WorldWideScience

Sample records for change assessment model

  1. Integrated assessment models of global climate change

    International Nuclear Information System (INIS)

    Parson, E.A.; Fisher-Vanden, K.

    1997-01-01

    The authors review recent work in the integrated assessment modeling of global climate change. This field has grown rapidly since 1990. Integrated assessment models seek to combine knowledge from multiple disciplines in formal integrated representations; inform policy-making, structure knowledge, and prioritize key uncertainties; and advance knowledge of broad system linkages and feedbacks, particularly between socio-economic and bio-physical processes. They may combine simplified representations of the socio-economic determinants of greenhouse gas emissions, the atmosphere and oceans, impacts on human activities and ecosystems, and potential policies and responses. The authors summarize current projects, grouping them according to whether they emphasize the dynamics of emissions control and optimal policy-making, uncertainty, or spatial detail. They review the few significant insights that have been claimed from work to date and identify important challenges for integrated assessment modeling in its relationships to disciplinary knowledge and to broader assessment seeking to inform policy- and decision-making. 192 refs., 2 figs

  2. Integrated assessment models of climate change. An incomplete overview

    International Nuclear Information System (INIS)

    Dowlatabadi, H.

    1995-01-01

    Integrated assessment is a trendy phrase that has recently entered the vocabulary of folks in Washington, DC and elsewhere. The novelty of the term in policy analysis and policy making circles belies the longevity of this approach in the sciences and past attempts at their application to policy issues. This paper is an attempt at providing an overview of integrated assessment with a special focus on policy motivated integrated assessments of climate change. The first section provides an introduction to integrated assessments in general, followed by a discussion of the bounds to the climate change issue. The next section is devoted to a taxonomy of the policy motivated models. Then the integrated assessment effort at Carnegie Mellon is described briefly. A perspective on the challenges ahead in successful representation of natural and social dynamics in integrated assessments of global climate change is presented in the final section. (Author)

  3. A maturity model to assess organisational readiness for change

    OpenAIRE

    Zephir, Olivier; Minel, Stéphanie; Chapotot, Emilie

    2011-01-01

    International audience; The presented model which is developed in a European project allows project management teams to assess the organisational maturity to integrate new practices under structural or technological change. Maturity for change is defined here as workforce capability to operate effectively in transformed processes. This methodology is addressed to tackle organisational readiness to fulfil business objectives through technological and structural improvements. The tool integrate...

  4. Distributional aspects of emissions in climate change integrated assessment models

    International Nuclear Information System (INIS)

    Cantore, Nicola

    2011-01-01

    The recent failure of Copenhagen negotiations shows that concrete actions are needed to create the conditions for a consensus over global emission reduction policies. A wide coalition of countries in international climate change agreements could be facilitated by the perceived fairness of rich and poor countries of the abatement sharing at international level. In this paper I use two popular climate change integrated assessment models to investigate the path and decompose components and sources of future inequality in the emissions distribution. Results prove to be consistent with previous empirical studies and robust to model comparison and show that gaps in GDP across world regions will still play a crucial role in explaining different countries contributions to global warming. - Research highlights: → I implement a scenario analysis with two global climate change models. → I analyse inequality in the distribution of emissions. → I decompose emissions inequality components. → I find that GDP per capita is the main Kaya identity source of emissions inequality. → Current rich countries will mostly remain responsible for emissions inequality.

  5. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    showed some unexpected results, where climate models predicting the largest increase in net precipitation did not result in the largest increase in groundwater heads. This was found to be the result of different initial conditions (1990 - 2010) for the various climate models. In some areas a combination of a high initial groundwater head and an increase in precipitation towards 2021 - 2050 resulted in a groundwater head raise that reached the drainage or the surface water system. This will increase the exchange from the groundwater to the surface water system, but reduce the raise in groundwater heads. An alternative climate model, with a lower initial head can thus predict a higher increase in the groundwater head, although the increase in precipitation is lower. This illustrates an extra dimension in the uncertainty assessment, namely the climate models capability of simulating the current climatic conditions in a way that can reproduce the observed hydrological response. Højberg, AL, Troldborg, L, Stisen, S, et al. (2012) Stakeholder driven update and improvement of a national water resources model - http://www.sciencedirect.com/science/article/pii/S1364815212002423 Seaby, LP, Refsgaard, JC, Sonnenborg, TO, et al. (2012) Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections (submitted) Journal of Hydrology Stisen, S, Højberg, AL, Troldborg, L et al., (2012): On the importance of appropriate rain-gauge catch correction for hydrological modelling at mid to high latitudes - http://www.hydrol-earth-syst-sci.net/16/4157/2012/

  6. Crop modelling for integrated assessment of risk to food production from climate change

    NARCIS (Netherlands)

    Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, Heidi; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; Ittersum, van M.K.; Janssen, S.J.C.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartosová, L.; Asseng, S.

    2015-01-01

    The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess

  7. Advanced energy technologies and climate change: An analysis using the Global Change Assessment Model (GCAM)

    International Nuclear Information System (INIS)

    Edmonds, J.; Wise, M.; MacCracken, C.

    1994-01-01

    The authors report results from a ''top down'' energy-economy model employing ''bottom up'' assumptions and embedded in an integrated assessment framework, GCAM. The analysis shows that, from the perspective of long-term energy system development, differences in results from the ''top down'' and ''bottom up'' research communities would appear to be more closely linked to differences in assumptions regarding the economic cost associated with advanced technologies than to differences in modeling approach. The adoption of assumptions regarding advanced energy technologies were shown to have a profound effect on the future rate of anthropogenic climate change. The cumulative effect of the five sets of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv, the point at which atmospheric concentrations are double those that existed in the middle of the eighteenth century. The consideration of all greenhouse gases, and in particular sulfur, leads to some extremely interesting results that the rapid deployment of advanced energy technologies leads to higher temperatures prior to 2050 than in the reference case. This is due to the fact that the advanced energy technologies reduce sulfur emissions as well as those of carbon. The short-term cooling impact of sulfur dominates the long-term warming impact of CO 2 and CH 4 . While all energy technologies play roles, the introduction of advanced biomass energy production technology plays a particularly important role. 16 refs., 12 figs., 3 tabs

  8. Stress testing hydrologic models using bottom-up climate change assessment

    Science.gov (United States)

    Stephens, C.; Johnson, F.; Marshall, L. A.

    2017-12-01

    Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.

  9. Multi-model approach to assess the impact of climate change on runoff

    Science.gov (United States)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a

  10. Modeling and assessment of hydrological changes in a developing urban catchment

    OpenAIRE

    Guan, M; Sillanpää, N; Koivusalo, H

    2015-01-01

    Urbanization strongly changes natural catchment by increasing impervious coverage and by creating a need for efficient drainage systems. Such land cover changes lead to more rapid hydrological response to storms and change distribution of peak and low flows. This study aims to explore and assess how gradual hydrological changes occur during urban development from rural area to a medium-density residential catchment. The Stormwater Management Model (SWMM) is utilized to simulate a series of sc...

  11. Scale changes in air quality modelling and assessment of associated uncertainties

    International Nuclear Information System (INIS)

    Korsakissok, Irene

    2009-01-01

    After an introduction of issues related to a scale change in the field of air quality (existing scales for emissions, transport, turbulence and loss processes, hierarchy of data and models, methods of scale change), the author first presents Gaussian models which have been implemented within the Polyphemus modelling platform. These models are assessed by comparison with experimental observations and with other commonly used Gaussian models. The second part reports the coupling of the puff-based Gaussian model with the Eulerian Polair3D model for the sub-mesh processing of point sources. This coupling is assessed at the continental scale for a passive tracer, and at the regional scale for photochemistry. Different statistical methods are assessed

  12. Change within Purchasing and Supply Management Organisations – Assessing the Claims from Maturity Models

    DEFF Research Database (Denmark)

    Holm Andreasen, Peter; Gammelgaard, Britta

    2018-01-01

    It is a wide-held assumption that professional development and change within purchasing and supply management (PSM) organisations can be explained and guided by a maturity model. In this paper the guidance which the maturity model concept offers to understand a PSM organisation's performance...... an organisational change framework, composing 1) movement transitions, 2) scalability of change, 3) acceptability of change, and 4) the substantive element of change. The research found that extant PSM maturity models are too rigid for PSM managers to apply, and although maturity models are commonly accepted in PSM...... is assessed. The methodology is based on the outcomes of a literature review of PSM maturity models, development of an organisational change framework and the learning from three qualitative case studies. An alternative understanding of the development of the PSM organisation is offered through...

  13. Assessing rates of forest change and fragmentation in Alabama, USA, using the vegetation change tracker model

    Science.gov (United States)

    Li, Mingshi; Huang, Chengquan; Zhu, Zhiliang; Shi, Hua; Lu, Heng; Peng, Shikui

    2009-01-01

    Forest change is of great concern for land use decision makers and conservation communities. Quantitative and spatial forest change information is critical for addressing many pressing issues, including global climate change, carbon budgets, and sustainability. In this study, our analysis focuses on the differences in geospatial patterns and their changes between federal forests and nonfederal forests in Alabama over the time period 1987–2005, by interpreting 163 Landsat Thematic Mapper (TM) scenes using a vegetation change tracker (VCT) model. Our analysis revealed that for the most part of 1990 s and between 2000 and 2005, Alabama lost about 2% of its forest on an annual basis due to disturbances, but much of the losses were balanced by forest regeneration from previous disturbances. The disturbance maps revealed that federal forests were reasonably well protected, with the fragmentation remaining relatively stable over time. In contrast, nonfederal forests, which are predominant in area share (about 95%), were heavily disturbed, clearly demonstrating decreasing levels of fragmentation during the time period 1987–1993 giving way to a subsequent accelerating fragmentation during the time period 1994–2005. Additionally, the identification of the statistical relationships between forest fragmentation status and forest loss rate and forest net change rate in relation to land ownership implied the distinct differences in forest cutting rate and cutting patterns between federal forests and nonfederal forests. The forest spatial change information derived from the model has provided valuable insights regarding regional forest management practices and disturbance regimes, which are closely associated with regional economics and environmental concerns.

  14. Revisiting Kappa to account for change in the accuracy assessment of land-use models

    NARCIS (Netherlands)

    Vliet, van J.; Bregt, A.K.; Hagen-Zanker, A.

    2011-01-01

    Land-use change models are typically calibrated to reproduce known historic changes. Calibration results can then be assessed by comparing two datasets: the simulated land-use map and the actual land-use map at the same time. A common method for this is the Kappa statistic, which expresses the

  15. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    NARCIS (Netherlands)

    Droogers, P.; Loon, van A.F.; Immerzeel, W.W.

    2008-01-01

    Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario

  16. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    Science.gov (United States)

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  17. Curonian Lagoon drainage basin modelling and assessment of climate change impact

    Directory of Open Access Journals (Sweden)

    Natalja Čerkasova

    2016-04-01

    Full Text Available The Curonian Lagoon, which is the largest European coastal lagoon with a surface area of 1578 km2 and a drainage area of 100,458 km2, is facing a severe eutrophication problem. With its increasing water management difficulties, the need for a sophisticated hydrological model of the Curonian Lagoon's drainage area arose, in order to assess possible changes resulting from local and global processes. In this study, we developed and calibrated a sophisticated hydrological model with the required accuracy, as an initial step for the future development of a modelling framework that aims to correctly predict the movement of pesticides, sediments or nutrients, and to evaluate water-management practices. The Soil and Water Assessment Tool was used to implement a model of the study area and to assess the impact of climate-change scenarios on the run-off of the Nemunas River and the Minija River, which are located in the Curonian Lagoons drainage basin. The models calibration and validation were performed using monthly streamflow data, and evaluated using the coefficient of determination (R2 and the Nash-Sutcliffe model efficiency coefficient (NSE. The calculated values of the R2 and NSE for the Nemunas and Minija Rivers stations were 0.81 and 0.79 for the calibration, and 0.679 and 0.602 for the validation period. Two potential climate-change scenarios were developed within the general patterns of near-term climate projections, as defined by the Intergovernmental Panel on Climate Change Fifth Assessment Report: both pessimistic (substantial changes in precipitation and temperature and optimistic (insubstantial changes in precipitation and temperature. Both simulations produce similar general patterns in river-discharge change: a strong increase (up to 22% in the winter months, especially in February, a decrease during the spring (up to 10% and summer (up to 18%, and a slight increase during the autumn (up to 10%.

  18. Crop modelling for integrated assessment of risk to food production from climate change

    DEFF Research Database (Denmark)

    Ewert, F.; Rötter, R.P.; Bindi, M.

    2015-01-01

    . However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming...... climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables...

  19. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments.

    Science.gov (United States)

    Jönsson, Anna Maria; Anderbrant, Olle; Holmér, Jennie; Johansson, Jacob; Schurgers, Guy; Svensson, Glenn P; Smith, Henrik G

    2015-04-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science-stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science-stakeholder communication. By this, we hope to stimulate a discussion among the science-stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models.

  20. Assessment of climate change scenarios for Saudi Arabia using data from global climate models

    International Nuclear Information System (INIS)

    Husain, T.; Chowdhury, S.

    2009-01-01

    This study assesses available scientific information and data to predict changes in the climatic parameters in Saudi Arabia for understanding the impacts for mitigation and/or adaptation. Meteorological data from 26 synoptic stations were analyzed in this study. Various climatic change scenarios were reviewed and A 2 and B 2 climatic scenario families were selected. In order to assess long-term global impact, global climatic models were used to simulate changes in temperature, precipitation, relative humidity, solar radiation, and wind circulation. Using global climate model (GCM), monthly time series data was retrieved for Longitude 15 o N to 35 o N and 32.5 o E to 60 o E covering the Kingdom of Saudi Arabia from 1970 to 2100 for all grids. Taking averages of 1970 to 2003 as baseline, change in temperature, relative humidity and precipitation were estimated for the base period. A comparative evaluation was performed for predictive capabilities of these models for temperature, precipitation and relative humidity. Available meteorological data from 1970 to 2003 was used to determine trends. This paper discusses the inconsistency in these parameters for decision-making and recommends future studies by linking global climate models with a suitable regional climate modeling tool. (author)

  1. A Framework for Modelling Indirect Land Use Changes in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Schmidt, Jannick Højrup; Weidema, Bo Pedersen; Brandão, Miguel

    2015-01-01

    Around 9% of global CO2 emissions originate from land use changes. Often, these emissions are not appropriately addressed in Life Cycle Assessment. The link between demand for crops in one region and impacts in other regions is referred to here as indirect land use change (iLUC) and includes...... demand for land and land use changes is established through markets for land's production capacity. The iLUC model presented is generally applicable to all land use types, crops and regions of the world in typical LCA decision-making contexts focusing on the long-term effects of small-scale changes...... deforestation, intensification and reduced consumption. Existing models for iLUC tend to ignore intensification and reduced consumption, they most often operate with arbitrary amortisation periods to allocate deforestation emissions over time, and the causal link between land occupation and deforestation...

  2. The AgMIP Wheat Pilot: A multi-model approach for climate change impact assessments.

    Science.gov (United States)

    Asseng, S.

    2012-12-01

    Asseng S., F. Ewert, C. Rosenzweig, J.W. Jones, J.L. Hatfield, A. Ruane, K.J. Boote, P. Thorburn, R.P. Rötter, D. Cammarano, N. Brisson, B. Basso, P. Martre, D. Ripoche, P. Bertuzzi, P. Steduto, L. Heng, M.A. Semenov, P. Stratonovitch, C. Stockle, G. O'Leary, P.K. Aggarwal, S. Naresh Kumar, C. Izaurralde, J.W. White, L.A. Hunt, R. Grant, K.C. Kersebaum, T. Palosuo, J. Hooker, T. Osborne, J. Wolf, I. Supit, J.E. Olesen, J. Doltra, C. Nendel, S. Gayler, J. Ingwersen, E. Priesack, T. Streck, F. Tao, C. Müller, K. Waha, R. Goldberg, C. Angulo, I. Shcherbak, C. Biernath, D. Wallach, M. Travasso, A. Challinor. Abstract: Crop simulation models have been used to assess the impact of climate change on agriculture. These assessments are often carried out with a single model in a limited number of environments and without determining the uncertainty of simulated impacts. There is a need for a coordinated effort bringing together multiple modeling teams which has been recognized by the Agricultural Model Intercomparison and Improvement Project (AgMIP; www.agmip.org). AgMIP aims to provide more robust estimates of climate impacts on crop yields and agricultural trade, including estimates of associated uncertainties. Here, we present the AgMIP Wheat Pilot Study, the most comprehensive model intercomparison of the response of wheat crops to climate change to date, including 27 wheat models. Crop model uncertainties in assessing climate change impacts are explored and compared with field experimental and Global Circulation Model uncertainties. Causes of impact uncertainties and ways to reduce these are discussed.

  3. Modelling regional land change scenarios to assess land abandonment and reforestation dynamics in the Pyrenees (France)

    Science.gov (United States)

    Vacquie, Laure; Houet, Thomas; Sohl, Terry L.; Reker, Ryan R.; Sayler, Kristi L.

    2015-01-01

    Over the last decades and centuries, European mountain landscapes have experienced substantial transformations. Natural and anthropogenic LULC changes (land use and land cover changes), especially agro-pastoral activities, have directly influenced the spatial organization and composition of European mountain landscapes. For the past sixty years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population. Stakeholders, to better anticipate future changes, need spatially and temporally explicit models to identify areas at risk of land change and possible abandonment. This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains, based on historical LULC trends and a range of future socio-economic drivers. The proposed methodology considers local specificities of the Pyrenean valleys, sub-regional climate and topographical properties, and regional economic policies. Results indicate that some regions are projected to face strong abandonment, regardless of the scenario conditions. Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive (agricultural and/or pastoral) production and profitability. The combination of the results for the four scenarios allows assessments of where encroachment (e.g. colonization by shrublands) and reforestation are the most probable. This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions.

  4. Assessing Land Use-Cover Changes and Modelling Change Scenarios in Two Mountain Spanish National Parks

    Directory of Open Access Journals (Sweden)

    Javier Martínez-Vega

    2017-11-01

    Full Text Available Land Use-Cover Changes (LUCCs are one of the main problems for the preservation of biodiversity. Protected Areas (PAs do not escape this threat. Some processes, such as intensive recreational use, forest fires or the expansion of artificial areas taking place inside and around them in response to their appeal, question their environmental sustainability and their efficiency. In this paper, we analyze the LUCCs that took place between 1990 and 2006 in two National Parks (NPs belonging to the Spanish network and in their surroundings: Ordesa and Monte Perdido (Ordesa NP and Sierra de Guadarrama (Guadarrama NP. We also simulate land use changes between 2006 and 2030 by means of Artificial Neural Networks (ANNs, taking into account two scenarios: trend and green. Finally, we perform a multi-temporal analysis of natural habitat fragmentation in each NP. The results show that the NPs analyzed are well-preserved and have seen hardly any significant LUCCs inside them. However, Socioeconomic Influence Zones (SIZs and buffers are subject to different dynamics. In the SIZ and buffer of the Ordesa NP, there has been an expansion of built-up areas (annual rate of change = +1.19 around small urban hubs and ski resorts. There has also been a gradual recovery of natural areas, which had been interrupted by forest fires. The invasion of sub-alpine grasslands by shrubs is clear (+2735 ha. The SIZ and buffer of the Guadarrama NP are subject to urban sprawl in forest areas and to the construction of road infrastructures (+5549 ha and an annual rate of change = +1.20. Industrial area has multiplied by 3.3 in 20 years. The consequences are an increase in the Wildland-Urban Interface (WUI, greater risk of forest fires and greater fragmentation of natural habitats (+0.04 in SIZ. In the change scenarios, if conditions change as expected, the specific threats facing each NP can be expected to increase. There are substantial differences between the scenarios depending on

  5. Improving the use of crop models for risk assessment and climate change adaptation.

    Science.gov (United States)

    Challinor, Andrew J; Müller, Christoph; Asseng, Senthold; Deva, Chetan; Nicklin, Kathryn Jane; Wallach, Daniel; Vanuytrecht, Eline; Whitfield, Stephen; Ramirez-Villegas, Julian; Koehler, Ann-Kristin

    2018-01-01

    Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1.Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk?2.Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output.3.Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions

  6. A climate robust integrated modelling framework for regional impact assessment of climate change

    Science.gov (United States)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  7. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie

    2015-01-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused...... by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact...... a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models....

  8. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  9. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    Science.gov (United States)

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  10. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2010 - part 1)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.

  11. Coupling integrated assessment and earth system models: concepts and an application to land use change

    Science.gov (United States)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  12. Quantitative assessment of changes in landslide risk using a regional scale run-out model

    Science.gov (United States)

    Hussin, Haydar; Chen, Lixia; Ciurean, Roxana; van Westen, Cees; Reichenbach, Paola; Sterlacchini, Simone

    2015-04-01

    The risk of landslide hazard continuously changes in time and space and is rarely a static or constant phenomena in an affected area. However one of the main challenges of quantitatively assessing changes in landslide risk is the availability of multi-temporal data for the different components of risk. Furthermore, a truly "quantitative" landslide risk analysis requires the modeling of the landslide intensity (e.g. flow depth, velocities or impact pressures) affecting the elements at risk. Such a quantitative approach is often lacking in medium to regional scale studies in the scientific literature or is left out altogether. In this research we modelled the temporal and spatial changes of debris flow risk in a narrow alpine valley in the North Eastern Italian Alps. The debris flow inventory from 1996 to 2011 and multi-temporal digital elevation models (DEMs) were used to assess the susceptibility of debris flow triggering areas and to simulate debris flow run-out using the Flow-R regional scale model. In order to determine debris flow intensities, we used a linear relationship that was found between back calibrated physically based Flo-2D simulations (local scale models of five debris flows from 2003) and the probability values of the Flow-R software. This gave us the possibility to assign flow depth to a total of 10 separate classes on a regional scale. Debris flow vulnerability curves from the literature and one curve specifically for our case study area were used to determine the damage for different material and building types associated with the elements at risk. The building values were obtained from the Italian Revenue Agency (Agenzia delle Entrate) and were classified per cadastral zone according to the Real Estate Observatory data (Osservatorio del Mercato Immobiliare, Agenzia Entrate - OMI). The minimum and maximum market value for each building was obtained by multiplying the corresponding land-use value (€/msq) with building area and number of floors

  13. Assessments of Future Maize Yield Potential Changes in the Korean Peninsula Using Multiple Crop Models

    Science.gov (United States)

    Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.

    2016-12-01

    The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas

  14. Assessing climate change effects on long-term forest development: adjusting growth, phenology, and seed production in a gap model

    NARCIS (Netherlands)

    Meer, van der P.J.; Jorritsma, I.T.M.; Kramer, K.

    2002-01-01

    The sensitivity of forest development to climate change is assessed using a gap model. Process descriptions in the gap model of growth, phenology, and seed production were adjusted for climate change effects using a detailed process-based growth modeland a regression analysis. Simulation runs over

  15. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia

    International Nuclear Information System (INIS)

    Miao, Chiyuan; Duan, Qingyun; Sun, Qiaohong; Kong, Dongxian; Ye, Aizhong; Di, Zhenhua; Gong, Wei; Huang, Yong; Yang, Tiantian

    2014-01-01

    Assessing the performance of climate models in surface air temperature (SAT) simulation and projection have received increasing attention during the recent decades. This paper assesses the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating intra-annual, annual and decadal temperature over Northern Eurasia from 1901 to 2005. We evaluate the skill of different multi-model ensemble techniques and use the best technique to project the future SAT changes under different emission scenarios. The results show that most of the general circulation models (GCMs) overestimate the annual mean SAT in Northern Eurasia and the difference between the observation and the simulations primarily comes from the winter season. Most of the GCMs can approximately capture the decadal SAT trend; however, the accuracy of annual SAT simulation is relatively low. The correlation coefficient R between each GCM simulation and the annual observation is in the range of 0.20 to 0.56. The Taylor diagram shows that the ensemble results generated by the simple model averaging (SMA), reliability ensemble averaging (REA) and Bayesian model averaging (BMA) methods are superior to any single GCM output; and the decadal SAT change generated by SMA, REA and BMA are almost identical during 1901–2005. Heuristically, the uncertainty of BMA simulation is the smallest among the three multi-model ensemble simulations. The future SAT projection generated by the BMA shows that the SAT in Northern Eurasia will increase in the 21st century by around 1.03 °C/100 yr, 3.11 °C/100 yr and 7.14 °C/100 yr under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios, respectively; and the warming accelerates with the increasing latitude. In addition, the spring season contributes most to the decadal warming occurring under the RCP 2.6 and RCP 4.5 scenarios, while the winter season contributes most to the decadal warming occurring under the RCP 8.5 scenario. Generally, the uncertainty of the SAT

  16. Using Water Quality Models in Management - A Multiple Model Assessment, Analysis of Confidence, and Evaluation of Climate Change Impacts

    Science.gov (United States)

    Irby, Isaac David

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea-level, and changes in precipitation, have elevated the conversation surrounding the future of water quality in the Bay. The overall goal of this dissertation project is to use a combination of models and data to better understand and quantify the impact of changes in nutrient loads and climate on water quality in the Chesapeake Bay. This research achieves that goal in three parts. First, a set of eight water quality models is used to establish a model mean and assess model skill. All models were found to exhibit similar skill in resolving dissolved oxygen concentrations as well as a number of dissolved oxygen-influencing variables (temperature, salinity, stratification, chlorophyll and nitrate) and the model mean exhibited the highest individual skill. The location of stratification within the water column was found to be a limiting factor in the models' ability to adequately simulate habitat compression resulting from low-oxygen conditions. Second, two of the previous models underwent the regulatory Chesapeake Bay pollution diet mandated by the Environmental Protection Agency. Both models exhibited a similar relative improvement in dissolved oxygen concentrations as a result of the reduction of nutrients stipulated in the pollution diet. A Confidence Index was developed to identify the locations of the Bay where the models are in agreement and disagreement regarding the impacts of the pollution diet. The models were least certain in the deep part of the upper main stem of the Bay and the uncertainty primarily stemmed from the post-processing methodology. Finally, by projecting the impacts of climate change in 2050 on the Bay, the potential success of the

  17. Hydraulic model to assess the hydromorphological changes within the Danube Delta

    Directory of Open Access Journals (Sweden)

    CIOACĂ Eugenia

    2012-09-01

    Full Text Available Morphological changes of the hydrographic networks (rivers /channels /brooks /lakes as result of fluvial processes (erosion and alluvial sedimentation induce modification on hydrologic regime with positive /negative impacts on biodiversity. This paper aims at emphasizing the amplitude of these processes within the Danube Delta Biosphere Reserve (Romanian part inner hydrographic network, by means of the morphologic model, as maincomponent of 3D mathematical /hydraulic model. It is constructed based on geo-referenced database as resulted from hydraulicand bathymetric field measurements carried out within 2008-2010. Hydro-morphological changes are assessed by analyzingthose zones where fluvial processes have been identified to be active, meaning that specific hydraulic conditions are fulfilled,such as: water flow with high energy /high values of hydraulic parameters: level, speed, slope, and solid transport (upstream ofdelta: erosion followed by a decrease of these values (middle part: alluvia sedimentation and ending with very clear water at very low flow velocity (downstream of delta: no fluvial processes. Both erosion and, especially, alluvial sedimentation zones, in low water level conditions lead to disconnection of some channels /lakes generating ecological disequilibrium with negative impact on some flora and fauna species. Thus, the gained knowledge on the aquatic ecosystem function is used as scientific tool for decision making on a sound management of such an environment system in order to improve the quality of aquatic life by restoration of hydrographical network with impacts on habitats and overall ecological reconstruction.

  18. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    and marginal costs of the power producers. Two effects of climate change on the power system were studied: changes in the hydropower production caused by changes in precipitation and temperature, and changes in the electricity demand over the year caused by temperature changes. A rainfall-runoff model......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...... was established to estimate the impact of precipitation and temperature changes on reservoir inflows. The model was calibrated using observed precipitation, temperature and river discharge time series. Potential evapotranspiration was estimated from temperature data, and snow accumulation/melt was modelled using...

  19. Changes in right ventricular function assessed by echocardiography in dog models of mild RV pressure overload.

    Science.gov (United States)

    Morita, Tomoya; Nakamura, Kensuke; Osuga, Tatsuyuki; Yokoyama, Nozomu; Morishita, Keitaro; Sasaki, Noboru; Ohta, Hiroshi; Takiguchi, Mitsuyoshi

    2017-07-01

    The assessment of hemodynamic change by echocardiography is clinically useful in patients with pulmonary hypertension. Recently, mild elevation of the mean pulmonary arterial pressure (PAP) has been shown to be associated with increased mortality. However, changes in the echocardiographic indices of right ventricular (RV) function are still unknown. The objective of this study was to validate the relationship between echocardiographic indices of RV function and right heart catheterization variables under a mild RV pressure overload condition. Echocardiography and right heart catheterization were performed in dog models of mild RV pressure overload induced by thromboxane A 2 analog (U46619) (n=7). The mean PAP was mildly increased (19.3±1.1 mm Hg), and the cardiac index was decreased. Most echocardiographic indices of RV function were significantly impaired even under a mild RV pressure overload condition. Multivariate analysis revealed that the RV free wall longitudinal strain (RVLS), standard deviation of the time-to-peak longitudinal strain of RV six segments (RV-SD) by speckle-tracking echocardiography, and Tei index were independent echocardiographic predictors of the mean PAP (free wall RVLS, β=-0.60, P<.001; RV-SD, β=0.40, P=.011), pulmonary vascular resistance (free wall RVLS, β=-0.39, P=.020; RV-SD, β=0.47, P=.0086; Tei index, β=0.34, P=.047), and cardiac index (Tei index, β=-0.65, P<.001). Free wall RVLS, RV-SD, and Tei index are useful for assessing the hemodynamic change under a mild RV pressure overload condition. © 2017, Wiley Periodicals, Inc.

  20. Adapting crop rotations to climate change in regional impact modelling assessments.

    Science.gov (United States)

    Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank

    2018-03-01

    The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used

  1. To assess and control global change in agriculture through ecosystem models integrated into geographic information systems

    International Nuclear Information System (INIS)

    Ponti, L.; Iannetta, M.; Gutierrez, A.P.

    2015-01-01

    The transfer of ENEA PBDM (physiologically based demographic models) GIS technology, represents an opportunity to address global change in agriculture on an ecological basis in a local context, be able to provide European governmental agencies the necessary scientific basis for developing effective policies for adaptation to global change, including climate change [it

  2. Long-term occlusal changes assessed by the American Board of Orthodontics' model grading system.

    Science.gov (United States)

    Aszkler, Robert M; Preston, Charles B; Saltaji, Humam; Tabbaa, Sawsan

    2014-02-01

    The purpose of this study was to assess the long-term posttreatment changes in all criteria of the American Board of Orthodontics' (ABO) model grading system. We used plaster models from patients' final and posttreatment records. Thirty patients treated by 1 orthodontist using 1 bracket prescription were selected. An initial discrepancy index for each subject was performed to determine the complexity of each case. The final models were then graded using the ABO's model grading system immediately at posttreatment and postretention. Statistical analysis was performed on the 8 criteria of the model grading system, including paired t tests and Pearson correlations. An alpha of 0.05 was considered statistically significant. The average length of time between the posttreatment and postretention records was 12.7 ± 4.4 years. It was shown that alignment and rotations worsened by postretention (P = 0.014), and a weak statistically significant correlation at posttreatment and postretention was found (0.44; P = 0.016). Both marginal ridges and occlusal contacts scored less well at posttreatment. These criteria showed a significant decrease in scores between posttreatment and postretention (P <0.001), but the correlations were not statistically significant. The average total score showed a significant decrease between posttreatment and postretention (P <0.001), partly because of the large decrease in the previous 2 criteria. Higher scores for occlusal contacts and marginal ridges were found at the end of treatment; however, those scores and the overall scores for the 30 subjects improved in the postretention phase. Copyright © 2014. Published by Mosby, Inc.

  3. Change Agents & Impact Assessment

    DEFF Research Database (Denmark)

    Kørnøv, Lone; Larsen, Sanne Vammen; Hansen, Anne Merrild

    2010-01-01

    One of the challenges facing impact assessment is finding ways to work in research and practice that allow appropriate action and critical interrogation og action to enable and support sustainable change.......One of the challenges facing impact assessment is finding ways to work in research and practice that allow appropriate action and critical interrogation og action to enable and support sustainable change....

  4. Changing anatomies of Information Literacy at the postgraduate level: refinements of models and shifts in assessment

    Directory of Open Access Journals (Sweden)

    Sonja Spiranec

    2010-09-01

    longer be conceived of as a schematic, linear or rules-driven process. Such profound changes suggest renewed conceptions and focal points of IL at the postgraduate level which will take into account the fluid nature of current information environments. New IL frameworks should acknowledge that it is not always possible to a priori determine the best information and resources to use or apply one valid strategy for solving a particular problem. IL programs should therefore move ahead by abandoning the limited present approach according to which there is only one right answer or path to this answer and instead offer insight into the variety of complex layers our current information universe consists of. Assessment models in IL should mirror this renewed IL conceptions as well, which basically implies the negation of the rubrics and checklist approach commonly associated with IL assessment models. After discussing changes in information landscapes brought about the Web 2.0 and examining transformed premises of scientific work within such environments, the authors will plea for reconceptualizations of IL on the postgraduate level and propose new modes of assessment that will recognize this transformation.

  5. The assessment of damages due to climate change in a situation of uncertainty: the contribution of adaptation cost modelling

    International Nuclear Information System (INIS)

    Dumas, P.

    2006-01-01

    The aim of this research is to introduce new elements for the assessment of damages due to climate changes within the frame of compact models aiding the decision. Two types of methodologies are used: sequential optimisation stochastic models and simulation stochastic models using optimal assessment methods. The author first defines the damages, characterizes their different categories, and reviews the existing assessments. Notably, he makes the distinction between damages due to climate change and damages due to its rate. Then, he presents the different models used in this study, the numerical solutions, and gives a rough estimate of the importance of the considered phenomena. By introducing a new category of capital in an optimal growth model, he tries to establish a framework allowing the representation of adaptation and of its costs. He introduces inertia in macro-economical evolutions, climatic variability, detection of climate change and damages due to climate hazards

  6. Signal-transfer Modeling for Regional Assessment of Forest Responses to Environmental Changes in the Southeastern United States

    Science.gov (United States)

    Robert J. Luxmoore; William W. Hargrove; M. Lynn Tharp; Wilfred M. Post; Michael W. Berry; Karen S. Minser; Wendell P. Cropper; Dale W. Johnson; Boris Zeide; Ralph L. Amateis; Harold E. Burkhart; V. Clark Baldwin; Kelly D. Peterson

    2000-01-01

    Stochastic transfer of information in a hierarchy of simulators is offered as a conceptual approach for assessing forest responses to changing climate and air quality across 13 southeastern states of the USA. This assessment approach combines geographic information system and Monte Carlo capabilities with several scales of computer modeling for southern pine species...

  7. Crop modelling for integrated assessment of risk to food production from climate change

    Czech Academy of Sciences Publication Activity Database

    Ewert, F.; Rötter, R. P.; Bindi, M.; Weber, H.; Trnka, Miroslav; Kersebaum, K. C.; Olesen, J. E.; van Ittersum, M. K.; Janssen, S.; Rivingtom, M.; Semenov, M. A.; Wallach, D.; Porter, J. R.; Stewart, D.; Vegahen, J.; Gaiser, T.; Palouso, T.; Tao, F.; Nendel, C.; Roggero, P. P.; Bartošová, Lenka; Asseng, S.

    2015-01-01

    Roč. 72, oct (2015), s. 287-303 ISSN 1364-8152 R&D Projects: GA MZe QJ1310123; GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : uncertainty * scaling * integrated assessment * risk assessment * adaptation * crop models Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.207, year: 2015

  8. Moving beyond Assessment to Improving Students' Critical Thinking Skills: A Model for Implementing Change

    Science.gov (United States)

    Haynes, Ada; Lisic, Elizabeth; Goltz, Michele; Stein, Barry; Harris, Kevin

    2016-01-01

    This research examines how the use of the CAT (Critical thinking Assessment Test) and involvement in CAT-Apps (CAT Applications within the discipline) training can serve as an important part of a faculty development model that assists faculty in the assessment of students' critical thinking skills and in the development of these skills within…

  9. Assessment of Cortical and Trabecular Bone Changes in Two Models of Post-Traumatic Osteoarthritis

    Science.gov (United States)

    Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D.; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Donahue, Tammy L Haut

    2015-01-01

    Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans. PMID:26147652

  10. Modeling pedestrian crossing speed profiles considering speed change behavior for the safety assessment of signalized intersections.

    Science.gov (United States)

    Iryo-Asano, Miho; Alhajyaseen, Wael K M

    2017-11-01

    Pedestrian safety is one of the most challenging issues in road networks. Understanding how pedestrians maneuver across an intersection is the key to applying countermeasures against traffic crashes. It is known that the behaviors of pedestrians at signalized crosswalks are significantly different from those in ordinary walking spaces, and they are highly influenced by signal indication, potential conflicts with vehicles, and intersection geometries. One of the most important characteristics of pedestrian behavior at crosswalks is the possible sudden speed change while crossing. Such sudden behavioral change may not be expected by conflicting vehicles, which may lead to hazardous situations. This study aims to quantitatively model the sudden speed changes of pedestrians as they cross signalized crosswalks under uncongested conditions. Pedestrian speed profiles are collected from empirical data and speed change events are extracted assuming that the speed profiles are stepwise functions. The occurrence of speed change events is described by a discrete choice model as a function of the necessary walking speed to complete crossing before the red interval ends, current speed, and the presence of turning vehicles in the conflict area. The amount of speed change before and after the event is modeled using regression analysis. A Monte Carlo simulation is applied for the entire speed profile of the pedestrians. The results show that the model can represent the pedestrian travel time distribution more accurately than the constant speed model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Applying Bayesian modelling to assess climate change effects on biofuel production

    CSIR Research Space (South Africa)

    Peter, C

    2009-12-01

    Full Text Available the resilience of a strategy that meets the new South African national biofuel production target can be assessed in relation to climate change. Cross-disciplinary consideration of variables may be enhanced through the sensitivity analysis enabled by Bayesian...

  12. Assessment of Climate Change Impacts on Water Resources in Zarrinehrud Basin Using SWAT Model

    Directory of Open Access Journals (Sweden)

    B. Mansouri

    2015-06-01

    Full Text Available This paper evaluate impacts of climate change on temperature, rainfall and runoff in the future Using statistical model, LARS-WG, and conceptual hydrological model, SWAT. In order to the Zarrinehrud river basin, as the biggest catchment of the Lake Urmia basin was selected as a case study. At first, for the generation of future weather data in the basin, LARS-WG model was calibrated using meteorological data and then 14 models of AOGCM were applied and results of these models were downscaled using LARS-WG model in 6 synoptic stations for period of 2015 to 2030. SWAT model was used for evaluation of climate change impacts on runoff in the basin. In order to, the model was calibrated and validated using 6 gauging stations for period of 1987-2007 and the value of R2 was between 0.49 and 0.71 for calibration and between 0.54 and 0.77 for validation. Then by introducing average of downscaled results of AOGCM models to the SWAT, runoff changes of the basin were simulated during 2015-2030. Average of results of LARS-WG model indicated that the monthly mean of minimum and maximum temperatures will increase compared to the baseline period. Also monthly average of precipitation will decrease in spring season but will increase in summer and autumn. The results showed that in addition to the amount of precipitation, its pattern will change in the future period, too. The results of runoff simulation showed that the amount of inflow to the Zarrinehrud reservoir will reduce 28.4 percent compared to the baseline period.

  13. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    that combines a model for the socio-economic development of cities (DANCE4WATER) with an urban flood model. The urban flood model is a 1D-2D spatially distributed hydrologic and hydraulic model that, for a given urban layout, simulates flow in the sewer system and the surface flow in the catchment (MIKE FLOOD......). The socio-economic model computes urban layouts that are transferred to the hydraulic model in the form of changes of impervious area and potential flow paths on the surface. Estimates of flood prone areas, as well as the expected annual damage due to flooding, are returned to the socio-economic model...... as an input for further refinement of the scenarios for the urban development. Our results in an Australian case study suggest that urban development is a major driver for flood risk and vice versa that flood risk can be significantly reduced if it is accounted for in the development of the cities...

  14. Assess and control global change in agriculture through ecosystem models integrated in geographic information systems

    International Nuclear Information System (INIS)

    Ponti, Luigi; Gutierrez, Andrew Paul; Iannetta, Massimo

    2015-01-01

    ENEA has created, in collaboration with the University of California at Berkeley, the Global Change Biology project that, for the first time, has made available in Europe a technology that can be It used to interpret and effectively manage change Global agriculture. The aim of the project was to provide tools to summarize, manage and analyze data Ecological on the effects of global change in agricultural systems, using traditional Mediterranean crops (Eg. Vineyards and olive) as model systems (http: // cordis.europa.eu/project/rcn/89728_en.html). [it

  15. Assessing Trust and Effectiveness in Virtual Teams: Latent Growth Curve and Latent Change Score Models

    Directory of Open Access Journals (Sweden)

    Michael D. Coovert

    2017-08-01

    Full Text Available Trust plays a central role in the effectiveness of work groups and teams. This is the case for both face-to-face and virtual teams. Yet little is known about the development of trust in virtual teams. We examined cognitive and affective trust and their relationship to team effectiveness as reflected through satisfaction with one’s team and task performance. Latent growth curve analysis reveals both trust types start at a significant level with individual differences in that initial level. Cognitive trust follows a linear growth pattern while affective trust is overall non-linear, but becomes linear once established. Latent change score models are utilized to examine change in trust and also its relationship with satisfaction with the team and team performance. In examining only change in trust and its relationship to satisfaction there appears to be a straightforward influence of trust on satisfaction and satisfaction on trust. However, when incorporated into a bivariate coupling latent change model the dynamics of the relationship are revealed. A similar pattern holds for trust and task performance; however, in the bivariate coupling change model a more parsimonious representation is preferred.

  16. Climate model assessment of changes in winter-spring streamflow timing over North America

    Science.gov (United States)

    Kam, Jonghun; Knutson, Thomas R.; Milly, Paul C. D.

    2018-01-01

    Over regions where snow-melt runoff substantially contributes to winter-spring streamflows, warming can accelerate snow melt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, a detection/attribution of changes in mid-latitude North American winter-spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. In this study, robustness across models, start/end dates for trends, and assumptions about internal variability is evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central U.S., where winter-spring streamflows have been coming earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western U.S./southwestern Canada and in extreme northeastern U.S./Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow-free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.

  17. A model validation framework for climate change projection and impact assessment

    DEFF Research Database (Denmark)

    Madsen, Henrik; Refsgaard, Jens C.; Andréassian, Vazken

    2014-01-01

    methods for projection of climate change (single and ensemble model projections and space‐timesubstitution) and use of different data sources as proxy for future climate conditions (long historical records comprising non‐ stationarity, paleo data, and controlled experiments). The basic guiding principles...... proxy data, reflecting future conditions. This test can be used with both single and ensemble model projections as well as with space‐time‐substitutions. It is generally expected to be more powerful when applied to a model ensemble than to a single model. Since space‐timesubstitutions include...... a differential split‐sample test using best available proxy data that reflect the expected future conditions at the site being considered. Such proxy data may be obtained from long historical records comprising nonstationarity, paleo data, or controlled experiments. The test can be applied with different...

  18. Flood risk in a changing world - a coupled transdisciplinary modelling framework for flood risk assessment in an Alpine study area

    Science.gov (United States)

    Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine

    2017-04-01

    Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the

  19. Assessing impact of changes in human resources features on enterprise activities: simulation model

    Directory of Open Access Journals (Sweden)

    Kalmykova Svetlana

    2017-01-01

    Full Text Available The need for creating programs of human resources development is shown; the impact of these programs on organizational effectiveness is taken into account. The stages of development tools and HRD programs on the basis of cognitive modelling are disclosed; these stages will help assess the impact of HR-practices on the key indicators of organization activity at the design stage. The method of HR-practices’ pre-selection in professional development of the employees is represented.

  20. Assessing development pressure in the Chesapeake Bay watershed: an evaluation of two land-use change models.

    Science.gov (United States)

    Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin

    2004-06-01

    Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.

  1. Improving Demographic Components of Integrated Assessment Models: The Effect of Changes in Population Composition by Household Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Brian C. O' Neill

    2006-08-09

    This report describes results of the research project on "Improving Demographic Components of Integrated Assessment Models: The Effect of Changes in Population Composition by Household Characteristics". The overall objective of this project was to improve projections of energy demand and associated greenhouse gas emissions by taking into account demographic factors currently not incorporated in Integrated Assessment Models (IAMs) of global climate change. We proposed to examine the potential magnitude of effects on energy demand of changes in the composition of populations by household characteristics for three countries: the U.S., China, and Indonesia. For each country, we planned to analyze household energy use survey data to estimate relationships between household characteristics and energy use; develop a new set of detailed household projections for each country; and combine these analyses to produce new projections of energy demand illustrating the potential importance of consideration of households.

  2. Evaluation of historical land cover, land use, and land-use change emissions in the GCAM integrated assessment model

    Science.gov (United States)

    Calvin, K. V.; Wise, M.; Kyle, P.; Janetos, A. C.; Zhou, Y.

    2012-12-01

    Integrated Assessment Models (IAMs) are often used as science-based decision-support tools for evaluating the consequences of climate and energy policies, and their use in this framework is likely to increase in the future. However, quantitative evaluation of these models has been somewhat limited for a variety of reasons, including data availability, data quality, and the inherent challenges in projections of societal values and decision-making. In this analysis, we identify and confront methodological challenges involved in evaluating the agriculture and land use component of the Global Change Assessment Model (GCAM). GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. GCAM then calculates both emissions from land-use practices, and long-term changes in carbon stocks in different land uses, thus providing simulation information that can be compared to observed historical data. In this work, we compare GCAM results, both in recent historic and future time periods, to historical data sets. We focus on land use, land cover, land-use change emissions, and albedo.

  3. Gap models and their individual-based relatives in the assessment of the consequences of global change

    Science.gov (United States)

    Shugart, Herman H.; Wang, Bin; Fischer, Rico; Ma, Jianyong; Fang, Jing; Yan, Xiaodong; Huth, Andreas; Armstrong, Amanda H.

    2018-03-01

    Individual-based models (IBMs) of complex systems emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. Ecological IBMs arose with seemingly independent origins out of the tradition of understanding the ecosystems dynamics of ecosystems from a ‘bottom-up’ accounting of the interactions of the parts. Individual trees are principal among the parts of forests. Because these models are computationally demanding, they have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. This review will focus on a class of forest IBMs called gap models. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on a small plot of land. The summation of these plots comprise a forest (or set of sample plots on a forested landscape or region). Other, more aggregated forest IBMs have been used in global applications including cohort-based models, ecosystem demography models, etc. Gap models have been used to provide the parameters for these bulk models. Currently, gap models have grown from local-scale to continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. Our objective in this review is to provide the reader with an overview of the history, motivation and applications, including theoretical applications, of these models. In a time of concern over global changes, gap models are essential tools to understand forest responses to climate change, modified disturbance regimes and other change agents. Development of forest surveys to provide the starting points for simulations and better estimates of the behavior of the diversity of tree species in response to the environment are continuing needs for improvement for these and other IBMs.

  4. Changing anatomies of Information Literacy at the postgraduate level: refinements of models and shifts in assessment

    Directory of Open Access Journals (Sweden)

    Sonja Spiranec

    2012-06-01

    Teaching students in the scientific method and culture has long been recognized as the major focus of postgraduate education, an important precondition for research practices is the adequate performance in the realm of information handling and information management, i.e., information literacy. IL on postgraduate levels has a strong focus on the universe of scientific information, which itself went through tremendous changes in the last decade, particularly as a result of the appearance of the Web 2.0 (e.g. Science 2.0, Research 2.0. Such profound changes suggest renewed conceptions and focal points of IL at the postgraduate level which will take into account the fluid nature of current information environments. After discussing changes in information landscapes brought about the Web 2.0 and examining transformed premises of scientific work within such environments, the authors will plea for re-conceptualizations of IL on the postgraduate level and propose new principles of IL frameworks and modes of assessment that will recognize this transformation.

  5. Equality and CO2 emissions distribution in climate change integrated assessment modelling

    International Nuclear Information System (INIS)

    Cantore, Nicola; Padilla, Emilio

    2010-01-01

    The equity implications of alternative climate policy measures are an essential issue to be considered in the design of future international agreements to tackle global warming. This paper specifically analyses the future path of emissions and income distribution and its determinants in different scenarios. Whereas our analysis is driven by tools which are typically applied in the income distribution literature and which have recently been applied to the analysis of CO 2 emissions distribution, a new methodological approach is that our study is driven by simulations run with the popular regionalised optimal growth climate change model RICE99 over the 1995-2105 period. We find that the architecture of environmental policies, the implementation of flexible mechanisms and income concentration are key determinants of emissions distribution over time. In particular we find a robust positive relationship between measures of inequalities in the distribution of emissions and income and that their magnitude will essentially depend on technological change. (author)

  6. Changes in the Welfare of an Injured Working Farm Dog Assessed Using the Five Domains Model

    Directory of Open Access Journals (Sweden)

    Katherine E. Littlewood

    2016-09-01

    Full Text Available The present structured, systematic and comprehensive welfare evaluation of an injured working farm dog using the Five Domains Model is of interest in its own right. It is also an example for others wanting to apply the Model to welfare evaluations in different species and contexts. Six stages of a fictitious scenario involving the dog are considered: (1 its on-farm circumstances before one hind leg is injured; (2 its entanglement in barbed wire, cutting it free and transporting it to a veterinary clinic; (3 the initial veterinary examination and overnight stay; (4 amputation of the limb and immediate post-operative recovery; (5 its first four weeks after rehoming to a lifestyle block; and (6 its subsequent life as an amputee and pet. Not all features of the scenario represent average-to-good practice; indeed, some have been selected to indicate poor practice. It is shown how the Model can draw attention to areas of animal welfare concern and, importantly, to how welfare enhancement may be impeded or facilitated. Also illustrated is how the welfare implications of a sequence of events can be traced and evaluated, and, in relation to specific situations, how the degrees of welfare compromise and enhancement may be graded. In addition, the choice of a companion animal, contrasting its welfare status as a working dog and pet, and considering its treatment in a veterinary clinical setting, help to highlight various welfare impacts of some practices. By focussing attention on welfare problems, the Model can guide the implementation of remedies, including ways of promoting positive welfare states. Finally, wider applications of the Five Domains Model are noted: by enabling both negative and positive welfare-relevant experiences to be graded, the Model can be applied to quality of life assessments and end-of-life decisions and, with particular regard to negative experiences, the Model can also help to strengthen expert witness testimony during

  7. The MIT Integrated Global System Model: A facility for Assessing and Communicating Climate Change Uncertainty (Invited)

    Science.gov (United States)

    Prinn, R. G.

    2013-12-01

    The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that

  8. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Science.gov (United States)

    Velázquez, J. A.; Schmid, J.; Ricard, S.; Muerth, M. J.; Gauvin St-Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R.

    2012-06-01

    Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971-2000) and a future (2041-2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.

  9. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate.

    Science.gov (United States)

    Chai, Shauna-Lee; Zhang, Jian; Nixon, Amy; Nielsen, Scott

    2016-01-01

    Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta's biodiversity are giant knotweed (Fallopia sachalinensis), tamarisk (Tamarix chinensis), and alkali swainsonpea (Sphaerophysa salsula). We characterise giant knotweed as 'extremely invasive', with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is 'extremely invasive' with a 64% increase in suitable habitat, and alkali swainsonpea is 'highly invasive' with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change.

  10. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Shauna-Lee Chai

    Full Text Available Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta's biodiversity are giant knotweed (Fallopia sachalinensis, tamarisk (Tamarix chinensis, and alkali swainsonpea (Sphaerophysa salsula. We characterise giant knotweed as 'extremely invasive', with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is 'extremely invasive' with a 64% increase in suitable habitat, and alkali swainsonpea is 'highly invasive' with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change.

  11. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2017-10-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  12. Assessment of Land Use Change and Sedimentation Modelling on Environmental Health in Tropical River

    International Nuclear Information System (INIS)

    Mohd Ekhwan Toriman; Mohd Ekhwan Toriman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin; Sansena, T.; Bhaktikuld, K.; Roslan Umar; Asyaari Muhamad; Nor Azlina Abd Aziz; Nur Hishaam Sulaiman

    2015-01-01

    Sediments are defined as the organic and inorganic materials or solid fragments derived from the weathering processes of sand, pebbles, silt, mud and loess. The objective of this research is to forecast sediment volume in the Lam Phra Phloeng reservoir by using the Neuro-genetic Optimizer model to calculate the sediment volume from runoff, rainfall, and sediment volume data. The results from satellite imagery interpretation elucidated that from 2002 to 2005, forest area decreased approximately 50,220 km"2 or 36 %, and was converted to agricultural land. By applying the USLE equation, the soil erosion area was found to increase approximately 185,341 tons/ year between 2002 and 2005. This result illustrated that the impact of land use change greatly increased sedimentation volume. In applying the Neuro-genetic Optimizer model, the learning rate and momentum of this model was 0.9 and 0.1, respectively, and the initial weight value was ± 3. The model forecasted the annual sediment volume in the Lam Phra Phloeng reservoir in 2005 to be 49,855 tons with R"2 equals to 0.9994. The regression model, on the other hand, forecasted the sediment volume using the equation Y=198.48 x 1.1783 with R"2 equals to 0.9974, and the annual sediment volume was estimated to be 45,346 tons. The actual sediment volume in the reservoir in 2005 was obtained from The Royal Irrigation Department, which was found to be 48,697 tons. (author)

  13. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    Science.gov (United States)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  14. A modelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation

    International Nuclear Information System (INIS)

    Munoz, J.R.; Sailor, D.J.

    1998-01-01

    A new methodology relating basic climatic variables to hydroelectric generation was developed. The methodology can be implemented in large or small basins with any number of hydro plants. The method was applied to the Sacramento, Eel and Russian river basins in northern California where more than 100 hydroelectric plants are located. The final model predicts the availability of hydroelectric generation for the entire basin provided present and near past climate conditions, with about 90% accuracy. The results can be used for water management purposes or for analyzing the effect of climate variability on hydrogeneration availability in the basin. A wide range of results can be obtained depending on the climate change scenario used. (Author)

  15. The variance of the model representation of nuclear power generation and its implication to the climate change mitigation assessment

    International Nuclear Information System (INIS)

    Wada, Kenichi; Sano, Fuminori; Oshima, Kanji; Akimoto, Keigo

    2013-01-01

    Nuclear power secures affordable carbon-free energy supply, but entails various risks and constraints, such as safety concerns, waste disposal protest campaign, and proliferation. Given the nature of these characteristics of nuclear power generation, there is wide range of variations in representation of nuclear power technologies across models. In this paper, we explore the variance of the model representation of nuclear power generation and its implication to the climate change mitigation assessment, based on the EMF27 study. The most common result is that under efforts to mitigate climate change more nuclear energy use is needed. We find, however, that perspectives on the contribution of nuclear energy to global energy needs vary tremendously among the modeling teams. This diversity mainly comes from the difference in the level of detail that characterize nuclear energy technologies and the broad range of nuclear contributions in the long-term scenarios of global energy use. (author)

  16. Assessment of long-term channel changes in the Mekong River using remote sensing and a channel-evolution model

    Science.gov (United States)

    Miyazawa, N.

    2011-12-01

    River-channel changes are a key factor affecting physical, ecological and management issues in the fluvial environment. In this study, long-term channel changes in the Mekong River were assessed using remote sensing and a channel-evolution model. A channel-evolution model for calculating long-term channel changes of a measndering river was developed using a previous fluid-dynamic model [Zolezzi and Seminara, 2001], and was applied in order to quantify channel changes of two meandering reaches in the Mekong River. Quite few attempts have been made so far to combine remote sensing observation of meandering planform change with the application of channel evolution models within relatively small-scale gravel-bed systems in humid temperate regions. The novel point of the present work is to link state-of-art meandering planform evolution model with observed morphological changes within large-scale sand-bed rivers with higher bank height in tropical monsoonal climate regions, which are the highly dynamic system, and assess the performance. Unstable extents of the reaches could be historically identified using remote-sensing technique. The instability caused i) bank erosion and accretion of meander bends and ii) movement or development of bars and changes in the flow around the bars. The remote sensing measurements indicate that maximum erosion occurred downstream of the maximum curvature of the river-center line in both reaches. The model simulations indicates that under the mean annual peak discharge the maximum of excess longitudinal velocity near the banks occurs downstream of the maximum curvature in both reaches. The channel migration coefficients of the reaches were calibrated by comparing remote-sensing measurements and model simulations. The diffrence in the migration coefficients between both reaches depends on the diffrence in bank height rather than the geotechnical properties of floodplain sediments. Possible eroded floodplain areas and accreted floodplain

  17. The SEA-change Model in Information Literacy: Assessing Information Literacy Development with Reflective Writing

    Directory of Open Access Journals (Sweden)

    Barbara Anne Sen

    2014-07-01

    Full Text Available Reflective writing is a key professional skill, and the University of Sheffield Information School seeks to develop this skill in our students through the use of reflective assessments. Reflection has been used as a means of supporting Information Literacy development in the Higher Education context and recent pedagogical IL frameworks highlight the important role of reflection. This paper presents an analysis of Undergraduate students’ reflective writing on one module. The writing is mapped against two models of reflection to understand the nature and depth of the students’ reflection and through this understand their Information literacy development, with the overall aim of improving the teaching and learning experience for the future. Key findings are that students did reflect deeply and identified a number of ways in which they felt their IL had developed (e.g. developing a knowledge of specialist sources, ways they could have improved their information literacy practices (e.g. through storing information in a more organised fashion, and ways that we could improve our teaching (e.g. by providing appropriate scaffolding for the activities.

  18. Distributed Hydrologic Modeling of Semiarid Basins in Arizona: A Platform for Land Cover and Climate Change Assessments

    Science.gov (United States)

    Hawkins, G. A.; Vivoni, E. R.

    2011-12-01

    Watershed management is challenged by rising concerns over climate change and its potential to interact with land cover alterations to impact regional water supplies and hydrologic processes. The inability to conduct experimental manipulations that address climate and land cover change at watershed scales limits the capacity of water managers to make decisions to protect future supplies. As a result, spatially-explicit, physically-based models possess value for predicting the possible consequences on watershed hydrology. In this study, we apply a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, soils distribution and availability of hydrologic data in forested regions of northern Arizona. As such, it can serve as a demonstration study in the broader region to illustrate the utility of distributed models for change assessment studies. Through a model application to summertime conditions, we compare the hydrologic response from three sources of meteorological input: (1) an available network of ground-based stations, (2) weather radar rainfall estimates, and (3) the North American Land Data Assimilation System (NLDAS). Comparisons focus on analysis of spatiotemporal distributions of precipitation, soil moisture, runoff generation, evapotranspiration and recharge from the root zone at high resolution for an assessment of sustainable water supplies for agricultural and domestic purposes. We also present a preliminary analysis of the impact of vegetation change arising from historical treatments in the Beaver Creek to inform the hydrologic consequences in the form of soil moisture and evapotranspiration patterns with differing degrees of proposed forest thinning. Our results are discussed in the context of improved hydrologic predictions for sustainability and decision

  19. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    Science.gov (United States)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  20. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2014-01-01

    Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However,...... to balance agricultural, power, and environmental objectives in the operation of Iberian reservoirs, though some impacts could be mitigated by better alignment between temporal patterns of irrigation and power demands....... patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes...

  1. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  2. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    International Nuclear Information System (INIS)

    Baruffi, F.; Cisotto, A.; Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M.; Pretner, A.; Galli, A.; Scarinci, A.; Marsala, V.; Panelli, C.; Gualdi, S.; Bucchignani, E.; Torresan, S.; Pasini, S.; Critto, A.

    2012-01-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961–1990 and the projection period 2010–2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071–2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble

  3. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    Energy Technology Data Exchange (ETDEWEB)

    Baruffi, F. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cisotto, A., E-mail: segreteria@adbve.it [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Pretner, A.; Galli, A. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Scarinci, A., E-mail: andrea.scarinci@sgi-spa.it [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Marsala, V.; Panelli, C. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Gualdi, S., E-mail: silvio.gualdi@bo.ingv.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Bucchignani, E., E-mail: e.bucchignani@cira.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Torresan, S., E-mail: torresan@cmcc.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Pasini, S., E-mail: sara.pasini@stud.unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); Critto, A., E-mail: critto@unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); and others

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced

  4. Assessing stand-level climate change risk using forest inventory data and species distribution models

    Science.gov (United States)

    Maria K. Janowiak; Louis R. Iverson; Jon Fosgitt; Stephen D. Handler; Matt Dallman; Scott Thomasma; Brad Hutnik; Christopher W. Swanston

    2017-01-01

    Climate change is having important effects on forest ecosystems, presenting a challenge for natural resource professionals to reduce climate-associated impacts while still achieving diverse management objectives. Regional projections of climate change and forest response are becoming more readily available, but managers are still searching for practical ways to apply...

  5. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  6. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    Science.gov (United States)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a

  7. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    van Vliet, M. T H; van Beek, L. P H|info:eu-repo/dai/nl/14749799X; Eisner, S.; Flörke, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Bierkens, M. F P|info:eu-repo/dai/nl/125022794

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding

  8. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Staudt, C.; Semiochkina, N.; Kaiser, J.C.; Pröhl, G.

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. - Highlights: ► We model Biosphere Dose Conversion Factors for a representative group exposed to radionuclides from a waste repository. ► The BDCF are modeled for different soil types. ► One model is used for the assessment of the influence of climate change during the disposal time frame.

  9. A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change

    International Nuclear Information System (INIS)

    Lee, Ji Yun; Ellingwood, Bruce R.

    2017-01-01

    Public awareness of civil infrastructure performance has increased considerably in recent years as a result of repeated natural disasters. Risks from natural hazards may increase dramatically in the future, given current patterns of urbanization and population growth in hazard-prone areas. Risk assessments for infrastructure with expected service periods of a century or more are highly uncertain, and there is compelling evidence that climatology will evolve over such intervals. Thus, current natural hazard and risk assessment models, which are based on a presumption of stationarity in hazard occurrence and intensity, may not be adequate to assess the potential risks from hazards occurring in the distant future. This paper addresses two significant intergenerational elements – the potential impact of non-stationarity in hazard due to climate change and intergenerational discounting practices – that are essential to provide an improved decision support framework that accommodates the needs and values of future generations. The framework so developed is tested through two benchmark problems involving buildings exposed to hurricanes. - Highlights: • Difficulties of conventional life-cycle engineering decision-making over multiple generations are clearly elaborated. • Two intergenerational elements are proposed to reflect equitable allocations of risk between generations. • A data-based approach to forecast future hurricanes is provided to bridge the gap between models at large and local scales. • The feasibility and practicability of a refined framework are examined through two lifecycle cost assessment examples. • The two intergenerational elements suggested in this study have a wide range of applicability.

  10. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    Löwe, Roland; Urich, Christian; Sto Domingo, Nina

    Flood risk in cities is strongly affected by the development of the city itself. Many studies focus on changes in the flood hazard as a result of, for example, changed degrees of sealing in the catchment or climatic changes. However, urban developments in flood prone areas can affect the exposure...... to the hazard and thus have large impacts on flood risk. Different urban socio-economic development scenarios, rainfall inputs and options for the mitigation of flood risk, quickly lead to a large number of scenarios that need to be considered in the planning of the development of a city. This calls...... for automated analyses that allow the planner to quickly identify if, when and how infrastructure should be modified. Such analysis, which accounts for the two-way interactions between city development and flood risk, is possible only to a limited extent in existing tools. We have developed a software framework...

  12. A comparison of land use change accounting methods: seeking common grounds for key modeling choices in biofuel assessments

    DEFF Research Database (Denmark)

    de Bikuna Salinas, Koldo Saez; Hamelin, Lorie; Hauschild, Michael Zwicky

    2018-01-01

    Five currently used methods to account for the global warming (GW) impact of the induced land-use change (LUC) greenhouse gas (GHG) emissions have been applied to four biofuel case studies. Two of the investigated methods attempt to avoid the need of considering a definite occupation -thus...... amortization period by considering ongoing LUC trends as a dynamic baseline. This leads to the accounting of a small fraction (0.8%) of the related emissions from the assessed LUC, thus their validity is disputed. The comparison of methods and contrasting case studies illustrated the need of clearly...... distinguishing between the different time horizons involved in life cycle assessments (LCA) of land-demanding products like biofuels. Absent in ISO standards, and giving rise to several confusions, definitions for the following time horizons have been proposed: technological scope, inventory model, impact...

  13. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Beek, van L.P.H.; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M.F.P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved

  14. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    Science.gov (United States)

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  15. Applicability of ranked Regional Climate Models (RCM) to assess the impact of climate change on Ganges: A case study.

    Science.gov (United States)

    Anand, Jatin; Devak, Manjula; Gosain, Ashvani Kumar; Khosa, Rakesh; Dhanya, Ct

    2017-04-01

    The negative impact of climate change is felt over wide range of spatial scales, ranging from small basins to large watershed area, which can possibly outweighs the benefits of natural water system. General Circulation Models (GCMs) has been widely used as an input to a hydrological models (HMs), to simulate different hydrological components of a river basin. However, the coarser scale of GCMs and spatio-temporal biases, restricted its use at finer resolution. If downscaled, adds one more level of uncertainty i.e., downscaling uncertainty together with model and scenario uncertainty. The outputs computed from Regional Climate Models (RCM) may aid the uncertainties arising from GCMs, as the RCMs are the miniatures of GCMs. However, the RCMs do have some inherent systematic biases, hence bias correction is a prerequisite process before it is fed to HMs. RCMs, together with the input from GCMs at later boundaries also takes topography of the area into account. Hence, RCMs need to be ranked a priori. In this study, impact of climate change on the Ganga basin, India, is assessed using the ranked RCMs. Firstly, bias correction of 14 RCM models are done using Quantile-Quantile mapping and Equidistant cumulative distribution method, for historic (1990-2004) and future scenario (2021-2100), respectively. The runoff simulations from Soil Water Assessment Tool (SWAT), for historic scenario is used for ranking of RCMs. Entropy and PROMETHEE-2 method is employed to rank the RCMs based on five performance indicators namely, Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), normalised root mean square error (NRMSE), absolute normalised mean bias error (ANMBE) and average absolute relative error (AARE). The results illustrated that each of the performance indicators behaves differently for different RCMs. RCA 4 (CNRM-CERFACS) is found as the best model with the highest value of  (0.85), followed by RCA4 (MIROC) and RCA4 (ICHEC) with  values of 0.80 and 0

  16. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    Science.gov (United States)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  17. Multi-modeling assessment of recent changes in groundwater resource: application to the semi-arid Haouz plain (Central Morocco)

    Science.gov (United States)

    Fakir, Younes; Brahim, Berjamy; Page Michel, Le; Fathallah, Sghrer; Houda, Nassah; Lionel, Jarlan; Raki Salah, Er; Vincent, Simonneaux; Said, Khabba

    2015-04-01

    The Haouz plain (6000 km2) is a part of the Tensift basin located in the Central Morocco. The plain has a semi-arid climate (250 mm/y of rainfall) and is bordered in the south by the High-Atlas mountains. Because the plain is highly anthropized, the water resources face heavy demands from various competing sectors, including agriculture (over than 273000 ha of irrigated areas), water supply for more than 2 million inhabitants and about 2 millions of tourists annually. Consequently the groundwater is being depleted on a large area of the plain, with problems of water scarcity which pose serious threats to water supplies and to sustainable development. The groundwater in the Haouz plain was modeled previously by MODFLOW (USGS groundwater numerical modeling) with annual time steps. In the present study a multi-modeling approach is applied. The aim is to enhance the evaluation of the groundwater pumping for irrigation, one of the most difficult data to estimate, and to improve the water balance assessment. In this purpose, two other models were added: SAMIR (Satellite Estimation of Agricultural Water Demand) and WEAP (integrated water resources planning). The three models are implemented at a monthly time step and calibrated over the 2001-2011 period, corresponding to 120 time steps. This multi-modeling allows assessing the evolution of water resources both in time and space. The results show deep changes during the last years which affect generally the water resources and groundwater particularly. These changes are induced by a remarkable urbanism development, succession of droughts, intensive agriculture activities and weak management of irrigation and water resources. Some indicators of these changes are as follow: (i) the groundwater table decrease varies between 1 to 3m/year, (ii) the groundwater depletion during the last ten year is equivalent to 50% of the lost reserves during 40 years, (iii) the annual groundwater deficit is about 100 hm3, (iv) the renewable

  18. Accounting for change of support in spatial accuracy assessment of modelled soil mineral phosphorous concentration

    NARCIS (Netherlands)

    Leopold, U.; Heuvelink, G.B.M.; Tiktak, A.; Finke, P.A.; Schoumans, O.F.

    2006-01-01

    Agricultural activities in the Netherlands cause high nitrogen and phosphorous fluxes from soil to ground- and surface water. A model chain (STONE) has been developed to study and predict the magnitude of the resulting ground- and surface water pollution under different environmental conditions.

  19. Assessing climate change effects on mountain ecosystems using integrated models: A case study

    Science.gov (United States)

    Fagre, Daniel B.; Running, Steven W.; Keane, Robert E.; Peterson, David L.

    2005-01-01

    Mountain systems are characterized by strong environmental gradients, rugged topography and extreme spatial heterogeneity in ecosystem structure and composition. Consequently, most mountainous areas have relatively high rates of endemism and biodiversity, and function as species refugia in many areas of the world. Mountains have long been recognized as critical entities in regional climatic and hydrological dynamics but their importance as terrestrial carbon stores has only been recently underscored (Schimel et al. 2002; this volume). Mountain ecosystems, therefore, are globally important as well as unusually complex. These ecosystems challenge our ability to understand their dynamics and predict their response to climatic variability and global-scale environmental change.

  20. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system

    International Nuclear Information System (INIS)

    Kaste, O.; Wright, R.F.; Barkved, L.J.; Bjerkeng, B.; Engen-Skaugen, T.; Magnusson, J.; Saelthun, N.R.

    2006-01-01

    Dynamically downscaled data from two Atmosphere-Ocean General Circulation Models (AOGCMs), ECHAM4 from the Max-Planck Institute (MPI), Germany and HadAm3H from the Hadley Centre (HAD), UK, driven with two scenarios of greenhouse gas emissions (IS92a and A2, respectively) were used to make climate change projections. These projections were then used to drive four effect models linked to assess the effects on hydrology, and nitrogen (N) concentrations and fluxes, in the Bjerkreim river basin (685-km 2 ) and its coastal fjord, southwestern Norway. The four effect models were the hydrological model HBV, the water quality models MAGIC, INCA-N and the NIVA FJORD model. The downscaled climate scenarios project a general temperature increase in the study region of approximately 1 deg. C by 2030-2049 (MPI IS92a) and approximately 3 deg. C by 2071-2100 (HAD A2). Both scenarios imply increased winter precipitation, whereas the projections of summer and autumn precipitation are quite different, with the MPI scenario projecting a slight increase and the HAD scenario a significant decrease. As a response to increased winter temperature, the HBV model simulates a dramatic reduction of snow accumulation in the upper parts of the catchment, which in turn lead to higher runoff during winter and lower runoff during snowmelt in the spring. With the HAD scenario, runoff in summer and early autumn is substantially reduced as a result of reduced precipitation, increased temperatures and thereby increased evapotranspiration. The water quality models, MAGIC and INCA-N project no major changes in nitrate (NO 3 - ) concentrations and fluxes within the MPI scenario, but a significant increase in concentrations and a 40-50% increase in fluxes in the HAD scenario. As a consequence, the acidification of the river could increase, thus offsetting ongoing recovery from acidification due to reductions in acid deposition. Additionally, the increased N loading may stimulate growth of N-limited benthic

  1. Assessment of land-use change on streamflow using GIS, remote sensing and a physically-based model, SWAT

    Directory of Open Access Journals (Sweden)

    J. Y. G. Dos Santos

    2014-09-01

    Full Text Available This study aims to assess the impact of the land-use changes between the periods 1967−1974 and 1997−2008 on the streamflow of Tapacurá catchment (northeastern Brazil using the Soil and Water Assessment Tool (SWAT model. The results show that the most sensitive parameters were the baseflow, Manning factor, time of concentration and soil evaporation compensation factor, which affect the catchment hydrology. The model calibration and validation were performed on a monthly basis, and the streamflow simulation showed a good level of accuracy for both periods. The obtained R2 and Nash-Sutcliffe Efficiency values for each period were respectively 0.82 and 0.81 for 1967−1974, and 0.93 and 0.92 for the period 1997−2008. The evaluation of the SWAT model response to the land cover has shown that the mean monthly flow, during the rainy seasons for 1967−1974, decreased when compared to 1997−2008.

  2. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.

  3. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    Science.gov (United States)

    Voisin, N.; Liu, L.; Hejazi, M.; Tesfa, T.; Li, H.; Huang, M.; Liu, Y.; Leung, L. R.

    2013-11-01

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model, which includes a water-demand model driven by socioeconomics at regional and global scales, is coupled in a one-way fashion with a land surface hydrology-routing-water resources management model. To reconcile the scale differences between the models, a spatial and temporal disaggregation approach is developed to downscale the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrates reasonable ability to represent the historical flow regulation and water supply over the US Midwest (Missouri, Upper Mississippi, and Ohio river basins). Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Although natural flow is projected to increase under climate change in both the B1 and A2 scenarios, there is larger uncertainty in the changes of the regulated flow. Over the Ohio and Upper Mississippi river basins, changes in flow regulation are driven by the change in natural flow due to the limited storage capacity. However, both changes in flow and demand have effects on the Missouri River Basin summer regulated flow. Changes in demand are driven by socioeconomic factors, energy and food demands, global markets and prices with rainfed crop demand handled directly by the land surface modeling component. Even though most of the changes in supply deficit (unmet demand) and the actual supply (met demand) are driven primarily by the change in natural flow over the entire region, the integrated framework shows that supply deficit over the Missouri River

  4. Designing Business Model Change

    DEFF Research Database (Denmark)

    Cavalcante, Sergio Andre

    2014-01-01

    The aim of this paper is to base organisational change on the firm's business model, an approach that research has only recently start to address. This study adopts a process-based perspective on business models and insights from a variety of theories as the basis for the development of ideas...... on the design of business model change. This paper offers a new, process-based strategic analytical artefact for the design of business model change, consisting of three main phases. Designing business model change as suggested in this paper allows ex ante analysis of alternative scenarios of change...

  5. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand.

    Science.gov (United States)

    Trisurat, Yongyut; Eawpanich, Piyathip; Kalliola, Risto

    2016-05-01

    The Thadee watershed, covering 112km(2), is the main source of water for agriculture and household consumption in the Nakhon Srithammarat Province in Southern Thailand. As the natural forests upstream have been largely degraded and transformed to fruit tree and rubber plantations, problems with landslides and flooding have resulted. This research attempts to predict how further land-use/land-cover changes during 2009-2020 and conceivable changes in rainfall may influence the future levels of water yield and sediment load in the Thadee River. Three different land use scenarios (trend, development and conservation) were defined in collaboration with the local stakeholders, and three different rainfall scenarios (average rainfall, climate change and extreme wet) were determined on the basis of literature sources. Spatially explicit empirical modelling was employed to allocate future land demands and to assess the contributions of land use and rainfall changes, considering both their separate and combined effects. The results suggest that substantial land use changes may occur from a large expansion of rubber plantations in the upper sub-watersheds, especially under the development land use scenario. The reduction of the current annual rainfall by approximately 30% would decrease the predicted water yields by 38% from 2009. According to the extreme rainfall scenario (an increase of 36% with respect to current rainfall), an amplification of 50% of the current runoff could result. Sensitivity analyses showed that the predicted soil loss is more responsive to changes in rainfall than to the compared land use scenarios alone. However, very high sediment load and runoff levels were predicted on the basis of combined intensified land use and extreme rainfall scenarios. Three conservation activities-protection, reforestation and a mixed-cropping system-are proposed to maintain the functional watershed services of the Thadee watershed region. Copyright © 2016 Elsevier Inc

  6. Hydrological Assessment of Model Performance and Scenario Analyses of Land Use Change and Climate Change in lowlands of Veneto Region (Italy)

    Science.gov (United States)

    Pijl, Anton; Brauer, Claudia; Sofia, Giulia; Teuling, Ryan; Tarolli, Paolo

    2017-04-01

    Growing water-related challenges in lowland areas of the world call for good assessment of our past and present actions, in order to guide our future decisions. The novel Wageningen Lowland Runoff Simulator (WALRUS; Brauer et al., 2014) was developed to simulate hydrological processes and has showed promising performance in recent studies in the Netherlands. Here the model was applied to a coastal basin of 2800 ha in the Veneto Region (northern Italy) to test model performance and evaluate scenario analyses of land use change and climate change. Located partially below sea-level, the reclaimed area is facing persistent land transformation and climate change trends, which alter not only the processes in the catchment but also the demands from it (Tarolli and Sofia, 2016). Firstly results of the calibration (NSE = 0.77; year simulation, daily resolution) and validation (NSE = 0.53; idem) showed that the model is able to reproduce the dominant hydrological processes of this lowland area (e.g. discharge and groundwater fluxes). Land use scenarios between 1951 and 2060 were constructed using demographic models, supported by orthographic interpretation techniques. Climate scenarios were constructed by historical records and future projections by COSMO-CLM regional climate model (Rockel et al., 2008) under the RCP4.5 pathway. WALRUS simulations showed that the land use changes result in a wetter catchment with more discharge, and the climatic changes cause more extremes with longer droughts and stronger rain events. These changes combined show drier summers (-33{%} rainfall, +27{%} soil moisture deficit) and wetter (+13{%} rainfall) and intenser (+30{%} rain intensity) autumn and winters in the future. The simulated discharge regime -particularly peak flow- follows these polarising trends, in good agreement with similar studies in the geographical zone (e.g. Vezzoli et al., 2015). This will increase the pressure on the fully-artificial drainage and agricultural systems

  7. Alternative Parameterization of the 3-PG Model for Loblolly Pine: A Regional Validation and Climate Change Assessment on Stand Productivity

    Science.gov (United States)

    Yang, J.; Gonzalez-Benecke, C. A.; Teskey, R. O.; Martin, T.; Jokela, E. J.

    2015-12-01

    Loblolly pine (Pinus taeda L.) is one of the fastest growing pine species. It has been planted on more than 10 million ha in the southeastern U.S., and also been introduced into many countries. Using data from the literature and long-term productivity studies, we re-parameterized the 3-PG model for loblolly pine stands. We developed new functions for estimating NPP allocation dynamics, canopy cover and needlefall dynamics, effects of frost on production, density-independent and density-dependent tree mortality, biomass pools at variable starting ages, and the fertility rating. New functions to estimate merchantable volume partitioning were also included, allowing for economic analyses. The fertility rating was determined as a function of site index (mean height of dominant trees at age=25 years). We used the largest and most geographically extensive validation dataset for this species ever used (91 pots in 12 states in U.S. and 10 plots in Uruguay). Comparison of modeled to measured data showed robust agreement across the natural range in the U.S., as well as in Uruguay, where the species is grown as an exotic. Using the new set of functions and parameters with downscaled projections from twenty different climate models, the model was applied to assess the impact of future climate change scenarios on stand productivity in the southeastern U.S.

  8. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  9. Effect of changes over time in the performance of a customized SAPS-II model on the quality of care assessment

    NARCIS (Netherlands)

    Minne, Lilian; Eslami, Saeid; de Keizer, Nicolette; de Jonge, Evert; de Rooij, Sophia E.; Abu-Hanna, Ameen

    2012-01-01

    Purpose: The aim of our study was to explore, using an innovative method, the effect of temporal changes in the mortality prediction performance of an existing model on the quality of care assessment. The prognostic model (rSAPS-II) was a recalibrated Simplified Acute Physiology Score-II model

  10. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2011 - part 2)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.

  11. Assessment of pathological changes associated with chronic allograft rejection and tolerance in two experimental models of rat lung transplantation.

    Science.gov (United States)

    Matsumura, Y; Marchevsky, A; Zuo, X J; Kass, R M; Matloff, J M; Jordan, S C

    1995-06-15

    Lung transplantation is now routinely performed for a wide range of end-stage cardiopulmonary disorders. Despite overcoming the problems associated with early acute rejection, chronic rejection (CR) in the form of obliterative bronchiolitis has emerged as the primary cause of late graft loss. The mechanisms involved in the development of CR of lung allografts are poorly understood, and no effective therapy is currently available. To better understand the pathological events associated with CR and tolerance, we examined two models of lung allograft rejection established in our laboratory. First, we exchanged left lung allografts between moderately histoincompatible inbred rat strains (WKY-->F344: n = 42 and F344-->WKY: n = 40). The WKY-->F344 model was previously shown to develop spontaneous tolerance, while the converse model (F344-->WKY) showed persistent acute rejection. The purpose of this investigation was to assess histopathological changes associated with long-term grafts left in place up to 140 days after transplant. To confirm that tolerance had developed, skin-grafting experiments were performed. Five skin grafts from each strain were placed on lung allograft recipients on day 35 after transplant and skin allograft survival was assessed and compared with controls. Acute rejection (AR) was graded histologically (stage O-IV) and the pathologic intensity of inflammation and CR were graded (0-4: 0 = 0%, 1 = 1-25%, 2 = 26-50%, 3 = 51-75%, and 4 = 76-100%) on percentage of involvement with the following categories being examined: (a) lymphocytic infiltration (perivascular, peribronchial, and peribronchiolar) and (b) vasculitis, edema, hemorrhage, and necrosis. Finally, chronic rejection was diagnosed by the presence of intimal hyperplasia, interstitial fibrosis, peribronchiolar fibrosis, bronchiolitis obliterans, and bronchiectasis. The WKY-->F344 animals showed progressive AR (stage III, day 21). Thereafter, the AR subsided spontaneously and was stage 0 on day

  12. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    Science.gov (United States)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  13. Longitudinal as well as age-matched assessments of bone changes in the mature ovariectomized rat model

    NARCIS (Netherlands)

    Leitner, M.M.; Tami, A.E.; Montavon, P.M.; Ito, K.

    2009-01-01

    In the past, bone loss in the ovariectomized (OVX) osteoporotic rat model has been monitored using in vitro micro-computed tomography (micro-CT) to assess bone structure (bone volume/total volume, BV/TV). The purpose of this study was to assess the importance of baseline control and sham groups in

  14. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Baptiste, Marisa [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Cao, Qian [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Lettenmaier, Dennis P. [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Nijssen, Bart [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA

    2016-08-22

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution. DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and

  15. Assessment of the phenology impact on SVAT modelling through a crop growth model over a Mediterranean crop site : Consequences on the water balance under climate change conditions.

    Science.gov (United States)

    Moulin, S.; Garrigues, S.; Olioso, A.; Ruget, F.; Desfonds, V.; Bertrand, N.; Lecharpentier, P.; Ripoche, D.; Launay, M.; Brisson, N.

    2012-04-01

    In the coming years, water resources and vegetation production of Mediterranean areas will be drastically affected by climate changes as well as intense and rapid changes in the land use. The impact of climate and land-use changes on water balance and vegetation production can be analysed and predicted through land surface models, provided that the uncertainties associated to these models and to the data used to run them are evaluated. Vegetation phenology is generally poorly taken into account in land surface models and may be a substantial source of uncertainties for global change scenario studies. In this paper, we discuss the improvement obtained in Soil Vegetation Atmosphere Transfer (SVAT) modelling by taking into account the phenology using a crop growth model, focusing on the water budget, over a Mediterranean crop site. The STICS model (Brisson et al, 1998) is used to simulate crop processes (growth and development, taking into account water and nitrogen exchanges between the environment and the crop). STICS describes the vegetation phenology very accurately and was validated for many types of crop and various pedoclimatic conditions. The SVAT model being analyzed is the a-gs version (Calvet et al., 1998) of the ISBA model (Noilhan et al, 1989), which simulates the photosynthesis and calculates the plant biomass and the Leaf Area Index (LAI) using a simple growth model. In STICS, the phenology is driven by the sum of daily air temperatures, which is quite realistic, while in ISBA, the phenology is driven by the plant carbon assimilation. Measurements (vegetation characteristics, soil properties, agricultural practises, energy and water balance) performed in the lower Rhone valley experimental area (Avignon, France) are used as well as long series of climatic data (past records and future simulations). In a first step, by running STICS and ISBA for maize and wheat crops with long series of climatic data, including future scenarios of climate (CLIMATOR

  16. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories.

    Science.gov (United States)

    Staudt, C; Semiochkina, N; Kaiser, J C; Pröhl, G

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Do associations between employee self-reported organisational assessments and attitudinal outcomes change over time? An analysis of four Veterans Health Administration surveys using structural equation modelling

    CSIR Research Space (South Africa)

    Das, Sonali

    2010-12-01

    Full Text Available and their changes over time. Exposure and outcome measures are employee-assessed in all the surveys. Because it can accommodate both latent and measured variables into the model, Structural Equation Modelling (SEM) is used to capture and quantify the relationship...

  18. Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment

    International Nuclear Information System (INIS)

    Chetvertkov, Mikhail A.; Siddiqui, Farzan; Chetty, Indrin; Kumarasiri, Akila; Liu, Chang; Gordon, J. James; Kim, Jinkoo

    2016-01-01

    Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more

  19. Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne.edu [Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201 and Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Siddiqui, Farzan; Chetty, Indrin; Kumarasiri, Akila; Liu, Chang; Gordon, J. James [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Kim, Jinkoo [Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, New York 11794 (United States)

    2016-10-15

    Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more

  20. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction.

    Science.gov (United States)

    Cai, Juan Juan; Song, Jee Hey; Lee, Yunah; Lee, Dong Soo

    2014-02-01

    The objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario. Due to CC, the average of annual or monthly average concentration changes within a factor of two for the PAHs in air, soil and water. Time dependent comparison indicates that the maximum increase induced by CC in the monthly average concentration ranges from 10 to 10(2) in air and water. Change in advective flux due to wind speed difference between A1B and NCC dictates the change of the atmospheric PAHs levels while wet particle deposition due to rain rate difference contributes to some extent to the change of 5 and 6 ring PAHs. Whether the concentration change is positive or not depends primarily on the emission strength of internal sources relative to those in surrounding areas. The CC induced changes in atmospheric depositions and degradation rate in soil play a leading role in the change of soil concentration. In water, runoff and degradation are the key processes to the CC induced concentration change. Both in soil and water, the relative importance of individual key processes varies with PAHs. The difference between the two scenarios in wind speed and in rain rate shows stronger correlations with the concentration change than the temperature change. © 2013 Elsevier B.V. All rights reserved.

  1. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    Science.gov (United States)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  2. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  3. Assessing the impacts of climate change on winter crop production in Uruguay and Argentina using crop simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Baethgen, W.E. [International Fertilizer Development Center, Muscle Shoals, AL (United States); Magrin, G.O. [Inst. Nacional de Tecnologia Agropecuaria Castelar, Buenos Aires (Argentina). Inst. de Clima y Agua

    1995-12-31

    Enhanced greenhouse effect caused by the increase in atmospheric concentration of CO{sub 2} and other trace gases could lead to higher global surface temperature and altered hydrological cycles. Most possible climate change scenarios include higher atmospheric CO{sub 2} concentrations, higher temperatures, and changes in precipitation. Three global climate models (GCMs) were applied to generate climate change scenarios for the Pampas region in southern South America. The generated scenarios were then used with crop simulation models to study the possible impact of climate change on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) production in the Pampas. The authors evaluated the impact of possible climate change scenarios on wheat and barley production in Uruguay for a wide range of soil and crop management strategies including planting dates, cultivar types, fertilizer management, and tillage practices. They also studied the impact of climate change on wheat production across two transects of the Pampas: north to south transect with decreasing temperature, and east to west transect with decreasing precipitation. Finally, sensitivity analyses were conducted for both, the Uruguayan site and the transects, by increasing daily maximum and minimum temperature by 0, 2, and 4 C, and changing the precipitation by {minus}20, 0, and +20%.

  4. Assessing Climate Change Impacts on Water Resources and Colorado Agriculture Using an Equilibrium Displacement Mathematical Programming Model

    OpenAIRE

    Fathelrahman, Eihab; Davies, Amalia; Davies, Stephen; Pritchett, James

    2014-01-01

    This research models selected impacts of climate change on Colorado agriculture several decades in the future, using an Economic Displacement Mathematical Programming model. The agricultural economy in Colorado is dominated by livestock, which accounts for 67% of total receipts. Crops, including feed grains and forages, account for the remainder. Most agriculture is based on irrigated production, which depends on both groundwater, especially from the Ogallala aquifer, and surface water that c...

  5. Application of the HBV model for assessment of climate change impacts on the elements of hydrological cycle for the Struma River Basin

    International Nuclear Information System (INIS)

    Stanev, Krassimir

    2004-01-01

    The model used in this report is a version of the HBV model developed for the project Climate Change and Energy Production, a Nordic project aimed at evaluating the impacts of climate change on the water resources. It has a simple vegetation parametrization including interception, temperature based evapotranspiration. calculations, lake evaporation, lake routing, glacier mass balance simulation, special functions for climate change simulations etc. The HBV model, originally developed at the Swedish Meteorological and Hydrological Institute in the first half of the seventies (Bergstroem 1976) has gained widespread use for a large range of applications both in Scandinavia and beyond. It can be classified as a semi-distributed conceptual model. The version described in this report was developed for the Nordic project 'Climate change and Energy Production' (Saelthun 1996), as a synthesis of several versions used in the different Nordic countries. The main input variables are the average daily temperature, daily totals of the precipitation, the potential evapotranspiration and the daily discharges. The HBV model was applied for assessment of climate change impacts on the elements of hydrological cycle for the Struma river basin. The river Struma flows from North to South up to the Aegean Sea. Considerable part of the river basin is situated in northwest part of Bulgaria, heaving an area of more than 10 000 km 2 and average elevation about 900m asl (cross-section Marino pole). The period of 16 years (1973-1988), four precipitation and temperature stations were used for the model parameters evaluation. The achieved value of R 2 (Nash criterion) is 0.55. The climate change impact calculations (monthly values of temperatures change in o C and precipitation change in %) for two scenarios were used for the input data correction to the HBV model. The obtained results are promising and they show the potential possibility for the HBV model use to assess the climate change

  6. Can the combined use of an ensemble based modelling approach and the analysis of measured meteorological trends lead to increased confidence in climate change impact assessments?

    Science.gov (United States)

    Gädeke, Anne; Koch, Hagen; Pohle, Ina; Grünewald, Uwe

    2014-05-01

    In anthropogenically heavily impacted river catchments, such as the Lusatian river catchments of Spree and Schwarze Elster (Germany), the robust assessment of possible impacts of climate change on the regional water resources is of high relevance for the development and implementation of suitable climate change adaptation strategies. Large uncertainties inherent in future climate projections may, however, reduce the willingness of regional stakeholder to develop and implement suitable adaptation strategies to climate change. This study provides an overview of different possibilities to consider uncertainties in climate change impact assessments by means of (1) an ensemble based modelling approach and (2) the incorporation of measured and simulated meteorological trends. The ensemble based modelling approach consists of the meteorological output of four climate downscaling approaches (DAs) (two dynamical and two statistical DAs (113 realisations in total)), which drive different model configurations of two conceptually different hydrological models (HBV-light and WaSiM-ETH). As study area serve three near natural subcatchments of the Spree and Schwarze Elster river catchments. The objective of incorporating measured meteorological trends into the analysis was twofold: measured trends can (i) serve as a mean to validate the results of the DAs and (ii) be regarded as harbinger for the future direction of change. Moreover, regional stakeholders seem to have more trust in measurements than in modelling results. In order to evaluate the nature of the trends, both gradual (Mann-Kendall test) and step changes (Pettitt test) are considered as well as both temporal and spatial correlations in the data. The results of the ensemble based modelling chain show that depending on the type (dynamical or statistical) of DA used, opposing trends in precipitation, actual evapotranspiration and discharge are simulated in the scenario period (2031-2060). While the statistical DAs

  7. Integrated climate change risk assessment:

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten

    2017-01-01

    Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models...... to address the complex linkages between the different kinds of data required in assessing climate adaptation. It emphasizes that the availability of spatially explicit data can reduce the overall uncertainty of the risk assessment and assist in identifying key vulnerable assets. The usefulness...... of such a framework is demonstrated by means of a risk assessment of flooding from extreme precipitation for the city of Odense, Denmark. A sensitivity analysis shows how the presence of particularly important assets, such as cultural and historical heritage, may be addressed in assessing such risks. The output...

  8. High-resolution integration of water, energy, and climate models to assess electricity grid vulnerabilities to climate change

    Science.gov (United States)

    Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.

    2017-12-01

    The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50

  9. Research priorities in land use and land-cover change for the Earth System and Integrated Assessment Modelling

    NARCIS (Netherlands)

    Hibbard, K.; Janetos, A.; Vuuren, van D.; Pongratz, J.; Rose, S.; Betts, R.; Herold, M.; Feddema, J.

    2010-01-01

    This special issue has highlighted recent and innovative methods and results that integrate observations and modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated

  10. TREES OF DAMAGES AS A MODEL OF RISKS ASSESSMENT FOR AVAILABILITY LOSSES AFTER CHANGES IN FINANCIAL INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. A. Arustamov

    2013-03-01

    Full Text Available The article deals with the methodology for risks assessment of availability losses in financial information systems after changes made in them by using trees of damages. A description of damages tree generation for each identified possible event is presented that potentially can lead to the system availability loss. An example is given, illustrating the methodology application that gives the possibility to choose the optimal software testing strategy.

  11. Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity.

    Science.gov (United States)

    Tisseuil, C; Vrac, M; Grenouillet, G; Wade, A J; Gevrey, M; Oberdorff, T; Grodwohl, J-B; Lek, S

    2012-05-01

    To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Water resources planning and modelling tools for the assessment of land use change in the Luvuvhu Catchment, South Africa

    Science.gov (United States)

    Jewitt, G. P. W.; Garratt, J. A.; Calder, I. R.; Fuller, L.

    In arid and semi-arid areas, total evaporation is a major component of the hydrological cycle and seasonal water shortages and drought are common. In these areas, the role of land use and land use change is particularly important and it is imperative that land and water resources are well managed. To aid efficient water management, it is useful to demonstrate how changing land use affects water resources. A convenient framework to consider this is through the use of the ‘blue-water’ and ‘green-water’ classification of Falkenmark, where green-water represents water use by land and blue-water represents runoff. In this study the hydrological response of nine land-use scenarios were simulated for the upper reaches of the Mutale River, an important tributary of the Luvuvhu River in S. Africa. The ACRU and HYLUC land use sensitive hydrological models, were used to investigate the change in blue and green water under the various land-use scenarios. The GIS software ArcGIS(8.3) was used to analyse available spatial data to generate inputs required by the hydrological models. The scenarios investigated included the current land use in the catchment, an increase or decrease in forest cover, and an increase or decrease in the area irrigated. Both models predict that increasing either forestry or irrigation significantly reduces the proportion of blue water in the catchment. The predictions from the models were combined with maps of catchment land use, to illustrate the changes in distribution of green and blue water in a user-friendly manner. The use of GIS in this way is designed to enable policy-makers and managers to quickly assimilate the water resource implication of the land use change.

  13. Integrated assessment of climate change

    International Nuclear Information System (INIS)

    Morgan, M.G.

    1994-01-01

    Many researchers are working on all the separate parts of the climate problem. The objective of integrated assessment is to put the results from this work together in order to look carefully at the big picture so as to: (1) keep a proper sense of perspective about the problem, since climate change will occur in the presence of many other natural and human changes; (2) develop the understanding necessary to support informed decision making by many different key public and private actors around the world; and (3) assure that the type and mix of climate-related research that is undertaken will be as useful as possible to decisions makers in both the near and long term. This paper outlines a set of design guidelines for formulating integrated assessment programs and projects and then outlines some of the current problems and opportunities. Selected points are illustrated by drawing on results from the integrated assessment research now in progress at Carnegie Mellon University

  14. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling

    Directory of Open Access Journals (Sweden)

    Iulii Didovets

    2017-03-01

    Full Text Available The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, Upper Western Bug, and Samara characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.

  15. Integrated Assessment Model Evaluation

    Science.gov (United States)

    Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.

    2012-12-01

    Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside

  16. A combined model to assess technical and economic consequences of changing conditions and management options for wastewater utilities.

    Science.gov (United States)

    Giessler, Mathias; Tränckner, Jens

    2018-02-01

    The paper presents a simplified model that quantifies economic and technical consequences of changing conditions in wastewater systems on utility level. It has been developed based on data from stakeholders and ministries, collected by a survey that determined resulting effects and adapted measures. The model comprises all substantial cost relevant assets and activities of a typical German wastewater utility. It consists of three modules: i) Sewer for describing the state development of sewer systems, ii) WWTP for process parameter consideration of waste water treatment plants (WWTP) and iii) Cost Accounting for calculation of expenses in the cost categories and resulting charges. Validity and accuracy of this model was verified by using historical data from an exemplary wastewater utility. Calculated process as well as economic parameters shows a high accuracy compared to measured parameters and given expenses. Thus, the model is proposed to support strategic, process oriented decision making on utility level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Changes in ventilation–perfusion during and after an COPD exacerbation: an assessment using fluid dynamic modeling

    Directory of Open Access Journals (Sweden)

    Hajian B

    2018-03-01

    Full Text Available Bita Hajian,1 Jan De Backer,2 Wim Vos,2 Wouter H van Geffen,3 Paul De Winter,1 Omar Usmani,4 Tony Cahn,5 Huib AM Kerstjens,3 Massimo Pistolesi,6 Wilfried De Backer1 1Department of Respiratory Medicine, University Hospital Antwerp, Edegem, Belgium; 2FLUIDDA nv, Kontich, Belgium; 3Department of Respiratory Medicine, University Medical Center Groningen, Groningen, the Netherlands; 4Department of Pulmonology, Brompton Hospital, London, UK; 5GSK, London, UK; 6Department of Pulmonary Diseases, University of Firenze, Florence, Italy Introduction: Severe exacerbations associated with chronic obstructive pulmonary disease (COPD that require hospitalization significantly contribute to morbidity and mortality. Definitions for exacerbations are very broad, and it is unclear whether there is one predominant underlying mechanism that leads to them. Functional respiratory imaging (FRI with modeling provides detailed information about airway resistance, hyperinflation, and ventilation–perfusion (V/Q mismatch during and following an acute exacerbation. Materials and methods: Forty-two patients with COPD participating in a multicenter study were assessed by FRI, pulmonary function tests, and self-reported outcome measures during an acute exacerbation and following resolution. Arterial blood gasses and lung function parameters were measured. Results: A significant correlation was found between alveolar–arterial gradient and image-based V/Q (iV/Q, suggesting that iV/Q represents V/Q mismatch during an exacerbation (p<0.05. Conclusion: Recovery of an exacerbation is due to decreased (mainly distal airway resistance (p<0.05. Improvement in patient-reported outcomes were also associated with decreased distal airway resistance (p<0.05, but not with forced expiratory volume. FRI is, therefore, a sensitive tool to describe changes in airway caliber, ventilation, and perfusion during and after exacerbation. On the basis of the fact that FRI increased distal airway

  18. Assessment of metabolic changes in the striatum of a MPTP-intoxicated canine model: in vivo ¹H-MRS study of an animal model for Parkinson's disease.

    Science.gov (United States)

    Choi, Chi-Bong; Kim, Sang-Young; Lee, Sung-Ho; Jahng, Geon-Ho; Kim, Hwi-Yool; Choe, Bo-Young; Ryu, Kyung-Nam; Yang, Dal-Mo; Yim, Sung-Vin; Choi, Woo-Suk

    2011-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons in the substantia nigra pars compacta, which projects to the striatum. We induced a selective loss of nigrostriatal dopamine neurons, by infusing the mitochondrial complex 1 inhibitor 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) into adult beagle dogs (N=5). Single voxel ¹H water suppressed magnetic resonance spectroscopy (¹H-MRS) at 3 T was used to assess the metabolic changes in the striatum of canine before and after MPTP intoxication. The metabolite spectra obtained from the striatum (voxel size: 2 cm³) showed a lower N-acetyl aspartate to total creatine (creatine+phosphocreatine) ratio after MPTP intoxication. There were no significant differences in other metabolite ratios such as glutamate+glutamine, choline-containing compounds (glycerophosphocholine+phophorylcholine and myo-inositol). Our findings indicated that ¹H-MRS is a sensitive, noninvasive measure of neural toxicity and biochemical alterations of the striatum in a canine model of PD, and further studies are needed to confirm brain metabolic changes in association with progression of MPTP-intoxication. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Assessing Climate-Induced Change in River Flow Using Satellite Remote Sensing and Process Modeling in High Mountain Asia

    Science.gov (United States)

    McDonald, K. C.

    2017-12-01

    Snow- and glacier-fed river systems originating from High Mountain Asia (HMA) support diverse ecosystems and provide the basis for food and energy production for more than a billion people living downstream. Climate-driven changes in the melting of snow and glaciers and in precipitation patterns are expected to significantly alter the flow of the rivers in the HMA region at various temporal scales, which in turn could heavily affect the socioeconomics of the region. Hence, climate change effects on seasonal and long-term hydrological conditions may have far reaching economic impact annually and over the century. We are developing a decision support tool utilizing integrated microwave remote sensing datasets, process modeling and economic models to inform water resource management decisions and ecosystem sustainability as related to the High Mountain Asia (HMA) region's response to climate change. The availability of consistent time-series microwave remote sensing datasets from Earth-orbiting scatterometers, radiometers and synthetic aperture radar (SAR) imagery provides the basis for the observational framework of this monitoring system. We discuss the assembly, processing and application of scatterometer and SAR data sets from the Advanced Scatterometer (ASCAT) and Sentinal-1 SARs, and the enlistment of these data to monitor seasonal melt and thaw status of glacier-dominated and surrounding regions. We present current status and future plans for this effort. Our team's study emphasizes processes and economic modeling within the Trishuli basin; our remote sensing analysis supports analyses across the HiMAT domain.

  20. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  1. Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies

    NARCIS (Netherlands)

    Seidl, R.; Schelhaas, M.J.; Lindner, M.; Lexer, M.J.

    2009-01-01

    To study potential consequences of climate-induced changes in the biotic disturbance regime at regional to national scale we integrated a model of Ips typographus (L. Scol. Col.) damages into the large-scale forest scenario model EFISCEN. A two-stage multivariate statistical meta-model was used to

  2. Climate change: a political assessment

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, W. [Solutions Consulting (USA)

    2000-07-01

    The paper consists of the author's personal remarks on a political assessment of climate change policy in the United States. The author focuses on four major political forces; environmental organisations, the Clinton-Gore administration, the U.S. senate and the business community. The author considers that much of the climate change debate is scaremongering by the environmentalists with little scientific basis. There is a need for business to present its case better if it is to avoid economically damaging, but unjustified environmental regulations.

  3. Assessing species vulnerability to climate change

    Science.gov (United States)

    Pacifici, Michela; Foden, Wendy B.; Visconti, Piero; Watson, James E. M.; Butchart, Stuart H. M.; Kovacs, Kit M.; Scheffers, Brett R.; Hole, David G.; Martin, Tara G.; Akçakaya, H. Resit; Corlett, Richard T.; Huntley, Brian; Bickford, David; Carr, Jamie A.; Hoffmann, Ary A.; Midgley, Guy F.; Pearce-Kelly, Paul; Pearson, Richard G.; Williams, Stephen E.; Willis, Stephen G.; Young, Bruce; Rondinini, Carlo

    2015-03-01

    The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species' vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species' climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

  4. Assessing River Low-Flow Uncertainties Related to Hydrological Model Calibration and Structure under Climate Change Conditions

    Directory of Open Access Journals (Sweden)

    Mélanie Trudel

    2017-03-01

    Full Text Available Low-flow is the flow of water in a river during prolonged dry weather. This paper investigated the uncertainty originating from hydrological model calibration and structure in low-flow simulations under climate change conditions. Two hydrological models of contrasting complexity, GR4J and SWAT, were applied to four sub-watersheds of the Yamaska River, Canada. The two models were calibrated using seven different objective functions including the Nash-Sutcliffe coefficient (NSEQ and six other objective functions more related to low flows. The uncertainty in the model parameters was evaluated using a PARAmeter SOLutions procedure (PARASOL. Twelve climate projections from different combinations of General Circulation Models (GCMs and Regional Circulation Models (RCMs were used to simulate low-flow indices in a reference (1970–2000 and future (2040–2070 horizon. Results indicate that the NSEQ objective function does not properly represent low-flow indices for either model. The NSE objective function applied to the log of the flows shows the lowest total variance for all sub-watersheds. In addition, these hydrological models should be used with care for low-flow studies, since they both show some inconsistent results. The uncertainty is higher for SWAT than for GR4J. With GR4J, the uncertainties in the simulations for the 7Q2 index (the 7-day low-flow value with a 2-year return period are lower for the future period than for the reference period. This can be explained by the analysis of hydrological processes. In the future horizon, a significant worsening of low-flow conditions was projected.

  5. assessing climate change impacts on river hydrology

    Indian Academy of Sciences (India)

    71

    model, Soil and Water Assessment Tool (SWAT), in order to evaluate the effect of climate. 24 change on rainfall ... to project future climate data based on the CO2 emission scenarios.The RCMs are of finer ..... Springer Science+Business. 2.

  6. Multi–Model Ensemble Approaches to Assessment of Effects of Local Climate Change on Water Resources of the Hotan River Basin in Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Min Luo

    2017-08-01

    Full Text Available The effects of global climate change threaten the availability of water resources worldwide and modify their tempo-spatial pattern. Properly quantifying the possible effects of climate change on water resources under different hydrological models is a great challenge in ungauged alpine regions. By using remote sensing data to support established models, this study aimed to reveal the effects of climate change using two models of hydrological processes including total water resources, peak flows, evapotranspiration, snowmelt and snow accumulation in the ungauged Hotan River Basin under future representative concentration pathway (RCP scenarios. The results revealed that stream flow was much more sensitive to temperature variation than precipitation change and increased by 0.9–10.0% according to MIKE SHE or 6.5–10.5% according to SWAT. Increased evapotranspiration was similar for both models with a range of 7.6–31.3%. The snow-covered area shrank from 32.5% to 11.9% between the elevations of 4200–6400 m, respectively, and snow accumulation increased when the elevation exceeded 6400 m above sea level (asl. The results also suggested that the fully distributed and semi-distributed structures of these two models strongly influenced the responses to climate change. The study proposes a practical approach to assess the climate change effect in ungauged regions.

  7. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe

    DEFF Research Database (Denmark)

    Thuiller, Wilfried; Lavorel, Sandra; Sykes, Martin T.

    2006-01-01

    Rapid anthropogenic climate change is already affecting species distributions and ecosystem functioning worldwide. We applied niche-based models to analyse the impact of climate change on tree species and functional diversity in Europe. Present-day climate was used to predict the distributions...... of 122 tree species from different functional types (FT). We then explored projections of future distributions under one climate scenario for 2080, considering two alternative dispersal assumptions: no dispersal and unlimited dispersal. The species-rich broadleaved deciduous group appeared to play a key...... role in the future of different European regions. Temperate areas were projected to lose both species richness and functional diversity due to the loss of broadleaved deciduous trees. These were projected to migrate to boreal forests, thereby increasing their species richness and functional diversity...

  8. Time of emergence in regional precipitation changes: an updated assessment using the CMIP5 multi-model ensemble

    Science.gov (United States)

    Nguyen, Thuy-Huong; Min, Seung-Ki; Paik, Seungmok; Lee, Donghyun

    2018-01-01

    This study conducted an updated time of emergence (ToE) analysis of regional precipitation changes over land regions across the globe using multiple climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5). ToEs were estimated for 14 selected hotspots over two seasons of April to September (AS) and October to March (OM) from three RCP scenarios representing low (RCP2.6), medium (RCP4.5), and high (RCP8.5) emissions. Results from the RCP8.5 scenario indicate that ToEs would occur before 2040 over seven hotspots including three northern high-latitude regions (OM wettening), East Africa (OM wettening), South Asia (AS wettening), East Asia (AS wettening) and South Africa (AS drying). The Mediterranean (both OM and AS drying) is expected to experience ToEs in the mid-twenty-first century (2040-2080). In order to measure possible benefits from taking low-emission scenarios, ToE differences were examined between the RCP2.6 scenario and the RCP4.5 and RCP8.5 scenarios. Significant ToE delays from 26 years to longer than 67 years were identified over East Africa (OM wettening), the Mediterranean (both AS and OM drying), South Asia (AS wettening), and South Africa (AS drying). Further, we investigated ToE differences between CMIP3-based and CMIP5-based models using the same number of models for the comparable scenario pairs (SRESA2 vs. RCP8.5, and SRESB1 vs. RCP4.5). Results were largely consistent between two model groups, indicating the robustness of ToE results. Considerable differences in ToEs (larger than 20 years) between two model groups appeared over East Asia and South Asia (AS wettening) and South Africa (AS drying), which were found due to stronger signals in CMIP5 models. Our results provide useful information on the timing of emerging signals in regional and seasonal hydrological changes, having important implications for associated adaptation and mitigation plans.

  9. Assessing cortical and subcortical changes in a western diet mouse model using spectral/Fourier domain OCT (Conference Presentation)

    Science.gov (United States)

    Bernucci, Marcel T.; Norman, Jennifer E.; Merkle, Conrad W.; Aung, Hnin H.; Rutkowsky, Jennifer; Rutledge, John C.; Srinivasan, Vivek J.

    2017-02-01

    The Western diet, causative in the development of atherosclerotic cardiovascular disease, has recently been associated with the development of diffuse white matter disease (WMD) and other subcortical changes. Yet, little is known about the pathophysiological mechanisms by which a high-fat diet can cause WMD. Mechanistic studies of deep brain regions in mice have been challenging due to a lack of non-invasive, high-resolution, and deep imaging technologies. Here we used Optical Coherence Tomography to study mouse cortical/subcortical structures noninvasively and in vivo. To better understand the role of Western Diet in the development of WMD, intensity and Doppler flow OCT images, obtained using a 1300 nm spectral / Fourier domain OCT system, were used to observe the structural and functional alterations in the cortex and corpus callosum of Western Diet and control diet mouse models. Specifically, we applied segmentation to the OCT images to identify the boundaries of the cortex/corpus callosum, and further quantify the layer thicknesses across animals between the two diet groups. Furthermore, microvasculature alterations such as changes in spatiotemporal flow profiles within diving arterioles, arteriole diameter, and collateral tortuosity were analyzed. In the current study, while the arteriole vessel diameters between the two diet groups was comparable, we show that collateral tortuosity was significantly higher in the Western diet group, compared to control diet group, possibly indicating remodeling of brain vasculature due to dietary changes. Moreover, there is evidence showing that the corpus callosum is thinner in Western diet mice, indicative of tissue atrophy.

  10. Analysis and Assessment of Land Use Change in Alexandria, Egypt Using Satellite Images, GIS, and Modelling Techniques

    International Nuclear Information System (INIS)

    Abdou Azaz, L.K.

    2008-01-01

    Alexandria is the second largest urban governorate in Egypt and has seen significant urban growth in its modern and contemporary history. This study investigates the urban growth phenomenon in Alexandria, Egypt, using the integration of remote sensing and GIS. The urban physical expansion and change were detected using Landsat satellite images. The satellite images of years 1984 and 1993 were first geo referenced, achieving a very small RMSE that provided high accuracy data for satellite image analysis. Then, the images were classified using a tailored classification scheme with accuracy of 93.82% and 95.27% for 1984 and 1993 images respectively. This high accuracy enabled detecting land use/land cover changes with high confidence using a post-classification comparison method. One of the most important findings here is the loss of cultivated land in favour of urban expansion. If the current loss rates continued, 75% of green lands would be lost by year 2191. These hazardous rates call for an urban growth management policy that can preserve such valuable resources to achieve sustainable urban development. Modelling techniques can help in defining the scenarios of urban growth. In this study, the SLEUTH urban growth model was applied to predict future urban expansion in Alexandria until the year 2055. The application of this model in Alexandria of Egypt with its different environmental characteristics is the first application outside USA and Europe. The results revealed that future urban growth would continue along the edges of the current urban extent. This means that the cultivated lands in the east and the southeast of the city will be decreased. To deal with such crisis, there is a serious need for a comprehensive urban growth management programme that can be based on the best practices in similar situations

  11. Modeling and assessing the effects of land use changes on runoff generation with the CLUE-s and WetSpa models

    NARCIS (Netherlands)

    Mohammady, Majid; Moradi, Hamid Reza; Zeinivand, Hossein; Temme, A.J.A.M.; Yazdani, Mohammad Reza; Pourghasemi, Hamid Reza

    2017-01-01

    Land use change is an important determinant of hydrological processes and is known to affect hydrological parameters such as runoff volume, flood frequency, base flow, and the partitioning into surface flow and subsurface flow. The main objective of this research was to assess the magnitude of

  12. Do associations between employee self-reported organizational assessments and attitudinal outcomes change over time? An analysis of four Veterans Health Administration surveys using structural equation modelling.

    Science.gov (United States)

    Das, Sonali; Chen, Ming-Hui; Warren, Nicholas; Hodgson, Michael

    2011-12-01

    This paper evaluates relationships between healthcare employees' perceptions of three hospital organizational constructs (Leadership, Support and Resources), and their assessment of two employee-related outcomes (employee satisfaction and retention) and two patient-related outcomes (patient satisfaction and quality of care). Using four all-employee surveys conducted by the Veterans Health Administration in the United States between 1997 and 2006, we examine the strength of these relationships and their changes over time. Exposure and outcome measures are employee-assessed in all the surveys. Because it can accommodate both latent and measured variables into the model, Structural Equation Modelling (SEM) is used to capture and quantify the relationship structure. The aim of the project is to identify possible intervention foci. The analyses revealed that employee-related outcomes are improved by increases in Leadership and Support, and, not surprisingly, the outcome variable of employee satisfaction reduced turnover intention. The employee assessed patient-related outcomes of satisfaction and quality of care were most improved by increases in Resources. Results also indicate that the three organizational constructs and the web of associations characterized by SEM underwent changes over the study period, perhaps in relation to changes in VHA policy emphases, changes in survey wording and other possible unmeasured factors. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Directory of Open Access Journals (Sweden)

    Julie Reygner

    2016-11-01

    Full Text Available The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil of the pesticide chlorpyrifos (CPF on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract. The last three reactors (representing the colon were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses; (ii the changes are “SHIME®-compartment” specific; and (iii the changes are associated with minor alterations in the production of short-chain fatty acids and lactate.

  14. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Science.gov (United States)

    Reygner, Julie; Joly Condette, Claire; Bruneau, Aurélia; Delanaud, Stéphane; Rhazi, Larbi; Depeint, Flore; Abdennebi-Najar, Latifa; Bach, Veronique; Mayeur, Camille; Khorsi-Cauet, Hafida

    2016-01-01

    The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil) of the pesticide chlorpyrifos (CPF) on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract). The last three reactors (representing the colon) were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts) and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i) CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses); (ii) the changes are “SHIME®-compartment” specific; and (iii) the changes are associated with minor alterations in the production of short-chain fatty acids and lactate. PMID:27827942

  15. Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Nkululeko Simeon Dlamini

    2017-03-01

    Full Text Available Potential impacts of climate change on the streamflow of the Bernam River Basin in Malaysia are assessed using ten Global Climate Models (GCMs under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5. A graphical user interface was developed that integrates all of the common procedures of assessing climate change impacts, to generate high resolution climate variables (e.g., rainfall, temperature, etc. at the local scale from large-scale climate models. These are linked in one executable module to generate future climate sequences that can be used as inputs to various models, including hydrological and crop models. The generated outputs were used as inputs to the SWAT hydrological model to simulate the hydrological processes. The evaluation results indicated that the model performed well for the watershed with a monthly R2, Nash–Sutcliffe Efficiency (NSE and Percent Bias (PBIAS values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for the calibration and validation periods, respectively. The multi-model projections show an increase in future temperature (tmax and tmin in all respective scenarios, up to an average of 2.5 °C for under the worst-case scenario (RC8.5. Rainfall is also predicted to change with clear variations between the dry and wet season. Streamflow projections also followed rainfall pattern to a great extent with a distinct change between the dry and wet season possibly due to the increase in evapotranspiration in the watershed. In principle, the interface can be customized for the application to other watersheds by incorporating GCMs’ baseline data and their corresponding future data for those particular stations in the new watershed. Methodological limitations of the study are also discussed.

  16. [Assessment of the validity and reliability of the processes of change scale based on the transtheoretical model of vegetable consumption behavior in Japanese male workers].

    Science.gov (United States)

    Kushida, Osamu; Murayama, Nobuko

    2012-12-01

    A core construct of the Transtheoretical model is that the processes and stages of change are strongly related to observable behavioral changes. We created the Processes of Change Scale of vegetable consumption behavior and examined the validity and reliability of this scale. In September 2009, a self-administered questionnaire was administered to male Japanese employees, aged 20-59 years, working at 20 worksites in Niigata City in Japan. The stages of change (precontempration, contemplation, preparation, action, and maintenance stage) were measured using 2 items that assessed participants' current implementation of the target behavior (eating 5 or more servings of vegetables per day) and their readiness to change their habits. The Processes of Change Scale of vegetable consumption behavior comprised 10 items assessing 5 cognitive processes (consciousness raising, emotional arousal, environmental reevaluation, self-reevaluation, and social liberation) and 5 behavioral processes (commitment, rewards, helping relationships, countering, and environment control). Each item was selected from an existing scale. Decisional balance (pros [2 items] and cons [2 items]), and self-efficacy (3 items) were also assessed, because these constructs were considered to be relevant to the processes of change. The internal consistency reliability of the scale was examined using Cronbach's alpha. Its construct validity was examined using a factor analysis of the processes of change, decisional balance, and self-efficacy variables, while its criterion-related validity was determined by assessing the association between the scale scores and the stages of change. The data of 527 (out of 600) participants (mean age, 41.1 years) were analyzed. Results indicated that the Processes of Change Scale had sufficient internal consistency reliability (Cronbach's alpha: cognitive processes=0.722, behavioral processes=0.803). The processes of change were divided into 2 factors: "consciousness raising

  17. Application of General Circulation Models to Assess the Potential Impact of Climate Change on Potential Distribution and Relative Abundance of Melanoplus sanguinipes (Fabricius (Orthoptera: Acrididae in North America

    Directory of Open Access Journals (Sweden)

    O. Olfert

    2011-01-01

    Full Text Available Climate is the dominant factor determining the distribution and abundance of most insect species. In recent years, the issue of climatic changes caused by human activities and the effects on agriculture has raised concern. General circulation model scenarios were applied to a bioclimatic model of Melanoplus sanguinipes to assess the potential impact of global warming on its distribution and relative abundance. Native to North America and widely distributed, M. sanguinipes is one of the grasshopper species of the continent most responsible for economic damage to grain, oilseed, pulse, and forage crops. Compared to predicted range and distribution under current climate conditions, model results indicated that M. sanguinipes would have increased range and relative abundance under the three general circulation model scenarios in more northern regions of North America. Conversely, model output predicted that the range of this crop pest could contract in regions where climate conditions became limiting.

  18. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0)

    Science.gov (United States)

    Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.

    2013-12-01

    This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity to a human activity model, is linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Since the MIT IGSM-CAM framework (version 1.0) incorporates a human activity model, it is possible to analyze uncertainties in emissions resulting from both uncertainties in the underlying socio-economic characteristics of the economic model and in the choice of climate-related policies. Another major feature is the flexibility to vary key climate parameters controlling the climate system response to changes in greenhouse gases and aerosols concentrations, e.g., climate sensitivity, ocean heat uptake rate, and strength of the aerosol forcing. The IGSM-CAM is not only able to realistically simulate the present-day mean climate and the observed trends at the global and continental scale, but it also simulates ENSO variability with realistic time scales, seasonality and patterns of SST anomalies, albeit with stronger magnitudes than observed. The IGSM-CAM shares the same general strengths and limitations as the Coupled Model Intercomparison Project Phase 3 (CMIP3) models in simulating present-day annual mean surface temperature and precipitation. Over land, the IGSM-CAM shows similar biases to the NCAR Community Climate System Model (CCSM) version 3, which shares the same atmospheric model. This study also presents 21st century simulations based on two emissions scenarios (unconstrained scenario and stabilization scenario at 660 ppm CO2-equivalent) similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios, and three sets of climate parameters. Results of the simulations with the chosen

  19. A hydro-meteorological model chain to assess the influence of natural variability and impacts of climate change on extreme events and propose optimal water management

    Science.gov (United States)

    von Trentini, F.; Willkofer, F.; Wood, R. R.; Schmid, F. J.; Ludwig, R.

    2017-12-01

    The ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) focuses on the effects of climate change on hydro-meteorological extreme events and their implications for water management in Bavaria and Québec. Therefore, a hydro-meteorological model chain is applied. It employs high performance computing capacity of the Leibniz Supercomputing Centre facility SuperMUC to dynamically downscale 50 members of the Global Circulation Model CanESM2 over European and Eastern North American domains using the Canadian Regional Climate Model (RCM) CRCM5. Over Europe, the unique single model ensemble is conjointly analyzed with the latest information provided through the CORDEX-initiative, to better assess the influence of natural climate variability and climatic change in the dynamics of extreme events. Furthermore, these 50 members of a single RCM will enhance extreme value statistics (extreme return periods) by exploiting the available 1500 model years for the reference period from 1981 to 2010. Hence, the RCM output is applied to drive the process based, fully distributed, and deterministic hydrological model WaSiM in high temporal (3h) and spatial (500m) resolution. WaSiM and the large ensemble are further used to derive a variety of hydro-meteorological patterns leading to severe flood events. A tool for virtual perfect prediction shall provide a combination of optimal lead time and management strategy to mitigate certain flood events following these patterns.

  20. A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Samantha Jane, E-mail: shughes@utad.pt [Fluvial Ecology Laboratory, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Cabral, João Alexandre, E-mail: jcabral@utad.pt [Laboratory of Applied Ecology, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Bastos, Rita, E-mail: ritabastos@utad.pt [Laboratory of Applied Ecology, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Cortes, Rui, E-mail: rcortes@utad.pt [Fluvial Ecology Laboratory, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Vicente, Joana, E-mail: jsvicente@fc.up.pt [Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO), Faculdade de Ciências, Universidade do Porto, Porto (Portugal); Eitelberg, David, E-mail: d.a.eitelberg@vu.nl [Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Yu, Huirong, E-mail: h.yu@vu.nl [Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); College of Resources and Environmental Sciences, China Agricultural University, 2 Yuanmingyuan W. Road, Haidian District, Beijing 100193 (China); and others

    2016-09-15

    This method development paper outlines an integrative stochastic dynamic methodology (StDM) framework to anticipate land use (LU) change effects on the ecological status of monitored and non-monitored lotic surface waters under the Water Framework Directive (WFD). Tested in the Alto Minho River Basin District in North West Portugal, the model is an innovative step towards developing a decision-making and planning tool to assess the influence impacts such as LU change and climate change on these complex systems. Comprising a series of sequential steps, a Generalized Linear Model based, competing model Multi Model Inference (MMI) approach was used for parameter estimation to identify principal land use types (distal factors) driving change in biological and physicochemical support elements (proximal factors) in monitored water bodies. The framework integrated MMI constants and coefficients of selected LU categories in the StDM simulations and spatial projections to simulate the ecological status of monitored and non-monitored lotic waterbodies in the test area under 2 scenarios of (1) LU intensification and (2) LU extensification. A total of 100 simulations were run for a 50 year period for each scenario. Spatially dynamic projections of WFD metrics were obtained, taking into account the occurrence of stochastic wildfire events which typically occur in the study region and are exacerbated by LU change. A marked projected decline to “Moderate” ecological status for most waterbodies was detected under intensification but little change under extensification; only a few waterbodies fell to “moderate” status. The latter scenario describes the actual regional socio-economic situation of agricultural abandonment due to rural poverty, partly explaining the projected lack of change in ecological status. Based on the WFD “one out all out” criterion, projected downward shifts in ecological status were due to physicochemical support elements, namely increased

  1. A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive

    International Nuclear Information System (INIS)

    Hughes, Samantha Jane; Cabral, João Alexandre; Bastos, Rita; Cortes, Rui; Vicente, Joana; Eitelberg, David; Yu, Huirong

    2016-01-01

    This method development paper outlines an integrative stochastic dynamic methodology (StDM) framework to anticipate land use (LU) change effects on the ecological status of monitored and non-monitored lotic surface waters under the Water Framework Directive (WFD). Tested in the Alto Minho River Basin District in North West Portugal, the model is an innovative step towards developing a decision-making and planning tool to assess the influence impacts such as LU change and climate change on these complex systems. Comprising a series of sequential steps, a Generalized Linear Model based, competing model Multi Model Inference (MMI) approach was used for parameter estimation to identify principal land use types (distal factors) driving change in biological and physicochemical support elements (proximal factors) in monitored water bodies. The framework integrated MMI constants and coefficients of selected LU categories in the StDM simulations and spatial projections to simulate the ecological status of monitored and non-monitored lotic waterbodies in the test area under 2 scenarios of (1) LU intensification and (2) LU extensification. A total of 100 simulations were run for a 50 year period for each scenario. Spatially dynamic projections of WFD metrics were obtained, taking into account the occurrence of stochastic wildfire events which typically occur in the study region and are exacerbated by LU change. A marked projected decline to “Moderate” ecological status for most waterbodies was detected under intensification but little change under extensification; only a few waterbodies fell to “moderate” status. The latter scenario describes the actual regional socio-economic situation of agricultural abandonment due to rural poverty, partly explaining the projected lack of change in ecological status. Based on the WFD “one out all out” criterion, projected downward shifts in ecological status were due to physicochemical support elements, namely increased

  2. Nation-wide assessment of climate change impacts on crops in the Philippines and Peru as part of multi-disciplinary modelling framework

    Science.gov (United States)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio

  3. A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation

    NARCIS (Netherlands)

    Wilson, W.; Huyghe, J.M.R.J.; Donkelaar, van C.C.

    2006-01-01

    The composition of articular cartilage changes with progression of osteoarthritis. Since compositional changes are associated with changes in the mechanical properties of the tissue, they are relevant for understanding how mechanical loading induces progression. The objective of this study is to

  4. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts

    NARCIS (Netherlands)

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather|info:eu-repo/dai/nl/41327697X; Mclennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A.; Terzago, Silvia; Vikhamar-schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V.

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for

  5. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach

    Science.gov (United States)

    Xia, Jun; Wang, Qiang; Zhang, Xiang; Wang, Rui; She, Dunxian

    2018-04-01

    The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model-groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP's operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.

  6. Innovative energy technologies in energy-economy models: assessing economic, energy and environmental impacts of climate policy and technological change in Germany.

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.

    2007-04-18

    Energy technologies and innovation are considered to play a crucial role in climate change mitigation. Yet, the representation of technologies in energy-economy models, which are used extensively to analyze the economic, energy and environmental impacts of alternative energy and climate policies, is rather limited. This dissertation presents advanced techniques of including technological innovations in energy-economy computable general equilibrium (CGE) models. New methods are explored and applied for improving the realism of energy production and consumption in such top-down models. The dissertation addresses some of the main criticism of general equilibrium models in the field of energy and climate policy analysis: The lack of detailed sectoral and technical disaggregation, the restricted view on innovation and technological change, and the lack of extended greenhouse gas mitigation options. The dissertation reflects on the questions of (1) how to introduce innovation and technological change in a computable general equilibrium model as well as (2) what additional and policy relevant information is gained from using these methodologies. Employing a new hybrid approach of incorporating technology-specific information for electricity generation and iron and steel production in a dynamic multi-sector computable equilibrium model it can be concluded that technology-specific effects are crucial for the economic assessment of climate policy, in particular the effects relating to process shifts and fuel input structure. Additionally, the dissertation shows that learning-by-doing in renewable energy takes place in the renewable electricity sector but is equally important in upstream sectors that produce technologies, i.e. machinery and equipment, for renewable electricity generation. The differentiation of learning effects in export sectors, such as renewable energy technologies, matters for the economic assessment of climate policies because of effects on international

  7. A joint modelling exercise designed to assess the respective impact of emission changes and meteorological variability on the observed air quality trends in major urban hotspots.

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Dangiola, Ariela; D'Isidoro, Massimo; Gauss, Michael; Granier, Claire; Hodnebrog, Øivind; Jakobs, Hermann; Kanakidou, Maria; Khokhar, Fahim; Law, Kathy; Maurizi, Alberto; Meleux, Frederik; Memmesheimer, Michael; Nyiri, Agnes; Rouil, Laurence; Stordal, Frode; Tampieri, Francesco

    2010-05-01

    With the growth of urban agglomerations, assessing the drivers of variability of air quality in and around the main anthropogenic emission hotspots has become a major societal concern as well as a scientific challenge. These drivers include emission changes and meteorological variability; both of them can be investigated by means of numerical modelling of trends over the past few years. A collaborative effort has been developed in the framework of the CityZen European project to address this question. Several chemistry and transport models (CTMs) are deployed in this activity: four regional models (BOLCHEM, CHIMERE, EMEP and EURAD) and three global models (CTM2, MOZART, and TM4). The period from 1998 to 2007 has been selected for the historic reconstruction. The focus for the present preliminary presentation is Europe. A consistent set of emissions is used by all partners (EMEP for the European domain and IPCC-AR5 beyond) while a variety of meteorological forcing is used to gain robustness in the ensemble spread amongst models. The results of this experiment will be investigated to address the following questions: - Is the envelope of models able to reproduce the observed trends of the key chemical constituents? - How the variability amongst models changes in time and space and what does it tell us about the processes driving the observed trends? - Did chemical regimes and aerosol formation processes changed in selected hotspots? Answering the above questions will contribute to fulfil the ultimate goal of the present study: distinguishing the respective contribution of meteorological variability and emissions changes on air quality trends in major anthropogenic emissions hotspots.

  8. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    Science.gov (United States)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  9. Impact Assessment of Ecosystem Influenced by Changing Global Climate and its National Management Practices II - Focusing on me bioclimatic model development of the forest -

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, S.W.; Park, Y.H; Chung, W.C.; Hideo, H.; Kiyoshi, T. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    In order to assess the influences from climate change, lots of studies have been conducted in Asia/Pacific region recently. The analyzed contents in these studies have a wide range of uncertainty even though the results were limited to the direct influences. While the geographical resolutions of various data used in the model are important factors, integration and expansion of the basic physical and biological reactions is another problem. The results from the previous researches suggest that there will be some problems, which are not to reflect the climate change correctly due to the regional small scale and various utilization of land, if data of the existing large-scale influence model is applied to Korea as it is. This study adopts data of 5 large-scale GCM (Global Circulation Model) in order to find the special climate change pattern and estimates the influences from climate change based on the pattern. In the interpretation of the results from this study, therefore, it is necessary to apply the method, which simultaneously analyzes averages and ranges of the estimated influences by 5 GCM, when forecasting influences by scenarios in 2003, the third year of this study. On considering this background, even though the averages and transition ranges of GCM data in this study provide many suggestions for estimating the influences ranges of forest, their application should be conducted after the serious examination because they do not perfectly reflect the regional microclimate. 108 refs., 56 figs., 24 tabs.

  10. Climate change & extreme weather vulnerability assessment framework.

    Science.gov (United States)

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  11. Assessing Independent Variables Used in Econometric Modeling Forest Land Use or Land Cover Change: A Meta-Analysis

    Science.gov (United States)

    J Jeuck; F. Cubbage; R. Abt; R. Bardon; J. McCarter; J. Coulston; M. Renkow

    2014-01-01

    : We conducted a meta-analysis on 64 econometric models from 47 studies predicting forestland conversion to agriculture (F2A), forestland to development (F2D), forestland to non-forested (F2NF) and undeveloped (including forestland) to developed (U2D) land. Over 250 independent econometric variables were identified from 21 F2A models, 21 F2D models, 12 F2NF models, and...

  12. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed

    Science.gov (United States)

    Fazeli Farsani, Iman; Farzaneh, M. R.; Besalatpour, A. A.; Salehi, M. H.; Faramarzi, M.

    2018-04-01

    The variability and uncertainty of water resources associated with climate change are critical issues in arid and semi-arid regions. In this study, we used the soil and water assessment tool (SWAT) to evaluate the impact of climate change on the spatial and temporal variability of water resources in the Bazoft watershed, Iran. The analysis was based on changes of blue water flow, green water flow, and green water storage for a future period (2010-2099) compared to a historical period (1992-2008). The r-factor, p-factor, R 2, and Nash-Sutcliff coefficients for discharge were 1.02, 0.89, 0.80, and 0.80 for the calibration period and 1.03, 0.76, 0.57, and 0.59 for the validation period, respectively. General circulation models (GCMs) under 18 emission scenarios from the IPCC's Fourth (AR4) and Fifth (AR5) Assessment Reports were fed into the SWAT model. At the sub-basin level, blue water tended to decrease, while green water flow tended to increase in the future scenario, and green water storage was predicted to continue its historical trend into the future. At the monthly time scale, the 95% prediction uncertainty bands (95PPUs) of blue and green water flows varied widely in the watershed. A large number (18) of climate change scenarios fell within the estimated uncertainty band of the historical period. The large differences among scenarios indicated high levels of uncertainty in the watershed. Our results reveal that the spatial patterns of water resource components and their uncertainties in the context of climate change are notably different between IPCC AR4 and AR5 in the Bazoft watershed. This study provides a strong basis for water supply-demand analyses, and the general analytical framework can be applied to other study areas with similar challenges.

  13. Taking into account the impact of attrition on the assessment of response shift and true change: a multigroup structural equation modeling approach.

    Science.gov (United States)

    Verdam, Mathilde G E; Oort, Frans J; van der Linden, Yvette M; Sprangers, Mirjam A G

    2015-03-01

    Missing data due to attrition present a challenge for the assessment and interpretation of change and response shift in HRQL outcomes. The objective was to handle such missingness and to assess response shift and 'true change' with the use of an attrition-based multigroup structural equation modeling (SEM) approach. Functional limitations and health impairments were measured in 1,157 cancer patients, who were treated with palliative radiotherapy for painful bone metastases, before [time (T) 0], every week after treatment (T1 through T12), and then monthly for up to 2 years (T13 through T24). To handle missing data due to attrition, the SEM procedure was extended to a multigroup approach, in which we distinguished three groups: short survival (3-5 measurements), medium survival (6-12 measurements), and long survival (>12 measurements). Attrition after third, sixth, and 13th measurement occasions was 11, 24, and 41 %, respectively. Results show that patterns of change in functional limitations and health impairments differ between patients with short, medium, or long survival. Moreover, three response-shift effects were detected: recalibration of 'pain' and 'sickness' and reprioritization of 'physical functioning.' If response-shift effects would not have been taken into account, functional limitations and health impairments would generally be underestimated across measurements. The multigroup SEM approach enables the analysis of data from patients with different patterns of missing data due to attrition. This approach does not only allow for detection of response shift and assessment of true change across measurements, but also allow for detection of differences in response shift and true change across groups of patients with different attrition rates.

  14. Hydrologic modelling and dendrochronology as tool of site-species adequation assessment in a changing climate context

    OpenAIRE

    Sohier, Catherine; Debruxelles, Jérôme; Brusten, Thomas; Bauwens, Alexandra; Claessens, Hugues; Degre, Aurore

    2010-01-01

    A hydrologic model is related to dendrochronological measurements performed in a 52 years old Spruce stand. The site is situated on a hillside with shallow and acid brown soil in the ecoregion of Ardenne (Wallonia, Southern Belgium). Hydrologic modelling The hydrologic simulation runs from 1971 to 2005 at daily time step. The model is based on an EPIC code, adapted to the site concerning soil reservoirs depth, characteristic water contents, root profile and water uptake. Weather data c...

  15. CALTRANS CLIMATE CHANGE VULNERABILITY ASSESSMENTS

    Science.gov (United States)

    2018-01-01

    The following report was developed for the California Department of Transportation (Caltrans) to summarize a vulnerability assessment conducted for assets in Caltrans District 4. The assessment was developed to specifically identify the potential eff...

  16. Using the CLM Crop Model to assess the impacts of changes in Climate, Atmospheric CO2, Irrigation, Fertilizer and Geographic Distribution on Historical and Future Crop Yields

    Science.gov (United States)

    Lawrence, P.

    2015-12-01

    Since the start of the green revolution global crop yields have increased linearly for most major cereal crops, so that present day global values are around twice those of the 1960s. The increase in crop yields have allowed for large increases in global agricultural production without correspondingly large increases in cropping area. Future projections under the Shared Socio-economic Pathways (SSP) framework and other assessments result in increases of global crop production of greater than 100% by the year 2050. In order to meet this increased agricultural demand within the available arable land, future production gains need to be understood in terms of the yield changes due to changes in climate, atmospheric CO2, and adaptive management such as irrigation and fertilizer application. In addition to the changes in crop yield, future agricultural demand will need to be met through increasing cropping areas into what are currently marginal lands at the cost of existing forests and other natural ecosystems. In this study we assess the utility of the crop model within the Community Land Model (CLM Crop) to provide both historical and future guidance on changes in crop yields under a range of global idealized crop modeling experiments. The idealized experiments follow the experimental design of the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) in which CLM Crop is a participating model. The idealized experiments consist of global crop simulations for Cotton, Maize, Rice, Soy, Sugarcane, and Wheat under various climate, atmospheric CO2 levels, irrigation prescription, and nitrogen fertilizer application. The time periods simulated for the experiments are for the Historical period (1901 - 2005), and for the two Representative Concentration Pathways of RCP 4.5 and RCP 8.5 (2006 - 2100). Each crop is simulated on all land grid cells globally for each time period with atmospheric forcing that is a combination of: 1. transient climate and CO2; 2. transient climate

  17. A comparison of metrics for assessing state-of-the-art climate models and implications for probabilistic projections of climate change

    Science.gov (United States)

    Ring, Christoph; Pollinger, Felix; Kaspar-Ott, Irena; Hertig, Elke; Jacobeit, Jucundus; Paeth, Heiko

    2018-03-01

    A major task of climate science are reliable projections of climate change for the future. To enable more solid statements and to decrease the range of uncertainty, global general circulation models and regional climate models are evaluated based on a 2 × 2 contingency table approach to generate model weights. These weights are compared among different methodologies and their impact on probabilistic projections of temperature and precipitation changes is investigated. Simulated seasonal precipitation and temperature for both 50-year trends and climatological means are assessed at two spatial scales: in seven study regions around the globe and in eight sub-regions of the Mediterranean area. Overall, 24 models of phase 3 and 38 models of phase 5 of the Coupled Model Intercomparison Project altogether 159 transient simulations of precipitation and 119 of temperature from four emissions scenarios are evaluated against the ERA-20C reanalysis over the 20th century. The results show high conformity with previous model evaluation studies. The metrics reveal that mean of precipitation and both temperature mean and trend agree well with the reference dataset and indicate improvement for the more recent ensemble mean, especially for temperature. The method is highly transferrable to a variety of further applications in climate science. Overall, there are regional differences of simulation quality, however, these are less pronounced than those between the results for 50-year mean and trend. The trend results are suitable for assigning weighting factors to climate models. Yet, the implications for probabilistic climate projections is strictly dependent on the region and season.

  18. A modelling framework to assess climate change and adaptation impact on heterogeneous crop-livestock farming communities

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Masikati, P.; Homann-Kee Tui, S.; Chibwana, G.A.; Crespo, O.

    2015-01-01

    Climate change will impact the productivity of maize-based crop-livestock systems and the livelihoods of smallholders depending on them in semi-arid Zimbabwe. The large diversity in resource endowment and production objectives in rural communities differentially influences this impact and the

  19. Climate change and coffee: assessing vulnerability by modeling future climate suitability in the Caribbean island of Puerto Rico

    Science.gov (United States)

    Stephen J. Fain; Maya Quiñones; Nora L. Álvarez-Berríos; Isabel K. Parés-Ramos; William A. Gould

    2017-01-01

    Coffee production has long been culturally and economically important in Puerto Rico. However, since peaking in the late nineteenth century, harvests are near record lows with many former farms abandoned. While value-added markets present new opportunities to reinvigorate the industry, regional trends associated with climate change may threaten the ability to produce...

  20. The Association of Unintentional Changes in Weight, Body Composition, and Homeostasis Model Assessment Index with Glycemic Progression in Non-Diabetic Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Eun-Jung Rhee

    2011-04-01

    Full Text Available BackgroundWe performed a retrospective longitudinal study on the effects of changes in weight, body composition, and homeostasis model assessment (HOMA indices on glycemic progression in subjects without diabetes during a four-year follow-up period in a community cohort without intentional intervention.MethodsFrom 28,440 non-diabetic subjects who participated in a medical check-up program in 2004, data on anthropometric and metabolic parameters were obtained after four years in 2008. Body composition analyses were performed with a bioelectrical impedance analyzer. Skeletal muscle index (SMI, % was calculated with lean mass/weight×100. Subjects were divided into three groups according to weight change status in four years: weight loss (≤-5.0%, stable weight (-5.0 to 5.0%, weight gain (≥5.0%. Progressors were defined as the subjects who progressed to impaired fasting glucose or diabetes.ResultsProgressors showed worse baseline metabolic profiles compared with non-progressors. In logistic regression analyses, the increase in changes of HOMA-insulin resistance (HOMA-IR in four years presented higher odds ratios for glycemic progression compared with other changes during that period. Among the components of body composition, a change in waist-hip ratio was the strongest predictor, and SMI change in four years was a significant negative predictor for glycemic progression. Changes in HOMA β-cell function in four years was a negative predictor for glycemic progression.ConclusionIncreased interval changes in HOMA-IR, weight gain and waist-hip ratio was associated with glycemic progression during a four-year period without intentional intervention in non-diabetic Korean subjects.

  1. A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation

    International Nuclear Information System (INIS)

    Cai, Yiyong; Newth, David; Finnigan, John; Gunasekera, Don

    2015-01-01

    Highlights: • This paper introduces the design of a hybrid energy-economy model, GTEM-C. • The model offers a unified tool to analyse the energy-carbon-environment nexus. • Results are presented on global energy transformation due to carbon mitigation. • Electrification with renewable energies can contain the spiking of carbon prices. - Abstract: This paper introduces the design of the CSIRO variant of the Global Trade and Environment model (GTEM-C). GTEM-C is a hybrid model that combines the top-down macroeconomic representation of a computable general equilibrium model with the bottom-up engineering details of energy production. The model features detailed accounting for global energy flows that are embedded in traded energy goods, and it offers a unified framework to analyse the energy-carbon-environment nexus. As an illustrative example, we present simulation results on global energy transformation under the Intergovernmental Panel on Climate Change’s representative carbon pathways 4.5 and 8.5. By testing the model’s sensitivity to the relevant parameter, we find that the pace of electrification will significantly contain the spiking of carbon prices because electricity can be produced from carbon-free or less carbon-intensive technologies. The decoupling of energy use and carbon footprint, due to the uptake of clean electricity technologies, such as nuclear, wind, solar, and carbon capture and storage, allows the world to maintain high level of energy consumption, which is essential to economic growth

  2. Multivariate statistical assessments of greenhouse-gas-induced climatic change and comparison with results from general circulation models

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1990-01-01

    Based on univariate correction and coherence analyses, including techniques moving in time, and taking account of the physical basis of the relationships, a simple multivariate concept is presented which correlates observational climatic time series simultaneously with solar, volcanic, ENSO (El Nino/Souther Oscillation) and anthropogenic greenhouse-gas forcing. The climatic elements considered are air temperature (near the ground and stratosphere), sea surface temperature, sea level and precipitation, and cover at least the period 1881-1980 (stratospheric temperature only since 1960). The climate signal assessments which may be hypothetically attributed to the observed CO 2 or equivalent CO 2 (implying additional greenhouse gases) increase are compared with those resulting from GCM experiments. In case of the Northern hemisphere air temperature these comparisons are performed not only in respect to hemispheric and global means, but also in respect to the regional and seasonal patterns. Autocorrelations and phase shifts of the climate response to natural and anthropogenic forcing complicate the statistical assessments

  3. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment

    Directory of Open Access Journals (Sweden)

    Alex C. Ruane

    2017-03-01

    Full Text Available Abstract We present the Representative Temperature and Precipitation (T&P GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP to select a practical subset of global climate models (GCMs for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.

  4. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts

    DEFF Research Database (Denmark)

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic

    2016-01-01

    on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict...

  5. Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model

    NARCIS (Netherlands)

    van Sluisveld, Mariësse A E; Herreras Martinez, Sara; Daioglou, Vasileios|info:eu-repo/dai/nl/345702867; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X

    2016-01-01

    Most model studies focus on technical solutions in order to meet the 2°C climate target, such as renewable, carbon capture and energy efficiency technologies. Such studies show that it becomes increasingly more difficult to attain the 2°C target with carbon price driven technical solutions alone.

  6. MRI as a Novel In Vivo Approach for Assessing Structural Changes of Chlamydia Pathology in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Catherine D G Hines

    Full Text Available Chlamydia trachomatis is among the most prevalent of sexually transmitted diseases. While Chlamydia infection is a reportable event and screening has increased over time, enhanced surveillance has not resulted in a reduction in the rate of infections, and Chlamydia infections frequently recur. The development of a preventative vaccine for Chlamydia may be the only effective approach for reducing infection and the frequency of pathological outcomes. Current vaccine research efforts involve time consuming and/or invasive approaches for assessment of disease state, and MRI presents a clinically translatable method for assessing infection and related pathology both quickly and non-invasively. Longitudinal T2-weighted MRI was performed over 63 days on both control or Chlamydia muridarum challenged mice, either with or without elementary body (EB immunization, and gross necropsy was performed on day 65. A scoring system was developed to assess the number of regions affected by Chlamydia pathology and was used to document pathology over time and at necropsy. The scoring system documented increasing incidence of pathology in the unimmunized and challenged mice (significantly greater compared to the control and EB immunized-challenged groups by 21 days post-challenge. No differences between the unchallenged and EB immunized-challenged mice were observed. MRI scores at Day 63 were consistently higher than gross necropsy scores at Day 65, although two of the three groups of mice showed no significant differences between the two techniques. In this work we describe the application of MRI in mice for the potential evaluation of disease pathology and sequelae caused by C. muridarum infection and this technique's potential for evaluation of vaccines for Chlamydia.

  7. Assessment of channel changes, model of historical floods, and effects of backwater on flood stage, and flood mitigation alternatives for the Wichita River at Wichita Falls, Texas

    Science.gov (United States)

    Winters, Karl E.; Baldys, Stanley

    2011-01-01

    In cooperation with the City of Wichita Falls, the U.S. Geological Survey assessed channel changes on the Wichita River at Wichita Falls, Texas, and modeled historical floods to investigate possible causes and potential mitigation alternatives to higher flood stages in recent (2007 and 2008) floods. Extreme flooding occurred on the Wichita River on June 30, 2007, inundating 167 homes in Wichita Falls. Although a record flood stage was reached in June 2007, the peak discharge was much less than some historical floods at Wichita Falls. Streamflow and stage data from two gages on the Wichita River and one on Holliday Creek were used to assess the interaction of the two streams. Changes in the Wichita River channel were evaluated using historical aerial and ground photography, comparison of recent and historical cross sections, and comparison of channel roughness coefficients with those from earlier studies. The floods of 2007 and 2008 were modeled using a one-dimensional step-backwater model. Calibrated channel roughness was larger for the 2007 flood compared to the 2008 flood, and the 2007 flood peaked about 4 feet higher than the 2008 flood. Calibration of the 1941 flood yielded a channel roughness coefficient (Manning's n) of 0.030, which represents a fairly clean natural channel. The step-backwater model was also used to evaluate the following potential mitigation alternatives: (1) increasing the capacity of the bypass channel near River Road in Wichita Falls, Texas; (2) removal of obstructions near the Scott Avenue and Martin Luther King Junior Boulevard bridges in Wichita Falls, Texas; (3) widening of aggraded channel banks in the reach between Martin Luther King Junior Boulevard and River Road; and (4) reducing channel bank and overbank roughness. Reductions in water-surface elevations ranged from 0.1 foot to as much as 3.0 feet for the different mitigation alternatives. The effects of implementing a combination of different flood-mitigation alternatives were

  8. Behavioural models of technological change

    NARCIS (Netherlands)

    Zeppini, P.

    2011-01-01

    Technological change still remains an important driver of the economy. This thesis studies the endogenous forces of technological change stemming from behavioural interactions within populations of many agents. Four theoretical models are proposed that describe consumers’ and suppliers’ behaviour

  9. Patterns of Resistance in Managing Assessment Change

    Science.gov (United States)

    Deneen, Christopher; Boud, David

    2014-01-01

    Achieving change in assessment practices in higher education is difficult. One of the reasons for this is resistance among those responsible for teaching and assessing. This paper seeks to explore this resistance through an analysis of staff dialogue during a major attempt to change the assessment practices at one institution. An institution-wide…

  10. Combining Satellite Data and Models to Assess Vulnerability to Climate Change and Its Impact on Food Security in Morocco

    Directory of Open Access Journals (Sweden)

    Saloua Rochdane

    2014-04-01

    Full Text Available This work analyzes satellite and socioeconomic data to explore the relationship between food and wood demand and supply, expressed in terms of net primary production (NPP, in Morocco. A vulnerability index is defined as the ratio of demand to supply as influenced by population, affluence, technology and climate indicators. The present situation (1995–2007, as well as projections of demand and supply, following the Intergovernmental Panel on Climate Change, Scenarios A2 and B2, are analyzed for a 2025 horizon. We find that the food NPP demand increased by 34.5%, whereas the wood consumption NPP demand decreased by 19.3% between 1995 and 2007. The annual NPP required to support the population’s food and wood appropriation was 29.73 million tons of carbon (MTC in 2007, while the landscape NPP production for the same year was 60.24 MTC; indicating that the population appropriates about 50% of the total NPP resources. Both scenarios show increases in demand and decreases in supply. Under A2, it would take more than 1.25 years for terrestrial ecosystems in Morocco to produce the NPP appropriated by populations in one year. This number is 0.70 years under B2. This already high vulnerability for food and wood products is likely to be exacerbated with climate changes and population increase.

  11. Automated home cage assessment shows behavioral changes in a transgenic mouse model of spinocerebellar ataxia type 17.

    Science.gov (United States)

    Portal, Esteban; Riess, Olaf; Nguyen, Huu Phuc

    2013-08-01

    Spinocerebellar Ataxia type 17 (SCA17) is an autosomal dominantly inherited, neurodegenerative disease characterized by ataxia, involuntary movements, and dementia. A novel SCA17 mouse model having a 71 polyglutamine repeat expansion in the TATA-binding protein (TBP) has shown age related motor deficit using a classic motor test, yet concomitant weight increase might be a confounding factor for this measurement. In this study we used an automated home cage system to test several motor readouts for this same model to confirm pathological behavior results and evaluate benefits of automated home cage in behavior phenotyping. Our results confirm motor deficits in the Tbp/Q71 mice and present previously unrecognized behavioral characteristics obtained from the automated home cage, indicating its use for high-throughput screening and testing, e.g. of therapeutic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Taking into account the impact of attrition on the assessment of response shift and true change: a multigroup structural equation modeling approach

    NARCIS (Netherlands)

    Verdam, Mathilde G. E.; Oort, Frans J.; van der Linden, Yvette M.; Sprangers, Mirjam A. G.

    2015-01-01

    Missing data due to attrition present a challenge for the assessment and interpretation of change and response shift in HRQL outcomes. The objective was to handle such missingness and to assess response shift and 'true change' with the use of an attrition-based multigroup structural equation

  13. Change point analysis and assessment

    DEFF Research Database (Denmark)

    Müller, Sabine; Neergaard, Helle; Ulhøi, John Parm

    2011-01-01

    The aim of this article is to develop an analytical framework for studying processes such as continuous innovation and business development in high-tech SME clusters that transcends the traditional qualitative-quantitative divide. It integrates four existing and well-recognized approaches...... to studying events, processes and change, mamely change-point analysis, event-history analysis, critical-incident technique and sequence analysis....

  14. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    Energy Technology Data Exchange (ETDEWEB)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B. [Lab. Pierre Sue, CEA-CNRS UMR 9956, CEA/Saclay, Gif-sur-Yvette (France); Coves, J. [Inst. de Biologie Structurale - J.-P. Ebel, Lab. des Proteines Membranaires, Grenoble (France); Hazemann, J.L. [Lab. de Geophysique Interne et Tectonopbysique, UMR CNRS/Univ. Joseph Fourier, Saint-Martin-D' Heres (France)

    2009-07-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  15. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    International Nuclear Information System (INIS)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B.; Coves, J.; Hazemann, J.L.

    2009-01-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  16. Assessing Climate Change Impacts on Global Hydropower

    Directory of Open Access Journals (Sweden)

    Aanund Killingtveit

    2012-02-01

    Full Text Available Currently, hydropower accounts for close to 16% of the world’s total power supply and is the world’s most dominant (86% source of renewable electrical energy. The key resource for hydropower generation is runoff, which is dependent on precipitation. The future global climate is uncertain and thus poses some risk for the hydropower generation sector. The crucial question and challenge then is what will be the impact of climate change on global hydropower generation and what are the resulting regional variations in hydropower generation potential? This paper is a study that aims to evaluate the changes in global hydropower generation resulting from predicted changes in climate. The study uses an ensemble of simulations of regional patterns of changes in runoff, computed from global circulation models (GCM simulations with 12 different models. Based on these runoff changes, hydropower generation is estimated by relating the runoff changes to hydropower generation potential through geographical information system (GIS, based on 2005 hydropower generation. Hydropower data obtained from EIA (energy generation, national sites, FAO (water resources and UNEP were used in the analysis. The countries/states were used as computational units to reduce the complexities of the analysis. The results indicate that there are large variations of changes (increases/decreases in hydropower generation across regions and even within regions. Globally, hydropower generation is predicted to change very little by the year 2050 for the hydropower system in operation today. This change amounts to an increase of less than 1% of the current (2005 generation level although it is necessary to carry out basin level detailed assessment for local impacts which may differ from the country based values. There are many regions where runoff and hydropower generation will increase due to increasing precipitation, but also many regions where there will be a decrease. Based on this

  17. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event

    Energy Technology Data Exchange (ETDEWEB)

    Donner, S.D. [Princeton Univ., NJ (United States). Woodrow Wilson School of Public and International Affairs; Knutson, T.R. [National Oceanic and Atmospheric Administration, Princeton, NJ (United States). Geophysical Fluid Dynamics Lab.; Oppenheimer, M. [Princeton Univ., NJ (United States). Dept. of Geosciences

    2007-03-27

    Episodes of mass coral bleaching around the world in recent decades have been attributed to periods of anomalously warm ocean temperatures. In 2005, the sea surface temperature (SST) anomaly in the tropical North Atlantic that may have contributed to the strong hurricane season caused widespread coral bleaching in the Eastern Caribbean. Here, the authors use two global climate models to evaluate the contribution of natural climate variability and anthropogenic forcing to the thermal stress that caused the 2005 coral bleaching event. Historical temperature data and simulations for the 1870-2000 period show that the observed warming in the region is unlikely to be due to unforced climate variability alone. Simulation of background climate variability suggests that anthropogenic warming may have increased the probability of occurrence of significant thermal stress events for corals in this region by an order of magnitude. Under scenarios of future greenhouse gas emissions, mass coral bleaching in the Eastern Caribbean may become a biannual event in 20-30 years. However, if corals and their symbionts can adapt by 1-1.5{sup o}C, such mass bleaching events may not begin to recur at potentially harmful intervals until the latter half of the century. The delay could enable more time to alter the path of greenhouse gas emissions, although long-term 'committed warming' even after stabilization of atmospheric CO{sub 2} levels may still represent an additional long-term threat to corals.

  18. Advances in Methods for Assessing Longitudinal Change

    Science.gov (United States)

    Grimm, Kevin J.; Mazza, Gina L.; Mazzocco, Michèle M. M.

    2016-01-01

    Educational research aims to understand how and why students change over time. With its emphasis on within-person change, latent change score models provide educational researchers with a more general and flexible framework for testing nuanced hypotheses regarding within-person change and between-person differences in within-person change. Models…

  19. Handling Interdependencies in Climate Change Risk Assessment

    Directory of Open Access Journals (Sweden)

    Richard J. Dawson

    2015-12-01

    Full Text Available Typically, a climate change risk assessment focuses on individual sectors or hazards. However, interdependencies between climate risks manifest themselves via functional, physical, geographical, economic, policy and social mechanisms. These can occur over a range of spatial or temporal scales and with different strengths of coupling. Three case studies are used to demonstrate how interdependencies can significantly alter the nature and magnitude of risk, and, consequently, investment priorities for adaptation. The three examples explore interdependencies that arise from (1 climate loading dependence; (2 mediation of two climate impacts by physical processes operating over large spatial extents; and, (3 multiple risks that are influenced by shared climatic and socio-economic drivers. Drawing upon learning from these case studies, and other work, a framework for the analysis and consideration of interdependencies in climate change risk assessment has been developed. This is an iterative learning loop that involves defining the system, scoping interaction mechanisms, applying appropriate modelling tools, identifying vulnerabilities and opportunities, and assessing the performance of adaptation interventions.

  20. Synthetic Scenarios from CMIP5 Model Simulations for Climate Change Impact Assessments in Managed Ecosystems and Water Resources: Case Study in South Asian Countries

    Science.gov (United States)

    Anandhi, A.; Omani, N.; Chaubey, I.; Horton, R.; Bader, D.; Nanjundiah, R. S.

    2017-01-01

    Increasing population, urbanization, and associated demand for food production compounded by climate change and variability have important implications for the managed ecosystems and water resources of a region. This is particularly true for south Asia, which supports one quarter of the global population, half of whom live below the poverty line. This region is largely dependent on monsoon precipitation for water. Given the limited resources of the developing countries in this region, the objective of our study was to empirically explore climate change in south Asia up to the year 2099 using monthly simulations from 35 global climate models (GCMs) participating in the fifth phase of the Climate Model Inter-comparison Project (CMIP5) for two future emission scenarios (representative concentration pathways RCP4.5 and RCP8.5) and provide a wide range of potential climate change outcomes. This was carried out using a three-step procedure: calculating the mean annual, monsoon, and non-monsoon precipitation and temperatures; estimating the percent change from historical conditions; and developing scenario funnels and synthetic scenarios. This methodology was applied for the entire south Asia region; however, the percent change information generated at 1.5deg grid scale can be used to generate scenarios at finer spatial scales. Our results showed a high variability in the future change in precipitation (-23% to 52%, maximum in the non-monsoon season) and temperature (0.8% to 2.1%) in the region. Temperatures in the region consistently increased, especially in the Himalayan region, which could have impacts including a faster retreat of glaciers and increased floods. It could also change rivers from perennial to seasonal, leading to significant challenges in water management. Increasing temperatures could further stress groundwater reservoirs, leading to withdrawal rates that become even more unsustainable. The high precipitation variability (with higher propensity for

  1. Numerical Modelling for the Thermal Performance Assessment of a Semi-Opaque Façade with a Multilayer of Nano-Structured and Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Carla Balocco

    2017-10-01

    Full Text Available The aim of our present study was to assess and compare the thermo-physical and energy behaviour of different integrated building façades, using a multi-physics simulation approach. Advanced integrated façades composed of opaque modules, one of them with a phase change materials (PCM layer, the others with multilayer panels, combined with transparent ones, consisting of nano-structured materials and new-generation photovoltaic systems, were investigated. A multi-physics approach was used for the design optimization of the studied components and evaluation of their thermo-physical and heat transfer performance. In particular, computational fluid dynamics (CFD multi-physics transient simulations were performed to assess air temperature and velocity fields inside the ventilated cavities. Analysis of heat and mass exchange through all the components was assessed during heating and cooling mode of a reference building. The typical Mediterranean climate was considered. Results comparison allowed the dynamic heat transfer evaluation of the multilayer façades as a function of variable climatic conditions, and their flexibility and adaptability exploitation, when different energy strategies are pursued. The multi-physics modelling approach used, proved to be a strong tool for the energy design optimization and energy sustainability evaluation of different advance materials and building components.

  2. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

    NARCIS (Netherlands)

    Strengers, B.J.; Müller, C.; Schaeffer, M.; Haarsma, R.J.; Severijns, C.; Gerten, D.; Schaphoff, S.; Houdt, Van den R.; Oostenrijk, R.

    2010-01-01

    This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and

  3. Smooth random change point models.

    Science.gov (United States)

    van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E

    2011-03-15

    Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Preparing for business model change

    DEFF Research Database (Denmark)

    Cavalcante, Sergio Andre

    2014-01-01

    The purpose of this paper is to investigate managers’ initiatives in the context of an emergent technology and their effect on the business models of firms. Building on four case studies of organizations interested in using an emergent technology for commercial purposes, this study applies...... a process-based framework of business model change. The main finding is that managers’ initiatives occur in the context of a “pre-stage” of potential business model change, which includes processes of experimenting and learning. The pre-stage finding gives a better understanding of when change initiatives...... affect a business model and when they do not, allowing managers to adopt a more proactive behaviour and guide their organizations towards effective business model change. The main contribution of this paper is to suggest the inclusion of the pre-stage idea in research and practice, since...

  5. Climate change vulnerability assessment in Georgia

    Science.gov (United States)

    Binita KC; J. Marshall Shepherd; Cassandra Johnson Gaither

    2015-01-01

    Climate change is occurring in the Southeastern United States, and one manifestation is changes in frequency and intensity of extreme events. A vulnerability assessment is performed in the state of Georgia (United States) at the county level from 1975 to 2012 in decadal increments. Climate change vulnerability is typically measured as a function of exposure to physical...

  6. Assessment of Climate Change Impact on Reservoir Inflows Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Babur

    2016-09-01

    Full Text Available Assessment of climate change on reservoir inflow is important for water and power stressed countries. Projected climate is subject to uncertainties related to climate change scenarios and Global Circulation Models (GCMs. This paper discusses the consequences of climate change on discharge. Historical climatic and gauging data were collected from different stations within a watershed. Bias correction was performed on GCMs temperature and precipitation data. After successful development of the hydrological modeling system (SWAT for the basin, streamflow was simulated for three future periods (2011–2040, 2041–2070, and 2071–2100 and compared with the baseline data (1981–2010 to explore the changes in different flow indicators such as mean flow, low flow, median flow, high flow, flow duration curves, temporal shift in peaks, and temporal shifts in center-of-volume dates. From the results obtained, an overall increase in mean annual flow was projected in the basin under both RCP 4.5 and RCP 8.5 scenarios. Winter and spring showed a noticeable increase in streamflow, while summer and autumn showed a decrease in streamflow. High flows were predicted to increase, but median flow was projected to decrease in the future under both scenarios. Flow duration curves showed that the probability of occurrence of high flow is likely to be more in the future. It was also noted that peaks were predicted to shift from May to July in the future, and the center-of-volume date of the annual flow may vary from −11 to 23 days in the basin, under both RCP 4.5 and RCP 8.5. As a whole, the Mangla basin will face more floods and less droughts in the future due to the projected increase in high and low flows, decrease in median flows and greater temporal and magnitudinal variations in peak flows. These outcomes suggest that it is important to consider the influence of climate change on water resources to frame appropriate guidelines for planning and management.

  7. Taking into account the impact of attrition on the assessment of response shift and true change: a multigroup structural equation modeling approach

    NARCIS (Netherlands)

    Verdam, M.G.E.; Oort, F.J.; van der Linden, Y.M.; Sprangers, M.A.G.

    2015-01-01

    Purpose: Missing data due to attrition present a challenge for the assessment and interpretation of change and response shift in HRQL outcomes. The objective was to handle such missingness and to assess response shift and ‘true change’ with the use of an attrition-based multigroup structural

  8. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    Science.gov (United States)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important

  9. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current......Hydrological change modelling methodologies generally use climate models outputs to force hydrological simulations under changed conditions. There are nested sources of uncertainty throughout this methodology, including choice of climate model and subsequent bias correction methods. This Ph.......D. study evaluates the uncertainty of the impact of climate change in hydrological simulations given multiple climate models and bias correction methods of varying complexity. Three distribution based scaling methods (DBS) were developed and benchmarked against a more simplistic and commonly used delta...

  10. Climate Modeling Computing Needs Assessment

    Science.gov (United States)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  11. Methodology for the assessment of the impacts of climate change on land degradation at multiple scales: Use of high resolution satellite imagery, modelling, and ground measurements for the assessment in Ethiopia

    Science.gov (United States)

    Ahmed, Oumer

    In this study, a new multi-scalar methodology for assessing land degradation response to climate change is presented by analyzing 22 years of both climatic data and satellite observations, together with future projections from modelling, for Ethiopia. A comprehensive analysis of the impacts of climate change on land degradation was performed as evidenced from the integration of a host of land degradation indicators, namely: normalized difference vegetation Index (NDVI), net primary productivity (NPP), crop yield, biomass, length of growing period (LGP), rainfall use efficiency (RUE), energy use efficiency (EUE) and aridity index (AI). The results from the national level assessment indicate that over the period of 1984-2006, NPP decreased overall. Degrading areas occupy 30% of the country and suffer an average loss of NPP 10.3 kg C ha-1 y-1. The crop yield prediction results indicate a wide range of outcomes is to be expected for the country, due to the heterogeneity of the agro-climatic resources as well as of projected climate change. The results of the sub-national level assessment show that about 29% of the Awash watershed is degrading, and these degrading areas experience an average loss of NPP 4.6 kg C ha-1 y-1. Further, about 33.8% of the degrading area in the watershed is associated with bare land and 25% with agricultural land. Finally, since remotely sensed estimates are frequently used to assess land degradation at multiple scales, scale transfer methods are evaluated in this study to provide a tool to rank both upscaling and downscaling procedures.

  12. Modelling the distribution of tritium in groundwater across South Africa to assess the vulnerability and sustainability of groundwater resources in response to climate change

    Science.gov (United States)

    van Rooyen, Jared; Miller, Jodie; Watson, Andrew; Butler, Mike

    2017-04-01

    Groundwater is critical for sustaining human populations, especially in semi-arid to arid areas, where surface water availability is low. Shallow groundwater is usually abstracted for this purpose because it is the easiest to access and assumed to be renewable and regularly recharged by precipitation. Renewable, regularly recharged groundwater is also called modern groundwater, ie groundwater that has recently been in contact with the atmosphere. Tritium can be used to determine whether or not a groundwater resource is modern because the half-life of tritium is only 12.36 years and tritium is dominantly produced in the upper atmosphere and not in the rock mass. For this reason, groundwater with detectable tritium activities likely has a residence age of less than 50 years. In this study, tritium activities in 277 boreholes distributed across South Africa were used to develop a national model for tritium activity in groundwater in order to establish the extent of modern groundwater across South Africa. The tritium model was combined with modelled depth to water using 3079 measured static water levels obtained from the National Groundwater Archive and validated against a separate set of 40 tritium activities along the west coast of South Africa. The model showed good agreement with the distribution of rainfall which has been previously documented across the globe (Gleeson et al., 2015), although the arid Karoo basin in south west South Africa shows higher than expected tritium levels given the very low regional precipitation levels. To assess the vulnerability of groundwater to degradation in quality and quantity, the tritium model was incorporated into a multi-criteria evaluation (MCE) model which incorporated other indicators of groundwater stress including mean annual precipitation, mean annual surface temperature, electrical conductivity (as a proxy for groundwater salinization), potential evaporation, population density and cultivated land usage. The MCE model

  13. Climate change vulnerability for species-Assessing the assessments.

    Science.gov (United States)

    Wheatley, Christopher J; Beale, Colin M; Bradbury, Richard B; Pearce-Higgins, James W; Critchlow, Rob; Thomas, Chris D

    2017-09-01

    Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.e. using historical data to assign risks and more recent data for validation). Our results show that the different vulnerability assessment methods are not consistent with one another; different risk categories are assigned for both the real and simulated sets of species. Validation of the different vulnerability assessments suggests that methods incorporating historic trend data into the assessment perform best at predicting distribution trends in subsequent time periods. This study demonstrates that climate change vulnerability assessments should not be used interchangeably due to the poor overall agreement between methods when considering the same species. The results of our validation provide more support for the use of trend-based rather than purely trait-based approaches, although further validation will be required as data become available. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Models for Pesticide Risk Assessment

    Science.gov (United States)

    EPA considers the toxicity of the pesticide as well as the amount of pesticide to which a person or the environments may be exposed in risk assessment. Scientists use mathematical models to predict pesticide concentrations in exposure assessment.

  15. Lifestyle Assessment: Helping Patients Change Health Behaviors

    OpenAIRE

    Ciliska, Donna; Wilson, Douglas M. C.

    1984-01-01

    This article is the second in a series of six on lifestyle assessment and behavior change. The first article presented an assessment tool called FANTASTIC, which has been tested for reliability and is currently in wide use. After assessment, family physicians must help patients decide to change—and give them guidance on how to change—unhealthy behaviors. This article explains how the family physician can use educational, behavioral and relaxation strategies to increase patients' motivation, m...

  16. Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China

    Energy Technology Data Exchange (ETDEWEB)

    Challinor, Andrew J [Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Simelton, Elisabeth S; Fraser, Evan D G [Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Hemming, Debbie; Collins, Mathew, E-mail: a.j.challinor@leeds.ac.uk [Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB (United Kingdom)

    2010-07-15

    Tools for projecting crop productivity under a range of conditions, and assessing adaptation options, are an important part of the endeavour to prioritize investment in adaptation. We present ensemble projections of crop productivity that account for biophysical processes, inherent uncertainty and adaptation, using spring wheat in Northeast China as a case study. A parallel 'vulnerability index' approach uses quantitative socio-economic data to account for autonomous farmer adaptation. The simulations show crop failure rates increasing under climate change, due to increasing extremes of both heat and water stress. Crop failure rates increase with mean temperature, with increases in maximum failure rates being greater than those in median failure rates. The results suggest that significant adaptation is possible through either socio-economic measures such as greater investment, or biophysical measures such as drought or heat tolerance in crops. The results also show that adaptation becomes increasingly necessitated as mean temperature and the associated number of extremes rise. The results, and the limitations of this study, also suggest directions for research for linking climate and crop models, socio-economic analyses and crop variety trial data in order to prioritize options such as capacity building, plant breeding and biotechnology.

  17. Assessing uncertainty in mechanistic models

    Science.gov (United States)

    Edwin J. Green; David W. MacFarlane; Harry T. Valentine

    2000-01-01

    Concern over potential global change has led to increased interest in the use of mechanistic models for predicting forest growth. The rationale for this interest is that empirical models may be of limited usefulness if environmental conditions change. Intuitively, we expect that mechanistic models, grounded as far as possible in an understanding of the biology of tree...

  18. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  19. Land cover change or land use intensification: simulating land system change with a global-scale land change model

    NARCIS (Netherlands)

    van Asselen, S.; Verburg, P.H.

    2013-01-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land

  20. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  1. Avoiding climate change uncertainties in Strategic Environmental Assessment

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone; Driscoll, Patrick Arthur

    2013-01-01

    This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies...

  2. Positional Accuracy Assessment for Effective Shoreline Change ...

    African Journals Online (AJOL)

    Michael

    2016-06-01

    Jun 1, 2016 ... as backdrop in GIS environment. Positional error of ... integrated dataset obviously bore the cumulative effect of the input datasets. ... change. The shoreline, which is the interface between land ... modelling, which enables future shoreline change trend to ..... as gaps due to cloud cover and limitation of the.

  3. Changing Trends in Modeling Mobility

    Directory of Open Access Journals (Sweden)

    Aarti Munjal

    2012-01-01

    Full Text Available A phenomenal increase in the number of wireless devices has led to the evolution of several interesting and challenging research problems in opportunistic networks. For example, the random waypoint mobility model, an early, popular effort to model mobility, involves generating random movement patterns. Previous research efforts, however, validate that movement patterns are not random; instead, human mobility is predictable to some extent. Since the performance of a routing protocol in an opportunistic network is greatly improved if the movement patterns of mobile users can be somewhat predicted in advance, several research attempts have been made to understand human mobility. The solutions developed use our understanding of movement patterns to predict the future contact probability for mobile nodes. In this work, we summarize the changing trends in modeling human mobility as random movements to the current research efforts that model human walks in a more predictable manner. Mobility patterns significantly affect the performance of a routing protocol. Thus, the changing trend in modeling mobility has led to several changes in developing routing protocols for opportunistic networks. For example, the simplest opportunistic routing protocol forwards a received packet to a randomly selected neighbor. With predictable mobility, however, routing protocols can use the expected contact information between a pair of mobile nodes in making forwarding decisions. In this work, we also describe the previous and current research efforts in developing routing protocols for opportunistic networks.

  4. Feasibility of coupled empirical and dynamic modeling to assess climate change and air pollution impacts on temperate forest vegetation of the eastern United States.

    Science.gov (United States)

    McDonnell, T C; Reinds, G J; Sullivan, T J; Clark, C M; Bonten, L T C; Mol-Dijkstra, J P; Wamelink, G W W; Dovciak, M

    2018-03-01

    Changes in climate and atmospheric nitrogen (N) deposition caused pronounced changes in soil conditions and habitat suitability for many plant species over the latter half of the previous century. Such changes are expected to continue in the future with anticipated further changing air temperature and precipitation that will likely influence the effects of N deposition. To investigate the potential long-term impacts of atmospheric N deposition on hardwood forest ecosystems in the eastern United States in the context of climate change, application of the coupled biogeochemical and vegetation community model VSD+PROPS was explored at three sites in New Hampshire, Virginia, and Tennessee. This represents the first application of VSD+PROPS to forest ecosystems in the United States. Climate change and elevated (above mid-19th century) N deposition were simulated to be important factors for determining habitat suitability. Although simulation results suggested that the suitability of these forests to support the continued presence of their characteristic understory plant species might decline by the year 2100, low data availability for building vegetation response models with PROPS resulted in uncertain results at the extremes of simulated N deposition. Future PROPS model development in the United States should focus on inclusion of additional foundational data or alternate candidate predictor variables to reduce these uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modeling Uncertainty in Climate Change: A Multi-Model Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth; Nordhaus, William; Anthoff, David; Blanford, Geoffrey J.; Bosetti, Valentina; Christensen, Peter; McJeon, Haewon C.; Reilly, J. M.; Sztorc, Paul

    2015-10-01

    The economics of climate change involves a vast array of uncertainties, complicating both the analysis and development of climate policy. This study presents the results of the first comprehensive study of uncertainty in climate change using multiple integrated assessment models. The study looks at model and parametric uncertainties for population, total factor productivity, and climate sensitivity and estimates the pdfs of key output variables, including CO2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key finding is that parametric uncertainty is more important than uncertainty in model structure. Our resulting pdfs also provide insight on tail events.

  6. Audit risk assessment model

    OpenAIRE

    Jodelienė, Rita

    2010-01-01

    The recent changes of the global scale caused by the development of business and an excessive use of subjective decisions and estimates when drawing up financial statements have caused an increased pressure that may lead to fraudulent financial reporting. Audit firms are obligated to express an independent opinion on the truthfulness and fairness of the information presented in financial statements to enable the users to take informed economic decisions. Therefore, it is important to further ...

  7. The Changing Model of Soil

    Science.gov (United States)

    Richter, D. D.; Yaalon, D.

    2012-12-01

    The contemporary genetic model of soil is changing rapidly in response to advances in soil science and to human and environmental forcings in the 21st century (Richter and Yaalon, 2012). Three ongoing changes in the model of soil include that: (1) lower soil boundaries are much deeper than the solum, historically the O to B horizons, (2) most soils are polygenetic paleosols, products of soil-forming processes that have ranged widely over soils' lifetimes, and (3) soils are globally human-natural bodies, no longer natural bodies. Together, these changes in the model of soil mean that human forcings are a global wave of soil polygenesis altering fluxes of matter and energy and transforming soil thermodynamics as potentially very deep systems. Because soils are non-linear systems resulting from high-order interactions of physics, chemistry, and biology, trajectories of how human forcings alter soils over decades are not readily predictable and require long-term soil observations. There is much to learn about how soils are changing internally as central components of management systems and externally in relation to wider environments. To be critical, research has been remarkably superficial in studies of soil, reductionist in approach, and lacking in time-series observations of responses to soil management. While this criticism may sound negative, it creates significant opportunities for contemporary soil scientists.

  8. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.

    Science.gov (United States)

    Oke, Tobi A; Hager, Heather A

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.

  9. Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors.

    Science.gov (United States)

    Ralph J. Alig; Darius M. Adams; Bruce McCarl; J.M. Callaway; Steven. Winnett

    1997-01-01

    A model of product and land markets in U.S. forest and agricultural sectors is used to examine the private forest management, land use, and market implications of carbon sequestration policies implemented in a "least social cost" fashion. Results suggest: policy-induced land use changes may generate compensating land use shifts through markets: land use...

  10. Assessment of projected temperature impacts from climate change on the U.S. electric power sector using the Integrated Planning Model®

    International Nuclear Information System (INIS)

    Jaglom, Wendy S.; McFarland, James R.; Colley, Michelle F.; Mack, Charlotte B.; Venkatesh, Boddu; Miller, Rawlings L.; Haydel, Juanita; Schultz, Peter A.; Perkins, Bill; Casola, Joseph H.; Martinich, Jeremy A.; Cross, Paul; Kolian, Michael J.; Kayin, Serpil

    2014-01-01

    This study analyzes the potential impacts of changes in temperature due to climate change on the U.S. power sector, measuring the energy, environmental, and economic impacts of power system changes due to temperature changes under two emissions trajectories—with and without emissions mitigation. It estimates the impact of temperature change on heating and cooling degree days, electricity demand, and generating unit output and efficiency. These effects are then integrated into a dispatch and capacity planning model to estimate impacts on investment decisions, emissions, system costs, and power prices for 32 U.S. regions. Without mitigation actions, total annual electricity production costs in 2050 are projected to increase 14% ($51 billion) because of greater cooling demand as compared to a control scenario without future temperature changes. For a scenario with global emissions mitigation, including a reduction in U.S. power sector emissions of 36% below 2005 levels in 2050, the increase in total annual electricity production costs is approximately the same as the increase in system costs to satisfy the increased demand associated with unmitigated rising temperatures. - Highlights: • We model the impact of rising temperatures on the U.S. power sector. • We examine temperature and mitigation impacts on demand, supply, and investment. • Higher temperatures increase power system costs by about $50 billion by the year 2050. • Meeting demand from higher temperatures costs slightly more than reducing emissions. • Mitigation policy cost analyses should account for temperature impacts

  11. Integrated Environmental Assessment Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guardanz, R; Gimeno, B S; Bermejo, V; Elvira, S; Martin, F; Palacios, M; Rodriguez, E; Donaire, I [Ciemat, Madrid (Spain)

    2000-07-01

    This report describes the results of the Spanish participation in the project Coupling CORINAIR data to cost-effect emission reduction strategies based on critical threshold. (EU/LIFE97/ENV/FIN/336). The subproject has focused on three tasks. Develop tools to improve knowledge on the spatial and temporal details of emissions of air pollutants in Spain. Exploit existing experimental information on plant response to air pollutants in temperate ecosystem and Integrate these findings in a modelling framework that can asses with more accuracy the impact of air pollutants to temperate ecosystems. The results obtained during the execution of this project have significantly improved the models of the impact of alternative emission control strategies on ecosystems and crops in the Iberian Peninsula. (Author) 375 refs.

  12. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  13. Consideration of environmental change in performance assessments

    International Nuclear Information System (INIS)

    Pinedo, P.; Thorne, M.; Egan, M.; Calvez, M.; Kautsky, U.

    2005-01-01

    Depending on the particular circumstances in which a post-closure performance assessment of a radioactive waste repository is made, it may be appropriate to follow simple or more complex approaches in characterising the biosphere. Several different Example Reference Biospheres were explored in BIOMASS Theme 1 to address a range of issues that arise. Here, consideration is given to Example Reference Biospheres relevant to representing the implications of changes that may occur within the biosphere system during the period over which releases of radionuclides from a disposal facility might take place. Mechanisms of change considered include those extrinsic and intrinsic to the system of interest. An overall methodology for incorporating environmental change into assessments is proposed. This includes screening of primary mechanisms of change; identification of possible time sequences of change; development of a coherent description of the regional landscape response for each time sequence; integration of source term and geosphere-biosphere interface information; identification and description of one or more time series of assessment biospheres; and evaluation of the advantages and disadvantages of simulating the effects of sequences of biosphere systems and the transitions between them, or of defining a set of biosphere systems to be represented individually in a non-sequential analysis. The usefulness of the methodology is explored in two site-specific examples and one generic example

  14. The 2008 California climate change assessment

    Science.gov (United States)

    Franco, G.

    2008-12-01

    In 2005, Governor Arnold Schwarzenegger signed Executive Order S-03-05, which laid the foundation for California's ambitious greenhouse gas mitigation reduction efforts. The 2020 goal is now codified in state law requiring bringing 2020 emissions to the 1990 levels. The Executive Order also mandates the preparation of biennial updates on the latest climate change science, potential impacts, and assessment of the state's efforts to manage its climate change risks through various adaptation options. In 2006, the first of these mandated scientific assessments (The Governor's Scenarios Report) was released. Based on new scientific studies conducted in the interim, the next assessment, the '2008 Governor's Scenarios Report' is currently in preparation. It has three principal goals: (1) to improve the assessment of climate changes for California and associated impacts on key physical and biological indicators; (2) to begin to translate these physical and biological impacts into sectoral economic impacts; and (3) to begin to develop and evaluate strategies for key sectors or regions for adapting to climate changes already underway. Contributors to this session will present some of this new research to the scientific community. Among the most exciting new insights are impacts assessments for the all-important water and agricultural sectors, coastal areas, public health and related air quality and environmental justice issues, the forestry and energy sectors. This presentation will give an overview of the overall effort which will result in about 35 scientific papers from different research institutions in California. All of the studies are interlinked in such a way as to produce a consistent overall assessment.

  15. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model

    Science.gov (United States)

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep

    2017-04-01

    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes

  16. Ecosystem Model Skill Assessment. Yes We Can!

    Science.gov (United States)

    Olsen, Erik; Fay, Gavin; Gaichas, Sarah; Gamble, Robert; Lucey, Sean; Link, Jason S

    2016-01-01

    Accelerated changes to global ecosystems call for holistic and integrated analyses of past, present and future states under various pressures to adequately understand current and projected future system states. Ecosystem models can inform management of human activities in a complex and changing environment, but are these models reliable? Ensuring that models are reliable for addressing management questions requires evaluating their skill in representing real-world processes and dynamics. Skill has been evaluated for just a limited set of some biophysical models. A range of skill assessment methods have been reviewed but skill assessment of full marine ecosystem models has not yet been attempted. We assessed the skill of the Northeast U.S. (NEUS) Atlantis marine ecosystem model by comparing 10-year model forecasts with observed data. Model forecast performance was compared to that obtained from a 40-year hindcast. Multiple metrics (average absolute error, root mean squared error, modeling efficiency, and Spearman rank correlation), and a suite of time-series (species biomass, fisheries landings, and ecosystem indicators) were used to adequately measure model skill. Overall, the NEUS model performed above average and thus better than expected for the key species that had been the focus of the model tuning. Model forecast skill was comparable to the hindcast skill, showing that model performance does not degenerate in a 10-year forecast mode, an important characteristic for an end-to-end ecosystem model to be useful for strategic management purposes. We identify best-practice approaches for end-to-end ecosystem model skill assessment that would improve both operational use of other ecosystem models and future model development. We show that it is possible to not only assess the skill of a complicated marine ecosystem model, but that it is necessary do so to instill confidence in model results and encourage their use for strategic management. Our methods are applicable

  17. Assessing ecosystem response to multiple disturbances and climate change in South Africa using ground- and satellite-based measurements and model

    Science.gov (United States)

    Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.

    2015-12-01

    Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.

  18. Uncertainties in radioecological assessment models

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Miller, C.W.; Ng, Y.C.

    1983-01-01

    Environmental radiological assessments rely heavily on the use of mathematical models. The predictions of these models are inherently uncertain because models are inexact representations of real systems. The major sources of this uncertainty are related to bias in model formulation and imprecision in parameter estimation. The magnitude of uncertainty is a function of the questions asked of the model and the specific radionuclides and exposure pathways of dominant importance. It is concluded that models developed as research tools should be distinguished from models developed for assessment applications. Furthermore, increased model complexity does not necessarily guarantee increased accuracy. To improve the realism of assessment modeling, stochastic procedures are recommended that translate uncertain parameter estimates into a distribution of predicted values. These procedures also permit the importance of model parameters to be ranked according to their relative contribution to the overall predicted uncertainty. Although confidence in model predictions can be improved through site-specific parameter estimation and increased model validation, health risk factors and internal dosimetry models will probably remain important contributors to the amount of uncertainty that is irreducible. 41 references, 4 figures, 4 tables

  19. USGS science for the Nation's changing coasts; shoreline change assessment

    Science.gov (United States)

    Thieler, E. Robert; Hapke, Cheryl J.

    2011-01-01

    The coastline of the United States features some of the most popular tourist and recreational destinations in the world and is the site of intense residential, commercial, and industrial development. The coastal zone also has extensive and pristine natural areas, with diverse ecosystems providing essential habitat and resources that support wildlife, fish, and human use. Coastal erosion is a widespread process along most open-ocean shores of the United States that affects both developed and natural coastlines. As the coast changes, there are a wide range of ways that change can affect coastal communities, habitats, and the physical characteristics of the coast?including beach erosion, shoreline retreat, land loss, and damage to infrastructure. Global climate change will likely increase the rate of coastal change. A recent study of the U.S. Mid-Atlantic coast, for example, found that it is virtually certain that sandy beaches will erode faster in the future as sea level rises because of climate change. The U.S. Geological Survey (USGS) is responsible for conducting research on coastal change hazards, understanding the processes that cause coastal change, and developing models to predict future change. To understand and adapt to shoreline change, accurate information regarding the past and present configurations of the shoreline is essential. A comprehensive, nationally consistent analysis of shoreline movement is needed. To meet this national need, the USGS is conducting an analysis of historical shoreline changes along open-ocean coasts of the conterminous United States and parts of Alaska and Hawaii, as well as the coasts of the Great Lakes.

  20. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration

    DEFF Research Database (Denmark)

    Turner, Katrine Grace; Anderson, S; Chang, M G

    2016-01-01

    This review assesses existing data, models, and other knowledge-based methods for valuing the effects of sustainable land management including the cost of land degradation on a global scale. The overall development goal of sustainable human well-being should be to obtain social, ecologic......, and economic viability, not merely growth of the market economy. Therefore new and more integrated methods to value sustainable development are needed. There is a huge amount of data and methods currently available to model and analyze land management practices. However, it is scattered and requires...... scales. This should be facilitated by adapting existing models and make them and their outcomes more accessible to stakeholders. Other shortcomings and caveats of models should be addressed by adding the ‘human factor’, for instance, in participatory decision-making and scenario testing. For integration...

  1. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    Science.gov (United States)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  2. Ecosystem model of the entire Beaufort Sea marine ecosystem: a tool for assessing food-web structure and ecosystem changes from 1970 to 2014

    Science.gov (United States)

    Suprenand, P. M.; Hoover, C.

    2016-02-01

    The Beaufort Sea coastal-marine ecosystem is approximately a 476,000 km2 area in the Arctic Ocean, which extends from -112.5 to -158° longitude to 67.5 to 75° latitude. Within this Arctic Ocean area the United States (Alaskan) indigenous communities of Barrow, Kaktovik, and Nuiqsut, and the Canadian (Northwest Territories) indigenous communities of Aklavik, Inuvik, Tuktoyaktuk, Paulatuk, Ulukhaktok, and Sachs Harbour, subsist by harvesting marine mammals, fish, and invertebrates from the Beaufort Sea to provide the majority of their community foods annually. The ecosystem in which the indigenous communities harvest is considered a polar habitat that includes many specialized species, such as polar bears that rely on sea-ice for foraging activities and denning, or ice algae that are attached to the cryosphere. However, the polar habitat has been experiencing a diminishing sea-ice extent, age, and seasonal duration, with concomitant increases in sea surface temperatures (SSTs), since the 1970s. Changes in sea-ice and SST have consequences to the Beaufort Sea coastal-marine ecosystem, which includes animal habitat losses, alterations to trophodynamics, and impacts to subsistence community harvesting. The present study was aimed at capturing trophodynamic changes in the Beaufort Sea coastal-marine ecosystem from 1970 to 2014 using a fitted spatial-temporal model (Ecopath with Ecosim and Ecospace) that utilizes forcing and mediation functions to describe animal/trophodynamic relationships with sea-ice and sea surface temperature, as well as individual community harvesting efforts. Model outputs reveals similar trends in animals population changes (e.g., increasing bowhead whale stock), changes in apex predator diets (e.g., polar bears eating less ringed seal), and changes in animal distributions (e.g., polar bears remaining closer to land over time). The Beaufort Sea model is a dynamic tool for Arctic Ocean natural resource management in the years to come.

  3. Global Environmental Change: An integrated modelling approach

    International Nuclear Information System (INIS)

    Den Elzen, M.

    1993-01-01

    Two major global environmental problems are dealt with: climate change and stratospheric ozone depletion (and their mutual interactions), briefly surveyed in part 1. In Part 2 a brief description of the integrated modelling framework IMAGE 1.6 is given. Some specific parts of the model are described in more detail in other Chapters, e.g. the carbon cycle model, the atmospheric chemistry model, the halocarbon model, and the UV-B impact model. In Part 3 an uncertainty analysis of climate change and stratospheric ozone depletion is presented (Chapter 4). Chapter 5 briefly reviews the social and economic uncertainties implied by future greenhouse gas emissions. Chapters 6 and 7 describe a model and sensitivity analysis pertaining to the scientific uncertainties and/or lacunae in the sources and sinks of methane and carbon dioxide, and their biogeochemical feedback processes. Chapter 8 presents an uncertainty and sensitivity analysis of the carbon cycle model, the halocarbon model, and the IMAGE model 1.6 as a whole. Part 4 presents the risk assessment methodology as applied to the problems of climate change and stratospheric ozone depletion more specifically. In Chapter 10, this methodology is used as a means with which to asses current ozone policy and a wide range of halocarbon policies. Chapter 11 presents and evaluates the simulated globally-averaged temperature and sea level rise (indicators) for the IPCC-1990 and 1992 scenarios, concluding with a Low Risk scenario, which would meet the climate targets. Chapter 12 discusses the impact of sea level rise on the frequency of the Dutch coastal defence system (indicator) for the IPCC-1990 scenarios. Chapter 13 presents projections of mortality rates due to stratospheric ozone depletion based on model simulations employing the UV-B chain model for a number of halocarbon policies. Chapter 14 presents an approach for allocating future emissions of CO 2 among regions. (Abstract Truncated)

  4. Soil erosion predictions from a landscape evolution model - An assessment of a post-mining landform using spatial climate change analogues.

    Science.gov (United States)

    Hancock, G R; Verdon-Kidd, D; Lowry, J B C

    2017-12-01

    Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All

  5. Numerical modelling assessment of climate-change impacts and mitigation measures on the Querença-Silves coastal aquifer (Algarve, Portugal)

    Science.gov (United States)

    Hugman, Rui; Stigter, Tibor; Costa, Luis; Monteiro, José Paulo

    2017-11-01

    Predicted changes in climate will lead to seawater intrusion in the Querença-Silves (QS) coastal aquifer (south Portugal) during the coming century if the current water-resource-management strategy is maintained. As for much of the Mediterranean, average rainfall is predicted to decrease along with increasing seasonal and inter-annual variability and there is a need to understand how these changes will affect the sustainable use of groundwater resources. A density-coupled flow and transport model of the QS was used to simulate an ensemble of climate, water-use and adaptation scenarios from 2010 to 2099 taking into account intra- and inter-annual variability in recharge and groundwater use. By considering several climate models, bias correction and recharge calculation methods, a degree of uncertainty was included. Changes in rainfall regimes will have an immediate effect on groundwater discharge; however, the effect on saltwater intrusion is attenuated by the freshwater-saltwater interfaces' comparatively slow rate of movement. Comparing the effects of adaptation measures demonstrates that the extent of intrusion in the QS is controlled by the long-term water budget, as the effectiveness of both demand and supply oriented measures is proportional to the change in water budget, and that to maintain the current position, average groundwater discharge should be in the order of 50 × 106 m3 yr-1.

  6. Structural modelling of economic growth: Technological changes

    Directory of Open Access Journals (Sweden)

    Sukharev Oleg

    2016-01-01

    Full Text Available Neoclassical and Keynesian theories of economic growth assume the use of Cobb-Douglas modified functions and other aggregate econometric approaches to growth dynamics modelling. In that case explanations of economic growth are based on the logic of the used mathematical ratios often including the ideas about aggregated values change and factors change a priori. The idea of assessment of factor productivity is the fundamental one among modern theories of economic growth. Nevertheless, structural parameters of economic system, institutions and technological changes are practically not considered within known approaches, though the latter is reflected in the changing parameters of production function. At the same time, on the one hand, the ratio of structural elements determines the future value of the total productivity of the factors and, on the other hand, strongly influences the rate of economic growth and its mode of innovative dynamics. To put structural parameters of economic system into growth models with the possibility of assessment of such modes under conditions of interaction of new and old combinations is an essential step in the development of the theory of economic growth/development. It allows forming stimulation policy of economic growth proceeding from the structural ratios and relations recognized for this economic system. It is most convenient in such models to use logistic functions demonstrating the resource change for old and new combination within the economic system. The result of economy development depends on starting conditions, and on institutional parameters of velocity change of resource borrowing in favour of a new combination and creation of its own resource. Model registration of the resource is carried out through the idea of investments into new and old combinations.

  7. Handling Interdependencies in Climate Change Risk Assessment

    OpenAIRE

    Dawson, Richard

    2015-01-01

    Typically, a climate change risk assessment focuses on individual sectors or hazards. However, interdependencies between climate risks manifest themselves via functional, physical, geographical, economic, policy and social mechanisms. These can occur over a range of spatial or temporal scales and with different strengths of coupling. Three case studies are used to demonstrate how interdependencies can significantly alter the nature and magnitude of risk, and, consequently, investment prioriti...

  8. A Model-Based Assessment of the Physiological Potential of Vegetation Response to Environmental Changes and Implications for the North America Carbon Sink

    Science.gov (United States)

    Post, W. M.; King, A. W.; Wullschleger, S. D.

    2001-12-01

    We used the Global Terrestrial Ecosystem Carbon (GTEC V2.0) model to analyze North American terrestrial carbon storage and exchange with the atmosphere over the period 1930 to present. In this model the carbon dynamics of each vegetated land cell is described by a mechanistic soil-plant-atmosphere model of ecosystem carbon cycling and exchange. Net ecosystem production (NEP), net carbon sequestration, is the difference between canopy photosynthesis and ecosystem (plant plus decomposer) respiration. Representations of C3 and C4 photosynthesis are coupled to a description of the dependence of stomatal conductance on assimilation rate, temperature, and moisture to form a ``big-leaf'' canopy photosynthesis model. Maintenance respiration is a function of tissue nitrogen concentration and temperature, while growth respiration is proportional to the change in biomass. Canopy photosynthesis and maintenance respiration are calculated hourly; carbon allocation, growth, and growth respiration are calculated daily. Carbon in dead organic matter is partitioned as in the Rothamsted model with litter inputs assigned to decomposable and resistant plant material compartments. The model is thus capable of responding to interactions among climate, rising atmospheric CO2 concentration, soil moisture, and solar radiation. This detailed physiological model is considerably more sensitive to rising atmospheric CO2 concentration than most biogeochemical terrestrial ecosystem models. The average net C sequestration rate calculated with this model for the 1980's and early 1990's is less than 0.6 Pg C y-1 for North America. Nearly all of this is calculated to be sequestered by woody biomass growth. This result suggests that ecosystem physiology might account for 30% of the approximately 2 Pg C y-1 North American carbon sink inferred from regional inversion studies, with the remainder a consequence of other factors including forest regrowth following clearing or other disturbance.

  9. Assessing Ecosystem Model Performance in Semiarid Systems

    Science.gov (United States)

    Thomas, A.; Dietze, M.; Scott, R. L.; Biederman, J. A.

    2017-12-01

    In ecosystem process modelling, comparing outputs to benchmark datasets observed in the field is an important way to validate models, allowing the modelling community to track model performance over time and compare models at specific sites. Multi-model comparison projects as well as models themselves have largely been focused on temperate forests and similar biomes. Semiarid regions, on the other hand, are underrepresented in land surface and ecosystem modelling efforts, and yet will be disproportionately impacted by disturbances such as climate change due to their sensitivity to changes in the water balance. Benchmarking models at semiarid sites is an important step in assessing and improving models' suitability for predicting the impact of disturbance on semiarid ecosystems. In this study, several ecosystem models were compared at a semiarid grassland in southwestern Arizona using PEcAn, or the Predictive Ecosystem Analyzer, an open-source eco-informatics toolbox ideal for creating the repeatable model workflows necessary for benchmarking. Models included SIPNET, DALEC, JULES, ED2, GDAY, LPJ-GUESS, MAESPA, CLM, CABLE, and FATES. Comparison between model output and benchmarks such as net ecosystem exchange (NEE) tended to produce high root mean square error and low correlation coefficients, reflecting poor simulation of seasonality and the tendency for models to create much higher carbon sources than observed. These results indicate that ecosystem models do not currently adequately represent semiarid ecosystem processes.

  10. Integrated assessment of climate change with reductions of methane emissions

    NARCIS (Netherlands)

    Amstel, van A.R.

    2005-01-01

    We have been living in the anthropocene era since about 1950, and evidence of human influence on the natural ecosystems and climate is mounting. Reductions of greenhouse gas emissions are needed to reduce the effects of climate change in the future. In an integrated assessment with the IMAGE model

  11. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  12. A Model Assessment of mid-Century Pressures on Water resources in West Africa Arising from Population Growth and Climate Change

    Science.gov (United States)

    Wisser, D.; Ibrahim, M.; Ibrahim, B.; Barry, B.; Proussevitch, A. A.

    2013-12-01

    West Africa is among the most vulnerable regions to climate change. The economy of most countries depends on rainfed agriculture in one rainy season and any change in precipitation will affect the agricultural output and the economies as a whole. At the same time, it is one of the regions where climate model shows the highest uncertainties in future trends of precipitation. We used WBMplus, a macroscale hydrological model to simultaneously calculate water demand and availability for a set of land use, and socio-economic scenarios around the 2050's (2051-2060) for river basins in the ten countries participating in the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) project. The model is driven with bias corrected climate model data from 5 GCM models (and 4 RCP's ) and simulates components of the hydrological cycle by taking into reservoir operations, and water demand for irrigated areas, livestock, as well as domestic water demand on a daily time step at a spatial resolution of 1 min (~2 km). Results suggest that water availability is under pressure from projected shifts towards less precipitation early in the rainy season (May-June) despite a small (~5%) increase in the ensemble mean annual precipitation. Water demand is projected to more than double for livestock and domestic, as a result of population growth (at a rate of ~3% per year). Demand for irrigation will rise sharply if irrigation is expanded from the current area (representing less than 3% of all croplands in the region), closer to its potential which is multiple times higher than the existing area. Despite adequate water supply for most regions on an annual basis, the shifts in water availability and increased variability in combination with increased demand could exert significant pressures on water resources locally during low flow periods. Ensemble results show small changes in annual water availability in the region but significant shifts in the temporal

  13. Assessing the Climate Change Impact on Snow-Glacier Melting Dominated Basins in the Greater Himalaya Region Using a Distributed Glacio-Hydrologic Model

    Science.gov (United States)

    Wi, S.; Yang, Y. C. E.; Khalil, A.

    2014-12-01

    Glacier and snow melting is main source of water supply making a large contribution to streamflow of major river basins in the Greater Himalaya region including the Syr Darya, the Amu Darya, the Indus, the Ganges and the Brahmaputra basins. Due to the critical role of glacier and snow melting as water supply for both food production and hydropower generation in the region (especially during the low flow season), it is important to evaluate the vulnerability of snow and glacier melting streamflow to different climate conditions. In this study, a distributed glacio-hydrologic model with high resolution climate input is developed and calibrated that explicitly simulates all major hydrological processes and the glacier and snow dynamics for area further discretized by elevation bands. The distributed modeling structure and the glacier and snow modules provide a better understanding about how temperature and precipitation alterations are likely to affect current glacier ice reserves. Climate stress test is used to explore changes in the total streamflow change, snow/glacier melting contribution and glacier accumulation and ablation under a variety of different temperature and precipitation conditions. The latest future climate projections provided from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) is used to inform the possibility of different climate conditions.

  14. Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors

    International Nuclear Information System (INIS)

    Alig, R.; Adams, D.; McCarl, B.; Callaway, J.M.; Winnett, S.

    1997-01-01

    A model of product and land markets in US forest and agricultural sectors is used to examine the private forest management, land use, and market implications of carbon sequestration policies implemented in a 'least social cost' fashion. Results suggest: policy-induced land use changes may generate compensating land use shifts through markets; land use shifts to meet policy targets need not be permanent; implementation of land use and management changes in a smooth or regular fashion over time may not be optimal; and primary forms of adjustment to meet carbon policy targets involve shifting of land from agriculture to forest and more intensive forest management in combinations varying with the policy target. 3 figs., 3 tabs., 22 refs

  15. China Changes the Development Model

    Directory of Open Access Journals (Sweden)

    Grażyna Rzeszotarska

    2015-04-01

    Full Text Available The last decades of the twentieth century fundamentally changed the situation in the global economy. China's spectacular economic success has increased an interest in this country. The short time in which China moved on from the a poor agricultural country into a global economic power is admirable. China's model combines conflicted elements of different economic systems: the bureaucratic planning, island-capitalism, simple goods production and natural economy. The current development and transformation of the economy have brought about spectacular achievements and successes. However, the "the world's manufacturer" produces goods designed in other countries. In contrast, the modern idea is to build a modern and independent Chinese industry. The possibilities of the current model of economic development based on simple reserves and large statedriven infrastructure projects, which no longer drive the economy to the extent they previously did, dried out. Thus, the "Middle Kingdom" will have to compete against the rest of the world on quality and innovation. Therefore the development of the new model is a prerequisite to ensure progress in the future. Discussion on further development has been expedited in 2011, when it became abundantly clear that the Chinese economy would share the experience of the effects of the global crisis. The Chinese look at the challenges that the economy is facing realistically in thinking about the modern technology which begins to dominate the country. China is determined to become the leading technological superpower of the world. Today, many developing countries are looking towards China watching the development model implemented there with the hope of its adaptation in their economies. However, China is a unique entity. Therefore, it may be that adaptation of the Chinese model of development in other countries is not possible.

  16. Modeling the uncertain impacts of climate change

    International Nuclear Information System (INIS)

    Liebetrau, A.M.

    1992-08-01

    Human and earth systems are extremely complex processes. The modeling of these systems to assess the effects of climate change is an activity fraught with uncertainty. System models typically involve the linking of a series of computer codes, each of which is a detailed model of some physical or social process in its own right. In such system models, the output from one process model is the input to another. Traditional methods for dealing with uncertainty are inadequate because of the sheer complexity of the modeling effort: Monte Carlo methods and the exhaustive evaluation of ''what if?'' scenarios estimate sensitivities fail because of the heavy computational burden. More efficient methods are required for learning about system models that are constructed from a collection of computer codes. A two-tiered modeling approach is being developed to estimate the distribution of outcomes from a series of nested models. The basic strategy is to develop a simplified executive, or simplified system code (SSC), that is analogous to the more complex underlying code. An essential feature of the SSC is that it uses information abstracted from the detailed underlying process codes in a manner that preserves their essential features and interactions among them. Of course, to be useful, the SSC must be much faster to run than its complex counterpart. The success of the SSC modeling strategy depends on the methods used to extract essential features of the complex underlying codes

  17. Soil erosion risk assessment using interviews, empirical soil erosion modeling (RUSLE) and fallout radionuclides in a volcanic crater lake watershed subjected to land use change, western Uganda

    Science.gov (United States)

    De Crop, Wannes; Ryken, Nick; Tomma Okuonzia, Judith; Van Ranst, Eric; Baert, Geert; Boeckx, Pascal; Verschuren, Dirk; Verdoodt, Ann

    2017-04-01

    Population pressure results in conversion of natural vegetation to cropland within the western Ugandan crater lake watersheds. These watersheds however are particularly prone to soil degradation and erosion because of the high rainfall intensity and steep topography. Increased soil erosion losses expose the aquatic ecosystems to excessive nutrient loading. In this study, the Katinda crater lake watershed, which is already heavily impacted by agricultural land use, was selected for an explorative study on its (top)soil characteristics - given the general lack of data on soils within these watersheds - as well as an assessment of soil erosion risks. Using group discussions and structured interviews, the local land users' perceptions on land use, soil quality, soil erosion and lake ecology were compiled. Datasets on rainfall, topsoil characteristics, slope gradient and length, and land use were collected. Subsequently a RUSLE erosion model was run. Results from this empirical erosion modeling approach were validated against soil erosion estimates based on 137Cs measurements.

  18. Design Change Model for Effective Scheduling Change Propagation Paths

    Science.gov (United States)

    Zhang, Hai-Zhu; Ding, Guo-Fu; Li, Rong; Qin, Sheng-Feng; Yan, Kai-Yin

    2017-09-01

    Changes in requirements may result in the increasing of product development project cost and lead time, therefore, it is important to understand how requirement changes propagate in the design of complex product systems and be able to select best options to guide design. Currently, a most approach for design change is lack of take the multi-disciplinary coupling relationships and the number of parameters into account integrally. A new design change model is presented to systematically analyze and search change propagation paths. Firstly, a PDS-Behavior-Structure-based design change model is established to describe requirement changes causing the design change propagation in behavior and structure domains. Secondly, a multi-disciplinary oriented behavior matrix is utilized to support change propagation analysis of complex product systems, and the interaction relationships of the matrix elements are used to obtain an initial set of change paths. Finally, a rough set-based propagation space reducing tool is developed to assist in narrowing change propagation paths by computing the importance of the design change parameters. The proposed new design change model and its associated tools have been demonstrated by the scheduling change propagation paths of high speed train's bogie to show its feasibility and effectiveness. This model is not only supportive to response quickly to diversified market requirements, but also helpful to satisfy customer requirements and reduce product development lead time. The proposed new design change model can be applied in a wide range of engineering systems design with improved efficiency.

  19. Model uncertainty in safety assessment

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.

    1996-01-01

    The uncertainty analyses are an essential part of any risk assessment. Usually the uncertainties of reliability model parameter values are described by probability distributions and the uncertainty is propagated through the whole risk model. In addition to the parameter uncertainties, the assumptions behind the risk models may be based on insufficient experimental observations and the models themselves may not be exact descriptions of the phenomena under analysis. The description and quantification of this type of uncertainty, model uncertainty, is the topic of this report. The model uncertainty is characterized and some approaches to model and quantify it are discussed. The emphasis is on so called mixture models, which have been applied in PSAs. Some of the possible disadvantages of the mixture model are addressed. In addition to quantitative analyses, also qualitative analysis is discussed shortly. To illustrate the models, two simple case studies on failure intensity and human error modeling are described. In both examples, the analysis is based on simple mixture models, which are observed to apply in PSA analyses. (orig.) (36 refs., 6 figs., 2 tabs.)

  20. Model uncertainty in safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pulkkinen, U; Huovinen, T [VTT Automation, Espoo (Finland). Industrial Automation

    1996-01-01

    The uncertainty analyses are an essential part of any risk assessment. Usually the uncertainties of reliability model parameter values are described by probability distributions and the uncertainty is propagated through the whole risk model. In addition to the parameter uncertainties, the assumptions behind the risk models may be based on insufficient experimental observations and the models themselves may not be exact descriptions of the phenomena under analysis. The description and quantification of this type of uncertainty, model uncertainty, is the topic of this report. The model uncertainty is characterized and some approaches to model and quantify it are discussed. The emphasis is on so called mixture models, which have been applied in PSAs. Some of the possible disadvantages of the mixture model are addressed. In addition to quantitative analyses, also qualitative analysis is discussed shortly. To illustrate the models, two simple case studies on failure intensity and human error modeling are described. In both examples, the analysis is based on simple mixture models, which are observed to apply in PSA analyses. (orig.) (36 refs., 6 figs., 2 tabs.).

  1. Methodology to assess coastal infrastructure resilience to climate change

    Directory of Open Access Journals (Sweden)

    Roca Marta

    2016-01-01

    In order to improve the resilience of the line, several options have been considered to evaluate and reduce climate change impacts to the railway. This paper describes the methodological approach developed to evaluate the risks of flooding for a range of scenarios in the estuary and open coast reaches of the line. Components to derive the present day and future climate change coastal conditions including some possible adaptation measures are also presented together with the results of the hindcasting analysis to assess the performance of the modelling system. An overview of the modelling results obtained to support the development of a long-term Resilience Strategy for asset management is also discussed.

  2. Image-Based Computational Fluid Dynamics in Blood Vessel Models: Toward Developing a Prognostic Tool to Assess Cardiovascular Function Changes in Prolonged Space Flights

    Science.gov (United States)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2004-01-01

    One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.

  3. Assessing various options for rain water management in 2030 using prospective land use change scenarii and distributed hydrological modelling in the Yzeron experimental periurban catchment (ZABR/OTHU-OZCAR CZO observatory)

    OpenAIRE

    Braud, I.; Labbas, M.; Branger, F.

    2017-01-01

    Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. Spatialized hydrological modeling tools, simulating the entire hydrological cycle and able to take into account the important heterogeneity of periurban watersheds can be used to assess the impact of storm water management practices and land cover change scenari...

  4. Early effects of FOLFOX treatment of colorectal tumour in an animal model: assessment of changes in gene expression and FDG kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Ludwig G. [German Cancer Research Center, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center, Medical PET Group - Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Hoffend, Johannes [Klinikum Ludwigshafen, Institute of Diagnostic and Interventional Radiology, Ludwigshafen (Germany); Koczan, Dirk [University of Rostock, Institute of Immunology, Rostock (Germany); Pan, Leyun; Dimitrakopoulou-Strauss, Antonia [German Cancer Research Center, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Haberkorn, Uwe [German Cancer Research Center, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); University of Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany)

    2009-08-15

    The very early chemotherapeutic effects of the FOLFOX (fluorouracil, folinic acid, oxaliplatin) protocol were assessed in mice implanted with a human colorectal cell line. The aim of this study was to identify changes in gene expression patterns and to detect combinations of PET parameters that may be helpful in identifying treated tumours early after chemotherapy using dynamic PET studies. A human colorectal cell line (HCT 116) was used in nude mice. Dynamic PET studies were performed in untreated (n=13) and treated (n=12) animals. The data were assessed using compartmental and noncompartmental analysis. The removed tumour specimens were assessed by gene array analysis to obtain quantitative information on gene expression. One chemotherapeutic treatment using the FOLFOX protocol resulted in an upregulation of 2,078 gene probes by more than 25%, while 2,254 probes were downregulated following treatment. The gene array data demonstrated primarily an enhancement of genes related to apoptosis. In particular, the apoptosis antigen 1 (APO-1), p21 and the G protein-coupled receptor 87 (G-87) were 2.6- to 3.3-fold upregulated as compared to the expression in untreated animals. There was a 100% separation of untreated and treated animals on the basis of these three genes. The SUV and the FDG kinetic parameters obtained by compartmental and noncompartmental fitting were not significantly different when individual parameters were compared between groups. However, classification analysis of the combination of the PET parameters VB, K1, k3, and influx revealed an overall accuracy of 84%. We were able to identify 91.7% (11/12) of the treated animals and 76.9% (10/13) of the untreated animals correctly using the classification analysis of PET data. Even one chemotherapeutic treatment using FOLFOX has an impact on gene expression and significantly modulates FDG kinetics. Quantitative assessment of the tracer kinetics and the application of classification analysis to the data are

  5. Bioenergy and climate change mitigation: an assessment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Ravindranath, N. H.; Berndes, Göran

    2015-01-01

    , provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end-use efficiency, improved land carbon-stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending...... on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small-scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential......: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects...

  6. Avoiding climate change uncertainties in Strategic Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Sanne Vammen, E-mail: sannevl@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Kørnøv, Lone, E-mail: lonek@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University, Skibbrogade 5, 1. Sal, 9000 Aalborg (Denmark); Driscoll, Patrick, E-mail: patrick@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2013-11-15

    This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty.

  7. Avoiding climate change uncertainties in Strategic Environmental Assessment

    International Nuclear Information System (INIS)

    Larsen, Sanne Vammen; Kørnøv, Lone; Driscoll, Patrick

    2013-01-01

    This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty

  8. Sensitivity Analysis of a Land-Use Change Model with and without Agents to Assess Land Abandonment and Long-Term Re-Forestation in a Swiss Mountain Region

    Directory of Open Access Journals (Sweden)

    Julia Maria Brändle

    2015-06-01

    Full Text Available Land abandonment and the subsequent re-forestation are important drivers behind the loss of ecosystem services in mountain regions. Agent-based models can help to identify global change impacts on farmland abandonment and can test policy and management options to counteract this development. Realigning the representation of human decision making with time scales of ecological processes such as reforestation presents a major challenge in this context. Models either focus on the agent-specific behavior anchored in the current generation of farmers at the expense of representing longer scale environmental processes or they emphasize the simulation of long-term economic and forest developments where representation of human behavior is simplified in time and space. In this context, we compare the representation of individual and aggregated decision-making in the same model structure and by doing so address some implications of choosing short or long term time horizons in land-use modeling. Based on survey data, we integrate dynamic agents into a comparative static economic sector supply model in a Swiss mountain region. The results from an extensive sensitivity analysis show that this agent-based land-use change model can reproduce observed data correctly and that both model versions are sensitive to the same model parameters. In particular, in both models the specification of opportunity costs determines the extent of production activities and land-use changes by restricting the output space. Our results point out that the agent-based model can capture short and medium term developments in land abandonment better than the aggregated version without losing its sensitivity to important socio-economic drivers. For comparative static approaches, extensive sensitivity analysis with respect to opportunity costs, i.e., the measure of benefits forgone due to alternative uses of labor is essential for the assessment of the impact of climate change on land

  9. Climate Change Vulnerability Assessment for Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  10. Developmental assessment of RELAP5/MOD3.1 with separate-effect and integral test experiments: model changes and options

    International Nuclear Information System (INIS)

    Analytis, G.T.

    1996-04-01

    A summary of modifications and options introduced in RELAP5/MOD3.1 (R5M3.1) is presented and it is shown that the predicting capabilities of the modified version of the code are greatly improved, while the general philosophy we followed in arriving at these modifications is also outlined. These changes which are the same ones we implemented in the past in the version 7j of the code, include 2 different heat transfer packages (one of them activated during reflooding), modification of the low mass-flux Groeneveld CHF look-up table and of the dispersed flow interfacial area (and shear) as well as of the criterion for transition into and out from this regime, almost complete elimination of the under-relaxation schemes of the interfacial closure coefficients etc. The modified R5M3.1 code is assessed against a number of separate-effect and integral test experiments and in contrast to the frozen version, is shown to result in physically sound predictions which are much closer to the measurements, while almost all the predicted variables are free of unphysical spurious oscillations. The modifications introduced solve a number of problems associated with the frozen version of the code and result in a version which can be confidently used both for SB-LOCA and LB-LOCA analyses. (author) 7 figs., 20 refs

  11. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  12. Assessing potential effects of changes in water use with a numerical groundwater-flow model of Carson Valley, Douglas County, Nevada, and Alpine County, California

    Science.gov (United States)

    Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.

    2012-01-01

    margins. A groundwater-flow model of Quaternary and Tertiary sediments in Carson Valley was developed using MODFLOW and calibrated to simulate historical conditions from water years 1971 through 2005. The 35-year transient simulation represented quarterly changes in precipitation, streamflow, pumping and irrigation. Inflows to the groundwater system simulated in the model include mountain-front recharge from watersheds in the Carson Range and Pine Nut Mountains, valley recharge from precipitation and land application of wastewater, agricultural recharge from irrigation, and septic-tank discharge. Outflows from the groundwater system simulated in the model include evapotranspiration from the water table and groundwater withdrawals for municipal, domestic, irrigation and other water supplies. The exchange of water between groundwater, the Carson River, and the irrigation system was represented with a version of the Streamflow Routing (SFR) package that was modified to apply diversions from the irrigation network to irrigated areas as recharge. The groundwater-flow model was calibrated through nonlinear regression with UCODE to measured water levels and streamflow to estimate values of hydraulic conductivity, recharge and streambed hydraulic-conductivity that were represented by 18 optimized parameters. The aquifer system was simulated as confined to facilitate numerical convergence, and the hydraulic conductivity of the top active model layers that intersect the water table was multiplied by a factor to account for partial saturation. Storage values representative of specific yield were specified in parts of model layers where unconfined conditions are assumed to occur. The median transmissivity (T) values (11,000 and 800 ft2/d for the fluvial and alluvial-fan sediments, respectively) are both within the third quartile of T values estimated from specific-capacity data, but T values for Tertiary sediments are larger than the third quartile estimated from specific

  13. Misleading prioritizations from modelling range shifts under climate change

    Science.gov (United States)

    Sofaer, Helen R.; Jarnevich, Catherine S.; Flather, Curtis H.

    2018-01-01

    AimConservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated whether species distribution models could reliably rank changes in species range size under climate and land use change.LocationConterminous U.S.A.Time period1977–2014.Major taxa studiedPasserine birds.MethodsWe estimated ensembles of species distribution models based on historical North American Breeding Bird Survey occurrences for 190 songbirds, and generated predictions to recent years given c. 35 years of observed land use and climate change. We evaluated model predictions using standard metrics of discrimination performance and a more detailed assessment of the ability of models to rank species vulnerability to climate change based on predicted range loss, range gain, and overall change in range size.ResultsSpecies distribution models yielded unreliable and misleading assessments of relative vulnerability to climate and land use change. Models could not accurately predict range expansion or contraction, and therefore failed to anticipate patterns of range change among species. These failures occurred despite excellent overall discrimination ability and transferability to the validation time period, which reflected strong performance at the majority of locations that were either always or never occupied by each species.Main conclusionsModels failed for the questions and at the locations of greatest interest to conservation and management. This highlights potential pitfalls of multi-taxa impact assessments under global change; in our case, models provided misleading rankings of the most impacted species, and spatial information about range changes was not credible. As modelling methods and

  14. Assessing Impacts of Climate Change on Food Security Worldwide

    Science.gov (United States)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  15. A framework to assess the impacts of Climate Change for different hazards at local and regional scale through probabilistic multi-model approaches

    Science.gov (United States)

    Mercogliano, P.; Reder, A.; Rianna, G.

    2017-12-01

    Extreme weather events (EWEs) are projected to be more frequent and severe across the globe because of global warming. This poses challenging problems for critical infrastructures (CIs) which can be dramatically affected by EWEs needing adaptation countermeasures againts changing climate conditions. In this work, we present the main results achieved in the framework of the FP7-European project INTACT aimed at analyzing the resilience of CIs against shocks and stresses due to the climate changes. To identify variations in the hazard induced by climate change, appropriate Extreme Weather Indicators (EWIs) are defined for several case studies and different approaches are analyzed to obtain local climate projections. The different approaches, with increasing refinement depending on local information available and methodologies selected, are investigated considering raw versus bias corrected data and weighted or equiprobable ensemble mean projections given by the regional climate models within the Euro-CORDEX program. Specifically, this work focuses on two case studies selected from the five proposed within the INTACT project and for which local station data are available: • rainfall-induced landslide affecting Campania region (Southern Italy) with a special view on the Nocera municipality; • storms and heavy rainfall/winds in port of Rotterdam (Netherlands). In general, our results show a small sensitivity to the weighting approach and a large sensitivity to bias-correction in the future projections. For landslides in Campania region, the Euro-CORDEX simulations projected a generalized worsening of the safety conditions depending on the scenario (RCP4.5/8.5) and period (2011-2040/2041-2070/2071-2100) considered. For the port of Rotterdam, the Euro-CORDEX simulations projected an increment in the intense events of daily and weekly precipitation, also in this case depending on the scenario and period considered. Considering framework, methodologies and results, the

  16. Assessing and managing freshwater ecosystems vulnerable to global change

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  17. Personalized pseudophakic model for refractive assessment.

    Directory of Open Access Journals (Sweden)

    Filomena J Ribeiro

    Full Text Available PURPOSE: To test a pseudophakic eye model that allows for intraocular lens power (IOL calculation, both in normal eyes and in extreme conditions, such as post-LASIK. METHODS: PARTICIPANTS: The model's efficacy was tested in 54 participants (104 eyes who underwent LASIK and were assessed before and after surgery, thus allowing to test the same method in the same eye after only changing corneal topography. MODELLING: The Liou-Brennan eye model was used as a starting point, and biometric values were replaced by individual measurements. Detailed corneal surface data were obtained from topography (Orbscan® and a grid of elevation values was used to define corneal surfaces in an optical ray-tracing software (Zemax®. To determine IOL power, optimization criteria based on values of the modulation transfer function (MTF weighted according to contrast sensitivity function (CSF, were applied. RESULTS: Pre-operative refractive assessment calculated by our eye model correlated very strongly with SRK/T (r = 0.959, p0.05. Comparison of post-operative refractive assessment obtained using our eye model with the average of currently used formulas showed a strong correlation (r = 0.778, p0.05. CONCLUSIONS: Results suggest that personalized pseudophakic eye models and ray-tracing allow for the use of the same methodology, regardless of previous LASIK, independent of population averages and commonly used regression correction factors, which represents a clinical advantage.

  18. Personalized pseudophakic model for refractive assessment.

    Science.gov (United States)

    Ribeiro, Filomena J; Castanheira-Dinis, António; Dias, João M

    2012-01-01

    To test a pseudophakic eye model that allows for intraocular lens power (IOL) calculation, both in normal eyes and in extreme conditions, such as post-LASIK. The model's efficacy was tested in 54 participants (104 eyes) who underwent LASIK and were assessed before and after surgery, thus allowing to test the same method in the same eye after only changing corneal topography. MODELLING: The Liou-Brennan eye model was used as a starting point, and biometric values were replaced by individual measurements. Detailed corneal surface data were obtained from topography (Orbscan®) and a grid of elevation values was used to define corneal surfaces in an optical ray-tracing software (Zemax®). To determine IOL power, optimization criteria based on values of the modulation transfer function (MTF) weighted according to contrast sensitivity function (CSF), were applied. Pre-operative refractive assessment calculated by our eye model correlated very strongly with SRK/T (r = 0.959, p0.05). Comparison of post-operative refractive assessment obtained using our eye model with the average of currently used formulas showed a strong correlation (r = 0.778, p0.05). Results suggest that personalized pseudophakic eye models and ray-tracing allow for the use of the same methodology, regardless of previous LASIK, independent of population averages and commonly used regression correction factors, which represents a clinical advantage.

  19. Assessment of Projected Temperature Impacts from Climate Change on the U.S. Electric Power Sector Using the Integrated Planning Model

    Science.gov (United States)

    The energy sector is considered to be one of the most vulnerable to climate change. This study is a first-order analysis of the potential climate change impacts on the U.S. electric power sector, measuring the energy, environmental, and economic impacts of power system changes du...

  20. Analysis of methods and models for assessing the direct and indirect economic impacts of CO/sub 2/-induced environmental changes in the agricultural sector of the US economy

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, J.M.; Cronin, F.J.; Currie, J.W.; Tawil, J.

    1982-08-01

    The overall purpose of this research was to assist the US Department of Energy (DOE) in developing methods for assessing the direct and indirect economic impacts due to the effects of increases in the ambient concentration of CO/sub 2/ on agricultural production. First, a comprehensive literature search was undertaken to determine what types of models and methods have been developed, which could be effectively used to conduct assessments of the direct and indirect economic impacts of CO/sub 2/ buildup. Specific attention was focused upon models and methods for assessing the physical impacts of CO/sub 2/-induced environmental changes on crop yields; national and multi-regional agricultural sector models; and macroeconomic models of the US economy. The second task involved a thorough investigation of the research efforts being conducted by other public and private sector organizations in order to determine how more recent analytical methods being developed outside of DOE could be effectively integrated into a more comprehensive analysis of the direct economic impacts of CO/sub 2/ buildup. The third and final task involved synthesizing the information gathered in the first two tasks into a systematic framework for assessing the direct and indirect economic impacts of CO/sub 2/-induced environmental changes originating in the agricultural sector of the US economy. It is concluded that the direct economic impacts of CO/sub 2/ on the agricultural sector and the indirect economic impacts caused by spillover effects from agriculture to other sectors of the economy will be pervasive; however, the direction and magnitude of these impacts on producers and consumers cannot be determined a priori.

  1. Assessing the likely impacts of climate change on infrastructure

    International Nuclear Information System (INIS)

    Holper, Paul; Nolan, Michael

    2007-01-01

    Full text: In 2005, the Victorian Government contracted CSIRO, Maunsell Australia and Phillips Fox to undertake an overview assessment of the likely impacts of climate change on the State's infrastructure, establish the categories of infrastructure most at risk and outline opportunities for adaptation responses. The Government released the assessment in May 2007. Climate change poses a significant risk to infrastructure and its owners, managers and long-term operators. The work was undertaken on the basis that it should not be assumed that future climate and its impacts will simply be an extension of what has been experienced in the past. Major infrastructure items have long useful life spans (20-100 years). A bridge built today is expected to still be in use in tens, if not hundreds, of years. This means that recognition of likely climate change impacts and appropriate adaptation measures should occur now. Recognition of the risks associated with climate change is a valuable first step towards better planning of new infrastructure investments and reducing potential damage to existing infrastructure.lnfrastructure types examined were water, power, telecommunications, transport and buildings. The climate change projections used in this report are based on CSIRO climate modelling, supported by findings from the Intergovernmental Panel on Climate Change. Climatic and other variables considered were temperature, rainfall, available moisture, humidity, winds, fire-weather frequency and intensity, solar radiation levels and sea-level rise. For each climate change variable identified, we described a worst-case impact for low and high climate change projections for the years 2030 and 2070. The assessment was made on the basis of 'business as usual' with no adaptation responses to climate change. The report also details the current governance structures associated with each infrastructure type. Overall, the report assessed the likely impact of climate change on

  2. Effect of lunar gravity models on Chang'E-2 orbit determination using VLBI tracking data

    Directory of Open Access Journals (Sweden)

    Erhu Wei

    2016-11-01

    Full Text Available The precise orbit determination of Chang'E-2 is the most important issue for successful mission and scientific applications, while the lunar gravity field model with big uncertainties has large effect on Chang'E-2 orbit determination. Recently, several new gravity models have been produced using the latest lunar satellites tracking data, such as LP165P, SGM150J, GL0900D and GRGM900C. In this paper, the four gravity models mentioned above were evaluated through the power spectra analysis, admittance and coherence analysis. Effect of four lunar gravity models on Chang'E-2 orbit determination performance is investigated and assessed using Very Long Baseline Interferometry (VLBI tracking data. The overlap orbit analysis, the posteriori data residual, and the orbit prediction are used to evaluate the orbit precision between successive arcs. The LP165P model has better orbit overlap performance than the SGM150J model for Chang'E-2100 km × 100 km orbit and the SGM150J model performs better for Chang'E-2100 km × 15 km orbit, while GL0900D and GRGM900C have the best orbit overlap results for the two types of Chang'E-2 orbit. For the orbit prediction, GRGM900C has the best orbit prediction performance in the four models.

  3. Assessment of Climate Change Effects on Shahcheraghi Reservoir Inflow

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2016-10-01

    Full Text Available Introduction: Forecasting the inflow to the reservoir is important issues due to the limited water resources and the importance of optimal utilization of reservoirs to meet the need for drinking, industry and agriculture in future time periods. In the meantime, ignoring the effects of climate change on meteorological and hydrological parameters and water resources in long-term planning of water resources cause inaccuracy. It is essential to assess the impact of climate change on reservoir operation in arid regions. In this research, climate change impact on hydrological and meteorological variables of the Shahcheragh dam basin, in Semnan Province, was studied using an integrated model of climate change assessment. Materials and Methods: The case study area of this study was located in Damghan Township, Semnan Province, Iran. It is an arid zone. The case study area is a part of the Iran Central Desert. The basin is in 12 km north of the Damghan City and between 53° E to 54° 30’ E longitude and 36° N to 36° 30’ N latitude. The area of the basin is 1,373 km2 with average annual inflow around 17.9 MCM. Total actual evaporation and average annual rainfall are 1,986 mm and 137 mm, respectively. This case study is chosen to test proposed framework for assessment of climate change impact hydrological and meteorological variables of the basin. In the proposed model, LARS-WG and ANN sub-models (7 sub models with a combination of different inputs such as temperature, precipitation and also solar radiation were used for downscaling daily outputs of CGCM3 model under 3 emission scenarios, A2, B1 and A1B and reservoir inflow simulation, respectively. LARS-WG was tested in 99% confidence level before using it as downscaling model and feed-forward neural network was used as raifall-runoff model. Moreover, the base period data (BPD, 1990-2008, were used for calibration. Finally, reservoir inflow was simulated for future period data (FPD of 2015-2044 and

  4. Assessing sensitivity to change: choosing the appropriate change coefficient

    Directory of Open Access Journals (Sweden)

    Stratford Paul W

    2005-04-01

    Full Text Available Abstract The past 20-years have seen the development and evaluation of many health status measures. Unlike the high standards demanded of those who conduct and report clinical intervention trials, the methodological rigor for studies examining the sensitivity to change of health status measures are less demanding. It is likely that the absence of a criterion standard for change in health status contributes to this shortcoming. To increase confidence in the results of these types of studies investigators have often calculated multiple change coefficients for the same patient sample. The purpose of this report is to identify the conflict that arises when multiple change coefficients are applied to the same patient sample. Three families of change coefficients based on different assumptions concerning the sample composition are identified: (1 the sample is homogeneous with respect to change; (2 subgroups of patients who truly change by different amounts exist; (3 individual patients, many of whom truly change by different amounts exist. We present several analyses which illustrate a major conceptual conflict: the signal (a measure's true ability to detect change for some of these coefficients appears in the noise term (measurement error of the others. We speculate that this dilemma occurs as a result of insufficient preparatory work such as pilot studies to establish the likely change characteristic of the patient population of interest. Uncertainty in the choice of change coefficient could be overcome by conducting pilot studies to ascertain the likely change characteristic of the population of interest. Once the population's change characteristic is identified, the choice of change coefficient should be clear.

  5. The BGR Contingency Model for Leading Change

    Science.gov (United States)

    Brown, Derek R.; Gordon, Raymond; Rose, Dennis Michael

    2012-01-01

    The continuing failure rates of change initiatives, combined with an increasingly complex business environment, have created significant challenges for the practice of change management. High failure rates suggest that existing change models are not working, or are being incorrectly used. A different mindset to change is required. The BGR…

  6. Assessing habitat selection when availability changes

    Science.gov (United States)

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  7. Simulation modelling and risk assessment as tools to identify the impact of climate change on microbiological food safety – The case study of fresh produce supply chain

    NARCIS (Netherlands)

    Jacxsens, L.; Luning, P.A.; Vorst, van der J.G.A.J.; Devlieghere, F.; Leemans, R.; Uyttendaele, M.

    2010-01-01

    The current quality assurance and control tools and methods to prevent and/or to control microbiological risks associated with fresh produce are challenged due to the following pressures upon the food supply chain, i.e. changing consumption patterns, globalization and climate change. It demonstrates

  8. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  9. The SAVI vulnerability assessment model

    International Nuclear Information System (INIS)

    Winblad, A.E.

    1987-01-01

    The assessment model ''Systematic Analysis of Vulnerability to Intrusion'' (SAVI) presented in this report is a PC-based path analysis model. It can provide estimates of protection system effectiveness (or vulnerability) against a spectrum of outsider threats including collusion with an insider adversary. It calculates one measure of system effectiveness, the probability of interruption P(I), for all potential adversary paths. SAVI can perform both theft and sabotage vulnerability analyses. For theft, the analysis is based on the assumption that adversaries should be interrupted either before they can accomplish removal of the target material from its normal location or removal from the site boundary. For sabotage, the analysis is based on the assumption that adversaries should be interrupted before completion of their sabotage task

  10. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  11. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Barkefors, Catarina

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  12. Adaptation in integrated assessment modeling: where do we stand?

    NARCIS (Netherlands)

    Patt, A.; van Vuuren, D.P.; Berkhout, F.G.H.; Aaheim, A.; Hof, A.F.; Isaac, M.; Mechler, R.

    2010-01-01

    Adaptation is an important element on the climate change policy agenda. Integrated assessment models, which are key tools to assess climate change policies, have begun to address adaptation, either by including it implicitly in damage cost estimates, or by making it an explicit control variable. We

  13. Coupled impacts of climate and land use change across a river-lake continuum: insights from an integrated assessment model of Lake Champlain’s Missisquoi Basin, 2000-2040

    Science.gov (United States)

    Zia, Asim; Bomblies, Arne; Schroth, Andrew W.; Koliba, Christopher; Isles, Peter D. F.; Tsai, Yushiou; Mohammed, Ibrahim N.; Bucini, Gabriela; Clemins, Patrick J.; Turnbull, Scott; Rodgers, Morgan; Hamed, Ahmed; Beckage, Brian; Winter, Jonathan; Adair, Carol; Galford, Gillian L.; Rizzo, Donna; Van Houten, Judith

    2016-11-01

    Global climate change (GCC) is projected to bring higher-intensity precipitation and higher-variability temperature regimes to the Northeastern United States. The interactive effects of GCC with anthropogenic land use and land cover changes (LULCCs) are unknown for watershed level hydrological dynamics and nutrient fluxes to freshwater lakes. Increased nutrient fluxes can promote harmful algal blooms, also exacerbated by warmer water temperatures due to GCC. To address the complex interactions of climate, land and humans, we developed a cascading integrated assessment model to test the impacts of GCC and LULCC on the hydrological regime, water temperature, water quality, bloom duration and severity through 2040 in transnational Lake Champlain’s Missisquoi Bay. Temperature and precipitation inputs were statistically downscaled from four global circulation models (GCMs) for three Representative Concentration Pathways. An agent-based model was used to generate four LULCC scenarios. Combined climate and LULCC scenarios drove a distributed hydrological model to estimate river discharge and nutrient input to the lake. Lake nutrient dynamics were simulated with a 3D hydrodynamic-biogeochemical model. We find accelerated GCC could drastically limit land management options to maintain water quality, but the nature and severity of this impact varies dramatically by GCM and GCC scenario.

  14. Managing changes in the enterprise architecture modelling context

    Science.gov (United States)

    Khanh Dam, Hoa; Lê, Lam-Son; Ghose, Aditya

    2016-07-01

    Enterprise architecture (EA) models the whole enterprise in various aspects regarding both business processes and information technology resources. As the organisation grows, the architecture of its systems and processes must also evolve to meet the demands of the business environment. Evolving an EA model may involve making changes to various components across different levels of the EA. As a result, an important issue before making a change to an EA model is assessing the ripple effect of the change, i.e. change impact analysis. Another critical issue is change propagation: given a set of primary changes that have been made to the EA model, what additional secondary changes are needed to maintain consistency across multiple levels of the EA. There has been however limited work on supporting the maintenance and evolution of EA models. This article proposes an EA description language, namely ChangeAwareHierarchicalEA, integrated with an evolution framework to support both change impact analysis and change propagation within an EA model. The core part of our framework is a technique for computing the impact of a change and a new method for generating interactive repair plans from Alloy consistency rules that constrain the EA model.

  15. Modeling of Changing Electrode Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, Geoffrey Allen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  16. Behavior model for performance assessment

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S. A.

    1999-01-01

    Every individual channels information differently based on their preference of the sensory modality or representational system (visual auditory or kinesthetic) we tend to favor most (our primary representational system (PRS)). Therefore, some of us access and store our information primarily visually first, some auditorily, and others kinesthetically (through feel and touch); which in turn establishes our information processing patterns and strategies and external to internal (and subsequently vice versa) experiential language representation. Because of the different ways we channel our information, each of us will respond differently to a task--the way we gather and process the external information (input), our response time (process), and the outcome (behavior). Traditional human models of decision making and response time focus on perception, cognitive and motor systems stimulated and influenced by the three sensory modalities, visual, auditory and kinesthetic. For us, these are the building blocks to knowing how someone is thinking. Being aware of what is taking place and how to ask questions is essential in assessing performance toward reducing human errors. Existing models give predications based on time values or response times for a particular event, and may be summed and averaged for a generalization of behavior(s). However, by our not establishing a basic understanding of the foundation of how the behavior was predicated through a decision making strategy process, predicative models are overall inefficient in their analysis of the means by which behavior was generated. What is seen is the end result

  17. Behavior model for performance assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Borwn-VanHoozer, S. A.

    1999-07-23

    Every individual channels information differently based on their preference of the sensory modality or representational system (visual auditory or kinesthetic) we tend to favor most (our primary representational system (PRS)). Therefore, some of us access and store our information primarily visually first, some auditorily, and others kinesthetically (through feel and touch); which in turn establishes our information processing patterns and strategies and external to internal (and subsequently vice versa) experiential language representation. Because of the different ways we channel our information, each of us will respond differently to a task--the way we gather and process the external information (input), our response time (process), and the outcome (behavior). Traditional human models of decision making and response time focus on perception, cognitive and motor systems stimulated and influenced by the three sensory modalities, visual, auditory and kinesthetic. For us, these are the building blocks to knowing how someone is thinking. Being aware of what is taking place and how to ask questions is essential in assessing performance toward reducing human errors. Existing models give predications based on time values or response times for a particular event, and may be summed and averaged for a generalization of behavior(s). However, by our not establishing a basic understanding of the foundation of how the behavior was predicated through a decision making strategy process, predicative models are overall inefficient in their analysis of the means by which behavior was generated. What is seen is the end result.

  18. A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive

    NARCIS (Netherlands)

    Hughes, Samantha Jane; Cabral, João Alexandre; Bastos, Rita; Cortes, Rui; Vicente, Joana; Eitelberg, David; Yu, Huirong; Honrado, João; Santos, Mário

    2016-01-01

    This method development paper outlines an integrative stochastic dynamic methodology (StDM) framework to anticipate land use (LU) change effects on the ecological status of monitored and non-monitored lotic surface waters under the Water Framework Directive (WFD). Tested in the Alto Minho River

  19. Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling

    NARCIS (Netherlands)

    Kanellopoulos, A.; Reidsma, P.; Wolf, J.; Ittersum, van M.K.

    2014-01-01

    Future farming systems are challenged to adapt to the changing socio-economic and bio-physical environment in order to remain competitive and to meet the increasing requirements for food and fibres. The scientific challenge is to evaluate the consequences of predefined scenarios, identify current

  20. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    Science.gov (United States)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  1. Assessing NARCCAP climate model effects using spatial confidence regions

    Directory of Open Access Journals (Sweden)

    J. P. French

    2017-07-01

    Full Text Available We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.

  2. Modeling Two Types of Adaptation to Climate Change

    Science.gov (United States)

    Mitigation and adaptation are the two key responses available to policymakers to reduce the risks of climate change. We model these two policies together in a new DICE-based integrated assessment model that characterizes adaptation as either short-lived flow spending or long-live...

  3. Appropriate hydrological modelling of climate change on river flooding

    NARCIS (Netherlands)

    Booij, Martijn J.; Rizzoli, A.E.; Jakeman, A.J.

    2002-01-01

    How good should a river basin model be to assess the impact of climate change on river flooding for a specific geographical area? The determination of such an appropriate model should reveal which physical processes should be incorporated and which data and mathematical process descriptions should

  4. Modeling Past Abrupt Climate Changes

    DEFF Research Database (Denmark)

    Marchionne, Arianna

    of the orbital variations on Earth's climate; however, the knowledge and tools needed to complete a unied theory for ice ages have not been developed yet. Here, we focus on the climatic variations that have occurred over the last few million years. Paleoclimatic records show that the glacial cycles are linked...... to those present in the astronomical forcing. We shall do this in terms of a general framework of conceptual dynamical models, which may or may not exhibit internal self-sustained oscillations. We introduce and discuss two distinct mechanisms for a periodic response at a dierent period to a periodic...

  5. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  6. POSTMORTAL CHANGES AND ASSESSMENT OF POSTMORTEM INTERVAL

    Directory of Open Access Journals (Sweden)

    Edin Šatrović

    2013-01-01

    Full Text Available This paper describes in a simple way the changes that occur in the body after death.They develop in a specific order, and the speed of their development and their expression are strongly influenced by various endogenous and exogenous factors. The aim of the authors is to indicate the characteristics of the postmortem changes, and their significance in establishing time since death, which can be established precisely within 72 hours. Accurate evaluation of the age of the corpse based on the common changes is not possible with longer postmortem intervals, so the entomological findings become the most significant change on the corpse for determination of the postmortem interval (PMI.

  7. Performance Implications of Business Model Change: A Case Study

    Directory of Open Access Journals (Sweden)

    Jana Poláková

    2015-01-01

    Full Text Available The paper deals with changes in performance level introduced by the change of business model. The selected case is a small family business undergoing through substantial changes in reflection of structural changes of its markets. The authors used the concept of business model to describe value creation processes within the selected family business and by contrasting the differences between value creation processes before and after the change introduced they prove the role of business model as the performance differentiator. This is illustrated with the use of business model canvas constructed on the basis interviews, observations and document analysis. The two business model canvases allow for explanation of cause-and-effect relationships within the business leading to change in performance. The change in the performance is assessed by financial analysis of the business conducted over the period of 2006–2012 demonstrates changes in performance (comparing development of ROA, ROE and ROS having their lowest levels before the change of business model was introduced, growing after the introduction of the change, as well as the activity indicators with similar developments of the family business. The described case study contributes to the concept of business modeling with the arguments supporting its value as strategic tool facilitating decisions related to value creation within the business.

  8. Economic Models as Devices of Policy Change

    DEFF Research Database (Denmark)

    Henriksen, Lasse Folke

    2013-01-01

    Can the emergence of a new policy model be a catalyst for a paradigm shift in the overall interpretative framework of how economic policy is conducted within a society? This paper claims that models are understudied as devices used by actors to induce policy change. This paper explores the role...... of models in Danish economic policy, where, from the 1970s onwards, executive public servants in this area have exclusively been specialists in model design. To understand changes in economic policy, this paper starts with a discussion of whether the notion of paradigm shift is adequate. It then examines...... the extent to which the performativity approach can help identify macroscopic changes in policy from seemingly microscopic changes in policy models. The concept of performativity is explored as a means of thinking about the constitution of agency directed at policy change. The paper brings this concept...

  9. Response of the North Pacific Oscillation to global warming in the models of the Intergovernmental Panel on Climate Change Fourth Assessment Report

    Science.gov (United States)

    Chen, Zheng; Gan, Bolan; Wu, Lixin

    2017-09-01

    Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation (NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario (the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.

  10. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Mikkelsen, Peter Steen; Halsnæs, Kirsten

    2012-01-01

    Climate change is likely to affect the water cycle by influencing the precipitation patterns. It is important to integrate the anticipated changes into the design of urban drainage in response to the increased risk level in cities. This paper presents a pluvial flood risk assessment framework...... to identify and assess adaptation options in the urban context. An integrated approach is adopted by incorporating climate change impact assessment, flood inundation modeling, economic tool, and risk assessment, hereby developing a step-by-step process for cost-benefit assessment of climate change adaptation...

  11. The impact of investments and changes in the production regime on the results of creditworthiness assessment and bankruptcy prediction models: Case study: Company Bulgari Filati d.o.o.

    Directory of Open Access Journals (Sweden)

    Muminović Saša

    2012-06-01

    Full Text Available Although they can be a subject of criticism and have been challenged from its beginnings, bankruptcy prediction models have often been used in practice for more than four decades. The following models for predicting bankruptcy are applied in this issue: Altman's Z'-Score, Zmijewski model, Taffler's model and Sandin and Porporato model. Out of the creditworthiness assessment models (solvency analysis, the following models have been applied: Z''-Score (Altman, Hartzell and Peck and the BEX model. A significant shortcoming of the observed models is their failure to take investment into account. Beside, some models have inadequately assessed the transition of operations to lohn production, while others have not.

  12. Positional Accuracy Assessment for Effective Shoreline Change ...

    African Journals Online (AJOL)

    Ghana Mining Journal ... Data quality may be expressed in terms of several indicators such as attributes, temporal or positional accuracies. ... It is concluded that for the purpose of shoreline change analysis, such as shoreline change trends, large scale data sources should be used where possible for accurate ...

  13. Changing Assessment--Towards a New Assessment Paradigm Using ICT

    Science.gov (United States)

    Redecker, Christine; Johannessen, Oystein

    2013-01-01

    This article discusses how Information and Communication Technologies can support 21st century assessment strategies and what needs to be done to ensure that technological advances support and foster pedagogical innovation. Based on an extensive review of the literature, it provides an overview of current ICT-enabled assessment practices, with a…

  14. National assessment of shoreline change: Historical shoreline change in the Hawaiian Islands

    Science.gov (United States)

    Fletcher, Charles H.; Romine, Bradley M.; Genz, Ayesha S.; Barbee, Matthew M.; Dyer, Matthew; Anderson, Tiffany R.; Lim, S. Chyn; Vitousek, Sean; Bochicchio, Christopher; Richmond, Bruce M.

    2012-01-01

    Sandy beaches of the United States are some of the most popular tourist and recreational destinations. Coastal property constitutes some of the most valuable real estate in the country. Beaches are an ephemeral environment between water and land with unique and fragile natural ecosystems that have evolved in equilibrium with the ever-changing winds, waves, and water levels. Beachfront lands are the site of intense residential and commercial development even though they are highly vulnerable to several natural hazards, including marine inundation, flooding and drainage problems, effects of storms, sea-level rise, and coastal erosion. Because the U.S. population continues to shift toward the coast where valuable coastal property is vulnerable to erosion, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change. One aspect of this effort, the National Assessment of Shoreline Change, uses shoreline position as a proxy for coastal change because shoreline position is one of the most commonly monitored indicators of environmental change (for example, Fletcher, 1992; Dolan and others, 1991; Douglas and others, 1998; Galgano and others, 1998). Additionally, the National Research Council (1990) recommended the use of historical shoreline analysis in the absence of a widely accepted model of shoreline change.

  15. Adaptation in integrated assessment modeling: where do we stand?

    OpenAIRE

    Patt, A.; van Vuuren, D.P.; Berkhout, F.G.H.; Aaheim, A.; Hof, A.F.; Isaac, M.; Mechler, R.

    2010-01-01

    Adaptation is an important element on the climate change policy agenda. Integrated assessment models, which are key tools to assess climate change policies, have begun to address adaptation, either by including it implicitly in damage cost estimates, or by making it an explicit control variable. We analyze how modelers have chosen to describe adaptation within an integrated framework, and suggest many ways they could improve the treatment of adaptation by considering more of its bottom-up cha...

  16. Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

    2009-06-01

    This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based on this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the State’s posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.

  17. Methodologies for assessing socio-economic impacts of climate change

    International Nuclear Information System (INIS)

    Smit, B.

    1993-01-01

    Much of the studies on climate change impacts have focused on physical and biological impacts, yet a knowledge of the social and economic impacts of climate change is likely to have a greater impact on the public and on policymakers. A conventional assessment of the impacts of climate change begins with scenarios of future climate, commonly derived from global climate models translated to a regional scale. Estimates of biophysical conditions provided by such scenarios provide a basis for analyses of human impacts, usually considered sector by sector. The scenario approach, although having considerable merit and appeal, has some noteworthy limitations. It encourages consideration of only a small set of scenarios, requires bold assumptions to be made about adjustments in human systems, provides little direct analysis of sensitivities of human social and economic systems to climate perturbations, and usually invokes the assumption that all factors other than climate are stable and have no synergistic effects on human systems. Conventional studies concentrate on average climate, yet climate is inherently variable. A common response to this situation is to propose further development of climate models, but this is not a sufficient or necessary condition for good and useful assessments of impacts on human activities. Different approaches to socioeconomic impact analysis are needed, and approaches should be considered that include identification of sensitivities in a social or ecological system, identification of critical threshold levels or critical speeds of change in variables, and exploration of alternative methodologies such as process studies, spatial and temporal analogues, and socio-economic systems modelling. 5 refs., 3 figs

  18. Millennium Ecosystem Assessment: MA Rapid Land Cover Change

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Rapid Land Cover Change provides data and information on global and regional land cover change in raster format for...

  19. The regional impacts of climate change: an assessment of vulnerability

    National Research Council Canada - National Science Library

    Zinyowera, Marufu C; Moss, Richard H; Watson, R. T

    1998-01-01

    .... The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health...

  20. Modelling the effect of land use change on hydrological model ...

    African Journals Online (AJOL)

    Modelling the effect of land use change on hydrological model parameters via linearized calibration method in the upstream of Huaihe River Basin, China. ... is presented, based on the analysis of the problems of the objective function of the ...

  1. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  2. Assessment of changes at Glen Canyon Dam

    International Nuclear Information System (INIS)

    Cherry, D.; McCoy, J.; Crandall, S.

    1991-01-01

    This paper describes the complexity associated with the assessment of financial impacts of proposed and actual short-term restrictions at Glen Canyon Dam. The reasons for these restrictions are discussed as well as the methods used to measure their financial impact to Western Area Power Administration

  3. Assessment of climate change effects on Canada's National Park system.

    Science.gov (United States)

    Suffling, Roger; Scott, Daniel

    2002-03-01

    To estimate the magnitude of climate change anticipated for Canada's 38 National Parks (NPs) and Park Reserves, seasonal temperature and precipitation scenarios were constructed for 2050 and 2090 using the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled model (CGCM1). For each park, we assessed impacts on physical systems, species, ecosystems and people. Important, widespread changes relate to marine and freshwater hydrology, glacial balance, waning permafrost, increased natural disturbance, shorter ice season, northern and upward altitudinal species and biome shifts, and changed visitation patterns. Other changes are regional (e.g., combined East coast subsidence and sea level rise increase coastal erosion and deposition, whereas, on the Pacific coast, tectonic uplift negates sea level rise). Further predictions concern individual parks (e.g., Unique fens of Bruce Peninsular NP will migrate lakewards with lowered water levels, but structural regulation of Lake Huron for navigation and power generation would destroy the fens). Knowledge gaps are the most important findings. For example: we could not form conclusions about glacial mass balance, or its effects on rivers and fjords. Likewise, for the East Coast Labrador Current we could neither estimate temperature and salinity effects of extra iceberg formation, nor the further effects on marine food chains, and breeding park seabirds. We recommend 1) Research on specific large knowledge gaps; 2) Climate change information exchange with protected area agencies in other northern countries; and 3) incorporating climate uncertainty into park plans and management. We discuss options for a new park management philosophy in the face of massive change and uncertainty.

  4. Cost Analysis of Water Transport for Climate Change Impact Assessment

    Science.gov (United States)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  5. Beyond Needs Assessments: Marketing as Change Agent.

    Science.gov (United States)

    Piland, William E.

    1984-01-01

    Views marketing techniques as agents of change providing valuable assistance to community college decision makers. Discusses the importance of a balance among the four P's of marketing (i.e., promotion, price, place, and product); and seven procedural steps in developing a sound marketing strategy. (DMM)

  6. An ecological process model of systems change.

    Science.gov (United States)

    Peirson, Leslea J; Boydell, Katherine M; Ferguson, H Bruce; Ferris, Lorraine E

    2011-06-01

    In June 2007 the American Journal of Community Psychology published a special issue focused on theories, methods and interventions for systems change which included calls from the editors and authors for theoretical advancement in this field. We propose a conceptual model of systems change that integrates familiar and fundamental community psychology principles (succession, interdependence, cycling of resources, adaptation) and accentuates a process orientation. To situate our framework we offer a definition of systems change and a brief review of the ecological perspective and principles. The Ecological Process Model of Systems Change is depicted, described and applied to a case example of policy driven systems level change in publicly funded social programs. We conclude by identifying salient implications for thinking and action which flow from the Model.

  7. Climate change decision-making: Model & parameter uncertainties explored

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  8. Dose assessment models. Annex A

    International Nuclear Information System (INIS)

    1982-01-01

    The models presented in this chapter have been separated into 2 general categories: environmental transport models which describe the movement of radioactive materials through all sectors of the environment after their release, and dosimetric models to calculate the absorbed dose following an intake of radioactive materials or exposure to external irradiation. Various sections of this chapter also deal with atmospheric transport models, terrestrial models, and aquatic models.

  9. Technology and Online Education: Models for Change

    Science.gov (United States)

    Cook, Catherine W.; Sonnenberg, Christian

    2014-01-01

    This paper contends that technology changes advance online education. A number of mobile computing and transformative technologies will be examined and incorporated into a descriptive study. The object of the study will be to design innovative mobile awareness models seeking to understand technology changes for mobile devices and how they can be…

  10. Changing the Way We Assess Leadership

    Science.gov (United States)

    1997-01-01

    article is twofold. The first is to present a theory of leader- ship for the circumstances described above. The second is to provide manag - ers with a...between management and leadership . While both management and leadership are necessary, the change and complexity associated with the future demands that...the leadership role takes precedence over the management role. This concept of managerial leadership in an environment full of surprising, novel, messy

  11. Business Model Change in the Newspaper Industry

    DEFF Research Database (Denmark)

    Uliyanova, Anastasia; Holm, Anna B.; Nielsen, Anne Ellerup

    In the strategic management literature, the customer requirements and the opportunity to satisfy a real customer who needs a job to be done are considered to be the main instigators driving the company to initiate a business model change. However, an extensive search in peer-reviewed media...... management literature on triggers of business model change reveals that the literature is sparse in describing the change in young consumers1’ requirements of value of news put in a broader context of postmodernity; neither does it put focus on understanding of young consumers’ alternating and fragmented...

  12. Electricity price modeling with stochastic time change

    International Nuclear Information System (INIS)

    Borovkova, Svetlana; Schmeck, Maren Diane

    2017-01-01

    In this paper, we develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. This technique allows us to incorporate the characteristic features of electricity prices (such as seasonal volatility, time varying mean reversion and seasonally occurring price spikes) into the model in an elegant and economically justifiable way. The stochastic time change introduces stochastic as well as deterministic (e.g., seasonal) features in the price process' volatility and in the jump component. We specify the base process as a mean reverting jump diffusion and the time change as an absolutely continuous stochastic process with seasonal component. The activity rate of the stochastic time change can be related to the factors that influence supply and demand. Here we use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change, and show that this choice leads to realistic price paths. We derive properties of the resulting price process and develop the model calibration procedure. We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths by Monte Carlo simulations. We show that the simulated price process matches the distributional characteristics of the observed electricity prices in periods of both high and low demand. - Highlights: • We develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. • We incorporate the characteristic features of electricity prices, such as seasonal volatility and spikes into the model. • We use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change • We derive properties of the resulting price process and develop the model calibration procedure. • We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths.

  13. Assessing changes in drought characteristics with standardized indices

    Science.gov (United States)

    Vidal, Jean-Philippe; Najac, Julien; Martin, Eric; Franchistéguy, Laurent; Soubeyroux, Jean-Michel

    2010-05-01

    Standardized drought indices like the Standardized Precipitation Index (SPI) are more and more frequently adopted for drought reconstruction, monitoring and forecasting, and the SPI has been recently recommended by the World Meteorological Organization to characterize meteorological droughts. Such indices are based on the statistical distribution of a hydrometeorological variable (e.g., precipitation) in a given reference climate, and a drought event is defined as a period with continuously negative index values. Because of the way these indices are constructed, some issues may arise when using them in a non-stationnary climate. This work thus aims at highlighting such issues and demonstrating the different ways these indices may - or may not - be applied and interpreted in the context of an anthropogenic climate change. Three major points are detailed through examples taken from both a high-resolution gridded reanalysis dataset over France and transient projections from the ARPEGE general circulation model downscaled over France. The first point deals with the choice of the reference climate, and more specifically its type (from observations/reanalysis or from present-day modelled climate) and its record period. Second, the interpretation of actual changes are closely linked with the type of the selected drought feature over a future period: mean index value, under-threshold frequency, or drought event characteristics (number, mean duration and magnitude, seasonality, etc.). Finally, applicable approaches as well as related uncertainties depend on the availability of data from a future climate, whether in the form of a fully transient time series from present-day or only a future time slice. The projected evolution of drought characteristics under climate change must inform present decisions on long-term water resources planning. An assessment of changes in drought characteristics should therefore provide water managers with appropriate information that can help

  14. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  15. Néron Models and Base Change

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Nicaise, Johannes

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented...... on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions...

  16. 75 FR 51806 - Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices

    Science.gov (United States)

    2010-08-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9192-2; Docket ID No. EPA-HQ-ORD-2010-0701] Climate Change... period for the draft document titled, ``Climate Change Vulnerability Assessment: Four Case Studies of... vulnerability to future climate change. The report is intended to illustrate the types of analyses, models, and...

  17. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  18. Modeling for operational event risk assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.

    1997-01-01

    The U.S. Nuclear Regulatory Commission has been using risk models to evaluate the risk significance of operational events in U.S. commercial nuclear power plants for more seventeen years. During that time, the models have evolved in response to the advances in risk assessment technology and insights gained with experience. Evaluation techniques fall into two categories, initiating event assessments and condition assessments. The models used for these analyses have become uniquely specialized for just this purpose

  19. Agricultural ecosystem modelling. The basis for assessing the impact of possible land-use and climate changes. Final report; Agrooekosystemmodellierung. Grundlage fuer die Abschaetzung von Auswirkungen moeglicher Landnutzungs- und Klimaaenderungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wenkel, K.O. [ed.; Mirschel, W. [ed.

    1995-12-31

    This report presents the results of the BMBF-sponsored project Fundamentals and models for assessing the effect of climate changes on soil, plant development and the crops of an economically significant range of farm products. Its aim was to study, by means of the results obtained for winter wheat, the dependence of plant growth on temperature, radiation and water as well as nutrient supply for other economically important crop types. Building on this, process-oriented, climate-sensitive agricultural ecosystem models for winter rye, winter barley, sugar-beet and winter intercrops were developed, verified and, in some sites, validated. First scenario calculations served to demonstrate the climate sensitivity of these models. (orig./KW) [Deutsch] Im vorliegenden Bericht werden die Ergebnisse des BMBF - Vorhabens `Grundlagen und Modelle zur Abschaetzung von Klimaaenderungen auf den Boden, die Pflanzenentwicklung sowie den verwertbaren Ernteertrag einer wirtschaftlich bedeutenden Marktfruchtfolge` vorgestellt. Ziel des Vorhabens war es, auf der Grundlage der Erkenntnisse zur Fruchtart Winterweizen die Abhaengigkeit des Pflanzenwachstums von Temperatur, Strahlung sowie Wasser- und Naehrstoffversorgung fuer weitere wirtschaftlich bedeutende landwirtschaftliche Fruchtarten zu untersuchen und auf diesen Ergebnissen aufbauend prozessorientierte klimasensitive Agrooekosystemmodelle fuer Winterroggen, Wintergerste, Zuckerrueben und Winterzwischenfruechte zu entwickeln, zu verifizieren und an einigen Standorten zu validieren. Mit Hilfe von ersten Szenariorechnungen war die Klimasensibilitaet dieser Modelle nachzuweisen. (orig./KW)

  20. Extracting information from an ensemble of GCMs to reliably assess future global runoff change

    NARCIS (Netherlands)

    Sperna Weiland, F.C.; Beek, L.P.H. van; Weerts, A.H.; Bierkens, M.F.P.

    2011-01-01

    Future runoff projections derived from different global climate models (GCMs) show large differences. Therefore, within this study the, information from multiple GCMs has been combined to better assess hydrological changes. For projections of precipitation and temperature the Reliability ensemble

  1. Assessing the impacts of the changes in farming systems on food security and environmental sustainability of a Chinese rural region under different policy scenarios: an agent-based model.

    Science.gov (United States)

    Yuan, Chengcheng; Liu, Liming; Qi, Xiaoxing; Fu, Yonghu; Ye, Jinwei

    2017-07-01

    Since China has undergone a series of economic reforms and implemented opening up policies, its farming systems have significantly changed and have dramatically influenced the society, economy, and environment of China. To assess the comprehensive impacts of these changes on food security and environmental sustainability, and establish effective and environment-friendly subsidy policies, this research constructed an agent-based model (ABM). Daligang Town, which is located in the two-season rice region of Southern China, was selected as the case study site. Four different policy scenarios, i.e., "sharply increasing" (SI), "no-increase" (NI), "adjusted-method" (AM), and "trend" (TD) scenarios were investigated from 2015 to 2029. The validation result shows that the relative prediction errors between the simulated and actual values annually ranged from -20 to 20%, indicating the reliability of the proposed model. The scenario analysis revealed that the four scenarios generated different variations in cropping systems, rice yield, and fertilizer and pesticide inputs when the purchase price of rice and the non-agricultural income were assumed to increase annually by 0.1 RMB per kg and 10% per person, respectively. Among the four different policy scenarios in Daligang, the TD scenario was considered the best, because it had a relatively high rice yield, fairly minimal use of fertilizers and pesticides, and a lower level of subsidy. Despite its limitations, ABM could be considered a useful tool in analyzing, exploring, and discussing the comprehensive effects of the changes in farming system on food security and environmental sustainability.

  2. Sensitivity Assessment of Ozone Models

    Energy Technology Data Exchange (ETDEWEB)

    Shorter, Jeffrey A.; Rabitz, Herschel A.; Armstrong, Russell A.

    2000-01-24

    The activities under this contract effort were aimed at developing sensitivity analysis techniques and fully equivalent operational models (FEOMs) for applications in the DOE Atmospheric Chemistry Program (ACP). MRC developed a new model representation algorithm that uses a hierarchical, correlated function expansion containing a finite number of terms. A full expansion of this type is an exact representation of the original model and each of the expansion functions is explicitly calculated using the original model. After calculating the expansion functions, they are assembled into a fully equivalent operational model (FEOM) that can directly replace the original mode.

  3. Modelling climate change impacts on crop production for food security

    Czech Academy of Sciences Publication Activity Database

    Bindi, M.; Palosuo, T.; Trnka, Miroslav; Semenov, M. A.

    2015-01-01

    Roč. 65, SEP (2015), s. 3-5 ISSN 0936-577X Institutional support: RVO:67179843 Keywords : Crop production Upscaling * Climate change impact and adaptation assessments * Upscaling * Model ensembles Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.690, year: 2015

  4. Land Use Change Modelling in R

    Science.gov (United States)

    Moulds, S.; Buytaert, W.

    2014-12-01

    Land use activities, through the provision of natural resources, are essential to human existence. In many regions land use change is degrading biodiversity and threatening the sustainability of ecosystem services upon which communities and livelihoods depend. Spatially explicit land use change models are widely used to understand and quantify key processes that affect land use change and make predictions about past and future change. These models typically include a module to estimate the suitability of different locations to particular land use types based on biophysical and socioeconomic predictor variables and a module to allocate change spatially. They are commonly implemented in languages such as C/C++ and Fortran and made available as standalone applications or through proprietary GIS. In many cases the models are released under closed source licences, limiting the reproducibility of scientific results and making model comparison difficult. This work presents a new R package providing methods and classes to support land use change modelling and model development and comparison within the open source R statistical computing environment. The package makes use of existing R implementations of methods such as random forests and recursive partitioning and regression trees to estimate location suitability, as well as providing methods for statistical model building and evaluation. Currently two spatial allocation methods are provided: the first based on the widely used and tested CLUE-S algorithm and the second a novel stochastic procedure developed for large scale applications. Some common tools for evaluating allocation results are implemented. It is hoped that the package will provide a framework for the development of new routines that can be incorporated into future releases of the code.

  5. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  6. A Multi-Actor Dynamic Integrated Assessment Model (MADIAM)

    OpenAIRE

    Weber, Michael

    2004-01-01

    The interactions between climate and the socio-economic system are investigated with a Multi-Actor Dynamic Integrated Assessment Model (MADIAM) obtained by coupling a nonlinear impulse response model of the climate sub-system (NICCS) to a multi-actor dynamic economic model (MADEM). The main goal is to initiate a model development that is able to treat the dynamics of the coupled climate socio-economic system, including endogenous technological change, in a non-equilibrium situation, thereby o...

  7. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  8. Modelling Impacts of Climate Change: Case Studies using the New Generation of Erosion Models

    Science.gov (United States)

    Climate change is expected to impact upon a number of soil erosion drivers and processes, which should be taken into account when designing a modelling strategy. The fourth assessment report of the Intergovernmental Panel for Climate Change (IPCC) (Parry et al., 2007; Solomon et al., 2007) reviews a...

  9. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  10. Uncertainty assessment of climate change adaptation using an economic pluvial flood risk framework

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    2012-01-01

    It is anticipated that climate change is likely to lead to an increasing risk level of flooding in cities in northern Europe. One challenging question is how to best address the increasing flood risk and assess the costs and benefits of adapting to such changes. We established an integrated...... approach for identification and assessment of climate change adaptation options by incorporating climate change impacts, flood inundation modelling, economic tool and risk assessment and management. The framework is further extended and adapted by embedding a Monte Carlo simulation to estimate the total...

  11. Modeling Change in Project Duration and Completion

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Butner, Jonathan E.; Pirtle, Zachary

    2017-01-01

    In complex work domains and organizations, understanding scheduleing dynamics can ensure objectives are reached and delays are mitigated. In the current paper, we examine the scheduling dynamics for NASA’s Exploration Flight Test 1 (EFT-1) activities. For this examination, we specifically modeled...... simultaneous change in percent complete and estimated duration for a given project as they were included in monthly reports over time. In short, we utilized latent change score mixture modeling to extract the attractor dynamics within the scheduling data. We found three primarily patterns: an attractor at low...

  12. Modelling in Medical Technology Assessment

    NARCIS (Netherlands)

    B.C. Michel (Bowine)

    1996-01-01

    textabstractHealth care is a rapidly developing field in which new technologies are introduced continuously. Not all new technologies have the same impact however: most represent only small changes in existing technologies, whereas only a few - like organ transplants - really are revolutionary new

  13. The Model for Assessment of Telemedicine (MAST)

    DEFF Research Database (Denmark)

    Kidholm, Kristian; Clemensen, Jane; Caffery, Liam J

    2017-01-01

    The evaluation of telemedicine can be achieved using different evaluation models or theoretical frameworks. This paper presents a scoping review of published studies which have applied the Model for Assessment of Telemedicine (MAST). MAST includes pre-implementation assessment (e.g. by use...

  14. Néron Models and Base Change

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Nicaise, Johannes

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented...... with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically...... on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions...

  15. A novel trauma leadership model reflective of changing times.

    Science.gov (United States)

    DʼHuyvetter, Cecile; Cogbill, Thomas H

    2014-01-01

    As a result of generational changes in the health care workforce, we sought to evaluate our current Trauma Medical Director Leadership model. We assessed the responsibilities, accountability, time requirements, cost, and provider satisfaction with the current leadership model. Three new providers who had recently completed fellowship training were hired, each with unique professional desires, skill sets, and experience. Our goal was to establish a comprehensive, cost-effective, accountable leadership model that enabled provider satisfaction and equalized leadership responsibilities. A 3-pronged team model was established with a Medical Director title and responsibilities rotating per the American College of Surgeons verification cycle to develop leadership skills and lessen hierarchical differences.

  16. A probabilistic model of ecosystem response to climate change

    International Nuclear Information System (INIS)

    Shevliakova, E.; Dowlatabadi, H.

    1994-01-01

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold

  17. Modelling of anthropogenic and natural climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Mikolajewicz, U; Bakan, S [Max Planck Institute of Meteorology, Hamburg (Germany)

    1993-06-01

    The delay of anthropogenic climate change caused by oceans and other slowly reacting climate system components forces us to numerical modeling as the basis of decisions. For three three-dimensional numerical examples, namely transient coupled ocean-atmosphere models for the additional greenhouse effect, internal ocean-atmosphere variability, and disturbance by soot particles from burning oil wells, the present-day status is described. From all anthropogenic impacts on the radiative balance, the contribution from trace gases is the most important.

  18. Assessment of the Rescorla-Wagner model.

    Science.gov (United States)

    Miller, R R; Barnet, R C; Grahame, N J

    1995-05-01

    The Rescorla-Wagner model has been the most influential theory of associative learning to emerge from the study of animal behavior over the last 25 years. Recently, equivalence to this model has become a benchmark in assessing connectionist models, with such equivalence often achieved by incorporating the Widrow-Hoff delta rule. This article presents the Rescorla-Wagner model's basic assumptions, reviews some of the model's predictive successes and failures, relates the failures to the model's assumptions, and discusses the model's heuristic value. It is concluded that the model has had a positive influence on the study of simple associative learning by stimulating research and contributing to new model development. However, this benefit should neither lead to the model being regarded as inherently "correct" nor imply that its predictions can be profitably used to assess other models.

  19. Understanding National Models for Climate Assessments

    Science.gov (United States)

    Dave, A.; Weingartner, K.

    2017-12-01

    National-level climate assessments have been produced or are underway in a number of countries. These efforts showcase a variety of approaches to mapping climate impacts onto human and natural systems, and involve a variety of development processes, organizational structures, and intended purposes. This presentation will provide a comparative overview of national `models' for climate assessments worldwide, drawing from a geographically diverse group of nations with varying capacities to conduct such assessments. Using an illustrative sampling of assessment models, the presentation will highlight the range of assessment mandates and requirements that drive this work, methodologies employed, focal areas, and the degree to which international dimensions are included for each nation's assessment. This not only allows the U.S. National Climate Assessment to be better understood within an international context, but provides the user with an entry point into other national climate assessments around the world, enabling a better understanding of the risks and vulnerabilities societies face.

  20. Changing the culture of assessment: the dominance of the summative assessment paradigm

    NARCIS (Netherlands)

    Harrison, C.J.; Konings, K.D.; Schuwirth, L.W.; Wass, V.; Vleuten, C.P.M. van der

    2017-01-01

    BACKGROUND: Despite growing evidence of the benefits of including assessment for learning strategies within programmes of assessment, practical implementation of these approaches is often problematical. Organisational culture change is often hindered by personal and collective beliefs which

  1. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    Science.gov (United States)

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  2. An assessment of the spatial and temporal changes of Mabira ...

    African Journals Online (AJOL)

    An assessment of the spatial and temporal changes of Mabira tropical forest ... The non-significant drivers included the low education levels, establishment of ... in the sustainable utilization of forest products and biodiversity conservation.

  3. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...... reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  4. Models of behavioral change and adaptation

    NARCIS (Netherlands)

    Rasouli, S.; Timmermans, H.J.P.; Zhang, J.

    2017-01-01

    This chapter explains and summarizes models of behavioral change and adaptation, which have received less application in the life choice analysis associated with urban policy. Related to various life choices, life trajectory events are major decisions with a relatively long-lasting impact, such as

  5. Ensemble catchment hydrological modelling for climate change impact analysis

    Science.gov (United States)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    , more than in high flow conditions. Hence, the mechanism of the slow flow component simulation requires further attention. It is concluded that a multi-model ensemble approach where different plausible model structures are applied, is extremely useful. It improves the reliability of climate change impact results and allows decision making to be based on uncertainty assessment that includes model structure related uncertainties. References: Ntegeka, V., Baguis, P., Roulin, E., Willems, P., 2014. Developing tailored climate change scenarios for hydrological impact assessments. Journal of Hydrology, 508C, 307-321 Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O., 2013. Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models. Hydrological Processes, 27(25), 3649-3662. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of Hydrology, in press. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of climate scenario impact predictions by a lumped and distributed model ensemble. Journal of Hydrology, in revision.

  6. Assessing the observed impact of anthropogenic climate change

    OpenAIRE

    Hansen, G; Stone, D

    2016-01-01

    © 2016 Macmillan Publishers Limited. All rights reserved. Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC's Fifth Assessment Report. We find that almost two-thirds of the impacts...

  7. Spatial modeling of agricultural land use change at global scale

    Science.gov (United States)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  8. Measures for assessing practice change in medical practitioners.

    Science.gov (United States)

    Hakkennes, Sharon; Green, Sally

    2006-12-06

    There are increasing numbers of randomised trials and systematic reviews examining the efficacy of interventions designed to bring about a change in clinical practice. The findings of this research are being used to guide strategies to increase the uptake of evidence into clinical practice. Knowledge of the outcomes measured by these trials is vital not only for the interpretation and application of the work done to date, but also to inform future research in this expanding area of endeavour and to assist in collation of results in systematic reviews and meta-analyses. The objective of this review was to identify methods used to measure change in the clinical practices of health professionals following an intervention aimed at increasing the uptake of evidence into practice. All published trials included in a recent, comprehensive Health Technology Assessment of interventions to implement clinical practice guidelines and change clinical practice (n = 228) formed the sample for this study. Using a standardised data extraction form, one reviewer (SH), extracted the relevant information from the methods and/or results sections of the trials. Measures of a change of health practitioner behaviour were the most common, with 88.8% of trials using these as outcome measures. Measures that assessed change at a patient level, either actual measures of change or surrogate measures of change, were used in 28.8% and 36.7% of studies (respectively). Health practitioners' knowledge and attitudes were assessed in 22.8% of the studies and changes at an organisational level were assessed in 17.6%. Most trials of interventions aimed at changing clinical practice measured the effect of the intervention at the level of the practitioner, i.e. did the practitioner change what they do, or has their knowledge of and/or attitude toward that practice changed? Less than one-third of the trials measured, whether or not any change in practice, resulted in a change in the ultimate end-point of

  9. Assessment of safety culture: Changing regulatory approach in Hungary

    International Nuclear Information System (INIS)

    Ronaky, Jozsef; Toth, Andras

    2002-01-01

    Hungarian Atomic Energy Authority (HAEA) is changing its inspection practice and assessment methods of safety performance and safety culture in operating nuclear facilities. The new approach emphasises integrated team inspection of safety cornerstones and systematic assessment of safety performance of operators. (author)

  10. Using Classroom Assessment To Change Both Teaching and Learning.

    Science.gov (United States)

    Steadman, Mimi

    1998-01-01

    Summarizes results of a study on implementation and impact of classroom assessment techniques (CATs) in community colleges, examining how classroom assessment has been applied by teachers, documenting changes in teaching behaviors, and considering costs and benefits. Also examines students' experiences and satisfaction with courses taught using…

  11. Impact Assessment of Climate Change on Forestry Development in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Forestry and forest ecosystem are highly sensitive to climate change.At present,studies about the responses of forests to climate change in China are more focused on physical influences of climate change.This paper firstly divided the key impact factors of climate change on forest and forestry developing into direct factors and indirect factors,and then made an assessment on climate change affecting future forestry development from the aspect of forest products and ecological services.On this basis,the adap...

  12. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change

    Gerrit Hansen

    Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced

  13. Assessment of farm households' vulnerability to climate change in ...

    African Journals Online (AJOL)

    Climate change is currently an emerging problem in Nigeria. The Niger Delta region presents some vulnerability due to activities of some oil companies. This study provides an assessment of farm households' perception of climate change and vulnerability in the Niger Delta region of Nigeria. The data were obtained form ...

  14. Scenarios of long-term farm structural change for application in climate change impact assessment

    NARCIS (Netherlands)

    Mandryk, M.; Reidsma, P.; Ittersum, van M.K.

    2012-01-01

    Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However,

  15. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    Science.gov (United States)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  16. Climate change adaptation impact cost assessment in France

    International Nuclear Information System (INIS)

    2009-01-01

    This document reports the works of an inter-departmental group and of sector-based and transverse groups which aimed at assessing the impacts of climate change. After a first contribution about the assessment methodology, the works of sector-based groups and transverse groups are reported. These groups are dealing with agriculture, forest, infrastructures and built environment, tourism, energy, health, water, natural risks (and insurance and adaptation to climatic change in metropolitan France), biodiversity and land. For each of them, challenges, assessment approaches, first results and perspectives are discussed

  17. Advances in risk assessment for climate change adaptation policy.

    Science.gov (United States)

    Adger, W Neil; Brown, Iain; Surminski, Swenja

    2018-06-13

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  18. Advances in risk assessment for climate change adaptation policy

    Science.gov (United States)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-01-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712800

  19. Advances in risk assessment for climate change adaptation policy

    Science.gov (United States)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-06-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  20. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change

    Science.gov (United States)

    Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston

    2017-01-01

    We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...

  1. Assessment of climate change impacts on rainfall using large scale

    Indian Academy of Sciences (India)

    In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall ...

  2. Second California Assessment: Integrated climate change impacts assessment of natural and managed systems. Guest editorial

    Science.gov (United States)

    Franco, G.; Cayan, D.R.; Moser, S.; Hanemann, M.; Jones, M.A.

    2011-01-01

    Since 2006 the scientific community in California, in cooperation with resource managers, has been conducting periodic statewide studies about the potential impacts of climate change on natural and managed systems. This Special Issue is a compilation of revised papers that originate from the most recent assessment that concluded in 2009. As with the 2006 studies that influenced the passage of California's landmark Global Warming Solutions Act (AB32), these papers have informed policy formulation at the state level, helping bring climate adaptation as a complementary measure to mitigation. We provide here a brief introduction to the papers included in this Special Issue focusing on how they are coordinated and support each other. We describe the common set of downscaled climate and sea-level rise scenarios used in this assessment that came from six different global climate models (GCMs) run under two greenhouse gas emissions scenarios: B1 (low emissions) and A2 (a medium-high emissions). Recommendations for future state assessments, some of which are being implemented in an on-going new assessment that will be completed in 2012, are offered. ?? 2011 Springer Science+Business Media B.V.

  3. Ecological models and pesticide risk assessment: current modeling practice.

    Science.gov (United States)

    Schmolke, Amelie; Thorbek, Pernille; Chapman, Peter; Grimm, Volker

    2010-04-01

    Ecological risk assessments of pesticides usually focus on risk at the level of individuals, and are carried out by comparing exposure and toxicological endpoints. However, in most cases the protection goal is populations rather than individuals. On the population level, effects of pesticides depend not only on exposure and toxicity, but also on factors such as life history characteristics, population structure, timing of application, presence of refuges in time and space, and landscape structure. Ecological models can integrate such factors and have the potential to become important tools for the prediction of population-level effects of exposure to pesticides, thus allowing extrapolations, for example, from laboratory to field. Indeed, a broad range of ecological models have been applied to chemical risk assessment in the scientific literature, but so far such models have only rarely been used to support regulatory risk assessments of pesticides. To better understand the reasons for this situation, the current modeling practice in this field was assessed in the present study. The scientific literature was searched for relevant models and assessed according to nine characteristics: model type, model complexity, toxicity measure, exposure pattern, other factors, taxonomic group, risk assessment endpoint, parameterization, and model evaluation. The present study found that, although most models were of a high scientific standard, many of them would need modification before they are suitable for regulatory risk assessments. The main shortcomings of currently available models in the context of regulatory pesticide risk assessments were identified. When ecological models are applied to regulatory risk assessments, we recommend reviewing these models according to the nine characteristics evaluated here. (c) 2010 SETAC.

  4. Assessment of readiness to change in patients with osteoarthritis. Development and application of a new questionnaire

    NARCIS (Netherlands)

    Heuts, PHTG; de Bie, RA; Dijkstra, A; Aretz, K; Vlaeyen, JW; Schouten, HJA; Hopman-Rock, M; van Weel, C; van Schayck, CP; van Schayk, O.C P

    Objective: To develop a self- report measure for assessment of the stage of change in patients with osteoarthritis, in order to identify patients who would benefit from a self- management programme. Methods: According to the ' stages of change' model a questionnaire was developed with three groups

  5. Assessment of watershed regionalization for the land use change parameterization

    Science.gov (United States)

    Randusová, Beata; Kohnová, Silvia; Studvová, Zuzana; Marková, Romana; Nosko, Radovan

    2016-04-01

    The estimation of design discharges and water levels of extreme floods is one of the most important parts of the design process for a large number of engineering projects and studies. Floods and other natural hazards initiated by climate, soil, and land use changes are highly important in the 21st century. Flood risks and design flood estimation is particularly challenging. Methods of design flood estimation can be applied either locally or regionally. To obtain the design values in such cases where no recorded data exist, many countries have adopted procedures that fit the local conditions and requirements. One of these methods is the Soil Conservation Service - Curve number (SCS-CN) method which is often used in design flood estimation for ungauged sites. The SCS-CN method is an empirical rainfall-runoff model developed by the USDA Natural Resources Conservation Service (formerly called the Soil Conservation Service or SCS). The runoff curve number (CN) is based on the hydrological soil characteristics, land use, land management and antecedent saturation conditions of soil. This study is focused on development of the SCS-CN methodology for the changing land use conditions in Slovak basins (with the pilot site of the Myjava catchment), which regionalize actual state of land use data and actual rainfall and discharge measurements of the selected river basins. In this study the state of the water erosion and sediment transport along with a subsequent proposal of erosion control measures was analyzed as well. The regionalized SCS-CN method was subsequently used for assessing the effectiveness of this control measure to reduce runoff from the selected basin. For the determination of the sediment transport from the control measure to the Myjava basin, the SDR (Sediment Delivery Ratio) model was used.

  6. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  7. Model of MSD Risk Assessment at Workplace

    OpenAIRE

    K. Sekulová; M. Šimon

    2015-01-01

    This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.

  8. Attention modeling for video quality assessment

    DEFF Research Database (Denmark)

    You, Junyong; Korhonen, Jari; Perkis, Andrew

    2010-01-01

    averaged spatiotemporal pooling. The local quality is derived from visual attention modeling and quality variations over frames. Saliency, motion, and contrast information are taken into account in modeling visual attention, which is then integrated into IQMs to calculate the local quality of a video frame...... average between the global quality and the local quality. Experimental results demonstrate that the combination of the global quality and local quality outperforms both sole global quality and local quality, as well as other quality models, in video quality assessment. In addition, the proposed video...... quality modeling algorithm can improve the performance of image quality metrics on video quality assessment compared to the normal averaged spatiotemporal pooling scheme....

  9. evaluation of models for assessing groundwater vulnerability

    African Journals Online (AJOL)

    DR. AMINU

    applied models for groundwater vulnerability assessment mapping. The appraoches .... The overall 'pollution potential' or DRASTIC index is established by applying the formula: DRASTIC Index: ... affected by the structure of the soil surface.

  10. Models of vegetation change for landscape planning: a comparison of FETM, LANDSUM, SIMPPLLE, and VDDT

    Science.gov (United States)

    T. M. Barrett

    2001-01-01

    Landscape assessment and planning often depend on the ability to predict change of vegetation. This report compares four modeling systems (FETM, LANDSUM, SIMPPLLE, and VDDT) that can be used to understand changes resulting from succession, natural disturbance, and management activities. The four models may be useful for regional or local assessments in National Forest...

  11. Fuzzy optimization model for land use change

    OpenAIRE

    L. Jahanshahloo; E. Haghi

    2014-01-01

    There are some important questions in Land use change literature, for instance How much land to allocate to each of a number of land use type in order to maximization of (household or individual) rent -paying ability, minimization of environmental impacts or maximization of population income. In this paper, we want to investigate them and propose mathematical models to find an answer for these questions. Since Most of the parameters in this process are linguistics and fuzzy logic is a powerfu...

  12. A Model for Situation and Threat Assessment

    Science.gov (United States)

    2006-12-01

    CUBRC , Inc.) 8151 Needwood #T103 Derwood, MD 20855 UNITED STATES steinberg@cubrc.org A model is presented for situation and threat assessment...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Subject Matter Expert (SME) Calspan-UB Research Center ( CUBRC , Inc.) 8151 Needwood #T103 Derwood, MD...1 A Model for Situation and Threat Assessment Alan Steinberg CUBRC , Inc. steinberg@cubrc.org November, 2005 2 Objectives • Advance the state-of

  13. Climate modelling, uncertainty and responses to predictions of change

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    1996-01-01

    Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by, inter alia, incorporating climate change risk assessment into development planning processes, i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. An urgent issue is the mismatch between the predictions of global climatic change and the need for information on local to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. And, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. But, climate models can't yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes

  14. Assessment of Change in Psychoanalysis: Another Way of Using the Change After Psychotherapy Scales.

    Science.gov (United States)

    Pires, António Pazo; Gonçalves, João; Sá, Vânia; Silva, Andrea; Sandell, Rolf

    2016-04-01

    A systematic method is presented whereby material from a full course of psychoanalytic treatment is analyzed to assess changes and identify patterns of change. Through an analysis of session notes, changes were assessed using the CHange After Psychotherapy scales (CHAP; Sandell 1987a), which evaluate changes in five rating variables (symptoms, adaptive capacity, insight, basic conflicts, and extratherapeutic factors). Change incidents were identified in nearly every session. Early in the analysis, relatively more change incidents related to insight were found than were found for the other types of change. By contrast, in the third year and part of the fourth year, relatively more change incidents related to basic conflicts and adaptive capacity were found. While changes related to symptoms occurred throughout the course of treatment, such changes were never more frequent than other types of change. A content analysis of the change incidents allowed a determination of when in the treatment the patient's main conflicts (identified clinically) were overcome. A crossing of quantitative data with clinical and qualitative data allowed a better understanding of the patterns of change. © 2016 by the American Psychoanalytic Association.

  15. Consideration of climate change on environmental impact assessment in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org [Escuela de Doctorado, Universidad Nacional de Educación a Distancia, UNED, Draba Ingeniería y Consultoría Medioambiental, Cañada Nueva, 29, 28200 San Lorenzo de El Escorial (Spain); Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain); Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es [Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain)

    2016-02-15

    Most of the projects subject to environmental impact assessment (EIA) are closely related to climate change, as they contribute to or are affected by it. The growing certainty about climate change and its impacts makes its consideration an essential part of the EIA process, as well as in strategic environmental assessment (SEA). This paper examines how climate change (CC) has been taken into account in EIA in Spain through the analysis of 1713 environmental records of decision (RODs) of projects submitted for EIA. In 2013 Spain approved one of the most advanced laws in terms of CC consideration in environmental assessment, although it had not yet accumulated extensive practice on the issue. This contrasts with the situation of countries like Canada or the USA, which have a significant body of experience without specific legal requirements. Only 14% of the RODs analysed included references to CC, and in more than half of the cases it was a mere citation. Thermal power plants, which are subject to specific GHG regulations, show the highest consideration, while transport infrastructures, which are important contributors to CC, show a very low consideration. Almost all the references are related to their contribution to CC, while consideration of the effects of CC is minimal. The increasingly common incorporation of CC into SEA, should not imply its exclusion from EIA, because both processes have different aims and uses. Including the obligation to consider CC in the EIA regulations is highly desirable, but probably not enough without other measures, such as practical guidance, training and motivational programmes for practitioners and evaluators. But even these actions cannot ensure effective and adequate assessments of CC. Probably more resources should be spent on creating greater awareness in all the agents involved in EIA. - Highlights: • We analyse how the climate change is considered in EIA in Spain. • Few projects seriously assess climate change.

  16. Consideration of climate change on environmental impact assessment in Spain

    International Nuclear Information System (INIS)

    Enríquez-de-Salamanca, Álvaro; Martín-Aranda, Rosa M.; Díaz-Sierra, Rubén

    2016-01-01

    Most of the projects subject to environmental impact assessment (EIA) are closely related to climate change, as they contribute to or are affected by it. The growing certainty about climate change and its impacts makes its consideration an essential part of the EIA process, as well as in strategic environmental assessment (SEA). This paper examines how climate change (CC) has been taken into account in EIA in Spain through the analysis of 1713 environmental records of decision (RODs) of projects submitted for EIA. In 2013 Spain approved one of the most advanced laws in terms of CC consideration in environmental assessment, although it had not yet accumulated extensive practice on the issue. This contrasts with the situation of countries like Canada or the USA, which have a significant body of experience without specific legal requirements. Only 14% of the RODs analysed included references to CC, and in more than half of the cases it was a mere citation. Thermal power plants, which are subject to specific GHG regulations, show the highest consideration, while transport infrastructures, which are important contributors to CC, show a very low consideration. Almost all the references are related to their contribution to CC, while consideration of the effects of CC is minimal. The increasingly common incorporation of CC into SEA, should not imply its exclusion from EIA, because both processes have different aims and uses. Including the obligation to consider CC in the EIA regulations is highly desirable, but probably not enough without other measures, such as practical guidance, training and motivational programmes for practitioners and evaluators. But even these actions cannot ensure effective and adequate assessments of CC. Probably more resources should be spent on creating greater awareness in all the agents involved in EIA. - Highlights: • We analyse how the climate change is considered in EIA in Spain. • Few projects seriously assess climate change.

  17. Educational Quality, Outcomes Assessment, and Policy Change: The Virginia Example

    Science.gov (United States)

    Culver, Steve

    2010-01-01

    The higher education system in the Commonwealth of Virginia in the United States provides a case model for how discussions regarding educational quality and assessment of that quality have affected institutions' policy decisions and implementation. Using Levin's (1998) policy analysis framework, this essay explores how assessment of student…

  18. Damage assessment in structure from changes in static parameter ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    damage assessment methodology will be a valuable tool in timely ... of the numerical model to the physical system are prerequisites for success. Wu et al ... The objective of the present paper is to locate and assess the damage occurring at any posi- ... This method leads to the recent very popular neural network learning.

  19. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability

  20. LEADING CHANGES IN ASSESSMENT USING AN EVIDENCE BASED APPROACH

    Directory of Open Access Journals (Sweden)

    J. O. Macaulay

    2015-08-01

    Full Text Available Introduction and objectivesIt is has been widely accepted that assessment of learning is a critical component of education and that assessment drives/guides student learning through shaping study habits and student approaches to learning. However, although most academics would agree that assessment is a critical aspect of their roles as teachers it is often an aspect of teaching that is regarded more as an additional task rather than an integral component of the teaching/learning continuum. An additional impediment to high quality assessment is the non-evidence based-approach to the decision making process. The overall aim of this project was to improve the quality of assessment in Biochemistry and Molecular Biology undergraduate education by promoting high quality assessment.Materials and methodsTo do this we developed and trialled an audit tool for mapping assessment practices. The audit tool was designed to gather data on current assessment practices and identify areas of good practice in which assessment aligned with the learning objectives and areas in need of improvement. This evidence base will then be used to drive change in assessment.Results and conclusionsUsing the assessment mapping tool we have mapped the assessment regime in a Biochemistry and Molecular Biology major at Monash University. Criteria used included: assessment type, format, timing, assessors, provision of feedback, level of learning (Bloom’s, approaches taken to planning assessment. We have mapped assessment of content and the systematic development of higher order learning and skills progression throughout the program of study. The data has enabled us to examine the assessment at unit (course level as well as the vertical development across the major. This information is now being used to inform a review of the units and the major.

  1. Néron models and base change

    CERN Document Server

    Halle, Lars Halvard

    2016-01-01

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is a...

  2. Environmental Change in Post-closure Safety Assessment of Solid Radioactive Waste Repositories. Report of Working Group 3 Reference Models for Waste Disposal of EMRAS II Topical Heading Reference Approaches for Human Dose Assessment. Environmental Modelling for Radiation Safety (EMRAS II) Programme

    International Nuclear Information System (INIS)

    2016-08-01

    Environmental assessment models are used for evaluating the radiological impact of actual and potential releases of radionuclides to the environment. They are essential tools for use in the regulatory control of routine discharges to the environment and also in planning measures to be taken in the event of accidental releases. They are also used for predicting the impact of releases which may occur far into the future, for example, from underground radioactive waste repositories. It is important to verify, to the extent possible, the reliability of the predictions of such models by a comparison with measured values in the environment or with predictions of other models. The IAEA has been organizing programmes of international model testing since the 1980s. These programmes have contributed to a general improvement in models, in the transfer of data and in the capabilities of modellers in Member States. IAEA publications on this subject over the past three decades demonstrate the comprehensive nature of the programmes and record the associated advances which have been made. From 2009 to 2011, the IAEA organized a programme entitled Environmental Modelling for Radiation Safety (EMRAS II), which concentrated on the improvement of environmental transfer models and the development of reference approaches to estimate the radiological impacts on humans, as well as on flora and fauna, arising from radionuclides in the environment. Different aspects were addressed by nine working groups covering three themes: reference approaches for human dose assessment, reference approaches for biota dose assessment and approaches for assessing emergency situations. This publication describes the work of the Reference Models for Waste Disposal Working Group

  3. Ecological risk assessment in the context of global climate change.

    Science.gov (United States)

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Copyright © 2012 SETAC.

  4. Modeling of Communication in a Computational Situation Assessment Model

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Seong, Poong Hyun

    2009-01-01

    Operators in nuclear power plants have to acquire information from human system interfaces (HSIs) and the environment in order to create, update, and confirm their understanding of a plant state, or situation awareness, because failures of situation assessment may result in wrong decisions for process control and finally errors of commission in nuclear power plants. Quantitative or prescriptive models to predict operator's situation assessment in a situation, the results of situation assessment, provide many benefits such as HSI design solutions, human performance data, and human reliability. Unfortunately, a few computational situation assessment models for NPP operators have been proposed and those insufficiently embed human cognitive characteristics. Thus we proposed a new computational situation assessment model of nuclear power plant operators. The proposed model incorporating significant cognitive factors uses a Bayesian belief network (BBN) as model architecture. It is believed that communication between nuclear power plant operators affects operators' situation assessment and its result, situation awareness. We tried to verify that the proposed model represent the effects of communication on situation assessment. As the result, the proposed model succeeded in representing the operators' behavior and this paper shows the details

  5. The role of computer modelling in participatory integrated assessments

    International Nuclear Information System (INIS)

    Siebenhuener, Bernd; Barth, Volker

    2005-01-01

    In a number of recent research projects, computer models have been included in participatory procedures to assess global environmental change. The intention was to support knowledge production and to help the involved non-scientists to develop a deeper understanding of the interactions between natural and social systems. This paper analyses the experiences made in three projects with the use of computer models from a participatory and a risk management perspective. Our cross-cutting analysis of the objectives, the employed project designs and moderation schemes and the observed learning processes in participatory processes with model use shows that models play a mixed role in informing participants and stimulating discussions. However, no deeper reflection on values and belief systems could be achieved. In terms of the risk management phases, computer models serve best the purposes of problem definition and option assessment within participatory integrated assessment (PIA) processes

  6. STAMINA - Model description. Standard Model Instrumentation for Noise Assessments

    NARCIS (Netherlands)

    Schreurs EM; Jabben J; Verheijen ENG; CMM; mev

    2010-01-01

    Deze rapportage beschrijft het STAMINA-model, dat staat voor Standard Model Instrumentation for Noise Assessments en door het RIVM is ontwikkeld. Het instituut gebruikt dit standaardmodel om omgevingsgeluid in Nederland in kaart te brengen. Het model is gebaseerd op de Standaard Karteringsmethode

  7. Assessing climate change impacts on water balance in the Mount ...

    Indian Academy of Sciences (India)

    watershed system which can be used in mitigating the effects of climate change. 1. Introduction ... have accelerated the increase of greenhouse gases. (carbon ..... In effect, the BROOK90 model was repeatedly operated using final parameter sets with assumptions that the entire area would not significantly change before the ...

  8. Communicating uncertainty: lessons learned and suggestions for climate change assessment

    International Nuclear Information System (INIS)

    Patt, A.; Dessai, S.

    2005-01-01

    Assessments of climate change face the task of making information about uncertainty accessible and useful to decision-makers. The literature in behavior economics provides many examples of how people make decisions under conditions of uncertainty relying on inappropriate heuristics, leading to inconsistent and counterproductive choices. Modern risk communication practices recommend a number of methods to overcome these hurdles, which have been recommended for the Intergovernmental Panel on Climate Change (IPCC) assessment reports. This paper evaluates the success of the most recent IPCC approach to uncertainty communication, based on a controlled survey of climate change experts. Evaluating the results from the survey, and from a similar survey recently conducted among university students, the paper suggests that the most recent IPCC approach leaves open the possibility for biased and inconsistent responses to the information. The paper concludes by suggesting ways to improve the approach for future IPCC assessment reports. (authors)

  9. Assessing organizational change in multisector community health alliances.

    Science.gov (United States)

    Alexander, Jeffrey A; Hearld, Larry R; Shi, Yunfeng

    2015-02-01

    The purpose of this article was to identify some common organizational features of multisector health care alliances (MHCAs) and the analytic challenges presented by those characteristics in assessing organizational change. Two rounds of an Internet-based survey of participants in 14 MHCAs. We highlight three analytic challenges that can arise when quantitatively studying the organizational characteristics of MHCAs-assessing change in MHCA organization, assessment of construct reliability, and aggregation of individual responses to reflect organizational characteristics. We illustrate these issues using a leadership effectiveness scale (12 items) validated in previous research and data from 14 MHCAs participating in the Robert Wood Johnson Foundation's Aligning Forces for Quality (AF4Q) program. High levels of instability and turnover in MHCA membership create challenges in using survey data to study changes in key organizational characteristics of MHCAs. We offer several recommendations to diagnose the source and extent of these problems. © Health Research and Educational Trust.

  10. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base

  11. Models and parameters for environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C W [ed.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  12. A Simple Model of Self-Assessments

    NARCIS (Netherlands)

    S. Dominguez Martinez (Silvia); O.H. Swank (Otto)

    2006-01-01

    textabstractWe develop a simple model that describes individuals' self-assessments of their abilities. We assume that individuals learn about their abilities from appraisals of others and experience. Our model predicts that if communication is imperfect, then (i) appraisals of others tend to be too

  13. A simple model of self-assessment

    NARCIS (Netherlands)

    Dominguez-Martinez, S.; Swank, O.H.

    2009-01-01

    We develop a simple model that describes individuals' self-assessments of their abilities. We assume that individuals learn about their abilities from appraisals of others and experience. Our model predicts that if communication is imperfect, then (i) appraisals of others tend to be too positive and

  14. Reconstructing Climate Change: The Model-Data Ping-Pong

    Science.gov (United States)

    Stocker, T. F.

    2017-12-01

    When Cesare Emiliani, the father of paleoceanography, made the first attempts at a quantitative reconstruction of Pleistocene climate change in the early 1950s, climate models were not yet conceived. The understanding of paleoceanographic records was therefore limited, and scientists had to resort to plausibility arguments to interpret their data. With the advent of coupled climate models in the early 1970s, for the first time hypotheses about climate processes and climate change could be tested in a dynamically consistent framework. However, only a model hierarchy can cope with the long time scales and the multi-component physical-biogeochemical Earth System. There are many examples how climate models have inspired the interpretation of paleoclimate data on the one hand, and conversely, how data have questioned long-held concepts and models. In this lecture I critically revisit a few examples of this model-data ping-pong, such as the bipolar seesaw, the mid-Holocene greenhouse gas increase, millennial and rapid CO2 changes reconstructed from polar ice cores, and the interpretation of novel paleoceanographic tracers. These examples also highlight many of the still unsolved questions and provide guidance for future research. The combination of high-resolution paleoceanographic data and modeling has never been more relevant than today. It will be the key for an appropriate risk assessment of impacts on the Earth System that are already underway in the Anthropocene.

  15. Taking the uncertainty in climate-change vulnerability assessment seriously

    International Nuclear Information System (INIS)

    Patt, A.; Patt, A.; Klein, R.J.T.; Vega-Leinert, A. de la

    2005-01-01

    Climate-change vulnerability assessment has become a frequently employed tool, with the purpose of informing policy-makers attempting to adapt to global change conditions. However, we suggest that there are three reasons to suspect that vulnerability assessment often promises more certainty, and more useful results, than it can deliver. First, the complexity of the system it purports to describe is greater than that described by other types of assessment. Second, it is difficult, if not impossible, to obtain data to test proposed interactions between different vulnerability drivers. Third, the time scale of analysis is too long to be able to make robust projections about future adaptive capacity. We analyze the results from a stakeholder workshop in a European vulnerability assessment, and find evidence to support these arguments. (authors)

  16. Climate change adaptation impact cost assessment in France. Second phase report. September 2009

    International Nuclear Information System (INIS)

    2009-01-01

    Firstly, this report presents the context and challenges of works dealing with climate change adaptation assessment: observations and perspectives of climate change, concepts and definitions of adaptation to climate change, adaptation within national, European and international context, objectives and organisation of the France's inter-departmental Group. It describes the chosen methodology: hypothesis, methodological tools (climate model), bibliographical tool, and heat wave counting methodology. It discusses the present results, outlines the encountered difficulties and discusses the perspectives for future work

  17. Predictions of models for environmental radiological assessment

    International Nuclear Information System (INIS)

    Peres, Sueli da Silva; Lauria, Dejanira da Costa; Mahler, Claudio Fernando

    2011-01-01

    In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for 137 Cs and 60 Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)

  18. Assessing local vulnerability to climate change in Ecuador

    OpenAIRE

    Fernandez, Mario Andres; Bucaram, Santiago J.; Renteria, Willington

    2015-01-01

    Vulnerability assessments have become necessary to increase the understanding of climate-sensitive systems and inform resource allocation in developing countries. Challenges arise when poor economic and social development combines with heterogeneous climatic conditions. Thus, finding and harmonizing good-quality data at local scale may be a significant hurdle for vulnerability research. In this paper we assess vulnerability to climate change at a local level in Ecuador. We take Ecuador as a c...

  19. Assessing Power System Stability Following Load Changes and Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    D. V. Ngo

    2018-04-01

    Full Text Available An increase in load capacity during the operation of a power system usually causes voltage drop and leads to system instability, so it is necessary to monitor the effect of load changes. This article presents a method of assessing the power system stability according to the load node capacity considering uncertainty factors in the system. The proposed approach can be applied to large-scale power systems for voltage stability assessment in real-time.

  20. Assessement of user needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  1. Underwater noise modelling for environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farcas, Adrian [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom); Thompson, Paul M. [Lighthouse Field Station, Institute of Biological and Environmental Sciences, University of Aberdeen, Cromarty IV11 8YL (United Kingdom); Merchant, Nathan D., E-mail: nathan.merchant@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom)

    2016-02-15

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  2. Underwater noise modelling for environmental impact assessment

    International Nuclear Information System (INIS)

    Farcas, Adrian; Thompson, Paul M.; Merchant, Nathan D.

    2016-01-01

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  3. Assessment of Coastal Governance for Climate Change Adaptation in Kenya

    Science.gov (United States)

    Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina

    2017-11-01

    The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.

  4. Modelling environmental change in Europe: towards a model inventory (SEIS/Forward)

    DEFF Research Database (Denmark)

    Jaeger, Annekathrin; Henrichs, Thomas

    This technical report provides a non-exhaustive overview of modelling tools currently available to simulate future environmental change at a European scale. Modelling tools have become an important cornerstone of environmental assessments, and play an important role in providing the data......, many of which have been used by the European Environment Agency in its recent environmental assessments and reports, a limited number of which are described in more detail. This review identifies gaps in the availability, accessibility and applicability of current modelling tools, and stresses the need...

  5. Assessing historical rate changes in global tsunami occurrence

    Science.gov (United States)

    Geist, E.L.; Parsons, T.

    2011-01-01

    The global catalogue of tsunami events is examined to determine if transient variations in tsunami rates are consistent with a Poisson process commonly assumed for tsunami hazard assessments. The primary data analyzed are tsunamis with maximum sizes >1m. The record of these tsunamis appears to be complete since approximately 1890. A secondary data set of tsunamis >0.1m is also analyzed that appears to be complete since approximately 1960. Various kernel density estimates used to determine the rate distribution with time indicate a prominent rate change in global tsunamis during the mid-1990s. Less prominent rate changes occur in the early- and mid-20th century. To determine whether these rate fluctuations are anomalous, the distribution of annual event numbers for the tsunami catalogue is compared to Poisson and negative binomial distributions, the latter of which includes the effects of temporal clustering. Compared to a Poisson distribution, the negative binomial distribution model provides a consistent fit to tsunami event numbers for the >1m data set, but the Poisson null hypothesis cannot be falsified for the shorter duration >0.1m data set. Temporal clustering of tsunami sources is also indicated by the distribution of interevent times for both data sets. Tsunami event clusters consist only of two to four events, in contrast to protracted sequences of earthquakes that make up foreshock-main shock-aftershock sequences. From past studies of seismicity, it is likely that there is a physical triggering mechanism responsible for events within the tsunami source 'mini-clusters'. In conclusion, prominent transient rate increases in the occurrence of global tsunamis appear to be caused by temporal grouping of geographically distinct mini-clusters, in addition to the random preferential location of global M >7 earthquakes along offshore fault zones.

  6. Measures for assessing practice change in medical practitioners

    Directory of Open Access Journals (Sweden)

    Green Sally

    2006-12-01

    Full Text Available Abstract Background There are increasing numbers of randomised trials and systematic reviews examining the efficacy of interventions designed to bring about a change in clinical practice. The findings of this research are being used to guide strategies to increase the uptake of evidence into clinical practice. Knowledge of the outcomes measured by these trials is vital not only for the interpretation and application of the work done to date, but also to inform future research in this expanding area of endeavour and to assist in collation of results in systematic reviews and meta-analyses. Methods The objective of this review was to identify methods used to measure change in the clinical practices of health professionals following an intervention aimed at increasing the uptake of evidence into practice. All published trials included in a recent, comprehensive Health Technology Assessment of interventions to implement clinical practice guidelines and change clinical practice (n = 228 formed the sample for this study. Using a standardised data extraction form, one reviewer (SH, extracted the relevant information from the methods and/or results sections of the trials. Results Measures of a change of health practitioner behaviour were the most common, with 88.8% of trials using these as outcome measures. Measures that assessed change at a patient level, either actual measures of change or surrogate measures of change, were used in 28.8% and 36.7% of studies (respectively. Health practitioners' knowledge and attitudes were assessed in 22.8% of the studies and changes at an organisational level were assessed in 17.6%. Conclusion Most trials of interventions aimed at changing clinical practice measured the effect of the intervention at the level of the practitioner, i.e. did the practitioner change what they do, or has their knowledge of and/or attitude toward that practice changed? Less than one-third of the trials measured, whether or not any change

  7. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  8. Climate Change and Environmental assessments: Issues in an African Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, Arne; Naess, Lars Otto

    1997-12-31

    The present report discusses the potential for integrating climate change issues into environmental assessments of development actions, with an emphasis on sub-Sahara Africa. The study is motivated by the fact that future climate change could have significant adverse impacts on the natural and socio-economic environment in Africa. Yet, to date global change issues, including climate change, have been largely overlooked in the process of improving environmental assessment procedures and methodologies. It is argued that although emissions of greenhouse gases in Africa are negligible today, it is highly relevant to include this aspect in the planning of long-term development strategies. The report discusses potential areas of conflicts and synergies between climate change and development goals. The general conclusion is that environmental assessments could be an appropriate tool for addressing climate change issues, while there are still several obstacles to its practical implementation. Four priority areas are suggested for further work: (1) Environmental accounting, (2) harmonization and standard-setting, (3) implementation, and (4) risk management. 82 refs., 5 figs., 11 tabs.

  9. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-12-01

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  10. The Automation of Nowcast Model Assessment Processes

    Science.gov (United States)

    2016-09-01

    secondly, provide modelers with the information needed to understand the model errors and how their algorithm changes might mitigate these errors. In...by ARL modelers. 2. Development Environment The automation of Point-Stat processes (i.e., PSA) was developed using Python 3.5.* Python was selected...because it is easy to use, widely used for scripting, and satisfies all the requirements to automate the implementation of the Point-Stat tool. In

  11. Modeling inputs to computer models used in risk assessment

    International Nuclear Information System (INIS)

    Iman, R.L.

    1987-01-01

    Computer models for various risk assessment applications are closely scrutinized both from the standpoint of questioning the correctness of the underlying mathematical model with respect to the process it is attempting to model and from the standpoint of verifying that the computer model correctly implements the underlying mathematical model. A process that receives less scrutiny, but is nonetheless of equal importance, concerns the individual and joint modeling of the inputs. This modeling effort clearly has a great impact on the credibility of results. Model characteristics are reviewed in this paper that have a direct bearing on the model input process and reasons are given for using probabilities-based modeling with the inputs. The authors also present ways to model distributions for individual inputs and multivariate input structures when dependence and other constraints may be present

  12. Dual elaboration models in attitude change processes

    Directory of Open Access Journals (Sweden)

    Žeželj Iris

    2005-01-01

    Full Text Available This article examines empirical and theoretical developments in research on attitude change in the past 50 years. It focuses the period from 1980 till present as well as cognitive response theories as the dominant theoretical approach in the field. The postulates of Elaboration Likelihood Model, as most-researched representative of dual process theories are studied, based on review of accumulated research evidence. Main research findings are grouped in four basic factors: message source, message content, message recipient and its context. Most influential criticisms of the theory are then presented regarding its empirical base and dual process assumption. Some possible applications and further research perspectives are discussed at the end.

  13. Bioavailability in the boris assessment model

    International Nuclear Information System (INIS)

    Norden, M.; Avila, R.; Gonze, M.A.; Tamponnet, C.

    2004-01-01

    The fifth framework EU project BORIS (Bioavailability Of Radionuclides In Soils: role of biological components and resulting improvement of prediction models) has three scientific objectives. The first is to improve understanding of the mechanisms governing the transfer of radionuclides to plants. The second is to improve existing predictive models of radionuclide interaction with soils by incorporating the knowledge acquired from the experimental results. The last and third objective is to extract from the experimental results some scientific basis for the development of bioremediation methods of radionuclides contaminated soils and to apprehend the role of additional non-radioactive pollutants on radionuclide bio-availability. This paper is focused on the second objective. The purpose of the BORIS assessment model is to describe the behaviour of radionuclides in the soil-plant system with the aim of making predictions of the time dynamics of the bioavailability of radionuclides in soil and the radionuclides concentrations in plants. To be useful the assessment model should be rather simple and use only a few parameters, which are commonly available or possible to measure for different sites. The model shall take into account, as much as possible, the results of the experimental studies and the mechanistic models developed in the BORIS project. One possible approach is to introduce in the assessment model a quantitative relationship between bioavailability of the radionuclides in soil and the soil properties. To do this an operational definition of bioavailability is needed. Here operational means experimentally measurable, directly or indirectly, and that the bioavailability can be translated into a mathematical expression. This paper describes the reasoning behind the chosen definition of bioavailability for the assessment model, how to derive operational expressions for the bioavailability and how to use them in the assessment model. (author)

  14. Assessing climate change impacts on wheat production (a case study

    Directory of Open Access Journals (Sweden)

    J. Valizadeh

    2014-06-01

    Full Text Available Climate change is one of the major challenges facing humanity in the future and effect of climate change has been detrimental to agricultural industry. The aim of this study was to simulate the effects of climate change on the maturity period, leaf area index (LAI, biomass and grain yield of wheat under future climate change for the Sistan and Baluchestan region in Iran. For this purpose, two general circulation models HadCM3 and IPCM4 under three scenarios A1B, B1 and A2 in three time periods 2020, 2050 and 2080 were used. LARS-WG model was used for simulating climatic parameters for each period and CERES-Wheat model was used to simulate wheat growth. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters and simulation of stochastic growing season in future climate change conditions for the studied region. Wheat growing season period in all scenarios of climate change was reduced compared to the current situation. Possible reasons were the increase in temperature rate and the accelerated growth stages of wheat. This reduction in B1 scenario was less than A1B and A2 scenarios. Maximum wheat LAI in all scenarios, except scenario A1B in 2050, is decreased compared to the current situation. Yield and biological yield of wheat in both general circulation models under all scenarios and all times were reduced in comparison with current conditions and the lowest reduction was related to B1 scenario. In general, the results showed that wheat production in the future will be affected by climate change and will decrease in the studied region. To reduce these risks, the impact of climate change mitigation strategies and management systems for crop adaptation to climate change conditions should be considered.

  15. Assessing and managing multiple risks in a changing world ...

    Science.gov (United States)

    Roskilde University (Denmark) hosted a November 2015 workshop, Environmental Risk—Assessing and Managing Multiple Risks in a Changing World. This Focus article presents the consensus recommendations of 30 attendees from 9 countries regarding implementation of a common currency (ecosystem services) for holistic environmental risk assessment and management; improvements to risk assessment and management in a complex, human-modified, and changing world; appropriate development of protection goals in a 2-stage process; dealing with societal issues; risk-management information needs; conducting risk assessment of risk management; and development of adaptive and flexible regulatory systems. The authors encourage both cross-disciplinary and interdisciplinary approaches to address their 10 recommendations: 1) adopt ecosystem services as a common currency for risk assessment and management; 2) consider cumulative stressors (chemical and nonchemical) and determine which dominate to best manage and restore ecosystem services; 3) fully integrate risk managers and communities of interest into the risk-assessment process; 4) fully integrate risk assessors and communities of interest into the risk-management process; 5) consider socioeconomics and increased transparency in both risk assessment and risk management; 6) recognize the ethical rights of humans and ecosystems to an adequate level of protection; 7) determine relevant reference conditions and the proper ecological c

  16. The assessment and treatment of wound pain at dressing change.

    LENUS (Irish Health Repository)

    Bell, Cassandra

    2010-01-01

    Pain is a common reason for patients with acute or chronic wounds seeking hospital admission, but it appears to be under-treated by health professionals. A quantitative descriptive study was conducted to investigate nurses\\' knowledge with regard to dressing change and wound pain. Data were collected from registered nurses (n=94). Analysis indicated a low level of knowledge with regard to pain assessment and strategies to overcome pain at dressing change, but a good knowledge of factors that contribute to pain at dressing change.

  17. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    Science.gov (United States)

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently

  18. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-01-01

    uncertainty analysis, which can assess and quantify the overall uncertainty in relation to climate change adaptation to urban flash floods. The analysis is based on an uncertainty cascade that by means of Monte Carlo simulations of flood risk assessments incorporates climate change impacts as a key driver......There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation...... to increasing urban flood risk. Assessment of adaptation strategies often requires a comprehensive risk-based economic analysis of current risk, drivers of change of risk over time, and measures to reduce the risk. However, such studies are often associated with large uncertainties. The uncertainties arise from...

  19. Climate change impacts in Iran: assessing our current knowledge

    Science.gov (United States)

    Rahimi, Jaber; Malekian, Arash; Khalili, Ali

    2018-02-01

    During recent years, various studies have focused on investigating the direct and indirect impacts of climate changes in Iran while the noteworthy fact is the achievement gained by these researches. Furthermore, what should be taken into consideration is whether these studies have been able to provide appropriate opportunities for improving further studies in this particular field or not. To address these questions, this study systematically reviewed and summarized the current available literature (n = 150) regarding the impacts of climate change on temperature and precipitation in Iran to assess our current state of knowledge. The results revealed that while all studies discuss the probable changes in temperature and precipitation over the next decades, serious contradictions could be seen in their results; also, the general pattern of changes was different in most of the cases. This matter may have a significant effect on public beliefs in climate change, which can be a serious warning for the activists in this realm.

  20. Sensitivity Analysis of a Land-Use Change Model with and without Agents to Assess Land Abandonment and Long-Term Re-Forestation in a Swiss Mountain Region

    NARCIS (Netherlands)

    Brandle, M.; Langendijk, G.; Peter, S.; Brunner, S.H.

    2015-01-01

    Land abandonment and the subsequent re-forestation are important drivers behind the loss of ecosystem services in mountain regions. Agent-based models can help to identify global change impacts on farmland abandonment and can test policy and management options to counteract this development.

  1. Changes in chemical composition and bioassay assessment of ...

    African Journals Online (AJOL)

    Changes in chemical composition and bioassay assessment of nutritional potentials of almond fruit waste as an alternative feedstuff for livestock. ... AFW using day-old cockerels and considering performance parameters showed that treated AFW improved feed intake, body weight gain and feed conversion ratio even better ...

  2. Assessing climate change impacts and adaptation strategies for ...

    African Journals Online (AJOL)

    Assessing climate change impacts and adaptation strategies for smallholder agricultural systems in Uganda. ... from encroaching on swamps, which is one of the reported adaptation strategies to climate related stresses. Improving productivity of important crops (bananas for southwest, and sweet potatoes and bananas

  3. 78 FR 14912 - International Aviation Safety Assessment (IASA) