WorldWideScience

Sample records for change material integrated

  1. Phase Change Materials for Thermal Regulation of Building Integrated Photovoltaics

    OpenAIRE

    Hassan, Ahmad, (Thesis)

    2010-01-01

    In outdoor deployed photovoltaics (PV), standard test conditions (STC) of 25 °C PV temperature, 1000 Wm-2 solar radiation intensity and 1.5 air-mass rarely prevail. PV temperature can rise 40-100 °C above STC inducing a power drop in crystalline silicon PV with a coefficient of -0.4 to -0.65 %/K above STC. Increased operating temperature also results in accelerated PV degradation due to cell delamination allowing moisture ingress. vConventional building integrated photovoltaics (BIPV) cooling...

  2. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik;

    2015-01-01

    A dynamic fueling model is built to simulate the fueling process of a hydrogen tank with an integrated passive cooling system. The study investigates the possibility of absorbing a part of the heat of compression in the high latent-heat material during melting, with the aim of keeping the walls...... change material, mainly occurs after the fueling is completed, resulting in a higher hydrogen peak temperature inside the tank and a lower fuelled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fuelled at -40 °C....

  3. Integration of phase change materials in compressed hydrogen gas systems: Modelling and parametric analysis

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus; Jørgensen, Jens-Erik;

    2016-01-01

    A dynamic fueling model is built to simulate the fueling process of a hydrogen tank with an integrated passive cooling system. The study investigates the possibility of absorbing a part of the heat of compression in the high latent-heat material during melting, with the aim of saving the monetary...... the phase change material, mainly occurs after the fueling is completed, resulting in a hydrogen peak temperature higher than 85 C and a lower fueled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fueled at 40 C. A parametric...... analysis that embraces the main thermal properties of the heat-absorbing material as well as the major design parameters is here carried out to determine possible solutions. It is found that the improvement of a single thermal property does not provide any significant benefit and that the most effective...

  4. Numerical studies of integrated concrete with a solid-solid phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2007-07-01

    The thermal storage performance of concrete cement integrated with a hypothetical solid-solid phase change material (PCM) was investigated. The thermal storage material was exposed to solar radiation on a sunny winter day in Toronto. The effects of weight ratio of PCM to cement and the thickness of cement were studied. The integrated PCM cement compound was treated as a homogenous mixture with uniform physical and thermal properties. Finite element modelling (FEM) was used to determine the effective heat capacity method. Governing equations for the heat transfer process in the solid-liquid PCMs included Navier-Stokes equations; mass conservation equations; and the energy conservation equation. The energy equation was the only governing equation for the binary solid state PCMs. The enthalpy method was used to apply governing equations of PCMs over the whole fixed domain of interest. The total energy required for the phase change was determined using the enthalpy function. The simulations showed that PCMs can reduce the fluctuation of temperature. Temperature fluctuations on the upper surface varied mainly in amplitude and in time phase due to thermal storage effects. The total amount of solar gain increased when the PCM ratio increased. However, the effect of the PCM ratio on the amount of released energy became less apparent when the thickness of the PCM was increased. It was concluded that a 30 per cent PCM ratio contributed the maximum overall released energy after the radiation gain vanished. 8 refs., 3 tabs., 11 figs.

  5. Integration of environmental indicators in the optimization of industrial energy management using phase change materials

    International Nuclear Information System (INIS)

    Highlights: • Phase change materials are a feasible option for energy management. • Net Zero Environmental Metrics Times is defined as an environmental payback time. • Coal, heavy fuel and lignite scenarios show a time around one year. • The potassium nitrate application provides the highest environmental values. - Abstract: This work addresses the potential environmental effects of thermal energy storage using the life cycle assessment to perform an optimal system framework. The study assesses the recovery of waste thermal energy at medium temperatures through the application of phase change materials and the recovered heat use in other industrial processes avoiding the heat production from fossil fuel. To this end, twenty different situations were analysed in terms of energy and environmentally combining four thermal energy storage systems varying the type of phase change material incorporated (potassium nitrate, potassium hydroxide, potassium carbonate/sodium carbonate/lithium carbonate and lithium hydroxide/potassium hydroxide) which were defined as cases and five scenarios were the heat can be released based on the type of fossil fuel consumed (coal, heavy fuel, light fuel, lignite and natural gas). Moreover, a net zero environmental metric time parameter was calculated to assess the time period in which the environmental impacts associated to the thermal energy system were equal to the avoided impacts by the use of the heat recovered. Values that were lower than the thermal energy system lifetime were obtained in more than 40% of the total study situations. Finally, an additional analysis was performed to identify the most significant parameters for the further development of a mathematical model to predict the net zero environmental metric time

  6. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    Science.gov (United States)

    Lee, Steve A.; Leimkuehler, Thomas O.; Stephan, Ryan; Le, Hung V.

    2010-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PC1V1) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  7. Integrated material accountancy system

    International Nuclear Information System (INIS)

    In this paper we present the system that we are actually using for Nuclear Material Accounting and Manufacturing Management in our UO2 Fuel Fabrication Plant located at Juzbado, Salamanca, Spain. The system is based mainly on a real time data base which gather data for all the operations performed in our factory from UO2 powder reception to fuel assemblies shipment to the customers. The accountancy is just an important part of the whole integrated system covering all the aspects related to manufacturing: planning, traceability, Q.C. analysis, production control and accounting data

  8. Material integrity verification radar

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  9. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application

    Science.gov (United States)

    Cui, Hongzhi; Yang, Shuqing; Memon, Shazim Ali

    2015-01-01

    Microencapsulated phase-change materials (MPCM) can be used to develop a structural–functional integrated cement paste having high heat storage efficiency and suitable mechanical strength. However, the incorporation of MPCM has been found to degrade the mechanical properties of cement based composites. Therefore, in this research, the effect of carbon nanotubes (CNTs) on the properties of MPCM cement paste was evaluated. Test results showed that the incorporation of CNTs in MPCM cement paste accelerated the cement hydration reaction. SEM micrograph showed that CNTs were tightly attached to the cement hydration products. At the age of 28 days, the percentage increase in flexural and compressive strength with different dosage of CNTs was found to be up to 41% and 5% respectively. The optimum dosage of CNTs incorporated in MPCM cement paste was found to be 0.5 wt %. From the thermal performance test, it was found that the cement paste panels incorporated with different percentages of MPCM reduced the temperature measured at the center of the room by up to 4.6 °C. Inverse relationship was found between maximum temperature measured at the center of the room and the dosage of MPCM. PMID:25867476

  10. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    many emerging buildings. The new concrete deck with microencapsulated PCM is the standard deck on which one more layer with PCM concrete was added and at the same time the latent heat storage was introduced to the construction. The challenge to simulate the performance of the new deck with PCM concrete......The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used in...... or the building with such a deck is that the thermal properties of such a new material are not yet well defined. The results presented in the paper include models in which PCM concrete material properties such as thermal conductivity and specific heat capacity were theoretically calculated using...

  11. Hybrid Materials for Integrated Photonics

    OpenAIRE

    Paolo Bettotti

    2014-01-01

    In this review materials and technologies of the hybrid approach to integrated photonics (IP) are addressed. IP is nowadays a mature technology and is the most promising candidate to overcome the main limitations that electronics is facing due to the extreme level of integration it has achieved. IP will be based on silicon photonics in order to exploit the CMOS compatibility and the large infrastructures already available for the fabrication of devices. But silicon has severe limits especiall...

  12. Hybrid Materials for Integrated Photonics

    Directory of Open Access Journals (Sweden)

    Paolo Bettotti

    2014-01-01

    Full Text Available In this review materials and technologies of the hybrid approach to integrated photonics (IP are addressed. IP is nowadays a mature technology and is the most promising candidate to overcome the main limitations that electronics is facing due to the extreme level of integration it has achieved. IP will be based on silicon photonics in order to exploit the CMOS compatibility and the large infrastructures already available for the fabrication of devices. But silicon has severe limits especially concerning the development of active photonics: its low efficiency in photons emission and the limited capability to be used as modulator require finding suitable materials able to fulfill these fundamental tasks. Furthermore there is the need to define standardized processes to render these materials compatible with the CMOS process and to fully exploit their capabilities. This review describes the most promising materials and technological approaches that are either currently implemented or may be used in the coming future to develop next generations of hybrid IP devices.

  13. Lunar materials processing system integration

    Science.gov (United States)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  14. Development, Implementation, and Assessment of Climate Curricular Materials for Introductory Undergraduates: Lessons Learned from the InTeGrate Project's Climate of Change Module

    Science.gov (United States)

    Walker, B.; Fadem, C. M.; Shellito, L. J.

    2014-12-01

    Designing climate change curricular materials suitable for wide adoption across institutions and academic disciplines (including those outside of the geosciences) requires collaboration among faculty at different types of institutions and consideration of a variety of student populations, learning styles, and course formats. The Interdisciplinary Teaching of Geoscience for a Sustainable Future (InTeGrate) project, an NSF STEP Center program, provides opportunities for faculty to develop 2-3 week teaching modules to engage students in understanding the intersections between geoscience topics and societal issues. From 2012-2014, a team of 3 faculty from a liberal arts college, comprehensive university, and community college developed, implemented, assessed, and revised a 2-3 week module for introductory undergraduates entitled "Climate of change: interactions and feedbacks between water, air, and ice". The module uses authentic atmosphere, ocean, and cryosphere data from several regions to illustrate how climate impacts human societies and that the climate system has interacting components complicated by feedbacks, uncertainties, and human behavioral decisions. Students also consider past and present human adaptations to climate fluctuations. The module was piloted in introductory geology, meteorology, and oceanography courses during the 2012-2013 academic year, during which time formative and summative assessments were administered and used to modify the curricular materials. We will provide an overview of the module's content, instructional strategies involved in implementing the module, and methods of formative and summative assessment. We will also report on lessons learned during the development, piloting, revision, and publishing process, the importance of fostering partnerships between faculty from different institution types, and design approaches that promote widespread adoption of climate curricular materials.

  15. Integrated assessment of climate change

    International Nuclear Information System (INIS)

    Many researchers are working on all the separate parts of the climate problem. The objective of integrated assessment is to put the results from this work together in order to look carefully at the big picture so as to: (1) keep a proper sense of perspective about the problem, since climate change will occur in the presence of many other natural and human changes; (2) develop the understanding necessary to support informed decision making by many different key public and private actors around the world; and (3) assure that the type and mix of climate-related research that is undertaken will be as useful as possible to decisions makers in both the near and long term. This paper outlines a set of design guidelines for formulating integrated assessment programs and projects and then outlines some of the current problems and opportunities. Selected points are illustrated by drawing on results from the integrated assessment research now in progress at Carnegie Mellon University

  16. The Changing Materiality of Music

    DEFF Research Database (Denmark)

    Bødker, Henrik

    A great deal of effort has gone into discussing issues of copyright in relation to the new materialities of the digital distribution of popular music; there has, however, been less focus on the changes that these new developments may invoke with respect to the cultural and social usages of music....... Against the backdrop of recent discussions of popular music as material culture it is argued that emergent usages must be seen in relation to accumulations of different materialities and that such a perspective highlights issues related to both aesthetic reflexivity and agency. Keywords: cultural...... commodity, materiality, reflexivity, music, MP3...

  17. Integrated Global Nuclear Materials Management Preliminary Concepts

    International Nuclear Information System (INIS)

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  18. Composite materials with integrated embedded sensing networks

    OpenAIRE

    Schaaf, Kristin Leigh

    2008-01-01

    The increasing demand for in-service structural health monitoring has stimulated efforts to integrate self and environmental sensing capabilities into materials and structures. The present work is directed towards the development of a new means of fabricating composites that allows for integrating a high density of small, advanced sensors into a laminated composite in a way that enables sensing without compromising the structural integrity of the host composite material. This work presents ef...

  19. Materials and integration schemes for above-IC integrated optics

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Rangarajan, Balaji; Kovalgin, Alexey Yu

    2014-01-01

    A study is presented on silicon oxynitride material for waveguides and germanium-silicon alloys for p-i-n diodes. The materials are manufactured at low, CMOS-backend compatible temperatures, targeting the integration of optical functions on top of CMOS chips. Low-temperature germanium-silicon deposi

  20. Optimisation of integrated energy and materials systems

    International Nuclear Information System (INIS)

    To define cost-effective long term CO2 reduction strategies an integrated energy and materials system model for the Netherlands for the period 2000-2040 is developed. The model is based upon the energy system model MARKAL, which configures an optimal mix of technologies to satisfy the specified energy and product/materials service demands. This study concentrates on CO2 emission reduction in the materials system. For this purpose, the energy system model is enlarged with a materials system model including all steps 'from cradle to grave'. The materials system model includes 29 materials, 20 product groups and 30 waste materials. The system is divided into seven types of technologies; 250 technologies are modeled. The results show that the integrated optimisation of the energy system and the materials system can significantly reduce the emission reduction costs, especially at higher reduction percentages. The reduction is achieved through shifts in materials production and waste handling and through materials substitution in products. Shifts in materials production and waste management seem cost-effective, while the cost-effectiveness of shifts in product composition is sensitive due to the cost structure of products. For the building sector, transportation applications and packaging, CO2 policies show a significant impact on prices, and shifts in product composition could occur. For other products, the reduction through materials substitution seems less promising. The impact on materials consumption seems most significant for cement (reduced), timber and aluminium (both increased). For steel and plastics, the net effect is balanced, but shifts between applications do occur. The MARKAL-approach is feasible to study integrated energy and materials systems. The progress compared to other environmental system analysis instruments is much more insight in the interaction of technologies on a national scale and in time

  1. Y-12 Integrated Materials Management System

    International Nuclear Information System (INIS)

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclear material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system

  2. New ways of integrating material knowledge into the design process

    DEFF Research Database (Denmark)

    Højris, Anders; Nielsen, Louise Møller

    2013-01-01

    Throughout resent years a constantly growing number of new materials have been developed, presenting improved abilities or entirely new features. In the design studio context, this has led to the emergence of physical material libraries, some for internal use and others entirely for external use...... in order to help clients to find the right material among hundreds of samples. Furthermore a number of material libraries have also been developed into online database, which provides detailed information about new material and makes the information accessible from almost everywhere. The access to material...... libraries and thereby access to information on new material possibilities has also changed the way designers integrate knowledge about materials into the design process. This means that the traditional design process model, where the selection of materials takes place after the design of form and function...

  3. Nonbook Materials: The Organization of Integrated Collections.

    Science.gov (United States)

    Weihs, Jean Riddle; And Others

    This book has been written for all types of libraries and media centres which wish to have an omnimedia catalog, i.e., one in which the entries for all materials, both book and nonbook, are interfiled. In order to integrate all entries successfully the same cataloging principles should apply to all media. A practical solution is to enter and…

  4. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  5. Reactor core materials research and integrated material database establishment

    International Nuclear Information System (INIS)

    Mainly two research areas were covered in this project. One is to establish the integrated database of nuclear materials, and the other is to study the behavior of reactor core materials, which are usually under the most severe condition in the operating plants. During the stage I of the project (for three years since 1999) in- and out of reactor properties of stainless steel, the major structural material for the core structures of PWR (Pressurized Water Reactor), were evaluated and specification of nuclear grade material was established. And the damaged core components from domestic power plants, e.g. orifice of CVCS, support pin of CRGT, etc. were investigated and the causes were revealed. To acquire more resistant materials to the nuclear environments, development of the alternative alloys was also conducted. For the integrated DB establishment, a task force team was set up including director of nuclear materials technology team, and projector leaders and relevant members from each project. The DB is now opened in public through the Internet

  6. Integrated Global Nuclear Materials Management - Preliminary Concepts -

    International Nuclear Information System (INIS)

    Approach to Connect Global Objectives and Local Actions: (1) Articulate global objectives into a hierarchy of subsystem requirements and local attributes and measures; (2) Establish a baseline system and viable alternatives through the interactions and relationships (e.g., networks) of local system elements and their options; (3) Evaluate performance of system alternatives and develop improved nuclear material management strategies and technologies; and (4) The need to address greatest concerns first (prioritized or graded approach) and to make tradeoffs among implementation options and competing objectives entails a risk-based approach. IGNMM could provide a systematic understanding of global nuclear materials management and evolutionarily improve and integrate the management through an active architecture, using for example, situation awareness, system models, methods, technologies, and international cooperation. Different tools would be used within the overall framework to address individual issues on the desired geographic scale that could be easily linked to broader analyses. Life-cycle system analyses would allow for evaluating material path alternatives on an integrated global scale. Disconnects, overlaps, technical options, and alternatives for optimizing nuclear materials processes could be evaluated in an integrated manner

  7. Integrated risk analysis of global climate change

    International Nuclear Information System (INIS)

    This paper discusses several factors that should be considered in integrated risk analyses of global climate change. We begin by describing how the problem of global climate change can be subdivided into largely independent parts that can be linked together in an analytically tractable fashion. Uncertainty plays a central role in integrated risk analyses of global climate change. Accordingly, we consider various aspects of uncertainty as they relate to the climate change problem. We also consider the impacts of these uncertainties on various risk management issues, such as sequential decision strategies, value of information, and problems of interregional and intergenerational equity. (author)

  8. Surface integrity of provisional resin materials

    Science.gov (United States)

    Abouelatta, O. B.; El-Bediwi, A.; Sakrana, A.; Jiang, X. Q.; Blunt, L.

    2006-03-01

    Provisional resin materials are widely used in prosthetic dentistry and play an important role in the success of restorative treatment. Therefore, these materials must meet the requirements of preserving surface integrity during the treatment process. This study was done to evaluate surface roughness and microhardness of two provisional resin materials after 37 °C water storage. Two rectangular samples 21 mm × 11 mm × 3 mm, one bis-acrylic (bis-acrylic-Protemp II) and one polyethyl methacrylate (Trim®-PEMA) were fabricated as examples of provisional materials (n = 5 per material). The specimens were stored in 37 °C deionized distilled water for 24 h, 1, 2 and 3 weeks. The control specimens were not stored in water. The surface roughness of the tested materials (n = 10) was measured using a profilometer. Microhardness tests were conducted using a Vickers microscope mounted indenter system (n = 10). At 24 h, the surface roughness was recorded with bis-acrylic-Protemp II as higher than methacrylate materials. No significant differences of microhardness between Trim®-PEMA and bis-acrylic-Protemp II were recognized at 1, 2 and 3 weeks. The microhardness values increased with the increase of surface roughness and vice versa in both Trim®-PEMA and bis-acrylic-Protemp II. Both surface roughness and microhardness are affected by water storage. Bis-acrylic-Protemp II revealed better results in hardness than methacrylate resins, whereas Trim®-PEMA has a better surface roughness.

  9. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  10. Climate Change: Integrating Science, Economics, and Policy

    OpenAIRE

    Nakicenovic, N.; Nordhaus, W.D.; Richels, R.; Toth, F.L.

    1996-01-01

    This volume reports on the proceedings of the third international workshop on "Climate Change: Integrating Science, Economics, and Policy" held at IIASA in March 1996. Currently, it is widely recognized in both the analytical and policy communities that the complex issues surrounding the prospect of climate change and response measures and policies cannot be adequately assessed from the perspective of any single discipline in either the natural or social sciences, and that these issues cannot...

  11. Global change integrating factors: Tropical tropopause trends

    International Nuclear Information System (INIS)

    This research proposes new criteria, shifts in the height and temperature of the tropical tropopause, as measures of global climate change. The search for signs of global warming in the temperature signal near the earth's surface is extremely difficult, largely because numerous factors contribute to surface temperature forcing with only a small signal-to-noise ratio relative to long-term effects. In the long term, no part of the atmosphere can be considered individually because the evolution will be a function of all states of all portions. A large surface greenhouse signal might ultimately be expected, but the analysis of surface temperature may not be particularly useful for early detection. What is suggested here is not an analysis of trends in the surface temperature field or any of its spatial averages, but rather an integrating factor or integrator, a single measure of global change that could be considered a test of significant change for the entire global system. Preferably, this global change integrator would vary slowly and would take into account many of the causes of climate change, with a relatively large signal-to-noise ratio. Such an integrator could be monitored, and abrupt or accelerated changes could serve as an early warning signal for policy makers and the public. Earlier work has suggested that temperature has much less short-term and small-scale noise in the lower stratosphere, and thus the global warming signal at that level might be more easily deconvoluted, because the cooling rate near the 200-mb level is almost constant with latitude. A study of the temperature signal at this pressure level might show a clearer trend due to increased levels of greenhouse gases, but it would yield information about the troposphere only by inference

  12. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  13. Integrating technology in a changing organisation

    International Nuclear Information System (INIS)

    The paper relates to integrating technology in a changing organisation of Elf Aquitaine. There is a strong pressure to cut costs and be more effective in the company's operations. A process was initiated in 1994 to re-analyse its E and P (Exploration and Production) research and development (R and D) in order to enhance its alignment with the company assets needs, with a subsequent prioritization of R and D projects. The integration included a strategy for cooperation with other oil and service companies. The author presents the process set up to align the company's R and D program to the business needs of its operations, the various levels of cooperation used, and finally an illustration, in the domain of the geosciences, of the various facets of the ongoing cultural revolution which is required to reach a true integration. 11 figs

  14. Integrating Climate Change into Great Lakes Protection

    Science.gov (United States)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency

  15. Selective Integration in the Material-Point Method

    DEFF Research Database (Denmark)

    Andersen, Lars; Andersen, Søren; Damkilde, Lars

    2009-01-01

    The paper deals with stress integration in the material-point method. In order to avoid parasitic shear in bending, a formulation is proposed, based on selective integration in the background grid that is used to solve the governing equations. The suggested integration scheme is compared to a...... traditional material-point-method computation in which the stresses are evaluated at the material points. The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour....

  16. Phase Change Materials in concrete floors. Part 1; Phase Change Materials in betonvloeren. Deel 1

    Energy Technology Data Exchange (ETDEWEB)

    Entrop, A.G. [Duurzaam Bouwen, Universiteit Twente, Enschede (Netherlands); Reinders, A.H.M.E. [Energie Efficient Ontwerpen, Technische Universiteit Delft TUD, Delft (Netherlands)

    2012-07-15

    Results of research on an innovative use of Phase Change Materials (PCMs) in concrete floors are discussed. The PCMs store thermal solar energy. Temperatures of four concrete floors in closed environments were monitored. A reduction of maximum floor temperatures was achieved up to 16 {+-}2% and an increase of minimum temperatures up to 7 {+-}3%. An integral design is needed in which the thermal resistance of the building shell, the sensible heat capacity of the building and the latent heat capacity of PCMs are considered simultaneously. [Dutch] Er is een experiment uitgevoerd met vier betonnen vloeren in een semi-adiabatische omgeving. Twee vloeren bevatten PCMs en, ter referentie, twee vloeren geen PCMs. De opstelling moest op schaal een woning voorstellen met een raam op het zuiden. De omgevingscondities en de temperatuurontwikkelingen in de vloeren en boxen werden gemonitord. Het experiment moest aantonen in hoeverre PCMs kunnen worden gebruikt voor het passief verwarmen van Nederlandse woningen.

  17. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Science.gov (United States)

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  18. Integration mockup and process material management system

    Science.gov (United States)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  19. Integration mockup and process material management system

    Science.gov (United States)

    Verble, Adas James, Jr.

    1992-02-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  20. Mechanically Induced Multicolor Change of Luminescent Materials.

    Science.gov (United States)

    Ma, Zhiyong; Wang, Zhijian; Teng, Mingjun; Xu, Zejun; Jia, Xinru

    2015-06-22

    Mechanofluorochromic or piezochromic fluorescence chemistry involves the switching and tuning of the luminescent properties of solid-state materials induced by exogenous forces, such as grinding, shearing, compression, tension, and so forth. Up until now, most reported mechanochromic systems, including liquid crystals, organic molecules, organometallic compounds, polymers, and dye-doped polymers, have displayed reversible two-color changes, which arise from either supramolecular or chemical structure transformations. However, fluorescent materials that undergo mechanically induced multicolor changes remain rare; this Minireview is focused on such materials. Topics are categorized according to the different applied forces that are required to induce the multicolor change, including mechanical control of either the supramolecular structures or the chemical structures, and mechanical control of both the supramolecular structures and chemical structures. PMID:25965783

  1. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with properties of bulk-PZT5A are mostly preserved without any necessity of repolarization. Three generations of resonant vibration energy harvesters are designed, simulated and fabricated to demonstrate the competitive performance of the new fabrication process over traditional piezoelectric deposition systems. An unpackaged PZT/Si unimorph harvester with 27mm3 active device volume produces up to 205microW at 1.5g/154Hz. The prototypes have achieved the highest figure-of-merits (normalized-power-density x bandwidth) amongst previously reported inertial energy harvesters. The fabricated energy harvester is

  2. Learning from integrated assessment of climate change

    International Nuclear Information System (INIS)

    The objective of integrated assessment of climate change is to put available knowledge together in order to evaluate what has been learned, policy implications, and research needs. This paper summarizes insights gained from five years of integrated assessment activity at Carnegie Mellon. After an introduction, Section 2 asks; who are the climate decision makers? It is concluded that they are a diffuse and often divergent group spread all over the world whose decisions are primarily driven by local non-climate considerations. Insights are illustrated with results from the ICAM-2 model. Section 3 asks: what is the climate problem? In addition to the conventional answer, it is noted that in a democracy the problem is whatever voters and their elected representatives think it is. Results from studies of public understanding are reported. Several other specific issues that define the problem, including the treatment of aerosols and alternative indices for comparing greenhouse gases are discussed. Section 4 discusses studies of climate impacts, focusing on coastal zones, the terrestrial biosphere and human health. Particular attention is placed on the roles of adaptation, value change, and technological innovation. In Section 5 selected policy issues are discussed. It is concluded by noting that equity has received too little attention in past work. It is argued that many conventional tools for policy analysis are not adequate to deal with climate problems. Values that change, and mixed levels of uncertainty, pose particularly important challenges for the future. 90 refs., 4 figs., 4 tabs

  3. Phase Change Materials for Thermal Energy Storage

    OpenAIRE

    Stiebra, L; Cabulis, U; Knite, M

    2014-01-01

    Phase change materials (PCMs) for thermal energy storage (TES) have become an important subject of research in recent years. Using PCMs for thermal energy storage provides a solution to increase the efficiency of the storage and use of energy in many domestic and industrial sectors. Phase change TES systems offer a number of advantages over other systems (e.g. chemical storage systems): particularly small temperature distance between the storage and retrieval cycles, small unit sizes and lo...

  4. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  5. Nano composite phase change materials microcapsules

    Science.gov (United States)

    Song, Qingwen

    MicroPCMs with nano composite structures (NC-MicroPCMs) have been systematically studied. NC-MicroPCMs were fabricated by the in situ polymerization and addition of silver NPs into core-shell structures. A full factorial experiment was designed, including three factors of core/shell, molar ratio of formaldehyde/melamine and NPs addition. 12 MicroPCMs samples were prepared. The encapsulated efficiency is approximately 80% to 90%. The structural/morphological features of the NC-MicroPCMs were evaluated. The size was in a range of 3.4 mu m to 4.0 mu m. The coarse appearance is attributed to NPs and NPs are distributed on the surface, within the shell and core. The NC-MicroPCMs contain new chemical components and molecular groups, due to the formation of chemical bonds after the pretreatment of NPs. Extra X-ray diffraction peaks of silver were found indicating silver nano-particles were formed into an integral structure with the core/shell structure by means of chemical bonds and physical linkages. Extra functionalities were found, including: (1) enhancement of IR radiation properties; (2) depression of super-cooling, and (3) increase of thermal stabilities. The effects of SERS (Surface Enhanced Raman Spectroscopy) arising from the silver nano-particles were observed. The Raman scattering intensity was magnified more than 100 times. These effects were also exhibited in macroscopic level in the fabric coatings as enhanced IR radiation properties were detected by the "Fabric Infrared Radiation Management Tester" (FRMT). "Degree of Crystallinity" (DOC) was measured and found the three factors have a strong influence on it. DOC is closely related to thermal stability and MicroPCMs with a higher DOC show better temperature resistance. The thermal regulating effects of the MicroPCMs coatings were studied. A "plateau regions" was detected around the temperature of phase change, showing the function of PCMs. Addition of silver nano-particles to the MicroPCMs has a positive

  6. Climate Change: Integrating Science and Economics

    Science.gov (United States)

    Prinn, R. G.

    2008-12-01

    The world is facing an ever-growing conflict between environment and development. Climate change is a century-scale threat requiring a century-long effort in science, technology and policy analysis, and institutions that can sustain this effort over generations. To inform policy development and implementation there is urgent need for better integration of the diverse components of the problem. Motivated by this challenge, we have developed the Integrated Global System Model (IGSM) at MIT. It comprises coupled sub- models of economic development, atmospheric chemistry, climate dynamics and ecosystems. The results of a recent uncertainty analysis involving hundreds of runs of the IGSM imply that, without mitigation policies, the global average surface temperature may rise much faster than previously estimated. Polar temperatures are projected to rise even faster than the average rate with obvious great risks for high latitude ecosystems and ice sheets at the high end of this range. Analysis of policies for climate mitigation, show that the greatest effect of these policies is to lower the probability of extreme changes as opposed to lowering the medians. Faced with the above estimated impacts, the long lifetimes of most greenhouse gases in the atmosphere, the long delay in ultimate warming due to ocean heat uptake, and the capital-intensive global energy infrastructure, the case is strong for concerted action now. Results of runs of the IGSM indicate the need for transformation of the global energy industry on a very large scale to mitigate climate change. Carbon sequestration, renewable energy sources, and nuclear present new economic, technological, and environmental challenges when implemented at the needed scales. Economic analyses using the IGSM indicate that global implementation of efficient policies could allow the needed transformations at bearable costs.

  7. The Recall of Verbal Material Accompanying Semantically Well-Integrated and Semantically Poorly-Integrated Sentences.

    Science.gov (United States)

    Rosenberg, Sheldon

    This study was designed to test the hypothesis that the recall of verbal material (critical material) accompanying semantically well integrated (SWI) sentences will be superior to the recall of verbal material accompanying semantically poorly integrated (SPI) sentences. This hypothesis was based upon the conclusion derived from previous research…

  8. Integrating uncertainties for climate change mitigation

    Science.gov (United States)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  9. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  10. Integrating UNESCO ICT-Based Instructional Materials in Chemistry Lessons

    OpenAIRE

    CHARLIE P. NACARIO

    2014-01-01

    This study determined the effectiveness of the lessons in Chemistry integrating UNESCO ICT-based instructional material on the achievement of Chemistry students at Central Bicol State University of Agriculture. It aimed to identify lessons that may be developed integrating UNESCO ICT-based instructional materials, determine the effect of the developed lessons using the material on: conceptual understanding; science process skills; and attitude towards chemistry and gather insights...

  11. The changing role of nuclear materials accounting

    International Nuclear Information System (INIS)

    Nuclear materials accounting and accounting systems at what have been DOE Production sites are evolving into management decision support tools. As the sites are moving into the mode of making decisions on how to disposition complex and varied nuclear material holdings, the need for complete and many times different information has never been greater. The artificial boundaries that have historically been established between what belongs in the classic material control and accountability (MC and A) records versus what goes into the financial, radiological control, waste, or decommissioning and decontamination records are being challenged. In addition, the tools historically used to put material into different categories such as scrap codes, composition codes, etc. have been found to be inadequate for the information needs of today. In order to be cost effective and even, more importantly to effectively manage -our inventories, the new information systems the authors design have to have the flexibility to serve many needs. In addition, those tasked with the responsibility of managing the inventories must also expand beyond the same artificial boundaries. This paper addresses some of the things occurring at the Savannah River Site to support the changing role of nuclear materials accounting

  12. Towards an integrated materials characterization toolbox

    DEFF Research Database (Denmark)

    Robertson, Ian M.; Schuh, Christopher A.; Vetrano, John S.;

    2011-01-01

    The material characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when material scientists can quantify material structure evolution across spatial and temporal space simultaneously. This will provide insight to...... reaction dynamics in four-dimensions, spanning multiple orders of magnitude in both temporal and spatial space. This study presents the authors' viewpoint on the material characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future...... the state-of-the-art in characterization and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis...

  13. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing proce...

  14. Global Environmental Change: An integrated modelling approach

    International Nuclear Information System (INIS)

    Two major global environmental problems are dealt with: climate change and stratospheric ozone depletion (and their mutual interactions), briefly surveyed in part 1. In Part 2 a brief description of the integrated modelling framework IMAGE 1.6 is given. Some specific parts of the model are described in more detail in other Chapters, e.g. the carbon cycle model, the atmospheric chemistry model, the halocarbon model, and the UV-B impact model. In Part 3 an uncertainty analysis of climate change and stratospheric ozone depletion is presented (Chapter 4). Chapter 5 briefly reviews the social and economic uncertainties implied by future greenhouse gas emissions. Chapters 6 and 7 describe a model and sensitivity analysis pertaining to the scientific uncertainties and/or lacunae in the sources and sinks of methane and carbon dioxide, and their biogeochemical feedback processes. Chapter 8 presents an uncertainty and sensitivity analysis of the carbon cycle model, the halocarbon model, and the IMAGE model 1.6 as a whole. Part 4 presents the risk assessment methodology as applied to the problems of climate change and stratospheric ozone depletion more specifically. In Chapter 10, this methodology is used as a means with which to asses current ozone policy and a wide range of halocarbon policies. Chapter 11 presents and evaluates the simulated globally-averaged temperature and sea level rise (indicators) for the IPCC-1990 and 1992 scenarios, concluding with a Low Risk scenario, which would meet the climate targets. Chapter 12 discusses the impact of sea level rise on the frequency of the Dutch coastal defence system (indicator) for the IPCC-1990 scenarios. Chapter 13 presents projections of mortality rates due to stratospheric ozone depletion based on model simulations employing the UV-B chain model for a number of halocarbon policies. Chapter 14 presents an approach for allocating future emissions of CO2 among regions. (Abstract Truncated)

  15. "Responding to Climate Change" Course: Research Integration

    Science.gov (United States)

    Pfirman, S. L.; Bowman, J. S.

    2015-12-01

    The "Responding to Climate Change" Barnard/Columbia course integrates current research as well as hands-on research-based activities modified for a classroom environment. The course covers the major response themes of adaptation, mitigation and communication. In the spring of 2015 the course was oriented around Arctic and Antarctic case studies. Each week a different theme is addressed, such as the physical setting, changing ecosystems, governance issues, perspectives of residents and indigenous peoples, geoengineering, commercial interests, security, and health and developmental issues. Frequent guest lectures from thematic experts keep the course grounded in realities and present the students with cutting edge issues. Activities match the weekly theme, for example during the week on Arctic development, students engage with the marine spatial planning simulation Arctic SMARTIC (Strategic Management of Resources in Times of Change) based on research on Arctic sea ice trends and projections coupled with current and projected developmental interests of stakeholders. Created under the Polar Learning and Responding: PoLAR Climate Change Education Partnership (thepolarhub.org), a complete set of SMARTIC resources is available on line for use by others (http://www.camelclimatechange.org/view/article/175297/). The Responding to Climate Change course is designed to be current and respond to events. For the Arctic case study, students developed proposals for the US State Department as the upcoming Chair of the Arctic Council. Student evaluations indicated that they appreciated the opportunity to connect science with policy and presentation of preliminary proposals in a workshop format was valued as a way to develop and hone their ideas. An additional finding was that students were surprisingly tolerant of technical issues when guest lecturers were linked in via Skype, allowing interaction with thematic experts across the US. Students commented positively on this exposure to

  16. Integrating the stabilization of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H.F. [Department of Energy, Washington, DC (United States)

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprises 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.

  17. Reasons for change - Today's material management

    International Nuclear Information System (INIS)

    The current generation of nuclear power plants is approaching middle age. The industry continues to stabilize and mature as this occurs, which creates new areas of focus. This evolution is placing a much greater emphases on the business aspects of the operation and maintenance functions. One area that can provide a reasonable return to the operating organizations is materials management. Florida Power and Light Company has experienced these reasons for change. A new department was formed as part of the Nuclear Division in 1990. Performance improvement tasks were established using goals and objectives consistent with plant support and business requirements. Two of the primary processes within the materials management area control the largest portion of costs to operating budgets: the procurement process and inventory management

  18. Phase change materials for spacecraft thermal management

    International Nuclear Information System (INIS)

    The main objectives of this investigation were to determine the capabilities of certain phase change materials (PCM) in pellet form to buffer heat loads immediately following short term peak thermal input as part of a spacecraft thermal management system (SCTMS). Two types of PCMs demonstrated potential for SCTMS were encapsulated inorganic salt hydrate, calcium chloride hexahydrate, and the form-stable crystalline polymer, high density polyethylene. The PCM properties examined for the design of experimental packed bed heat exchangers included: packed bed porosity, mass density, pellet diameter, melting point, etc

  19. Integrated nuclear techniques to detect illicit materials

    Energy Technology Data Exchange (ETDEWEB)

    DeVolpi, A.

    1997-10-01

    This paper discusses the problem of detecting explosives in the context of an object being transported for illicit purposes. The author emphasizes that technologies developed for this particular application have payoffs in many related problem areas. The author discusses nuclear techniques which can be applied to this detection problem. These include: x-ray imaging; neutronic interrogation; inelastic neutron scattering; fieldable neutron generators. He discusses work which has been done on the applications of these technologies, including results for detection of narcotics. He also discusses efforts to integrate these techniques into complementary systems which offer improved performance.

  20. Advanced structural integrity assessment procedures. Working material

    International Nuclear Information System (INIS)

    The purpose of the meeting was to provide an international forum for discussion on recent results in research and utility practice in the field of methodology for the structural integrity assessment of components including relevant non-codified procedures. The scope of the meeting included deterministic and probabilistic approaches. The papers covered the following topics: Leak-before-break concepts; non-destructive examination (NDE) and surveillance results; statistical evaluation of non-destructive examination data; pressurized thermal shock evaluation; fatigue effects (including vibration); and verification qualification. The meeting was attended by 32 specialists from 8 countries. Refs, figs and tabs

  1. Structural Integrity Analysis of CEA Change Platform

    International Nuclear Information System (INIS)

    The Control Element Assembly Change Platform (CEA CP) is similar to a gantry crane. The CEA CP for Shin-Kori units 3 and 4 (SKN 3 and 4) consists of a bridge, which spans the reactor cavity pool and a gantry superstructure mounted on the bridge. The structure is approximately 8.8 m wide, 4.9 m long and 10.6 m high. The gantry superstructure supports one ton capacity hoist trolley and the bridge supports the In Core Instrumentation (ICI) retrieval cart which moves along the bridge. This paper presents the dynamic and structural analysis of CEA CP which is greater than that of the previous nuclear power plants to verify the structural integrity under the application of the earthquake spectrum. The analysis have been performed using the three orthogonal SSE response spectrum for SKN 3 and 4 which shows much higher acceleration value than OPR- 1000 Plants. In addition, the analyses are performed by 3-dimensional finite element analysis using ANSYS software

  2. Material Engineering for Phase Change Memory

    Science.gov (United States)

    Cabrera, David M.

    As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory

  3. Integration of Radioactive Material with Microcalorimeter Detectors

    Science.gov (United States)

    Croce, M. P.; Bond, E. M.; Hoover, A. S.; Kunde, G. J.; Moody, W. A.; Rabin, M. W.; Bennett, D. A.; Hayes-Wehle, J.; Kotsubo, V.; Schmidt, D. R.; Ullom, J. N.

    2014-09-01

    Microcalorimeter detectors with embedded radioactive material offer many possibilities for new types of measurements and applications. We will discuss the designs and methods that we are developing for precise deposition of radioactive material and its encapsulation in the absorber of transition-edge sensor (TES) microcalorimeter detectors for two specific applications. The first application is total nuclear reaction energy (Q) spectroscopy for nuclear forensics measurements of trace actinide samples, where the goal is determination of ratios of isotopes with Q values in the range of 5-7 MeV. Simplified, rapid sample preparation and detector assembly is necessary for practical measurements, while maintaining good energy resolution. The second application is electron capture spectroscopy of isotopes with low Q values, such as Ho, for measurement of neutrino mass. Detectors for electron capture spectroscopy are designed for measuring energies up to approximately 6 keV. Their smaller heat capacity and physical size present unique challenges. Both applications require precise deposition of radioactive material and encapsulation in an absorber with optimized thermal properties and coupling to the TES. We have made detectors for both applications with a variety of designs and assembly methods, and will present their development.

  4. Integrated High Payoff Rocket Propulsion Technologies Program Material Development Plan

    Science.gov (United States)

    Clinton, R. G., Jr.; Stropki, M.; Cleyrat, D.; Stucke, B.; Phillips, S.; Reed, B.

    2001-01-01

    In this viewgraph presentation, IMWG (IHPRPT Materials Working Group) government and industry members, together with the IHPRPT (Integrated High Payoff Rocket Propulsion Technologies Program Material Development Plan) National Component Leads, have developed a materials plan to address the critical needs of the IHPRPT community: (1) liquids boost and orbit transfer; (2) solids boost and orbit transfer; (3) tactical propulsion; and (4) spacecraft propulsion. Criticality of materials' role in achieving IHPRPT goals is evidenced by the significant investment over the next five years.

  5. Stress integration of the Drucker-Prager material model with kinematic hardening

    Directory of Open Access Journals (Sweden)

    Rakić Dragan

    2015-01-01

    Full Text Available This paper presents a method for implicit stress integration of the Drucker-Prager material model with kinematic hardening. The stress integration of the material model is conducted using the incremental plasticity method, while the kinematic hardening of material is defined using nonlinear Armstrong-Frederick hardening. This type of granular material hardening occurs as a consequence of the cyclic loading effects, such as the seismic load. For this reason, this material model is used for the earthquake analysis in the soil mechanics. Yield surface of the material model changes its position under the cyclic loads in the stress space, whereas there is no change in the size of the yield surface in deviatoric plane. The developed algorithm of the material model has been implemented in the software package PAK. [Projekat Ministarstva nauke Republike Srbije, br. TR37013 i br. TR32036

  6. Phase Change Materials for Thermal Management of IC Packages

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2007-06-01

    Full Text Available This paper deals with the application of phase change materials (PCM for thermal management of integrated circuits as a viable alternative to active forced convection cooling systems. The paper presents an analytical description and solution of heat transfer, melting and freezing process in 1D which is applied to inorganic crystalline salts. There are also results of numerical simulation of a real 3D model. These results were obtained by means of the finite element method (FEM. Results of 3D numerical solutions were verified experimentally.

  7. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge2Sb2Te5. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing, profilometry

  8. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  9. Heat protection by different phase change materials

    International Nuclear Information System (INIS)

    Different types of phase change materials (PCMs) were compared for the use in heat protective clothing. For that purpose, flexible blister foils containing the PCMs were prepared. The samples were irradiated with a heat flux of 1.5 kW/m2 in order to simulate a typical industrial setting like working in front of a hot oven. The temperature evolution behind the foils indicated the performance of each PCM, which was dependent on the duration of the exposure. For irradiation times up to 9 min, sodium acetate trihydrate lead to the lowest temperature increase and thus the best protection. When irradiating more than 9 min, a zeolite type was found to be more suitable, which lead to a lower temperature increase of up to 36 °C compared to a reference with no PCM. We developed a simple heat transfer model, taking account of the latent heat of the PCM, of the heat capacity of the foil and of the radiant and natural convective heat flow, which could be applied to predict the effect of PCM containing foils and will be used for further optimizations. -- Highlights: ► Comparison of different flame resistant PCMs for heat protection in textiles. ► Prediction of the heat protection of PCMs which have a net phase change temperature. ► Inorganic PCMs were shown to be highly effective for heat protection

  10. MARKET INTEGRATION: CASE STUDIES OF STRUCTURAL CHANGE

    OpenAIRE

    Franken, Jason R.V.; Parcell, Joseph L.

    2003-01-01

    The grain/oilseed industry is undergoing considerable structural change in the form of mergers and the addition of new processing facilities to add value beyond commodity grade. The rapid structural changes in this industry call into question the relevance of previous research conducted in these areas. Focusing on two structural change events in northeast Missouri as case studies provides an incisive glimpse at the larger impact of structural change on the grain/oilseed industry. This study a...

  11. Mixed material integration for high-speed applications

    Science.gov (United States)

    Krishnamurthy, Nicole Andrea

    A great demand for portable and highly integrated high speed electronic components and systems has recently surfaced as a result of the vast expansion of personal communications and other wireless applications. As more and more applications in personal communications require frequencies between 1 and 100 GHz, a reduction in the cost of III-V technology is necessary for a wide distribution of wireless products in the consumer market. III-V technology provides improved and unique functionality compared with silicon CMOS integrated circuit (IC) technology, yet current III-V technologies cannot meet all the demands of low cost, high levels of integration, low power, and performance because of high material costs and low yield compared with the current silicon technology. In this thesis, thin film mixed material integration is investigated as a method to increase functionality at lower cost. InP active devices are removed from the growth substrate and integrated onto other host substrates such as silicon via substrate removal. Characterization of these devices is performed. Also, thin film passive components via deposition on free standing polyimide are evaluated for lower cost and increased design freedom. By optimizing the passives and III-V active components separately and then integrating the two opens a new realm in mixed material integration.

  12. Visually Supporting Source Code Changes Integration: the Torch Dashboard

    OpenAIRE

    Uquillas-Gomez, Verónica; Ducasse, Stéphane; D'Hondt, Theo

    2010-01-01

    Automatic and advanced merging algorithms help programmers to merge their modifications in main development repositories. However, there is little support to help release masters (integrators) to take decisions about the integration of published merged changes into the system release. Most of the time, the release master has to read all the changed code, check the diffs to build an idea of a change, and read unchanged code to understand the context of some changes. Such a task can be overwhel...

  13. European integration and changing British discourse on sovereignty

    OpenAIRE

    NAKANO, Minoru

    2013-01-01

    This study investigates whether British elites’ discourse on sovereignty has changed as European integration has progressed. Academic research has long recognized the existence of discourse change regarding sovereignty, and the process of European integration is likely to be a modern event that produces such change in elite understanding of sovereignty. The dissertation thus investigates the question of whether elite discourse on sovereignty has indeed changed in the context of European integ...

  14. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  15. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  16. Integration of 2-Dimensional Materials for Thermoelectric Power Generation

    Science.gov (United States)

    Alsaffar, Fadhel; Al Hussain, Abdulrahman; Amer, Moh. R.; Center of Exclence for Green Nanotechnologies Collaboration; Department of Electrical Engineering (UCLA) Collaboration

    Recent developments in nanomaterial research have significantly progressed the performance of thermoelectric devices. Theoretical investigations of the thermoelectic properties of 2-Dimentional monolayers demonstrate a high figure of merit (ZT) .. Here, we investigate the integration of these 2-Dimensional materials for power generation applications using solar heat. We show that using black phosphorus monolayer (phosphorene) as the p-type material, and Molybdenum disulfide (MoS2) monolayers as the n-type material, we get an effective figure of merit (ZT) at least (1.5) with a conversion efficiency of 13% at 280oC. Our results suggest that the integration of various 2-Dimensional materials is a promising approach for commercial thermoelectric power generation applications.

  17. Structural integrity of materials in nuclear service: a bibliography

    International Nuclear Information System (INIS)

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user

  18. Structural integrity of materials in nuclear service: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Heddleson, F.A.

    1977-06-07

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  19. Integrating CAD/CAM in Automation and Materials Handling

    Science.gov (United States)

    Deal, Walter F.; Jones, Catherine E.

    2012-01-01

    Humans by their very nature are users of tools, materials, and processes as a part of their survival and existence. As humans have progressed over time, their civilizations and societies have changed beyond imagination and have moved from hunters and gatherers of food and materials for survival to sophisticated societies with complex social and…

  20. Implicit integration of plasticity models for granular materials

    DEFF Research Database (Denmark)

    Ahadi, A.; Krenk, Steen

    2003-01-01

    A stress integration algorithm for granular materials based on fully implicit integration with explicit updating is presented. In the implicit method the solution makes use of the gradient to the potential surface at the final stress state which is unknown. The final stress and hardening parameters...... are determined solving the non-linear equations iteratively so that the stress increment fulfills the consistency condition. The integration algorithm is applicable for models depending on all the three stress invariants and it is applied to a characteristic state model for granular material. Since...... tensile stresses are not supported the functions and their derivatives are not representative outside the compressive octant of the principal stress space. The elastic predictor is therefore preconditioned in order to ensure that the first predictor is within the valid region. Capability and robustness of...

  1. Structural Integrity Analysis On Superheater Material Of Plt Surabaya

    International Nuclear Information System (INIS)

    Structural integrity analysis on superheater material of PLTU Suralaya has been carried out. Tested material was carbon steel SA 209 T1A and ferritic steel SA 213 T2 based on data specification from PLTU Suralaya. All stages in analysis include collection of operation history background and material specification, visual examination, radiography testing, chemical composition testing, hardness testing and metallography testing. From analysis and testing results, it is shown that material suffered from decarburization on outside surface (00), hardness decrease and pitting corrosion on 00 surface. Primary cause of pipe failure is decarburization due to carbon element inside material that diffuses from inside to OD surface so that microstructure is only pure ferrite

  2. Ultrafast laser inscribed integrated photonics: material science to device development

    Directory of Open Access Journals (Sweden)

    Gross S.

    2013-11-01

    Full Text Available Detailed studies of intense light – material interactions has led to new insights into fs laser induced refractive index change in a range of glass types. This body of knowledge enables the development of advanced processing methodologies, resulting in novel planar and 3D guided wave devices. We will review the chemistry and morphology associated with fs laser induced refractive index change in multi-component glasses such as ZBLAN, phosphates and silicates, and discuss how these material changes inform our research programs developing a range of active and passive lightwave systems.

  3. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS)

    International Nuclear Information System (INIS)

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  4. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  5. Integrating UNESCO ICT-Based Instructional Materials in Chemistry Lessons

    Directory of Open Access Journals (Sweden)

    CHARLIE P. NACARIO

    2014-08-01

    Full Text Available This study determined the effectiveness of the lessons in Chemistry integrating UNESCO ICT-based instructional material on the achievement of Chemistry students at Central Bicol State University of Agriculture. It aimed to identify lessons that may be developed integrating UNESCO ICT-based instructional materials, determine the effect of the developed lessons using the material on: conceptual understanding; science process skills; and attitude towards chemistry and gather insights from the experiences of the students and teacher. The study used the single group pretest and posttest experimental design. Descriptive, quantitative and qualitative techniques were also utilized. Quantitative data were taken from the pretest-posttest results on the Test on Conceptual Understanding, Science Process Skills and Chemistry Attitudinaire. Qualitative data were drawn from the experts’ assessment of the developed lessons and research instruments, and the insights of students and teacher. The developed lessons integrating UNESCO ICT-based instructional materials were Atomic Model and Structure, Periodic Table of Elements, Chemical Bonding, and Balancing Chemical Equation. These lessons increased the conceptual understanding of the students by topic and skill from very low mastery to average mastery level. The students have slightly improved along the different science process skills. After teaching the lessons, the students’ attitude also improved. The students became more motivated and interested in Chemistry and the lessons were student centered and entailed teacher’s competence and flexibility in computer use.

  6. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  7. Securing nuclear materials in a changing world

    International Nuclear Information System (INIS)

    In this paper, the authors review the present stat of nuclear materials safeguards and how these may be reformed in light of the new circumstances in the world. In Section 2, they review the principles that currently guide the application of safeguards and the international coverage provided by the safeguards. In Section 3, they examine the flows of fissile nuclear materials through the civil nuclear fuel cycle and, prospectively, the flow of fissile materials out of dismantled US and former-Soviet nuclear weapons. They show that a substantial fraction of the plutonium in the world's civil fuel cycles is not now under international safeguards. Finally, in Section 4 and 5, they review the range of technical and institutional options that are being considered for securing fissile materials. A primary goal of reforms in nuclear safeguards should be to make their application to civil fuel cycles universal--that is, applying uniformly to both nuclear weapon states (NWS) and non-nuclear weapon states (NNWS). But safeguards by themselves may not be sufficient in an era when far larger quantities of weapons-usable material are being stored and handled in the civil sector. They discuss the safeguards implications of a range of these plutonium management options. 63 refs

  8. Development of integrated platform for computational material design

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshi, Matsubara; Kumi, Itai; Nobutaka, Nishikawa; Akifumi, Kato [Center for Computational Science and Engineering, Fuji Research Institute Corporation (Japan); Hideaki, Koike [Advance Soft Corporation (Japan)

    2003-07-01

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned.

  9. Development of integrated platform for computational material design

    International Nuclear Information System (INIS)

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned

  10. Energy efficiency of buildings with phase-change materials

    Directory of Open Access Journals (Sweden)

    Lukić Predrag

    2012-01-01

    Full Text Available The construction of energy efficient buildings using innovative building materials such as phase change materials, in addition to improving indoor comfort, energy savings and costs, can be achieved by increasing their market value. Because of its ability to absorb and release energy at predictable temperatures, phase change materials are effective in controlling and maintaining the thermal environment in the building. The use of phase changing materials, materials stored latent energy storage is an effective form of heat. [Projekat Ministarstva nauke Republike Srbije, br. TR36016: Experimental and theoretical investigation of frames and plates with semi-rigid connections from the view of the second order theory and stability analysis

  11. Reconstruction of Complex Materials by Integral Geometric Measures

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The goal of much research in computational materials science is to quantify necessary morphological information and then to develop stochastic models which both accurately reflect the material morphology and allow one to estimate macroscopic physical properties. A novel method of characterizing the morphology of disordered systems is presented based on the evolution of a family of integral geometric measures during erosion and dilation operations.The method is used to determine the accuracy of model reconstructions of random systems. It is shown that the use of erosion/dilation operations on the original image leads to a more accurate discrimination of morphology than previous methods.

  12. Shielding integrity testing of radioactive material transport packaging

    International Nuclear Information System (INIS)

    Although this Code of Practice is intended primarily to cover shielding integrity test requirements for off-site shielded radioactive material transport packaging, it may also be partly applicable to containers and specialised handling equipment (e.g. fuelling machines) used only on site, and to radiation shielding generally. The code is not concerned with proving adequacy of shielding design or with its absolute shielding value. (author)

  13. Methods for integrating optical fibers with advanced aerospace materials

    Science.gov (United States)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  14. Drag material change in hot runner injection molding

    Institute of Scientific and Technical Information of China (English)

    蒋炳炎; 黄伯云

    2001-01-01

    Quick material change is often encountered for the different colors or kinds of polymer in hot runner injecting molding process. Time-costing and incompleteness of material change process often affects the quality and productivity of products. In the practical production, multi-injection or white material as the transition material is often adopted for quick material change. Based on the rheological behavior of the new and the previous plastic melt, the researches on the related problems were carried out. The concept of drag material change was originally presented. The physical and mathematical model on the simultaneous flow process of the new and the previous plastic melt in hot runner were built up, which can well explain the influence of the injection speed, pressure, viscosity difference, temperature and mold structure on the drag material change efficiency. When temperature in different position in the mold was increased and adjusted, the viscosity difference between the two kinds of melt can be controlled. Therefore the material change ability can be greatly improved during the whole material change process, getting rid of more and more difficult changing in the late stage.

  15. An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database

    Directory of Open Access Journals (Sweden)

    But Paul

    2010-06-01

    Full Text Available Abstract Background Thousands of plants and animals possess pharmacological properties and there is an increased interest in using these materials for therapy and health maintenance. Efficacies of the application is critically dependent on the use of genuine materials. For time to time, life-threatening poisoning is found because toxic adulterant or substitute is administered. DNA barcoding provides a definitive means of authentication and for conducting molecular systematics studies. Owing to the reduced cost in DNA authentication, the volume of the DNA barcodes produced for medicinal materials is on the rise and necessitates the development of an integrated DNA database. Description We have developed an integrated DNA barcode multimedia information platform- Medicinal Materials DNA Barcode Database (MMDBD for data retrieval and similarity search. MMDBD contains over 1000 species of medicinal materials listed in the Chinese Pharmacopoeia and American Herbal Pharmacopoeia. MMDBD also contains useful information of the medicinal material, including resources, adulterant information, medical parts, photographs, primers used for obtaining the barcodes and key references. MMDBD can be accessed at http://www.cuhk.edu.hk/icm/mmdbd.htm. Conclusions This work provides a centralized medicinal materials DNA barcode database and bioinformatics tools for data storage, analysis and exchange for promoting the identification of medicinal materials. MMDBD has the largest collection of DNA barcodes of medicinal materials and is a useful resource for researchers in conservation, systematic study, forensic and herbal industry.

  16. A Dynamic System to Manage Changes in Course Material

    Science.gov (United States)

    Zaneldin, Essam K.

    2011-01-01

    Purpose: Despite the popularity of existing course management systems, they do not consider the management of course material changes, particularly courses that require more than one instructor. The main purpose of this study is to instantly communicate course material changes to all instructors teaching the same course and to communicate approved…

  17. Evaluation of the integrity of tritium storage vessel material in hydrogen environment

    International Nuclear Information System (INIS)

    The integrity of tritium storage vessel material was evaluated with considering the embrittlement of metal material in hydrogen environment. The tritium storage is one of the most important problems for the safety of tritium removal facility. The research for tritium storage could be divided into two parts, one is for the metal getter of tritium and the other is for the integrity of tritium storage vessel. Especially, the integrity of tritium storage vessel is up to the tritium embrittlement of vessel material, for tritium vessel is mostly made of metal material. In this work, the evaluation of the tritium embrittlement for the tritium storage vessel material is performed with the equipment that is made for high temperature and high vacuum. Hydrogen is used for this work, however, as tritium is the radioactivity material. In this work, carbon steel, austenitic stainless steel (SUS) 304 and 316L was chosen for experiment. The experiment was carried out for the several conditions of temperature and pressure and the time of hydrogen exposure. It is the tensile strength that is the key factor to evaluate the property change of vessel metal material. The obvious gap between SUS 304 and SUS 316L was not revealed, because the austenitic stainless steel is the high hydrogen resistance metal and the experiment condition may be not sufficient to show the difference between SUS 304 and SUS 316L

  18. Climate changes, raw materials shortage, and economic development

    International Nuclear Information System (INIS)

    The possibility of a climate change being brought about by our national economies has dominated the national and international ecopolitical discussion of the past few years like no other topic. The present study is an attempt at an as comprehensive an examination as possible of this problem. It works from the assumption that examining and solving environmental problems requires the cooperation and creativity of investigators from different disciplines. It accordingly develops a concept permitting an integration of scientific, economic, and ethical questions impinging on the problem of the greenhouse effect. Thus the study contributes to the groundwork of an ecological economics. The interdisciplinary approach to analysing the connections between climate changes, raw materials consumption, and economic development is variously seen to pinpoint the complex temporal structure of the problems. It becomes clear that ecopolitical measures take a long time to actually become effective. Besides shifiting the focus to questions as to the scope and limits of politico-economic action, the temporal strucutre of the problem also reveals the limitations of scientifically founded ecopolitical recommendations. This brings the ethical aspect of analysing and solving environmental problems to the fore. (orig./UA)

  19. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  20. Thermal Mass Behaviour of Concrete Panels Incorporating Phase Change Materials

    OpenAIRE

    Niall, Dervilla; West, Roger; MCCORMACK, SARAH; Kinnane, Oliver

    2016-01-01

    Phase Change Materials (PCM) have been incorporated into a range of building envelope materials with varied success. This study investigates two different methods of combining concrete and phase change materials to form PCM/concrete composite panels. The first method involves adding microencapsulated paraffin to fresh concrete during the mixing process. The second method involves vacuum impregnating butyl stearate into lightweight aggregate which is then included in the concrete mix design. T...

  1. Development of Latent Heat Storage Phase Change Material Containing Plaster

    OpenAIRE

    Bajare, Diana; Janis KAZJONOVS; Aleksandrs KORJAKINS

    2016-01-01

    This paper reviews the development of latent heat storage Phase Change Material (PCM) containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another adva...

  2. School integration impacts on residential change: evaluation and tests

    OpenAIRE

    Clark, W.A.V.

    1988-01-01

    The assertions of links between school segregation and segregation in housing are evaluated in a case study of housing patterns and school integration in part of the Los Angeles metropolitan region. The indices of separation/segregation show that although schools in many instances were integrated with voluntary and then mandatory pupil assignments, the housing patterns changed little. However, there was a substantial increase in private school enrollment. This latter response is consistent wi...

  3. Structural integrity of engineering composite materials: a cracking good yarn.

    Science.gov (United States)

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242293

  4. Wafer Fusion for Integration of Semiconductor Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  5. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  6. Integrating scientific, economic, and ecological aspects of global change

    International Nuclear Information System (INIS)

    The MIT Joint Program on the Science and Policy of Global Change is conducting research on methods for integrating the science of potential global change with economic analysis of litigation policies and quantification of economic and environmental impacts. The paper describes this work, with a focus on the way that research within the various contributing disciplines, and the design of their associated models, are influenced by the process of inclusion in an integrated framework for policy analysis. The results should contribute new insight into the relative importance of key feedbacks within the economy-climate-ecology system

  7. An Integrated Analysis of Changes in Water Stress in Europe

    DEFF Research Database (Denmark)

    Henrichs, T.; Lehner, B.; Alcamo, J.

    2002-01-01

    Future changes in water availability with climate change and changes in water use due to socio-economic development are to occur in parallel. In an integrated analysis we bring together these aspects of global change in a consistent manner, and analyse the water stress situation in Europe. We find...... that today high water stress exists in one-fifth of European river basin area. Under a scenario projection, increases in water use throughout Eastern Europe are accompanied by decreases in water availability in most of Southern Europe--combining these trends leads to a marked increase in water stress...

  8. A New Kind of Shape-stabilized Phase Change Materials

    Institute of Scientific and Technical Information of China (English)

    XIAO Liguang; DING Rui; SUN Hao; WANG Fujun

    2011-01-01

    Based on the lowest melting point and Schroeder's theoretical calculation formula, nanomodified organic composite phase change materials (PCMs) were prepared. The phase transition temperature and the latent heat of the materials were 24 ℃ and 172 J/g, respectively. A new shape-stabilized phase change materials were prepared, using high density polyethylene as supporting material. The PCM kept the shape when temperature was higher than melting point. Thus, it can directly contact with heat transfer media. The structure,morphology and thermal behavior of PCM were analyzed by FTIR, SEM and DSC.

  9. History matters: ecometrics and integrative climate change biology

    OpenAIRE

    Polly, P. David; Eronen, Jussi; Fred, Marianne; Dietl, Gregory P.; Mosbrugger, Volker; Scheidegger, Christoph; Frank, David C.; Damuth, John; Stenseth, Nils C.; Fortelius, Mikael

    2011-01-01

    Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which ...

  10. Changing Donor Funding and the Challenges of Integrated HIV Treatment.

    Science.gov (United States)

    Nattrass, Nicoli; Hodes, Rebecca; Cluver, Lucie

    2016-01-01

    Donor financing for HIV prevention and treatment has shifted from supporting disease-specific ("vertical") programs to health systems strengthening ("horizontal") programs intended to integrate all aspects of care. We examine the consequences of shifting resources from three perspectives: first, through a broad analysis of the changing policy context of health care financing; second, through an account of changing priorities for HIV treatment in South Africa; and third, through a description of some clinical consequences that the authors observed in a research study examining adherence to antiretroviral therapy (ART) and sexual health among adolescents. We note that AIDS responses are neither completely vertical nor horizontal but rather increasingly diagonal, as disease-specific protocols operate alongside integrated supply chain management, human resource development, and preventive screening. We conclude that health care programs are better conceived of as networks of policies requiring different degrees of integration into communities. PMID:27437818

  11. Influence of thermal stress on marginal integrity of restorative materials

    Directory of Open Access Journals (Sweden)

    Maximiliano Sérgio Cenci

    2008-04-01

    Full Text Available The aim of this study was to evaluate the influence of thermal stress on the marginal integrity of restorative materials with different adhesive and thermal properties. Three hundred and sixty Class V cavities were prepared in buccal and lingual surfaces of 180 bovine incisors. Cervical and incisal walls were located in dentin and enamel, respectively. Specimens were restored with resin composite (RC; glass ionomer (GI or amalgam (AM, and randomly assigned to 18 groups (n=20 according to the material, number of cycles (500 or 1,000 cycles and dwell time (30 s or 60 s. Dry and wet specimens served as controls Specimens were immersed in 1% basic fuchsine solution (24 h, sectioned, and microleakage was evaluated under x40 magnification. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests: Thermal cycling regimens increased leakage in all AM restorations (p<0.05 and its effect on RC and GI restorations was only significant when a 60-s dwell time was used (p<0.05. Marginal integrity was more affected in AM restorations under thermal cycling stress, whereas RC and GI ionomer restoration margins were only significantly affected only under longer dwell times.

  12. Structural integrity of engineering composite materials: a cracking good yarn

    Science.gov (United States)

    Beaumont, Peter W. R.

    2016-01-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a ‘fracture safe design’ is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242293

  13. National Call for Organizational Change from Sheltered to Integrated Employment

    Science.gov (United States)

    Rogan, Patricia; Rinne, Susan

    2011-01-01

    Our purpose in this article is to contend that organizational change from sheltered to integrated employment is not only possible but necessary, and a federal Employment First agenda must be advanced. Findings are reported from interviews with senior managers from 10 organizations that have shifted their service delivery to community employment,…

  14. Integrating Biopsychosocial Intervention Research in a Changing Health Care Landscape

    Science.gov (United States)

    Ell, Kathleen; Oh, Hyunsung; Wu, Shinyi

    2016-01-01

    Objective: Safety net care systems are experiencing unprecedented change from the "Affordable Care Act," Patient-Centered Medical Home (PCMH) uptake, health information technology application, and growing of mental health care integration within primary care. This article provides a review of previous and current efforts in which social…

  15. Heterogeneous Integration of Materials on Si for Nanophotonics Devices

    Science.gov (United States)

    Assefa, Solomon

    2009-03-01

    Optical interconnects are attractive candidates for achieving communication bandwidth well beyond terabit-per-second for high-performance multi-core microprocessors. Silicon has become a desirable material due to its transparency in the infrared wavelength range and the ease for integrating optical devices at the vicinity of CMOS circuitry utilizing standard processes. While state-of-the-art patterning techniques provide precise dimension control as well as pattern placement, standard doping and metallization steps enable utilization of phenomena such as carrier injection and depletion to render the devices tunable. As a result, large progress has been made on Si-based nanophotonic devices such as modulators, switches, and wavelength division multiplexing (WDM) systems [1, 2]. To make photodetectors, however, a heterogeneous integration of other materials that absorb light in the infrared is necessary. Available in standard front-end CMOS processes for gate strain engineering, Germanium is suitable due to its high absorption coefficient at 1.3μm and 1.5μm wavelengths. Thus, Ge can be directly integrated into the process to fabricate compact photodetectors simultaneously with amplifier circuits in order to make a receiver for an optical network. Nevertheless, the integration of Ge photodetector into the CMOS process flow is very challenging due to process complexity and severe temperature constraints; as a result, photodetectors fabricated only after completing the front-end processes have been previously demonstrated. This talk will discuss Ge waveguide photodetectors that have been integrated into the front-end before the activation of CMOS well implants. By utilizing a lateral seeded crystallization method wherein the Ge waveguides are melted during high-temperature dopant activation, 20μm-long single-crystal Ge-on-insulator waveguides were formed. This approach eliminates the need for selective epitaxial growth of Ge, and avoids high-density misfit

  16. Thermal analysis of metal foam matrix composite phase change material

    Science.gov (United States)

    Song, Xiange

    2015-06-01

    In this paper, CPCM (Composite Phase Change Material) was manufactured with metal foam matrix used as filling material. The temperature curves were obtained by experiment. The performance of heat transfer was analyzed. The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability. The thermal performance of CPCM is significantly improved. The efficiency of temperature control can be obviously improved by adding metal foam in phase change material. CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin. An approximate plateau appears. The plateau can be considered as the temperature control zone of CPCM. Heat can be transferred from hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability. Natural convection promotes the melting of solid-liquid phase change material. Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material. The interior temperature difference decreases and the whole temperature becomes more uniform. For the same porosity with a metal foam, melting time of solid-liquid phase change material decreases. Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller. The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces. The research results can be used to guide fabricating the CPCM.

  17. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design

  18. Oscillating adiabatic temperature change of 2D diamagnetic materials

    International Nuclear Information System (INIS)

    Studies on magnetocaloric effect generally concern ferromagnetic materials, due to their high magnetocaloric potential near phase transitions. Recently, this effect on diamagnetic materials was explored and oscillations on the entropy change observed as a consequence of the crossing of the Landau levels through the Fermi energy. The present paper explores the adiabatic temperature change in graphenes and thin films of non-relativistic diamagnetic materials and then compares the results with those from 3D diamagnets. Applying 10 T of magnetic field, the temperature change of a gold thin film reaches 1 K, while for bulk gold the temperature change is smaller than 6 mK. For graphenes, the temperature change reaches 4 K with a field of ∼1 T. - Highlights: • We studied magnetocaloric properties of 2D diamagnetic materials. • Temperature change of low-dimensional materials exhibits an oscillating behavior. • The effect of scattering from impurity in graphene strongly reduces the temperature change. • We propose an application involving field sensors

  19. Phase change materials and the perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  20. INTEGRATED DEVELOPMENT OF CHEMICAL TEACHING MATERIALS ON MATERIAL BASED THERMOCHEMICAL SOFT SKILLS FOR VOCATIONAL STUDENTS

    Directory of Open Access Journals (Sweden)

    S. D. Purnawan

    2015-11-01

    Full Text Available Business and industrial field need workers who have not only good academic achievement but also the ability of hard skills and soft skills.  In order to prepare students who have a good academic skills, hard skills, soft skills it has to be done in all subjects including chemistry expertise to integrate the competencies of Motorcycle Engineering.  The research design uses One Group Pretest Posttest Design imposed on students in class XI SMK 1 Kedung TSM. Validator assessment results indicate that teaching materials developed very feasible for use in learning chemistry.  The result show that the learning device by using the integrated chemistry materials can increase students understanding of the thermo chemistry material with the acquisition of N-gain is at 0.63 or in the medium category.  Group of high-achieving students have the score of N-gain of 0.65, while the medium-achieving students get 0.63 and low-achieving students get 0.61, all have medium category.  Percentage  of students who passes the mastery learning  if mastery learning (KKM > 75 or reach 87 %.  The percentage of students’ soft skills in at least good criteria is at 87.10 %.  Students gave positive responses  90.71 % towards the learning material that is developed.

  1. Nuclear material data management and integration. A safeguard perspective

    International Nuclear Information System (INIS)

    This paper is a discussion of the use of available data in the performance of nuclear material (NM) safeguards. The discussion considers the various sources of data and system requirements for collecting and managing that data, and is preliminary concerned with domestic safeguards requirements such as those specified by the US Department of Energy. The preferred configuration for integrated data management does not necessarily require a single computer system; however, separate computerized systems with direct inter-system connections is preferred. Use of all relevant data NM accounting, NM control, physical protection, and non-safeguards) is necessary to assure the most effective protection for the NM inventories. Where direct exchange of data is not possible, a systematic program to implement indirect exchange is essential

  2. Temperature reduction due to the application of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Conrad; Kornadt, Oliver [Department of Building Physics, Bauhaus-University Weimar, Coudraystrasse 11a, 99423 Weimar (Germany); Ostry, Milan [Faculty of Civil Engineering, Brno University of Technology, Department of Building Structures, Veveri 95, 602 00 Brno (Czech Republic)

    2008-07-01

    Overheating is a major problem in many modern buildings due to the utilization of lightweight constructions with low heat storing capacity. A possible answer to this problem is the emplacement of phase change materials (PCM), thereby increasing the thermal mass of a building. These materials change their state of aggregation within a defined temperature range. Useful PCM for buildings show a phase transition from solid to liquid and vice versa. The thermal mass of the materials is increased by the latent heat. A modified gypsum plaster and a salt mixture were chosen as two materials for the study of their impact on room temperature reduction. For realistic investigations, test rooms were erected where measurements were carried out under different conditions such as temporary air change, alternate internal heat gains or clouding. The experimental data was finally reproduced by dint of a mathematical model. (author)

  3. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  4. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  5. Photonic non-volatile memories using phase change materials

    OpenAIRE

    Pernice, Wolfram; Bhaskaran, Harish

    2012-01-01

    We propose an all-photonic, non-volatile memory and processing element based on phase-change thin-films deposited onto nanophotonic waveguides. Using photonic microring resonators partially covered with Ge2Sb2Te5 (GST) multi-level memory operation in integrated photonic circuits can be achieved. GST provides a dramatic change in refractive index upon transition from the amorphous to crystalline state, which is exploited to reversibly control both the extinction ratio and resonance wavelength ...

  6. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)

    2009-01-01

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  7. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr; Reynolds, Daniel R.

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  8. Integrated Decision Support for Global Environmental Change Adaptation

    Science.gov (United States)

    Kumar, S.; Cantrell, S.; Higgins, G. J.; Marshall, J.; VanWijngaarden, F.

    2011-12-01

    Environmental changes are happening now that has caused concern in many parts of the world; particularly vulnerable are the countries and communities with limited resources and with natural environments that are more susceptible to climate change impacts. Global leaders are concerned about the observed phenomena and events such as Amazon deforestation, shifting monsoon patterns affecting agriculture in the mountain slopes of Peru, floods in Pakistan, water shortages in Middle East, droughts impacting water supplies and wildlife migration in Africa, and sea level rise impacts on low lying coastal communities in Bangladesh. These environmental changes are likely to get exacerbated as the temperatures rise, the weather and climate patterns change, and sea level rise continues. Large populations and billions of dollars of infrastructure could be affected. At Northrop Grumman, we have developed an integrated decision support framework for providing necessary information to stakeholders and planners to adapt to the impacts of climate variability and change at the regional and local levels. This integrated approach takes into account assimilation and exploitation of large and disparate weather and climate data sets, regional downscaling (dynamic and statistical), uncertainty quantification and reduction, and a synthesis of scientific data with demographic and economic data to generate actionable information for the stakeholders and decision makers. Utilizing a flexible service oriented architecture and state-of-the-art visualization techniques, this information can be delivered via tailored GIS portals to meet diverse set of user needs and expectations. This integrated approach can be applied to regional and local risk assessments, predictions and decadal projections, and proactive adaptation planning for vulnerable communities. In this paper we will describe this comprehensive decision support approach with selected applications and case studies to illustrate how this

  9. Integrating climate change into agricultural research for development in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Chambwera, Muyeye; Anderson, Simon

    2011-09-15

    African agriculture is already struggling to meet increasing demand for food. Climate change, which will alter agroecological conditions and looks set to arrest and decrease agricultural yields on the continent, will make it even harder to achieve food security. Boosting agricultural productivity in Africa, especially in the face of climate change, cannot be achieved without the benefits of cutting edge science. Advances in technology development and transfer, capacity building and policy research must be harnessed by developing and disseminating relevant strategies and technologies, and improving policy environments. The European Initiative for Agricultural Research for Development (EIARD), which facilitates and coordinates European policy and support for agricultural research for development, must integrate climate change into its activities and ensure that agricultural research for development and climate change adaptation are not disjointed. This demands a more strategic and coordinated approach from the initiative — one that reflects African realities, responds to African priorities for adaptation and development, and makes the best use of limited resources.

  10. Integrating IT and change management : A benefits analysis

    OpenAIRE

    Tunedal, Lenny

    2009-01-01

    IT as an enabler, by obtaining benefits to an organization, was the coherent apprehension behind the purchase of the Enterprise Resource System R/3 by Ericsson in 1997. Public Networks, a 33.000 worker’s division at Ericsson, have had profitability problems during the recent years prior to the purchase. By integrating R/3 with an organizational change, the management aimed to obtain foreseen benefits, such as headcount reduction and shorter lead times. This thesis shows in theory as in practi...

  11. Integrated science model for assessment of climate change. Revision 1

    International Nuclear Information System (INIS)

    Past measurements show that greenhouse gas concentrations, many of which are affected by human related activities, are increasing in the atmosphere. There is wide consensus that this increase influences related activities, are increasing the earth's energy balance and concern that this will cause significant change in climate. Many different policies could be adopted in response to the prospects of greenhouse warming. Models are used by policy markers to analyze the range of possible policy options developed as a response to concerns about climate change. A fully integrated assessment model that spans the many aspects of climate change, including economics, energy options, effects of climate, and impacts of climate change, would be a useful tool. With this goal in mind, the science modules which estimate the effect of emissions of greenhouse gasses on global temperature and sea level are being developed. This is a report of the current characteristics and performance of an Integrated Science Model which consists of coupled modules for carbon cycle, atmospheric chemistry of other trace gases, radiative forcing by greenhouse gases, energy balance model for global temperature, and a model for sea level response

  12. Development of an integrated system for nuclear material accountancy and control at JAERI

    International Nuclear Information System (INIS)

    This paper describes the design concept and the current status of an integrated system for nuclear material accountancy and control, which is under development at JAERI. We, at JAERI, have decided to update the current system for material accountancy and control and to develop the integrated new system with a consolidated data base in order to augment transparency, credibility and promptness of the system, to materialize a prudent control of obligations required by bilateral nuclear cooperation agreements, and to give information for the physical protection, safely handling, property control and cost-effective use of nuclear material and for public relations. The system is composed of two work-stations operated by UNIX, one for implementation and the other for development, and many terminals located at the headquarters, administrative offices, and research facilities and laboratories. It is connected with a mainframe computer. There are many files on the data base to record inventory changes, book and physical inventories, and statistics on material balances. These files are controlled by a commercial data base management system which enables us to make access to data on the files with a simple query language, spread sheet type software or an application program. (author)

  13. Materials research for passive solar systems: solid-state phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Webb, J.D.; Burrows, R.W.; McFadden, J.D.O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C/sub 5/H/sub 12/O/sub 4/), pentaglycerinve (C/sub 5/H/sub 12/O/sub 3/), and neopentyl glycol (C/sub 5/H/sub 12/O/sub 2/). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature betweeen 25/sup 0/C and 188/sup 0/C, and have latent heats of transformation between 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier. Nevertheless, a higher cost of the phase-change materials (approx. =$0.70 per pound) is likely to limit their applicability in passive solar systems unless their performance can be significantly improved through further research.

  14. Lightweight Phase-Change Material For Solar Power

    Science.gov (United States)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  15. Phase-change materials to improve solar panel's performance

    OpenAIRE

    Biwolé, Pascal; Eclachec, Pierre; Kuznik, Frédéric

    2013-01-01

    High operating temperatures induce a loss of efficiency in solar photovoltaic and thermal panels. This paper investigates the use of phase-change materials (PCM) to maintain the temperature of the panels close to ambient. The main focus of the study is the computational fluid dynamics (CFD) modeling of heat and mass transfers in a system composed of an impure phase change material situated in the back of a solar panel (SP). A variation of the enthalpy method allows simulating the thermo-physi...

  16. The Partnership between Project Management and Organizational Change: Integrating Change Management with Change Leadership

    Science.gov (United States)

    Griffith-Cooper, Barber; King, Karyl

    2007-01-01

    The nature of project management is change. Even though all knowledge areas in the Project Management Body of Knowledge (PMBOK) are rooted in controlling change, none of these areas specifically addresses the human elements of change. There is a significant distinction between directly controlling change relative to the nonhuman aspects of a…

  17. The socio-materiality of designing organizational change

    DEFF Research Database (Denmark)

    Stang Våland, Marianne; Georg, Susse

    2014-01-01

    and organizational change in the context of physically relocating an organization to a new office building. Emphasis is given to the socio-materiality of this double design process. Findings – The data suggests that taking a design attitude toward managing organizational change can allow different actors......Purpose – The purpose of this paper is to examine the managerial implications of adopting a design attitude to organizational change. Design/methodology/approach – Based on an ethnographic study of a merger, the paper investigates the intricate interplay between architectural design...... to participate in organizational design processes, releasing management from its traditional role as the keeper of the design solution. Research limitations/implications – Although based on a single case, the paper provides insights into the socio-materiality of organizational change that is relevant in other...

  18. Parametric Integral Equations Systems Method In Solving Unsteady Heat Transfer Problems For Laser Heated Materials

    Directory of Open Access Journals (Sweden)

    Sawicki Dominik

    2015-09-01

    Full Text Available One of the most popular applications of high power lasers is heating of the surface layer of a material, in order to change its properties. Numerical methods allow an easy and fast way to simulate the heating process inside of the material. The most popular numerical methods FEM and BEM, used to simulate this kind of processes have one fundamental defect, which is the necessity of discretization of the boundary or the domain. An alternative to avoid the mentioned problem are parametric integral equations systems (PIES, which do not require classical discretization of the boundary and the domain while being numerically solved. PIES method was previously used with success to solve steady-state problems, as well as transient heat transfer problems. The purpose of this paper is to test the efficacy of the PIES method with time discretization in solving problem of laser heating of a material, with different pulse shape approximation functions.

  19. 75 FR 69078 - Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA)

    Science.gov (United States)

    2010-11-10

    ... AGENCY Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA) AGENCY... a workshop to evaluate initial draft materials for the Pb Integrated Science Assessment (ISA) is... within each discipline to assist EPA in integrating within and across disciplines. This workshop...

  20. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  1. The texture changes of surface layer during material transfer in tribological pair: carbon material - steel

    International Nuclear Information System (INIS)

    Often in the areas of dry friction and solid lubrication a material transfer occurs. On both surfaces: bearing bush and journal there is formed a transfer film strongly adhering to the substrate. Owing to friction phenomena the structure of subsurface zone is changed. The reflected beam Schulz method measurements revealed that the changes refer to texture of subsurface zone too. (author)

  2. Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Gregory A.

    2014-02-01

    A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

  3. Phase change memory materials, composition, structure and properties

    Czech Academy of Sciences Publication Activity Database

    Frumar, M.; Frumarová, Božena; Wágner, T.; Přikryl, J.; Hrdlička, M.

    Darwin : Charles Darwin University, 2006. ID8-ID8. [International Conference on Optical and Optoelectronic Properties of Materials and Applications 2006. 16.06.2006-20.06.2006, Darwin ] R&D Projects: GA ČR GA203/06/0627 Keywords : phase change memory Subject RIV: CA - Inorganic Chemistry

  4. Structure and Non-Stoichiometry in Phase - Change Memory Materials

    Czech Academy of Sciences Publication Activity Database

    Frumar, M.; Wágner, T.; Přikryl, J.; Hromádko, L.; Němec, P.; Frumarová, Božena

    Chandigarh: Department of Physics Panjab University Chandigarh 160014, India , 2011. s. 15. [International Conference on Advances in Condensed and Nano Materials. 23.02.2011-26.02.2011, Chandigarh] Institutional research plan: CEZ:AV0Z40500505 Keywords : phase change memeory Subject RIV: CA - Inorganic Chemistry

  5. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  6. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  7. State of the art on phase change material slurries

    International Nuclear Information System (INIS)

    Highlights: ► A bibliographic study on PCM slurries. ► Clathrate Hydrate slurry, Microencapsulated PCM Slurry, shape-stabilized PCM slurries and Phase Change Material Emulsions. ► Formation, thermo-physical, rheological, heat transfers properties and applications of these four PCS systems. ► The use of thermal energy storage and distribution based on PCM slurries can improve the refrigerating machine performances. - Abstract: The interest in using phase change slurry (PCS) media as thermal storage and heat transfer fluids is increasing and thus leading to an enhancement in the number of articles on the subject. In air-conditioning and refrigeration applications, PCS systems represent a pure benefit resulting in the increase of thermal energy storage capacity, high heat transfer characteristics and positive phase change temperatures which can occur under low pressures. Hence, they allow the increase of energy efficiency and reduce the quantity of thermal fluids. This review describes the formation, thermo-physical, rheological, heat transfer properties and applications of four PCS systems: Clathrate hydrate slurry (CHS), Microencapsulated Phase Change Materials Slurry (MPCMS), shape-stabilized PCM slurries (SPCMSs) and Phase Change Material Emulsions (PCMEs). It regroups a bibliographic summary of important information that can be very helpful when such systems are used. It also gives interesting and valuable insights on the choice of the most suitable PCS media for laboratory and industrial applications.

  8. Development of an integrated system for nuclear material accountancy and control at JAERI

    International Nuclear Information System (INIS)

    The paper describes the design concept and the current status of an integrated system for nuclear material accountancy and control which is under development at Japan Atomic Energy Research Institute (JAERI). JAERI has decided to update the current system for material accountancy and control and to develop the integrated new system with a consolidated database in order to augment transparency, credibility, promptness and flexibility of the system in accordance with the strengthening and streamlining of IAEA safeguards, to realize prudent control of obligations required by bilateral nuclear co-operation agreements, and to provide information on the physical protection, safe handling, property control and cost effective use of nuclear material, also for public relations. The system is composed of two workstations using the UNIX operating system - one for implementation and the other for development purposes - and many terminals, located at the headquarters, administrative offices, and research facilities and laboratories. The system is also connected with a mainframe computer. There are many files on the database to record inventory changes, book and physical inventories, and statistics on material balances. These files are controlled by a commercially available database management system which permits access to data on the files with a simple query language, spread sheet type software or application programs. (author). 1 fig

  9. Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...

  10. Integrated infrastructure initiatives for material testing reactor innovations

    International Nuclear Information System (INIS)

    Highlights: → The EU FP7 MTR+I3 project has initiated a durable cooperation between MTR operators. → Improvements in irradiation test device technology and instrumentation were achieved. → Professional training efforts were streamlined and best practices were exchanged. → A framework has been set up to coordinate and optimize the use of MTRs in the EU. - Abstract: The key goal of the European FP6 project MTR+I3 was to build a durable cooperation between Material Testing Reactor (MTR) operators and relevant laboratories that can maintain European leadership with updated capabilities and competences regarding reactor performances and irradiation technology. The MTR+I3 consortium was composed of 18 partners with a high level of expertise in irradiation-related services for all types of nuclear plants. This project covered activities that foster integration of the MTR community involved in designing, fabricating and operating irradiation devices through information exchange, know-how cross-fertilization, exchanges of interdisciplinary personnel, structuring of key-technology suppliers and professional training. The network produced best practice guidelines for selected irradiation activities. This project allowed to launch or to improve technical studies in various domains dealing with irradiation test device technology, experimental loop designs and instrumentation. Major results are illustrated in this paper. These concern in particular: on-line fuel power determination, neutron screen optimization, simulation of transmutation process, power transient systems, water chemistry and stress corrosion cracking, fission gas measurement, irradiation behaviour of electronic modules, mechanical loading under irradiation, high temperature gas loop technology, heavy liquid metal loop development and safety test instrumentation. One of the major benefits of this project is that, starting from a situation of fragmented resources in a strongly competitive sector, it has

  11. Current religious changes in Serbia and integration in Europe

    Directory of Open Access Journals (Sweden)

    Blagojević Mirko V.

