, there are many outstanding questions about the correct response once a potentially hazardous object (PHO) is found. Nuclear munitions are often suggested as a deflection mechanism because they have a high internal energy per unit launch mass. However, major uncertainties remain about the use of nuclear munitions for hazard mitigation. There are large uncertainties in a PHO's physical response to a strong deflection or dispersion impulse like that delivered by nuclear munitions. Objects smaller than 100 m may be solid, and objects at all sizes may be 'rubble piles' with large porosities and little strength. Objects with these different properties would respond very differently, so the effects of object properties must be accounted for. Recent ground-based observations and missions to asteroids and comets have improved the planetary science community's understanding of these objects. Computational power and simulation capabilities have improved such that it is possible to numerically model the hazard mitigation problem from first principles. Before we know that explosive yield Y at height h or depth -h from the target surface will produce a momentum change in or dispersion of a PHO, we must quantify energy deposition into the system of particles that make up the PHO. Here we present the initial results of a parameter study in which we model the efficiency of energy deposition from a stand-off nuclear burst onto targets made of PHO constituent materials.

  12. Climate Change Impacts and Greenhouse Gas Mitigation Effects on US Water Quality

    Science.gov (United States)

    Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic...

  13. Scientific research about climate change mitigation in transport: a critical review

    NARCIS (Netherlands)

    Schwanen, T.; Banister, D.; Anable, J.

    2011-01-01

    This paper seeks to develop a deeper understanding of the research on climatechangemitigation in transport. We suggest that work to date has focused on the effects of improvements in transport technologies, changes in the price of transport, physical infrastructure provision, behavioural change and

  14. Adaptation and mitigation options for forests and forest management in a changing climate

    NARCIS (Netherlands)

    Johnston, M.; Lindner, M.; Parotta, J.; Giessen, L.

    2012-01-01

    Climate change is now accepted as an important issue for forests and forest management around the world. Climate change will affect forests' ability to provide ecosystem goods and services on which human communities depend: biodiversity, carbon sequestration, regulation of water quality and quantity

  15. Ready for the Storm: Education for Disaster Risk Reduction and Climate Change Adaptation and Mitigation

    Science.gov (United States)

    Kagawa, Fumiyo; Selby, David

    2012-01-01

    Incidences of disaster and climate change impacts are rising globally. Disaster risk reduction and climate change education are two educational responses to present and anticipated increases in the severity and frequency of hazards. They share significant complementarities and potential synergies, the latter as yet largely unexploited. Three…

  16. Adaptation and mitigation options to manage aflatoxin contamination in food with a climate change perspective

    DEFF Research Database (Denmark)

    Wambui, J. M.; Karuri, E. G.; Ojiambo, J. A.

    2016-01-01

    Understanding the impact of climate change remains vital for food safety and public health. Of particular importance is the influence of climatic conditions on the growth of Aspergillus flavus and production of their toxins. Nevertheless, little is known about the actual impact of climate change...

  17. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    Science.gov (United States)

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  18. Biochar as a Strategy for Sustainable Land Management, Poverty Reduction and Climate Change Mitigation/Adaptation? Thermolysis of lignin for value-added products

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Tejerina, V.M.

    2010-08-15

    In the context of current concerns about food security, energy security and environmental degradation, the characteristics of biochar are analyzed to determine if biochar systems are a possible solution to these interlinked global issues. With this purpose, the mechanisms by which biochar can affect global biogeochemical cycles are revised. Feasibility of biochar production and application to soil, among other options, is then examined under the criteria of energy, greenhouse gas emissions and financial performance. This is carried out by using life-cycle assessments (LCA) from the literature and by performing a cost-benefit analysis, in the context of a developing country. It is determined that, under certain conditions detailed in the body of the work, biochar can be well suited as a strategy for promoting sustainable land management, climate change mitigation and adaptation, and subsequently, poverty reduction. Among the relevant variables that determine the feasibility of biochar systems are: feedstock; production conditions; geographic context; and current management of biomass.

  19. Implementing Local Climate Change Adaptation and Mitigation Actions: The Role of Various Policy Instruments in a Multi-Level Governance Context

    DEFF Research Database (Denmark)

    Keskitalo, E. Carina H.; Juhola, Sirkku; Baron, Nina

    2016-01-01

    Recently, considerable focus, e.g., in the fifth IPCC (Intergovernmental Panel on Climate Change) Assessment Report (2014) has been trained on why adaptation and mitigation have not been developed more than at present, with relatively few local government actions taken compared with, for example......, more discursive policy agreement on the importance of the issue of climate change. Going beyond a focus on general limits and barriers, this comment suggests that one important issue is that climate change has not yet been sufficiently integrated into the state regulative structure of legislation....... This constitutes an important consideration for the development of adaptation and mitigation as policy areas, including on the local level....

  20. Behavioural Climate Change Mitigation Options and Their Appropriate Inclusion in Quantitative Longer Term Policy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Schroten, A.; Bles, M.; Sevenster, M.; Markowska, A.; Smit, M. [CE Delft, Delft (Netherlands); Rohde, C.; Duetschke, E.; Koehler, J.; Gigli, M. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany); Zimmermann, K.; Soboh, R.; Van ' t Riet, J. [Landbouw Economisch Instituut LEI, Wageningen (Netherlands)

    2012-01-15

    Changes in consumer behaviour can lead to major reductions in greenhouse gas emissions in the European Union, particularly in the areas of transport, housing and food. Behavioural changes can complement technological changes and can allow emission reduction targets to be achieved more cost-effectively overall. The study identifies 36 options for behavioural change that would cut greenhouse gas emissions. Of these, 11 particularly relevant options have been studied in detail. They include shifting to a more healthy and balanced diet, eating less meat and dairy products, buying and using a smaller car or an electric car, teleworking, adjusting room temperature and optimising ventilation. For each of the behavioural changes studied in depth, emission reduction potentials have been quantified for 2020, 2030 and 2050. The study identifies barriers to implementing the changes, and quantifies the likely effects of policy packages which could overcome these barriers. The results show that the behavioural changes that could take place simultaneously have the potential to save emissions totalling up to about 600 million tonnes of CO2-equivalent a year in 2020. This is about one-quarter of the projected annual emissions from sectors not covered by the EU emissions trading system. The savings potential is particularly high in the area of food.

  1. Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment

    Science.gov (United States)

    Legg, M.; Eguchi, R. T.

    2015-12-01

    The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and

  2. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    Science.gov (United States)

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  3. What if ... abrupt and extreme climate change? Programme of VAM (Vulnerability, Adaptation, Mitigation)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    A number of researchers from different social scientific disciplines present a view in response to the question 'what will happen in our society if the climate suddenly changes?'. They answer questions such as: How will people respond to real risks such as imminent flooding? What are the economic consequences? How will it affect sectors such as inland shipping and coastal tourism? What are the costs of adapting our country to rising sea levels or sudden cold? As a society what do we consider to be socially and publicly acceptable? Can we still insure ourselves? Who will assume responsibility and what are the tasks of the various parties involved? The book merely sets the scene. Social sciences research into climate change has only just started. Besides providing answers to the question about the social and public implications of abrupt climate change, the book calls for a greater involvement of social scientists in climate change issues.

  4. Land Management for Climate Change Mitigation and Geoengineering - Are Earth System Models up to the Challenge?

    Science.gov (United States)

    Bonan, G. B.

    2015-12-01

    Many of the terrestrial models included in Earth system models simulate changes to the land surface from human activities. In the Community Land Model (CLM), for example, irrigation, nitrogen fertilization, soil tillage, wood harvesting, and numerous crop types are represented in addition to anthropogenic land-cover change (e.g., deforestation, reforestation, and afforestation). These land uses are included in the models because they have a strong influence on the hydrological cycle (irrigation), crop yield and greenhouse gas emissions (nitrogen fertilization, crop type), and carbon storage (wood harvesting, tillage). However, the representation of these processes in Earth system models is uncertain, as is the specification of transient changes from 1850 through the historical era and into the future. A more fundamental aspect of land surface models is the coupling of land and atmosphere through exchanges of energy, mass, and momentum. Here, too, anthropogenic activities can affect climate through land-cover change and land management. Eddy covariance flux tower analyses suggest that the land management effects are as significant as the land-cover change effects. These analyses pose a challenge to land surface models - How well do the models simulate the effects of land management (e.g., changes in leaf area index or community composition) on surface flux exchange with the atmosphere? Here I use the CLM and a new, advanced multilayer canopy flux model to illustrate challenges in model surface fluxes and the influence of land management on surface fluxes.

  5. Climate change policy in the European Union: Confronting the dilemmas of mitigation and adaptation?

    Science.gov (United States)

    Betts, Alan

    2011-08-01

    There is no doubt that climate change presents an exquisite dilemma to global society and our systems of governance. Either we accept our collective responsibility and adapt our energy systems, or our societies and many critical ecosystems may be swept away by climate extremes, food crises, and, eventually, rising seas. The European Union (EU) has emerged in a leading role in the international struggle to govern climate change. Climate change is an accepted part of the political agenda in the EU, so agreement on targets has been relatively easy compared to the actual implementation of policies to reduce emissions. This book addresses in a historical context, from the late 1980s to 2010, the challenges that climate change policy has presented to the EU and how policy has been developed. The risks posed by climate change have been known for several decades. The evolution of climate change policy in the EU has occurred in parallel with extensive expansion of the EU itself, which grew from 9 member countries in the 1980s to its present 27. The EU is a relatively large emitter of greenhouse gases, and with 27 countries, it represents a microcosm of the global community, albeit with a unique form of governance.

  6. Concerns About Climate Change Mitigation Projects: Summary of Findings from Case Studies in Brazil, India, Mexico, and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Andrasko, Kenneth; Makundi, Willy; La Rovere, Emilio Lebre; Ravinandranath, N.H.; Melli, Anandi; Rangachari, Anita; Amaz, Mireya; Gay, Carlos; Friedmann, Rafael; Goldberg, Beth; van Horen, Clive; Simmonds, Gillina; Parker, Gretchen

    1998-11-01

    The concept of joint implementation as a way to implement climate change mitigation projects in another country has been controversial ever since its inception. Developing countries have raised numerous issues at the project-specific technical level, and broader concerns having to do with equity and burden sharing. This paper summarizes the findings of studies for Brazil, India, Mexico and South Africa, four countries that have large greenhouse gas emissions and are heavily engaged in the debate on climate change projects under the Kyoto Protocol. The studies examine potential or current projects/programs to determine whether eight technical concerns about joint implementation can be adequately addressed. They conclude that about half the concerns were minor or well managed by project developers, but concerns about additionality of funds, host country institutions and guarantees of performance (including the issues of baselines and possible leakage) need much more effort to be adequately addressed. All the papers agree on the need to develop institutional arrangements for approving and monitoring such projects in each of the countries represented. The case studies illustrate that these projects have the potential to bring new technology, investment, employment and ancillary socioeconomic and environmental benefits to developing countries. These benefits are consistent with the goal of sustainable development in the four study countries. At a policy level, the studies' authors note that in their view, the Annex I countries should consider limits on the use of jointly implemented projects as a way to get credits against their own emissions at home, and stress the importance of industrialized countries developing new technologies that will benefit all countries. The authors also observe that if all countries accepted caps on their emissions (with a longer time period allowed for developing countries to do so) project-based GHG mitigation would be significantly

  7. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community.

    Science.gov (United States)

    Clarens, Andres F; Peters, Catherine A

    2016-10-01

    Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

  8. Innovative Financial Instruments and mechanisms for financing forest restoration and mitigating climate change: select cases from India

    Directory of Open Access Journals (Sweden)

    Teki Surayya

    2012-06-01

    Full Text Available Climate Change (CC is universal concern. One of the causes for CC is degradation offorest. World over every minute 22 hectares forest is degraded. Reckonings suggests thatUS$ 11880, funds must be invested every minute to restore the forest.In India Atmospheric pollution has severed in 90’s because of increasedautomobiles and electronic goods. Green car congress reported level of NO2concentration in Delhi ranged 70 - 102 microgram per cm, in 2005. It is argued that theconsumers are capable of meeting part of cost of CC mitigation. Recent survey (Teki,2008 in National Capital Region revealed that 40% of sample preferred to compensatethrough tax on petroleum products, 22 % in investing in forestry bonds, 57% favouredcompulsory investment in bonds. Awareness rate about climate change was 92%, and 88%favoured both technology transitions and economic sanctions for mitigating CC. Evolvinginnovative financing instruments and mechanisms to finance forest restoration andmitigating CC is important.Timber was considered important contribution of forests, as 2% GDP comes toexchequer. NTFPs now considered equally important for forest restoration as 25 – 55% offorest living people survival comes from NTFPs. Forests have innovative financialinstruments like Eco-tourism, to finance forest restoration. Self reliance apart from thegovernment funding and the private funding. Mobilisation of savings, bank finance,creating/strengthening global carbon fund effectively and financing the substitute sectorsare important for restoration of ecological integration and productivity and economic valueof deforested or degraded land. Objectives of paper are: a to assess level and impact offorest degradation and forest restoration in India, b to translate carbon pollution level intomitigating CC, b awareness level of CC in NCR c measure willingness of consumers tocompensate for CC, and d evolve innovative financial instruments and mechanisms tofinance sustainable forest

  9. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action

    NARCIS (Netherlands)

    N. Kabisch (Nadja); N. Frantzeskaki (Niki); S. Pauleit (Stephan); Naumann, S. (Sandra); Davis, M. (McKenna); M. Artmann (Martina); D. Haase (Dagmar); Knapp, S. (Sonja); Korn, H. (Horst); Stadler, J. (Jutta); Zaunberger, K. (Karin); Bonn, A. (Aletta)

    2016-01-01

    textabstractNature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation option

  10. Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum

    NARCIS (Netherlands)

    Dornburg, V.; Marland, G.

    2008-01-01

    Kirschbaum (Mitig Adapt Strat Glob Change 11:1151–1164, 2006) explores the climatic impact over time of temporarily sequestering carbon from the atmosphere. He concludes that temporary storage of carbon in the terrestrial biosphere “achieves effectively no climate-change mitigation”. His strongly wo

  11. How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review.

    Science.gov (United States)

    Slovic, Anne Dorothée; de Oliveira, Maria Aparecida; Biehl, João; Ribeiro, Helena

    2016-02-01

    Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change.

  12. The Vulnerability of Earth Systems to Human-Induced Global Change and Strategies for Mitigation

    Science.gov (United States)

    Watson, R. T.

    2002-12-01

    Since the IGY, there has been growing evidence that climate is changing in response to human activities. The overwhelming majority of scientific experts, whilst recognizing that scientific uncertainties exist, nonetheless believe that human-induced climate change is inevitable. Indeed, during the last few years, many parts of the world have suffered major heat waves, floods, droughts, fires and extreme weather events leading to significant economic losses and loss of life. While individual events cannot be directly linked to human-induced climate change, the frequency and magnitude of these types of events are predicted to increase in a warmer world. The question is not whether climate will change, but rather how much (magnitude), how fast (the rate of change) and where (regional patterns). It is also clear that climate change and other human-induced modifications to the environment will, in many parts of the world, adversely affect socio-economic sectors, including water resources, agriculture, forestry, fisheries and human settlements, ecological systems (particularly forests and coral reefs), and human health (particularly diseases spread by insects), with developing countries being the most vulnerable. Environmental degradation of all types (i.e., climate change, loss of biodiversity, land degradation, air and water quality) all undermine the challenge of poverty alleviation and sustainable economic growth. One of the major challenges facing humankind is to provide an equitable standard of living for this and future generations: adequate food, water and energy, safe shelter and a healthy environment (e.g., clean air and water). Unfortunately, human-induced climate change, as well as other global environmental issues such as land degradation, loss of biological diversity and stratospheric ozone depletion, threatens our ability to meet these basic human needs. The good news is, however, that the majority of experts believe that significant reductions in net

  13. Policy integration, coherence and governance in Dutch climate policy : a multi-level analysis of mitigation and adoption policy

    NARCIS (Netherlands)

    Bommel, van S.; Kuindersma, W.

    2008-01-01

    This report assesses the integration of climate policy in Dutch public policy at the national, regional, local and area level. The national analysis focuses on the horizontal integration of climate policy in national government programmes, adaptation and mitigation strategies and specific policy ins

  14. Northwest regional climate hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Science.gov (United States)

    This assessment draws from a large bank of information developed by scientists and extension specialists in the Northwest to describe where we need to focus when dealing with climate risks to working landscapes. The changing climate has many secondary effects, such as irrigation water loss, increase...

  15. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture

    Science.gov (United States)

    The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...

  16. Reducing GHG Emissions from Traditional Livestock Systems to Mitigate Changing Climate and Biodiversity

    NARCIS (Netherlands)

    Mushi, D.E.; Eik, L.O.; Bernués, A.; Ripoll Bosch, R.; Sundstol, F.; Mo, M.

    2015-01-01

    Climate change (CC) directly impacts the economy, ecosystems, water resources, weather events, health issues, desertification, sea level rise, and even political and social stability. The effects of CC affect different groups of societies differently. In Tanzania, the effects of CC have even acquire

  17. Middle and High School Students' Conceptions of Climate Change Mitigation and Adaptation Strategies

    Science.gov (United States)

    Bofferding, Laura; Kloser, Matthew

    2015-01-01

    Both scientists and policy-makers emphasize the importance of education for influencing pro-environmental behavior and minimizing the effects of climate change on biological and physical systems. Education has the potential to impact students' system knowledge--their understanding of the variables that affect the climate system--and action…

  18. Climate effects of black carbon and the emission reduction for mitigating climate change /

    OpenAIRE

    Xu, Yangyang

    2014-01-01

    Black carbon (BC) aerosols are significant contributors to anthropogenic climate change and are considered as the second largest warming agent only after CO₂. To better quantify the present-day Asian BC aerosol forcing, in Chapter 2 we utilize both a top-down approach using ground -based and satellite observations, as well as a bottom-up approach using a latest global climate model. By comparing the observations with the model simulations, we show that the emission inventory over Asia used in...

  19. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  20. Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change

    OpenAIRE

    César A Cuartas Cardona; Juan F Naranjo Ramírez; Ariel M Tarazona Morales; Enrique Murgueitio Restrepo; Julián D Chará Orozco; Juan Ku Vera; Francisco J Solorio Sánchez; Martha X Flores Estrada; Baldomero Solorio Sánchez; Rolando Barahona Rosales

    2014-01-01

    According to FAO, world demand for animal products will double in the first half of this century as a result of increasing population and economic growth. During the same period, major changes are expected in world climate. Food security remains one of the highest priority issues in developing Latin American countries, a region where livestock production plays a fundamental role. Agricultural activities seriously threaten natural resources; therefore, it is necessary to ensure that livestock ...

  1. Climate change politics with Chinese characteristics: from discourse to institutionalised greenhouse gas mitigation

    OpenAIRE

    2013-01-01

    China has seen tremendous economic growth in the past three decades, and in the order of eight to ten per cent since 2000. This development has come with ever increasing energy consumption, and thus emissions of greenhouse gases (GHG). This trend has been an important topic in the international climate negotiations under the United Nations Framework Convention on Climate Change; China is under constant pressure from other large economies to contribute to reversing the GHG emissions trend in o...

  2. CO2 capture, reuse, and sequestration technologies for mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J., MIT Energy Laboratory

    1998-01-01

    Fossil fuels currently supply over 85% of the world`s energy needs. They will remain in abundant supply well into the 21st century. They have been a major contributor to the high standard of living enjoyed by the industrialized world. We have learned how to extract energy from fossil fuels in environmentally friendly ways, controlling the emissions of NO{sub x}, S0{sub 2}, unburned hydrocarbons, and particulates. Even with these added pollution controls, the cost of fossil energy generated power keeps falling. Despite this good news about fossil energy, its future is clouded because of the environmental and economic threat posed by possible climate change, commonly referred to as the `greenhouse effect`. The major greenhouse gas is carbon dioxide (CO{sub 2}) and the major source of anthropogenic C0{sub 2} is combustio of fossil fuels. The potential impacts of global climate change are many and varied, though there is much uncertainty as to the timing and magnitude (Watson et al., 1996). Because of the potential adverse impacts, the world community has adopted the Framework Convention on Climate Change (see Box 1). The urgency of their work was recently underscored when the Intergovernmental Panel on Climate Change (IPCC) issued their Second Assessment Report which stated that `the balance of evidence suggests a discernible human influence on global climate`. The goal of stabilization of greenhouse gas emissions at their 1990 levels in the year 2000 will not be met by the vast majority of countries. Based on this experience, it is obvious that more aggressive technology responses are required if we want to control greenhouse gas emissions.

  3. Shading and watering as a tool to mitigate the impacts of climate change in sea turtle nests.

    Directory of Open Access Journals (Sweden)

    Jacob E Hill

    Full Text Available Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45 cm and 75 cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such

  4. Shading and watering as a tool to mitigate the impacts of climate change in sea turtle nests.

    Science.gov (United States)

    Hill, Jacob E; Paladino, Frank V; Spotila, James R; Tomillo, Pilar Santidrián

    2015-01-01

    Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45 cm and 75 cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics) and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such strategies.

  5. RE: Forests and forest management plays a key role in mitigating climate change

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Nord-Larsen, Thomas; Larsen, Søren

    2016-01-01

    The report by Naudts et al. concludes that forest management in Europe during the last 260 years has failed to result in net CO2 removal from the atmosphere. The authors have reached this conclusion through their failure to consider a key factor in their otherwise comprehensive analysis...... as also reported by Naudts et al. By ignoring the link between forestry and fossil carbon pools and not considering development in the absence of forest management, there is no accounting for the effect on GHG emissions, and no basis for estimating the contribution of forest management to cl....... The authors present an analysis of net carbon emissions from forest, but omit substitution effects related to the link between forest management and the fossil carbon pool. The link between fossil and terrestrial carbon pools is however critical for modelling climate impacts. To conclude as they do...

  6. Using Design as Boundary Spanner Object in Climate Change Mitigation Projects

    Directory of Open Access Journals (Sweden)

    Walter Fernandez

    2010-01-01

    Full Text Available Climate change is a growing concern for society and the focus of numerous research initiatives across multiple fields of science. These initiatives often need to capitalize on the cross-specialized knowledge contributed by researchers from very different fields. The diversity of worldviews among key stakeholders requires an effective overall design strategy acting as a boundary spanner object. This study presents an account of the issues faced by a multidisciplinary research project and discusses the suitability of a design approach to help address issues such as equality, empowerment, autonomy, creativity, performance, reduction of innovation cycle times and also provide for the necessary balance between control, speediness and flexibility.

  7. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  8. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    Science.gov (United States)

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-04-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg‑1 dry weight soil, dws season‑1 to 112.2 mg kg‑1 dws season‑1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change.

  9. Mitigation of climate change impacts by hydrologic and cultural components of traditional acequia irrigation systems

    Science.gov (United States)

    Fernald, A.

    2009-12-01

    In northern New Mexico and other physiographically similar semi-arid settings worldwide, traditional irrigation systems divert snowmelt runoff from streams for distribution to valley croplands. This field hydrology and culture study is taking place in three New Mexico watersheds. Ongoing measurements show that seepage to groundwater and subsequent stream recharge from subsurface return flows effectively reduce spring runoff peaks and augment summer baseflow. This retransmission function of traditional acequia irrigated valleys is important for downstream users, particularly in the face of changing climate with projected earlier snowmelt and increased rain. Preliminary evaluations of the community irrigation management structure show high adaptability to climate variation. Water is partitioned to individual users based on water availability, with more water for all in wet years and less for all in dry years. Irrigation water seepage has additional benefits: water quality improvement, wildlife habitat creation, riparian vegetation support, and aesthetic enhancement. Community cohesion and longevity are supported by hydrologic and cultural aspects of the irrigation systems. Lessons learned from these systems promise a window into techniques for sustainable management of linked watersheds and river valleys under future climate change scenarios.

  10. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level

    Directory of Open Access Journals (Sweden)

    Roberto Barraza

    2016-04-01

    Full Text Available This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  11. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level

    Science.gov (United States)

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-01-01

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico. PMID:27128933

  12. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level.

    Science.gov (United States)

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-04-27

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  13. Conjugated linoleic acid mitigates testosterone-related changes in body composition in male guinea pigs.

    Science.gov (United States)

    Yang, Susan Q; DeGuire, Jason R; Lavery, Paula; Mak, Ivy L; Weiler, Hope A; Santosa, Sylvia

    2016-05-01

    We hypothesize that conjugated linoleic acid (CLA) may be effective in preventing the changes in total and regional body composition and increases in interleukin (IL) 6 that occur as a result of hypogonadism. Male guinea pigs (n = 40, 70- to 72-week retired breeders) were block randomized by weight into 4 groups: (1) sham surgery (SHAM)/control (CTRL) diet, (2) SHAM/conjugated linoleic acid (CLA) diet (1%), (3) orchidectomy (ORX)/CTRL diet, and (4) ORX/CLA diet. Dual-energy x-ray absorptiometry scans were performed at baseline and week 16 to assess body composition. Serum IL-6 was analyzed using an enzyme-linked immune sorbent assay. Fatty acids (FAs) from visceral and subcutaneous adipose tissue were analyzed using gas chromatography. In ORX/CTRL guinea pigs, percent total body fat increased by 6.1%, and percent lean mass decreased by 6.7% over the 16-week treatment period, whereas no changes were observed for either parameter in ORX/CLA guinea pigs. Guinea pigs fed the CLA diet gained less percent total, upper, and lower body fat than those fed the CTRL diet regardless of surgical treatment. Regional adipose tissue FA composition was reflective of dietary FAs. Serum IL-6 concentrations were not different among groups. In this study, we observed that, in male guinea pigs, hypogonadism resulted in increased fat mass and decreased lean mass. In addition, CLA was effective in reducing gains in body fat and maintaining lean mass in both hypogonadal and intact guinea pigs.

  14. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    Science.gov (United States)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  15. A sustainability analysis of environmental management approaches: Prevention, mitigation and compensation

    Directory of Open Access Journals (Sweden)

    Daniel Rondinelli Roquetti

    2016-01-01

    Full Text Available The scientific literature has taken Environmental Impact Assessment (EIA as a promoter of sustainable development only in a normative way, hampering the comprehension of the instrument's potentialities and weaknesses. Therefore, it is necessary to insert the debate about EIA effectiveness in a framework that conceptualizes sustainability more clearly. This framework can be raised by economic theory, which is based on the capitals substitution approach. The present paper analyzes how EIA's main forms of environmental impact treatment can induce sustainability in the relationship between productive processes and environmental systems, taking into account capitals substitution ideas. The paper is based on an analysis model built in systemic precepts. It was possible to observe that economic projects' environmental aspects can be classified into four major groups concerning capital substitution: extraction, edification, creation of cultivated natural capital and injection of energy/matter into the environment. It was also observable that EIA's preventive means avoid capitals substitution and induce strong sustainability, whilst mitigation means avoiding capitals substitution only partially, which makes less effective in inducing sustainability and, finally, compensation means legitimate capitals substitution, inducing weak sustainability. The most effective forms of environmental impact treatment are those less applied in the brazilian context, meanwhile the less effective are those mostly applied. In this sense, the EIA practice in Brazil does not induce economic productive processes to the path of global environmental system's sustainability.

  16. Toward policies for climate change mitigation: "Barriers for family-sized biogas in the District of Gihanga, Burundi"

    Science.gov (United States)

    Nkunzimana, Leonard; Huart, Michel; Zaccai, Edwin

    2014-05-01

    In the context of climate change mitigation and poverty reduction, it has been argued that biogas energy is relevant, as it is economically and ecologically useful. In the 1980s, biogas use played an important role in the development of Burundi. Many schools and public institutions had implemented such installations. Unfortunately, many biogas infrastructures were destroyed in the civil war of the 1990s. This study analyzes what could be done, after a decade of crisis, to develop that sector. It aims to assess how and to what extent the inhabitants of villages are willing to contribute to the development of biogas technologies. We interviewed 150 farmers in order to assess their perception on the ecologic and economic features of biogas plants if implemented in their villages. The influence of socioeconomic, cultural, and demographic factors of households was assessed in this study. Results suggest that the maximum amount that a household is willing to pay each month for biogas use at a family level is positive for large-size households, households that are aware of climate change, consumers of candles, households with high income, households with an educated head, women, and breeders. However, the willingness decreases for households with older head of families. The study concludes that awareness campaigns on biogas benefits and financial and nonfinancial incentives are necessary. This policy should probably and primarily be oriented toward some more receptive categories of the population. Women should be fully involved, considering their positive motivation toward sustaining this sector.

  17. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    Science.gov (United States)

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  18. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Science.gov (United States)

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  19. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Directory of Open Access Journals (Sweden)

    Regina S Redman

    Full Text Available Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization.These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  20. Cost benefit analysis for climate change adaption

    NARCIS (Netherlands)

    Ierland, van E.C.; Weikard, H.P.; Wesseler, J.H.H.; Groeneveld, R.A.; Ansink, E.J.H.; Bruin, de K.; Rietveld, P.; Bockarjova, M.; Hofkes, M.; Brouwer, R.; Dekker, T.

    2012-01-01

    The focus of this programme was on the development of decision making tools based on cost benefit analysis under uncertainty, for analysing adaptation and mitigation options related to spatial planning in the Netherlands. The full programme focused on the methodological issues for cost benefit analy

  1. Mitigation win-win

    Science.gov (United States)

    Moran, Dominic; Lucas, Amanda; Barnes, Andrew

    2013-07-01

    Win-win messages regarding climate change mitigation policies in agriculture tend to oversimplify farmer motivation. Contributions from psychology, cultural evolution and behavioural economics should help to design more effective policy.

  2. How Can the Context Affect Policy Decision-Making: The Case of Climate Change Mitigation Policies in the Greek Building Sector

    Directory of Open Access Journals (Sweden)

    Niki-Artemis Spyridaki

    2016-04-01

    Full Text Available The influence of context dynamics in the course of the climate change mitigation policy instruments’ (PIs deployment cycle, usually causes a need for policy adaptation mechanisms to ensure that policies can meet the sector needs efficiently and effectively. In this paper, we argue that important contextual factors are the ones that are perceived to have a great impact over policy effectiveness by key related actors. By examining more thoroughly those effects over PIs, as perceived by policy and market actors, useful feedback on observed policy adaptations can be highlighted. In this context, the aim of this paper is to present a conceptual framework which seeks to investigate the impact of key external factors on policy decision-making. This framework is then applied to policies intended to foster sustainability in the Greek building sector. Contextual parameters that are influential over the effectiveness of the national energy conservation measures are identified through a stakeholder survey. Cluster analysis is then employed for the elicitation of three distinct decision-making priorities’ scenarios. General macroeconomic trends, energy costs, characteristics of the building sector and socio-institutional factors are prioritized differently from various types of actors and induce certain types of PI changes. Distinguishing among the different types of PI change can help explain better under which contextual circumstances policy adaptations occur and provide guidance to other policy makers when found in similar decisional contexts.

  3. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A.; Naess, L.O.; Sutamihardja, R.T.M.; Gintings, N.

    1996-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  4. Rewetted industrial cutaway peatlands in western Ireland: a prime location for climate change mitigation?

    Directory of Open Access Journals (Sweden)

    D. Wilson

    2013-04-01

    Full Text Available Rewetting of drained industrial peatlands may reduce greenhouse gas (GHG emissions and promote recolonisation by peat forming plant species. We investigated carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O dynamics over a three-year period in a rewetted industrial peatland in Ireland. Sample plots were established in bare peat, Juncus effusus-Sphagnum cuspidatum, Sphagnum cuspidatum and Eriophorum angustifolium dominated microsites. The relationships between fluxes and environmental variables were examined and regression models were used to provide an estimate of the annual GHG balance for each microsite. All the vegetated microsites were carbon sinks for the duration of the study. Highest uptake occurred in the Eriophorum microsite (146–583 g C m-2 yr-1, followed by Juncus-Sphagnum (35–204 g C m-2 yr-1 and Sphagnum (5–140 g C m-2 yr-1. The bare peat microsite was a source of 37–82 g C m-2 yr-1. No N2O fluxes were detected. Strong inter-annual variation was observed in all microsites, driven by variation in precipitation and subsequent changes in the position of the water table. In terms of Global Warming Potential (GWP, the microsites had either a cooling effect (Eriophorum, a close to neutral effect (Juncus-Sphagnum, Sphagnum or a warming effect (bare peat on the climate.

  5. Presentation of an Innovative Zero-Emission Cycle for Mitigating the Global Climate Change

    Directory of Open Access Journals (Sweden)

    Philippe Mathieu

    1998-06-01

    Full Text Available In the spectrum of possible options to cope with the global climate change, a novel technology based on the zero CO2 emission MATIANT cycle (contraction of the names of the 2 designers : MATHIEU and IANTOVSKI is presented here. This latter is basically a regenerative gas cycle operating on CO2 as the working fluid and using O2 as the fuel oxidiser in the combustion chambers. The cycle uses the highest temperatures and pressures compatible with the most advanced materials in the steam and gas turbines. In addition, reheat and staged compression with intercooling are used. Therefore the optimized cycle efficiency rises up to around 45% when operating on natural gas. A big asset of the system is its ability to remove totally the CO2 produced in the combustion process in liquid or supercritical state and at high pressure, making it ready for transportation, for reuse or for final storage. It avoids the cost in performance (decrease of efficiency and power output and in money of the CO2 capture by a MEA scrubber. The assets and drawbacks of the cycle are mentioned. The technical issues for the design of a prototype plant are examined.

  6. Mitigating Climate Change with Ocean Pipes: Influencing Land Temperature and Hydrology and Termination Overshoot Risk

    Science.gov (United States)

    Kwiatkowski, L.; Caldeira, K.; Ricke, K.

    2014-12-01

    With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.

  7. District Heating and CHP - Local Possibilities for Global Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Difs, Kristina

    2010-07-01

    Global warming, in combination with increasing energy demand and higher energy prices, makes it necessary to change the energy use. To secure the energy supply and to develop sustainable societies, construction of energy-efficient systems is at the same time most vital. The aim of this thesis is therefore to identify how a local energy company, producing district heating (DH), district cooling (DC) and electricity in combined heat and power (CHP) plants, can contribute to resource-efficient energy systems and cost-effective reductions of global carbon dioxide (CO{sub 2}) emissions, along with its customers. Analyses have been performed on how a local energy company can optimise their DH and DC production and what supply-side and demand-side measures can lead to energy-efficient systems in combination with economic and climate change benefits. The energy company in focus is located in Linkoeping, Sweden. Optimisation models, such as MODEST and reMIND, have been used for analysing the energy systems. Scenario and sensitivity analyses have also been performed for evaluation of the robustness of the energy systems studied. For all analyses a European energy system perspective was applied, where a fully deregulated European electricity market with no bottlenecks or other system failures was assumed. In this thesis it is concluded that of the DH-supply technologies studied, the biomass gasification applications and the natural gas combined cycle (NGCC) CHP are the technologies with the largest global CO{sub 2} reduction potential, while the biomass-fuelled plant that only produces heat is the investment with the smallest global CO{sub 2} reduction and savings potential. However, the global CO{sub 2} reduction potential for the biomass integrated gasification combined cycle (BIGCC) CHP and NGCC CHP, the two technologies with highest electricity efficiencies, is highly dependent on the assumptions made about marginal European electricity production. Regarding the effect on

  8. Upscaling SOC changes from long term field experiments to regional level - evaluation of agri-environmental measures on their contribution to mitigate climate change

    Science.gov (United States)

    Freudenschuss, Alexandra; Sedy, Katrin; Spiegel, Heide; Zethner, Gerhard

    2010-05-01

    Several agri-environment measures in Austria are presumed to also mitigate climate change. These are mainly measures that lead to an increase or stabilization of soil organic carbon (SOC) in arable soils, like e.g. organic farming, legumes and cover crops in the crop rotation as well as the application of organic fertilizers. A reduction of mineral fertiliser application may also reduce greenhouse gas emissions. The results of the study aim to evaluate different agricultural practices on their impact on SOC changes. Data from long term field experiments in Austria with different tillage systems and incorporation rates of crop residues and manure are used to determine effects of agricultural practices on SOC changes. Management factors that compare results from different activities on cropland are calculated and compared with international data. Furthermore these data are used to verify results gained from the application of humus balance model (VDLUFA). For the upscaling of potential SOC changes at regional level (federal states of Austria) data of the IACS - Integrated Administrative Control System are applied in the humus balance model. In order to cover the range of possible SOC changes three different approaches of the humus balance model are introduced and the results will be presented.

  9. Climate Change Mitigation through Energy Benchmarking in the GCC Green Buildings Codes

    Directory of Open Access Journals (Sweden)

    Yousef Alhorr

    2015-06-01

    Full Text Available It is well known that the Gulf Cooperation Council (GCC of countries resides at or close to the top of the global table of CO2 emissions per capita and its economy relies heavily on its fossil fuels. This provides a context for green building programs that initially aim to create an understanding of emission pathways within the GCC and hence develop approaches to their reduction in the built environment. A set of criteria will allow specific analysis to be undertaken linked to the spatial dimensions of the sector under study. In this paper, approaches to modelling energy consumption and CO2 emissions are presented. As investment in the built environment continues, natural resources dwindle and the cost of energy increases, delivering low-energy buildings will become mandatory. In this study, a hybrid modelling approach (bottom-top & top-bottom is presented. Energy benchmarks are developed for different buildings’ uses and compared with international standards. The main goals are to establish design benchmarks and develop a modelling tool that contains specific information for all buildings types (existing and new, as well as planned and projected growths within the various city districts, then integrate this database within a geospatial information system that will allow us to answer a range of “what-if”-type questions about various intervention strategies, emissions savings, and acceptability of pre-defined course of actions in the city sector under consideration. The spatial carbon intensity may be adjusted over a certain period, (e.g., through local generation (microgeneration or due to an increasing proportion of lower carbon-energy in the generation mix and this can be related to the sector and city overall consumption.

  10. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    Science.gov (United States)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or

  11. Anxiogenic effects of developmental bisphenol A exposure are associated with gene expression changes in the juvenile rat amygdala and mitigated by soy.

    Directory of Open Access Journals (Sweden)

    Heather B Patisaul

    Full Text Available Early life exposure to Bisphenol A (BPA, a component of polycarbonate plastics and epoxy resins, alters sociosexual behavior in numerous species including humans. The present study focused on the ontogeny of these behavioral effects beginning in adolescence and assessed the underlying molecular changes in the amygdala. We also explored the mitigating potential of a soy-rich diet on these endpoints. Wistar rats were exposed to BPA via drinking water (1 mg/L from gestation through puberty, and reared on a soy-based or soy-free diet. A group exposed to ethinyl estradiol (50 µg/L and a soy-free diet was used as a positive estrogenic control. Animals were tested as juveniles or adults for anxiety-like and exploratory behavior. Assessment of serum BPA and genistein (GEN, a soy phytoestrogen, confirmed that internal dose was within a human-relevant range. BPA induced anxiogenic behavior in juveniles and loss of sexual dimorphisms in adult exploratory behavior, but only in the animals reared on the soy-free diet. Expression analysis revealed a suite of genes, including a subset known to mediate sociosexual behavior, associated with BPA-induced juvenile anxiety. Notably, expression of estrogen receptor beta (Esr2 and two melanocortin receptors (Mc3r, Mc4r were downregulated. Collectively, these results show that behavioral impacts of BPA can manifest during adolescence, but wane in adulthood, and may be mitigated by diet. These data also reveal that, because ERβ and melanocortin receptors are crucial to their function, oxytocin/vasopressin signaling pathways, which have previously been linked to human affective disorders, may underlie these behavioral outcomes.

  12. Bringing New Tools and Techniques to Bear on Earthquake Hazard Analysis and Mitigation

    Science.gov (United States)

    Willemann, R. J.; Pulliam, J.; Polanco, E.; Louie, J. N.; Huerta-Lopez, C.; Schmitz, M.; Moschetti, M. P.; Huerfano Moreno, V.; Pasyanos, M.

    2013-12-01

    During July 2013, IRIS held an Advanced Studies Institute in Santo Domingo, Dominican Republic, that was designed to enable early-career scientists who already have mastered the fundamentals of seismology to begin collaborating in frontier seismological research. The Institute was conceived of at a strategic planning workshop in Heredia, Costa Rica, that was supported and partially funded by USAID, with a goal of building geophysical capacity to mitigate the effects of future earthquakes. To address this broad goal, we drew participants from a dozen different countries of Middle America. Our objectives were to develop understanding of the principles of earthquake hazard analysis, particularly site characterization techniques, and to facilitate future research collaborations. The Institute was divided into three main sections: overviews on the fundamentals of earthquake hazard analysis and lectures on the theory behind methods of site characterization; fieldwork where participants acquired new data of the types typically used in site characterization; and computer-based analysis projects in which participants applied their newly-learned techniques to the data they collected. This was the first IRIS institute to combine an instructional short course with field work for data acquisition. Participants broke into small teams to acquire data, analyze it on their own computers, and then make presentations to the assembled group describing their techniques and results.Using broadband three-component seismometers, the teams acquired data for Spatial Auto-Correlation (SPAC) analysis at seven array locations, and Horizontal to Vertical Spectral Ratio (HVSR) analysis at 60 individual sites along six profiles throughout Santo Domingo. Using a 24-channel geophone string, the teams acquired data for Refraction Microtremor (SeisOptReMi™ from Optim) analysis at 11 sites, with supplementary data for active-source Multi-channel Spectral Analysis of Surface Waves (MASW) analysis at

  13. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Balbus, John M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenblatt, Jeffery B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chari, Ramya [Rand Corporation, Santa Monica, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ebi, Kristie L. [ClimAdapt, Inc., Los Altos, CA (United States)

    2015-02-01

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefits in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.

  14. Uncertainty in land-use change and forestry sector mitigation options for global warming: plantation silviculture versus avoided deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon, Amazonas (Brazil). Dept. of Ecology

    2000-07-01

    How land-use change and forestry sector options can be used to mitigate global warming will depend on a variety of pending decisions regarding interpretation of the Kyoto Protocol, including treatment of uncertainty. In tropical Forest countries, the allocation of effort between plantation silviculture and reduction of deforestation would be influenced by the stringency of requirements regarding certainty. Slowing deforestation offers much greater potential benefits, but the certainty associated with these is much lower than in the case of plantations. In the Brazilian case, deforestation avoidance could produce carbon benefits worth 6-45 times as much as the destructive ranching and logging uses to which the forest is now being converted. Capturing the potential value of carbon benefits from avoided deforestation will depend on increasing our understanding of the deforestation process and consequent ability to reduce the uncertainty associated with the effects of deforestation-avoidance measures. It will also depend on whether carbon credits are defined in terms of a maximum level of uncertainty. (author)

  15. Energy technology roll-out for climate change mitigation: A multi-model study for Latin America

    Energy Technology Data Exchange (ETDEWEB)

    van der Zwaan, Bob; Kober, Tom; Calderon, Silvia; Clarke, Leon; Daenzer, Katie; Kitous, Alban; Labriet, Maryse; Lucena, André F. P.; Octaviano, Claudia; Di Sbroiavacca, Nicolas

    2016-05-01

    In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, they play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050.Wefind that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of

  16. Adaptation of business activities to the requirements of climate change mitigation - Case carrier bags; Liiketoiminnan sopeuttaminen ilmastonmuutoksen hillinnaen vaatimuksiin (OPTIKASSI)

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbo, H.; Mattila, T.; Korhonen, M.-R.; Myllymaa, T. (Finnish Environment Institute SYKE, Helsinki (Finland)); Soukka, R. (Lappeenranta Univ. of Technology, Department of Energy and Environmental Technology (Finland)); Kujanpaeae, M. (KCL Science and Consulting, Espoo (Finland))

    2009-07-01

    Shopping bags have been a prominent topic of debate lately. Many countries have banned disposable bags or imposed a tax on them. The motives have been to avoid littering, reduce reliance on oil, and curb climate change. Restrictions are also justified by the accumulation of plastic garbage in the oceans, and by the damage to marine organisms. The environmental effects of production, use, and disposal of shopping bags are small compared with other consumption. However, the choice of a shopping bag is repeated every week, and the consumer is not sure about the consequences of each alternative. To reduce this uncertainty the OPTIKASSI study was made. The study called 'Adaptation of business activities to the requirements of climate change mitigation . case shopping bags, OPTIKASSI project' was implemented to study shopping bag alternatives in Finnish grocery stores, and the effects of the bags on climate change and the possibilities to mitigate them. Finnish Environment Institute and Lappeenranta University of Technology were responsible for the study, funded by Tekes ClimBus Programme, and the bag producers Suominen Flexible Packaging Ltd, Plastiroll Oy (Ltd), UPM-Kymmene LtdWisapaper and CabassiOy. The goal of the OPTIKASSI project was to compile lifecycle based information about the climate effects of the most typical shopping bags. It was also desirable to find the best consumption and waste management solutions for bags made of various materials. Products compared were plastic bags of virgin material, and of recycled material, paper bags, canvas bags, and shopping bags of biodegradable plastic. According to the results the shopping bags are an insignificant part of the climate effects of a Finnish household, but negligent use of bags may multiply the effects. Based on scenario, sensitivity, and ambiguity studies: garbage bags should be replaced by plastic bags, and the bins packed full and tight, incineration is not sensible; paper bags should be

  17. Environmental Assessment : Implementation of federal mitigation requirements for changes in sewage treatment discharges within the Truckee-Carson watershed

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The U.S. Fish and Wildlife Service proposes to implement mitigation plans for two sewage effluent disposal systems in the Truckee-Carson watersheds. Implementation...

  18. Analysis on the Influencing Factors of Low-carbon Economy and Its Mitigation Countermeasures in Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At ...

  19. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    Science.gov (United States)

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  20. Green technology for keeping soil-water-nutrient fluxes on cultivated steep land and climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Effiom Oku

    2014-06-01

    Full Text Available Use of vetiver as a green technology can address African farmers’ ecological problems through protecting farmlands on steep lands. In addition, it offers the opportunity to integrate smallholders into the green economy as it sequesters carbon, keep water and nutrient fluxes within the system, sustain high crop yield with climate change adaptation potentials. This is particularly important as more slopes are converted to agricultural lands due to increase in population density and poverty. Thus, the study investigated the optimal strip width for increases in soil productivity and farmers’ preferences for space. The study planted maize and cassava in between vetiver field structures (VFS installed on the contour at 5, 15 , 25 m apart and compared it with Farmers’ Practice (FP on a 45 % slope and quantified the amount of soil displaced, water and plant nutrient losses and crop yields. Vetiver installed at 5 m surface interval spacing significantly enhanced carbon sequestration indicating potentials for GHGs mitigation and reduced N, P, Ca, Mg, Na and K losses when compared with FP. Vetiver allowed only 7 % rainfall lost as against 29 % on FP this demonstrates the climate change adaptation potentials of vetiver. Soil displaced under FP was 68 times higher than the soil loss tolerance limit of 12 t ha-1 yr-1 whereas under VFS at 5, 15 and 25 m it was 2½, 13 and 12 times higher. Maize grain yield were 35, 23 and 24 % higher on the VFS field at 5, 15 and 25 m respectively when compared to FP. The corresponding values for cassava fresh tuber were 43, 32 and 29 % higher. Unlike other technologies, vetiver grass contributes to the livelihood of the farmers by providing raw material for house thatching, handicrafts and fodder for livestock during lean seasons.

  1. Interference characterization and mitigation benefit analysis for LTE-A macro and small cell deployments

    DEFF Research Database (Denmark)

    Lopez, Victor Fernandez; Pedersen, Klaus I.; Soret, Beatriz

    2015-01-01

    are densely deployed. Thus, the main interference characteristics of the macro layer and the dense small cell layer are studied separately. Moreover, the potential benefit of mitigating the dominant interferer in such scenarios is quantified as an upper bound gain and its time variability is discussed...... is such that 30% of the users could achieve at least a 50% throughput gain if said interferer were mitigated, with some users reaching a 300% improvement during certain time intervals. All the mentioned metrics are remarkably similar in the macro and small cell deployments, which suggests that densification does...

  2. Mitigating GHG emissions from agriculture under climate change constrains - a case study for the State of Saxony, Germany

    Science.gov (United States)

    Haas, E.; Kiese, R.; Klatt, S.; Butterbach-Bahl, K.

    2012-12-01

    Mitigating greenhouse gas (N2O, CO2, CH4) emissions from agricultural soils under conditions of projected climate change (IPCC SRES scenarios) is a prerequisite to limit global warming. In this study we used the recently developed regional biogeochemical ecosystem model LandscapeDNDC (Haas et al., 2012, Landscape Ecology) and two time slices for present day (1998 - 2018) and future climate (2078-2098) (regional downscale of IPCC SRES A1B climate simulation) and compared a business as usual agricultural management scenario (winter rape seed - winter barley - winter wheat rotation; fertilization: 170 / 150 / 110 kg-N mineral fertilizer; straw harvest barley/wheat: 90 %) with scenarios where either one or all of the following options were realized: no-till, residue return to fields equal 100%, reduction of fertilization rate s were left on the field or reduction of N fertilization by 10%. The spatial domain is the State of Saxony (1 073 523 hectares of arable land), a typical region for agricultural production in Central Europe. The simulations are based on a high resolution polygonal datasets (5 517 agricultural grid cells) for which relevant information on soil properties is available. The regionalization of the N2O emissions was validated against the IPCC Tier I methodology resulting in N2O emissions of 1 824 / 1 610 / 1 180 [t N2O-N yr-1] for of the baseline years whereas the simulations results in 6 955 / 6 039 / 2 207 [t N2O-N yr-1] for the first three years of the baseline scenarios and ranging between 621 and 6 955 [t N2O-N yr-1] within the following years (mean of 2 923). The influence of climate change (elevated mean temperature of approx. 2°C and minor changes in precipitation) results in an increase of 259 [t N2O-N yr-1] (mean 3 182) or approx. 9 percent on average (with a minimum of 618 and a maximum of 6 553 [t N2O-N yr-1]). Focusing on the mitigation , the recarbonization did result in an increase of soil carbon stocks of 2 585 [kg C/ha] within the

  3. Analysis Method for Licensing Application of Passive Autocatalytic Recombiner System as a Hydrogen Mitigation System of OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changhyun; Sung, Jejoong; Ha, Sangjun [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of); Yeo, Inseon [KEPCO Engineering and Construction Co. Ltd., Yongin (Korea, Republic of)

    2014-05-15

    As a result, for some plants, dual hydrogen mitigation systems are prepared with a combination of PARs and igniters that each system has a 100% of full capacity for hydrogen control for postulated severe accident conditions. In the original design of OPR-1000, hydrogen mitigation systems consist of a thermal recombiner and twenty glow-type igniters, which are used for design basis accident and severe accident, respectively. This paper presents an analysis method for licensing application in Korea to determine the capacity and locations of PARs for the design of a hydrogen mitigation system with PAR. A licensed analysis method of OPR-1000 has been presented to determine the capacity and locations of PAR for the design of a hydrogen mitigation system with PAR. A lumped parameter code of MAAP 4.0.6+ has been adopted to simulate various severe accident scenarios with a 26 multi-compartment containment model. Hydrogen generations were analysed and required capacity and locations of PAR were determined for six accident scenarios selected from a combination of probabilistic and deterministic considerations. A total of twenty-four PARs in the containment dome, steam generator rooms, annulus and adjacent areas was designed and the adequacy of this system has been confirmed through detailed analyses including sensitivity analyses with/without operations of safety systems such as containment heat removal systems, reactor coolant depressurization system and safety injection by accumulator, etc. Through the assessment on the possibility of global FA and DDT, it has been concluded that new PAR system with twenty-four recombiners can remove hydrogen effectively in the containment atmosphere and prevent from global FA and DDT. Further works are required in the future to develop a well-balanced analysis methodology with a combination of lumped and CFD tools focusing on the optimum locations of recombiners and local hydrogen behaviour in containment compartments.

  4. How effective is road mitigation at reducing road-kill? A meta-analysis

    NARCIS (Netherlands)

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A.G.; Fahrig, Lenore; Findlay, C.S.; Houlahan, Jeff; Ree, van der Rodney; Grift, van der Edgar A.

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the
    populations of many species. To address this problem there are more than forty types of
    road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill).
    For road p

  5. Changing habits, changing climate : a foundation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enright, W. [Canadian Inst. of Child Health, Ottawa, ON (Canada)

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs.

  6. Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model

    Directory of Open Access Journals (Sweden)

    Swart Rob J

    2008-04-01

    Full Text Available Abstract Background Carbon plantations are introduced in climate change policy as an option to slow the build-up of atmospheric carbon dioxide (CO2 concentrations. Here we present a methodology to evaluate the potential effectiveness of carbon plantations. The methodology explicitly considers future long-term land-use change around the world and all relevant carbon (C fluxes, including all natural fluxes. Both issues have generally been ignored in earlier studies. Results Two different baseline scenarios up to 2100 indicate that uncertainties in future land-use change lead to a near 100% difference in estimates of carbon sequestration potentials. Moreover, social, economic and institutional barriers preventing carbon plantations in natural vegetation areas decrease the physical potential by 75–80% or more. Nevertheless, carbon plantations can still considerably contribute to slowing the increase in the atmospheric CO2 concentration but only in the long term. The most conservative set of assumptions lowers the increase of the atmospheric CO2 concentration in 2100 by a 27 ppm and compensates for 5–7% of the total energy-related CO2 emissions. The net sequestration up to 2020 is limited, given the short-term increased need for agricultural land in most regions and the long period needed to compensate for emissions through the establishment of the plantations. The potential is highest in the tropics, despite projections that most of the agricultural expansion will be in these regions. Plantations in high latitudes as Northern Europe and Northern Russia should only be established if the objective to sequester carbon is combined with other activities. Conclusion Carbon sequestration in plantations can play an important role in mitigating the build-up of atmospheric CO2. The actual magnitude depends on natural and management factors, social barriers, and the time frame considered. In addition, there are a number of ancillary benefits for local

  7. Co-benefits of private investment in climate change mitigation and adaptation in developing countries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bystricky, E.; Gilbert, A.; Klaus, S.; Rordorf, J. [Ecofys Group, Utrecht (Netherlands); Ward, M. [GtripleC, Wellington (New Zealand)

    2010-11-15

    The aim of this report is to inform the international community of the potential benefits for development that can be gained from adding private sector finance to public finance for climate change mitigation and adaptation. Specifically it considers whether, in addition to helping to reduce emissions, leveraging private finance through public-private financing mechanisms can result in other benefits that may not be achieved through public financing alone. These include among others access to electricity for the poorest communities from off-grid renewable electricity investments, new jobs, and transfer and development of skills and expertise. An initial literature review suggests that there has been little quantification of the developmental co-benefits of private investment, and little methodology available to estimate the additional benefits that may result. The purpose of this document is to address this analytical gap. Without a clear understanding of the co-benefits, developing countries will continue to view private finance as being less important than public finance. This may act as a barrier to them enjoying the developmental benefits of private investment. Section 2 defines co-benefits, and their link to private sector finance. Section 3 presents the methodology needed to help quantify these co-benefits, and section 4 presents some numbers based on projects and case studies. Forestry and adaptation have been looked at specifically, with results presented in section 5. Co-benefits can also carry risks, and there may be pre-conditions for them to be realised, as discussed in section 6. Section 7 gives conclusions and further steps needed. Appendices A and B cover general aspects of methodology and job creation.

  8. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  9. Parametric statistical change point analysis

    CERN Document Server

    Chen, Jie

    2000-01-01

    This work is an in-depth study of the change point problem from a general point of view and a further examination of change point analysis of the most commonly used statistical models Change point problems are encountered in such disciplines as economics, finance, medicine, psychology, signal processing, and geology, to mention only several The exposition is clear and systematic, with a great deal of introductory material included Different models are presented in each chapter, including gamma and exponential models, rarely examined thus far in the literature Other models covered in detail are the multivariate normal, univariate normal, regression, and discrete models Extensive examples throughout the text emphasize key concepts and different methodologies are used, namely the likelihood ratio criterion, and the Bayesian and information criterion approaches A comprehensive bibliography and two indices complete the study

  10. Amphibian occurrence and aquatic invaders in a changing landscape: Implications for wetland mitigation in the Willamette Valley, Oregon

    Science.gov (United States)

    Pearl, Christopher A.; Adams, Michael J.; Leuthold, N.; Bury, R. Bruce

    2005-01-01

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon's Willamette Valley and used an information theoretic approach (AIC) to rank the associations between native amphibian breeding occurrence and wetland characteristics, non-native aquatic predators, and landscape characteristics in a mixed urban-agricultural landscape. Best predictors varied among the five native amphibians and were generally consistent with life history differences. Pacific tree frog (Pseudacris regilla) and long-toed salamander (Ambystoma macrodactylum) occurrence was best predicted by the absence of non-native fish. Northern red-legged frog (Rana a. aurora) and northwestern salamander (Ambystoma gracile) were most strongly related to wetland vegetative characteristics. The occurrence of rough-skinned newts (Taricha granulosa), a migratory species that makes extensive use of terrestrial habitats, was best predicted by greater forest cover within 1 km. The absence of non-native fish was a strong predictor of occurrence for four of the five native species. In contrast, amphibians were not strongly related to native fish presence. We found little evidence supporting negative effects of the presence of breeding populations of bullfrog (Rana catesbeiana) on any native species. Only the two Ambystoma salamanders were associated with wetland permanence. Northwestern salamanders (which usually have a multi-year larval stage) were associated with permanent waters, while long-toed salamanders were associated with temporary wetlands. Although all the species make some use of upland habitats, only one (rough-skinned newt) was strongly associated with surrounding landscape conditions. Instead, our analysis suggests that within-wetland characteristics best predict amphibian occurrence in this region. We recommend that wetland preservation and

  11. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    Science.gov (United States)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  12. Re-use of wastewater for a sustainable forest production and climate change mitigation under arid environments

    Directory of Open Access Journals (Sweden)

    Maria Cristina Monteverdi

    2014-06-01

    Full Text Available 800x600 Over the last decades biotic and abiotic constrains together with human actions are determining a substantial environmental pressure, particularly in dry lands as the south of the Mediterranean region. From very long time, indeed, simultaneous drivers such as demographic growth, climate change and socio-economic factors are weakening the previous homeostasis between human needs and natural resources on the regional scale.Resulting pressures are determining environmental degradation and increase of desertification risk for the arid and semiarid lands. Water quality and availability are both crucial points limiting people well-being and livelihoods in the same context. Scarcity of fresh water and heavy and mismanaged production of wastewater are the main factors affecting water resources. Increasing pollution of soil and ground waters reduces the possibility of sustainable development of local communities with relevant social consequences. The FAO's supporting program in north Africa aims to: a develop new and cheaper phytotechnologies (e.g. constructed wetland system; innovative treatment system for reuse of waste water for fertigation; b treat wastewater for water quality protection; c promote land recovery by means of sustainable multipurpose forestry; d adopt bioengineering interventions to stop slopes erosion and protect urban, and semi-urban infrastructures; e create pilot demonstrative areas to test multi-purpose sustainable agroforestry systems. Within this frame, an integrated approach was designed to promote innovative sustainable water management and multipurpose forestry, in order to mitigate the effects of climate change, promote land recovery, and improve the livelihoods of local population. The present paper aims to provide an overview of the FAO project GCP/RAB/013/ITA. Particularly, two pilot studies are shown and discussed. Normal 0 14 false false false IT X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions

  13. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    Science.gov (United States)

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  14. GHG Mitigation Policies and Employment: A CGE Analysis with Wage Rigidity and Application to Canada

    OpenAIRE

    Yazid Dissou; Qian Sun

    2013-01-01

    We use a general equilibrium framework to assess the impact of carbon mitigation policies in the presence of labour market rigidities. We analyze the impact of reducing CO 2 emissions in a cap-and-trade system and the implications of different revenue-recycling options. Our results suggest that the policy has a negative impact on employment and welfare when permit revenues are recycled as lump-sum transfers to households. Using the carbon proceeds to reduce payroll tax achieves better outcome...

  15. Back-Contacted Silicon Heterojunction Solar Cells: Optical-Loss Analysis and Mitigation

    OpenAIRE

    Paviet-Salomon, Bertrand; Tomasi, Andrea; Descoeudres, Antoine; Barraud, Loris; Nicolay, Sylvain; Despeisse, Matthieu; De Wolf, Stefaan; Ballif, Christophe

    2015-01-01

    We analyze the optical losses that occur in interdigitated back-contacted amorphous/crystalline silicon heterojunction solar cells. We show that in our devices, the main loss mechanisms are similar to those of two-side contacted heterojunction solar cells. These include reflection and escape-light losses, as well as parasitic absorption in the front passivation layers and rear contact stacks. We then provide practical guidelines to mitigate such reflection and parasitic absorption losses at t...

  16. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and

  17. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  18. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action

    Directory of Open Access Journals (Sweden)

    Nadja Kabisch

    2016-06-01

    Full Text Available Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy, and society. As an outcome of the workshop discussions and building on existing evidence, we highlight three main needs for future science and policy agendas when dealing with nature-based solutions: (i produce stronger evidence on nature-based solutions for climate change adaptation and mitigation and raise awareness by increasing implementation; (ii adapt for governance challenges in implementing nature-based solutions by using reflexive approaches, which implies bringing together new networks of society, nature-based solution ambassadors, and practitioners; (iii consider socio-environmental justice and social cohesion when implementing nature-based solutions by using integrated governance approaches that take into account an integrative and transdisciplinary participation of diverse actors. Taking these needs into account, nature-based solutions can serve as climate mitigation and adaptation tools that produce additional cobenefits for societal well-being, thereby serving as strong investment options for sustainable urban planning.

  19. P2P-based botnets: structural analysis, monitoring, and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanhua [Los Alamos National Laboratory; Eidenbenz, Stephan [Los Alamos National Laboratory; Ha, Duc T [UNIV AT BUFFALO; Ngo, Hung Q [UNIV AT BUFFALO

    2008-01-01

    Botnets, which are networks of compromised machines that are controlled by one or a group of attackers, have emerged as one of the most serious security threats on the Internet. With an army of bots at the scale of tens of thousands of hosts or even as large as 1.5 million PCs, the computational power of botnets can be leveraged to launch large-scale DDoS (Distributed Denial of Service) attacks, sending spamming emails, stealing identities and financial information, etc. As detection and mitigation techniques against botnets have been stepped up in recent years, attackers are also constantly improving their strategies to operate these botnets. The first generation of botnets typically employ IRC (Internet Relay Chat) channels as their command and control (C&C) centers. Though simple and easy to deploy, the centralized C&C mechanism of such botnets has made them prone to being detected and disabled. Against this backdrop, peer-to-peer (P2P) based botnets have emerged as a new generation of botnets which can conceal their C&C communication. Recently, P2P networks have emerged as a covert communication platform for malicious programs known as bots. As popular distributed systems, they allow bots to communicate easily while protecting the botmaster from being discovered. Existing work on P2P-based hotnets mainly focuses on measurement of botnet sizes. In this work, through simulation, we study extensively the structure of P2P networks running Kademlia, one of a few widely used P2P protocols in practice. Our simulation testbed incorporates the actual code of a real Kademlia client software to achieve great realism, and distributed event-driven simulation techniques to achieve high scalability. Using this testbed, we analyze the scaling, reachability, clustering, and centrality properties of P2P-based botnets from a graph-theoretical perspective. We further demonstrate experimentally and theoretically that monitoring bot activities in a P2P network is difficult

  20. Cost-effectiveness analysis of policy instruments for greenhouse gas emission mitigation in the agricultural sector.

    Science.gov (United States)

    Bakam, Innocent; Balana, Bedru Babulo; Matthews, Robin

    2012-12-15

    Market-based policy instruments to reduce greenhouse gas (GHG) emissions are generally considered more appropriate than command and control tools. However, the omission of transaction costs from policy evaluations and decision-making processes may result in inefficiency in public resource allocation and sub-optimal policy choices and outcomes. This paper aims to assess the relative cost-effectiveness of market-based GHG mitigation policy instruments in the agricultural sector by incorporating transaction costs. Assuming that farmers' responses to mitigation policies are economically rationale, an individual-based model is developed to study the relative performances of an emission tax, a nitrogen fertilizer tax, and a carbon trading scheme using farm data from the Scottish farm account survey (FAS) and emissions and transaction cost data from literature metadata survey. Model simulations show that none of the three schemes could be considered the most cost effective in all circumstances. The cost effectiveness depends both on the tax rate and the amount of free permits allocated to farmers. However, the emissions trading scheme appears to outperform both other policies in realistic scenarios.

  1. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    Science.gov (United States)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z.; West, J. Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W. Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates

  2. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and

  3. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment.

    Science.gov (United States)

    Hou, Yong; Velthof, Gerard L; Oenema, Oene

    2015-03-01

    Livestock manure contributes considerably to global emissions of ammonia (NH3 ) and greenhouse gases (GHG), especially methane (CH4 ) and nitrous oxide (N2 O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we present a meta-analysis and integrated assessment of the effects of mitigation measures on NH3 , CH4 and (direct and indirect) N2 O emissions from the whole manure management chain. We analysed the effects of mitigation technologies on NH3 , CH4 and N2 O emissions from individual sources statistically using results of 126 published studies. Whole-chain effects on NH3 and GHG emissions were assessed through scenario analysis. Significant NH3 reduction efficiencies were observed for (i) housing via lowering the dietary crude protein (CP) content (24-65%, compared to the reference situation), for (ii) external slurry storages via acidification (83%) and covers of straw (78%) or artificial films (98%), for (iii) solid manure storages via compaction and covering (61%, compared to composting), and for (iv) manure application through band spreading (55%, compared to surface application), incorporation (70%) and injection (80%). Acidification decreased CH4 emissions from stored slurry by 87%. Significant increases in N2 O emissions were found for straw-covered slurry storages (by two orders of magnitude) and manure injection (by 26-199%). These side-effects of straw covers and slurry injection on N2 O emission were relatively small when considering the total GHG emissions from the manure chain. Lowering the CP content of feed and acidifying slurry are strategies that consistently reduce NH3 and GHG emissions in the whole chain. Other strategies may reduce emissions of a specific gas or emissions source, by which there is a risk of unwanted trade-offs in the manure management chain. Proper farm-scale combinations of mitigation measures are important to minimize impacts of

  4. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    Science.gov (United States)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  5. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-40)

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-07-16

    BPA proposes to fund the acquisition of two parcels in Benewah County, Idaho with the Coeur d'Alene Tribe. These parcels encompass approximately 475 acres of riparian and potential riparian habitat along Hangman Creek on the Coeur d'Alene Indian Reservation. The goal of this project is to protect, mitigate, and enhance wildlife affected by the construction and operation of the Federal hydroelectric facilities on the Columbia River. The current proposal includes only the fee title acquisition of these parcels; habitat enhancement activities will likely be carried out by the Coeur d'Alene Tribe in the future following the development of a management plan(s) for the lands.

  6. CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation.

    Science.gov (United States)

    Siddiqui, M; Jayanti, S; Swaminathan, T

    2012-03-30

    Environmental risks are inherent in the operation of any complex chemical process industry. The indoor release of hazardous chemicals that are denser than air is a topic of special concern, since dense clouds tend to persist at ground level or human breath level which leads to a magnification of their harmful potential. In the present work, we propose a computational fluid dynamics (CFD) based model for indoor risk assessment considering accidental release of a sustained, small, undetected leak of a dense toxic gas (chlorine) in an industrial indoor environment. Results from simulations show that the denser chlorine gas spreads like a liquid and flows all along the floor. At the same time, its concentration at a point away from the ground level increases slowly, thus showing that both stratification and dilution effects are present as the dense gas spreads. The implications of this spreading pattern from a risk assessment and risk mitigation point of view are discussed.

  7. APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease.

    Science.gov (United States)

    Yang, Yue; Cudaback, Eiron; Jorstad, Nikolas L; Hemingway, Jake F; Hagan, Catherine E; Melief, Erica J; Li, Xianwu; Yoo, Tom; Khademi, Shawn B; Montine, Kathleen S; Montine, Thomas J; Keene, C Dirk

    2013-09-01

    Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset Alzheimer disease and confers a proinflammatory, neurotoxic phenotype to microglia. Here, we tested the hypothesis that bone marrow cell APOE genotype modulates pathological progression in experimental Alzheimer disease. We performed bone marrow transplants (BMT) from green fluorescent protein-expressing human APOE3/3 or APOE4/4 donor mice into lethally irradiated 5-month-old APPswe/PS1ΔE9 mice. Eight months later, APOE4/4 BMT-recipient APPswe/PS1ΔE9 mice had significantly impaired spatial working memory and increased detergent-soluble and plaque Aβ compared with APOE3/3 BMT-recipient APPswe/PS1ΔE9 mice. BMT-derived microglia engraftment was significantly reduced in APOE4/4 recipients, who also had correspondingly less cerebral apoE. Gene expression analysis in cerebral cortex of APOE3/3 BMT recipients showed reduced expression of tumor necrosis factor-α and macrophage migration inhibitory factor (both neurotoxic cytokines) and elevated immunomodulatory IL-10 expression in APOE3/3 recipients compared with those that received APOE4/4 bone marrow. This was not due to detectable APOE-specific differences in expression of microglial major histocompatibility complex class II, C-C chemokine receptor (CCR) type 1, CCR2, CX3C chemokine receptor 1 (CX3CR1), or C5a anaphylatoxin chemotactic receptor (C5aR). Together, these findings suggest that BMT-derived APOE3-expressing cells are superior to those that express APOE4 in their ability to mitigate the behavioral and neuropathological changes in experimental Alzheimer disease.

  8. Quantitative analysis of the 1981 and 2001 Etna flank eruptions: a contribution for future hazard evaluation and mitigation

    Directory of Open Access Journals (Sweden)

    Cristina Proietti

    2011-12-01

    Full Text Available Lava flows produced during Etna flank eruptions represent severe hazards for the nearby inhabited areas, which can be protected by adopting prompt mitigation actions, such as the building of diversion barriers. Lava diversion measures were attempted recently during the 1983, 1991-93, 2001 and 2002 Etna eruptions, although with different degrees of success. In addition to the complexity of barrier construction (due to the adverse physical conditions, the time available to successfully slow the advance of a lava flow depends on the lava effusion rate, which is not easily measurable. One method to estimate the average lava effusion rate over a specified period of time is based on a volumetric approach; i.e. the measurement of the volume changes of the lava flow over that period. Here, this has been compared to an approach based on thermal image processing, as applied to estimate the average effusion rates of lava flows during the 1981 and 2001 Etna eruptions. The final volumes were measured by the comparison of pre-eruption and post-eruption photogrammetric digital elevation models and orthophotographs. Lava volume growth during these eruptions was estimated by locating the flow-front positions from analyses of scientific papers and newspapers reports, as well as from helicopter photographs. The analyses of these two eruptions contribute to the understanding of the different eruptive mechanisms, highlighting the role of the peak effusion rate, which represents a critical parameter for planning of mitigation actions and for hazard evaluation.

  9. Can integrative catchment management mitigate future water quality issues caused by climate change and socio-economic development?

    Science.gov (United States)

    Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Stamm, Christian

    2017-03-01

    The design and evaluation of solutions for integrated surface water quality management requires an integrated modelling approach. Integrated models have to be comprehensive enough to cover the aspects relevant for management decisions, allowing for mapping of larger-scale processes such as climate change to the regional and local contexts. Besides this, models have to be sufficiently simple and fast to apply proper methods of uncertainty analysis, covering model structure deficits and error propagation through the chain of sub-models. Here, we present a new integrated catchment model satisfying both conditions. The conceptual iWaQa model was developed to support the integrated management of small streams. It can be used to predict traditional water quality parameters, such as nutrients and a wide set of organic micropollutants (plant and material protection products), by considering all major pollutant pathways in urban and agricultural environments. Due to its simplicity, the model allows for a full, propagative analysis of predictive uncertainty, including certain structural and input errors. The usefulness of the model is demonstrated by predicting future surface water quality in a small catchment with mixed land use in the Swiss Plateau. We consider climate change, population growth or decline, socio-economic development, and the implementation of management strategies to tackle urban and agricultural point and non-point sources of pollution. Our results indicate that input and model structure uncertainties are the most influential factors for certain water quality parameters. In these cases model uncertainty is already high for present conditions. Nevertheless, accounting for today's uncertainty makes management fairly robust to the foreseen range of potential changes in the next decades. The assessment of total predictive uncertainty allows for selecting management strategies that show small sensitivity to poorly known boundary conditions. The identification

  10. Can ecosystem-scale translocations mitigate the impact of climate change on terrestrial biodiversity? Promises, pitfalls, and possibilities [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Stéphane Boyer

    2016-02-01

    Full Text Available Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST, where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil are carefully collected and moved together. Small-scale attempts at such practice have been made for the purpose of ecological restoration. By moving larger subsets of functioning ecosystems from climatically unstable regions to more stable ones, EST could provide a practical means to conserve mature and complex ecosystems threatened by climate change. However, there are a number of challenges associated with EST in the context of climate change mitigation, in particular the choice of donor and receptor sites. With the aim of fostering discussion and debate about the EST concept, we  1 outline the possible promises and pitfalls of EST in mitigating the impact of climate change on terrestrial biodiversity and 2 use a GIS-based approach to illustrate how  potential source and receptor sites, where EST could be trialed and evaluated globally, could be identified.

  11. Can migration mitigate the effects of ecosystem change? Patterns of dispersal, energy acquisition and allocation in Great Lakes lake whitefish (Coregonus clupeaformis)

    Science.gov (United States)

    Rennie, Michael D.; Ebener, Mark P.; Wagner, Tyler

    2012-01-01

    Migration can be a behavioural response to poor or declining home range habitat quality and can occur when the costs of migration are overcome by the benefi ts of encountering higher-quality resources elsewhere. Despite dramatic ecosystem-level changes in the benthic food web of the Laurentian Great Lakes since the colonization of dreissenid mussels, coincident changes in condition and growth rates among benthivorous lake whitefi sh populations have been variable. We hypothesized that this variation could be in part mitigated by differences in migratory habits among populations, where increased migration distance can result in an increased probability of encountering high-quality habitat (relative to the home range). Results from four Great Lakes populations support this hypothesis; relative growth rates increased regularly with migration distance. The population with the largest average migration distance also had the least reduction in size-at-age during a period of signifi cant ecosystem change and among the highest estimated consumption and activity rates. In comparison, the population with the greatest declines in size-at-age was among the least mobile, demonstrating only moderate rates of consumption and activity. The least mobile population of lake whitefi sh was supported by a remnant Diporeia population and has experienced only moderate temporal growth declines. Our study provides evidence for the potential role of migration in mitigating the effects of ecosystem change on lake whitefi sh populations.

  12. GHG emissions and mitigation potential in Indian agriculture

    Science.gov (United States)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  13. Topological analysis of the power grid and mitigation strategies against cascading failures

    CERN Document Server

    Pahwa, Sakshi; Scoglio, Caterina; Wood, Sean; 10.1109/SYSTEMS.2010.5482329

    2010-01-01

    This paper presents a complex systems overview of a power grid network. In recent years, concerns about the robustness of the power grid have grown because of several cascading outages in different parts of the world. In this paper, cascading effect has been simulated on three different networks, the IEEE 300 bus test system, the IEEE 118 bus test system, and the WSCC 179 bus equivalent model, using the DC Power Flow Model. Power Degradation has been discussed as a measure to estimate the damage to the network, in terms of load loss and node loss. A network generator has been developed to generate graphs with characteristics similar to the IEEE standard networks and the generated graphs are then compared with the standard networks to show the effect of topology in determining the robustness of a power grid. Three mitigation strategies, Homogeneous Load Reduction, Targeted Range-Based Load Reduction, and Use of Distributed Renewable Sources in combination with Islanding, have been suggested. The Homogeneous Lo...

  14. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    Science.gov (United States)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  15. Understanding and improving mitigation strategies for reducing catchment scale nutrient loads using high resolution observations and uncertainty analysis approaches

    Science.gov (United States)

    Collins, A.; Lloyd, C.; Freer, J. E.; Johnes, P.; Stirling, M.

    2012-12-01

    One of the biggest challenges in catchment water quality management is tackling the problem of reducing water pollution from agriculture whilst ensuring food security nationally. Improvements to catchment management plans are needed if we are to enhance biodiversity and maintain good ecological status in freshwater ecosystems, while producing enough food to support a growing global population. In order to plan for a more sustainable and secure future, research needs to quantify the uncertainties and understand the complexities in the source-mobilisation-delivery-impact continuum of pollution and nutrients at all scales. In the UK the Demonstration Test Catchment (DTC) project has been set up to improve water quality specifically from diffuse pollution from agriculture by enhanced high resolution monitoring and targeted mitigation experiments. The DTC project aims to detect shifts in the baseline trend of the most ecologically-significant pollutants resulting from targeted on-farm measures at field to farm scales and assessing their effects on ecosystem function. The DTC programme involves three catchments across the UK that are indicative of three different typologies and land uses. This paper will focus on the Hampshire Avon DTC, where a total of 12 parameters are monitored by bank-side stations at two sampling sites, including flow, turbidity, phosphate and nitrate concentrations at 30 min resolution. This monitoring is supported by daily resolution sampling at 5 other sites and storm sampling at all locations. Part of the DTC project aims to understand how observations of water quality within river systems at different temporal resolutions and types of monitoring strategies enable us to understand and detect changes over and above the natural variability. Baseline monitoring is currently underway and early results show that high-resolution data is essential at this sub-catchment scale to understand important process dynamics. This is critical if we are to design

  16. Slope Stability Analysis and Mitigation Measures in the Area of the Sighişoara Medieval Citadel

    Directory of Open Access Journals (Sweden)

    George-Cătălin Silvaş

    2014-07-01

    Full Text Available The Sighişoara Medieval Citadel has a very big importance to the cultural, architectural and historical heritage of Romania. The citadel is situated on the Fortress Hill and it is the only inhabited fortress in Romania. But underneath the beauty of the Citadel lies some problems that only the inhabitants and the authorities know. These problems consist in the presence of the slope instability phenomenon. Throughout the years the slopes of the Fortress Hill, because of a series of factors, became instable. Thus landslides occurred that affected the Citadel fortress walls. There are still some areas of the walls that have never been reconstructed yet. So a slope stability analysis shall show if the slope instability phenomenon is still active and the mitigation measures recommended will stop the activity of this phenomenon.

  17. Evaluating the need for integrated land use and land cover analysis for robust assessment of climate adaptation and mitigation strategies

    Science.gov (United States)

    Di Vittorio, Alan; Mao, Jiafu; Shi, Xiaoying

    2016-04-01

    Several climate adaptation and mitigation strategies incorporate land use and land cover change to address global carbon balance and also food, fuel, fiber, and water resource sustainability. However, Land Use and Land Cover Change (LULCC) are not consistent across the CMIP5 model simulations because only the land use input was harmonized. Differences in LULCC impede understanding of global change because such differences can dramatically alter land-atmosphere mass and energy exchange in response to differences in associated use and distribution of land resources. For example, the Community Earth System Model (CESM) overestimates 2005 atmospheric CO2 concentration by 18 ppmv, and we explore the contribution of historical LULCC to this bias in relation to the effects of CO2 fertilization and nitrogen deposition on terrestrial carbon. Using identical land use input, a chronologically referenced LULCC that accounts for pasture, as opposed to the default year-2000 referenced LULCC, increases this bias to 27 ppmv because more forest needs to be cleared for land use. Assuming maximum forest retention for all land conversion reduces the new bias to ~21 ppmv, while minimum forest retention increases the new bias to ~32 ppmv. Corresponding ecosystem carbon changes from the default in 2005 are approximately -28 PgC, -10 PgC, and -43 PgC, respectively. This 33 PgC uncertainty range due to maximizing versus minimizing forest area is 66% of the estimated 50 PgC gain in ecosystem carbon due to CO2 fertilization from 1850-2005, and 150% of the estimated 22 PgC gain due to nitrogen deposition. This range is also similar to the 28 PgC difference generated by changing the LULCC reference year and accounting for pasture. These results indicate that LULCC uncertainty is not only a major driver of bias in simulated atmospheric CO2, but that it could contribute even more to this bias than uncertainty in CO2 fertilization or nitrogen deposition. This highlights the need for more accurate

  18. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels.

    Science.gov (United States)

    Zinta, Gaurav; AbdElgawad, Hamada; Domagalska, Malgorzata A; Vergauwen, Lucia; Knapen, Dries; Nijs, Ivan; Janssens, Ivan A; Beemster, Gerrit T S; Asard, Han

    2014-12-01

    Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.

  19. The potential of carbon sequestration to mitigate against climate change in forests and agro ecosystems of Zimbabwe

    NARCIS (Netherlands)

    Mujuru, L.

    2014-01-01

    Climate change adversely affects human livelihoods and the environment through alteration of temperatures, rainfall patterns, sea level rise and ecosystem productivity. Developing countries are more vulnerable to climate change because they directly depend on agriculture and natural ecosystem produc

  20. The Value of Linking Mitigation and Adaptation: A Case Study of Bangladesh

    Science.gov (United States)

    Ayers, Jessica M.; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  1. Enterobacter asburiae KE17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean.

    Science.gov (United States)

    Kang, S-M; Radhakrishnan, R; You, Y-H; Khan, A-L; Lee, K-E; Lee, J-D; Lee, I-J

    2015-09-01

    This study aimed to elucidate the role played by Enterobacter asburiae KE17 in the growth and metabolism of soybeans during copper (100 μm Cu) and zinc (100 μm Zn) toxicity. When compared to controls, plants grown under Cu and Zn stress exhibited significantly lower growth rates, but inoculation with E. asburiae KE17 increased growth rates of stressed plants. The concentrations of plant hormones (abscisic acid and salicylic acid) and rates of lipid peroxidation were higher in plants under heavy metal stress, while total chlorophyll, carotenoid content and total polyphenol concentration were lower. While the bacterial treatment reduced the abscisic acid and salicylic acid content and lipid peroxidation rate of Cu-stressed plants, it also increased the concentration of photosynthetic pigments and total polyphenol. Moreover, the heavy metals induced increased accumulation of free amino acids such as aspartic acid, threonine, serine, glycine, alanine, leucine, isoleucine, tyrosine, proline and gamma-aminobutyric acid, while E. asburiae KE17 significantly reduced concentrations of free amino acids in metal-affected plants. Co-treatment with E. asburiae KE17 regulated nutrient uptake by enhancing nitrogen content and inhibiting Cu and Zn accumulation in soybean plants. The results of this study suggest that E. asburiae KE17 mitigates the effects of Cu and Zn stress by reprogramming plant metabolic processes.

  2. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

    2011-06-01

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  3. Long-term development and effectiveness of private flood mitigation measures: an analysis for the German part of the river Rhine

    Science.gov (United States)

    Bubeck, P.; Botzen, W. J. W.; Kreibich, H.; Aerts, J. C. J. H.

    2012-11-01

    Flood mitigation measures implemented by private households have become an important component of contemporary integrated flood risk management in Germany and many other countries. Despite the growing responsibility of private households to contribute to flood damage reduction by means of private flood mitigation measures, knowledge on the long-term development of such measures, which indicates changes in vulnerability over time, and their effectiveness, is still scarce. To gain further insights into the long-term development, current implementation level and effectiveness of private flood mitigation measures, empirical data from 752 flood-prone households along the German part of the Rhine are presented. It is found that four types of flood mitigation measures developed gradually over time among flood-prone households, with severe floods being important triggers for an accelerated implementation. At present, still a large share of respondents has not implemented a single flood mitigation measure, despite the high exposure of the surveyed households to floods. The records of household's flood damage to contents and structure during two consecutive flood events with similar hazard characteristics in 1993 and 1995 show that an improved preparedness of the population led to substantially reduced damage during the latter event. Regarding the efficiency of contemporary integrated flood risk management, it is concluded that additional policies are required in order to further increase the level of preparedness of the flood-prone population. This especially concerns households in areas that are less frequently affected by flood events.

  4. Climate change risk analysis framework (CCRAF) a probabilistic tool for analyzing climate change uncertainties

    Science.gov (United States)

    Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.

    2003-04-01

    Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000

  5. Quantification and Mitigation of Long-Term Impacts of Urbanization and Climate Change in the Tropical Coastal City of San Juan, Puerto Rico

    Science.gov (United States)

    Comarazamy, Daniel; Gonzalez, Jorge E.; Luvall, Jeffrey C.

    2014-01-01

    Urbanization, along with other cases of land cover and land use changes, has significant climate impacts in tropical regions with the added complexity of occurring within the context of global warming. The individual and combined effects of these two factors on the surface energy balance of a tropical city are investigated by use of an integrated atmospheric modeling approach, taking the San Juan Metropolitan Area (SJMA), Puerto Rico as the test case. To achieve this goal, an ensemble of climate and weather simulations is performed, with the climate scenarios combining urban development and sprawl with regional climate change over the past 50 years, and the short-term simulations designed to test the sensitivity to different urban vegetation configurations as mitigating alternatives. As indicator of change, we use the thermal response number (TRN), which is a measure of the sensible heating to the thermal storage of a surface or region, and the Bowen ratio, which is defined as the ratio of sensible to latent heat fluxes. The TRN of the area occupied by the SJMA has decreased as a consequence of replacing the low land coastal plain vegetation with man made materials, indicating that it takes less energy to raise the surface temperature of the urban area, whereas the TRN of forested regions has remained virtually unchanged. The global warming signal also has effects on the thermal response of the SJMA, where dryer current conditions generate lower TRN values. Differences due to global warming are more evident in the Bowen ratio pattern, mostly associated with the drier present conditions observed and its effects on sensible and latent heat fluxes. In terms of testing different mitigation strategies, the short-term simulations show that the urban area is more efficient in partitioning surface energy balance terms when green roofs are specified, as opposed to including vegetation inside the urban core.

  6. Explorations in Statistics: The Analysis of Change

    Science.gov (United States)

    Curran-Everett, Douglas; Williams, Calvin L.

    2015-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This tenth installment of "Explorations in Statistics" explores the analysis of a potential change in some physiological response. As researchers, we often express absolute change as percent change so we can…

  7. ANALYSIS AND MITIGATION OF COMMON MODE AND DIFFERENTIAL MODE NOISE ON BOOST CONVERTERS

    Directory of Open Access Journals (Sweden)

    C.Krishna Kumar,

    2010-09-01

    Full Text Available This paper is about the study and analysis on the effects of snubber circuits such as RLD, RCD and mixed (RLD+RCD over the conducted ELECTROMAGNETIC INTERFERENCE on high frequency power MOSFET. In this paper for various duty cycles separation of conducted EMI is done with the help of LISN circuit. The analysis is done for various duty cycles as 0.5, 0.55 and 0.6 for a switching frequency of 50 KHz using ORCAD PSPICE software. The simulated results are then compared with respect to their duty cycle.

  8. Topological Analysis and Mitigation Strategies for Cascading Failures in Power Grid Networks

    CERN Document Server

    Pahwa, Sakshi; Schulz, Noel

    2012-01-01

    Recently, there has been a growing concern about the overload status of the power grid networks, and the increasing possibility of cascading failures. Many researchers have studied these networks to provide design guidelines for more robust power grids. Topological analysis is one of the components of system analysis for its robustness. This paper presents a complex systems analysis of power grid networks. First, the cascading effect has been simulated on three well known networks: the IEEE 300 bus test system, the IEEE 118 bus test system, and the WSCC 179 bus equivalent model. To extend the analysis to a larger set of networks, we develop a network generator and generate multiple graphs with characteristics similar to the IEEE test networks but with different topologies. The generated graphs are then compared to the test networks to show the effect of topology in determining their robustness with respect to cascading failures. The generated graphs turn out to be more robust than the test graphs, showing the...

  9. Southwest regional climate hub and California subsidiary hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Science.gov (United States)

    This report describes the potential vulnerability of specialty crops, field crops, forests, and animal agriculture to climate-driven environmental changes. Here, vulnerability is defined as a function of exposure to climate change effects, sensitivity to these effects, and adaptive capacity. The exp...

  10. Coulomb static stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake (MW= 7.1: implications for the earthquake hazard mitigation

    Directory of Open Access Journals (Sweden)

    M. Utkucu

    2013-07-01

    Full Text Available Coulomb stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake have been analysed using available data related to the background and the aftershock seismicity and the source faults. The coseismic stress changes of the background seismicity had slightly promoted stress over the rupture plane of the 2011 Van earthquake, while it yielded a stress shadow over the Gürpı nar Fault which has been argued to have produced the 7 April 1646 Van earthquake. The stress shadow over the Gürpi nar fault has become more pronounced following the occurrence of the 2011 Van earthquake, meaning that the repetition of the 1646 Van earthquake has been further suppressed. Spatial distribution and source mechanisms of the 2011 Van earthquake's aftershocks have been utilised to define four clusters with regard to their relative location to the mainshock rupture. In addition, the aftershock sequence covers a much broader area toward the northeast. Correlations between the observed spatial patterns of the aftershocks and the coseismic Coulomb stress changes caused by the mainshock are determined by calculating the stress changes over both optimally oriented and specified fault planes. It is shown here that there is an apparent correlation between the mainshock stress changes and the observed spatial pattern of the aftershock occurrence, demonstrating the usefulness of the stress maps in constraining the likely locations of the upcoming aftershocks and mitigating earthquake hazard.

  11. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    Science.gov (United States)

    Meersmans, Jeroen; Arrouays, Dominique; van Rompaey, Anton J. J.; Pagé, Christian; de Baets, Sarah; Quine, Timothy A.

    2016-11-01

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils.

  12. Countries' climate mitigation commitments under the 'South-North Dialogue' Proposal. A quantitative analysis using the FAIR 2.1 world model

    Energy Technology Data Exchange (ETDEWEB)

    Den Elzen, M.G.J.

    2005-07-01

    The 'South-North Dialogue Proposal', developed by researchers from both developing and industrialised countries, outlines an approach for an 'equitable' differentiation of future climate mitigation commitments among developed and developing countries. This approach is based on the criteria of responsibility, capability and potential to mitigate. The report provides a quantitative analysis of the implications of the proposal in terms of countries' commitments and costs. The analysis focuses on a 'political willingness' scenario and on four scenarios leading to the stabilisation of CO2-equivalent concentrations at 400, 450, 500 and 550 ppm, respectively. Use is made of the new FAIR 2.1 world model, i.e. the FAIR 2.1 model at the level of countries, using as input data for population, GDP and emissions from emission scenarios at the national level. The analysis shows that for the stringent stabilisation targets many developing countries will have to take on quantitative mitigation obligations by 2030, even when the Annex I countries adopt ambitious mitigation commitments far beyond the Kyoto obligations. The political willingness scenario will probably not suffice to limit warming of the earth's atmosphere to a level under 20C.

  13. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different

  14. GETTING INDIGENOUS PEOPLES AND MARGINALIZED POPULATIONS TO SHARE TRADITIONAL KNOWLEDGE FOR CLIMATE CHANGE ADAPTATION AND MITIGATION: CHALLENGES AND OPPORTUNITIES TO WATER AND FOOD SECURITY

    Directory of Open Access Journals (Sweden)

    Kwasi Frimpong-Mensah

    2013-06-01

    Full Text Available The depth of traditional knowledge found in indigenous and marginalized communities dictates the extent to which their populations adapt to and mitigates climate change much as the intactness of biodiversity of the agro-ecosystems on which they depend does. Often, a lot more is done to ensure the intactness of biodiversity than the effective sharing of traditional knowledge in a quest to empower indigenous and marginalized populations to adapt to and mitigate climate change. But the latter is equally important as the former, and the two ought to go close together in empowering indigenous and marginalized populations. Nonetheless, the effective sharing of a dynamic commodity as traditional knowledge requires an all inclusive approach which involves consultation with all groups as the leaving out or the limited participation of any group could undermine the sharing process. However, there are issues that arise in ensuring an all-inclusive traditional knowledge sharing process. Issues may be viewed as challenges or opportunities to the effective sharing of traditional knowledge, and arise as a result of cultural, political, economic, legal, geographical, technical, historical, and institutional differences (subtle as they may be within/among indigenous and marginalized groups. Thus, this paper captures these challenges and opportunities that characterize the all-inclusive sharing of traditional knowledge within/among the different groups in indigenous and marginalized populations. And, recommends the best way forward by using competent actors who are self-motivated to bring all their competences to the facilitation of all-inclusive traditional knowledge sharing within/among the different groups for oneness of voice of indigenous and marginalized communities.

  15. Effects of agricultural management on productivity, soil quality and climate change mitigation - evaluations within the EU Project (FP 7) CATCH-C

    Science.gov (United States)

    Spiegel, Heide; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2014-05-01

    Soils are the main basis for the production of food and feed. Furthermore, the production of biomass for energy and material use is becoming increasingly important. Goals for an optimal management of agricultural soils are, on the one hand, the maintenance or improvement of soil quality and, on the other hand, high productivity and climate change mitigation (reduction of GHG emissions and C sequestration). Thus, the EU project CATCH-C aims to evaluate current management practices concerning these three goals based on indicators derived from long-term field experiments of the project partners and from literature data. A maximum of 72 indicators for productivity, soil quality and the potential for carbon storage in the soil and the reduction of greenhouse gas emissions were selected by the project partners. As indicators for productivity, crop yields are determined in almost all field trials. The content of soil organic carbon (SOC) is an indicator for chemical, physical and biological soil quality and was analysed in the topsoil in all field trials. Less data exist for SOC contents in the subsoil. An important physical soil quality indicator is the bulk density, however, it is not determined in all field trials of the project partners. Therefore, information on SOC stocks, with relevance to carbon storage and climate change mitigation, is not available in all field experiments. Other physical indicators, such as penetration resistance, runoff coefficient and soil losses are evaluated. Essential biological indicators are microbial biomass and the number and weight of earthworms, which have been tested in several field trials. The evaluation of all these indicators will help to select "best management practices" and to address trade-offs and synergies for all indicators under consideration of major European farm type zones. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies

  16. Using offsets to mitigate environmental impacts of major projects: A stakeholder analysis.

    Science.gov (United States)

    Martin, Nigel; Evans, Megan; Rice, John; Lodhia, Sumit; Gibbons, Philip

    2016-09-01

    Global patterns of development suggest that as more projects are initiated, business will need to find acceptable measures to conserve biodiversity. The application of environmental offsets allows firms to combine their economic interests with the environment and society. This article presents the results of a multi-stakeholder analysis related to the design of offsets principles, policies, and regulatory processes, using a large infrastructure projects context. The results indicate that business was primarily interested in using direct offsets and other compensatory measures, known internationally as indirect offsets, to acquit their environmental management obligations. In contrast, the environmental sector argued that highly principled and scientifically robust offsets programs should be implemented and maintained for enduring environmental protection. Stakeholder consensus stressed the importance of offsets registers with commensurate monitoring and enforcement. Our findings provide instructive insights into the countervailing views of offsets policy stakeholders.

  17. EUV stochastic noise analysis and LCDU mitigation by etching on dense contact-hole array patterns

    Science.gov (United States)

    Kim, Seo Min; Koo, Sunyoung; Park, Jun-Taek; Lim, Chang-Moon; Kim, Myoungsoo; Ahn, Chang-Nam; Fumar-Pici, Anita; Chen, Alek C.

    2014-04-01

    Experimental local CD uniformity (LCDU) of the dense contact-hole (CH) array pattern is statistically decomposed into stochastic noise, mask component, and metrology factor. Each component are compared quantitatively, and traced after etching to find how much improvement can be achieved by smoothing. Etch CDU gain factor is defined as the differential of etch CD by resist CD, and used to estimate etch CDU on resist CDU. Stochastic noise has influenced on not only LCDU but also local placement error (LPE) of each contact-hole. This LPE is also decomposed into its constituents in the same statistical way. As a result, stochastic noise is found to be the most dominant factor on LCDU and LPE. Etch LCDU is well expected by Etch Gain factor, but LPE seems to be kept same after etching. Fingerprints are derived from the repeating component and the boundary size for excluding proximity effect in analysis is investigated.

  18. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    Science.gov (United States)

    Powell, Thomas W. R.; Lenton, Timothy M.

    2013-06-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species-energy and species-area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect.

  19. EXPLORING CLIMATE CHANGE EFFECTS ON WATERSHED SEDIMENT YIELD AND LAND COVER-BASED MITIGATION MEASURES USING SWAT MODEL, RS AND GIS: CASE OF CAGAYAN RIVER BASIN, PHILIPPINES

    Directory of Open Access Journals (Sweden)

    J. A. Principe

    2012-07-01

    Full Text Available The impact of climate change in the Philippines was examined in the country's largest basin–the Cagayan River Basin–by predicting its sediment yield for a long period of time. This was done by integrating the Soil and Water Assessment Tool (SWAT model, Remote Sensing (RS and Geographic Information System (GIS. A set of Landsat imageries were processed to include an atmospheric correction and a filling procedure for cloud and cloud-shadow infested pixels was used to maximize each downloaded scene for a subsequent land cover classification using Maximum Likelihood classifier. The Shuttle Radar Topography Mission (SRTM-DEM was used for the digital elevation model (DEM requirement of the model while ArcGIS™ provided the platform for the ArcSWAT extension, for storing data and displaying spatial data. The impact of climate change was assessed by varying air surface temperature and amount of precipitation as predicted in the Intergovernmental Panel on Climate Change (IPCC scenarios. A Nash-Sutcliff efficiency (NSE > 0.4 and coefficient of determination (R2 > 0.5 for both the calibration and validation of the model showed that SWAT model can realistically simulate the hydrological processes in the study area. The model was then utilized for land cover change and climate change analyses and their influence on sediment yield. Results showed a significant relationship exists among the changes in the climate regime, land cover distributions and sediment yield. Finally, the study suggested land cover distribution that can potentially mitigate the serious negative effects of climate change to a regional watershed's sediment yield.

  20. Exploring Climate Change Effects on Watershed Sediment Yield and Land Cover-Based Mitigation Measures Using Swat Model, RS and Gis: Case of Cagayan River Basin, Philippines

    Science.gov (United States)

    Principe, J. A.

    2012-07-01

    The impact of climate change in the Philippines was examined in the country's largest basin-the Cagayan River Basin-by predicting its sediment yield for a long period of time. This was done by integrating the Soil and Water Assessment Tool (SWAT) model, Remote Sensing (RS) and Geographic Information System (GIS). A set of Landsat imageries were processed to include an atmospheric correction and a filling procedure for cloud and cloud-shadow infested pixels was used to maximize each downloaded scene for a subsequent land cover classification using Maximum Likelihood classifier. The Shuttle Radar Topography Mission (SRTM)-DEM was used for the digital elevation model (DEM) requirement of the model while ArcGIS™ provided the platform for the ArcSWAT extension, for storing data and displaying spatial data. The impact of climate change was assessed by varying air surface temperature and amount of precipitation as predicted in the Intergovernmental Panel on Climate Change (IPCC) scenarios. A Nash-Sutcliff efficiency (NSE) > 0.4 and coefficient of determination (R2) > 0.5 for both the calibration and validation of the model showed that SWAT model can realistically simulate the hydrological processes in the study area. The model was then utilized for land cover change and climate change analyses and their influence on sediment yield. Results showed a significant relationship exists among the changes in the climate regime, land cover distributions and sediment yield. Finally, the study suggested land cover distribution that can potentially mitigate the serious negative effects of climate change to a regional watershed's sediment yield.

  1. Analysis of Hydrogen Risk Mitigation System for Severe Accidents of EU-APR1400 Using MAAP4 code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mun Soo; Suh, Jung Soo; Bae, Byoung Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    According to the EUR (European Utility Requirements for LWR Nuclear Power Plants), it is mandatory that the HMS (Hydrogen Mitigation System) of the Eu-APR1400 should be equipped with a passive or automatic hydrogen control system. Considering this requirement, a PAR (Passive Autocatalytic Recombiner) system was adopted for the HMS of the Eu-APR1400. This passive HMS should be evaluated carefully in order to ensure that the HMS has adequate capacity to control hydrogen concentrations during severe accident conditions and to show that the system can satisfy the design requirements of the EUR. In this paper, analyses were carried out to examine the effectiveness of the HMS incorporated into the Eu- APR1400 design. These analyses were performed using the MAAP (Modular Accident Analysis Program) 4 code. in order to identify whether the HMS could control the average hydrogen concentrations in the containment, such that the concentration would not exceed 10 percent by volume: the analyses also considered whether there was the possibility of inadvertent hydrogen combustion in such processes as FA (Flame Acceleration) and DDT (Deflagration to Detonation Transition)

  2. Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment.

    Science.gov (United States)

    Nerger, Bryan A; Peiris, Ramila H; Moresoli, Christine

    2015-10-01

    This study examined the photocatalytic oxidation of natural organic matter (NOM) as a method to mitigate membrane fouling in drinking water treatment. ZnO and TiO2 photocatalysts were tested in concentrations ranging from 0.05 g L(-1) to 0.5 g L(-1). Fluorescence peaks were used as the primary method to characterize the degradation of three specific NOM components - fulvic acid-like humic substances, humic acid-like humic substances, and protein-like substances during photocatalytic oxidation. Fluorescence peaks and Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis indicated that higher NOM degradation was obtained by photocatalytic oxidation with ZnO than with TiO2. Treatment of the feed water by ZnO photocatalytic oxidation was successful in reducing considerably the extent of hydraulically reversible and irreversible membrane fouling during ultrafiltration (UF) compared to feed water treatment with TiO2. Fouling during UF of water subjected to photocatalytic oxidation appeared to be caused by low molecular weight constituents of NOM generated during photocatalytic oxidation.

  3. Evaluating the contribution of Sustainable Land Management to climate change adaptation and mitigation, and its impacts on Mediterranean ecosystem services.

    Science.gov (United States)

    de Vente, Joris; Zagaria, Cecilia; Pérez-Cutillas, Pedro; Almagro, Maria; Martínez-Mena, Maria; Baartman, Jantiene; Boix-Fayos, Carolina

    2015-04-01

    Changing climate and land management have strong implications for soil and water resources and for many essential ecosystem services (ES), such as provision of drinking and irrigation water, soil erosion control, and carbon sequestration. Large impacts of climate change are expected in the Mediterranean, characterized by a high dependence on scarce soil and water resources. On the other hand, well designed Sustainable Land Management (SLM) strategies can reduce the risks associated with climate change, but their design requires knowledge of their multiple effects on ecosystem services under present and future climate scenarios and of possible tradeoffs. Moreover, strategies are only viable if suited to local environmental, socio-economic and cultural conditions, so stakeholder engagement is crucial during their selection, evaluation and implementation. We present preliminary results of a catchment wide assessment of the expected impacts of climate change on water availability in the Segura basin (18800 km2) southeastern Spain. Furthermore, we evaluated the impacts of past land use changes and the benefits of catchment wide implementation of SLM practices to protect soil and water resources, prevent sedimentation of reservoirs and increase carbon sequestration in soil and vegetation. We used the InVEST modeling framework to simulate the water availability and sediment export under different climate, land use and land management scenarios, and quantified carbon stocks in soil and vegetation. Realistic scenarios of implementation of SLM practices were prepared based on an extensive process of stakeholder engagement and using latest climate change predictions from Regional Climate Models for different emission scenarios. Results indicate a strong decrease in water availability in the Segura catchment under expected climate change, with average reductions of upto 60% and large spatial variability. Land use changes (1990 - 2006) resulted in a slight increase in water

  4. Methane emission from ruminants and solid waste: A critical analysis of baseline and mitigation projections for climate and policy studies

    Science.gov (United States)

    Matthews, E.

    2012-12-01

    Current and projected estimates of methane (CH4) emission from anthropogenic sources are numerous but largely unexamined or compared. Presented here is a critical appraisal of CH4 projections used in climate-chemistry and policy studies. We compare emissions for major CH4 sources from several groups, including our own new data and RCP projections developed for climate-chemistry models for the next IPCC Assessment Report (AR5). We focus on current and projected baseline and mitigation emissions from ruminant animals and solid waste that are both predicted to rise dramatically in coming decades, driven primarily by developing countries. For waste, drivers include increasing urban populations, higher per capita waste generation due to economic growth and increasing landfilling rates. Analysis of a new global data base detailing waste composition, collection and disposal indicates that IPCC-based methodologies and default data overestimate CH4 emission for the current period which cascades into substantial overestimates in future projections. CH4 emission from solid waste is estimated to be ~10-15 Tg CH4/yr currently rather than the ~35 Tg/yr often reported in the literature. Moreover, emissions from developing countries are unlikely to rise rapidly in coming decades because new management approaches, such as sanitary landfills, that would increase emissions are maladapted to infrastructures in these countries and therefore unlikely to be implemented. The low current emission associated with solid waste (~10 Tg), together with future modest growth, implies that mitigation of waste-related CH4 emission is a poor candidate for slowing global warming. In the case of ruminant animals (~90 Tg CH4/yr currently), the dominant assumption driving future trajectories of CH4 emission is a substantial increase in meat and dairy consumption in developing countries to be satisfied by growing animal populations. Unlike solid waste, current ruminant emissions among studies exhibit a

  5. Modeling GHG Emissions and Carbon Changes in Agricultural and Forest Systems to Guide Mitigation and Adaptation: Synthesis and Future Needs

    Science.gov (United States)

    Agricultural production systems and land use change for agriculture and forestry are important sources of anthropogenic greenhouse gas (GHG) emissions. Recent commitments by the European Union, the United States, and China to reduce GHG emissions highlight the need to improve estimates of current em...

  6. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Peoples, Mark B.; Boddey, Robert M.

    2012-01-01

    Humans are currently confronted by many global challenges. These include achieving food security for a rapidly expanding population, lowering the risk of climate change by reducing the net release of greenhouse gases into the atmosphere due to human activity, and meeting the increasing demand for...

  7. Hierarchical Bayesian analysis of censored microbiological contamination data for use in risk assessment and mitigation.

    Science.gov (United States)

    Busschaert, P; Geeraerd, A H; Uyttendaele, M; Van Impe, J F

    2011-06-01

    Microbiological contamination data often is censored because of the presence of non-detects or because measurement outcomes are known only to be smaller than, greater than, or between certain boundary values imposed by the laboratory procedures. Therefore, it is not straightforward to fit distributions that summarize contamination data for use in quantitative microbiological risk assessment, especially when variability and uncertainty are to be characterized separately. In this paper, distributions are fit using Bayesian analysis, and results are compared to results obtained with a methodology based on maximum likelihood estimation and the non-parametric bootstrap method. The Bayesian model is also extended hierarchically to estimate the effects of the individual elements of a covariate such as, for example, on a national level, the food processing company where the analyzed food samples were processed, or, on an international level, the geographical origin of contamination data. Including this extra information allows a risk assessor to differentiate between several scenario's and increase the specificity of the estimate of risk of illness, or compare different scenario's to each other. Furthermore, inference is made on the predictive importance of several different covariates while taking into account uncertainty, allowing to indicate which covariates are influential factors determining contamination.

  8. Prairie Change Analysis 1991-2008

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset displays the results of a prairie/savanna change analysis study completed in May 2010. The area reviewed consists of 1,521 sites identified by...

  9. Participatory rural appraisal approaches: an overview and an exemplary application of focus group discussion in climate change adaptation and mitigation strategies

    Directory of Open Access Journals (Sweden)

    M.N. Uddin

    2013-12-01

    Full Text Available Different tools and techniques of participatory approaches are the basic way of conducting qualitative research especially in the field of applied social science. Focus Group Discussion (FGD is one of the main Participatory Rural Appraisal (PRA technique often used in combination with others to achieve desired goals. Considering this concept, this paper attempts to review the PRA approach and then application of FGD, in combination with matrix scoring and ranking to identify problems and causes of climate change along with possible mitigation and adaptation strategies. A group of 20 students at post graduate level under the faculty of Agriculture and Horticulture at Humboldt University of Berlin, Germany those from different corner of the world was considered as target people of the study. The results concluded that “unpredictable weather events” was ranked as the present outstanding visible climate change problem caused by “human activities”. However, it was noted that if alternative renewable energy sources are exploited, this could contribute to solving the present climate change problem. This finding might have the good reference for the policy makers in the same line not only for developing countries but also for developed countries.

  10. Energy Subsidy Policies and Their Reform: Providing economic incentives for climate change mitigation%能源补贴政策及其改革——为减排提供经济激励

    Institute of Scientific and Technical Information of China (English)

    庄贵阳

    2007-01-01

    The subsidy, as a measure, is widely applied by governments at all levels around the world as a way of policy interventions. However, there are two completely opposite opinions of subsidies on energy and environmental protection. The only reason for subsidy in existence is the internalization of external benefit. The paper firstly examines the energy subsidy policies relevant to climate change mitigation in China and their effectiveness, then points out the deficiency existing in energy conservation policies and renewable energy development policies, and finally suggests that China should exert positive role of subsidy policies and reduce negative effects in promoting climate change mitigation.

  11. Renewable Energies and Enhanced Energy Efficiencies: Mitigation/Adaptation Measures to Climate Change Impacts on Cyprus and in the Eastern Mediterranean

    Science.gov (United States)

    Lange, Manfred

    2010-05-01

    The Eastern Mediterranean in general and Cyprus in particular are considered "hot spots" of future climate change. This will become manifest through an increase in the number and duration of drought events and extended hot-spells. The need to cope with the impacts of climate change will lead to enhanced requirements for cooling of private and public housing and growing demands for potable water derived from seawater desalination. This in turn will cause increasing pressures on electricity production and will result in additional strain on the energy sector in the region. For Cyprus, the current electricity production is entirely based on fossil-fuel fired power plants. However, the use of conventional energy sources is clearly an undesirable option. It enhances the economic burden on energy consumers and at the same time increases Cyprus' dependency on external providers of petroleum products. Moreover, it leads to growing emissions of carbon dioxide and thereby worsens Cyprus' already challenged greenhouse gas emission budget. While current emissions amount to about 9.9 Mill. t of CO2, the total allowance according to EU regulations lies at 5.5 Mill. t. The current building stock on Cyprus lacks basic measures for energy efficiency. This is particularly noteworthy with regard to insufficient insulation of buildings, which causes significant amounts of energy to be expanded for cooling. In light of these facts, an increased use of renewable energies and measures to enhance energy efficiencies in the built environment constitute important elements of a stringent and effective mitigation/adaptation strategy to climate change. The Eastern Mediterranean is among the most suitable location for the utilization of solar energy in Europe. A global direct normal irradiance of more than 1 800 kWh/m2 on Cyprus offers a renewable electricity potential of app. 20 to 23 TWh/yr when concentrated solar power (CSP) technology is employed. With regard to enhanced energy efficiency

  12. Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    NARCIS (Netherlands)

    Veysey, J.; Octaviano, C.; Calvin, K.; Herreras Martinez, S.; Kitous, A.; McFarland, J.; van der Zwaan, B.

    2016-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexic

  13. Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    NARCIS (Netherlands)

    J. Veysey; C. Octaviano; K. Calvin; S. Herreras Martinez; A. Kitous; J. McFarland; B. van der Zwaan

    2015-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexic

  14. Kernel principal component analysis for change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Morton, J.C.

    2008-01-01

    region acquired at two different time points. If change over time does not dominate the scene, the projection of the original two bands onto the second eigenvector will show change over time. In this paper a kernel version of PCA is used to carry out the analysis. Unlike ordinary PCA, kernel PCA...... with a Gaussian kernel successfully finds the change observations in a case where nonlinearities are introduced artificially....

  15. Integrated Strategy for Sustainable Cattle Fever Tick Eradication in USA is Required to Mitigate the Impact of Global Change.

    Science.gov (United States)

    Pérez de León, Adalberto A; Teel, Pete D; Auclair, Allan N; Messenger, Matthew T; Guerrero, Felix D; Schuster, Greta; Miller, Robert J

    2012-01-01

    The ticks Rhipicephalus (Boophilus) annulatus and R. (B.) microplus, commonly known as cattle and southern cattle tick, respectively, impede the development and sustainability of livestock industries throughout tropical and other world regions. They affect animal productivity and wellbeing directly through their obligate blood-feeding habit and indirectly by serving as vectors of the infectious agents causing bovine babesiosis and anaplasmosis. The monumental scientific discovery of certain arthropod species as vectors of infectious agents is associated with the history of research on bovine babesiosis and R. annulatus. Together, R. microplus and R. annulatus are referred to as cattle fever ticks (CFT). Bovine babesiosis became a regulated foreign animal disease in the United States of America (U.S.) through efforts of the Cattle Fever Tick Eradication Program (CFTEP) established in 1906. The U.S. was declared free of CFT in 1943, with the exception of a permanent quarantine zone in south Texas along the border with Mexico. This achievement contributed greatly to the development and productivity of animal agriculture in the U.S. The permanent quarantine zone buffers CFT incursions from Mexico where both ticks and babesiosis are endemic. Until recently, the elimination of CFT outbreaks relied solely on the use of coumaphos, an organophosphate acaricide, in dipping vats or as a spray to treat livestock, or the vacation of pastures. However, ecological, societal, and economical changes are shifting the paradigm of systematically treating livestock to eradicate CFT. Keeping the U.S. CFT-free is a critical animal health issue affecting the economic stability of livestock and wildlife enterprises. Here, we describe vulnerabilities associated with global change forces challenging the CFTEP. The concept of integrated CFT eradication is discussed in reference to global change.

  16. Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change

    Directory of Open Access Journals (Sweden)

    Adalberto A. Pérez de León

    2012-06-01

    Full Text Available The ticks Rhipicephalus (Boophilus annulatus and R. (B. microplus, commonly known as cattle and southern cattle tick, respectively, impede the development and sustainability of livestock industries throughout tropical and other world regions. They affect animal productivity and wellbeing directly through their obligate blood feeding habit and indirectly by serving as vectors of the infectious agents causing bovine babesiosis and anaplasmosis. The monumental scientific discovery of certain arthropod species as vectors of infectious agents is associated with the history of research on bovine babesiosis and R. annulatus. Together, R. microplus and R. annulatus are referred to as cattle fever ticks (CFT. Bovine babesiosis became a regulated foreign animal disease in the United States of America (U.S. through efforts of the Cattle Fever Tick Eradication Program (CFTEP established in 1906. The U.S. was declared free of CFT in 1943, with the exception of a permanent quarantine zone in south Texas along the border with Mexico. This achievement contributed greatly to the development and productivity of animal agriculture in the U.S. The permanent quarantine zone buffers CFT incursions from Mexico where both ticks and babesiosis are endemic. Until recently, the elimination of CFT outbreaks relied solely on the use of coumaphos, an organophosphate acaricide, in dipping vats or as a spray to treat livestock, or the vacation of pastures. However, ecological, societal, and economical changes are shifting the paradigm of systematically treating livestock to eradicate CFT. Keeping the U.S. CFT-free is a critical animal health issue affecting the economic stability of livestock and wildlife enterprises. Here, we describe vulnerabilities associated with global change forces challenging the CFTEP. The concept of integrated CFT eradication is discussed in reference to global change.

  17. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z

    2007-07-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  18. A Decision Matrix Approach to Evaluating the Impacts of Land-Use Activities Undertaken to Mitigate Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, L.M.; Harte, J.; Smith, M.E. [Department of Environmental Science, Policy and Management, University of California Berkeley, 151 Hilgard Hall, Berkeley, CA 94720 (United States); Baer, P. [Energy and Resources Group, University of California Berkeley, 310 Barrows Hall, Berkeley, CA 94720 (United States); Haya, B.; Koteen, L.E. [Energy and Resources Group, University of California Berkeley, 310 Barrows Hall, Berkeley, CA 94720 (United States)

    2004-07-01

    Land-use activities that affect the global balance of greenhouse gases have been a topic of intense discussion during ongoing climate change treaty negotiations. Policy mechanisms that reward countries for implementing climatically beneficial land-use practices have been included in the Bonn and Marrakech agreements on implementation of the Kyoto Protocol. However some still fear that land-use projects focused narrowly on carbon gain will result in socioeconomic and environmental harm, and thus conflict with the explicit sustainable development objectives of the agreement. We propose a policy tool, in the form of a multi-attribute decision matrix, which can be used to evaluate potential and completed land-use projects for their climate, environmental and socioeconomic impacts simultaneously. Project evaluation using this tool makes tradeoffs explicit and allows identification of projects with multiple co-benefits for promotion ahead of others. Combined with appropriate public participation, accounting, and verification policies, a land-use activity decision matrix can help ensure that progressive land management practices are an effective part of the solution to global climate change.

  19. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

    Science.gov (United States)

    Borland, Anne M; Wullschleger, Stan D; Weston, David J; Hartwell, James; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2015-09-01

    Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.

  20. Fractured tenure, unaccountable authority, and benefit capture: Constraints to improving community benefits under climate change mitigation schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Emmanuel Marfo

    2012-01-01

    Full Text Available The debate on climate change and ecosystem services has grown substantially over the past two decades. The post-Kyoto protocol period particularly has witnessed increased formulation of financial mechanisms to compensate for green efforts towards carbon sequestration and reduction in deforestation. In most cases, communities substantially depend on forests for their livelihoods or their actions have a direct bearing on the sustainability of the forests. Will the economic incentives from emerging initiatives offer new sources of income to support rural livelihoods and reduce poverty? There is some doubt about this potential, because there is enormous evidence across the world to show that forest exploitation and use has not substantially benefited local people and Ghana is no exception. This paper draws on existing evidence in Ghana to show that the lack of secure community tenure rights and the dominance of unaccountable authority-which leads to benefit capture by local elites-are critical constraints to equitable forest benefit sharing. Building on the evidence, this paper argues that unless these issues are addressed in policy and practice, the potential economic benefits from the various emerging mechanisms under climate change and ecosystem services may not benefit local people; they may even reinforce the gap between the rich and the poor.

  1. Reduced emissions from deforestation and forest degradation (REDD: a climate change mitigation strategy on a critical track

    Directory of Open Access Journals (Sweden)

    Plugge Daniel

    2009-11-01

    Full Text Available Abstract Background Following recent discussions, there is hope that a mechanism for reduction of emissions from deforestation and forest degradation (REDD will be agreed by the Parties of the UNFCCC at their 15th meeting in Copenhagen in 2009 as an eligible action to prevent climate changes and global warming in post-2012 commitment periods. Countries introducing a REDD-regime in order to generate benefits need to implement sound monitoring and reporting systems and specify the associated uncertainties. The principle of conservativeness addresses the problem of estimation errors and requests the reporting of reliable minimum estimates (RME. Here the potential to generate benefits from applying a REDD-regime is proposed with reference to sampling and non-sampling errors that influence the reliability of estimated activity data and emission factors. Results A framework for calculating carbon benefits by including assessment errors is developed. Theoretical, sample based considerations as well as a simulation study for five selected countries with low to high deforestation and degradation rates show that even small assessment errors (5% and less may outweigh successful efforts to reduce deforestation and degradation. Conclusion The generation of benefits from REDD is possible only in situations where assessment errors are carefully controlled.

  2. Vanillin mitigates potassium bromate-induced molecular, biochemical and histopathological changes in the kidney of adult mice.

    Science.gov (United States)

    Ben Saad, Hajer; Driss, Dorra; Ellouz Chaabouni, Samia; Boudawara, Tahia; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2016-05-25

    The present study aimed to explore the ability of vanillin to ameliorate the adverse effects induced by potassium bromate (KBrO3) in the renal tissue. Our results showed a significant increase in hydrogen peroxide, superoxide anion, malondialdehyde, advanced oxidation protein product and protein carbonyl levels in the kidney of KBrO3 treated mice, compared with the control group. Nephrotoxicity was evidenced by a decrease in plasma uric acid and kidney glutathione levels, Na(+)-K(+)-ATPase, lactate dehydrogenase and catalase activities. Additionally, creatinine and urea levels significantly increased in the plasma and declined in the urine. Also, Kidney glutathione peroxidase, superoxide dismutase, metallothionein (MT1 and MT2) mRNA expression remarkably increased. These modifications in biochemical and molecular values were substantiated by histopathological data. Co-treatment with vanillin restored these parameters to near control values. Interestingly, vanillin proved to possess, in vitro, a stronger scavenging radical activity than vitamin C and Trolox. Thus, vanillin inhibited KBrO3-induced damage via its antioxidant and antiradical activities as well as its capacity to protect genes expression and histopathological changes.

  3. Coriandrum sativum L. seed extract mitigates lipotoxicity in RAW 264.7 cells and prevents atherogenic changes in rats.

    Science.gov (United States)

    Patel, Dipak; Desai, Swati; Gajaria, Tejal; Devkar, Ranjitsinh; Ramachandran, A V

    2013-01-01

    This study was designed to assess the efficacy of Coriandrum sativum L. (CS) in preventing in vitro low density lipoprotein (LDL) oxidation mediated macrophage modification. Further, an in vivo study was also conducted to confirm upon the efficacy of CS seed extract in alleviating pathophysiological alterations of high cholesterol diet induced atherosclerosis in rats. Copper mediated cell free oxidation of LDL accounted for elevated indices of malondialdehyde (MDA), lipid hydroperoxide (LHP)and protein carbonyl (PC) and a progressive increment in conjugate diene (CD) levels whereas, reverse set of changes were recorded in presence of CS extract. Cell mediated LDL oxidation (using RAW 264.7 cells) accounted for lowered MDA production and oxidized LDL (Ox-LDL) mediated cell death in presence of CS extract and the same was attributed to its potent antioxidant and free radical scavenging potentials. High cholesterol fed atherogenic rats showed elevated lipid indices, evidences of LDL oxidation, plaque formation in thoracic aorta. The same was further validated with immunostaining of cell adhesion molecules and hematoxylin and eosin (HXE) staining. However, co-supplementation of CS to atherogenic rats recorded significant lowering of the above mentioned parameters further strengthening the claim that CS extract is instrumental in preventing onset and progression of atherosclerosis.

  4. Strategies for mitigation of global warming

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses the international negotions on climate change leading up to COP15 in Copenhagen. Supplementary policies for mitigation of global warming are proposed.......The paper analyses the international negotions on climate change leading up to COP15 in Copenhagen. Supplementary policies for mitigation of global warming are proposed....

  5. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Ke, Jing; Can, Stephane de la Rue du; Letschert, Virginie E.; McMahon, James E.

    2011-12-02

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as “economic savings potential”. So far, the Indian market has responded favorably to government efficiency initiatives, with Indian manufacturers producing a higher fraction of high-efficiency equipment than before program implementation. This study highlights both the financial benefit and the scope of potential impact for adopting this equipment, all of which is already readily available on the market. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short-term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The Business Case concentrates on technologies for which cost-effectiveness can be clearly demonstrated.

  6. An integrated multi-parameter monitoring approach for the quantification and mitigation of the climate change impact on the coasts of Eastern Crete, S. Aegean Sea (Project AKTAIA)

    Science.gov (United States)

    Ghionis, George; Alexandrakis, George; Karditsa, Aikaterini; Sifnioti, Dafni; Vousdoukas, Michalis; Andreadis, Olympos; Petrakis, Stelios; Poulos, Serafim; Velegrakis, Adonis; Kampanis, Nikolaos; Lipakis, Michalis

    2014-05-01

    associated sediment transport and beach morphodynamics, calibrated with in situ data, is used to predict beach response and vulnerability to different climate change scenarios. Finally, the socio-economic impact of the climate change on the coastal zone will be assessed and a management protocol for the coastal zone and for the mitigation of the climate change impact will be developed. The ultimate scope of the project is to benefit the society by providing current and high quality information on the consequences of the climate change, especially those related to sea-level rise, and on the available protection and mitigation measures. In addition, the technological product will help in the proper planning of the required actions and technical interventions, reducing the need for costly, incomplete and frequently redundant localized studies and the risk of unsuccessful interventions. Acknowledgements The project is supported by the Action "Cooperation 2007-2013" (09SYN-31-711 "AKTAIA") of the Operational Program "Competitiveness and Entrepreneurship" co-funded by the European Regional Development Fund (ERDF) and the General Secretariat for Research and Technology (Hellenic Ministry of Education).

  7. Analysis of Forest Biodiversity Changes in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    By reference of the evaluative data of forest biodiversity changes in China from 1973 to 1998, the variation analysis models of the pressure index of forest biodiversity, forest ecosystem diversity and forest species diversity, as well as the general index of forest biodiversity are developed using Statistical Package for the Social Sciences (SPSS). Furthermore established is the relevant model of mutation of forest diversity potential functions. This paper points out that changes of forest biodiversity...

  8. Policy Directions Addressing the Public Health Impact of Climate Change in South Korea: The Climate-change Health Adaptation and Mitigation Program

    OpenAIRE

    Shin, Yong Seung; Ha, Jongsik

    2012-01-01

    Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationall...

  9. Crossover Analysis of CHANG'E-1 Laser Altimeter Data

    Science.gov (United States)

    Hu, W.; Yue, Z.; Di, K.

    2011-08-01

    This paper presents a preliminary result of crossover analysis and adjustment of Chang'E-1(CE-1) Laser Altimeter (LAM) data of the Moon for global and regional mapping applications. During the operation of Chang'E-1 from November 28, 2007 to December 4, 2008, the laser altimeter acquired 1400 orbital profiles with about 9.12 million altimetric points. In our experiment, we derived more than 1.38 million crossovers from 1395 ground tracks covering the entire lunar surface after eliminating outliers of orbits and altimetric points. A method of least-squares crossover adjustment with a series of basis functions of time (trigonometric functions and polynomials) is developed to reconcile the LAM data by minimizing the crossover residuals globally. The normal equations are very large but sparse; therefore they are stored and solved using sparse matrix technique. In a test area (0°N~60°N, 50°W~0°W), the crossover residuals are reduced from 62.1m to 32.8m, and the quality of the DEM generated from the adjusted LAM data is improved accordingly. We will optimize the method for the global adjustment to generate a high precision consistent global DEM, which can be used as absolute control for lunar mapping with orbital images.

  10. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  11. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment

    NARCIS (Netherlands)

    Yong, Y.; Velthof, G.L.; Oenema, O.

    2015-01-01

    Livestock manure contributes considerably to global emissions of ammonia (NH3) and greenhouse gases (GHG), especially methane (CH4) and nitrous oxide (N2O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we

  12. A randomized controlled trial testing an adherence-optimized Vitamin D regimen to mitigate bone change in adolescents being treated for acute lymphoblastic leukemia.

    Science.gov (United States)

    Orgel, Etan; Mueske, Nicole M; Sposto, Richard; Gilsanz, Vicente; Wren, Tishya A L; Freyer, David R; Butturini, Anna M; Mittelman, Steven D

    2017-02-20

    Adolescents with acute lymphoblastic leukemia (ALL) develop osteopenia early in therapy, potentially exacerbated by high rates of concurrent Vitamin D deficiency. We conducted a randomized clinical trial testing a Vitamin D-based intervention to improve Vitamin D status and reduce bone density decline. Poor adherence to home supplementation necessitated a change to directly observed therapy (DOT) with intermittent, high-dose Vitamin D3 randomized versus standard of care (SOC). Compared to SOC, DOT Vitamin D3 successfully increased trough Vitamin 25(OH)D levels (p = .026) with no residual Vitamin D deficiency, 100% adherence to DOT Vitamin D3, and without associated toxicity. However, neither Vitamin D status nor supplementation impacted bone density. Thus, this adherence-optimized intervention is feasible and effective to correct Vitamin D deficiency in adolescents during ALL therapy. Repletion of Vitamin D and calcium alone did not mitigate osteopenia, however, and new, comprehensive approaches are needed to address treatment-associated osteopenia during ALL therapy.

  13. Climate adaptation as mitigation: the case of agricultural investments

    Science.gov (United States)

    Lobell, David B.; Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-03-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO2e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO2e yr-1 while spending 15 per tonne CO2e of avoided emissions. Uncertainty analysis is used to estimate a 5-95% confidence interval around these numbers of 0.25-0.43 Gt and 11-22 per tonne CO2e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161-74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price elasticity of land supply

  14. Changing Water and Nitrogen Use Efficiency over Agricultural Lands of the Inland Pacific Northwest During the 21th Century: Implications for Adaptation and Mitigation

    Science.gov (United States)

    Liu, M.; Malek, K.; Adam, J. C.; Stockle, C. O.; Rajagopalan, K.; Nelson, R.

    2014-12-01

    As water is the primary resource limitation for cropping systems over the inland Pacific Northwest (PNW), water use efficiency impacts regional water availability, crop yields, and net carbon sequestration. Furthermore, nitrogen (N) use efficiency affects the cost of farming and the total N flux to the environment (including leaching to aquatic ecosystems and greenhouse gas emissions to the atmosphere). Climate change affects water and nitrogen use efficiencies due to the combined effects of warming (reducing snowpack water storage, increasing ET, earlier leaf-on, shortening or lengthening plant growth season, etc.), the CO2 fertilization effects (increasing net primary productivity and leaf-level water and energy use efficiencies for C3 crops), and extreme climate events (drought and flood). Cropland conservation management (rotation, tillage, irrigation, and fertilization) is widely practiced in this region for maintaining high productivity of agricultural lands. To reduce vulnerability to weather extremes and long-term climate change, management regimes will likely need to be adapted for a changing environment. Here, we applied the coupled macro-scale hydrologic and crop growth model (VIC-CropSyst) to study how climate change in the 21st century will change water and nitrogen use efficiencies over the PNW. Simulation experiments with different combinations of management options and climate scenarios are used for attributing effects of climate factors and management options on long-term trends and fluctuations on water and nitrogen use efficiency. Preliminary simulation results indicate that there is a trend of decreasing water and nitrogen use efficiency over the inner PNW domain during the 21th century because of increasing ET, a seasonal shift in water availability, and the intensification of extreme climate events. Effective managements, including no-tillage and conservational tillage and optimized irrigation can eliminate the decrease or even increase water

  15. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  16. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    OpenAIRE

    Kaul, M; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon ...

  17. 应对全球变化的中国地质灾害综合减灾战略研究%Integrated Landslide Mitigation Strategies Study for Global Change in China

    Institute of Scientific and Technical Information of China (English)

    石菊松; 吴树仁; 张永双; 王涛

    2012-01-01

    The purpose of this paper is to discuss the integrated mitigation strategies for catastrophic landslide induced by the extreme weather events, to enhance the capability of science, technology and management of initiative landslide prevention and mitigation, which as activities undertaken to strengthen response capacities to landslide under the global change condition in China. Based on the presentation and discussion of the participants of workshop on Global catastrophic event and mitigation strategy for major landslide, combination with the major landslide events in recent years, this paper will analyze the impact of neotectonics movement and seismic activity, climate change, population growth and urbanization process, try to explore why there were so many and frequently landslide occurred in 2010 and make a macro judgment of the overall situation of landslide prevention in the future. Comprehensive analysis preliminary revealed that; (T) In recent years, the global tectonic movement and seismic activity were into a new relative active period, China is located at the intersection area of the Eurasian seismic belt and the circum-Pacific seismic belt, where is the strongest response area of current tectonic activity and earthquake. Especially, due to the Indian plate intense activity, the margin of the Tibetan Plateau region trend to frequently seismic activity, enhanced intensity of fault activity and hence, more frequently landslide occurrence by interaction of internal and external motivation in the recent future. (2) With the impact of global climate change, extreme and abnormal patterns weather conditions make the mechanism of landslide tend to diverse and complex, due to China is the largest convergence of continental climate and oceanic climate zone, also the wariest climate difference region caused by height difference of landscape, especially in 2010, a long time drought followed with concentration high-intensity and long duration rainfall in the raining

  18. ANALYSIS OF LEGAL ASPECTS OF STORAGE OF MEDICAL PRODUCTS APPOINTED FOR MEDICAL AND SANITARY CONSEQUENCES OF EMERGENCIES MITIGATION

    Directory of Open Access Journals (Sweden)

    G. Ya. Ibragimova

    2015-01-01

    Full Text Available The article analyzes principal legal aspects of medical products storage, appointed for medical and sanitary consequences of emergencies mitigation. We have revealed that nowadays there is a whole range of legal gaps and uncertainties in the regulation of medical products storage. We have also offered the ways for their solution

  19. Scenario Analysis on Global Hydropower Development Paths and Their Contribution to GHG Mitigation Utilizing a Dynamic CGE Model

    Science.gov (United States)

    Qian, Z.; Hanasaki, N.; Fujimori, S.; Masaki, Y.; Hijioka, Y.

    2015-12-01

    Currently, hydropower accounts for 16% of the worldwide electricity power supply and 86% of the total renewable electricity energy source due to its low cost, low greenhouse gas (GHG) emission, and relatively high reliability. It is well known that the global hydropower has not yet been fully developed, but the future paths of development and corresponding contribution to GHG mitigation in each region combined with socioeconomic activities are less known. Here we investigated following three questions. How much will hydropower generation increase in the future? Will hydropower generation reach the economically exploitable capability (EEC)? If this will be the case, when and where will it occur? How much GHG emission will be reduced by adding new hydropower? In order to address these questions, we used the AIM/CGE model, a dynamic computable general equilibrium model to quantify the global hydropower development paths and corresponding GHG mitigation contribution for 17 regions in the world associated with a socio-economic scenario termed SSP2. We compared two scenarios with different assumptions on EEC. One is BAU which takes EEC from the report of "World Energy Resources", the other is FIX_BAU which fix EEC at the current hydropower generation amount throughout the research period (2005-2100) or no additional installation of hydropower plants. The comparison between two scenarios indicated that promoting hydropower development contributed to GHG emission reduction globally but the magnitude varied by region. For example we found that in North Africa, hydropower development grew fast because of the rapid economic development, but it reached EEC as soon as in 2040 because of limitation in EEC due to its climatic and geographical conditions. Conversely, in Brazil, it grew steadily and did not reach its abundant EEC. Consequently, GHG mitigation contribution of North Africa is far less than Brazil. This research provides important information for policy makers to

  20. Mitigating for nature in Danish infrastructure projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone; Christensen, Per

    2015-01-01

    his paper presents results of a Danish study of mitigation efforts directed at nature protection in EIA of Danish infrastructure projects. The projects included in the study comprise road, rail, bridges, tunnels cables and oil- and gas-pipes. The study is based on a document analysis of EIA reports...... mitigation measures are suggested and implemented. Based on this the paper concludes with a discussion of how practice of mitigating impacts on nature can be developed leading to better nature protection....

  1. 防震减灾网站设计探析%Analysis of the Earthquake Disaster Mitigation Website Design

    Institute of Scientific and Technical Information of China (English)

    孙海龙; 张海亮

    2013-01-01

    The objective of the site of the construction of protecting against and mitigating earthquake disasters is to make people aware of the means and methods of escape in the earthquake, and to open up some excellent teaching resources for protecting against and mitigating earthquake disasters in the form of a website, allow people to share. So the Earthquake Disaster Mitigation website design will directly affect the sharing of information resources of the earthquake disaster reduction, at the same time it is also shockproof the mitigation construction work performance important factors. This paper analyzes some problems existing in the construction of the website of earthquake prevention and disaster reduction through online survey method, some design principles of website had been proposed. And a combination of cognitive learning theory and virtual reality technology systems are summarized in Earthquake Disaster Mitigation website design ideas.%防震减灾网站建设的目的是为了使人们了解在地震中正确的逃生手段与方法,并将一些优秀的防震减灾的教学资源以网站的形式向外开放,实现共享。防震减灾网站设计不仅直接影响防震减灾信息资源的共享,同时也是防震减灾建设工作的重要内容。在网上调研等方式的基础上,分析了目前防震减灾网站建设中存在的一些问题,提出了网站的设计原则,并结合认知学习理论与虚拟现实技术进行了系统归纳,较系统地给出了防震减灾网站设计的思路。

  2. Access to Risk Mitigating Weather Forecasts and Changes in Farming Operations in East and West Africa: Evidence from a Baseline Survey

    Directory of Open Access Journals (Sweden)

    Abayomi Samuel Oyekale

    2015-10-01

    Full Text Available Unfavorable weather currently ranks among the major challenges facing agricultural development in many African countries. Impact mitigation through access to reliable and timely weather forecasts and other adaptive mechanisms are foremost in Africa’s policy dialogues and socio-economic development agendas. This paper analyzed the factors influencing access to forecasts on incidence of pests/diseases (PD and start of rainfall (SR. The data were collected by Climate Change Agriculture and Food Security (CCAFS and analyzed with Probit regression separately for East Africa, West Africa and the combined dataset. The results show that 62.7% and 56.4% of the farmers from East and West Africa had access to forecasts on start of rainfall, respectively. In addition, 39.3% and 49.4% of the farmers from East Africa indicated that forecasts on outbreak of pests/diseases and start of rainfall were respectively accompanied with advice as against 18.2% and 41.9% for West Africa. Having received forecasts on start of rainfall, 24.0% and 17.6% of the farmers from East and West Africa made decisions on timing of farming activities respectively. Probabilities of having access to forecasts on PD significantly increased with access to formal education, farm income and previous exposure to climatic shocks. Furthermore, probabilities of having access to forecasts on SR significantly increased (p < 0.05 with access to business income, radio and perception of more erratic rainfall, among others. It was recommended that promotion of informal education among illiterate farmers would enhance their climatic resilience, among others.

  3. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  4. Analysis of topology changes in multibody systems

    OpenAIRE

    2009-01-01

    Mechanical systems with time-varying topology appear frequently in natural or human-made artificial systems. The nature of topology transitions is a key characteristic in the functioning of such systems. In this paper, a concept to decouple kinematic and kinetic quantities at the time of topology transition is used. This approach is based on the use of impulsive bilateral constraints and it is a useful tool for the analysis of energy redistribution and velocity change when these constraint...

  5. Analysis and Representation of Changes in Change Detection

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper,factors lead to changes and what changes should be considered are firstly discussed.Then changes to be represented by set theory is given.Twelve basic change types are described in detail.At last the paper points out that the change between geo-objects and pixels in images is not all corresponding and it causes the difficulty of accurate and robust change detection techniques.

  6. Mitigation and health: Climate policy not so costly

    Science.gov (United States)

    Buonocore, Jonathan

    2014-10-01

    Climate change mitigation can benefit human health by reducing air pollution. Research now shows that the economic value of health improvements can substantially outweigh mitigation costs, and that more flexible policies could have higher benefits.

  7. A spatio-temporal analysis of landscape dynamics under changing environmental regimes in southern African savannas

    Science.gov (United States)

    Bunting, Erin L.

    The United Nations and Intergovernmental Panel on Climate Change (IPCC) deem many regions of southern Africa as vulnerable landscapes due to changing climatic regimes, ecological condition, and low adaptive capacity. The savanna ecosystems of southern Africa are of great ecological importance due to the high biodiversity they sustain, their high level of productivity, and the great role they play in the global carbon cycle. Given the dependence of humans on the lands it is essential to explore landscape level trends in patterns and processes in an effort to inform management practices. Even if climate change mitigation strategies were put in place, this is still a region heavily dependent on rain-fed agriculture and tourism of the biological diverse lands. Therefore analysis of climate variability, both interannual and intra-annual, and the changing role it plays on the landscape is critical. This body of research analyzes the role of climate variability and climate on environmental condition and socio-economic development via research on (1) spatial and temporal vegetation patterns, (2) the underlying processes that influence savanna ecosystem resilience, (3) local perception of risk to livelihood development, and (4) potential consequences of climate change on vegetation patterns. As a whole this demonstrates the key role that climate plays on savanna landscapes, which would be highly beneficial when developing conservation or mitigation strategies. Increased climate variability is occurring, but what is still open to debate is the resilience of savanna landscape and vulnerability of socio-economic development.

  8. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    Science.gov (United States)

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  9. Modelling nitrogen and phosphorus fluxes from land to the UK river network - Scenario Analysis and possible mitigation measures

    Science.gov (United States)

    Vinjili, Shailaja; Hiscock, Kevin; Lovett, Andrew

    2014-05-01

    Nutrient export models, based on land use and land management data, support the analysis of the cause and effect of land use changes and aid in identifying significant nutrient sources. Although various simple approaches such as export coefficient modelling have been used for national scale and regional-scale studies, many of them lack inclusion of process-based elements to the model. In this study, we present a model that describes the river nutrient (nitrogen and phosphorus) load as a function of nutrient sources, runoff, nutrient retention and hydrogeology. The model was calibrated using measured water quality data on N and P at catchment outlets and was applied to a 2-km resolution dataset established for England, Wales & Scotland. A 2-km resolution Digital Elevation Model (DEM) was developed using the grid and a flow accumulation algorithm in ESRI's ArcGIS. We combine nutrient loads from each 2-km cell with the flow accumulation model to identify the spatial distribution of critical nutrient sources to river water. Subsequently, the model was used to analyse different land management and climate change scenarios. The results of this study and scenario analysis seek to identify potential nutrient sensitive areas and support land use planning and policy decisions.

  10. Smallholder Irrigation and Crop Diversification under Climate Change in sub-Saharan Africa: Evidence and Potential for Simultaneous Food Security, Adaptation, and Mitigation

    Science.gov (United States)

    Naylor, R.; Burney, J. A.; Postel, S.

    2011-12-01

    The poorest populations in sub-Saharan Africa live in rural areas and depend on smallholder agricultural production for their livelihoods. Over 90% of all farmed area in Sub-Saharan Africa is rainfed, with crop production centering on 3-5 months of rainfall. Rapid population growth is reducing land per capita ratios, and low yields for staple crops make food security an increasingly challenging goal. Malnutrition, most noticeable among children, peaks during the dry season. Recent data on aggregate economic growth and investment in Africa hide these patterns of seasonal hunger and income disparity. Perhaps most perversely, smallholder farmers in the dry tropical regions of sub-Saharan Africa are (and will continue to be) some of the earliest and hardest hit by climate change. Our research focuses on the role distributed, small-scale irrigation can play in food security and climate change adaptation in sub-Saharan Africa. As Asia's agricultural success has demonstrated, irrigation, when combined with the availability of inputs (fertilizer) and improved crop varieties, can enable year-round production, growth in rural incomes, and a dramatic reduction in hunger. The situation in Africa is markedly different: agroecological conditions are far more heterogeneous than in Asia and evaporation rates are relatively high; most smallholders lack access to fertilizers; and market integration is constrained by infrastructure, information, and private sector incentives. Yet from a resource perspective, national- and regional-level estimates suggest that Internal Renewable Water Resources (IRWR) are nowhere near fully exploited in Sub-Saharan Africa -- even in the Sudano-Sahel, which is considered to be one of the driest regions of the continent. Irrigation can thus be implemented on a much larger scale sustainably. We will present (a) results from controlled, experimental field studies of solar-powered drip irrigation systems in the rural Sudano-Sahel region of West Africa. We

  11. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report

    DEFF Research Database (Denmark)

    Bogner, J.P.; Pipatti, R.; Hashimoto, S.

    2008-01-01

    through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste...... quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints. Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline...

  12. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems

    DEFF Research Database (Denmark)

    del Prado, A; Crosson, P; Olesen, Jørgen E;

    2013-01-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quant......The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed...

  13. Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data

    Science.gov (United States)

    Thonfeld, Frank; Feilhauer, Hannes; Braun, Matthias; Menz, Gunter

    2016-08-01

    The analysis of rapid land cover/land use changes by means of remote sensing is often based on data acquired under varying and occasionally unfavorable conditions. In addition, such analyses frequently use data acquired by different sensor systems. These acquisitions often differ with respect to sun position and sensor viewing geometry which lead to characteristic effects in each image. These differences may have a negative impact on reliable change detection. Here, we propose an approach called Robust Change Vector Analysis (RCVA), aiming to mitigate these effects. RCVA is an improvement of the widely-used Change Vector Analysis (CVA), developed to account for pixel neighborhood effects. We used a RapidEye and Kompsat-2 cross-sensor change detection test to demonstrate the efficiency of RCVA. Our analysis showed that RCVA results in fewer false negatives as well as false positives when compared to CVA under similar test conditions. We conclude that RCVA is a powerful technique which can be utilized to reduce spurious changes in bi-temporal change detection analyses based on high- or very-high spatial resolution imagery.

  14. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories

  15. a7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    (10 mg/kg/day for 10 days) is able to mitigate the reduction of synaptophysin mRNA expression induced by PCP in two prefrontal cortical regions, the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (VLO). This effect is accompanied by a normalization of the PCP...

  16. α7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    (10 mg/kg/day for 10 days) is able to mitigate the reduction of synaptophysin mRNA expression induced by PCP in two prefrontal cortical regions, the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (VLO). This effect is accompanied by a normalization of the PCP...

  17. Grazing lands in Sub-Saharan Africa and their potential role in climate change mitigation: What we do and don't know

    NARCIS (Netherlands)

    Milne, E.; Aynekulu, E.; Bationo, A.; Batjes, N.H.; Boone, R.; Conant, R.; Davies, J.; Hanan, N.; Hoag, D.; Herrick, J.E.; Knausenberger, W.; Neely, C.; Njoka, J.; Ngugi, M.; Parton, B.; Paustian, K.; Reid, K.; Said, M.; Shepherd, K.; Swift, D.; Thornton, P.; Williams, S.; Miller, S.; Nkonya, Ephraim

    2016-01-01

    In 2014, the USAID project ‘Grazing lands, livestock and climate resilient mitigation in Sub-Saharan Africa’ held two workshops, hosted by the Colorado State University, which brought together experts from around the world. Two reports resulted from these workshops, one an assessment of the state of

  18. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    Science.gov (United States)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    at large scale in a 180 ha catchment, would reduce to 581 t y-1, instead of 1109 t y-1 under the current farmer practice. Using NASA/GISS Model II precipitation projections of IPCC scenario A1FI, CA is estimated to reduce soil loss and runoff and mitigate the effect of increased rainfall due to climate change. For smallholder farmers in semi-arid agro-ecosystems, CA-based systems constitute a field rainwater and soil conservation improvement strategy that enhances crop and economic productivity and reduces siltation of reservoirs, especially under changing climate. The reduction in draught power requirement would enable a reduction in oxen density and crop residue demand for livestock feed, which would encourage smallholder farmers to increase biomass return to the soil. Adoption of CA-based systems in the study area requires further work to improve smallholder farmers' awareness on benefits, to guarantee high standards during implementation and to design appropriate weed management strategies.

  19. Analysis of carbon mitigation policies. Feed-in tariffs, energy and carbon price interactions and competitive distortions on carbon markets

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, Johanna

    2011-07-19

    I study several policy instruments for carbon mitigation with a focus on subsidies for renewable energies, emission taxes and emission allowances. In Chapter 1, I analyze the optimal design and the welfare implications of two policies consisting of an emission tax for conventional fossil-fuel utilities combined with a subsidy for the producers of renewable energy equipment and an emission tax combined with a feed-in tariff for renewable electricity. In Chapter 2 I study the empirical interrelationships between European emission allowance prices and prices for electricity, hard coal and natural gas with an application to portfolio allocation. In Chapters 3 and 4, I discuss several policy-related issues of emissions trading, in particular the potential for market manipulations by firms holding a dominant position in the emission market, the output market or both, and competitive distortions and leakage due to unequal emission regulations across industries, sectors, regions, or countries. (orig.)

  20. Analysis on the Capacity Building Efforts for Mitigating Volcanic Risks during 2010 Eruption of Mount Merapi, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    SARI BAHAGIARTI KUSUMAYUDHA

    2012-12-01

    Full Text Available Mount Merapi is one of the most active volcanoes on the World erupted again during October to November 2010. Its climax activities happened on 5th November at 00.10 pm, with different type of eruption from Mount Merapi of last 50 years. Ordinary, Mount Merapi activity starts from lava dome development, followed by dome collapse to create pyroclastic flow. This specific character of eruption is called Merapi type. The pyroclastic flows at that time killed 341 people and buried many villages on the southeastern slope, while the secondary hazard of lahar destroyed many other human settlements and infrastructures on the western slope of the volcano. Actually, capacity building program in the areas of around Mount Merapi has been established since more than 15 years ago. In most villages, there are community associations that well trained on volcanic hazard mitigation and early warning system. The association name is Association of Mountains Belt of Merapi. Map of Mount Merapi hazards was also already set by the Center of Volcanology and Geologic Disaster Mitigation. Unfortunately, human are not able to order the nature. The character of Mount Merapi eruption in the year 2010 was inconsistent. There was much higher gas pressure, much longer distant of pyroclastic flow, and much greater volume of volcanic material poured from the crater. This made people and stake holders very astonished in handling the evacuation. However, a socio-cultural factor in this respect is that the local people and agriculturists view Mount Merapi as a God which gives them fertile soil and water for agriculture and are reluctant to move away even under an impending threat of a volcanic hazard. This mind-set of people is a challenge in capacity building as the people prefer in-situ protective measures rather than moving away.