    2006-01-01

    Full Text Available In the last decade and a half the process of desecularization has been undoubtedly verified in Serbia. Not only that the changes have been verified in the religious complex in general, but in traditional religious groups in particular as well. The revival of religiousness and people’s attachment to religion and church have been clearly proved in all aspects of religious life: in the areas of religious identification, doctrinaire religious beliefs and ritual religious practices. It should also be noted that in times of extremely turbulent political and social changes in the Balkans, all traditional religious complexes, orthodox, catholic and Muslim, began forming close ties with political and state, public and binding domains, which was absolutely unthinkable of a decade and a half ago. Which leads us to the crucial question: can religion make a contribution to the process of integration coming form the surrounding countries as the imperative of foreign powers on one hand, and as the striving of the majority of population in all the post socialist countries in the Balkans on the other hand, or will it only cause damage and interfere with the process of integration of those societies into the European commonwealth of nations? This article discusses different opinions that view the traditional complexes of religion, language and nation as disruptive factors of modernization of the Balkan countries, as well as completely opposite opinions based on the experiences of traditional Islamic societies in which religion is not a factor that hinders their rapid modernization.

  12. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  13. Changes of properties of the materials of spacecraft solar arrays under the action of atomic oxygen

    Science.gov (United States)

    Shuvalov, V. A.; Kochubei, G. S.; Priimak, A. I.; Pis'mennyi, N. I.; Tokmak, N. A.

    2007-08-01

    A procedure is developed for physical and chemical modeling and investigation of the weight, geometrical, and thermo-optical characteristics of polymer paneling materials of solar arrays and of the electric power of solar cells under the prolonged action of supersonic fluxes of atomic oxygen in orbit. The behavior of changes in the material characteristics as a function of the integral fluence of atomic oxygen is found. It is established that the electric power of solar cells is virtually invariable within the errors of measurements under irradiation by atomic oxygen flux with a fluence of no higher than 5 · 1021 cm-2.

  14. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    Science.gov (United States)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  15. A Gibbs Formulation for Reactive Materials with Phase Change

    Science.gov (United States)

    Stewart, D. Scott

    2015-11-01

    A large class of applications have pure, condensed phase constituents that come into contact, chemically react and simultaneously undergo phase change. Phase change in a given molecular material has often been considered to be separate from chemical reaction. Continuum modelers of phase change often use a phase field model whereby an indicator function is allowed to change from one value to another in regions of phase change, governed by evolutionary (Ginzburg-Landau) equations, whereas classic chemical kinetics literally count species concentrations and derive kinetics evolution equations based on species mass transport. We argue the latter is fundamental and is the same as the former, if all species, phase or chemical are treated as distinct chemical species. We pose a self-consistent continuum, thermo-mechanical model to account for significant energetic quantities with correct molecular and continuum limits in the mixture. A single stress tensor, and a single temperature is assumed for the mixture with specified Gibbs potentials for all relevant species, and interaction energies. We discuss recent examples of complex reactive material modeling, drawn from thermitic and propellant combustion that use this new model. DSS supported by DTRA, ONR and AFOSR.

  16. Structural integrity of engineering components made of functionally graded materials

    OpenAIRE

    Oyekoya, Oyedele O.

    2008-01-01

    Functionally graded materials (FGM) are composite materials with microstructure gradation optimized for the functioning of engineering components. For the case of fibrous composites, the fibre density is varied spatially, leading to variable material properties tailored to specific optimization requirements. There is an increasing demand for the use of such intelligent materials in space and aircraft industries. The current preferred methods to study engineering components made...

  17. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  18. Change of the magnetocapacitance ratio in ferromagnetic materials

    Science.gov (United States)

    Lee, Seong Noh; Shim, In-Bo

    2015-06-01

    The magnetostriction effect, the change in the mechanical properties of a magnetic material in an external magnetic field, has been studied for possible technological applications such as actuators. We present the fabrication of a multilayered magnetocapacitor containing magnetic layers of Ni0.98Co0.02Fe2O4 (NCFO) and compare it with our prior magnetocapacitor in which CoFe2O4 (CFO) and CoNiFe (CNF) were used as the magnetic layers. In particular, we measured the surface/interface microstructures and the change in the lattice constant of the BaTiO3 (BTO) film in NCFO/BTO/NCFO, CFO/BTO/CFO, and CNF/BTO/CNF multilayered thin films. Our study suggests that there is a correlation exists between the magnetocapacitance and the lattice constant of BTO, which varies with the type of ferromagnetic (FM) material embedded in the magnetic layer.

  19. Design and Implementation of a Computerized Integrated Nuclear Material Accounting System for Egypt

    International Nuclear Information System (INIS)

    As a vital requirement and to facilitate secure information and data handling, a computerized Integrated nuclear material Accounting System on the State level (IASS) is designed and implemented. The main objective of the system is to maintain, retrieve and provide complete information for the Nuclear Material (NM) data under control in Egypt in an accurate and efficient way. The data include NM weights, inventory, inventory changes, locations, and material description and all relevant operating and accounting records and reports. Accounting records and reports are generated by the system with the advantages of time-effort-saving, human error avoidance, NM balance matching among different facilities and Locations Outside Facilities (LOFs) and operator data evaluation. The integration of multi-origin information is very important in the sense that it verifies data matching and allows automatic reconciliation. The system is controlled by a main computer (server) with multi-terminals. A system security is achieved allowing authorized access not only to the system, but to specific data as well. The whole network is fully monitored by an interrogated surveillance system. Ongoing work is also considered and being implemented to improve system security through data encryption. (author)

  20. Toward an Evolutive and Tightly Integrated Information System for Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    Dessoude, O. [Euriware (Areva Group), 25 avenue de Tourville, Equeurdreville, 50100 (France)

    2009-06-15

    From a nuclear materials management standpoint, spent-fuel recycling is considered a very challenging activity. This challenge has its positive counterpart as a lot has been learned from confronting a large variety of nuclear materials, complex material transfers and transformations. Since the inception of its computerized nuclear materials management system, AREVA NC La Hague has relied upon its IT subsidiary EURIWARE for software design and development. In 2003, the founding milestone was the implementation of the new GMP software package (Gestion des Matieres et des Produits - Materials and Products Management). GMP was underpinned by the following principles: reliability, transparency and close integration with the process control layer, so as to mitigate human errors and keep the management process smooth and efficient. In 2005, another major milestone was reached with CMNR (Comptabilite des Matieres Nucleaires Reglementaire - Regulatory Nuclear Materials Accountancy), a system in charge of local accounting and multi-site consolidation at corporate level. In spite of an auspicious start, GMP came up against the same stumbling block as many information systems: the multiplication of interfaces and technologies (entropy increasing over time). For the sake of maintenance, evolutions and performance, AREVA has decided a progressive modernization of its Nuclear Materials Management (NMM) information system. The underlying principle is a clear separation between the main functions: - Physical Follow-up, performed at the plant-level, - Regulatory Accountancy (for IRSN, EURATOM and IAEA safeguards), offering consolidation at the corporate level, - Patrimonial Accountancy (allocation of materials and conditioned wastes to AREVA's customers). The pivotal piece of this multi-year programme is the implementation of a dedicated data repository. We describe its main building blocks and demonstrate how it helps in managing changes to regulation, products, customers and

  1. Enhanced laminated composite phase change material for energy storage

    International Nuclear Information System (INIS)

    This paper summarises studies undertaken towards the development of a laminated composite aluminium/hexadecane phase change material (PCM) drywall based on previous analytical work. The study also covered the selection and testing of various types of adhesive materials and identified Polyvinyl acetate (PVA) material as a suitable bonding material. For the purpose of comparison pure hexadecane and composite aluminium/hexadecane samples were developed and tested. The test results revealed faster thermal response by the aluminium/hexadecane sample regarding the rate of heat flux and also achieved about 10% and 15% heat transfer enhancements during the charging and discharging periods respectively. Its measured effective thermal conductivity also increased remarkably to 1.25 W/mK as compared with 0.15 W/mK for pure hexadecane. However there was about 5% less total cumulative thermal energy discharged at the end of the test which indicates that its effective thermal capacity was reduced by the presence of the aluminium particles. The study has shown that some of the scientific and technical barriers associated with the development of laminated composite PCM drywall systems can be overcome but further investigations of effects of adhesive materials are needed.

  2. Parametric assessment of climate change impacts of automotive material substitution.

    Science.gov (United States)

    Geyer, Roland

    2008-09-15

    Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction. PMID:18853818

  3. EPR-based material modelling of soils considering volume changes

    Science.gov (United States)

    Faramarzi, Asaad; Javadi, Akbar A.; Alani, Amir M.

    2012-11-01

    In this paper an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR), taking into account its volumetric behaviour. EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial test are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well known conventional material models. In particular, the capability of the developed EPR models in predicting volume change behaviour of soils is illustrated. It is also shown that the developed EPR-based material models can be incorporated in finite element (FE) analysis. Two geotechnical examples are presented to verify the developed EPR-based FE model (EPR-FEM). The results of the EPR-FEM are compared with those of a standard FEM where conventional constitutive models are used to describe the material behaviour. The results show that EPR-FEM can be successfully employed to analyse geotechnical engineering problems. The advantages of the proposed EPR models are highlighted.

  4. Photonic non-volatile memories using phase change materials

    CERN Document Server

    Pernice, Wolfram

    2012-01-01

    We propose an all-photonic, non-volatile memory and processing element based on phase-change thin-films deposited onto nanophotonic waveguides. Using photonic microring resonators partially covered with Ge2Sb2Te5 (GST) multi-level memory operation in integrated photonic circuits can be achieved. GST provides a dramatic change in refractive index upon transition from the amorphous to crystalline state, which is exploited to reversibly control both the extinction ratio and resonance wavelength of the microcavity with an additional gating port in analogy to optical transistors. Our analysis shows excellent sensitivity to the degree of crystallization inside the GST, thus providing the basis for non-von Neuman neuromorphic computing.

  5. Photonic non-volatile memories using phase change materials

    Science.gov (United States)

    Pernice, Wolfram H. P.; Bhaskaran, Harish

    2012-10-01

    We propose an all-photonic, non-volatile memory, and processing element based on phase-change thin-films deposited onto nanophotonic waveguides. Using photonic microring resonators partially covered with Ge2Sb2Te5 (GST) multi-level memory operation in integrated photonic circuits can be achieved. GST provides a dramatic change in refractive index upon transition from the amorphous to crystalline state, which is exploited to reversibly control both the extinction ratio and resonance wavelength of the microcavity with an additional gating port in analogy to optical transistors. Our analysis shows excellent sensitivity to the degree of crystallization inside the GST, thus providing the basis for non-von Neumann neuromorphic computing.

  6. Support Materials Development and Integration for Ultrasonic Consolidation

    OpenAIRE

    Swank, Matthew L.

    2010-01-01

    Support materials play a vital role across the entire field of additive manufacturing (AM) technologies. They are essential to provide the ability to create complex structures and features using AM. Successful implementation of support materials in ultrasonic consolidation (UC) will provide a vast opportunity for improvement of geometric complexity. Experimentation was performed to evaluate suitable support materials and their effectiveness within UC. Additionally a fused deposition model...

  7. Analysis of microencapsulated phase change material slurries and phase change material emulsions as heat transfer fluid and thermal storage material

    OpenAIRE

    Delgado Gracia, Mónica; Zalba Nonay, Belen; Lázaro Fernández, Ana

    2013-01-01

    La presente tesis doctoral trata el análisis de suspensiones y emulsiones de materiales de cambio de fase para su uso como fluido caloportador y material de almacenamiento térmico. El interés de la tesis nace de la actual conyuntura energética. Dentro de la línea de búsqueda de un modelo energético sostenible, el almacenamiento térmico de energía contribuye a la utilización eficiente de la energía. Las aplicaciones del almacenamiento térmico de energía mediante cambio de fase sólido-líquido s...

  8. Improved data for integrated modeling of global environmental change

    Science.gov (United States)

    Lotze-Campen, Hermann

    2011-12-01

    The assessment of global environmental changes, their impact on human societies, and possible management options requires large-scale, integrated modeling efforts. These models have to link biophysical with socio-economic processes, and they have to take spatial heterogeneity of environmental conditions into account. Land use change and freshwater use are two key research areas where spatial aggregation and the use of regional average numbers may lead to biased results. Useful insights can only be obtained if processes like economic globalization can be consistently linked to local environmental conditions and resource constraints (Lambin and Meyfroidt 2011). Spatially explicit modeling of environmental changes at the global scale has a long tradition in the natural sciences (Woodward et al 1995, Alcamo et al 1996, Leemans et al 1996). Socio-economic models with comparable spatial detail, e.g. on grid-based land use change, are much less common (Heistermann et al 2006), but are increasingly being developed (Popp et al 2011, Schneider et al 2011). Spatially explicit models require spatially explicit input data, which often constrains their development and application at the global scale. The amount and quality of available data on environmental conditions is growing fast—primarily due to improved earth observation methods. Moreover, systematic efforts for collecting and linking these data across sectors are on the way (www.earthobservations.org). This has, among others, also helped to provide consistent databases on different land cover and land use types (Erb et al 2007). However, spatially explicit data on specific anthropogenic driving forces of global environmental change are still scarce—also because these cannot be collected with satellites or other devices. The basic data on socio-economic driving forces, i.e. population density and wealth (measured as gross domestic product per capita), have been prepared for spatially explicit analyses (CIESIN, IFPRI

  9. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold.

    Science.gov (United States)

    Crowley, Claire; Klanrit, Poramate; Butler, Colin R; Varanou, Aikaterini; Platé, Manuela; Hynds, Robert E; Chambers, Rachel C; Seifalian, Alexander M; Birchall, Martin A; Janes, Sam M

    2016-03-01

    Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of increasing surface porosity, thus providing additional opportunities for improved cellular and vascular ingrowth. We assess the effect of the porogens on the material's mechanical strength, surface chemistry, wettability and cytocompatibilty. Surface porosity was characterized by scanning electron microscopy (SEM). There was no alteration in surface chemistry and wettability and only modest changes in mechanical properties were detected. The size of porogens correlated well with the porosity of the construct produced and larger porogens improved interconnectivity of spaces within constructs. Using primary human bronchial epithelial cells (HBECs) we demonstrate moderate in vitro cytocompatibility for all surface modifications; however, larger pores resulted in cellular aggregation. These cells were able to differentiate on POSS-PCU scaffolds. Implantation of the scaffold in vivo demonstrated that larger pore sizes favor cellular integration and vascular ingrowth. These experiments demonstrate that surface modification with large porogens can improve POSS-PCU nanocomposite scaffold integration and suggest the need to strike a balance between the non-porous surfaces required for epithelial coverage and the porous structure required for integration and vascularization of synthetic scaffolds in future construct design. PMID:26790147

  10. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold

    Science.gov (United States)

    Crowley, Claire; Klanrit, Poramate; Butler, Colin R.; Varanou, Aikaterini; Platé, Manuela; Hynds, Robert E.; Chambers, Rachel C.; Seifalian, Alexander M.; Birchall, Martin A.; Janes, Sam M.

    2016-01-01

    Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of increasing surface porosity, thus providing additional opportunities for improved cellular and vascular ingrowth. We assess the effect of the porogens on the material's mechanical strength, surface chemistry, wettability and cytocompatibilty. Surface porosity was characterized by scanning electron microscopy (SEM). There was no alteration in surface chemistry and wettability and only modest changes in mechanical properties were detected. The size of porogens correlated well with the porosity of the construct produced and larger porogens improved interconnectivity of spaces within constructs. Using primary human bronchial epithelial cells (HBECs) we demonstrate moderate in vitro cytocompatibility for all surface modifications; however, larger pores resulted in cellular aggregation. These cells were able to differentiate on POSS-PCU scaffolds. Implantation of the scaffold in vivo demonstrated that larger pore sizes favor cellular integration and vascular ingrowth. These experiments demonstrate that surface modification with large porogens can improve POSS-PCU nanocomposite scaffold integration and suggest the need to strike a balance between the non-porous surfaces required for epithelial coverage and the porous structure required for integration and vascularization of synthetic scaffolds in future construct design. PMID:26790147

  11. Porous MgO material with ultrahigh surface area as the matrix for phase change composite

    International Nuclear Information System (INIS)

    Highlights: • Porous MgO material with ultrahigh surface area was synthesized. • A composite PCM was prepared from PEG-1000 and the porous MgO. • The phase change temperatures and enthalpy of the composite were measured. • The composite PCM performed good shape-stabilized property. - Abstract: Mesoporous magnesium oxide (MgO) material was synthesized using an integration of the evaporation-induced surfactant assembly and magnesium nitrate pyrolysis. The as-prepared MgO material is well crystalline, and possesses three-dimensional interconnected mesopores and a surface area as high as 596 m2/g. Using the porous MgO as a matrix and polyethylene glycol (PEG-1000) as the functional phase for heat energy storage, a shape-stabilized phase change composite of PEG/MgO was fabricated by an easy impregnation method. In the composite, mesoporous MgO material provides structural strength and prevents the leakage of the molten PEG during the phase change process. The compositions and microstructures of the PEG/MgO composite were determined by Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD), scanning electronic microscope (SEM) and thermogravimetric analyzer (TGA), respectively. The phase change properties of the PEG/MgO composite were determined by differential scanning calorimeter (DSC). The high heat-energy storage capability and good thermal stability of the composite enable it extensive applications in the future

  12. Silicon integrated circuits advances in materials and device research

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Silicon Integrated Circuits, Part B covers the special considerations needed to achieve high-power Si-integrated circuits. The book presents articles about the most important operations needed for the high-power circuitry, namely impurity diffusion and oxidation; crystal defects under thermal equilibrium in silicon and the development of high-power device physics; and associated technology. The text also describes the ever-evolving processing technology and the most promising approaches, along with the understanding of processing-related areas of physics and chemistry. Physicists, chemists, an

  13. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  14. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    Science.gov (United States)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters

  15. Climate change and local pollution effects. An integrated approach

    International Nuclear Information System (INIS)

    Few studies on measures for mitigation of damage caused by man-made emissions to the environment have tried to consider all major effects. We illustrate the importance of an integrated approach by estimating costs and benefits of a proposed energy saving program for Hungary, originally designed to reduce CO2 emissions. The dominant benefit of implementing the program is likely to be reduced health damage from local pollutants. Also reduced costs of material damage and to a lesser extent vegetation damage contribute to make the net benefit considerable. Compared to the reduction in these local and regional effects, the benefits from reducing greenhouse gases are likely to be minor. Since local effects in general occur much earlier after measures have been implemented than effects of increased emissions of greenhouse gases, inclusion of local effects makes evaluation of climate policy less dependent on the choice of discount rate. In our opinion, similar results are likely for many measures originally designed to reduce emissions of greenhouse gases particularly in some areas in developing countries with high local pollution levels. Main uncertainties in the analysis, e.g. in the relationships between damage and pollution level, are discussed. 72 refs

  16. Uncertainty propagation within an integrated model of climate change

    International Nuclear Information System (INIS)

    This paper demonstrates a methodology whereby stochastic dynamical systems are used to investigate a climate model's inherent capacity to propagate uncertainty over time. The usefulness of the methodology stems from its ability to identify the variables that account for most of the model's uncertainty. We accomplish this by reformulating a deterministic dynamical system capturing the structure of an integrated climate model into a stochastic dynamical system. Then, via the use of computational techniques of stochastic differential equations accurate uncertainty estimates of the model's variables are determined. The uncertainty is measured in terms of properties of probability distributions of the state variables. The starting characteristics of the uncertainty of the initial state and the random fluctuations are derived from estimates given in the literature. Two aspects of uncertainty are investigated: (1) the dependence on environmental scenario - which is determined by technological development and actions towards environmental protection; and (2) the dependence on the magnitude of the initial state measurement error determined by the progress of climate change and the total magnitude of the system's random fluctuations as well as by our understanding of the climate system. Uncertainty of most of the system's variables is found to be nearly independent of the environmental scenario for the time period under consideration (1990-2100). Even conservative uncertainty estimates result in scenario overlap of several decades during which the consequences of any actions affecting the environment could be very difficult to identify with a sufficient degree of confidence. This fact may have fundamental consequences on the level of social acceptance of any restrictive measures against accelerating global warming. In general, the stochastic fluctuations contribute more to the uncertainty than the initial state measurements. The variables coupling all major climate elements

  17. Integrating behavior change theory into geriatric case management practice.

    Science.gov (United States)

    Enguidanos, S

    2001-01-01

    Case management practices have continued to grow despite a lack of clear evidence of their efficacy. With the expanding segment of the elderly population, there is a critical need to develop and identify programs that will address the many needs of the aging. Geriatric Case Management has been the avenue selected by many health care providers to address these issues, focusing on maintaining health status and improving linkages with medical and community resources. Studies testing the effectiveness of these models have failed to demonstrate their effectiveness in reducing depression, reducing acute care service use, and improving or maintaining health status. The Geriatric Case Management models presented in these lack an evidence-based, theoretical framework that provides definition and direction for case management practice. This article introduces behavior change theories as a method of structuring and delineating the case management intervention. The Transtheoretical Model and the Theory of Planned Behavior are discussed and methods of integrating these theories into practice are discussed. PMID:11878076

  18. Integration, Identity and Participation in a Changing Europe

    Directory of Open Access Journals (Sweden)

    Marius Tătar

    2010-12-01

    Full Text Available The paper analyzes the prospects of building European identity in the changing environment of the EU enlargements. Drawing on data from Eurobarometer surveys, the study specifically looks at citizens’ perceptions and images of EU and their availability to participate in European affairs. The article points out different views about the meanings and expectations regarding the EU project. Although both national and international contexts play a significant role in fostering specific representations of EU, there is no clear-cut divide between the citizens of “old” and “new” Member States (MS. Instead, one can notice a more complex picture in terms of identification with the EU. In general, people from different MS tend to feel on average more attachment to their country (and sometimes to their own village/town/city than to the EU. Moreover, individuals from “old” MS do not necessarily have higher levels of attachment to the symbols of EU than those living in “new” MS. In addition, the level of effective knowledge on how EU actually works remains at relatively low rates throughout Europe, regardless of a country’s date of accession to the EU. Consequently, the socialization effects of the European integration process seem to remain weak in terms of fostering the emergence of European identity.

  19. A THIRD WAY: ONLINE LABS INTEGRATED WITH PRINT MATERIALS

    Directory of Open Access Journals (Sweden)

    Roger Falmer

    2012-07-01

    Full Text Available Abstract: The use of ICT in language education to enhance classroom-based instruction is examined in reference to blended learning. A blended model of integrating technological advances via an online lab with a face-to-face classroom environment is presented. The example of this operating in practice is iZone, a four-level print-digital series designed with the online component called MyiZoneLab at its heart, forming a cohesive and inseparable whole with its accompanying texts. Overcoming the limitations of classroom-only instruction is a particular strength of advances in computer technology. Delivering a unified body of content through different mediums is in effect a third way, neither just online nor simply in class, and this newer model has the capability to fully exploit and reinforce the advantages of each separate medium. Online access via a web browser may make good on the promise of studying whenever the learner desires, wherever they happen to be. To this movement towards flexibility in time and place is added a further ingredient, that of choice in self-study or learning with others, and of matching the time the individual spends on tasks to their needs. Integration and inseparability are inherent in this blended model, unleashing the potentiality of technological developments in language education while seeking to transcend the either online or face-to-face learning dichotomy. Keywords: ICT (Information and Communications Technology, blended learning; online labs, F2F (face-to-face, integration

  20. 49 CFR 192.909 - How can an operator change its integrity management program?

    Science.gov (United States)

    2010-10-01

    ... Transmission Pipeline Integrity Management § 192.909 How can an operator change its integrity management... 49 Transportation 3 2010-10-01 2010-10-01 false How can an operator change its integrity management program? 192.909 Section 192.909 Transportation Other Regulations Relating to...

  1. Post-material values and environmental policy change

    Energy Technology Data Exchange (ETDEWEB)

    Watts, N. (International Inst. for Environmental and Society, Berlin, Germany); Wandesforde-Smith, G.

    Environmental policy may be particularly suited as a vehicle to articulate post-material values in advanced industrial societies, and recognition of this is likely to prove enormously helpful in future comparative and cross-national research into the origins of environmentalism and the causes of environmental policy change. The paper notes the salient characteristics of post-materialism and the overlap of these with the leading indicators of environmentalism. Possible structural causes for this overlap are noted and opposed to the prevailing socialization explanation for the adoption of post-material and environmental values. To help understand the impact of environmentalism on policy, an idealized development of the movement is sketched. This leads to the description of a set of general factors likely to be related to the way environmentalism finds political expressions in various countries. In the final section, the focus is on what we might want to know about the policy process in order to be able to gauge environmentalist influence on policy outputs. 20 references.

  2. Performance Evaluation of Neutron Absorption Materials with Temperature Change

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Some of these facilities are operated at higher than room temperature, thus the neutron absorption material can be directly affected by the surrounding environment where the temperature is not maintained in a constant condition. Meanwhile, a nucleus in an atom is continuously vibrated with the thermal energy, after which there arises a range of relative speeds between a neutron and the nucleus, even for a fixed neutron speed. At higher temperature, the random motion of the nucleus reproduces new resonance with a lower and broader peak, i.e., Doppler broadening of a resonance, and the capture cross section of neutron is revised. Therefore, the performance of neutron absorption materials may vary with a change of temperature. In this study, the absorption abilities of three kinds of neutron absorbers generally used in the reactor core were analyzed at a range of temperatures from 293.6K to 584K. As a result, the neutron absorption abilities for B{sup 4}C and Ag-In-Cd do not vary with the change of temperature, while that for Gd{sup 2}O{sup 3} absorbers was shown to be decreased approximately 3% with reference to that at 293.6K in the temperature range between the 293.6K and 584K. This phenomenon of the Gd{sup 2}O{sup 3} absorber seems to be caused by the Doppler broadening of the neutron absorption cross-section. Therefore, it is expected that the effect of material temperature on the neutron absorption performance is needed to be considered in the design of nuclear reactor and the analysis of radiation shielding.

  3. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  4. Electronic transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  5. Inductively coupled plasma etching for phase-change material with superlattice-like structure in phase change memory device

    International Nuclear Information System (INIS)

    Phase change material with superlattice-like structure (SLL) is one of the most emerging materials for phase change memory device. A rough etching profile, isotropic, and serious surface damage limit the application of the conventional lift-off process. A well controlled etching process to achieve high etch rate, smooth surface, vertical and nanometer-sized pattern for SLL is required for the mass production of the phase change memory devices. In this study, the etch rates, surface roughness and sidewall angles of SLL GeTe/Sb2Te3 films were investigated by the inductively coupled plasma etching process with various etch parameters including gas ratio, chamber pressure, bias power and coil radio frequency (RF) power. The etch selectivity of SLL to SiO2 and to photo-resist were characterized. The X-ray photoelectron spectroscopy (XPS) of etched surfaces confirmed the etch mechanism of the SLL films in Cl2/Ar chemistry. 86 nm-sized patterns of SLL were fabricated using optimized etching parameters. In addition, an etched SLL film was integrated into a “T” type PCRAM cell, with a 50 nm feature size. This cell operated successfully and a RESET current of only 145 μA was obtained.

  6. Maintenance modeling and optimization integrating human and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Martorell, S., E-mail: smartore@iqn.upv.e [Dpto. Ingenieria Quimica y Nuclear, Universidad Politecnica Valencia (Spain); Villamizar, M.; Carlos, S. [Dpto. Ingenieria Quimica y Nuclear, Universidad Politecnica Valencia (Spain); Sanchez, A. [Dpto. Estadistica e Investigacion Operativa Aplicadas y Calidad, Universidad Politecnica Valencia (Spain)

    2010-12-15

    Maintenance planning is a subject of concern to many industrial sectors as plant safety and business depend on it. Traditionally, the maintenance planning is formulated in terms of a multi-objective optimization (MOP) problem where reliability, availability, maintainability and cost (RAM+C) act as decision criteria and maintenance strategies (i.e. maintenance tasks intervals) act as the only decision variables. However the appropriate development of each maintenance strategy depends not only on the maintenance intervals but also on the resources (human and material) available to implement such strategies. Thus, the effect of the necessary resources on RAM+C needs to be modeled and accounted for in formulating the MOP affecting the set of objectives and constraints. In this paper RAM+C models to explicitly address the effect of human resources and material resources (spare parts) on RAM+C criteria are proposed. This extended model allows accounting for explicitly how the above decision criteria depends on the basic model parameters representing the type of strategies, maintenance intervals, durations, human resources and material resources. Finally, an application case is performed to optimize the maintenance plan of a motor-driven pump equipment considering as decision variables maintenance and test intervals and human and material resources.

  7. Maintenance modeling and optimization integrating human and material resources

    International Nuclear Information System (INIS)

    Maintenance planning is a subject of concern to many industrial sectors as plant safety and business depend on it. Traditionally, the maintenance planning is formulated in terms of a multi-objective optimization (MOP) problem where reliability, availability, maintainability and cost (RAM+C) act as decision criteria and maintenance strategies (i.e. maintenance tasks intervals) act as the only decision variables. However the appropriate development of each maintenance strategy depends not only on the maintenance intervals but also on the resources (human and material) available to implement such strategies. Thus, the effect of the necessary resources on RAM+C needs to be modeled and accounted for in formulating the MOP affecting the set of objectives and constraints. In this paper RAM+C models to explicitly address the effect of human resources and material resources (spare parts) on RAM+C criteria are proposed. This extended model allows accounting for explicitly how the above decision criteria depends on the basic model parameters representing the type of strategies, maintenance intervals, durations, human resources and material resources. Finally, an application case is performed to optimize the maintenance plan of a motor-driven pump equipment considering as decision variables maintenance and test intervals and human and material resources.

  8. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    OpenAIRE

    Dér, A; Fábián, L.; Valkai, S.; Wolff, E.; Ramsden, Jeremy J.; Ormos, P.

    2006-01-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in in...

  9. "Green" Counseling: Integrating Reused Household Materials into Creative Counseling Interventions

    Science.gov (United States)

    Adamson, Nicole A.; Kress, Victoria E.

    2011-01-01

    The use of reused or recycled materials in counseling interventions provides counselors with an opportunity to use unique counseling mediums while simultaneously being socially and fiscally responsible. In this article, ways that reused or recycled items can be used in counseling are discussed. Practical suggestions for using reused or recycled…

  10. Selection and performance assessment of Phase Change Materials for heating, ventilation and air-conditioning applications

    International Nuclear Information System (INIS)

    Highlights: • Performance evaluation of commercialized Phase Change Materials for building applications. • Selection and assessment by Multiple Criteria Decision Making (MCDM) approach. • Ranking of the commercialized Phase Change Materials (PCMs). • Simulation of top performing PCM using PCMExpress Valentin Energy Software. - Abstract: The rapid commercialization of Phase Change Materials (PCMs) for heating, ventilation and air-conditioning (HVAC) applications, has paved way for effective utilization of ambient thermal fluctuations. However, given a long list of contemporary candidates, it is crucial to select the best material to obtain maximum efficiency for any given application. This article attempts to extend Multiple Criteria Decision Making (MCDM) approach for ranking and selecting PCMs for domestic HVAC application. Firstly, Ashby approach has been employed for determining two novel figure of merits (FOM) to grade PCMs performance. The FOMs thus obtained were subjected to Pareto Optimality test. The graded materials were ranked using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The relative weights for the different attributes were calculated using Shannon’s entropy method. In order to justify the rankings obtained, the top materials were subjected to a standard simulation study to evaluate their relative performance using PCMExpress with the aim of maintaining human comfort temperature. It was observed that the results obtained by simulation are in good agreement with those obtained using MCDM approach. The candidates with the best ranks showed significant improvement in ameliorating the temperature conditions. Thus it can be concluded that integration of MCDM approach for PCMs selection would prove to an economical and swift alternative technique for ranking and screening of materials

  11. Enhancing Security of Nuclear Material - An Integrated Approach

    International Nuclear Information System (INIS)

    The French nuclear security authority has four main missions. First of all, the nuclear security authority is in charge of elaborating and maintaining the legal and regulatory framework for the protection of nuclear material, in facilities and during transport against malevolent actions. And that is what we have been doing for more than forty years of French nuclear program development. Secondly, the authority is responsible for enforcing the regulation for the protection of nuclear material and their facilities. We are in charge of licensing all the nuclear activities: storage, use, transport, import, export or transfer of nuclear materials prior any operation involving nuclear material. Controlling activities is a corner stone of the competent authority missions. Controlling activities relies not only on regular on-site inspections (either announced or unannounced) in order to verify that conditions set in license are correctly implemented by the operators, but also by means of assessment of the files submitted by the licensees to demonstrate that their security systems are designed and implemented or modified in compliance with regulatory requirements. Third pillar of control lies in supervision of drills and exercises to ensure that people involved in response to security events are duly trained, fulfill their missions appropriately, but also that organizations are fully functional, security response provisions and capabilities are correctly designed and that coordination between actors is adequate. In this area, the nuclear security authority organizes three national drills per year covering transports, nuclear material inventories and recovery and attempt of sabotage of a facility. At last, the legal framework empowers the authority to detect and record violations of law and regulation and to start proceedings, in both penal and administrative terms, against any offender

  12. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity and...... specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture....... Finally, a theoretical calculation methodology of thermal conductivity for PCM-concrete mixes is developed....

  13. Fabrication and integration of permanent magnet materials into MEMS transducers

    Science.gov (United States)

    Wang, Naigang

    Microscale permanent magnets (PM) are a key building block for magnetically based microelectromechanical systems (MEMS), such as sensors, actuators, and energy converters. However, the inability to concurrently achieve good magnetic properties and an integrated magnet fabrication process hinders the development of magnetic MEMS. To address this need, this dissertation develops methods for wafer-level microfabrication of thick (10--500+ microm), high-performance, permanent magnets using low-temperature (electrodynamic transducer prototypes. A cantilever-type microtransducer achieves a 2.7 microm vertical deflection at a driving current of 5.5 mArms at 100 Hz. A piston-type transducer with elastomeric membrane obtains a 2.2 microm vertical displacement at a driving current of 670 mArms at 200 Hz. These devices demonstrate the integrability of wax-bonded Nd-Fe-B powder magnets into microscale electromechanical transducers. Electromechanical lumped element models are then developed for the piston-type electrodynamic actuators. The models enable prediction of the device performance as an electroacoustic actuator (microspeaker) and as a mechanoelectrical generator (vibrational energy harvester). Then, both the acoustic and energy harvesting performance of the prototype transducers are experimentally measured to verify the LEM models. The validated models provide a design tool for further design and development of these types of micromagnetic MEMS devices.

  14. Integrating Simulation and Data for Materials in Extreme Environments

    Science.gov (United States)

    Germann, Timothy

    2014-03-01

    We are using large-scale molecular dynamics (MD) simulations to study the response of nanocrystalline metals such as tantalum to uniaxial (e.g., shock) compression. With modern petascale-class platforms, we are able to model sample sizes with edge lengths over one micrometer, which match the length and time scales experimentally accessible at Argonne's Advanced Photon Source (APS) and SLAC's Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, as well as outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. The current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach. I will demonstrate this approach and our initial assessments, using the newly emerging capabilities at new 4th generation synchrotron light sources as an experimental driver.

  15. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  16. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    Science.gov (United States)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  17. Plastic phase change material and articles made therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Abhari, Ramin

    2016-04-19

    The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds are provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.

  18. Cooling of mobile electronic devices using phase change materials

    International Nuclear Information System (INIS)

    An experimental study is conducted on the cooling of mobile electronic devices, such as personal digital assistants (PDAs) and wearable computers, using a heat storage unit (HSU) filled with the phase change material (PCM) of n-eicosane inside the device. The high latent heat of n-eicosane in the HSU absorbs the heat dissipation from the chips and can maintain the chip temperature below the allowable service temperature of 50 deg. C for 2 h of transient operations of the PDA. The heat dissipation of the chips inside a PDA and the orientation of the HSU are experimentally investigated in this paper. It was found that different orientation of the HSU inside the PDA could affect significantly the temperature distribution

  19. Integrating climate change into governance at the municipal scale

    DEFF Research Database (Denmark)

    Wejs, Anja

    2014-01-01

    traditions and perceptions. This article examines dif- ferent approaches to CC governance and the institutional dynamics that occur in the integration process within eight Danish municipalities in the initial phase of integrating CC. The results show three different governance approaches related to climate...

  20. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  1. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  2. Influence of material composition on thermal expansion of graphitic materials and changes under fast neutron irradiation

    International Nuclear Information System (INIS)

    The influence of the binder coke content and graphitization temperature on thermal expansion of graphite were investigated. Property correlations such as of anisotropy with real density or coefficient of volume thermal expansion have been found. An important part of this paper deals with the irradiation induced changes of thermal expansion. Interpretations of the irradiation behaviour base on the influence of material composition and heat treatment procedure. Measurements of lattice spacings were performed using high temperature X-ray diffractometer equipment in order to calculate the lattice expansion in c-direction for an estimation of its contribution to the expansion of the bulk material. Corresponding measurements were also performed on neutron irradiated graphite specimens. (orig./GSC)

  3. Analysis of wallboard containing a phase change material

    Science.gov (United States)

    Tomlinson, J. J.; Heberle, D. P.

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, and to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application.

  4. Integrity evaluation project for nuclear materials and components

    International Nuclear Information System (INIS)

    A test loop has been designed to check electrochemical properties and it can control flow velocity, dissolved oxygen, pH and temperature of the coolant. The piping material of the loop is AISI 316L stainless steel and it will be tested in the range of 150-270 .deg. C and designed to 300 .deg. C for the safety of the system. Its maximum pressure is 1,000 psi and can be operated in the range of pH 7.0-10.5 and dissolved oxygen 1-100 ppb. The flow velocity can be controlled up to 10 m/s. Some major items have been purchased and a test section has been manufactured in 2011. Other items will be prepared and the test loop will be made by the first half of 2012. Corrosion tests of SA 106 Gr. B performed using static autoclave system at the condition of pH 7, 8, 9, 10, 150 .deg. C, O2. Various sources of error occurred in high temperature thickness measurement were reviewed. In order to develop a high temperature thickness measurement technique, a proto-type shear horizontal waveguide was designed and fabricated. The ultrasonic signals with shear mode piezoelectric ultrasonic transducers showed enough SN ratio. This technique will be applied to an actual FAC mockup after experiment with various high temperatures conditions. The basic mechanisms and models on FAC phenomena was studied for pipe materials and FAC estimation programs was reviewed which was used in nuclear power plants. CHECWORKS program was mostly used for FAC mangement including Korea, it is revewed on the FAC evaluation process and the applications of this code. The improvement method was considered to use the FAC evaluation program with effective and easy usage for domestic NPPs

  5. Research on phase-change material building mass applied in the air-conditioning field

    Institute of Scientific and Technical Information of China (English)

    YANQuanying

    2003-01-01

    Phase-change material building mass contains phase-change matenals. It can decrease air-conditioning load and indoor temperature fluctuations, and improve comfort degree in summer because of thermal storage property of phase-change material. Thereby, the scale, initial investment and operational cost of air-conditioning system decrease effectively. The indoor surroundings improve. In this paper, suitable phase-change material used in architecture and combination mode between phase change material and architectural material were studied. By considering the properties of materials, such as phase-change temperature, phase-change latent heat, thermal conductivity and expansion coefficient, phase-change materials were selected and evaluated. Combination mode between phase-change material and architectural material were provided. The influence of phase-change material structure on thermal performance in room and energy-saving effect were analyzed and compared with traditional structure without phase-change material. It is proved that phase-change material structure is feasible in the practical engineenng. These provide the basis for developing phase-change material building mass.

  6. Changes in electrical transport and density of states of phase change materials upon resistance drift

    International Nuclear Information System (INIS)

    Phase-change memory technology has become more mature in recent years. But some fundamental problems linked to the electrical transport properties in the amorphous phase of phase-change materials still need to be solved. The increase of resistance over time, called resistance drift, for example, poses a major challenge for the implementation of multilevel storage, which will eventually be necessary to remain competitive in terms of high storage densities. To link structural properties with electrical transport, a broader knowledge of (i) changes in the density of states (DoS) upon structural relaxation and (ii) the influence of defects on electrical transport is required. In this paper, we present temperature-dependent conductivity and photo-conductivity measurements on the archetype phase change material GeTe. It is shown that trap-limited band transport at high temperatures (above 165 K) and variable range hopping at low temperatures are the predominating transport mechanism. Based on measurements of the temperature dependence of the optical band gap, modulated photo-conductivity and photo-thermal deflection spectroscopy, a DoS model for GeTe was proposed. Using this DoS, the temperature dependence of conductivity and photo-conductivity has been simulated. Our work shows how changes in the DoS (band gap and defect distributions) will affect the electrical transport before and after temperature-accelerated drift. The decrease in conductivity upon annealing can be explained entirely by an increase of the band gap by about 12%. However, low-temperature photo-conductivity measurements revealed that a change in the defect density may also play a role

  7. Lorenzo Lotto's painting materials: an integrated diagnostic approach

    Science.gov (United States)

    Amadori, Maria Letizia; Poldi, Gianluca; Barcelli, Sara; Baraldi, Pietro; Berzioli, Michela; Casoli, Antonella; Marras, Susanna; Pojana, Giulio; Villa, Giovanni C. F.

    2016-07-01

    This paper presents the results of a comprehensive diagnostic investigation carried out on five paintings (three wood panels and two paintings on canvas) by Lorenzo Lotto, one of the most significant artists of the Italian Renaissance in the first half of 16th century. The paintings considered belong to 1508-1522 period, corresponding to the most significant years of Lotto's evolution. A wide array of non-invasive (reflectance spectrometry and X-ray fluorescence) and micro-invasive analytical techniques (optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, micro-FTIR spectroscopy, micro-Raman spectroscopy, gas chromatography coupled with mass spectrometry and high performance liquid chromatography coupled with photodiode array detection and mass spectrometry) were applied in order to provide a large set of significant data, limiting as much as possible the sampling. This study has proved that Lotto's painting palette was typical of Venetian practice of that period, but some significant peculiarities emerged: the use of two kinds of red lakes, the addition of calcium carbonate and colourless powdered glass, the latter frequently found in pictorial and ground layers. Moreover, the integrated investigation showed that Lotto's technique was sometimes characterized by the use of coloured priming and multi-layer sequences with complex mixtures. Chromatographic analyses allowed to identify in all specimens: azelaic, palmitic and stearic acids, generally referring to the presence of drying oils. The extension of additional non-invasive examination to about 50 paintings by the same author, spanning from 1505 to around 1556, helped to verify the evolution in the use of some pigments, such as the yellow ones, where Pb-Sb yellow was used alongside Pb-Sn yellow.

  8. Lorenzo Lotto's painting materials: an integrated diagnostic approach.

    Science.gov (United States)

    Amadori, Maria Letizia; Poldi, Gianluca; Barcelli, Sara; Baraldi, Pietro; Berzioli, Michela; Casoli, Antonella; Marras, Susanna; Pojana, Giulio; Villa, Giovanni C F

    2016-07-01

    This paper presents the results of a comprehensive diagnostic investigation carried out on five paintings (three wood panels and two paintings on canvas) by Lorenzo Lotto, one of the most significant artists of the Italian Renaissance in the first half of 16th century. The paintings considered belong to 1508-1522 period, corresponding to the most significant years of Lotto's evolution. A wide array of non-invasive (reflectance spectrometry and X-ray fluorescence) and micro-invasive analytical techniques (optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, micro-FTIR spectroscopy, micro-Raman spectroscopy, gas chromatography coupled with mass spectrometry and high performance liquid chromatography coupled with photodiode array detection and mass spectrometry) were applied in order to provide a large set of significant data, limiting as much as possible the sampling. This study has proved that Lotto's painting palette was typical of Venetian practice of that period, but some significant peculiarities emerged: the use of two kinds of red lakes, the addition of calcium carbonate and colourless powdered glass, the latter frequently found in pictorial and ground layers. Moreover, the integrated investigation showed that Lotto's technique was sometimes characterized by the use of coloured priming and multi-layer sequences with complex mixtures. Chromatographic analyses allowed to identify in all specimens: azelaic, palmitic and stearic acids, generally referring to the presence of drying oils. The extension of additional non-invasive examination to about 50 paintings by the same author, spanning from 1505 to around 1556, helped to verify the evolution in the use of some pigments, such as the yellow ones, where Pb-Sb yellow was used alongside Pb-Sn yellow. PMID:27089184

  9. An integrated approach to process information, nuclear materials control and accounting in BNFL's Thorp facility

    International Nuclear Information System (INIS)

    The paper describes the integrated computer control system on British Nuclear Fuels' new Thermal Oxide Reprocessing Plant at Sellafield. It explains the hierarchical structure and the role of the major components. The paper provides an outline description of the conventional Nuclear Materials Control and Accountancy and the on-line Near Real Time Materials Accountancy Systems

  10. Considerations on material composition for low-loss hollow-core integrated optical waveguides

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, H.J.W.M.; Groesen, van E.

    2006-01-01

    The role of cladding bilayer material compositions to obtain low-loss hollow-core integrated optical waveguides was studied. Using the simple Fresnel reflection formulae, the optimal material composition was determined. It is shown that using bilayers with higher index-contrast does not always lead

  11. An integrated, probabilistic framework for requirement change impact analysis

    OpenAIRE

    Simon Lock; Gerald Kotonya

    1999-01-01

    Impact analysis is an essential part of change management. Without adequate analysis it is not possible to confidently determine the extent, complexity and cost of proposed changes to a software system. This diminishes the ability of a developer or maintainer to make informed decisions regarding the inclusion or rejection of proposed changes. The lack of coherent impact analysis can also hinder the process of ensuring that all system components affected by a change are updated. The abstract n...

  12. The application of J integral to measure cohesive laws in materials undergoing large scale yielding

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios

    2015-01-01

    We explore the possibility of determining cohesive laws by the J-integral approach for materials having non-linear stress-strain behaviour (e.g. polymers and composites) by the use of a DCB sandwich specimen, consisting of stiff elastic beams bonded to the non-linear test material, loaded with pure...... bending moments. For a wide range of parameters of the non-linear material, the plastic unloading during crack extension is small, resulting in J integral values (fracture resistance) that deviate maximum 15% from the work of the cohesive traction. Thus the method can be used to extract the cohesive laws...

  13. Analysis of functional relationships of integrated management system of material resources

    OpenAIRE

    Степаненко, Тетяна Олегівна

    2015-01-01

    This article deals with the problem of improving the management of material resources of the enterprise in the current economic conditions. The article analyzes the functional structure of the integrated management оf material resources with the help of the functional review and method SIPOC. The methodical approach to the optimization was based on method reengineering.The need of research is due to a number of problems identified in the systems of material management of domestic enterprises:...

  14. Integrated Regional Assessment of Climate Change for Korean River Basins

    Science.gov (United States)

    Chang, H.; Franczyk, J.; Bae, D.; Jung, I.; Kwon, W.; Im, E.

    2006-12-01

    As the first national assessment, we investigated the potential impacts of climate change on water resources in the Korean peninsula that has varying climates and complex topography. Together with the precipitation runoff modeling system model, we used high resolution climate change scenarios and population and industrial growth scenarios for 2030. Climate change alone is projected to decrease mean annual runoff by 10% in four major river basins located in southern Korea. Summer floods and spring droughts are likely to occur more frequently at the sub-basin scale, suggesting the increasing vulnerability of regional water resources to climate change. When climate change scenarios are combined with population and industrial growth scenarios, the geographical variations of water stress increased. This necessitates the need for water allocation among different water users under the changing environment. A tool is being developed to address optimizing water allocation under changes in water availability for a selected basin of Korea.

  15. The Complexity of Integrity Culture Change: A Case Study of a Liberal Arts College

    Science.gov (United States)

    Bertram Gallant, Tricia

    2007-01-01

    The concept of academic integrity has been resurrected in both literature and practice in response to a perceived problem of student academic dishonesty. Most specifically, academic integrity advocates suggest changing the student academic culture to normalize academic integrity and reduce occurrences of academic dishonesty. Theories of…

  16. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  17. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  18. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  19. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    Science.gov (United States)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented. PMID:24866174

  20. Integrated Theory of Health Behavior Change: Background and Intervention Development

    OpenAIRE

    Ryan, Polly

    2009-01-01

    An essential characteristic of advanced practice nurses is the use of theory in practice. Clinical nurse specialists apply theory in providing or directing patient care, in their work as consultants to staff nurses, and as leaders influencing and facilitating system change. Knowledge of technology and pharmacology has far outpaced knowledge of how to facilitate health behavior change, and new theories are needed to better understand how practitioners can facilitate health behavior change. In ...

  1. How well do integrated assessment models simulate climate change?

    NARCIS (Netherlands)

    van Vuuren, D.P.; Lowe, J.; Stehfest, E.; Gohar, L.; Hof, Andries; Hope, C.; Warren, R.; Meinshausen, M.; Plattner, G.K.

    2011-01-01

    Integrated assessment models (IAMs) are regularly used to evaluate different policies of future emissions reductions. Since the global costs associated with these policies are immense, it is vital that the uncertainties in IAMs are quantified and understood. We first demonstrate the significant spre

  2. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    OpenAIRE

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively...

  3. Interdisciplinary Climate Change Curriculum Materials based on the Next Generation Science Standards and The Earth Charter

    Science.gov (United States)

    Barbosa, A.; Robertson, W. H.

    2013-12-01

    In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change

  4. Therapeutic Enactment: Integrating Individual and Group Counseling Models for Change

    Science.gov (United States)

    Westwood, Marvin J.; Keats, Patrice A.; Wilensky, Patricia

    2003-01-01

    The purpose of this article is to introduce the reader to a group-based therapy model known as therapeutic enactment. A description of this multimodal change model is provided by outlining the relevant background information, key concepts related to specific change processes, and the differences in this model compared to earlier psychodrama…

  5. Climate Change and Poverty : An Integrated Strategy for Adaptation

    OpenAIRE

    Cord, Louise; Hull, Catherine; Hennet, Christel; Van der Vink, Gregory

    2008-01-01

    Developing countries are most exposed to the impact of climate change and within these countries, the poor face the brunt of the burden. Climate change is not a discrete problem that can be dealt with through isolated reforms: impacting economic growth, health, and institutional capacity, it represents a full-frontal challenge to development. This note traces the multi-dimensional impacts ...

  6. Integrated Product Service Offerings for rail infrastructure : benefits and challenges regarding knowledge transfer and cultural change in a Swedish case

    OpenAIRE

    Lingegård, Sofia; Lindahl, Mattias

    2015-01-01

    The aim of this paper is to investigate potential benefits and challenges regarding knowledge transfer and cultural change from the provider and buyer perspectives when using IPSOs for Swedish rail infrastructure. Considering material use and the importance of availability of the tracks makes rail infrastructure an interesting candidate for a business model based on a life-cycle approach, which can result in a reduction in cost and environmental impact. The concept of the Integrated Product S...

  7. Structural Change and Trade Integration on EU-NIS Borders

    OpenAIRE

    Peter Havlik

    2007-01-01

    This paper investigates the process of trade integration between the enlarged European Union and the Newly Independent States (NIS), focusing on the new EU member states (NMS) and selected NIS (Russia, Ukraine, Belarus, Moldova and Kazakhstan). The paper analyses the evolution of the regional and commodity composition of trade in the countries concerned. A detailed market share analysis reveals the emerging trade specialization patterns. There has been a general trade reorientation of both NM...

  8. Integrated Methodology for Information System Change Control Based on Enterprise Architecture Models

    Directory of Open Access Journals (Sweden)

    Pirta Ruta

    2015-12-01

    Full Text Available The information system (IS change management and governance, according to the best practices, are defined and described in several international methodologies, standards, and frameworks (ITIL, COBIT, ValIT etc.. These methodologies describe IS change management aspects from the viewpoint of their particular enterprise resource management area. The areas are mainly viewed in a partly isolated environment, and the integration of the existing methodologies is insufficient for providing unified and controlled methodological support for holistic IS change management. In this paper, an integrated change management methodology is introduced. The methodology consists of guidelines for IS change control by integrating the following significant resource management areas – information technology (IT governance, change management and enterprise architecture (EA change management. In addition, the methodology includes lists of controls applicable at different phases. The approach is based on re-use and fusion of principles used by related methodologies as well as on empirical observations about typical IS change management mistakes in enterprises.

  9. Diamond as a material for monolithically integrated optical and optomechanical devices

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Pernice, Wolfram H P

    2016-01-01

    Diamond provides superior optical and mechanical material properties, making it a prime candidate for the realization of integrated optomechanical circuits. Because diamond sub- strates have matured in size, efficient nanostructuring methods can be used to realize full-scale integrated devices. Here we review optical and mechanical resonators fab- ricated from polycrystalline as well as single crystalline diamond. We present relevant material properties with respect to implementing optomechanical devices and compare them with other material systems. We give an overview of diamond integrated optomechanical circuits and present the optical readout mechanism and the actuation via optical or electrostatic forces that have been implemented to date. By combining diamond nanophotonic circuits with superconducting nanowires single photons can be efficiently detected on such chips and we outline how future single photon optomechanical circuits can be realized on this platform.

  10. Integrating risks of climate change into water management

    OpenAIRE

    P. Döll; Jiménez-Cisneros, B.; Oki, T; N. W. Arnell; Benito, G.; Cogley, J. G.; Jiang, T.; Z. W. Kundzewicz; Mwakalila, S.; Nishijima, A.

    2015-01-01

    The Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change critically reviewed and assessed tens of thousands of recent publications to inform about the assess current scientific knowledge on climate change impacts, vulnerability and adaptation. Chapter 3 of the report focuses on freshwater resources, but water issues are also prominent in other sectoral chapters and in the regional chapters of the Working Group II report as well as in v...

  11. Insights from the 3rd World Congress on Integrated Computational Materials Engineering

    Science.gov (United States)

    Howe, D.; Goodlet, B.; Weaver, J.; Spanos, G.

    2016-05-01

    The 3rd World Congress on Integrated Computational Materials Engineering (ICME) was a forum for presenting the "state-of-the-art" in the ICME discipline, as well as for charting a path for future community efforts. The event concluded with in an interactive panel-led discussion that addressed such topics as integrating efforts between experimental and computational scientists, uncertainty quantification, and identifying the greatest challenges for future workforce preparation. This article is a summary of this discussion and the thoughts presented.

  12. Integrating Media Production By Students Into Climate Change Education: Within and Beyond the Classroom

    Science.gov (United States)

    Rooney-Varga, J. N.; Brisk, A. A.; Grogan, M.; Ledley, T. S.

    2012-12-01

    Through the Climate Education in an Age of Media (CAM) Project (http://cleanet.org/cced_media/), we have developed approaches to integrate media production by students into climate change education in ways that are engaging, empowering, and can be readily adopted in a wide range of instructional environments. These approaches can be used to overcome many of the challenges that climate change education presents and provide a means to evoke experiential, affective, and social learning pathways. Video production combines many key twenty-first century literacy skills, including content research, writing, an understanding of the power of images and sounds, the ability to use that power, and the ability to manipulate, transform, and distribute digital media. Through collaboration, reflection, and visual expression of concepts, video production facilitates a deeper understanding of material and, potentially, shifts in mental models about climate change. Equally importantly, it provides a means to bridge formal and informal learning by enabling students to educate those beyond the classroom. We have piloted our approach in two intensive summer programs (2011 and 2012) for high school students, during which students learned about climate change science content in lessons that were paired with the production of short media pieces including animations, public service announcements, person-on-the-street interviews, mock trailers, mock news programs, and music videos. Two high school teachers were embedded in the program during the second year, providing feedback and assessment of the feasibility, accessibility, and utility of the approach. The programs culminated with students presenting and discussing their work at public screening events. The media lessons and climate change science content examples used in these programs form the backbone of a toolkit and professional development workshops for middle and high school teachers, in which teachers learn how to incorporate

  13. Automatic on-chip RNA–DNA hybridization assay with integrated phase change microvalves

    International Nuclear Information System (INIS)

    An RNA–DNA hybridization assay microfluidic chip integrated with electrothermally actuated phase change microvalves for detecting pathogenic bacteria is presented in this paper. In order to realize the sequential loading and washing processes required in such an assay, gravity-based pressure-driven flow and phase-change microvalves were used in the microfluidic chip. Paraffin wax was used as the phase change material in the valves and thin film heaters were used to electrothermally actuate microvalves. Light absorption measured by a photodetector to determine the concentrations of the samples. The automatic control of the complete assay was implemented by a self-coded LabVIEW program. To examine the performance of this chip, Salmonella was used as a sample pathogen. Significantly, reduction in reagent/sample consumption (up to 20 folds) was achieved by this on-chip assay, compared with using the commercial test kit following the same protocol in conventional labs. The experimental results show that the quantitative detection can be obtained in approximately 26 min, and the detection limit is as low as 103 CFU ml−1. This RNA–DNA hybridization assay microfluidic chip shows an excellent potential in the development of a portable device for point-of-testing applications. (paper)

  14. Quantifying the effects of climate change and land use change on water resources in Denmark using an integrated watershed model

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Sonnenborg, Torben; Jensen, Karsten Høgh

    2009-01-01

    This paper presents a quantitative comparison of plausible climate and land use change impacts on the hydrology of a large-scale agricultural catchment. An integrated, distributed hydrological model was used to simulate changes in the groundwater system and its discharge to rivers and drains for ......, whereas other factors such as irrigation, CO2 effects on transpiration, and land use changes affect the water balance to a lesser extent....

  15. Encapsulation of Phase Change Materials Using Layer-by-Layer Assembled Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Qiangying Yi

    2015-01-01

    Full Text Available Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride (PDADMAC and Poly(4-styrenesulfonic acid sodium salt (PSS were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA or sodium dodecyl sulfate (SDS as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass, and good thermal stability after cycles of thermal treatments.

  16. An integrated and intensified approach for enhanced bioethanol production and validation with different lignocellulosic materials

    OpenAIRE

    Costa, Carlos Ezequiel Antunes; Romaní, Aloia; Johansson, Björn; J.A. Teixeira; Domingues, Lucília

    2016-01-01

    With the increase of fossil fuels prices and environmental concerns derived of its use, the search of new energy sources has become a central subject. Lignocellulosic biomass is a renewable and abundant source of organic material in amount enough to satisfy the growing energetic needs and suitable for the bioconversion into biofuels. The appropriate use of lignocellulosic biomass to produce biofuels must integrate several requirements: selection of the appropriate raw materials...

  17. Hybrid resonant phenomenon in a metamaterial structure with integrated resonant magnetic material

    OpenAIRE

    Gollub, Jonah N.; Smith, David R.; Baena, Juan D.

    2008-01-01

    We explore the hybridization of fundamental material resonances with the artificial resonances of metamaterials. A hybrid structure is presented in the waveguide environment that consists of a resonant magnetic material with a characteristic tuneable gyromagnetic response that is integrated into a complementary split ring resonator (CSRR) metamaterial structure. The combined structure exhibits a distinct hybrid resonance in which each natural resonance of the CSRR is split into a lower and up...

  18. Integrity assessment of research reactor fuel cladding and material testing using eddy current inspection

    International Nuclear Information System (INIS)

    A methodology to perform the integrity assessment of research reactors nuclear fuels cladding, such as those installed in IPR-Rl (TRIGA) and IEA-R1 (MTR), using nondestructive electromagnetic inspection (eddy current) is presented. This methodology is constituted by: the development of calibration reference standards, specific for each type of fuel; the development of special test probes; the recommendations for the inspection equipment calibration; the construction of voltage based evaluation curves and the inspection procedures developed for the characterization of detected flaws. The test probes development, specially those designed for the inspection of MTR fuels cladding, which present access difficulties due to the narrow gap between fuel plates (2,89 mm for IEAR-R1), constituted a challenge that demanded the introduction of unusual materials and constructive techniques. The operational performance of the developed resources, as well as the special operative characteristics of the test probes, such as their immunity to adjacent fuel plates interference and electrical resistivity changes of the fuels meat are experimentally demonstrated. The practical applicability of the developed methodology is verified in non radioactive environment, using a dummy MTR fuel element model, similar to an IEA-R1 reactor fuel element, produced and installed in IPEN, Sao Paulo. The efficacy of the proposed methodology was verified by the achieved results. (author)

  19. Integrating Scientific Content with Context to Connect Educators with the Complexities and Consequences of Climate Change

    Science.gov (United States)

    Low, R.; Gosselin, D. C.; Oglesby, R. J.; Larson-Miller, C.; Thomas, J.; Mawalagedara, R.

    2011-12-01

    Over the past three years the Nebraska Earth Systems Education Network has designed professional development opportunities for K-12 and extension educators that integrates scientific content into the context of helping educators connect society with the complexities and consequences of climate change. Our professional development approach uses learner-, knowledge-, assessment-, and community-centered strategies to achieve our long-term goal: collaboration of scientists, educators and learners to foster civic literacy about climate change. Two NASA-funded projects, Global Climate Change Literacy for Educators (GCCE, 2009-2012), and the Educators Climatologists Learning Community (ECLC, 2011-2013), have provided the mechanism to provide teachers with scientifically sound and pedagogically relevant educational materials to improve climate and Earth systems literacy among educators. The primary product of the GCCE program is a 16-week, online, distance-delivered, asynchronous course entitled, Laboratory Earth: Human Dimensions of Climate Change. This course consists of four, four-week modules that integrate climate literacy, Earth Systems concepts, and pedagogy focused on active learning processes, building community, action research, and students' sense of place to promote action at the local level to address the challenges of climate change. Overall, the Community of Inquiry Survey (COI) indicated the course was effective in teaching content, developing a community of learners, and engaging students in experiences designed to develop content knowledge. A pre- and post- course Wilcoxan Signed Ranks Test indicated there was a statistically significant increase in participant's beliefs about their personal science teaching efficacy. Qualitative data from concept maps and content mastery assignments support a positive impact on teachers' content knowledge and classroom practice. Service Learning units seemed tohelp teachers connect course learning to their classroom

  20. A Multi-Index Integrated Change detection method for updating the National Land Cover Database

    Science.gov (United States)

    Jin, Suming; Yang, Limin; Xian, George Z.; Danielson, Patrick; Homer, Collin

    2010-01-01

    Land cover change is typically captured by comparing two or more dates of imagery and associating spectral change with true thematic change. A new change detection method, Multi-Index Integrated Change (MIIC), has been developed to capture a full range of land cover disturbance patterns for updating the National Land Cover Database (NLCD). Specific indices typically specialize in identifying only certain types of disturbances; for example, the Normalized Burn Ratio (NBR) has been widely used for monitoring fire disturbance. Recognizing the potential complementary nature of multiple indices, we integrated four indices into one model to more accurately detect true change between two NLCD time periods. The four indices are NBR, Normalized Difference Vegetation Index (NDVI), Change Vector (CV), and a newly developed index called the Relative Change Vector (RCV). The model is designed to provide both change location and change direction (e.g. biomass increase or biomass decrease). The integrated change model has been tested on five image pairs from different regions exhibiting a variety of disturbance types. Compared with a simple change vector method, MIIC can better capture the desired change without introducing additional commission errors. The model is particularly accurate at detecting forest disturbances, such as forest harvest, forest fire, and forest regeneration. Agreement between the initial change map areas derived from MIIC and the retained final land cover type change areas will be showcased from the pilot test sites.

  1. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    Science.gov (United States)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  2. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    International Nuclear Information System (INIS)

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current 'metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  3. Estimating climate change impact on irrigation demand using integrated modelling

    International Nuclear Information System (INIS)

    Water is basic element in agriculture, and along with the soil characteristics, it remains the essential for the growth and evolution of plants. Trends of air temperature and precipitation for Slovenia indicate the increase of the air temperature and reduction of precipitation during the vegetation period, which will have a substantial impact on rural economy in Slovenia. The impact of climate change will be substantial for soil the water balance. Distinctive drought periods in past years had great impact on rural plants in light soils. Climate change will most probably also result in drought in soils which otherwise provide optimal water supply for plants. Water balance in the cross section of the rooting depth is significant for the agriculture. Mathematical models enable smaller amount of measurements in a certain area by means of measurements carried out only in characteristic points serving for verification and calibration of the model. Combination of on site measurements and mathematical modelling proved to be an efficient method for understanding of processes in nature. Climate scenarios made for the estimation of the impact of climate change are based on the general circulation models. A study based on a hundred year set of monthly data showed that in Slovenia temperature would increase at min. by 2.3o C, and by 5.6oC at max and by 4.5oC in average. Valid methodology for the estimate of the impact of climate change applies the model using a basic set of data for a thirty year period (1961-1990) and a changed set of climate input parameters on one hand, and, on the other, a comparison of output results of the model. Estimating climate change impact on irrigation demand for West Slovenia for peaches and nectarines grown on Cambisols and Fluvisols was made using computer model SWAP. SWAP is a precise and power too[ for the estimation of elements of soil water balance at the level of cross section of the monitored and studied profile from the soil surface to

  4. Land Market Integration, Structural Change, and Smallholder Farming in Zambia

    OpenAIRE

    Larson, Andrew M.

    2014-01-01

    The bifurcation of Zambia's agricultural land markets prevents smallholder farmers from participating in modern food marketing channels. High transaction costs in terms of time and financial resources make conversion of customary land into commercial land title prohibitively expensive for smallholder farmers. The simulated conversion of land title, without changing ownership, instigates a reallocation of capital and labor resources in the modeled economy that benefits smallholders in their ro...

  5. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    Science.gov (United States)

    Korur, Fikret; Toker, Sacip; Eryilmaz, Ali

    2016-01-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science…

  6. Task-Based Learning and Content and Language Integrated Learning Materials Design: Process and Product

    Science.gov (United States)

    Moore, Pat; Lorenzo, Francisco

    2015-01-01

    Content and language integrated learning (CLIL) represents an increasingly popular approach to bilingual education in Europe. In this article, we describe and discuss a project which, in response to teachers' pleas for materials, led to the production of a significant bank of task-based primary and secondary CLIL units for three L2s (English,…

  7. The Influence of Processing on the DNA Integrity in Several Raw Materials of Marine Foods

    Directory of Open Access Journals (Sweden)

    Yuan Xiao

    2015-03-01

    Full Text Available With the development of molecular biotechnology, methods for identification of marine food are developed from protein to DNA. The experimental materials are striped bass, Sturgeon and mandarin fish. They were processed with boiling, salting and microwave-heating methods. DNA-based research has been conducted in almost every corner in food material identification. This study is mainly about the identification methods of distinguishing processed aquatic products and the influence of processing on the DNA integrity in the raw materials of marine foods.

  8. Change of elasticity characteristics of carbon structural materials under neutron irradiation

    International Nuclear Information System (INIS)

    For carbon structural materials differing in the structure and properties, neutron-irradiated materials included, the elasticity modules, determined by three different independent methods: static during compression tests; dynamic in time ultrasound transmission; calculated via material crack resistance, are compared. The change in the Poisson coefficient of carbon materials during irradiation is evaluated

  9. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. Integration is approached by coordinating all safeguards information through a safeguards coordination center. This center represents a higher level in a communication, data-processing, and decision-making structure which is needed for efficient real-time operation of the integrated system. The safeguards coordination center functions to assess alarm and warning data required to resolve threats in the safeguards system, coordinate information and interaction involving the material accounting, physical protection, and facility monitoring and control systems, and present a single unified interface for interaction with facility management, facility operations, safeguards system personnel, and response forces

  10. Domestic change in the face of European Integration and Globalization

    DEFF Research Database (Denmark)

    Lynggaard, Kennet

    2011-01-01

    towards more comprehensive accounts of domestic change. Drawing on methodologies known from comparative politics and discourse analysis, the article argues in favour of three methodological moves: (1) from top-down towards bottom-up methodological set-ups; (2) from counterfactual analysis towards compound...... reaction to pressing epistemological concerns within the Europeanization literature, this in-the-making research agenda is also faced with a number of methodological challenges. This article deals with some of the most pressing methodological challenges we face when conducting empirical research and moving...

  11. Integrated Modelling for Health and Environmental Impact Assessment of Air Pollution and Climate Change

    OpenAIRE

    Reis, Stefan; Oxley, Tim; Rowe, Ed

    2010-01-01

    Modelling the impacts of air pollution and climate change on human health and ecosystems in integrated assessment models (IAMs) has emerged as a key tool to inform policy decision making, where simplistic solutions are unlikely to deliver efficient and sustainable pathways for future development. Model integration is facing a complex set of challenges in different dimensions, as integrated models have to be: Spatially explicit and of sufficiently high spatial resolution for...

  12. Results from the European Integrated Project '' New Materials for Extreme Environments (ExtreMat) ''

    International Nuclear Information System (INIS)

    The goal of the European Integrated Project '' ExtreMat '' is to provide and to industrialize new materials and their compounds for applications in extreme environments that are beyond reach with incremental materials development only. The R(and)D activities in this project aim to provide a) self-passivating protection materials for sensitive structures operated in physico-chemically aggressive environments at high temperatures; b) new heat sink materials with the capability of very efficient heat removal, often at very high temperature level; c) radiation resistant materials for very high operation temperatures; d) new processing routes for complex heterogeneous compounds that can be operated in extreme environments. Key applications for these new materials are in the sectors of fusion, advanced fission, space, and electronic applications. Further use of these materials is expected in spin-off fields, such as brake applications and energy conversion. The project started in December 2004 for a duration of five years and is supported by the European Community. The 37 project participants are from 13 EU member states and include 6 universities, 7 research institutes, 10 research centres and 14 industrial companies. Research results regarding the development of materials for application in nuclear fusion, especially on protection, heat sink, and radiation resistant materials will be presented. A view to other applications of these materials in the fields of fission, space and electronics will be given in the presentation. ExtreMat Project Partners: see http://www.extremat.org/. (author)

  13. The arrangement of integrated quality management of nuclear material in RSG-GAS

    International Nuclear Information System (INIS)

    Management of nuclear materials at any nuclear facility constitutes a division, which gets a main priority in its annual work program. Due to the importance of its program, which is directly related to safeguards of nuclear materials, hence at any nuclear facility the management of nuclear materials is handled by a division administratively, which specially deals with administration of nuclear materials. At the PRSG the matter has been handed over to the Nuclear Materials Management Team in accordance with the Decree of the Head of the PRSG and the Decree of the Head of BATAN 1994. In 1997/1998 there was a compiled work concept concerning coordination and management of nuclear materials which is called integrated quality management of nuclear materials at the RSG-GAS. To realize the work concept, there has been done work implementation phase, which includes bibliography study as well as administrative and operational data analysis of nuclear materials at the RSG-GAS. With this work concept, hopefully it can become additional thinking at the management of nuclear materials at the RSG-GAS, so operational handling of System of Responsibility and Control of Nuclear Materials at the RSG-GAS becomes more disciplinary

  14. Changing Personal Epistemologies in Early Childhood Pre-Service Teachers Using an Integrated Teaching Program

    Science.gov (United States)

    Brownlee, Jo; Petriwskyj, Anne; Thorpe, Karen; Stacey, Phillip; Gibson, Megan

    2011-01-01

    This study investigated changes in pre-service teachers' personal epistemologies as they engaged in an integrated teaching program. Personal epistemology refers to individual beliefs about the nature of knowing and knowledge and has been shown to influence teaching practice. An integrated approach to teaching, based on both an "implicit" and…

  15. Mezinárodní konference ENHR 09 – Prague Changing Housing Markets: Integration and Segmentation

    Czech Academy of Sciences Publication Activity Database

    Lux, Martin; Vojtková, Michaela

    2009-01-01

    Roč. 45, č. 5 (2009), s. 1141-1142. ISSN 0038-0288. [ENHR 09 Prague: Changing Housing Markets: Integration and Segmentation. Praha, 28.06.2009-01.07.2009] Institutional research plan: CEZ:AV0Z70280505 Keywords : international conference * housing * integration Subject RIV: AO - Sociology, Demography Impact factor: 0.562, year: 2009 www.enhr2009.cz

  16. Heterogeneous integration of semiconductor materials: basic issues, current progress, and future prospects

    Science.gov (United States)

    Woodall, Jerry M.

    2012-06-01

    The world's dominant IC material, silicon, cannot do everything we want a semiconductor material to do. However, for this discussion, the fact that Si wafers are of high quality, large and cheap is of great interest. This is important for at least two reasons. First, nearly all of the electronic and photonic compound semiconductor devices that comprise the current $20 billion per year market are fabricated on substrates that are either very expensive or non-optimal for the epitaxy required to realize the device or an IC of interest. A second reason is the integration of new functionality to current Si technology. Clearly, if many of the current photonic applications already realized in current compound semiconductor technology could be integrated into Si technology, some of the herculean efforts to continue following Moore's Law (including trying to do it via nanotechnology) could be mitigated. This presentation examines some of the basic materials science issues involved with heterogeneous integration of semiconductor materials. These include those applications in which the active device region requires a high degree of crystal perfection and those that do not. Epitaxy issues at the hetero-interface, heterovalent versus homovalent epigrowth, and dislocation dynamics are presented. Notable historical examples are summarized, followed by examples of current successful approaches including the materials science concepts used to achieve the results. A list is made of some challenges that need to be solved in order to continue making future progress.

  17. Integrated firn elevation change model for glaciers and ice caps

    Science.gov (United States)

    Saß, Björn; Sauter, Tobias; Braun, Matthias

    2016-04-01

    We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic ice cap Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m‑³ or the density of ice (917 kg m‑³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m‑³) and accumulation (600 kg m‑³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer

  18. Changes in the international position of Central Europe in the context of the European Union integration

    OpenAIRE

    Stańczyk, Jerzy

    2011-01-01

    This article refers to changes in the international position of Central Europe in the context of integration to the European Union. The author presents the current nature of this region and future of the European Union and also problems of Central Europe region. This indicates the specificity of this region, its dependence on international actors and security deficiencies. There are analyzed changes resulting from development of the European integration. There is not perceived only the impact...

  19. Hydropower, an integral part of Canada's climate change strategy

    International Nuclear Information System (INIS)

    The development and implementation of a climate change policy could be among the most far-reaching environmental initiatives ever embarked upon in Canada and abroad. If Canada is to stabilize or reduce its Greenhouse Gas (GHG) emissions over the long term, a significant adjustment to Canadian industry will be required as we move away from fossil fuel-intensive and GHG producing activities. Future hydroelectric projects provide Canada with a unique opportunity to significantly reduce the costs associated with stabilizing its GHG emissions. In addition, the energy storage and dispatchability associated with hydropower can support development of other low emitting renewable resources such as wind and solar. This document discusses the potential role of hydropower as a tool to reduce emissions, recommends action to reduce barriers facing hydropower and comments on some of the policy tools available to manage Canada's GHG emissions. (author)

  20. Development of an Integrated Agricultural Planning Model Considering Climate Change

    Science.gov (United States)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  1. High temperature phase change materials based on inorganic salts and carbon nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong; Zhang, Tao; Zeng, Liang; Zhou, Cunyu [Tongji Univ., Shanghai (China). School of Materials Science and Engineering

    2010-07-01

    High temperature phase change material is useful for solar thermal power generation, industrial process heat and waste heat recovery. In this paper, inorganic salts and carbon nanomaterials, such as expanded graphite (EG) carbon nanotube and graphene, are used to prepare high temperature phase change material. Inorganic salt/EG/7carbon nanotube/Graphene composites as phase change materials are prepared by aqueous solution method. The influence of EG, carbon nanotube and graphene on the termal conductivity of composites is studied by MDSC. Results show that expanded graphite, carbon nanotube and graphene can significantly increase the thermal conductivity of high temperature phase change materials. (orig.)

  2. Offensive Speech in Educational Materials: Changing Words without Censorship

    Science.gov (United States)

    McGough, Sarah M.

    2007-01-01

    Background/Context: Diane Ravitch has focused on the extensive censorship occurring within the publication of school textbook and testing materials in her book, "The Language Police" (2003). This book, indicative of conservative frustrations with minority special interest groups, raises several key issues echoed throughout the larger educational…

  3. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    Science.gov (United States)

    Iverson, Richard M.; Chaojun Ouyang

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  4. Simulation of a high temperature thermal energy storage system employing several families of phase-change storage material

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, G.A. [Mississippi State Univ., MS (United States)

    1989-03-01

    Previous work by the author entailed modeling of the Packed Bed Thermal Energy Storage System, utilizing Phase-Change Materials, and a performance evaluation of the system based on the Second Law of thermodynamics. A principal conclusion reached is that the use of a single family of phase-change storage material may not in fact produce a thermodynamically superior system relative to one utilizing sensible heat storage material. This prompted us to modify our model so that we could investigate whether or not a significantly improved performance may be achieved via the use of multiple families of phase-change materials instead. Other factors investigated in the present work include the effect on system performance due to the thermal mass of the containment vessel wall, varying temperature and mass flow rate of the flue gas entering the packed bed during the storage process, and thermal radiation which could be a significant factor at high temperature levels. The resulting model is intended to serve as an integral part of a real-time simulation of the application of a high temperature regenerator in a periodic brick plant. This paper describes the more comprehensive model of the high temperature thermal energy storage system and presents results indicating that improved system performance could be achieved via a judicious choice of multiple families of phase-change materials.

  5. Integration of functional materials and surface modification for polymeric microfluidic systems

    International Nuclear Information System (INIS)

    The opportunity for the commercialization of microfluidic systems has surged over the recent decade, primarily for medical and the life science applications. This positive development has been spurred by an increasing number of integrated, highly functional lab-on-a-chip technologies from the research community. Toward commercialization, there is a dire need for economic manufacture which involves optimized cost for materials and structuring on the front-end as well as for a range of back-end processing steps such as surface modification, integration of functional elements, assembly and packaging. Front-end processing can readily resort to very well established polymer mass fabrication schemes, e.g. injection molding. Also assembly and packaging can often be adopted from commercially available processes. In this review, we survey the back-end processes of hybrid material integration and surface modification which often need to be tailored to the specifics of miniaturized polymeric microfluidic systems. On the one hand, the accurate control of these back-end processes proves to be the key to the technical function of the system and thus the value creation. On the other hand, the integration of functional materials constitutes a major cost factor. (topical review)

  6. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    International Nuclear Information System (INIS)

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report

  7. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S-S; Kim, S-H; Jung, Y-K; Yang, C-Y; Kim, I-G; Choi, Y-H; Kim, H-J; Kim, M-W; Rho, B-H [KINS, Daejeon (Korea, Republic of)

    2008-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report.

  8. Study on the standard establishment for the integrity assessment of nuclear fuel cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is 2nd term report.

  9. Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems

    Science.gov (United States)

    Ivanyshyn Yaman, Olha; Le Louër, Frédérique

    2016-09-01

    This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.

  10. Efficient integration of stiff kinetics with phase change detection for reactive reservoir processes

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove;

    2007-01-01

    convergence problems for the integration method. We propose an algorithm for detection and location of phase changes based on discrete event system theory. Experiments show that the algorithm improves the robustness of the integration process near phase boundaries by lowering the number convergence and error......We propose the use of implicit one-step Explicit Singly Diagonal Implicit Runge-Kutta (ESDIRK) methods for integration of the stiff kinetics in reactive, compositional and thermal processes that are solved using operator-splitting type approaches. To facilitate the algorithmic development we...... test failures by more than 50% compared to direct integration without the new algorithm....

  11. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  12. Security of material. The changing context of the IAEA's programme

    International Nuclear Information System (INIS)

    When the IAEA established its programme on the Security of Material about five years ago, the prospect that nuclear or other radioactive materials could fall into the wrong hands was a main concern. Among the major driving forces behind the Agency's action then was an alarming increase in reported cases of illicit nuclear trafficking in the early and mid-1990s, and the recognition that States needed better and more coordinated assistance in their efforts to combat the problem. Today, the dimensions and perceptions of nuclear security are being shaped by additional driving forces, specifically the spectre of nuclear terrorism. The terrorist attacks on the United States in September 2001 have elevated issues of security to unprecedented heights of international concern and they have prompted a broad-based global response. The attacks made it clear that terrorism has new and far-reaching international dimensions and that its aim of inflicting mass casualties is a serious threat for all States. In the nuclear sphere, the IAEA has taken a leading role in international efforts directed at combating nuclear terrorism. Initiatives taken by the Agency aim to upgrade levels of security for nuclear facilities and the protection of nuclear and other radioactive materials. Toward these ends, the IAEA Board of Governors is considering proposed measures for strengthening the Agency's activities relevant to preventing nuclear terrorism. In this new and challenging context, it is worth reviewing some fundamental aspects of the IAEA programme on Security of Material as it has been developed over the years. The programme is part of a wider framework of Agency activities related to nuclear security, safety, and safeguards. In reviewing the programme's evolution, this article principally focuses on the major components and elements of the planned 2002-2003 programme, while pointing to directions ahead in light of additional measures being considered for prevention of nuclear terrorism

  13. Anaerobic fungi induced changes of microbial communities in biowaste material

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Štrosová, Lenka; Procházka, J.; Dolejš, P.; Kopečný, Jan; Fliegerová, Kateřina

    Clermont-Ferrand : INRA, 2012. s. 148-148. [8th INRA-RRI Symposium, Gut Microbiota . 17.06.2012-20.06.2012, Clermont-Ferrand] R&D Projects: GA ČR GPP503/10/P394; GA MZe QI92A286 Institutional research plan: CEZ:AV0Z50450515 Keywords : anaerobic fungi * biowaste material Subject RIV: EH - Ecology, Behaviour https://colloque4.inra.fr/inra_rowett_2012/

  14. [Diagnosis and integrative evaluation on soil fertility of three Chinese medicinal materials in GAP plots].

    Science.gov (United States)

    Pan, Chaomei; Huang, Haibo; Zhan, Ruoting; Xu, Honghua; Liao, Guanrong

    2002-03-01

    The fertility of soil was diagnosed and integratively evaluated by modified Nemoro Index with eight indexes, i.e. pH, organic matter, total N, P, K and available N, P, K on three national Chinese medicinal materials GAP (Good Agricultural Practice) experimental plots of Pogostemon cablin, Citrus medica and Morinda officinalis in Guangdong. The results showed that the pH, organic matter and other major nutrient contents were low and imbalance. There are lots of nutritive disturbance factors. The level of soil integrative fertility in any of the plots was poor. PMID:12583155

  15. Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute

    Science.gov (United States)

    Festa, G.; Pietropaolo, A.; Grazzi, F.; Sutton, L. F.; Scherillo, A.; Bognetti, L.; Bini, A.; Barzagli, E.; Schooneveld, E.; Andreani, C.

    2013-09-01

    A metallic 19th century flute was studied by means of integrated and simultaneous neutron-based techniques: neutron diffraction, neutron radiative capture analysis and neutron radiography. This experiment follows benchmark measurements devoted to assessing the effectiveness of a multitask beamline concept for neutron-based investigation on materials. The aim of this study is to show the potential application of the approach using multiple and integrated neutron-based techniques for musical instruments. Such samples, in the broad scenario of cultural heritage, represent an exciting research field. They may represent an interesting link between different disciplines such as nuclear physics, metallurgy and acoustics.

  16. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  17. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    International Nuclear Information System (INIS)

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the 'stone sack' to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods

  18. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the `stone sack` to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods.

  19. Assessing the integrity of local area network materials accountability systems against insider threats

    International Nuclear Information System (INIS)

    DOE facilities rely increasingly on computerized systems to manage nuclear materials accountability data and to protect against diversion of nuclear materials or other malevolent acts (e.g., hoax due to falsified data) by insider threats. Aspects of modern computerized material accountability (MA) systems including powerful personal computers and applications on networks, mixed security environments, and more users with increased knowledge, skills and abilities help heighten the concern about insider threats to the integrity of the system. In this paper, we describe a methodology for assessing MA applications to help decision makers identify ways of and compare options for preventing or mitigating possible additional risks from the insider threat. We illustrate insights from applying the methodology to local area network materials accountability systems

  20. Scattering Analysis of Electromagnetic Materials Using Fast Dipole Method Based on Volume Integral Equation

    Directory of Open Access Journals (Sweden)

    Xiaoqiao Deng

    2013-01-01

    Full Text Available The fast dipole method (FDM is extended to analyze the scattering of dielectric and magnetic materials by solving the volume integral equation (VIE. The FDM is based on the equivalent dipole method (EDM and can achieve the separation of the field dipole and source dipole, which reduces the complexity of interactions between two far groups (such as group i and group j from O(NiNj to O(Ni+Nj, where Ni and Nj are the numbers of dipoles in group i and group j, respectively. Targets including left-handed materials (LHMs, which are a kind of dielectric and magnetic materials, are calculated to demonstrate the merits of the FDM. Furthermore, in this study we find that the convergence may become much slower when the targets include LHMs compared with conventional electromagnetic materials. Numerical results about convergence characteristics are presented to show this property.

  1. Assessment of Disaster Risk Reduction and Climate Change Adaptation policy integration in Zambia

    Science.gov (United States)

    Pilli-Sihvola, K.; Väätäinen-Chimpuku, S.

    2015-12-01

    Integration of Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) policies, their implementation measures and the contribution of these to development has been gaining attention recently. Due to the shared objectives of CCA and particularly Disaster Risk Reduction (DRR), a component of DRM, their integration provides many benefits. At the implementation level, DRR and CCA are usually integrated. Policy integration, however, is often lacking. This study presents a novel analysis of the policy integration of DRR and CCA by 1) suggesting a definition for their integration at a general and further at horizontal and vertical levels, 2) using an analysis framework for policy integration cycle, which separates the policy formulation and implementation processes, and 3) applying these to a case study in Zambia. Moreover, the study identifies the key gaps in the integration process, obtains an understanding of identified key factors for creating an enabling environment for the integration, and provides recommendations for further progress. The study is based on a document analysis of the relevant DRM, climate change (CC), agriculture, forestry, water management and meteorology policy documents and Acts, and 21 semi-structured interviews with key stakeholders. Horizontal integration has occurred both ways, as the revised DRM policy draft has incorporated CCA, and the new CC policy draft has incorporated DRR. This is not necessarily an optimal strategy and unless carefully implemented, it may create pressure on institutional structures and duplication of efforts in the implementation. Much less vertical integration takes place, and where it does, no guidance on how potential goal conflicts with sectorial and development objectives ought to be handled. The objectives of the instruments show convergence. At the programme stage, the measures are fully integrated as they can be classified as robust CCA measures, providing benefits in the current and future

  2. Structural Integrity Evaluation of Cold Neutron Laboratory Building by Design Change of Guide Shielding Room

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Youngki; Kim, Harkrho

    2007-06-15

    This report summarizes the results of the structural integrity evaluation for the cold neutron laboratory building by design change of guide shielding room. The design of the guide shielding room was changed by making its structure members in normal concrete (2.3 g/cc) instead of heavy concrete (3.5 g/cc) because the heavy concrete could be not supplied to meet its design specification. Therefore, it was decided that the guide shielding room is made of the normal concrete. And, the shielding performance of the normal concrete was recalculated to confirm satisfying its design specification, which is of a 9000 zone according to HANARO radiation region classification. The change makes the shielding wall thicker than existing design, and then it is caused to qualify the structural integrity evaluation of the CNLB. Finally, the structural integrity of the CNLB was re-evaluated by considering the design change of the guide shielding room.

  3. RFID System Integration Design with Existing Websites via EPCglobal-like Architecture for Expensive Material Handling

    OpenAIRE

    Tenqchen, Shing; Chiu, Chui- Yu; Laraqui, Saad

    2009-01-01

    In this chapter, we propose an example of handling expensive materials using RFID technological approach on an open platform environment and follow the standardization of EPCglobal Gen II. We discuss the integration case for the case of centralized deployment. We also discuss the general cases in the future. We hope to have a good reference site for your design. The high unit price and big volume materials have an urgent request to have a clear request on input/output information needed by op...

  4. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    International Nuclear Information System (INIS)

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring

  5. Modeling and simulation of a phase change material system for improving summer comfort in domestic residence

    International Nuclear Information System (INIS)

    Highlights: • Modeling of a PCM/air ventilation system. • Sizing of PCM system units. • Simulation in TRNSYS of the system connected to a house and enhancement of the summer comfort. - Abstract: In the current context of thermal improvement in the building sector, research of new solutions to integrate to the retrofitting process is an essential step in the way of saving energy. With the purpose of maintaining or improving the summer comfort after a retrofitting in a residential building, Phase Change Materials (PCM) could be used to bring enough inertia to use the freshness of night for cooling during the warmest hour in the day. Passive solutions of PCM integration have demonstrated their limited benefits. Using PCM in the way proposed in this article goes through the design of a PCM/air system able to store latent heat. This unit is coupled to the ventilation system to ensure that the heat transfers between the ventilated air and the PCM stock are forced convection and then higher than the ones with natural convection. The fusion and solidification temperature for the PCM needs to be carefully chosen to allow the latent heat storage. To analyze the behavior of such a system in a retrofitted house with the climate of 4 different French cities, simulations in different configurations have been carried out. According to these climates, we analyze the necessary conditions for the improvement of efficiency of PCM use. Also, the appropriate PCM melting temperature range is defined with corresponding existing PCM characteristics. After, optimal thickness is obtained considering the diurnal temperature evolutions. The TRNSYS software runs the modeled house, coupled with Matlab for the PCM/air system model. The number of units of such a system can be changed and adapted to the different climates. Results are expressed in terms of percentage of the time when the indoor operative temperature reaches a certain level. Comparisons are made with classical systems without

  6. Climate Change Education as an Integral Part of the United Nations Framework Convention on Climate Change

    Science.gov (United States)

    Journal of Education for Sustainable Development, 2012

    2012-01-01

    The United Nations Framework Convention on Climate Change (UNFCCC), through its Article 6, and the Convention's Kyoto Protocol, through its Article 10 (e), call on governments to develop and implement educational programmes on climate change and its effects. In particular, Article 6 of the Convention, which addresses the issue of climate…

  7. The J-integral concept for elastic-plastic material behavior

    International Nuclear Information System (INIS)

    A simple analytical extension of the J integral has been presented which extends the J concept to apply for materials described by an incremental theory of plasticity. The stress work density replacing the strain energy density is load-history dependent. The J integral may be made path independent by virtue of an additional volume integral and may be understood as work dissipation rate. The discussion of the consequences for the applicability of the J concept to describe fracture processes showed that validity criteria proposed in the standards are not sufficient to yield configuration-independent J-resistance curves. However, a possibility is sketched to assess those structure-dependent resistance curves based on plastic-collapse considerations. With 6 figs., 33 refs

  8. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold

    OpenAIRE

    Crowley, C.; Klanrit, P; C.R. Butler; Varanou, A; Platé, M.; Hynds, R. E.; Chambers, R. C.; Seifalian, A. M.; Birchall, M A; Janes, S M

    2016-01-01

    Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of incre...

  9. Materials integrity project. A review of 1984 and proposals for 1985

    International Nuclear Information System (INIS)

    This report outlines the work programs performed in 1984 by the Materials Integrity Project of the Metallurgical Research Department. A list of reports issued, external publications and seminars is presented. The direction of the 1985 work programs is outlined. The main thrust of these programs will be in the area of CANDU core components although it is anticipated that some work will continue in support of the fossil fired generating stations

  10. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  11. Integrating Water into an Economic Assessment of Climate Change Impacts on Egypt

    OpenAIRE

    Yates, D

    1996-01-01

    Recent research indicates that larger countries, with multiple agro-climatic zones, have the capacity to adjust to marginal climate changes which could occur over the next century. However, in countries with fewer adaptation options and with increasing dependency on imports to meet growing domestic demands, climate change might have significant impacts. To date, little has been done on assessing integrated impacts of climate change in developing countries. This motivates the need for imp...

  12. Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering

    Science.gov (United States)

    Joost, William J.

    2012-09-01

    Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.

  13. Effect of Alloying Interlayer on Interfacial Bond Strength of CuW/CuCr Integral Materials

    International Nuclear Information System (INIS)

    The effects of Fe alloying interlayers with different content on microstructures and mechanical properties of dissimilar CuW/CuCr joints prepared by sintering-infiltration method were studied. Microhardness (HV) and tensile tests were used to evaluate the mechanical properties of the resulting joints. Additionally, optical, scanning electron microscopy examinations and energy dispersive spectrometry elemental analyses were applied to determine the interfacial characteristics of CuW/CuCr integral materials. The results show element Fe in the alloying interlayers is mostly diffused to the Cu-W composite side, the Cu/W interphase has achieved the metallurgical bond, and the CuW/CuCr integrated material with Cu-5wt%Fe alloy interlayer exhibits higher interfacial bond strength. However, when the Fe content in the interlayers is above 5wt%, the W skeletons near the interface are dissolved and eroded by element Fe addition, the amount of eutectic phase is increased and the microhardness on copper matrix is decreased for the Cu-Cr alloy side near the interlayer, and the interfacial strength of CuW/CuCr integrated materials is also decreased.

  14. Verification test for radiation reduction effect and material integrity on PWR primary system by zinc injection

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H.; Nagata, T.; Yamada, M. [Nuclear Power Engineering Corp. (Japan); Kasahara, K.; Tsuruta, T.; Nishimura, T. [Mitsubishi Heavy Industries, Ltd. (Japan); Ishigure, K. [Saitama Inst. of Tech. (Japan)

    2002-07-01

    Zinc injection is known to be an effective method for the reduction of radiation source in the primary water system of a PWR. There is a need to verify the effect of Zn injection operation on radiation source reduction and materials integrity of PWR primary circuit. In order to confirm the effectiveness of Zn injection, verification test as a national program sponsored by Ministry of Economy, Trade and Industry (METI) was started in 1995 for 7-year program, and will be finished by the end of March in 2002. This program consists of irradiation test and material integrity test. Irradiation test as an In-Pile-Test managed by AEAT Plc(UK) was performed using the LVR-15 reactor of NRI Rez in Check Republic. Furthermore, Out-of-Pile-Test using film adding unit was also performed to obtain supplemental data for In-Pile-Test at Takasago Engineering Laboratory of NUPEC. Material Integrity test was planned to perform constant load test, constant strain test and corrosion test at the same time using large scale Loop and slow strain extension rate testing (SSRT) at Takasago Engineering Laboratory of NUPEC. In this paper, the results of the verification test for Zinc program at present are discussed. (authors)

  15. Verification test for radiation reduction effect and material integrity on PWR primary system by zinc injection

    International Nuclear Information System (INIS)

    Zinc injection is known to be an effective method for the reduction of radiation source in the primary water system of a PWR. There is a need to verify the effect of Zn injection operation on radiation source reduction and materials integrity of PWR primary circuit. In order to confirm the effectiveness of Zn injection, verification test as a national program sponsored by Ministry of Economy, Trade and Industry (METI) was started in 1995 for 7-year program, and will be finished by the end of March in 2002. This program consists of irradiation test and material integrity test. Irradiation test as an In-Pile-Test managed by AEAT Plc(UK) was performed using the LVR-15 reactor of NRI Rez in Check Republic. Furthermore, Out-of-Pile-Test using film adding unit was also performed to obtain supplemental data for In-Pile-Test at Takasago Engineering Laboratory of NUPEC. Material Integrity test was planned to perform constant load test, constant strain test and corrosion test at the same time using large scale Loop and slow strain extension rate testing (SSRT) at Takasago Engineering Laboratory of NUPEC. In this paper, the results of the verification test for Zinc program at present are discussed. (authors)

  16. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Peng; Cheng, Bowen [Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin 300160 (China); Gu, Xiaohua [Qiqihar University, 30 Wenhua Road, Qiqihar 161006 (China); CAS Key Laboratory of Engineering Plastics, Joint Laboratory of Polymer Science and Materials, Center for Molecular Science, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080 (China); Wang, Yufei [Dalian University Technology, Dalian 116024 (China)

    2009-06-15

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, {sup 1}H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy. (author)

  17. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Xi Peng [Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin 300160 (China); Gu Xiaohua [Qiqihar University, 30 Wenhua Road, Qiqihar 161006 (China); CAS Key Laboratory of Engineering Plastics, Joint Laboratory of Polymer Science and Materials, Center for Molecular Science, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: gxh218@yahoo.cn; Cheng Bowen [Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin 300160 (China); Wang Yufei [Dalian University Technology, Dalian 116024 (China)

    2009-06-15

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, {sup 1}H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  18. Effect of microencapsulated phase change material in sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Castellon, Cecilia; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Navarro, Maria E.; Fernandez, Ana I. [Departamento de Ciencias de los Materiales e Ingenieria Metalurgica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Lazaro, Ana; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' ' Agustin de Betancourt,' ' Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-10-15

    Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results. (author)

  19. Integrated design and synthesis of smart material systems: an overview of the ARPA SPICES program

    Science.gov (United States)

    Jacobs, Jack H.

    1995-05-01

    The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) program is comprised of a consortium of industrial, academic and government labs to develop cost effective material processing and synthesis technologies to enable new products using active vibration suppression and control devices to be brought to market. Each team member possesses a specialty in the area of smart structures which has been focused towards the development of several actively controlled smart material systems. Since smart structures involve the integration of multiple engineering disciplines, it is the objective of the consortium to establish cost effective design processes between this multiorganizational team for future incorporation of this new technology into each members respective product lines. To accomplish this task, the disciplines of materials, manufacturing, analytical modeling, actuation, sensing, signal processing, and control had to be synthesized into a unified approach between all ten consortium members. The process developed for intelligent structural systems can truly be classified as multiorganization/multidiciplined Integrated Product Development. This process is described in detail as it applies to the SPICES development articles and smart material fabrication in general.

  20. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    OpenAIRE

    Arafa, Khalid A. O.

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt ...

  1. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    Science.gov (United States)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  2. On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs)

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Mario A. [Civil, Environmental, and Architectural Engineering Department, The University of Kansas, Lawrence, KS (United States); King, Jennifer B. [Goetting and Associates, San Antonio, TX (United States); Zhang, Meng [Greenheck Fan Corporation, Schofield, WI (United States)

    2008-04-15

    This paper presents a study on the integration of two building technologies into one new unified form for application in residential and small commercial and industrial buildings. Structural insulated panel (SIP) technology was utilized as a structural vehicle, and also for thermal insulation, and phase change materials (PCMs) provided distributed thermal mass. This new type of wall panel was termed phase change material structural insulated panel (PCMSIP). The research conducted during this study provided the foundations for the development of this type of thermally enhanced wall panels and evaluated their thermal performance, based on heat transfer rate reduction, under full weather conditions. On average, the peak heat flux reductions produced by the PCMSIPs in combination with 10% and 20% PCM were 37% and 62%, respectively. The average reductions in daily heat transfer across the PCMSIPs were 33% and 38% for concentrations of 10% and 20% PCM, respectively. The percent PCM concentration was based on the weight of the interior wallboard. (author)

  3. Climate change and foreign policy : an exploration of options for greater integration

    International Nuclear Information System (INIS)

    Climate change is a global challenge and one of biggest challenges of this century. Addressing the challenges posed by climate change requires new thinking in foreign policy. This paper discussed the results of a research study that examined the role of foreign policy in fostering a more effective international response to the challenge of climate change. The scope involved an examination of instruments relevant to Danish foreign policy. The paper first identified the climate change challenge and discussed international diplomacy and relations. Energy security and investment was discussed in terms of the impact of energy security on climate change efforts and opportunities for integration. Other areas where critical issues and opportunities for integration were offered include international peace and security; trade and investment; and development cooperation. The paper made several recommendations in these areas in addition to diplomatic networking. The study concluded that foreign policy can further the climate change agenda in a number of areas in diplomacy and foreign relations within the European Union, transatlantic relations, Arctic issues and United Nations affairs. This includes better integration of climate change into the European Union's common foreign and security policy, the Lisbon Agenda, and incorporating climate change in the work of a wide range of bodies under the United Nations. refs., figs

  4. An integrated design of the payload for Chang'e 3 Lunar Rover

    Science.gov (United States)

    Zhouchangyi, Zhouchangyi

    Chang’e 3 detector is launched in China Xichang Satellite Launch Center on December 2, 2013. Its project task was a complete success. CE-3 detector achieved a soft landing and started its lunar exploration andinspection. It is composed of the lander and Rover (Yutu). This paper introduces an integrated designing payload of Chang’e 3 Lunar Rover. Chang’e 3 Lunar Rover is allocated with infrared imaging spectrometer,moon-measuring radar, Alpha Particle X-ray Spectrometer(APXS), panoramic camera and other payloads. The infrared spectrometer is used to analyse the infrared spectrum and take images of the patrolling areas, to analyse the mineral composition and distribution of the lunar surface, and to do a comprehensive study of the energy sources and mineral sources.The radar is used for inspecting the thickness and structure of the lunar soil on the patrolling path as well as probing the structure of the shallow lunar crust. The APXS will use the method of alpha-particle-induced X-ray fluorescence to study in detail the composition of soil in specific areas. The panoramic camera is for obtaining three-dimensional images of the lunar surface around the patrolling path, accomplishing the inspection of near landscapes and topographic analysis. Limited by the total weight, the Rover is equipped with a payload controller, through which an integrated design consisting of the power supply, data processing, electronic units, operating management and other functions of the payload is done, to realize the centralized power supply, centralized management, centralized data processing, centralized operating controlling and centralized interfaces with the integrated electronic system of the Rover.

  5. Methods of saving energy and materials in the manufacture of integrated aircraft structure components

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, J.C.; Welschof, K.; Janssen, W.; Mahlke, M.; Sprangers, W.; Binding, J.

    1987-11-01

    In the framework of a special research unit, methods for saving energy and raw materials are investigated for selected production processes. Integral construction components of the aircraft industry which today are mostly produced by metal-cutting processes, are the basis of the joint research work of six of the total of nineteen participating projects. Research is carried out on the possibilities for reducing the expenditure of material and energy by the application of alternative production processes in the field of primary shaping, deforming and joining as well as by structural optimization. By means of a computer-aided evaluation of the possible production methods, the alternatives can be compared with regard to their energy and raw material requirements.

  6. Gold Nanoparticle Synthesis by 3D Integrated Micro-solution Plasma in a 3D Printed Artificial Porous Dielectric Material

    Science.gov (United States)

    Sotoda, Naoya; Tanaka, Kenji; Shirafuji, Tatsuru

    2015-09-01

    Plasma in contact with HAuCl4 aqueous solution can promote the synthesis of gold nanoparticles. To scale up this process, we have developed 3D integrated micro-solution plasma (3D IMSP). It can generate a large number of argon microplasmas in contact with the aqueous solution flowing in a porous dielectric material. The porous dielectric material in our prototype 3D IMSP reactor, however, consists of non-regularly arranged random-sized pores. These pore parameters may be the parameters for controlling the size and dispersion of synthesized gold nanoparticles. We have hence fabricated a 3D IMSP reactor with an artificial porous dielectric material that has regularly arranged same-sized pores by using a 3D printer. We have applied the reactor to the gold- nanoparticle synthesis. We have confirmed the synthesis of gold nanoparticles through the observation of a plasmon resonance absorption peak at 550 nm in the HAuCl4 aqueous solution treated with 3D IMSP. The size and distribution of the synthesized gold nanoparticles are under investigation. We expect that these characteristics of the gold nanoparticles can be manipulated by changing pore size and their distribution in the porous dielectric material.

  7. Integrated Assessment of Climate Change, Land-Use Changes, and Regional Carbon Dynamics in United States

    Science.gov (United States)

    Mu, J. E.; Sleeter, B. M.; Abatzoglou, J. T.

    2015-12-01

    The fact that climate change is likely to accelerate throughout this century means that climate-sensitive sectors such as agriculture will need to adapt increasingly to climate change. This fact also means that understanding the potential for agricultural adaptation, and how it could come about, is important for ongoing technology investments in the public and private sectors, for infrastructure investments, and for the various policies that address agriculture directly or indirectly. This paper is an interdisciplinary study by collaborating with climate scientist, agronomists, economists, and ecologists. We first use statistical models to estimate impacts of climate change on major crop yields (wheat, corn, soybeans, sorghum, and cotton) and predict changes in crop yields under future climate condition using downscaled climate projections from CMIP5. Then, we feed the predicted yield changes to a partial equilibrium economic model (FASOM-GHG) to evaluate economic and environmental outcomes including changes in land uses (i.e., cropland, pastureland, forest land, urban land and land for conservation) in United States. Finally, we use outputs from FASOM-GHG as inputs for the ST-SIM ecological model to simulate future carbon dynamics through changes in land use under future climate conditions and discuss the rate of adaptation through land-use changes. Findings in this paper have several merits compared to previous findings in the literature. First, we add economic components to the carbon calculation. It is important to include socio-economic conditions when calculating carbon emission and/or carbon sequestration because human activities are the major contribution to atmosphere GHG emissions. Second, we use the most recent downscaled climate projections from CMIP5 to capture uncertainties from climate model projections. Instead of using all GCMs, we select five GCMs to represent the ensemble. Third, we use a bottom-up approach because we start from micro-level data

  8. Integrated assessment of vulnerability to climate change and options for adaptation in the Netherlands

    International Nuclear Information System (INIS)

    In recent decades it has become increasingly clear that the global climate is warming and that regional climates are changing. The changes include alterations in rainfall pattern and intensities, sea level, and the frequencies of extreme weather events. Climate changes will not just have global effects, they will also occur regionally. The consequences will be felt and dealt with in our own region. In addition to studies at the European level, a study entitled 'An integrated assessment of vulnerability to climate change and adaptation options in the Netherlands' was carried out

  9. Long term integrity of spent fuel and construction materials for dry storage facilities

    International Nuclear Information System (INIS)

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO2 fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  10. Study of an integrated system for the control and surveillance of nuclear materials

    International Nuclear Information System (INIS)

    An integrated system for the control and surveillance of nuclear materials has been developed. Its objective is to integrate data from various sensors in a comprehensive architecture. Sensors that are normally used to ensure the security of radioactive materials are considered: motion detection sensors, a radiation device and a camera. Correlating data from these sensors may improve the global efficiency of the safeguards system. The system is based on 'smart sensors' (i.e. sensors able to achieve a local algorithm to analyse data, to send and read data from other sensors, to send a state of health status, and to integrate other information such as serial number and name of the manufacturer) and a network of sensors. A first application with a camera, on/off sensors and a radiation sensor has been developed using such a field network based on factory instrumentation protocol (FIP) technology. FIP is a normalized and opened protocol, dedicated to an industrial environment, that enables communication between smart sensors and actuators on a network. (author)

  11. Facilitative Project Management: Constructing A Model For Integrated Change Implementation By Utilizing Case Studies

    Directory of Open Access Journals (Sweden)

    Veronica Hodgson

    2003-11-01

    Full Text Available Change management theory is extensive, and organisations constantly adapt to and embrace change. In post-apartheid South Africa we are building a racially integrated business environment and society, and leverage its competitive re-entry into the world business arena. Research to date has found that the majority of change initiatives fail due to resistance caused by poor conceptualisation and planning, and the lack of proper integration of the people and business dimensions of change. The model to implement a successful change program will be designed using a combination of readily available skills and techniques. Its development and testing will take place within the context of three case studies. OpsommingDie teorie van veranderingsbestuur is omvattend. Organisasies moet op konstante wyse daarby aanpas en dit integreer. In Post-Apartheid Suid-Afrika bou ons tans ’n ras geïntegreerde besigheidsomgewing en gemeenskap, en benut dit maksimaal in ons toetrede tot die mededingende wêreld besigheidsarena. Huidige navorsing het bevind dat die meeste veranderingsinitiatiewe faal weens weerstand teen verandering wat deur swak konseptualisering en beplanning, en ’n gebrek aan behoorlike integrering van mense en die besigheidsdimensies van verandering veroorsaak is. Die model om ’n suksesvolle veranderingsprogram te implementeer, sal ontwerp word met geredelik beskikbare vaardighede en tegnieke. Die ontwikkeling en toetsing sal binne die konteks van drie gevallestudies plaasvind.

  12. Earth science information: Planning for the integration and use of global change information

    Science.gov (United States)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  13. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials

    Science.gov (United States)

    Beaumont, Peter W. R.

    2014-02-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  14. The role of material engineering within the concept of an integrated water resources management

    Science.gov (United States)

    Breiner, Raphael; Müller, Harald S.

    2016-05-01

    By means of a case study, the successful implementation of a rheologically optimised cement-based mortar for the construction as well as for the rehabilitation of rain water cisterns is presented in this paper. The material was developed within the scope of a German-Indonesian joint project ["Integrated Water Resources Management" (IWRM)], funded by the German Federal Ministry of Education and Research. Comprehensive rheological investigations are presented which provide the database for the optimization of the mortar with regard to its intended range of application. For the selection of the source materials, special emphasis was placed on the ready availability at low cost. The rheological properties of the fresh mortar allow an easy workability by hand while the hardened mortar shows a durable and tight appearance at the same time. The developed material can be used as a coating for walls, floors and ceilings of cisterns, for the local rehabilitation of damaged areas only or even as a construction material for complete new cisterns. The future multiplication of the IWRM project results within the region was assured by a local capacity development when the presented material concept was applied in practise in Indonesia for the construction of sustainable rain water cisterns in Gunung Kidul.

  15. The global resource balance table, an integrated table of energy, materials and the environment

    International Nuclear Information System (INIS)

    This paper introduces the Global Resource Balance Table (GRBT), which is an extension of the energy balance tables that expresses the relationships between energy, materials and the environment. The material division of the GRBT includes steel, cement, paper, wood and grain. In contrast, the environmental division of the GRBT includes oxygen, CO2 and methane. The transaction division rows in the GRBT include production, conversion, end use and stock. Each cell of the GRBT contains the quantities of the respective resources that were generated or consumed. The relationships between the cells were constructed from the laws of conservation of the materials and energy. We constructed a GRBT for 2007 and discussed the increasing air temperature due to waste heat and the CO2 equivalent from human breathing. The GRBT is a comprehensive integrated table that represents the resources that are consumed by human activities and is useful for energy and environmental studies. - Highlights: • We extended energy balance table and introduced Global Resource Balance Table. • It shows relationships between energy, materials and the environment. • The material division includes steel, cement, paper, wood and grain. • The environmental division includes oxygen, CO2 and methane. • We discussed on waste heat and CO2 emission by human breathing

  16. Exploring the role of materials in policy change: innovation in low energy housing in the UK

    OpenAIRE

    Lovell, Heather

    2007-01-01

    There remains uncertainty in models of the policy process about how and when radical change takes place. Most policy authors focus on explaining incremental change, and yet in practice a pattern of change described as punctuated equilibrium has been observed, with periods of stability interspersed with periods of rapid, abrupt change. It is argued here that the influence of materials and technologies—the substance of policy—must be incorporated into models of the policy process in order to he...

  17. Linking the effects of land use change with water quality and discharge :an integrated approach

    OpenAIRE

    Fauss, Lynn Michael

    1992-01-01

    Hydrologic and water-quality equilibria are greatly affected by changing land use. This study presents a methodology that integrates the use of remote sensing, geographical information systems (GIS) and water-quality modeling. Archived aerial photography proved to be a valuable source of historical land use data. GIS technology was used to compile and analyze spatial data. A comprehensive watershed model was used to link the effects of land use change to water quali...

  18. Integrated assessment of farm level adaptation to climate change in agriculture

    OpenAIRE

    Mandryk, M.

    2016-01-01

    The findings of the thesis allowed assessing plausible futures of agriculture in Flevoland around 2050 with insights in effective adaptation to climate change at different levels. Besides empirical findings, this thesis contributed methodologically to the portfolio of climate change impact and adaptation assessment. Overall, this thesis performed a prospective (using scenarios), multi-scale (taking into account crop, farm and regional level), integrated (notably multi-objective) and participa...

  19. Experimental study of passive cooling of building facade using phase change materials to increase thermal comfort in buildings in hot humid areas

    Directory of Open Access Journals (Sweden)

    A. A. Madhumathi, B. M.C. Sundarraja

    2012-01-01

    Full Text Available Storage of cooler night temperatures using Phase Change Material (PCM energy storage technique, for cooling of ambient air during hot day times can be an alternate of current cooling techniques in building sector. This work presents the results of an experimental set-up to test energy saving potential of phase change materials with typical construction materials in building facade in Hot-Humid Climatic Regions in real conditions. The main objective of this research is to demonstrate experimentally that it is possible to improve the thermal comfort and reduce the energy consumption of a building without substantial increase in the weight of the construction materials with the inclusion of PCM. This research was conducted to study and evaluate the performance of the existing materials integrated with Organic PCM Polyethylene glycol (PEG E600. This research suggested that the heat gain is significantly reduced when the PCM is incorporated into the brick (conventional building material.

  20. Combinatorial material synthesis applied to Ge-Sb-Te based phase change materials

    OpenAIRE

    Wöltgens, Han-Willem

    2003-01-01

    The rapidly increasing net amount of digital information requires higher data- storage capacities and transfer rates. Consequently, there is a need for a continuous improvement of the media concept and design. Phase change recording technology offers attractive features for erasable data storage with high density. Digital information can be written, erased and re- written repetitively using optical techniques. They can be characterized by two stable physical structures that exhibit significan...

  1. HEAT STORAGE SYSTEM WITH PHASE CHANGE MATERIALS IN COGENERATION UNITS: STUDY OF PRELIMINARY MODEL

    Directory of Open Access Journals (Sweden)

    Claudio Caprara

    2008-12-01

    Full Text Available The continuous increase in the mechanization of farm activities, the rise in fuel prices and the environmental aspects concerning gas emissions are the main driving forces behind efforts toward more effective use of renewable energy sources and cogeneration systems even in agricultural and cattle farms. Nevertheless these systems are still not very suitable for this purpose because of their little flexibility in following the changing energy demand as opposed to the extremely various farm load curves, both in daytime and during the year. In heat recovery systems, the available thermal energy supply is always linked to power production, thus it does not usually coincide in time with the heat demand. Hence some form of thermal energy storage (TES is necessary in order to reach the most effective utilization of the energy source. This study deals with the modelling of a packed bed latent heat TES unit, integrating a cogeneration system made up of a reciprocating engine. The TES unit contains phase change materials (PCMs filled in spherical capsules, which are packed in an insulated cylindrical storage tank. Water is used as heat transfer fluid (HTF to transfer heat from the tank to the final uses, and exhausts from the engine are used as thermal source. PCMs are considered especially for their large heat storage capacity and their isothermal behaviour during the phase change processes. Despite their high energy storage density, most of them have an unacceptably low thermal conductivity, hence PCMs encapsulation technique is adopted in order to improve heat transfer. The special modular configuration of heat exchange tubes and the possibility of changing water flow through them allow to obtain the right amount of thermal energy from the tank, according to the hourly demand of the day. The model permits to choose the electrical load of the engine, the dimensions of the tank and the spheres, thickness and diameter of heat exchanger and the nature of

  2. Application of integrated safety management in decommissioning activities: ensuring the safety of workers throughout the changing environment of decommissioning

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE), Office of Environmental Management (EM) has successfully decommissioned several legacy facilities that were used in the development and manufacture of nuclear weapons. The DOE experience includes laboratories, raw material manufacturing, foundry, separation, reactor, reprocessing canyon, waste storage and repackaging facilities. Some of these facilities date back to the original Manhattan Project in the 1940s. Inventories include a range of isotopes and hazardous chemicals. The physical condition of the facilities and their safety systems also range in age and integrity. As each facility transitions through the decommissioning lifecycle the hazard profile and the available controls change with the facility. One of the most effective means the DOE has found to reliably manage the changing hazards is a strong system of safety management programs (SMPs) that address hazards in an integrated fashion. Statistics demonstrate that the most significant hazards to the worker during decommissioning activities result from industrial accidents. It is imperative that a foundation of strong safety management systems must identify hazards and coordinate between program areas to establish the most appropriate protective measure for the worker. This paper walks through examples to illustrate lessons learned through its decommissioning experience, including coordinating between programs such as electrical safety and radiological protection when both hazards are substantial in a given work evolution. The DOE has institutionalized its Integrated Safety Management System (ISMS) and routinely evaluates its contractors to ensure effective implementation. ISMS establishes the foundation for safe, efficient decommissioning of nuclear facilities. (author)

  3. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  4. Integrating climate change adaptation in energy planning and decision-making - Key challenges and opportunities

    DEFF Research Database (Denmark)

    Olhoff, Anne; Olsen, Karen Holm

    2011-01-01

    Energy systems are significantly vulnerable to current climate variability and extreme events. As climate change becomes more pronounced, the risks and vulnerabilities will be exacerbated. To date, energy sector adaptation issues have received very limited attention. In this paper, a climate risk...... management framework is used as the basis for identifying key challenges and opportunities to enhance the integration of climate change adaptation in energy planning and decision-making. Given its importance for raising awareness and for stimulating action by planners and decision-makers, emphasis is placed...... likely to remove barriers to integration of climate risks and adaptive responses in energy planning and decision making. Both detailed assessments of the costs and benefits of integrating adaptation measures and rougher ‘order of magnitude’ estimates would enhance awareness raising and momentum for...

  5. A Complexity Perspective on Leadership and Change in the Post-Merger Integration Process

    Science.gov (United States)

    Lauser, Barbel; Peters, Mike

    2008-01-01

    After 30 years of research in mergers and acquisitions and advances in the research of post-merger integration (PMI) processes, the outcome of a merger remains hardly predicable. Traditional leadership and change theories have not succeeded in fully explaining PMI processes and therefore new theories are needed. This article offers new insights…

  6. Crop modelling for integrated assessment of risk to food production from climate change

    DEFF Research Database (Denmark)

    Ewert, F; Rötter, R P; Bindi, M;

    2015-01-01

    The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess cli...

  7. Changes in Language Development among Autistic and Peer Children in Segregated and Integrated Preschool Settings.

    Science.gov (United States)

    Harris, Sandra L.; And Others

    1990-01-01

    A study of five autistic children in a segregated preschool, five mainstreamed autistic children, and four nonhandicapped, integrated peers found that all of the groups made better than normative progress in language development. There were no significant differences in changes in language ability between segregated and mainstreamed autistic…

  8. Integral approach to innovative fuel and material investigations in the Halden reactor

    International Nuclear Information System (INIS)

    Integral approach used for fuel and material investigations in the Halden reactor can be used in support of qualification and certification of fuel to be introduced in commercial NPPs. This approach has been partly used for WWER fuel investigation in the Halden Reactor in a series of irradiation tests. In-pile fuel performance tests with reliable measurements provided by Halden instrumentation under different conditions can be used for validation of the WWER fuel behaviour models and verification of fuel performance codes. These models and codes can be used for qualification of innovative fuel behaviour under extended conditions

  9. Evaluation of material integrity on electricity generator water steam cycles component (Main Steam Pipe)

    International Nuclear Information System (INIS)

    The evaluation of material integrity on electricity generator component has been done. That component was main steam pipe of Unit II Suralaya Coal Fired Power Plant. evaluation was done by replication technique. The damage was found are two porosity's, from two point samples of six points sample population. Based on cavity evaluation in steels, which proposed by Neubauer and Wedel that porosity's still at class A damage. For class A damage, its means no remedial action would be required until next major scheduled maintenance outage. That porosity's was grouped on isolated cavities and not need ti repair that main steam pipe component less than three year after replication test

  10. Scattering Analysis of Electromagnetic Materials Using Fast Dipole Method Based on Volume Integral Equation

    OpenAIRE

    Xiaoqiao Deng; Changqing Gu; Bingzheng Xu; Zhuo Li; Xinlei Chen

    2013-01-01

    The fast dipole method (FDM) is extended to analyze the scattering of dielectric and magnetic materials by solving the volume integral equation (VIE). The FDM is based on the equivalent dipole method (EDM) and can achieve the separation of the field dipole and source dipole, which reduces the complexity of interactions between two far groups (such as group i and group j) from O(NiNj) to O(Ni+Nj), where Ni and Nj are the numbers of dipoles in group i and group j, respectively. Targets includin...

  11. An evaluation of explicit time integration schemes for use with the generalized interpolation material point method

    Science.gov (United States)

    Wallstedt, P. C.; Guilkey, J. E.

    2008-11-01

    The stability and accuracy of the generalized interpolation material point (GIMP) Method is measured directly through carefully-formulated manufactured solutions over wide ranges of CFL numbers and mesh sizes. The manufactured solutions are described in detail. The accuracy and stability of several time integration schemes are compared via numerical experiments. The effect of various treatments of particle "size" are also considered. The hypothesis that GIMP is most accurate when particles remain contiguous and non-overlapping is confirmed by comparing manufactured solutions with and without this property.

  12. Multi-material additive manufacturing of robot components with integrated sensor arrays

    Science.gov (United States)

    Saari, Matt; Cox, Bryan; Galla, Matt; Krueger, Paul S.; Richer, Edmond; Cohen, Adam L.

    2015-06-01

    Fabricating a robotic component comprising 100s of distributed, connected sensors can be very difficult with current approaches. To address these challenges, we are developing a novel additive manufacturing technology to enable the integrated fabrication of robotic structural elements with distributed, interconnected sensors and actuators. The focus is on resistive and capacitive sensors and electromagnetic actuators, though others are anticipated. Anticipated applications beyond robotics include advanced prosthetics, wearable electronics, and defense electronics. This paper presents preliminary results for printing polymers and conductive material simultaneously to form small sensor arrays. Approaches to optimizing sensor performance are discussed.

  13. The Integration of Energy Efficiency, Renewable Energy, DemandResponse and Climate Change: Challenges and Opportunities for Evaluatorsand Planners

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2007-05-29

    This paper explores the feasibility of integrating energyefficiency program evaluation with the emerging need for the evaluationof programs from different "energy cultures" (demand response, renewableenergy, and climate change). The paper reviews key features andinformation needs of the energy cultures and critically reviews theopportunities and challenges associated with integrating these withenergy efficiency program evaluation. There is a need to integrate thedifferent policy arenas where energy efficiency, demand response, andclimate change programs are developed, and there are positive signs thatthis integration is starting to occur.

  14. Integrated safety management as a starting point for working environmental changes

    DEFF Research Database (Denmark)

    Pedersen, Louise Møller; Nielsen, Kent

    2013-01-01

    Organizations: The effective management of organizational change involves understanding and appreciating the complex interactions of technology, people, organizations, economical factors, legislation, and aspects of cultural, physical, and psychological context. The behavior based and culture based...... approaches to safety are two seemingly incompatible approaches to creating organizational change in safety performance. However, combined, the two approaches may provide a new perspective on conducting effective and healthy organizational changes. Approach to change: DeJoy has proposed an integrative...... approach to safety management (DeJoy, 2005) based on a combination of a behavior-based ‘problem-solving process’ and a ‘culture change process’. The participatory problem-solving process and the culture change process require involvement and commitment from management and workers. The ‘problem...

  15. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    International Nuclear Information System (INIS)

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation's largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE's MPC ampersand A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE's Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC ampersand A work at UEIP is expected to be completed during fiscal year 2001

  16. Integrated risk reduction framework to improve railway hazardous materials transportation safety

    International Nuclear Information System (INIS)

    Highlights: • An integrated framework is developed to optimize risk reduction. • A negative binomial regression model is developed to analyze accident-cause-specific railcar derailment probability. • A Pareto-optimality technique is applied to determine the lowest risk given any level of resource. • A multi-attribute decision model is developed to determine the optimal amount of investment for risk reduction. • The models could aid the government and rail industry in developing cost-efficient risk reduction policy and practice. -- Abstract: Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation

  17. Phase Change Materials (PCMs) for energy storage in architecture. Use with the Magic Box prototype

    OpenAIRE

    Bedoya Frutos, C.; Higueras García, E.; Acha Román, C.; Neila González, F. J.

    2008-01-01

    The article shows an energy-accumulation system in change of phase materials, designed for a prototype dwelling used for building two bioclimatic and self-sufficient buildings. These bulidings have been built in Madrid, Washington and Beijing. The characteristics of these materials, the construction systems into which these materials were incorporated, its comparative valuation with sensitive accumulation systems, and the results of the building monitorization are included.El artículo mu...

  18. Property changes induced by the space environment in polymeric materials on LDEF

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, A.F.; Finckenor, M.M.; Kamenetzky, R.R. (NASA, Marshall Space Flight Center, Huntsville, AL (United States))

    1992-01-01

    Property changes that occurred in four groups of polymer-based materials in the Long Duration Exposure Facility (LDEF) due to exposure to the outer space environment for 5.8 yrs are examined. Evaluations of contamination and mass loss are presented along with optical, thermal, and electrical analyses and mechanical property evaluations for TFE Teflon, the fluorinated material Halar, the silicone-based material RTV 511, and PEEK resin. 5 refs.

  19. Property changes induced by the space environment in polymeric materials on LDEF

    International Nuclear Information System (INIS)

    Property changes that occurred in four groups of polymer-based materials in the Long Duration Exposure Facility (LDEF) due to exposure to the outer space environment for 5.8 yrs are examined. Evaluations of contamination and mass loss are presented along with optical, thermal, and electrical analyses and mechanical property evaluations for TFE Teflon, the fluorinated material Halar, the silicone-based material RTV 511, and PEEK resin. 5 refs

  20. Property changes induced by the space environment in polymeric materials on LDEF

    Science.gov (United States)

    Whitaker, Ann F.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1992-01-01

    Property changes that occurred in four groups of polymer-based materials in the Long Duration Exposure Facility (LDEF) due to exposure to the outer space environment for 5.8 yrs are examined. Evaluations of contamination and mass loss are presented along with optical, thermal, and electrical analyses and mechanical property evaluations for TFE Teflon, the fluorinated material Halar, the silicone-based material RTV 511, and PEEK resin.

  1. Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): evidence of a recent regime shift?

    DEFF Research Database (Denmark)

    Tomczak, Maciej Tomasz; Dinesen, Grete E.; Hoffmann, Erik; Maar, Marie; Støttrup, Josianne

    2012-01-01

    An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is an eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west and......), jellyfish, common shore crab, starfish and blue mussels. We interpret this change as a regime shift that showed a similar temporal pattern to regime shifts identified in adjacent seas. The observed changes in trophic interactions and food web reorganisation suggested a non-linear regime shift. The analyses...

  2. An Integrated SS-VSA Analysis of Changing Job Roles

    OpenAIRE

    Jim Spohrer; Gaetano M. Golinelli; Paolo Piciocchi; Clara Bassano

    2010-01-01

    This paper presents a first attempt at an integrated Service Science (SS) and Viable Systems Approach (VSA) analysis of the real-world phenomenon of changing jobs roles. Changing job roles is important to quality of life and yet understudied by systems scientists. Today, individuals changing jobs multiple times during their working life is the norm. The average person born in the later years of the US baby boom held 10.8 jobs from age 18 to age 42 (BLS [BLS 2008. Number of jobs held, labor ma...

  3. Computational Study of Integrated Neutron/Photon Imaging for Illicit Material Detection

    Science.gov (United States)

    Hartman, Jessica; Barzilov, Alexander

    The feasibility of integration of photon and neutron radiography for nondestructive detection of illicit materials was examined. The MCNP5 code was used to model a radiography system consisting of accelerator-based neutron and photon sources and the imaging detector array, with an object under scrutiny placed between them. For this examination, the objects consisted of a matrix of low-Z and high-Z materials of various shapes and density. Transmission-radiography computations were carried out using 2.5-MeV deuterium-deuterium and 14-MeV deuterium-tritium neutron sources, and a 0.3-MeV photon source. The radiography tallies for both neutron and photon sources were modeled for the same geometry of the system. The photon-to- neutron transmission ratios were determined for each pixel of the detector array and utilized to identify the presence of specific materials in the radiographic images. By focusing on the inherent difference between neutron and photon interactions, it was possible to determine the shape and material composition of complex objects present within a pallet or a shipping container. The use of a single imaging array of scintillation detectors for simultaneous measurements of fast neutrons and photons is discussed, and its function in the dual neutron/photon radiography applications is addressed.

  4. A J integral based method to measure fracture resistance and cohesive laws in materials exhibiting large scale plasticity

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios

    2014-01-01

    A method is developed to extract the fracture resistance and mode I cohesive law of nonlinear elastic-plastic materials using a Double Cantilever Beam (DCB) sandwich specimen loaded with pure bending moments. The method is based on the J integral which is valid for materials having a non-linear s......A method is developed to extract the fracture resistance and mode I cohesive law of nonlinear elastic-plastic materials using a Double Cantilever Beam (DCB) sandwich specimen loaded with pure bending moments. The method is based on the J integral which is valid for materials having a non...

  5. Simulating land use change by integrating landscape metrics into ANN-CA in a new way

    Science.gov (United States)

    Yang, Xin; Zhao, Yu; Chen, Rui; Zheng, Xinqi

    2016-06-01

    Landscape metrics are measurements of landuse patterns and land-use change, but even so, have rarely been integrated into land-use change simulation models. This paper proposes a new artificial neural network-cellular automaton by integrating landscape metrics into the model. In this model, each cell acquires unique landscape metric values. The landscape metric values of each cell are actually the landscape metric values of land use type in its neighborhood, which takes the cell as center. The calculation of landscape metrics ensures that those of each cell can represent cellular spatial environmental characteristics. The model is used to simulate land use change in the Changping district of Beijing, China. Comparisons of the simulated land use map with the actual map show that the proposed model is effective for land use change simulation. The validation is further carried out by comparing the simulated land use map with that simulated by an artificial neural network-cellular automaton model, which has not been integrated with landscape metrics. Results indicate that the proposed model is more appropriate for simulating both quantity and spatial distribution of land use change in the study area.

  6. Climate change, uncertainty, and resilient fisheries: Institutional responses through integrative science

    DEFF Research Database (Denmark)

    Miller, K.; Charles, A.; Barange, M.; Brander, Keith; Gallucci, V.F.; Gasalla, M.A.; Khan, A.; Munro, G.; Murtugudde, R.; Ommer, R.E.; Perry, R.I.

    This paper explores the importance of a focus on the fundamental goals of resilience and adaptive capacity in the governance of uncertain fishery systems, particularly in the context of climate change. Climate change interacts strongly with fishery systems, and adds to the inherent uncertainty in...... processes – to support suitable institutional responses, a broader planning perspective, and development of suitable resilience-building strategies. The paper explores how synergies between institutional change and integrative science can facilitate the development of more effective fisheries policy...... approaches. Specifically, integrative science can provide a vehicle (1) to examine policy options with respect to their robustness to uncertainty, particularly to climate-related regime shifts and (2) to allow better assessments of behavioral responses of fish, humans and institutions. The argument is made...

  7. An integrated spatial snap-shot monitoring method for identifying seasonal changes and spatial changes in surface water quality

    Science.gov (United States)

    Chittoor Viswanathan, Vidhya; Jiang, Yongjun; Berg, Michael; Hunkeler, Daniel; Schirmer, Mario

    2016-08-01

    Integrated catchment-scale management approaches in large catchments are often hindered due to the poor understanding of the spatially and seasonally variable pathways of pollutants. High-frequency monitoring of water quality at random locations in a catchment is resource intensive and challenging. A simplified catchment-scale monitoring approach is developed in this study, for the preliminary identification of water quality changes - Integrated spatial snap-shot monitoring (ISSM). This multi-parameter monitoring approach is applied using the isotopes of water (δ18O-H2O and δD) and nitrate (δ15N-NO3- and δ18O-NO3-) together with the fluxes of nitrate and other solutes, which are used as chemical markers. This method involves selection of few sampling stations, which are identified as the hotspots of water quality changes within the catchment. The study was conducted in the peri-alpine Thur catchment in Switzerland, with two snap-shot campaigns (representative of two widely varying hydrological conditions), in summer 2012 (low flow) and spring 2013 (high flow). Significant spatial (varying with elevation) and seasonal changes in the sources of water were observed between the two seasons. A spatial variation of the sources of nitrate and the solute loads was observed, in tandem with the land use changes in the Thur catchment. There is a seasonal shift in the sources of nitrate, it varies from a strong treated waste water signature during the low flow season to a mixture of other sources (like soil nitrogen derived from agriculture), in the high flow season. This demonstrates the influence of other sources that override the influence of waste water treatment plants (WWTPs) during high flow in the Thur River and its tributaries. This method is expected to be a cost-effective alternative, providing snap-shots, that can help in the preliminary identification of the pathways of solutes and their seasonal/spatial changes in catchments.

  8. Conceptual Change Text: A Supplementary Material To Facilitate Conceptual Change in Electrochemical Cell Concepts.

    Science.gov (United States)

    Yuruk, Nejla; Geban, Omer

    The main purpose of the study was to investigate the effectiveness of conceptual change text (CCT) oriented instruction over traditionally designed instruction on students' understanding of electrochemical (galvanic and electrolytic) cell concepts. The subjects of the study consisted of 64 students from the two classes of a high school in Turkey.…

  9. Influence of attention on bimodal integration during emotional change decoding: ERP evidence.

    Science.gov (United States)

    Chen, Xuhai; Han, Lingzi; Pan, Zhihui; Luo, Yangmei; Wang, Ping

    2016-08-01

    Recent findings on audiovisual emotional interactions suggest that selective attention affects cross-sensory interaction from an early processing stage. However, the influence of attention manipulation on facial-vocal integration during emotional change perception is still elusive at this point. To address this issue, we asked participants to detect emotional changes conveyed by prosodies (vocal task) or facial expressions (facial task) while facial, vocal, and facial-vocal expressions were presented. At the same time, behavioral responses and electroencephalogram (EEG) were recorded. Behavioral results showed that bimodal emotional changes were detected with shorter response latencies compared to each unimodal condition, suggesting that bimodal emotional cues facilitated emotional change detection. Moreover, while the P3 amplitudes were larger for the bimodal change condition than for the sum of the two unimodal conditions regardless of attention direction, the N1 amplitudes were larger for the bimodal emotional change condition than for the sum of the two unimodal conditions under the attend-voice condition, but not under the attend-face condition. These findings suggest that selective attention modulates facial-vocal integration during emotional change perception in early sensory processing, but not in late cognitive processing stages. PMID:27238075

  10. The integration of facial and vocal cues during emotional change perception: EEG markers.

    Science.gov (United States)

    Chen, Xuhai; Pan, Zhihui; Wang, Ping; Yang, Xiaohong; Liu, Peng; You, Xuqun; Yuan, Jiajin

    2016-07-01

    The ability to detect emotional changes is of primary importance for social living. Though emotional signals are often conveyed by multiple modalities, how emotional changes in vocal and facial modalities integrate into a unified percept has yet to be directly investigated. To address this issue, we asked participants to detect emotional changes delivered by facial, vocal and facial-vocal expressions while behavioral responses and electroencephalogram were recorded. Behavioral results showed that bimodal emotional changes were detected with higher accuracy and shorter response latencies compared with each unimodal condition. Moreover, the detection of emotional change, regardless of modalities, was associated with enhanced amplitudes in the N2 and P3 component, as well as greater theta synchronization. More importantly, the P3 amplitudes and theta synchronization were larger for the bimodal emotional change condition than for the sum of the two unimodal conditions. The superadditive responses in P3 amplitudes and theta synchronization were both positively correlated with the magnitude of the bimodal superadditivity in accuracy. These behavioral and electrophysiological data consistently illustrated an effect of audiovisual integration during the detection of emotional changes, which is most likely mediated by the P3 activity and theta oscillations in brain responses. PMID:26130820

  11. Integrated assessment of vulnerability to climate change and adaptation options in the Netherlands

    International Nuclear Information System (INIS)

    In recent decades, it has become increasingly clear that the global climate is becoming warmer and that regional climates are changing. This report summarizes the results of an integrated assessment of vulnerability to climate change and adaptation options in the Netherlands carried out between July 2000 and July 2001 within the framework of the Dutch National Research Program on Global Air Pollution and Climate Change (NRP-2). The project's main aims were: - to provide an overview of scientific insights, expert judgements and stakeholders' perceptions of current and future impacts (positive and negative) of climate change for several economic sectors, human health, and natural systems in the Netherlands, considering various cross-sectoral interactions, - to develop a set of adaptation options for these sectors through a participatory process with the main stakeholders, - to perform an integrated assessment of cross-sectoral interactions of climate change impacts and adaptation options. Climate change impacts and adaptation options have been investigated for several important economic sectors (including agriculture, forestry, fisheries, industry, energy, transport, insurance and recreation and tourism), human health and natural systems (including soils, water and biodiversity issues).The results of this study are based on literature survey, a dialogue with experts and stakeholders. We are convinced that the report represents the most essential and relevant aspects of the impacts and adaptation options for climate change in the Netherlands, given the scenario setting of this study, the state of the art of current scientific knowledge, and today's expert and stakeholders' perceptions of the issues at stake. 215 refs

  12. Performance of a forced convection solar drier integrated with gravel as heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Mohanraj, M. [Dr Mahalingam College of Engineering and Technology, Pollachi (India). Dept. of Mechanical Engineering; Chandrasekar, P. [Swinburne Univ. of Technology, Sarawak (Malaysia). School of Engineering Sciences

    2009-07-01

    Sun drying is the most common method used in India to dry agricultural products such as grains, fruits and vegetables. The rate of drying depends on solar radiation, ambient temperature, wind velocity, relative humidity, initial moisture content, type of crops, crop absorptivity and mass product per unit exposed area. However, this method of spreading the crop in a thin layer on the ground has several disadvantages. This paper reported on a study that focused on developing a forced convection solar drier integrated with heat storage materials for drying various agricultural crops. The indirect forced convection solar drier, integrated with gravel as a sensible heat material, was used to dry pineapple slices under conditions similar to those found in Pollachi, India. The performance of the system was discussed along with the drying characteristics, drying rate, and specific moisture extraction rate. The results showed that the moisture content (wet basis) of pineapple was reduced from about 87.5 to 14.5 per cent (equilibrium moisture content) in about 29 hours in the bottom tray and 32 hours in the top tray. The thermal efficiency of the solar air heater was also reviewed. 9 refs., 5 figs.

  13. Integrated software package for nuclear material safeguards in a MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Since computerized data processing was introduced to Safeguards at large bulk handling facilities, a large number of individual software applications have been developed for nuclear material Safeguards implementation. Facility inventory and flow data are provided in computerized format for performing stratification, sample size calculation and selection of samples for destructive and non-destructive assay. Data is collected from nuclear measurement systems running in attended, unattended mode and more recently from remote monitoring systems controlled. Data sets from various sources have to be evaluated for Safeguards purposes, such as raw data, processed data and conclusions drawn from data evaluation results. They are reported in computerized format at the International Atomic Energy Agency headquarters and feedback from the Agency's mainframe computer system is used to prepare and support Safeguards inspection activities. The integration of all such data originating from various sources cannot be ensured without the existence of a common data format and a database system. This paper describes the fundamental relations between data streams, individual data processing tools, data evaluation results and requirements for an integrated software solution to facilitate nuclear material Safeguards at a bulk handling facility. The paper also explains the basis for designing a software package to manage data streams from various data sources and for incorporating diverse data processing tools that until now have been used independently from each other and under different computer operating systems. (author)

  14. Integration of electronics and photonics in active material by femtosecond laser for functional microdevice fabrication

    Science.gov (United States)

    Cheng, Ya; Xu, Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2010-02-01

    Recently, hybrid integration of multifunctional micro-components for creating complex, intelligent micro/nano systems has attracted significant attention. These micro/nano systems have important applications in a variety of areas, such as healthcare, environment, communication, national security, and so on. Until now, fabrication of micro/nano systems incorporated with different functions is still a challenging issue, which generally requires fabrication of microcomponents beforehand followed by assembly and packaging procedures. Thus, the fabrication process is complex and costly. In recent years, the rapid development of femtosecond laser microfabrication technology has enabled direct fabrication and integration of multifunctional components, such as microfluidics, microoptics, micromechanics, microelectronics, etc., into a substrate. Particularly, in this talk, we show the use of femtosecond laser microfabrication for integrating microelectronics and microphotonics. Both microelectrodes and optical waveguides can be directly embedded in active materials after a femtosecond laser direct writing followed by electroless chemical plating. As examples, electric-optic (EO) modulators were fabricated in lithium niobate (LiNbO3) crystal and their functions were demonstrated.

  15. Study of dimensional changes during redox cycling of oxygen carrier materials for chemical looping combustion

    NARCIS (Netherlands)

    Fossdal, A.; Darell, O.; Lambert, A.; Schols, E.; Comte, E.; Leenman, R.N.; Blom, R.

    2015-01-01

    Dimensional and phase changes of four candidate oxygen carrier materials for chemical looping combustion are investigated by dilatometry and high-temperature X-ray diffraction during four redox cycles. NiO/Ni2AlO4 does not exhibit significant dimensional changes during cycling, and it is shown that

  16. The use of lipids as phase change materials for thermal energy storage

    Science.gov (United States)

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  17. Building Up STEM: An Analysis of Teacher-Developed Engineering Design-Based STEM Integration Curricular Materials

    OpenAIRE

    Guzey, Siddika Selcen; Moore, Tamara J.; Harwell, Michael

    2016-01-01

    Improving K–12 Science, Technology, Engineering, and Mathematics (STEM) education has a priority on numerous education reforms in the United States. To that end, developing and sustaining quality programs that focus on integrated STEM education is critical for educators. Successful implementation of any STEM program is related to the curriculum materials used. Educators increasingly recognize the challenge of finding quality curriculum materials for integrated STEM education. In this study, 4...

  18. Incorporating climate-system and carbon-cycle uncertainties in integrated assessments of climate change. (Invited)

    Science.gov (United States)

    Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.

    2013-12-01

    The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.

  19. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104. PMID:26629490

  20. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  1. Performance evaluation of a thermoelectric energy harvesting device using various phase change materials

    International Nuclear Information System (INIS)

    This paper compares the performance of a group of organic and inorganic phase change materials for a heat storage thermoelectric energy harvesting device. The device consists of thermoelectric generators and a closed container filled with a phase change material. One side of the generators is mounted on the aircraft fuselage and the other to the thermal mass. The group of inorganic and organic phase change materials was tested across two temperature ranges. These ranges are defined as ''positive'' and ''negative'', with the former being a sweep from +35°C to −5°C and the latter being a sweep from +5°C to −35°C. The performance in terms of electrical energy output and power produced is examined in detail for each group of materials

  2. Investigations on the Impact of Material-Integrated Sensors with the Help of FEM-Based Modeling

    Directory of Open Access Journals (Sweden)

    Gerrit Dumstorff

    2015-01-01

    Full Text Available We present investigations on the impact of material-integrated sensors with the help of finite element-based modeling. A sensor (inlay integrated with a material (matrix is always a foreign body in the material, which can lead to a “wound effect”, that is degradation of the macroscopic behavior of a material. By analyzing the inlay’s impact on the material in terms of mechanical load, heat conduction, stress during integration and other impacts of integration, this wound effect is analyzed. For the mechanical load, we found out that the inlay has to be at least as stretchable and bendable as the matrix. If there is a high thermal load during integration, the coefficients of the thermal expansion of the inlay have to be matched to the matrix. In the case of a high thermal load during operation, the inlay has to be as thin as possible or its thermal conductivity has to be adapted to the thermal conductivity of the matrix. To have a general view of things, the results are dimensionless and independent of the geometry. In each section, the results are illustrated by examples. Based on all of the results, we present our idea for the fabrication of future material-integrated sensors.

  3. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials.

    Science.gov (United States)

    Manovic, Vasilije; Anthony, Edward J

    2011-12-15

    Calcium looping cycles (CaL) and chemical looping combustion (CLC) are two new, developing technologies for reduction of CO(2) emissions from plants using fossil fuels for energy production, which are being intensively examined. Calcium looping is a two-stage process, which includes oxy-fuel combustion for sorbent regeneration, i.e., generation of a concentrated CO(2) stream. This paper discuss the development of composite materials which can use copper(II)-oxide (CuO) as an oxygen carrier to provide oxygen for the sorbent regeneration stage of calcium looping. In other words, the work presented here involves integration of calcium looping and chemical looping into a new class of postcombustion CO(2) capture processes designated as integrated CaL and CLC (CaL-CLC or Ca-Cu looping cycles) using composite pellets containing lime (CaO) and CuO together with the addition of calcium aluminate cement as a binder. Their activity was tested in a thermogravimetric analyzer (TGA) during calcination/reduction/oxidation/carbonation cycles. The calcination/reduction typically was performed in methane (CH(4)), and the oxidation/carbonation stage was carried out using a gas mixture containing both CO(2) and O(2). It was confirmed that the material synthesized is suitable for the proposed cycles; with the very favorable finding that reduction/oxidation of the oxygen carrier is complete. Various schemes for the Ca-Cu looping process have been explored here that would be compatible with these new composite materials, along with some different possibilities for flow directions among carbonator, calciner, and air reactor. PMID:22022778

  4. Challenges in Incorporating Climate Change Adaptation into Integrated Water Resources Management

    Science.gov (United States)

    Kirshen, P. H.; Cardwell, H.; Kartez, J.; Merrill, S.

    2011-12-01

    Over the last few decades, integrated water resources management (IWRM), under various names, has become the accepted philosophy for water management in the USA. While much is still to be learned about how to actually carry it out, implementation is slowly moving forward - spurred by both legislation and the demands of stakeholders. New challenges to IWRM have arisen because of climate change. Climate change has placed increased demands on the creativities of planners and engineers because they now must design systems that will function over decades of hydrologic uncertainties that dwarf any previous hydrologic or other uncertainties. Climate and socio-economic monitoring systems must also now be established to determine when the future climate has changed sufficiently to warrant undertaking adaptation. The requirements for taking some actions now and preserving options for future actions as well as the increased risk of social inequities in climate change impacts and adaptation are challenging experts in stakeholder participation. To meet these challenges, an integrated methodology is essential that builds upon scenario analysis, risk assessment, statistical decision theory, participatory planning, and consensus building. This integration will create cross-disciplinary boundaries for these disciplines to overcome.

  5. An Integrated Modeling Framework for Assessment of Impacts of Multiple Global Changes on Terrestrial Productivity

    Science.gov (United States)

    Wittig, V.; Yang, X.; Jain, A.

    2008-12-01

    Independent changes in atmospheric carbon dioxide, tropospheric ozone, nitrogen deposition and climate change directly impact terrestrial productivity. Less well understood are the interactive effects of these globally changing factors on terrestrial productivity and the resultant impact on rising atmospheric carbon dioxide concentrations. This study uses the Integrated Science Assessment Model (ISAM) to quantify the impacts of these multiple global changes on terrestrial productivity and further, to project how these changes feedback on atmospheric carbon dioxide concentrations via respiratory carbon fluxes. The ISAM is modified to include a mechanistic model of leaf photosynthesis including the sensitivity of leaf photosynthesis to tropospheric ozone. Leaf-level photosynthetic carbon gain is scaled to the canopy with a sun-shade microclimate model to estimate the gross primary productivity of major biomes comprised of representative plant functional types. The modified carbon cycle in ISAM is coupled to a detailed model of the terrestrial nitrogen cycle therefore providing the integrated modeling framework required to assess the interactive effects of rising carbon dioxide, tropospheric ozone, nitrogen deposition and climate change on global productivity.

  6. Study on Method of Geohazard Change Detection Based on Integrating Remote Sensing and GIS

    International Nuclear Information System (INIS)

    Following a comprehensive literature review, this paper looks at analysis of geohazard using remote sensing information. This paper compares the basic types and methods of change detection, explores the basic principle of common methods and makes an respective analysis of the characteristics and shortcomings of the commonly used methods in the application of geohazard. Using the earthquake in JieGu as a case study, this paper proposes a geohazard change detection method integrating RS and GIS. When detecting the pre-earthquake and post-earthquake remote sensing images at different phases, it is crucial to set an appropriate threshold. The method adopts a self-adapting determination algorithm for threshold. We select a training region which is obtained after pixel information comparison and set a threshold value. The threshold value separates the changed pixel maximum. Then we apply the threshold value to the entire image, which could also make change detection accuracy maximum. Finally, we output the result to the GIS system to make change analysis. The experimental results show that this method of geohazard change detection based on integrating remote sensing and GIS information has higher accuracy with obvious advantages compared with the traditional methods

  7. Integrating Hazardous Materials Characterization and Assessment Tools to Guide Pollution Prevention in Electronic Products and Manufacturing

    Science.gov (United States)

    Lam, Carl

    Due to technology proliferation, the environmental burden attributed to the production, use, and disposal of hazardous materials in electronics have become a worldwide concern. The major theme of this dissertation is to develop and apply hazardous materials assessment tools to systematically guide pollution prevention opportunities in the context of electronic product design, manufacturing and end-of-life waste management. To this extent, a comprehensive review is first provided on describing hazard traits and current assessment methods to evaluate hazardous materials. As a case study at the manufacturing level, life cycle impact assessment (LCIA)-based and risk-based screening methods are used to quantify chemical and geographic environmental impacts in the U.S. printed wiring board (PWB) industry. Results from this industrial assessment clarify priority waste streams and States to most effectively mitigate impact. With further knowledge of PWB manufacturing processes, select alternative chemical processes (e.g., spent copper etchant recovery) and material options (e.g., lead-free etch resist) are discussed. In addition, an investigation on technology transition effects for computers and televisions in the U.S. market is performed by linking dynamic materials flow and environmental assessment models. The analysis forecasts quantities of waste units generated and maps shifts in environmental impact potentials associated with metal composition changes due to product substitutions. This insight is important to understand the timing and waste quantities expected and the emerging toxic elements needed to be addressed as a consequence of technology transition. At the product level, electronic utility meter devices are evaluated to eliminate hazardous materials within product components. Development and application of a component Toxic Potential Indicator (TPI) assessment methodology highlights priority components requiring material alternatives. Alternative

  8. Integration of Agricultural Waste in Local Building Materials for their Exploitation: Application with Rice Straw

    Directory of Open Access Journals (Sweden)

    D. Sow

    2014-04-01

    Full Text Available Through experiments, we have determined the mechanical and thermal properties of samples. This allowed us to determine the most optimal formulations. Therefore, we have prepared samples constituted by two basic materials, clay and laterite, mixed with rice straw. Thus, agriculture is among the economic sectors that produce more waste. The latter are mainly the straw of the three most-produced cereals in the world: wheat, corn and rice. Concerning rice straw, its high content of cellulose makes it difficult to digest. So, few animals are able to use it as food. Most of the straws are lost, buried, burned or used as litter. Moreover, clay and laterite formations represent the most abundant materials resources in Africa. So, this study has allowed us to show that the integration of rice straw in lateritic and clay soils for its use as building materials will allow, in addition to its recycling, to greatly reduce the social habitat cost and to improve the thermal comfort.

  9. Approaching Integrated Urban-Rural Development in China: The Changing Institutional Roles

    Directory of Open Access Journals (Sweden)

    Yuheng Li

    2015-06-01

    Full Text Available This paper examines the impact of institutional change on the implementation of China’s integrated urban-rural development strategy in the period 1981–2010. The findings indicate that governmental investment in rural areas and the development of non-agricultural industries in the countryside in fact contributed positively to the integration of urban-rural development in the period studied. The household registration system, however, was found to have acted as an obstacle to integration due to its exclusion of rural immigrants from welfare benefits. The reform of the agricultural production price system was not found to have exerted an impact, since low agricultural incomes compelled peasants to undertake non-agricultural work in towns and cities. A robustness check performed as part of the study proved the reliability of these findings.

  10. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment.

    Science.gov (United States)

    Wagner, Paul D; Bhallamudi, S Murty; Narasimhan, Balaji; Kantakumar, Lakshmi N; Sudheer, K P; Kumar, Shamita; Schneider, Karl; Fiener, Peter

    2016-01-01

    Rapid land use and land-cover changes strongly affect water resources. Particularly in regions that experience seasonal water scarcity, land use scenario assessments provide a valuable basis for the evaluation of possible future water shortages. The objective of this study is to dynamically integrate land use model projections with a hydrologic model to analyze potential future impacts of land use change on the water resources of a rapidly developing catchment upstream of Pune, India. For the first time projections from the urban growth and land use change model SLEUTH are employed as a dynamic input to the hydrologic model SWAT. By this means, impacts of land use changes on the water balance components are assessed for the near future (2009-2028) employing four different climate conditions (baseline, IPCC A1B, dry, wet). The land use change modeling results in an increase of urban area by +23.1% at the fringes of Pune and by +12.2% in the upper catchment, whereas agricultural land (-14.0% and -0.3%, respectively) and semi-natural area (-9.1% and -11.9%, respectively) decrease between 2009 and 2028. Under baseline climate conditions, these land use changes induce seasonal changes in the water balance components. Water yield particularly increases at the onset of monsoon (up to +11.0mm per month) due to increased impervious area, whereas evapotranspiration decreases in the dry season (up to -15.1mm per month) as a result of the loss of irrigated agricultural area. As the projections are made for the near future (2009-2028) land use change impacts are similar under IPCC A1B climate conditions. Only if more extreme dry years occur, an exacerbation of the land use change impacts can be expected. Particularly in rapidly changing environments an implementation of both dynamic land use change and climate change seems favorable to assess seasonal and gradual changes in the water balance. PMID:26360457

  11. An Integrated 3S and Historical Materials Analysis of the Keriya Paleoriver, NW China

    Science.gov (United States)

    Luo, Lei; Wang, Xinyuan; Cai, Heng

    2014-03-01

    Combining analysis of 3S (RS, GIS and GPS) and historical materials (historical records, ancient map and academic and literary writings) allows mapping of the Keriya Paleoriver of Southern Xinjiang, NW China. Keriya Paleoriver, one of the ancient Four Green Corridors which passes through the Taklimakan Desert from south to north in the Tarim Basin, recorded changes of the climate-environment in the ancient Silk Road of the region. According to the archaeological data, historical materials and paleoclimates information, its eco-environment and climate have had great changes since the 1.09Ma B.P., especially during the last 2,000 years, which has led to many famous ancient cities to be abandoned and the route of the ancient Silk Road to be moved southward. Using RS (optical and radar imagery), GIS (mapping and spatial analysis) and GPS (study area investigation), we mapped a major paleodrainage system of Keriya River, which have linked the Kunlun Mountains to the Tienshan Mountains through the Taklimakan Desert, possibly as far back as the early Pleistocene. This study illustrates the capability of the 3S and historical materials, in mapping the Keriya Paleoriver drainage networks and archaeological study on the ancient Silk Road.

  12. An Integrated 3S and Historical Materials Analysis of the Keriya Paleoriver, NW China

    International Nuclear Information System (INIS)

    Combining analysis of 3S (RS, GIS and GPS) and historical materials (historical records, ancient map and academic and literary writings) allows mapping of the Keriya Paleoriver of Southern Xinjiang, NW China. Keriya Paleoriver, one of the ancient Four Green Corridors which passes through the Taklimakan Desert from south to north in the Tarim Basin, recorded changes of the climate-environment in the ancient Silk Road of the region. According to the archaeological data, historical materials and paleoclimates information, its eco-environment and climate have had great changes since the 1.09Ma B.P., especially during the last 2,000 years, which has led to many famous ancient cities to be abandoned and the route of the ancient Silk Road to be moved southward. Using RS (optical and radar imagery), GIS (mapping and spatial analysis) and GPS (study area investigation), we mapped a major paleodrainage system of Keriya River, which have linked the Kunlun Mountains to the Tienshan Mountains through the Taklimakan Desert, possibly as far back as the early Pleistocene. This study illustrates the capability of the 3S and historical materials, in mapping the Keriya Paleoriver drainage networks and archaeological study on the ancient Silk Road

  13. High tolerance of proton irradiation of Ge2Sb2Te5 phase change material

    International Nuclear Information System (INIS)

    Highlights: •The phase change material Ge2Sb2Te5 was irradiated by 3 MeV proton. •The electrical and mechanical property of Ge2Sb2Te5 film were evaluated. •Monte Carlo Simulation was used to analyze the process of ions transport in the material. •The results showed that GST has excellent proton irradiation tolerance. -- Abstract: A chalcogenide material Ge2Sb2Te5 was irradiated by proton and its radiation performance was investigated. The amorphous to crystalline transformation was studied by transmission electron microscopy observations and resistance measurements before and after irradiation. The results show that the crystallization behavior of the material has no obvious change after irradiation, proton irradiation did not induced transformation between crystalline and as-deposited amorphous state. Monte Carlo Simulation was used to analyze the process of ions transport in the phase change material. The irradiation results show that GST phase change material has excellent proton irradiation tolerance, which makes it attractive for space-based applications

  14. Gentamicin supplemented polyvinylidenfluoride mesh materials enhance tissue integration due to a transcriptionally reduced MMP-2 protein expression

    Directory of Open Access Journals (Sweden)

    Binnebösel Marcel

    2012-01-01

    Full Text Available Abstract Background A beneficial effect of gentamicin supplemented mesh material on tissue integration is known. To further elucidate the interaction of collagen and MMP-2 in chronic foreign body reaction and to determine the significance of the MMP-2-specific regulatory element (RE-1 that is known to mediate 80% of the MMP-2 promoter activity, the spatial and temporal transcriptional regulation of the MMP-2 gene was analyzed at the cellular level. Methods A PVDF mesh material was surface modified by plasma-induced graft polymerization of acrylic acid (PVDF+PAAc. Three different gentamicin concentrations were bound to the provided active sites of the grafted mesh surfaces (2, 5 and 8 μg/mg. 75 male transgenic MMP-2/LacZ mice harbouring the LacZ reporter gene under control of MMP-2 regulatory sequence -1241/+423, excluding the RE-1 were randomized to five groups. Bilateral of the abdominal midline one of the five different meshes was implanted subcutaneously in each animal. MMP-2 gene transcription (anti-ß-galactosidase staining and MMP-2 protein expression (anti-MMP-2 staining were analyzed semiquantitatively by immunohistochemistry 7, 21 and 90 days after mesh implantation. The collagen type I/III ratio was analyzed by cross polarization microscopy to determine the quality of mesh integration. Results The perifilamentary ß-galactosidase expression as well as the collagen type I/III ratio increased up to the 90th day for all mesh modifications, whereas no significant changes could be observed for MMP-2 protein expression between days 21 and 90. Both the 5 and 8 μg/mg gentamicin group showed significantly reduced levels of ß-galactosidase expression and MMP-2 positive stained cells when compared to the PVDF group on day 7, 21 and 90 respectively (5 μg/mg: p Conclusions Our current data indicate that lack of RE-1 is correlated with increased mesh induced MMP-2-gene expression for coated as well as for non-coated mesh materials. Gentamicin

  15. Integrated approach of regulate global temperature rises and climate changes for sustainable planet

    International Nuclear Information System (INIS)

    This study emphasis the requirement of integrated approach for regulate the global temperature rises to protect the planet form climate changes and other system changes. It is clear that effect of global temperature increases, have already affected many physical and biological and human systems, This unbalances of global systems is more rapid after 1950' s increases of using environmental polluting energy sources with releasing the pollutants to global systems together with extra solar energy accumulation. How ever as a solution it is require to reduce pollutants and balance the energy level to optimum within the caring capacity. To protect the planet as a sustainable system with controlling temperature rises and other unbalances it is important to keep and protect the interrelationship of each and every system with protecting mechanisms. Therefore it is require integrated approach to establish protective mechanisms for each and every sectors of badly effecting with considering regional, national. international and global level.

  16. Audiovisual integration in near and far space: effects of changes in distance and stimulus effectiveness.

    Science.gov (United States)

    Van der Stoep, N; Van der Stigchel, S; Nijboer, T C W; Van der Smagt, M J

    2016-05-01

    A factor that is often not considered in multisensory research is the distance from which information is presented. Interestingly, various studies have shown that the distance at which information is presented can modulate the strength of multisensory interactions. In addition, our everyday multisensory experience in near and far space is rather asymmetrical in terms of retinal image size and stimulus intensity. This asymmetry is the result of the relation between the stimulus-observer distance and its retinal image size and intensity: an object that is further away is generally smaller on the retina as compared to the same object when it is presented nearer. Similarly, auditory intensity decreases as the distance from the observer increases. We investigated how each of these factors alone, and their combination, affected audiovisual integration. Unimodal and bimodal stimuli were presented in near and far space, with and without controlling for distance-dependent changes in retinal image size and intensity. Audiovisual integration was enhanced for stimuli that were presented in far space as compared to near space, but only when the stimuli were not corrected for visual angle and intensity. The same decrease in intensity and retinal size in near space did not enhance audiovisual integration, indicating that these results cannot be explained by changes in stimulus efficacy or an increase in distance alone, but rather by an interaction between these factors. The results are discussed in the context of multisensory experience and spatial uncertainty, and underline the importance of studying multisensory integration in the depth space. PMID:25788009

  17. Price effects of changing quantities supplied at the integrated european fish market

    DEFF Research Database (Denmark)

    Nielsen, Max; Smit, Jos; Guillen, Jordi

    2012-01-01

    This article analyses the effect that changes in the quantities supplied from EU fish stocks have on fish prices. As opposed to earlier studies, this one is European- wide, taking international market integration into account. Average own-price flexibilities for fresh captured fish are found to be...... −1.1. This implies that price flexibilities previously estimated for single European countries underestimate price changes at the European level caused by quantity changes. Results indicate that changing quantities can increase revenues from individual species with large own-price flexibilities......, provided that stocks supply a significant share of the total EU supply. That is found to be the case for sole and anchovies, but not for cod and hake. Thus, for sole the short-run decline in fishermen's incomes following quota and quantity reductions are partly compensated by rising prices. For anchovies...

  18. An integrated IO and CGE approach to analysing changes in environmental trade balances

    OpenAIRE

    Gilmartin, Michelle; Peter G. McGregor; Swales, J. Kim; Turner, Karen

    2011-01-01

    Input-output (IO) tables and demand-driven multiplier techniques are absolutely appropriate for conventional pollution attribution (accounting) analyses as they provide all the required information on pollution embodied in intersectoral interactions and interregional trade flows. However, as a model of how the economy adjusts in response to a marginal change in activity, IO is unlikely to be appropriate as it is only a very special case of general equilibrium models. We propose an integrated ...

  19. An integrated assessment of climate change, air pollution, and energy security policy

    International Nuclear Information System (INIS)

    This article presents an integrated assessment of climate change, air pollution, and energy security policy. Basis of our analysis is the MERGE model, designed to study the interaction between the global economy, energy use, and the impacts of climate change. For our purposes we expanded MERGE with expressions that quantify damages incurred to regional economies as a result of air pollution and lack of energy security. One of the main findings of our cost-benefit analysis is that energy security policy alone does not decrease the use of oil: global oil consumption is only delayed by several decades and oil reserves are still practically depleted before the end of the 21st century. If, on the other hand, energy security policy is integrated with optimal climate change and air pollution policy, the world's oil reserves will not be depleted, at least not before our modeling horizon well into the 22nd century: total cumulative demand for oil decreases by about 24%. More generally, we demonstrate that there are multiple other benefits of combining climate change, air pollution, and energy security policies and exploiting the possible synergies between them. These benefits can be large: for Europe the achievable CO2 emission abatement and oil consumption reduction levels are significantly deeper for integrated policy than when a strategy is adopted in which one of the three policies is omitted. Integrated optimal energy policy can reduce the number of premature deaths from air pollution by about 14,000 annually in Europe and over 3 million per year globally, by lowering the chronic exposure to ambient particulate matter. Only the optimal strategy combining the three types of energy policy can constrain the global average atmospheric temperature increase to a limit of 3 oC with respect to the pre-industrial level.

  20. An integrated assessment of climate change, air pollution, and energy security policy

    International Nuclear Information System (INIS)

    This article presents an integrated assessment of climate change, air pollution, and energy security policy. Basis of our analysis is the MERGE model, designed to study the interaction between the global economy, energy use, and the impacts of climate change. For our purposes we expanded MERGE with expressions that quantify damages incurred to regional economies as a result of air pollution and lack of energy security. One of the main findings of our cost-benefit analysis is that energy security policy alone does not decrease the use of oil: global oil consumption is only delayed by several decades and oil reserves are still practically depleted before the end of the 21st century. If, on the other hand, energy security policy is integrated with optimal climate change and air pollution policy, the world's oil reserves will not be depleted, at least not before our modeling horizon well into the 22nd century: total cumulative demand for oil decreases by about 24%. More generally, we demonstrate that there are multiple other benefits of combining climate change, air pollution, and energy security policies and exploiting the possible synergies between them. These benefits can be large: for Europe the achievable CO2 emission abatement and oil consumption reduction levels are significantly deeper for integrated policy than when a strategy is adopted in which one of the three policies is omitted. Integrated optimal energy policy can reduce the number of premature deaths from air pollution by about 14,000 annually in Europe and over 3 million per year globally, by lowering the chronic exposure to ambient particulate matter. Only the optimal strategy combining the three types of energy policy can constrain the global average atmospheric temperature increase to a limit of 3 C with respect to the pre-industrial level. (author)

  1. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator

    OpenAIRE

    Kruczyk Michał

    2015-01-01

    This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS) stations in climatologic research. Long time series of daily averaged Integrated Precipitable Water (IPW) can serve as climate indicator. The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method). Author applied two modes: sinusoidal and composite (two or more oscillations). Even simple sinusoidal seasonal model (of ...

  2. Age-related changes in parahippocampal white matter integrity: A diffusion tensor imaging study

    OpenAIRE

    Rogalski, E.; Stebbins, G. T.; Barnes, C.A.; Murphy, C.M.; Stoub, T. R.; George, S.; Ferrari, C.; Shah, R. C.; L. deToledo-Morrell

    2012-01-01

    The axons in the parahippocampal white matter (PWM) region that includes the perforant pathway relay multimodal sensory information, important for memory function, from the entorhinal cortex to the hippocampus. Previous work suggests that the integrity of the PWM shows changes in individuals with amnestic mild cognitive impairment and is further compromised as Alzheimer’s disease progresses. The present study was undertaken to determine the effects of healthy aging on macro-and micro-structur...

  3. Integrated models of livestock systems for climate change studies. 1. Grazing systems.

    OpenAIRE

    Parsons, David J.; Armstrong, A. C.; Turnpenny, J. R.; Matthews, A M; Cooper, K. C.; Clark, J. A.

    2001-01-01

    The potential impact of climate change by the year 2050 on British grazing livestock systems is assessed through the use of simulation models of farming systems. The submodels, consisting of grass production, livestock feeding, livestock thermal balance, the thermal balance of naturally ventilated buildings and a stochastic weather generator, are described. These are integrated to form system models for sheep, beef calves and dairy cows. They are applied to scenarios represe...

  4. Cumulative causation and evolutionary micro-founded technical change: A growth model with integrated economies

    OpenAIRE

    Llerena, Patrick; Lorentz, André

    2003-01-01

    We propose to develop in this paper an alternative approach to the New Growth Theory to analyse growth rate divergence among integrated economies. The model presented here considers economic growth as a disequilibrium process. It introduces in a cumulative causation framework, micro-founded process of technical change taking into account elements rooted in evolutionary and Neo-Austrian literature. We then attempt to open the ‘Kaldor-Verdoorn law black-box’ using a micro-level modelling of ind...

  5. Integration and the Changing Role of Computing in Academic Health Centers

    OpenAIRE

    Ball, M J; Douglas, J.V.

    1987-01-01

    Integration is emerging as a key concept in managing information resources for the academic health center (AHC) environment, with its multiple functions. The changing role of computing is characterized by a growing symbiosis with the health sciences library, which is increasingly automated. Academic health centers have moved to bring information resources under the control of top level policy officers and to restructure computing resources into an information utility. With an infrastructure c...

  6. Socio-economic and Climate Change Impacts on Agriculture: An Integrated Assessment

    OpenAIRE

    Fischer, G.; Shah, M. M.; Tubiello, F.N.; H.T. van Velthuizen

    2005-01-01

    A comprehensive assessment of the impacts of climate change on agro- ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological- economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in...

  7. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080

    OpenAIRE

    Fischer, Günther; Shah, Mahendra; N. Tubiello, Francesco; van Velhuizen, Harrij

    2005-01-01

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological–economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conj...

  8. Integrated Assessment of Climate Variability and Change in the Tropical Peruvian Andes

    Science.gov (United States)

    Lagos, P.

    2004-12-01

    Considering that the intensity and frequency of recurrent extreme events associated with flooding, droughts and freezes observed in the tropical Peruvian Andes could change with future global warming, an effort has begun to: (1) investigate the causes of such extreme events using correlation and principal component analysis; (2) generate future climate scenarios using statistical and dynamical downscaling; (3) integrate with the studies of vulnerability and adaptation strategies in the region. The purpose of this paper is to describe the results of this effort, which is part of the national plan to strengthen the capacity to manage the impacts of climate change.

  9. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data.

    Directory of Open Access Journals (Sweden)

    Shubhada R Hegde

    2008-11-01

    Full Text Available Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein:protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein:protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data.

  10. A numerical study of external building walls containing phase change materials (PCM)

    International Nuclear Information System (INIS)

    Phase Change Materials (PCMs) have been receiving increased attention, due to their capacity to store large amounts of thermal energy in narrow temperature ranges. This property makes them ideal for passive heat storage in the envelopes of buildings. To study the influence of PCMs in external building walls, a one-dimensional transient heat transfer model has been developed and solved numerically using a finite difference technique. Different external building wall configurations were analyzed for a typical building wall by varying the location of the PCM layer, the orientation of the wall, the ambient conditions and the phase transition temperature of the PCM. The integration of a PCM layer into a building wall diminished the amplitude of the instantaneous heat flux through the wall when the melting temperature of the PCM was properly selected according to the season and wall orientation. Conversely, the results of the work show that there is no significant reduction in the total heat lost during winter regardless of the wall orientation or PCM transition temperature. Higher differences were observed in the heat gained during the summer period, due to the elevated solar radiation fluxes. The high thermal inertia of the wall implies that the inclusion of a PCM layer increases the thermal load during the day while decreasing the thermal load during the night. - Highlights: ► A comparative simulation of a building wall with and without PCMs has been conducted. ► PCM is selected according with the season, the wall orientation and the melting temperature. ► PCM in a building wall help to diminish the internal air temperature swings and to regulate the heat transfer.

  11. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    Science.gov (United States)

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term. PMID:26308384

  12. Integrating community based disaster risk reduction and climate change adaptation: examples from the Pacific

    Directory of Open Access Journals (Sweden)

    A. Gero

    2011-01-01

    Full Text Available It is acknowledged by academics and development practitioners alike that many common strategies addressing community based disaster risk reduction and climate change adaptation duplicate each other. Thus, there is a strong push to integrate the two fields to enhance aid effectiveness and reduce confusion for communities. Examples of community based disaster risk reduction (DRR and climate change adaptation (CCA projects are presented to highlight some of the ways these issues are tackled in the Pacific. Various approaches are employed but all aim to reduce the vulnerability and enhance the resilience of local communities to the impacts of climate change and disasters. By focusing on three case studies, elements of best practice are drawn out to illustrate how DRR and CCA can be integrated for enhanced aid effectiveness, and also look at ways in which these two often overlapping fields can be better coordinated in ongoing and future projects. Projects that address vulnerability holistically, and target the overall needs and capacity of the community are found to be effective in enhancing the resilience of communities. By strategically developing a multi-stakeholder and multi-sector approach, community projects are likely to encapsulate a range of experience and skills that will benefit the community. Furthermore, by incorporating local knowledge, communities are far more likely to be engaged and actively participate in the project. From selected case studies, commonly occurring best practice methods to integrate DRR and CCA are identified and discussed and recommendations on how to overcome the common challenges also presented.

  13. Flash Lamp Integrating Sphere Technique for Measuring the Dynamic Reflectance of Shocked Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Gerald [National Security Technologies, LLC; La Lone, Brandon [National Security Technologies, LLC; Veeser, Lynn [National Security Technologies, LLC; Hixson, Rob [National Security Technologies, LLC; Holtkamp, David [Los Alamos National Laboratory

    2013-07-08

    Accurate reflectance (R) measurements of metals undergoing shock wave compression can benefit high pressure research in several ways. For example, pressure dependent reflectance measurements can be used to deduce electronic band structure, and discrete changes with pressure or temperature may indicate the occurrence of a phase boundary. Additionally, knowledge of the wavelength dependent emissivity (1 -R, for opaque samples) of the metal surface is essential for accurate pyrometric temperature measurement because the radiance is a function of both the temperature and emissivity. We have developed a method for measuring dynamic reflectance in the visible and near IR spectral regions with nanosecond response time and less than 1.5% uncertainty. The method utilizes an integrating sphere fitted with a xenon flash-lamp illumination source. Because of the integrating sphere, the measurements are insensitive to changes in surface curvature or tilt. The in-situ high brightness of the flash-lamp exceeds the sample’s thermal radiance and also enables the use of solid state detectors for recording the reflectance signals with minimal noise. Using the method, we have examined the dynamic reflectance of gallium and tin subjected to shock compression from high explosives. The results suggest significant reflectance changes across phase boundaries for both metals. We have also used the method to determine the spectral emissivity of shock compressed tin at the interface between tin and a LiF window. The results were used to perform emissivity corrections to previous pyrometry data and obtain shock temperatures of the tin/LiF interface with uncertainties of less than 2%.

  14. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    Science.gov (United States)

    Korur, Fikret; Toker, Sacip; Eryılmaz, Ali

    2016-08-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science grade, and pretest scores were analyzed. No significant treatment effects were found between the inquiry and expository approaches. However, both groups demonstrated significant pretest-posttest gains in achievement and attitude. Independent from the method used, ONACOM was judged effective in both groups as students demonstrated increased achievement and attitude scores. ONACOM has a social and semantic network-aided infrastructure that can be adapted to both methods to increase students' achievement and improve their attitude.

  15. On the role of solidification modelling in Integrated Computational Materials Engineering “ICME”

    Science.gov (United States)

    Schmitz, G. J.; Böttger, B.; Apel, M.

    2016-03-01

    Solidification during casting processes marks the starting point of the history of almost any component or product. Integrated Computational Materials Engineering (ICME) [1-4] recognizes the importance of further tracking the history of microstructure evolution along the subsequent process chain. Solidification during joining processes in general happens quite late during production, where the parts to be joined already have experienced a number of processing steps which affected their microstructure. Reliable modelling of melting and dissolution of these microstructures represents a key issue before eventually modelling ‘re’-solidification e.g. during welding or soldering. Some instructive examples of microstructure evolution during a joining process obtained on the basis of synthetic and simulated initial microstructures of an Al-Cu binary model system are discussed.

  16. Transuranic material recovery in the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    The Integral Fast Reactor is an innovative liquid metal reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel cycle economics, environmental protection, and safeguards. The plans for demonstrating the IFR fuel cycle, including its waste processing options, by processing irradiated fuel from the Experimental Breeder Reactor-II fuel in its associated Fuel Cycle Facility have been developed for the first refining series. This series has been designed to provide the data needed for the further development of the IFR program. An important piece of the data needed is the recovery of TRU material during the reprocessing and waste operations

  17. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    Science.gov (United States)

    Korur, Fikret; Toker, Sacip; Eryılmaz, Ali

    2016-03-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science grade, and pretest scores were analyzed. No significant treatment effects were found between the inquiry and expository approaches. However, both groups demonstrated significant pretest-posttest gains in achievement and attitude. Independent from the method used, ONACOM was judged effective in both groups as students demonstrated increased achievement and attitude scores. ONACOM has a social and semantic network-aided infrastructure that can be adapted to both methods to increase students' achievement and improve their attitude.

  18. Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity

    International Nuclear Information System (INIS)

    A spintronic integrated circuit (IC) is made of a combination of a semiconductor IC and a dense array of nanometer-scale magnetic tunnel junctions. This emerging field is of growing scientific and engineering interest, owing to its potential to bring disruptive device innovation to the world of electronics. This technology is currently being pursued not only for scalable non-volatile spin-transfer-torque magnetoresistive random access memory, but also for various forms of non-volatile logic (Spin-Logic). This paper reviews recent advances in spintronic IC. Key discoveries and breakthroughs in materials and devices are highlighted in light of the broader perspective of their application in low-energy mobile computing and connectivity systems, which have emerged as leading drivers for the prevailing electronics ecosystem

  19. Surface Modification of Fuel Cladding Materials with Integral Fuel BUrnable Absorber Boron

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kumar Sridharan; Dr. Todd Allen; Jesse Gudmundson; Benjamin Maier

    2008-11-03

    Integral fuel burnable absorgers (IFBA) are added to some rods in the fuel assembly to counteract excessive reactivity. These IFBA elements (usually boron or gadolinium) are presently incorporated in the U)2 pellets either by mixing in the pellets or as coatings on the pellet surface. In either case, the incorporation of ifba into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be costly and can add from 20 to 30% to the manufacturing cost of the fuel. The goal of this NEER research project was to develop an alternative approach that involves incorporation of IFBA element boron at the surface of the fuel cladding material.

  20. A review of the UK PWR structural integrity and materials programme

    International Nuclear Information System (INIS)

    Water Reactor related work has been pursued in the UK for many years, and this has resulted in the development of comprehensive facilities and expertise to undertake a wide range of R and D. A notable contribution to the light water reactor scene was what became known as the ''Marshall Study Group Report on LWR Pressure Vessel Integrity''. The application to build the first UK PWR at Sizewell led to a Public Inquiry which provided the opportunity to present the full range of world work and knowledge on structural integrity and materials issues. The deliberations of the Study Group and the papers required for the enquiry had a significant influence on the UK materials R and D programme. The many generic programmes previously pursued were modified to be more plant specific and provide essential back up to the design, safety and operation of Sizewell 'B'. The work in support of Sizewell 'B' is represented by well established programmes. The CEGB has in-house activities and the work within the UKAEA ranges from being fully supported by CEGB to fully supported by the Department of Energy. Although the work fully supported by CEGB is very plant specific there is an appreciable percentage of other work which is generic with a long term interest. Attention is now turning to work which may be required for Hinkley 'C' and other stations of the future. In this paper there is no attempt to cover all the topics in the programme. Those chosen are considered to be advancing scientific understanding as well as answering specific questions on plant. The facilities and expertise available are sufficient to tackle unforeseen operational problems as well as the wide range of topics deemed to be desirable in support of the design, construction and commissioning of the plant. The paper comprises the strategy and goals of the programme, a general review, comments on the forward programme and some technical highlights

  1. Changes in the Optical Properties of Materials Are Observed After 18 Months in Low Earth Orbit

    Science.gov (United States)

    Jaworske, Donald A.

    1999-01-01

    Materials located on the exterior of spacecraft in low Earth orbit are subjected to a number of environmental threats, including atomic oxygen, ultraviolet radiation, thermal cycling, and micrometeroid and debris impact. Atomic oxygen attacks materials vulnerable to oxidation. Ultraviolet radiation can break chemical bonds and cause undesirable changes in optical properties. Thermal cycling can cause cracking, and micrometeroid and debris impacts can damage protective coatings. Another threat is contamination. The outgassing of volatile chemicals can contaminate nearby surfaces, changing their thermal control properties. Contaminated surfaces may undergo further change as a result of atomic oxygen and ultraviolet radiation exposure. The Passive Optical Sample Assembly (POSA) experiment was designed as a risk mitigation experiment for the International Space Station. Samples were characterized before launch, exposed for 18 months on the exterior of Mir, and characterized upon their return. Lessons learned from POSA about the durability of material properties can be applied to the space station and other long-duration missions.

  2. The concept of an integrated quality record nuclear material accountancy system

    International Nuclear Information System (INIS)

    RBU had already started in 1976 with the computerisation of its nuclear material accountancy system. It used the hardware and the software which were at hand at that time. The development of the software needed about 3 years, and so, the system, was fully introduced in 1979 and has been used since then with only minor changes. But with the time, the overwhelming progress in computer and software technology has overcome the existing system. Upgrading the old system would need a lot of effort, so RBU decided to modernize its system fundamentally. In the time between RBU has developed a quality record and documentation system for the purposes of quality assurance and quality control. This system shall be enlarged, so that it can overtake the tasks of NMA, too. The quality record system contains already nearly 80 % of all NMA-relevant data. The presented paper will describe the main changes between the present and the future system

  3. Application of shape changing smart materials in household appliances: A fragmented and inconsistent uptake

    OpenAIRE

    Bin Kassim, A.; Horvath, I.; Gerritsen, B.H.M.

    2014-01-01

    Shape changing smart materials (SCSM) have a wide range of applications, supporting product functions through material features. Surprisingly, their application in consumer durables such as household appliances is not as expected. This phenomenon could be related to a possible SCSM knowledge gap among designers, or unidentified design constraints; literature does not provide a convincing explanation. Our objective is to describe this phenomenon more accurately as a first step towards future a...

  4. Toward a Simple Probabilistic GCM Emulator for Integrated Assessment of Climate Change Impacts

    Science.gov (United States)

    Sue Wing, I.; Tebaldi, C.; Nychka, D. W.; Winkler, J.

    2014-12-01

    Climate emulators can bridge spatial scales in integrated assessment in ways that allow us to take advantage of the evolving understanding of the impacts of climate change. The spatial scales at which climate impacts occur are much finer than those of the "damage functions" in integrated assessment models (IAMs), which incorporate reduced form climate models to project changes in global mean temperature, and estimate aggregate damages directly from that. Advancing the state of IA modeling requires methods to generate—in a flexible and computationally efficient manner—future changes in climate variables at the geographic scales at which individual impact endpoints can be resolved. The state of the art uses outputs of global climate models (GCMs) forced by warming scenarios to drive impact calculations. However, downstream integrated assessments are perforce "locked-in" to the particular GCM x warming scenario combinations that generated the meteorological fields of interest—it is not possible assess risk due to the absence of probabilities over warming scenarios or model uncertainty. The availability of reduced-form models which can efficiently simulate the envelope of the response of multiple GCMs to a given amount of warming provides us with capability to create probabilistic projections of fine-scale of meteorological changes conditional on global mean temperature change to drive impact calculations in ways that permit risk assessments. This presentation documents a prototype probabilistic climate emulator for use as a GCM diagnostic tool and a driver of climate change impact assessments. We use a regression-based approach to construct multi-model global patterns for changes in temperature and precipitation from the CMIP3 archive. Crucially, regression residuals are used to derive a spatial covariance function of the model- and scenario-dependent deviations from the average pattern. By sampling from this manifold we can rapidly generate many realizations of

  5. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    Directory of Open Access Journals (Sweden)

    Khalid A. O. Arafa

    2016-01-01

    Full Text Available Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN registry with study ID (ISRCTN94238244.

  6. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures.

    Science.gov (United States)

    Arafa, Khalid A O

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244). PMID:27143970

  7. Application of macro material flow modeling to the decision making process for integrated waste management systems

    International Nuclear Information System (INIS)

    Computer models have been used for almost a decade to model and analyze various aspects of solid waste management Commercially available models exist for estimating the capital and operating costs of landfills, waste-to-energy facilities and compost systems and for optimizing system performance along a single dimension (e.g. cost or transportation distance). An alternative to the use of currently available models is the more flexible macro material flow modeling approach in which a macro scale or regional level approach is taken. Waste materials are tracked through the complete integrated waste management cycle from generation through recycling and reuse, and finally to ultimate disposal. Such an approach has been applied by the authors to two different applications. The STELLA simulation language (for Macintosh computers) was used to model the solid waste management system of Puerto Rico. The model incorporated population projections for all 78 municipalities in Puerto Rico from 1990 to 2010, solid waste generation factors, remaining life for the existing landfills, and projected startup time for new facilities. The Pacific Northwest Laboratory has used the SimScript simulation language (for Windows computers) to model the management of solid and hazardous wastes produced during cleanup and remediation activities at the Hanford Nuclear Site

  8. Model of a thermo-elastic-inelastic process with large deformations and structural changes in material

    Science.gov (United States)

    Rogovoi, A. A.

    2015-09-01

    The dependence of a scalar measure of the structural changes occurring in a material under plastic deformation on a plastic strain measure and the dependence of a free energy measure on a structural change measure are constructed using experimental data that allow the expended plastic work to be divided into a latent part and a thermal part. The obtained dependences, kinematic relations, a constitutive equation, and a heat-conduction equation that satisfy the principles of thermodynamics and objectivity are used to construct a model of thermo-elastic-inelastic processes in the presence of finite deformations and structural changes in the material. The model is tested on the problem of temperature changes in the process of adiabatic elastic-plastic compression, which has experimental support.

  9. Study of ZrO2 nanopowders based stearic acid phase change materials

    Institute of Scientific and Technical Information of China (English)

    Desheng Ai; Lizan Su; Zhe Gao; Changsheng Deng; Xiaming Dai

    2010-01-01

    ZrO2 nanopowders based stearic acid phase change materials(PCMs)were prepared by high-energy milling.The concept of heat capacity factor(HCF)was used to analyze the thermal properties of the materials.The heat storage property of PCMs,containing the same content of stearic acid(23% by mass)in the starting materials but synthesized by different technical processes,was investigated by using HCF.It was found that there were vast influences of different dispersants on the heat capacity.The samples prepared with chloroform provided the best heat storage ability in all samples tested.

  10. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  11. FORMATION, STRUCTURE AND PROPERTIES OF HIGHLY ORDERED SUB-30-nm PHASE CHANGE MATERIALS (GST) NANOPARTICLE ARRAYS

    OpenAIRE

    YUANBAO LIAO; JIAJIA WU; LING XU; FEI YANG; WENQING LIU; JUN XU; LIANGCAI WU; ZHONGYUAN MA; KUNJI CHEN

    2010-01-01

    Chalcogenide phase change material Ge1Sb2Te4 (GST) nanoparticle arrays with long-range-order were fabricated by using a monolayer of self-assembled polystyrene (PS) spheres as mask. The morphology of nanoparticle arrays can be controlled via changing RIE processing conditions. Images of atomic force microscopy (AFM) and scanning electron microscopy (SEM) show that highly uniform GST nanoparticle arrays with particle density around 109 cm-2 were formed. The sizes of nanoparticles can be reduce...

  12. Increasing thermal mass in lightweight dwellings using phase change materials – a literature review

    OpenAIRE

    Fraser, Minnie

    2009-01-01

    The number of houses of lightweight timber or steel frame construction being built over recent years has increased significantly. These buildings have low thermal mass and may be subject to large temperature fluctuations and particular overheating during the summer and this problem is set to get worse with the changing climate. Researchers have been investigating the use of PCMs (phase change materials) for improving thermal mass in lightweight buildings and found them to be effective. Howeve...

  13. An integrated material metabolism model for stocks of urban road system in Beijing, China.

    Science.gov (United States)

    Guo, Zhen; Hu, Dan; Zhang, Fuhua; Huang, Guolong; Xiao, Qiang

    2014-02-01

    Rapid urbanization has greatly altered the urban metabolism of material and energy. As a significant part of the infrastructure, urban roads are being rapidly developed worldwide. Quantitative analysis of metabolic processes on urban road systems, especially the scale, composition and spatial distribution of their stocks, could help to assess the resource appropriation and potential environmental impacts, as well as improve urban metabolism models. In this paper, an integrated model, which covered all types of roads, intersection structures and ancillary facilities, was built for calculating the material stocks of urban road systems. Based on a bottom-up method, the total stocks were disassembled into a number of stock parts rather than obtained by input-output data, which provided an approach promoting data availability and inner structure understanding. The combination with GIS enabled the model to tackle the complex structures of road networks and avoid double counting. In the case study of Beijing, the following results are shown: 1) The total stocks for the entire road system reached 159 million tons, of which nearly 80% was stored in roads, and 20% in ancillary facilities. 2) Macadam was the largest stock (111 million tons), while stone mastic asphalt, polyurethane plastics, and atactic polypropylene accounted for smaller components of the overall system. 3) The stock per unit area of pedestrian overcrossing was higher than that of the other stock units in the entire system, and its steel stocks reached 0.49 t/m(2), which was 10 times as high as that in interchanges. 4) The high stock areas were mainly distributed in ring-shaped and radial expressways, as well as in major interchanges. 5) Expressways and arterials were excessively emphasized, while minor roads were relatively ignored. However, the variation of cross-sectional thickness in branches and neighborhood roads will have a significant impact on the scale of material stocks in the entire road system

  14. Material and energy recovery in integrated waste management systems: Project overview and main results

    International Nuclear Information System (INIS)

    Highlights: → The source separation level (SSL) of waste management system does not qualify adequately the system. → Separately collecting organic waste gives less advantages than packaging materials. → Recycling packaging materials (metals, glass, plastics, paper) is always attractive. → Composting and anaerobic digestion of organic waste gives questionable outcomes. → The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

  15. Vertically Aligned Nanostructured Arrays of Inorganic Materials: Synthesis, Distinctive Physical Phenomena, and Device Integration

    Science.gov (United States)

    Velazquez, Jesus Manuel

    The manifestation of novel physical phenomena upon scaling materials to finite size has inspired new device concepts that take advantage of the distinctive electrical, mechanical, and optical, properties of nanostructures. The development of fabrication approaches for the preparation of their 1D nanostructured form, such as nanowires and nanotubes, has contributed greatly to advancing fundamental understanding of these systems, and has spurred the integration of these materials in novel electronics, photonic devices, power sources, and energy scavenging constructs. Significant progress has been achieved over the last decade in the preparation of ordered arrays of carbon nanotubes, II---VI and III---V semiconductors, and some binary oxides such as ZnO. In contrast, relatively less attention has been focused on layered materials with potential for electrochemical energy storage. Here, we describe the catalyzed vapor transport growth of vertical arrays of orthorhombic V2O 5 nanowires. In addition, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to precisely probe the alignment, uniformity in crystal growth direction, and electronic structure of single-crystalline V2O5 nanowire arrays prepared by a cobalt-catalyzed vapor transport process. The dipole selection rules operational for core-level electron spectroscopy enable angle-dependant NEXAFS spectroscopy to be used as a sensitive probe of the anisotropy of these systems and provides detailed insight into bond orientation and the symmetry of the frontier orbital states. The experimental spectra are matched to previous theoretical predictions and allow experimental verification of features such as the origin of the split-off conduction band responsible for the n-type conductivity of V2O5 and the strongly anisotropic nature of vanadyl-oxygen-derived (V=O) states thought to be involved in catalysis. We have also invested substantial effort in obtaining shape and size control of metal oxide

  16. New Integration Period? Changing Tendencies of the Urban Network in South East Europe

    Directory of Open Access Journals (Sweden)

    Szilárd Rácz

    2014-09-01

    Full Text Available The past two decades have brought basic changes in the whole Balkan Peninsula, where spatial structures and settlement network were not devoid of changes either. Due to the change of the economic, political and social regime and the new borders spatial structures became differentiated along new factors. Cooperation programs of the Euro-Atlantic integration hold many new challenges and opportunities. Historical and political literature studying the single countries’ transformation is large and far reaching, however, a settlement network and spatial structure focused overview has been, so far, missing from the range of researches. The aim of this study is to examine the urban features and the spatial transition of the Balkan states.

  17. Integrated scenarios of acidification and climate change in Asia and Europe

    International Nuclear Information System (INIS)

    Two integrated assessment models, one for climate change on a global scale (IMAGE 2) and another for the regional analysis of the impacts of acidifying deposition (RAINS), have been linked to assess the impacts of reducing sulphur emission on ecosystems in Asia and Europe. While such reductions have the beneficial effect of reducing the deposition of acidifying compounds and thus the excedance of critical loads of ecosystems, they also reduce the global level of sulphate aerosols and thus enhance the impact of increased emissions of greenhouse gases, and consequently increase the risk of potential vegetation changes. The calculations indicate that about 70% of the ecosystems in Asia would be affected by either acid deposition or climate change in the year 2100 (up from 20% in 1990) for both sulphur emission scenarios (controlled and uncontrolled), whereas in Europe the impacted area would remain at a level of about 50%, with a dip early next century. (author)

  18. An integrated model to simulate sown area changes for major crops at a global scale

    Institute of Scientific and Technical Information of China (English)

    SHIBASAKI; Ryosuke

    2008-01-01

    Dynamics of land use systems have attracted much attention from scientists around the world due to their ecological and socio-economic implications. An integrated model to dynamically simulate future changes in sown areas of four major crops (rice, maize, wheat and soybean) on a global scale is pre- sented. To do so, a crop choice model was developed on the basis of Multinomial Logit (Logit) model to model land users’ decisions on crop choices among a set of available alternatives with using a crop utility function. A GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted to simulate the crop yields under a given geophysical environment and farming management conditions, while the International Food Policy and Agricultural Simulation (IFPSIM) model was utilized to estimate crop price in the international market. The crop choice model was linked with the GIS-based EPIC model and the IFPSIM model through data exchange. This integrated model was then validated against the FAO statistical data in 2001-2003 and the Moderate Resolution Imaging Spectroradiometer (MODIS) global land cover product in 2001. Both validation approaches indicated reliability of the model for ad- dressing the dynamics in agricultural land use and its capability for long-term scenario analysis. Finally, the model application was designed to run over a time period of 30 a, taking the year 2000 as baseline. The model outcomes can help understand and explain the causes, locations and consequences of land use changes, and provide support for land use planning and policy making.

  19. Changing academic medicine: strategies used by academic leaders of integrative medicine-a qualitative study.

    Science.gov (United States)

    Witt, Claudia M; Holmberg, Christine

    2012-01-01

    In Western countries, complementary and alternative medicine (CAM) is more and more provided by practitioners and family doctors. To base this reality of health care provision on an evidence-base, academic medicine needs to be included in the development. In the study we aimed to gain information on a structured approach to include CAM in academic health centers. We conducted a semistructured interview study with leading experts of integrative medicine to analyze strategies of existing academic institutions of integrative medicine. The study sample consisted of a purposive sample of ten leaders that have successfully integrated CAM into medical schools in the USA, Great Britain, and Germany and the Director of the National Center for Alternative and Complementary Medicine. Analysis was based on content analysis. The prerequisite to foster change in academic medicine was a strong educational and professional background in academic medicine and research methodologies. With such a skill set, the interviewees identified a series of strategies to align themselves with colleagues from conventional medicine, such as creating common goals, networking, and establishing well-functioning research teams. In addition, there must be a vision of what should be needed to be at the center of all efforts in order to implement successful change. PMID:23093984

  20. Changing Academic Medicine: Strategies Used by Academic Leaders of Integrative Medicine—A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Claudia M. Witt

    2012-01-01

    Full Text Available In Western countries, complementary and alternative medicine (CAM is more and more provided by practitioners and family doctors. To base this reality of health care provision on an evidence-base, academic medicine needs to be included in the development. In the study we aimed to gain information on a structured approach to include CAM in academic health centers. We conducted a semistructured interview study with leading experts of integrative medicine to analyze strategies of existing academic institutions of integrative medicine. The study sample consisted of a purposive sample of ten leaders that have successfully integrated CAM into medical schools in the USA, Great Britain, and Germany and the Director of the National Center for Alternative and Complementary Medicine. Analysis was based on content analysis. The prerequisite to foster change in academic medicine was a strong educational and professional background in academic medicine and research methodologies. With such a skill set, the interviewees identified a series of strategies to align themselves with colleagues from conventional medicine, such as creating common goals, networking, and establishing well-functioning research teams. In addition, there must be a vision of what should be needed to be at the center of all efforts in order to implement successful change.

  1. Integration of Adaptation and Mitigation in Climate Change and Forest Policies in Indonesia and Vietnam

    Directory of Open Access Journals (Sweden)

    Pham Thu Thuy

    2014-08-01

    Full Text Available Forests play a major role in both climate change mitigation and adaptation, but few policies, if any, integrate these two aspects. Using Indonesia and Vietnam as case studies, we identify challenges at the national level but opportunities at the local level. Although both countries demonstrate political commitment to integrating adaptation and mitigation in their development plans, guidelines for policy and planning treat the two approaches separately. The main challenges identified are lack of knowledge, lack of political will, lack of financial incentives, and fragmentation of mandates and tasks of different government agencies. In contrast, at the local level, integration of mitigation and adaptation is facilitated by subnational autonomy, where mitigation projects might have adaptation co-benefits, and vice versa. Our results also show that many actors have a dual mandate that could bridge adaptation and mitigation if appropriate political and financial incentives are put in place. Successful integration of mitigation and adaptation policies would not only remove contradictions between policies, but also encourage governments that are designing domestic policies to exploit the potential for positive spillovers and realize the benefits of both approaches.

  2. Integrated Monitoring and Assessment Framework of Regional Ecosystem under the Global Climate Change Background

    Directory of Open Access Journals (Sweden)

    Qiao Wang

    2014-01-01

    Full Text Available Global changes are driving ecosystem alterations, and the effects are becoming more and more obvious. Ecosystem management clarifies the fundamental supporting functions of ecosystems for human survival and sustainable development. Integrated ecosystem monitoring and assessment has become a popular topic of ecology study. However, many scientific questions need to be addressed, including what assessment contents and methods are optimal for temporal and spatial measurements. Therefore, the development of a scientific evaluation framework that includes certain core contents and indicators is very important. This paper proposes a regional integrated ecosystem assessment framework involving comprehensive monitoring. Satellite images are the main data source for different ecosystem and ecological parameters, and these need to be supplemented with the help of surveys or field observation data. A healthy ecosystem is the basis of human survival and sustainable development, and ecological service should be taken as the core of integrated ecosystem assessment. This is decided by the spatial distribution, classification, and patterns of regional ecosystems. That is to say, ecological service, together with ecosystems distribution and pattern, ecological problem indicators, and ecological stress, needs to be integrated analyzed and evaluated.

  3. The changing role of Material Control and Accountability at Savannah River Site

    International Nuclear Information System (INIS)

    As Westinghouse Savannah River Company has been faced with the challenge of better meeting DOE needs with reduced budgets and manpower, the Materials Control and Accountability (MC ampersand A) organization has taken a hard look at its roles and responsibilities. A MC ampersand A program is composed of many functions that can not only meet safeguards needs, but can be used by several organizations across the site to meet their needs as well. These functions include nuclear material measurements, tracking, accounting, and inventory control. The infrastructure in place to provide these functions for accountable nuclear materials requires only a few adjustments to expand to other areas of nuclear materials accounting and control. By integrating several organizations' requirements, the MC ampersand A section can allow line organizations to reduce their costs and rely on the section to better service their needs. On the reverse side, MC ampersand A has completed several cost reduction measures that will allow it to expand its role with no increased costs. The roles and responsibilities of the nuclear material control and accountability program should be expanded. The program's existing information infrastructure, and knowledge and experience in nuclear material measurements and safeguards can be built upon to meet the needs of new areas such as waste management and decommissioning and decontamination while continuing to support the existing processing. and storage efforts of current facilities

  4. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  5. Latent heat storage by silica-coated polymer beads containing organic phase change materials

    Czech Academy of Sciences Publication Activity Database

    Feczkó, T.; Trif, L.; Horák, Daniel

    2016-01-01

    Roč. 132, July (2016), s. 405-414. ISSN 0038-092X R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : latent heat storage * phase change materials * porous beads by suspension polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.469, year: 2014

  6. Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

    2009-09-01

    A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

  7. Microscale Polymer Bottles Corked with a Phase-Change Material for Temperature-Controlled Release

    OpenAIRE

    Hyun, Dong Choon; Lu, Ping; Choi, Sang Il; Jeong, Unyong; Xia, Younan

    2013-01-01

    Keep your wine chilled! Microscale polymer bottles are loaded with dye molecules and then corked with a phase-change material (PCM). When temperature is raised beyond its melting point, the PCM quickly melt and trigger an instant release of the encapsulated dye. The release profiles can be manipulated by using a binary mixture of PCMs with different melting points.

  8. Thermophysical Properties and Microstructural Changes of Composite Materials at Elevated Temperature

    OpenAIRE

    Goodrich, Thomas William

    2009-01-01

    Experimental methods were developed and used to quantify the behavior of composite materials during heating to support development of heat and mass transfer pyrolysis models. Methods were developed to measure specific heat capacity, kinetic parameters, microstructure changes, porosity, and permeability. Specific heat and gravimetric data for kinetic parameters were measured with a simultaneous differential scanning calorimeter (DSC) / thermogravimetric analyzer (TGA). Experimental techniques ...

  9. Analysis of Phase Change Material in Glazing Systems in Future Zero-Energy-Buildings

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Heiselberg, Per; Jensen, Rasmus Lund

    2016-01-01

    thermal storage capacity of the glazed facade by using phase change material (PCM), in the glazing cavity, reduces the cooling demand. When wanting to use this technology under colder weather conditions, the pane can potentially reduce the heat loss of the pane thereby minimizing energy demand for heating....

  10. Integrated assessment and changes of ecological environment in the Daning River Watershed

    Institute of Scientific and Technical Information of China (English)

    LIU Ruimin; SHEN Zhenyao

    2007-01-01

    Based on Remote Sensing (RS),Geographical Information Systems (GIS),and the Spatial Principal Component Analysis (SPCA) method,the integrated assessment and changes in the ecological environment of Daning River Watershed are studied in this paper.The watershed is located in the Three Gorge Area in China.The result of the integrated assessment showed that level 9 had the biggest proportion in the year 1990,which was about 40%.In the year 2000,however,there were no levels with a proportion significantly bigger than the others.By comparing the assessment results in 1990 and 2000,it is discovered that the ecological environment in Daning River Watershed in 1990 was better than that in 2000.

  11. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    Science.gov (United States)

    Kocer, Hasan

    2015-01-01

    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  12. High-field electrical transport in amorphous phase-change materials

    Science.gov (United States)

    Kaes, Matthias; Le Gallo, Manuel; Sebastian, Abu; Salinga, Martin; Krebs, Daniel

    2015-10-01

    Electrical transport in chalcogenide-based phase change materials is an active area of research owing to the prominent role played by these materials in the field of information technology. Here, we present transport measurements (IV curves) obtained on line-cells of as-deposited amorphous phase change materials (Ge2Sb2Te5, GeTe, Ag4In3Sb66Te27) over a wide voltage and temperature range (300 K to 160 K). The well defined geometry of our devices enables a description of the transport behavior in terms of conductivity vs. electric field. At higher temperatures (300 K ≥ T ≥ 220 K) and low to intermediate fields (F behavior quantitatively.

  13. Integrated regional assessment of global climatic change. Lessons from the Mackenzie Basin Impact Study (MBIS)

    International Nuclear Information System (INIS)

    This paper outlines the potential role integrated regional assessments of global climatic change scenarios could play in building better links between science and related policy concerns. The concept is illustrated through description of an ongoing case study from Canada-the Mackenzie Basin Impact Study (MBIS). As part of the Government of Canada's Green Plan, the Global Warming Science Program includes a study of regional impacts of global warming scenarios in the Mackenzie Basin, located in northwestern Canada. The MBIS is a six-year program focussing on potential climate-induced changes in the land and water resource base, and the implications of four scenarios of global climatic change on land use and economic policies in this region. These policy issues include interjurisdictional water management, sustainability of native lifestyles, economic development opportunities (agriculture, forestry, tourism, etc.), sustainability of ecosystems and infrastructure maintenance. MBIS is due to be completed in 1997. MBIS represents an attempt to address regional impacts by incorporating a 'family of integrators' into the study framework, and by directly involving stakeholders in planning and research activities. The experience in organizing and carrying out this project may provide some lessons for others interested in organizing regional or country studies

  14. Integrated regional assessment of global climatic change: lessons from the Mackenzie Basin Impact Study (MBIS)

    Science.gov (United States)

    Cohen, Stewart J.

    1996-04-01

    This paper outlines the potential role integrated regional assessments of global climatic change scenarios could play in building better links between science and related policy concerns. The concept is illustrated through description of an ongoing case study from Canada—the Mackenzie Basin Impact Study (MBIS). As part of the Government of Canada's Green Plan, the Global Warming Science Program includes a study of regional impacts of global warming scenarios in the Mackenzie Basin, located in northwestern Canada. The MBIS is a six-year program focussing on potential climate-induced changes in the land and water resource base, and the implications of four scenarios of global climatic change on land use and economic policies in this region. These policy issues include interjurisdictional water management, sustainability of native lifestyles, economic development opportunities (agriculture, forestry, tourism, etc.), sustainability of ecosystems and infrastructure maintenance. MBIS is due to be completed in 1997. MBIS represents an attempt to address regional impacts by incorporating a "family of integrators" into the study framework, and by directly involving stakeholders in planning and research activities. The experience in organizing and carrying out this project may provide some lessons for others interested in organizing regional or country studies.

  15. Integrating the Technosocial Dimensions of Food and Biomass Energy Systems under Climate Change

    Science.gov (United States)

    Izaurralde, R. C.; Malone, E. L.; Thomson, A. M.; Morgan, L. G.; Kim, S. H.

    2008-12-01

    The increasing complexity of global-change issues calls for both interdisciplinary approaches and modeling tools able to integrate information across different knowledge domains (environment, food security, climate change, social conditions, technology, and national security). Here we use results from three models (the integrated assessment model MiniCAM, the biophysical model EPIC, and the vulnerability model VRIM) as well as other physical and social data to develop a model prototype in STELLA® for evaluating issues of food and biofuel production, land competition, population growth, and nutrition. Our initial focus is on the Indian subcontinent (India, Pakistan, and Bangladesh), a rapid developing region with recognized issues with regards to vulnerability to climate change, environmental conditions, food production and nutrition, energy production, and national security. The model prototype for India consists of three major domains: land and crop production, food and biofuels production, and population growth and nutrition. FAO and UNDP data are to used to develop the historical background while profit indices and nutrition status are used to examine land use competition and food policies.

  16. Novel Material Integration for Reliable and Energy-Efficient NEM Relay Technology

    Science.gov (United States)

    Chen, I.-Ru

    Energy-efficient switching devices have become ever more important with the emergence of ubiquitous computing. NEM relays are promising to complement CMOS transistors as circuit building blocks for future ultra-low-power information processing, and as such have recently attracted significant attention from the semiconductor industry and researchers. Relay technology potentially can overcome the energy efficiency limit for conventional CMOS technology due to several key characteristics, including zero OFF-state leakage, abrupt switching behavior, and potentially very low active energy consumption. However, two key issues must be addressed for relay technology to reach its full potential: surface oxide formation at the contacting surfaces leading to increased ON-state resistance after switching, and high switching voltages due to strain gradient present within the relay structure. This dissertation advances NEM relay technology by investigating solutions to both of these pressing issues. Ruthenium, whose native oxide is conductive, is proposed as the contacting material to improve relay ON-state resistance stability. Ruthenium-contact relays are fabricated after overcoming several process integration challenges, and show superior ON-state resistance stability in electrical measurements and extended device lifetime. The relay structural film is optimized via stress matching among all layers within the structure, to provide lower strain gradient (below 10E-3/microm -1) and hence lower switching voltage. These advancements in relay technology, along with the integration of a metallic interconnect layer, enable complex relay-based circuit demonstration. In addition to the experimental efforts, this dissertation theoretically analyzes the energy efficiency limit of a NEM switch, which is generally believed to be limited by the surface adhesion energy. New compact (<1 microm2 footprint), low-voltage (<0.1 V) switch designs are proposed to overcome this limit. The results

  17. Integrated assessment of land use and cover changes in the Malagarasi river catchment in Tanzania

    Science.gov (United States)

    Kashaigili, J. J.; Majaliwa, A. M.

    Malagarasi river catchment represents one of the largest and most significant transboundary natural ecosystems in Africa. The catchment constitutes about one third of the catchment area of Lake Tanganyika and contains ecosystems of both national and international importance (i.e. Muyovozi Wetland Ramsar site). It has been increasingly said that increased anthropogenic activities have had negative impacts on the Muyovozi wetland in particular and other catchment resources. Nevertheless, these beliefs are little supported by quantitative data. A study on the dynamics of land use and cover in the Malagarasi river catchment therefore investigated long-term and seasonal changes that have occurred as a result of human activities in the area for the periods between 1984 and 2001. Landsat TM and ETM+ images were used to locate and quantify the changes. Perceptions of local people on historical changes and drivers for the changes were also collected and integrated in the assessment. The study revealed a significant change in land use and cover within a period of 18 year. Between 1984 and 2001, the woodland and wetland vegetation covers declined by 0.09% and 2.51% per year. Areas with settlements and cultivation increased by 1.05% annually while bushed grassland increased at 1.93% annually. The perceived principal drivers for the changes were found to include fire, cultivation along rivers and lake shores, overgrazing, poor law enforcement, insufficient knowledge on environmental issues, increasing poverty, deforestation and population growth. The human population growth rate stands at 4.8% against a national figure of 2.9%. The most perceived environmental problems include drying of streams and rivers, change in rainfall, loss of soil fertility, soil erosion and reduced crop yield. The study concludes that, there has been significant changes in land use and cover in the catchment and these require concerted actions to reverse the changes. The study highlights the importance

  18. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials

    Science.gov (United States)

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach.

  19. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials

    Science.gov (United States)

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach. PMID:27109063

  20. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials.

    Science.gov (United States)

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-01-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers-shape memory polymers and hydrogels-in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations - the structures are relatively stiff and can carry load in each - without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach. PMID:27109063

  1. Climate change adaptation and Integrated Water Resource Management in the water sector

    Science.gov (United States)

    Ludwig, Fulco; van Slobbe, Erik; Cofino, Wim

    2014-10-01

    Integrated Water Resources Management (IWRM) was introduced in 1980s to better optimise water uses between different water demanding sectors. However, since it was introduced water systems have become more complicated due to changes in the global water cycle as a result of climate change. The realization that climate change will have a significant impact on water availability and flood risks has driven research and policy making on adaptation. This paper discusses the main similarities and differences between climate change adaptation and IWRM. The main difference between the two is the focus on current and historic issues of IWRM compared to the (long-term) future focus of adaptation. One of the main problems of implementing climate change adaptation is the large uncertainties in future projections. Two completely different approaches to adaptation have been developed in response to these large uncertainties. A top-down approach based on large scale biophysical impacts analyses focussing on quantifying and minimizing uncertainty by using a large range of scenarios and different climate and impact models. The main problem with this approach is the propagation of uncertainties within the modelling chain. The opposite is the bottom up approach which basically ignores uncertainty. It focusses on reducing vulnerabilities, often at local scale, by developing resilient water systems. Both these approaches however are unsuitable for integrating into water management. The bottom up approach focuses too much on socio-economic vulnerability and too little on developing (technical) solutions. The top-down approach often results in an “explosion” of uncertainty and therefore complicates decision making. A more promising direction of adaptation would be a risk based approach. Future research should further develop and test an approach which starts with developing adaptation strategies based on current and future risks. These strategies should then be evaluated using a range

  2. The relationship of compliance changes during fatigue loading to the fracture of composite materials

    Science.gov (United States)

    Reifsnider, K. L.; Highsmith, A.

    1982-01-01

    The study outlined here is based on measurements of the change in engineering stiffness values induced by the development of damage in composite laminates during quasi-static or cyclic (fatigue) loading. These changes are found to be related to the individual details of the damage events in the laminates, as well as to the residual strength and life of the laminates. It is believed that the stiffness changes can also be used to relate composite material behavior under cyclic loading to its behavior under quasi-static loading. Results are presented for both notched and unnotched laminates. Compliance changes are found to be caused by damage events that bring about both global and local redistributions of stress. It is also found that the redistributions of stress determine the residual strength of the laminate. The quantitative link between compliance changes and fracture strength is the mechanics of the internal stress redistributions.

  3. Study on Solidification of Phase Change Material in Fractal Porous Metal Foam

    Science.gov (United States)

    Zhang, Chengbin; Wu, Liangyu; Chen, Yongping

    2015-02-01

    The Sierpinski fractal is introduced to construct the porous metal foam. Based on this fractal description, an unsteady heat transfer model accompanied with solidification phase change in fractal porous metal foam embedded with phase change material (PCM) is developed and numerically analyzed. The heat transfer processes associated with solidification of PCM embedded in fractal structure is investigated and compared with that in single-pore structure. The results indicate that, for the solidification of phase change material in fractal porous metal foam, the PCM is dispersedly distributed in metal foam and the existence of porous metal matrix provides a fast heat flow channel both horizontally and vertically, which induces the enhancement of interstitial heat transfer between the solid matrix and PCM. The solidification performance of the PCM, which is represented by liquid fraction and solidification time, in fractal structure is superior to that in single-pore structure.

  4. Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics

    OpenAIRE

    Ahmad Hasan; Sarah Josephine McCormack; Ming Jun Huang; Brian Norton

    2014-01-01

    The current research seeks to maintain high photovoltaic (PV) efficiency and increased operating PV life by maintaining them at a lower temperature. Solid-liquid phase change materials (PCM) are integrated into PV panels to absorb excess heat by latent heat absorption mechanism and regulate PV temperature. Electrical and thermal energy efficiency analysis of PV-PCM systems is conducted to evaluate their effectiveness in two different climates. Finally costs incurred due to inclusion of PCM in...

  5. Climate Change Science Teaching through Integration of Technology in Instruction and Research

    Science.gov (United States)

    Sriharan, S.; Ozbay, G.; Robinson, L.; Klimkowski, V.

    2015-12-01

    This presentation demonstrates the importance of collaborations between the institutions with common focus on offering the academic program on climate change science. Virginia State University (VSU) developed and established the course on climate change and adaptation, AGRI 350 for undergraduates, in cooperation with two HBCUs, Delaware State University (DSU) and Morgan State University (MSU). This program was developed to enhance the science curriculum with funding from the USDA NIFA. The hands-on research opportunities for students were supported by the NSF HBCU UP Supplement Grant at VSU. The technical guidance and lesson plans were available through the courtesy of the AMS and faculty/student team training at the NCAR. In the initial stages, the faculty members participated in faculty development workshops hosted by the AMS and NCAR. This contributed to trained faculty members developing the courses on Climate Change at VSU, DSU, and MSU. To create awareness of global climate change and exposure of students to international programs, seven students from VSU, MSU, and DSU participated in the Climate Change course (ENS 320) at the University of Sunshine Coast (USC), Australia. This international experience included faculty members in using SimCLIM for climate change data into decision-making with regard to potential changes to cropping systems and tree growth. The Climate Change program at VSU, DSU, and MSU is emerging into comprehensive academic program which includes use of case studies and exchange of students' reflections with their peers through discussion board and videoconferencing, hands-on research on water quality monitoring and mapping the study sites, and integration of geospatial technologies and i-Tree. In addition, the students' engagement in intensive research was conducted through hands-on experience with Scanning Electron Microscopy in the Marine Science Department, University of Hawaii at Hilo in summer 2015.

  6. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  7. Performance improvement of Sb2Te3 phase change material by Al doping

    International Nuclear Information System (INIS)

    Al doped Sb2Te3 material was proposed to improve the performance of phase-change memory. Crystallization temperature, activation energy, and electrical resistance of the Al doped Sb2Te3 films increase markedly with the increasing of Al concentration. The additional Al-Sb and Al-Te bonds enhance the amorphous thermal stability of the material. Al0.69Sb2Te3 material has a better data retention (10 years at 110 deg. C) than that of Ge2Sb2Te5 material (10 years at 87 deg. C). With a 100 ns width voltage pulse, SET and RESET voltages of 1.3 and 3.3 V are achieved for the Al0.69Sb2Te3 based device.

  8. Mechanical behaviour of HTR materials: Developments in support of defect assessment, structural integrity and lifetime evaluation

    International Nuclear Information System (INIS)

    Mod 9Cr-1Mo steel (T91) is a candidate material for pressure vessels and for some internal structures of GCR (Gas Cooled Reactors). In order to validate this choice, it is necessary, firstly to verify that it is able to withstand the planned environmental and operating conditions, and secondly to check if it is covered by the existing design codes, concerning its procurement, fabrication, welding, examination methods and mechanical design rules. A large R and D program on mod 9Cr-1Mo steel has been undertaken at CEA in order to characterize the behaviour of this material and of its welded junctions. In this program, the role of the Laboratory for structural Integrity and Standards (LISN) is to develop high temperature defect assessment procedures under fatigue and creep loadings. Concerning the GCR, complementary studies are conducted in order to validate the existing methods (developed for the fast reactors) and to get new experimental data on Mod 9Cr-1Mo steel. Moreover, if the geometry and the loadings of a standard CT specimen allow performing a 2D analysis, the case of industrial loadings appears much more complicated, notably because of surface defects which propagate and present shapes that can be considered as half ellipse. Therefore, in the frame of the defect assessment methods validation, the LISN undertakes both standard tests on CT specimens to determine the propagation laws and bending tests on large plates under high temperature fatigue and creep loadings. These components present an initial semi-elliptical surface notch normal to the loading direction and its initiation and propagation are studied.

  9. Integrated risk/decision analysis for protection of groundwater from hazardous material contamination

    International Nuclear Information System (INIS)

    Public concern over groundwater contamination has focused attention on the management of hazardous materials in the U.S. Recent developments in the field of risk assessment can provide the engineering profession with the necessary tools for responding to this public concern. This paper presents an integrated risk/decision analysis methodology needed for systematically analyzing alternative courses of actions and their probable impact on groundwater resources. The analysis begins with the development of an event tree. A list of all possible event sequences to be considered has been compiled and a detailed analysis of the consequences of each event is conducted. Stemming from a decision on development over the recharge zone of an aquifer, and leading to the introduction of hazardous materials into the groundwater and contamination of the potable water supply, all events have been sequentially structured with both their positive and negative outcomes. The next step is to develop a comprehensive fault tree from the event tree. The logic relationships described by the fault tree are translated into algebraic operations allowing the objective determination of risk for any pathway leading from the initial policy decisions to the final consequence of contaminated groundwater. Risk acceptability analysis is based on historical risk data for the situations being considered. Probability limits for each potential risk are determined for each risk category associated with the specific situation and based on the revealed preference concept in quantitative psychology. The categorization of risks permits the assessment of acceptable risk for situations not considered in the past. Comparison of these risk limits with the risk probability values calculated from the event tree/fault tree analysis allows decision-makers to screen alternative courses of action based on their risk acceptabilities

  10. Integrating Land Change Science and Savanna Fire Models in West Africa

    Directory of Open Access Journals (Sweden)

    Paul Laris

    2013-11-01

    Full Text Available Fire is a key component of many land use systems and a determinant of land change. There is a growing concern that climate change will cause more catastrophic fires, but in many areas the impacts will be mediated by human land use practices. In African savannas, for example, fires are frequent and research finds low inter-annual variability in burned areas in places with highly variable rainfall. This regularity of fire suggests that African regimes are humanized, meaning that they are governed by human practices more than climate variation. Although these fire regimes are stable, they vary greatly over space. This paper will determine the reasons for two distinctly different fire regimes in Mali by integrating land change and savanna fire science. The study takes a two pronged approach to examine the causes of fire regimes and the reasons they change. It tests the notion that land cover (not land use governs fire regimes by combining long term burn scar and vegetation analysis with local interviews. Results indicate that efforts to link fire and land change science, need to focus more on subtle differences in land cover, landscape pattern and human practices, than on drought, land use or fire policy.

  11. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning.

    Science.gov (United States)

    Maxwell, Sean L; Venter, Oscar; Jones, Kendall R; Watson, James E M

    2015-10-01

    The impact of climate change on biodiversity is now evident, with the direct impacts of changing temperature and rainfall patterns and increases in the magnitude and frequency of extreme events on species distribution, populations, and overall ecosystem function being increasingly publicized. Changes in the climate system are also affecting human communities, and a range of human responses across terrestrial and marine realms have been witnessed, including altered agricultural activities, shifting fishing efforts, and human migration. Failing to account for the human responses to climate change is likely to compromise climate-smart conservation efforts. Here, we use a well-established conservation planning framework to show how integrating human responses to climate change into both species- and site-based vulnerability assessments and adaptation plans is possible. By explicitly taking into account human responses, conservation practitioners will improve their evaluation of species and ecosystem vulnerability, and will be better able to deliver win-wins for human- and biodiversity-focused climate adaptation. PMID:26555860

  12. Does Integration Help Adapt to Climate Change? Case of Increased US Corn Yield Volatility

    Science.gov (United States)

    Verma, M.; Diffenbaugh, N. S.; Hertel, T. W.

    2012-12-01

    In absence of of new crop varieties or significant shifts in the geography of corn production, US national corn yields variation could double by the year 2040 as a result of climate change and without adaptation this could lead the variability in US corn prices to quadruple (Diffenbaugh et al. 2012). In addition to climate induced price changes, analysis of recent commodity price spikes suggests that interventionist trade policies are partly to blame. Assuming we cannot much influence the future climate outcome, what policies can we undertake to adapt better? Can we use markets to blunt this edge? Diffenbaugh et al. find that sale of corn- ethanol for use in liquid fuel, when governed by quotas such as US Renewable Fuel Standard (RFS), could make US corn prices even more variable; in contrast the same food-fuel market link (we refer to it as intersectoral link) may well dampen price volatility when the sale of corn to ethanol industry is driven by higher future oil prices. The latter however comes at the cost of exposing corn prices to the greater volatility in oil markets. Similarly intervention in corn trade can make US corn prices less or more volatile by distorting international corn price transmission. A negative US corn yield shock shows that domestic corn supply falls and domestic prices to go up irrespective of whether or not markets are integrated. How much the prices go up depends on how much demand adjusts to accommodate the supply shock. Based on the forgoing analysis, one should expect that demand would adjust more readily when markets are integrated and therefore reduce the resulting price fluctuation. Simulation results confirm this response of corn markets. In terms of relative comparisons however a policy driven intersectoral integration is least effective and prices rise much more. Similarly, a positive world oil price shock makes the US oil imports expensive and with oil being used to produce gasoline blends, it increases the price of gasoline

  13. Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng; Joshi, Vineet V.; Lavender, Curt A.; Khaleel, Mohammad A.; Ahzi, Said

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to microstructure, characterized by texture and grain size. Modified intermediate phi-model, a polycrystalline viscoplasticity model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry by thermomechanical processing. In some texture, for example, rolled texture, CYS/TYS is smaller than 1 under different loading directions. In some texture, for example, extruded texture, asymmetry is large along normal direction. Starting from rolled texture, the asymmetry will increased to close to 1 along rolling direction after compressed to a strain of 0.2. Our model shows that grain refinement increases CYS/TYS. Besides texture control, grain refinement can also optimize the yield asymmetry. After the grain size decreased to a critical value, CYS/TYS reaches to 1 since CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.

  14. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase.

    Directory of Open Access Journals (Sweden)

    Mi Young Seo

    Full Text Available A procentriole is assembled next to the mother centriole during S phase and remains associated until M phase. After functioning as a spindle pole during mitosis, the mother centriole and procentriole are separated at the end of mitosis. A close association of the centriole pair is regarded as an intrinsic block to the centriole reduplication. Therefore, deregulation of this process may cause a problem in the centriole number control, resulting in increased genomic instability. Despite its importance for faithful centriole duplication, the mechanism of centriole separation is not fully understood yet. Here, we report that centriole pairs are prematurely separated in cells whose cell cycle is arrested at M phase by STLC. Dispersal of the pericentriolar material (PCM was accompanied. This phenomenon was independent of the separase activity but needed the PLK1 activity. Nocodazole effectively inhibited centriole scattering in STLC-treated cells, possibly by reducing the microtubule pulling force around centrosomes. Inhibition of PLK1 also reduced the premature separation of centrioles and the PCM dispersal as well. These results revealed the importance of PCM integrity in centriole association. Therefore, we propose that PCM disassembly is one of the driving forces for centriole separation during mitotic exit.

  15. Material and energy recovery in integrated waste management systems: project overview and main results.

    Science.gov (United States)

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Ragazzi, Marco; Saccani, Cesare

    2011-01-01

    This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on "how much" source separation is carried out, but rather on "how" a given SSL is reached. PMID:21652196

  16. Disposal of High-Temperature Slags: A Review of Integration of Heat Recovery and Material Recycling

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai

    2016-05-01

    Nowadays with the continuous urbanization in China, the carbon emission and resource shortage have been serious issues, for which the disposal of blast furnace slags (BFS) and steel slags (SS) discharged from the metallurgical industry make up a significant strategy. The output of crude steel reached 823 Mt in China in 2014 and the thermal heat in these slags was equivalent to ~18 Mt of standard coal. Herein, the recent advances were systemically reviewed and analyzed, mainly from two respects, i.e., integration of heat recovery and material recycling and crystallization control of the slags. It was first found that for the heat recovery from BFS, the most intensively investigated physical method and chemical method were centrifugal granulation and gasification reaction, respectively. Furthermore, a two-step approach could contribute to a promising strategy for the treatment of slags, i.e., the liquid slags were first granulated into small particles, and then other further treatment was performed such as gasification reaction. With regard to SS, the effective disposal could be achieved using a selective crystallization and phase separation (SCPS) method, and moreover, the solid solution of 2CaO·SiO2 and the target phases could act as a promising enriched phase to extract the valuable elements.

  17. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    Science.gov (United States)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  18. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    Science.gov (United States)

    McGuire, A.D.; Chapin, F. S., III; Walsh, J.E.; Wirth, C.

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  19. Experimental investigation of performances of microcapsule phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Department of Material Science and Engineering, Nanjing University, Nanjing (China); Liu, X.; Wu, S. [Department of Physics, Nanjing University, Nanjing (China); Fang, G.

    2010-02-15

    Performances of microcapsule phase change material (MPCM) for thermal energy storage are investigated. The MPCM for thermal energy storage is prepared by a complex coacervation method with gelatin and acacia as wall materials and paraffin as core material in an emulsion system. A scanning electron microscope (SEM) was used to study the microstructure of the MPCM. In thermal analysis, a differential scanning calorimeter (DSC) was employed to determine the melting temperature, melting latent heat, solidification temperature, and solidification latent heat of the MPCM for thermal energy storage. The SEM micrograph indicates that the MPCM has been successfully synthesized and that the particle size of the MPCM is about 81 {mu}m. The DSC output results show that the melting temperature of the MPCM is 52.05 C, the melting latent heat is 141.03 kJ/kg, the solidification temperature is 59.68 C, and the solidification latent heat is 121.59 kJ/kg. The results prove that the MPCM for thermal energy storage has a larger phase change latent heat and suitable phase change temperature, so it can be considered as an efficient thermal energy storage material for heat utilizing systems. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change

    Science.gov (United States)

    Yang, Xiaojuan; Wittig, Victoria; Jain, Atul K.; Post, Wilfred

    2009-12-01

    A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations from the LIDET data set were compiled for calibration and evaluation of the decomposition submodel within ISAM. For aboveground decomposition, the calibration is accomplished by optimizing parameters related to four processes: the partitioning of leaf litter between metabolic and structural material, the effect of lignin on decomposition, the climate control on decomposition and N mineralization and immobilization. For belowground decomposition, the calibrated processes include the partitioning of root litter between decomposable and resistant material as a function of litter quality, N mineralization and immobilization. The calibrated model successfully captured both the C and N dynamics during decomposition for all major biomes and a wide range of climate conditions. Model results show that net N immobilization and mineralization during litter decomposition are dominantly controlled by initial N concentration of litter and the mass remaining during decomposition. The highest and lowest soil organic N storage are in tundra (1.24 Kg N m-2) and desert soil (0.06 Kg N m-2). The vegetation N storage is highest in tropical forests (0.5 Kg N m-2), and lowest in tundra and desert (ISAM are consistent with measurements and previous modeling studies. This gives us confidence that ISAM framework can predict plant N availability and subsequent plant productivity at regional and global scales and furthermore how they can be affected by factors that alter the rate of decomposition, such as increasing atmospheric [CO2], climate changes, litter quality, soil microbial activity and/or increased

  1. An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources

    Science.gov (United States)

    Ryu, D.; Malano, H. M.; Davidson, B.; George, B.

    2014-12-01

    Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture

  2. Materials integrity analysis for application of POSCO developed STS to Korean Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hyun-Young, Ch.; Tae-Eun, J. [Korea Power Engineering Company INC (Korea, Republic of); Young-Sik, K. [Andong National Univ. (Korea, Republic of)

    2009-07-01

    Full text of publication follows: POSCO has developed duplex stainless steel (S32750) and hyper super duplex stainless steels for the purpose of using them in the secondary circulation cooling water system in Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulation pump headers and the heat exchanged sea water is extracted to the discharge pipes in circulation cooling water system connected to the circulation water discharge lines. The flow velocity of circulation cooling water system in nuclear power plants is high and damages of components from corrosion are severe. Therefore, this environment makes requiring of using high strength and high corrosion resistant steels. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of currently producing stainless steels and newly developed materials are qualitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld are analyzed and the best compositions of welding rod are suggested. The optimum weld condition is derived for ensuring HAZ phase ratios and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured using mock-up tube testers that are newly designed for this study. Coupons of candidate materials are introduced in the real system and corrosion resistance of them are analyzed. As results of all experiments, the current CCT and CPT criteria in Korean nuclear power plants are reviewed, and the more actual and strengthened criteria will be suggested. The real scale components made of newly developed hyper super duplex stainless steel will be applied to

  3. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    Science.gov (United States)

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  4. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    Science.gov (United States)

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. PMID:26331624

  5. On-orbit absolute temperature calibration using multiple phase change materials: overview of recent technology advancements

    Science.gov (United States)

    Best, Fred A.; Adler, Douglas P.; Pettersen, Claire; Revercomb, Henry E.; Perepezko, John H.

    2010-11-01

    NASA's anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors onorbit, that uses the transient melt signatures from multiple phase change materials, has been demonstrated in the laboratory at the University of Wisconsin and is now undergoing technology advancement under NASA Instrument Incubator Program funding. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). Refinements currently underway focus on ensuring that the melt materials in their sealed confinement housings perform as expected in the thermal and microgravity environment of a multi-year spaceflight mission. Thermal soak and cycling tests are underway to demonstrate that there is no dissolution from the housings into the melt materials that could alter melt temperature, and that there is no liquid metal embrittlement of the housings from the metal melt materials. In addition, NASA funding has been recently secured to conduct a demonstration of this scheme in the microgravity environment of the International Space Station.

  6. Numerical simulation of the structures with transparent thermal insulations and phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, T.; Salonvaara, M.

    1992-12-31

    The aim of this research was to analyze the thermal performance of structures having layers of new materials. Applications of transparent thermal insulations and phase change materials were analyzed numerically using the simulation models TCCC2D and TRATMO2, developed at the Technical Research Centre of Finland (VTT), in the Laboratory of Heating and Ventilation. The potentials of new materials for reducing the losses through the building envelope were studied. The thermal effects of the transparency of insulation materials, thermal mass and inclination of the structure were analyzed using selected structural cases. The use of phase change materials with transparent layers was also studied. Surface temperatures and monthly and annual heat losses and the heat gains are presented for different cases. The results show that the annual conductive heat losses through sought facing facades can be decreased by about 40-50 % when compared to non-transparent structure with same U-value. During the three winter months transparent insulation acts only as an extra thermal resistance. The heat gains can also be used to compensate the ventilation heat losses or conductive heat losses through the facades. When transparent insulation is used in dynamic walls, the ventilation heat losses can be decreased as well. The reduction in the annual total heat losses through a dynamic structure can up to 40 % due to heat recovery and solar radiation. Phase change materials can be used for increment of the thermal mass in a certain temperature range and to smoothen the daily variations of heat losses and gains. Problems in the use of transparent insulations are high temperatures and heat gains, especially outside heating season.

  7. Numerical simulation of the structures with transparent thermal insulations and phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, T.; Salonvaara, M.

    1992-01-01

    The aim of this research was to analyze the thermal performance of structures having layers of new materials. Applications of transparent thermal insulations and phase change materials were analyzed numerically using the simulation models TCCC2D and TRATMO2, developed at the Technical Research Centre of Finland (VTT), in the Laboratory of Heating and Ventilation. The potentials of new materials for reducing the losses through the building envelope were studied. The thermal effects of the transparency of insulation materials, thermal mass and inclination of the structure were analyzed using selected structural cases. The use of phase change materials with transparent layers was also studied. Surface temperatures and monthly and annual heat losses and the heat gains are presented for different cases. The results show that the annual conductive heat losses through sought facing facades can be decreased by about 40-50 % when compared to non-transparent structure with same U-value. During the three winter months transparent insulation acts only as an extra thermal resistance. The heat gains can also be used to compensate the ventilation heat losses or conductive heat losses through the facades. When transparent insulation is used in dynamic walls, the ventilation heat losses can be decreased as well. The reduction in the annual total heat losses through a dynamic structure can up to 40 % due to heat recovery and solar radiation. Phase change materials can be used for increment of the thermal mass in a certain temperature range and to smoothen the daily variations of heat losses and gains. Problems in the use of transparent insulations are high temperatures and heat gains, especially outside heating season.

  8. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  9. The changing paradigm for integrated simulation in support of Command and Control (C2)

    Science.gov (United States)

    Riecken, Mark; Hieb, Michael

    2016-05-01

    Modern software and network technologies are on the verge of enabling what has eluded the simulation and operational communities for more than two decades, truly integrating simulation functionality into operational Command and Control (C2) capabilities. This deep integration will benefit multiple stakeholder communities from experimentation and test to training by providing predictive and advanced analytics. There is a new opportunity to support operations with simulation once a deep integration is achieved. While it is true that doctrinal and acquisition issues remain to be addressed, nonetheless it is increasingly obvious that few technical barriers persist. How will this change the way in which common simulation and operational data is stored and accessed? As the Services move towards single networks, will there be technical and policy issues associated with sharing those operational networks with simulation data, even if the simulation data is operational in nature (e.g., associated with planning)? How will data models that have traditionally been simulation only be merged in with operational data models? How will the issues of trust be addressed?

  10. Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage

    International Nuclear Information System (INIS)

    Three kinds of macro-encapsulated phase change materials (MacroPCMs) were fabricated, i.e., MacroPCMs with a single core–shell structure, MacroPCMs containing microencapsulated phase change materials (MicroPCMs), and composite macrocapsules of MicroPCMs/expanded graphite prepared by suspension-like polymerization followed by a piercing–solidifying incuber process. The morphology, microstructure, phase change property, as well as seal tightness were systematically characterized by field emission scanning electron microscope (FESEM), differential scanning calorimetry (DSC), and energy dispersive X-ray spectrometer (EDS). The core–shell structured macrocapsules exhibit a homogeneous thickness shell. The interface combination between MicroPCMs and polymer substrate was studied through the cross section micrograph of MacroPCMs containing MicroPCMs. The morphology and seal tightness of MacroPCMs fabricated with expanded graphite absorbing both PCMs and shell-forming monomers, enhanced significantly compared with that of PCMs alone. In addition, the effects of polymer substrate proportion between styrene-maleic anhydride copolymer and sodium alginate on the microstructure and performance of MacroPCMs were discussed as well. - Highlights: • MacroPCMs with single core–shell structure. • MacroPCMs containing acrylic-based copolymer MicroPCMs. • Phase change materials/expanded graphite composite macrocapsule

  11. Optimization Using Metamodeling in the Context of Integrated Computational Materials Engineering (ICME)

    Energy Technology Data Exchange (ETDEWEB)

    Hammi, Youssef; Horstemeyer, Mark F; Wang, Paul; David, Francis; Carino, Ricolindo

    2013-11-18

    Predictive Design Technologies, LLC (PDT) proposed to employ Integrated Computational Materials Engineering (ICME) tools to help the manufacturing industry in the United States regain the competitive advantage in the global economy. ICME uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. With the advent of accurate modeling and simulation along with significant increases in high performance computing (HPC) power, virtual design and manufacturing using ICME tools provide the means to reduce product development time and cost by alleviating costly trial-and-error physical design iterations while improving overall quality and manufacturing efficiency. To reduce the computational cost necessary for the large-scale HPC simulations and to make the methodology accessible for small and medium-sized manufacturers (SMMs), metamodels are employed. Metamodels are approximate models (functional relationships between input and output variables) that can reduce the simulation times by one to two orders of magnitude. In Phase I, PDT, partnered with Mississippi State University (MSU), demonstrated the feasibility of the proposed methodology by employing MSU?s internal state variable (ISV) plasticity-damage model with the help of metamodels to optimize the microstructure-process-property-cost for tube manufacturing processes used by Plymouth Tube Company (PTC), which involves complicated temperature and mechanical loading histories. PDT quantified the microstructure-property relationships for PTC?s SAE J525 electric resistance-welded cold drawn low carbon hydraulic 1010 steel tube manufacturing processes at seven different material states and calibrated the ISV plasticity material parameters to fit experimental tensile stress-strain curves. PDT successfully performed large scale finite element (FE) simulations in an HPC environment using the ISV plasticity

  12. Changes in the regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    The objective of this paper is to describe and to analyze the relevant changes, dealing with the design, operation and administrative requirements, to be introduced in the Revision 1 of the AR 10.16.1 standard 'Transport of radioactive material' that will be put into force on July, 1st 2001 by the Nuclear Regulatory Authority (competent authority of Argentina). In that way, the Revision 1 of the mentioned standard will be coincident with the 1996 edition (revised) of the 'Regulations for the safe transport of radioactive material', Safety Standards Series No. TS-R-1 (ST-1, revised) issued by the International Atomic Energy Agency (IAEA). (author)

  13. Mathematical Modeling and Simulations of Phase Change Materials in Basic Orthogonal Coordinate Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, Daniel; Dutil, Yvan; Ben Salah, Nizar; Lassue, Stephane

    2010-09-15

    Energy storage components improve the energy efficiency of systems by reducing the mismatch between supply and demand. Phase change materials are attractive since they provide a high energy storage density at constant temperatures. Nevertheless, the incorporation of such materials in a particular application often calls for numerical analyses due to the non-linear nature of the problem. The review of the mathematical models will include selected results to enable one to start his/her research with an exhaustive overview of the subject. This overview also stresses the need to match experimental investigations with recent numerical analyses.

  14. Preparation and characterization of phase change material for thermal energy storage in buildings

    Science.gov (United States)

    Lo, Tommy Y.

    2016-04-01

    The paper presents the developing of novel form-stable composite phase change material (PCM) by incorporation of paraffin into lightweight aggregate through vacuum impregnation. The macro-encapsulated Paraffin-lightweight aggregate is a chemical compatible, thermal stable and thermal reliable PCM material for thermal energy storage applications in buildings. The 28 days compressive strength of NWAC using PCM-LWA is 33 - 53 MPa, which has an opportunity for structural purpose. Scanning electronic microscopic images indicated the paraffin can be held inside the porous structure of the aggregate. Thermal performance test showed that the cement paste panel with composite PCM can reduce the indoor temperature.

  15. Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Seiyed Mohammad Javad Hosseini

    2013-01-01

    Full Text Available This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05 on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

  16. A Super Cooled, Non-toxic, Non-flammable Phase Change Material Thermal Pack for Portable Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept development and test of a water-based, advanced Phase Change Material (PCM) heat sink is proposed. Utilizing a novel material choice for both an...

  17. A Super Cooled, Non-toxic, Non-flammable Phase Change Material Thermal Pack for Portable Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The continuation of concept development and test of a water-based, advanced Phase Change Material (PCM) heat sink is proposed. Utilizing a novel material choice for...

  18. Towards strategic stakeholder management? Integrating perspectives on sustainability challenges such as corporate responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J. [Business School, University of Amsterdam, Amsterdam (Netherlands)

    2007-07-01

    The strategic management of corporate sustainability tends to be approached from one theoretical perspective in academic research and publications in mainstream journals simultaneously. In corporate practice, however, a sustainability issue has different dimensions that cannot be captured if only one such lens is taken. The purpose of this article is to develop a more integrated perspective, embedded in a stakeholder view. This paper uses climate change as an example to illustrate how institutional, resource-based, supply chain and stakeholder views are all important to characterize and understand corporate strategic responses to one issue. This is subsequently linked to the climate strategies and related capabilities of companies, reckoning with societal and competitive contexts. Findings - What a corporate climate strategy looks like depends on the type of stakeholders that a company manages more proactively, which is in turn determined by the extent to which these stakeholders control critical resources. While empirical literature usually adopts a particular theoretical perspective, this article has attempted to develop a more integrative approach on corporate responses to climate change.

  19. Towards strategic stakeholder management? Integrating perspectives on sustainability challenges such as corporate responses to climate change

    International Nuclear Information System (INIS)

    The strategic management of corporate sustainability tends to be approached from one theoretical perspective in academic research and publications in mainstream journals simultaneously. In corporate practice, however, a sustainability issue has different dimensions that cannot be captured if only one such lens is taken. The purpose of this article is to develop a more integrated perspective, embedded in a stakeholder view. This paper uses climate change as an example to illustrate how institutional, resource-based, supply chain and stakeholder views are all important to characterize and understand corporate strategic responses to one issue. This is subsequently linked to the climate strategies and related capabilities of companies, reckoning with societal and competitive contexts. Findings - What a corporate climate strategy looks like depends on the type of stakeholders that a company manages more proactively, which is in turn determined by the extent to which these stakeholders control critical resources. While empirical literature usually adopts a particular theoretical perspective, this article has attempted to develop a more integrative approach on corporate responses to climate change

  20. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    OpenAIRE

    Vine, Edward

    2007-01-01

    This paper explores the feasibility of integrating energy efficiency program evaluation with the emerging need for the evaluation of programs from different "energy cultures" (demand response, renewable energy, and climate change). The paper reviews key features and information needs of the energy cultures and critically reviews the opportunities and challenges associated with integrating these with energy efficiency program evaluation. There is a need to integrate the different policy a...

  1. Si1Sb2Te3 phase change material for chalcogenide random access memory

    Institute of Scientific and Technical Information of China (English)

    Zhang Ting; Song Zhi-Tang; Liu Bo; Liu Wei-Li; Feng Song-Lin; Chen Bomy

    2007-01-01

    This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory.Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase.The film holds a threshold current about 0.155 mA,which is smaller than the value 0.31 mA of Ge2Sb2Te5 film.Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at~180°C and changes to hexagonal structure at~270°C.Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method.Data retention of the films was characterized as well.

  2. Ultrafast optical manipulation of atomic motion in multilayer Ge-Sb-Te phase change materials

    Science.gov (United States)

    Makino, K.; Tominaga, J.; Kolobov, A. V.; Fons, P.; Hase, M.

    2013-03-01

    Phase change random access memory devices have evolved dramatically with the recent development of superlattice structure of Ge-Sb-Te material (GST-SL) in terms of its low power consumption. The phase change in GST-SL is mainly characterized by the displacement of Ge atoms. Here we examine a new phase change method, that is the manipulation of Ge-Te bonds using linearly-polarized femtosecond near-infrared optical pulses. As a result, we found that the p-polarized pump pulse is more effective in inducing the reversible and irreversible displacement of Ge atoms along [111] direction in the local structure. This structural change would be induced by the anisotropic carrier-phonon interaction along the [111] direction created by the p-polarized pulse.

  3. An integrated model to simulate sown area changes for major crops at a global scale

    Institute of Scientific and Technical Information of China (English)

    WU WenBin; YANG Peng; MENG ChaoYing; SHIBASAKI Ryosuke; ZHOU QingBo; TANG HuaJun; SHI Yun

    2008-01-01

    Dynamics of land use systems have attracted much attention from scientists around the world due to their ecological and socio-economic implications. An integrated model to dynamically simulate future changes in sown areas of four major crops (rice, maize, wheat and soybean) on a global scale is presented. To do so, a crop choice model was developed on the basis of Multinomial Logit (Logit) model to model land users' decisions on crop choices among a set of available alternatives with using a crop utility function. A GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted to simulate the crop yields under a given geophysical environment and farming management conditions,while the International Food Policy and Agricultural Simulation (IFPSIM) model was utilized to estimate crop price in the international market. The crop choice model was linked with the GIS-based EPIC model and the IFPSIM model through data exchange. This integrated model was then validated against the FAO statistical data in 2001-2003 and the Moderate Resolution Imaging Spectroradiometer (MODIS)global land cover product in 2001. Both validation approaches indicated reliability of the model for addressing the dynamics in agricultural land use and its capability for long-term scenario analysis. Finally,the model application was designed to run over a time period of 30 a, taking the year 2000 as baseline.The model outcomes can help understand and explain the causes, locations and consequences of land use changes, and provide support for land use planning and policy making.

  4. Phenology as an Integrative Science for Assessment of Global Climate Change Impacts

    Science.gov (United States)

    Weltzin, J.; Losleben, M. V.

    2007-12-01

    Phenology is the study of periodic plant and animal life cycle events and how these are influenced by seasonal and interannual variations in climate. Examples include the timing of leafing and flowering, agricultural crop stages, insect emergence, and animal migration. All of these events are sensitive measures of climatic variation and change, are relatively simple to record and understand, and are vital to both the scientific and public interest. Integration of spatially-extensive phenological data and models with both short and long-term climatic forecasts offer a powerful agent for human adaptation to ongoing and future climate change. However, a new data resource of national scale is needed to capture the valuable information potential of phenological responses to climate change; to study its nature, pace and the effects of ecosystem function; and to understand connectivity and synchrony among species. The USA National Phenology Network (USA-NPN) is being designed and organized to engage federal agencies, environmental networks and field stations, educational institutions, and mass participation by citizen scientists to create this data resource, and develop phenology research potential. This presentation illustrates the variety of source, scale, and use of phenology in assessing current and future global climate change impacts.

  5. Integrating Climate Change Resilience Features into the Incremental Refinement of an Existing Marine Park

    Science.gov (United States)

    Beckley, Lynnath E.; Kobryn, Halina T.; Lombard, Amanda T.; Radford, Ben; Heyward, Andrew

    2016-01-01

    Marine protected area (MPA) designs are likely to require iterative refinement as new knowledge is gained. In particular, there is an increasing need to consider the effects of climate change, especially the ability of ecosystems to resist and/or recover from climate-related disturbances, within the MPA planning process. However, there has been limited research addressing the incorporation of climate change resilience into MPA design. This study used Marxan conservation planning software with fine-scale shallow water (Marine Park in Western Australia to identify climate change resilience features to integrate into the incremental refinement of the marine park. The study assessed the representation of benthic habitats within the current marine park zones, identified priority areas of high resilience for inclusion within no-take zones and examined if any iterative refinements to the current no-take zones are necessary. Of the 65 habitat classes, 16 did not meet representation targets within the current no-take zones, most of which were in deeper offshore waters. These deeper areas also demonstrated the highest resilience values and, as such, Marxan outputs suggested minor increases to the current no-take zones in the deeper offshore areas. This work demonstrates that inclusion of fine-scale climate change resilience features within the design process for MPAs is feasible, and can be applied to future marine spatial planning practices globally. PMID:27529820

  6. Towards an integrated economic assessment of climate change impacts on agriculture

    Science.gov (United States)

    Lotze-Campen, H.; Piontek, F.; Stevanovic, M.; Popp, A.; Bauer, N.; Dietrich, J.; Mueller, C.; Schmitz, C.

    2012-12-01

    For a detailed understanding of the effects of climate change on global agricultural production systems, it is essential to consider the variability of climate change patterns as projected by General Circulation Models (GCMs), their bio-physical impact on crops and the response in land-use patterns and markets. So far, approaches that account for the interaction of bio-physical and economic impacts are largely lacking. We present an integrative analysis by using a soft-coupled system of a biophysical impact model (LPJmL, Bondeau et al. 2007), an economically driven land use model (MAgPIE, Lotze-Campen et al. 2008) and an integrated assessment model (ReMIND-R, Leimbach et al. 2010) to study climate change impacts and economic damages in the agricultural sector. First, the dynamic global vegetation and hydrology model LPJmL is used to derive climate change impacts on crop yields for wheat, maize, soy, rice and other major crops. A range of different climate projections is used, taken from the dataset provided by the Intersectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org), which bias-corrected the latest CMIP5 climate data (Taylor et al. 2011). Crop yield impacts cover scenarios with and without CO2 fertilization as well as different Representative Concentration Pathways (RCPs) and different GCMs. With increasing temperature towards the end of the century yields generally decrease in tropical and subtropical regions, while they tend to benefit in higher latitudes. LPJmL results have been compared to other global crop models in the Agricultural Model Intercomparison and Improvement Project (AgMIP, www.agmip.org). Second, changes in crop yields are analysed with the spatially explicit agro-economic model MAgPIE, which covers their interaction with economic development and changes in food demand. Changes in prices as well as welfare changes of producer and consumer surplus are taken as economic indicators. Due to climate-change related reductions in

  7. An Integrated Hydro-Economic Model for Economy-Wide Climate Change Impact Assessment for Zambia

    Science.gov (United States)

    Zhu, T.; Thurlow, J.; Diao, X.

    2008-12-01

    Zambia is a landlocked country in Southern Africa, with a total population of about 11 million and a total area of about 752 thousand square kilometers. Agriculture in the country depends heavily on rainfall as the majority of cultivated land is rain-fed. Significant rainfall variability has been a huge challenge for the country to keep a sustainable agricultural growth, which is an important condition for the country to meet the United Nations Millennium Development Goals. The situation is expected to become even more complex as climate change would impose additional impacts on rainwater availability and crop water requirements, among other changes. To understand the impacts of climate variability and change on agricultural production and national economy, a soil hydrology model and a crop water production model are developed to simulate actual crop water uses and yield losses under water stress which provide annual shocks for a recursive dynamic computational general equilibrium (CGE) model developed for Zambia. Observed meteorological data of the past three decades are used in the integrated hydro-economic model for climate variability impact analysis, and as baseline climatology for climate change impact assessment together with several GCM-based climate change scenarios that cover a broad range of climate projections. We found that climate variability can explain a significant portion of the annual variations of agricultural production and GDP of Zambia in the past. Hidden beneath climate variability, climate change is found to have modest impacts on agriculture and national economy of Zambia around 2025 but the impacts would be pronounced in the far future if appropriate adaptations are not implemented. Policy recommendations are provided based on scenario analysis.

  8. Weight change of various light-cured restorative materials after water immersion.

    Science.gov (United States)

    Iwami, Y; Yamamoto, H; Sato, W; Kawai, K; Torii, M; Ebisu, S

    1998-01-01

    This study investigated weight changes of various light-cured glass-ionomer cements and other restorative materials during water immersion and compared findings with those of conventional glass-ionomer cement and light-cured resin composites. Three light-cured glass-ionomer cements, two polyacid-modified composite resins, one conventional glass-ionomer cement, and one light-cured composite resin were evaluated in this study. The weight changes of these specimens after water immersion were measured using an electronic analytical balance and adjusted according to water solubility measured at the same time weight change was measured. The results were analyzed by one-way ANOVA and Scheffé's F test at P < 0.05. The weight change of Photac-Fil Aplicap was the largest, and there were significant differences among the materials (P < 0.05). Weight change after 6 weeks' water immersion was noted in the following order: Fuji Ionomer Type II LC, Vitremer, Fuji Ionomer Type II, VariGlass VLC, Geristore V, and Clearfil AP-X. It is suggested that the amount of water sorption of light-cured glass-ionomer cements is greater than that of polyacid-modified composite resins. PMID:9656924

  9. Climate change vulnerabilities- an integrated assessment in Pyramid Lake Paiute Indian Reservation

    Science.gov (United States)

    Gautam, M. R.; Chief, K.; Wilde, K.; Smith, W.

    2011-12-01

    There are increasing concerns of potential climate change impacts that may place the Truckee River Basin in Nevada under unprecedented stress. We hypothesized that Pyramid Lake, a terminal lake of Truckee River, is prone to climatic as well as non-climatic stressors stemming from cumulative impacts from upstream urban areas and activities. Thus climate change may impair the ability of a major downstream water user, the Pyramid Lake Paiute Tribe (PLPT), to cope and adapt. The conventional approach in assessing vulnerability primarily focuses on hazards or biophysical vulnerabilities, such as water availability, floods, and drought impact. However, we found it inadequate to address the overall vulnerability of the PLPT. Thus in addition to biophysical vulnerabilities, intrinsic and external vulnerabilities were considered such as socio-economic variables (e.g. adaptive capacity) and policy and legal drivers (e.g. water rights). We proposed an elaborate framework for an integrated vulnerability assessment by adapting IPCC framework for vulnerability assessment, the Exposure-Sensitivity-Adaptive Capacity, and applied it to PLPT. Analysis of projected climate change dataset pointed towards increased incidences of floods and droughts and a warming trend over the whole basin with a higher rate at the lower basin in the future. In effort to understand how climatic trends trigger the vulnerability of PLPT, a multi-pronged approach was employed to understand key tribal livelihood assets including an in-depth analysis of the adaptive capacity of PLPT, a climate change survey, and a historical analysis of water conflict and negotiation. Results of the survey identified key natural assets as the lake, endangered fish, rangeland, and wetlands. The framework of a casual-loop diagram was developed in a system dynamic model that incorporated opinions of tribal stakeholders and other experts to evaluate how potential future climate changes might impact the endangered Cui ui fish

  10. Silver impregnation of Alzheimer's neurofibrillary changes counterstained for basophilic material and lipofuscin pigment.

    Science.gov (United States)

    Braak, H; Braak, E; Ohm, T; Bohl, J

    1988-07-01

    A method is described in which selective silver staining of Alzheimer's neurofibrillary changes is combined with staining of cell nuclei, Nissl material, and lipofuscin granules. Formalin fixed, paraffin embedded sections of human autopsy tissue are silver stained according to a method proposed by Gallyas. Lipofuscin is stained by crotonaldehyde fuchsin following performic acid oxidation. Nissl substance is visualized by either Darrow red or gallocyanin-chrome alum staining. Architectonic units showing the specific pathology and the neuronal types prone to develop the neurofibrillary changes can be recognized using this technique. PMID:2464205

  11. A Review On Free Cooling Through Heat Pipe by Using Phase Change Materials

    Directory of Open Access Journals (Sweden)

    A.S.Futane ,

    2011-06-01

    Full Text Available Thermal energy storage is renewable source of energy to develop energy storage system, which minimize environmental impact such as ozone depletion and global warming. Thermal energy can be stored as latent heat which is latter use when substance changes from one phase to another phase by either freezing or melting. Now a days need of refrigeration and air conditioning has been increased, which can be achieved by free cooling, for this various substances are use, depending upon required temperature. Phase change materials are one of the substances having low temperature of melting and solidification.

  12. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  13. Radiation decontamination of pharmaceutical raw materials as an integral part of the good pharmaceutical manufacturing practice (GPMP)

    International Nuclear Information System (INIS)

    The microbiological quality of many raw materials used in the manufacture of pharmaceuticals and adjuvants often fails to meet the standards set by the pharmaceutical industry. Raw materials of biological provenience are particularly susceptible to contamination. This work describes the present situation regarding the microbial load of corn starch. Given the accepted microbiological criteria, irradiation treatment is proposed as integral to Good Pharmaceutical Manufacturing Practice (GPMP). The use of total viable count as a guide for specifying microbial limits for non-sterile materials is supported. Criteria for the choice of dose are discussed. (author)

  14. Radiation decontamination of pharmaceutical raw materials as an integral part of the good pharmaceutical manufacturing practice (GPMP)

    Science.gov (United States)

    Ražem, D.; Katušin-Ražem, B.; Starčević, M.; Galeković, B.

    The microbiological quality of many raw materials used in the manufacture of pharmaceutical and adjuvants often fails to meet the standards set by the pharmaceutical industry. Raw materials of biological provenience are particularly susceptible to contamination. This work describes the present situation regarding the microbial load of corn starch. Given the accepted microbiological criteria, irradiation treatment is proposed as integral to Good Pharmaceutical Manufacturing Practice (GPMP). The use of total viable count as a guide for specifying microbial limits for non-sterile materials is supported. Criteria for the choice of dose are discussed.

  15. ON IMPROVING AN INTEGRATED INVENTORY MODEL FOR A SINGLE VENDOR AND MULTIPLE BUYERS WITH A RELAXED MATERIAL ORDERING CYCLE POLICY

    Institute of Scientific and Technical Information of China (English)

    Yugang YU; Feng CHU; Haoxun CHEN

    2006-01-01

    In this paper, we propose a new model for improving the lot size obtained with the model of Woo, Hsu, and Wu (2001) proposed in their paper "An integrated inventory model for a single vendor and multiple buyers with ordering cost reduction" (Int. J. Production Economics 73 203-215). The new model can provide a lower or equal joint total cost as compared to Woo, Hsu, and Wu's model due to the relaxation of their integral multiple material ordering cycle policy to a fractional-integral multiple material ordering cycle policy. The proposed model is analyzed and an algorithm for calculating the optimal lot size of the model is developed. A numerical study based on the example used by Woo, Hsu, and Wu is presented.

  16. Design and Analysis of a Novel Speed-Changing Wheel Hub with an Integrated Electric Motor for Electric Bicycles

    OpenAIRE

    Yi-Chang Wu; Zi-Heng Sun

    2013-01-01

    The aim of this paper is to present an innovative electromechanical device which integrates a brushless DC (BLDC) hub motor with a speed-changing wheel hub stored on the rear wheel of an electric bicycle. It combines a power source and a speed-changing mechanism to simultaneously provide functions of power generation and transmission for electric bicycles. As part of the proposed integrated device, the wheel hub consists of a basic planetary gear train providing three forward speeds including...

  17. Research priorities in land use and land-cover change for the Earth System and Integrated Assessment Modelling

    OpenAIRE

    Hibbard, K.; Janetos, A.; Vuuren, van, T.; Pongratz, J; Rose, S.; Betts, R.; Herold, M; Feddema, J.

    2010-01-01

    This special issue has highlighted recent and innovative methods and results that integrate observations and modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-...

  18. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    Science.gov (United States)

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete. PMID:25133259

  19. Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures

    Directory of Open Access Journals (Sweden)

    Won-Chang Choi

    2014-01-01

    Full Text Available This paper presents experimental results that can be applied to select a possible phase change material (PCM, such as a latent heat material (LHM, to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  20. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Directory of Open Access Journals (Sweden)

    Halúzová Dušana

    2015-06-01

    Full Text Available For many years Phase Change Materials (PCM have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called “twin-boxes”. The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.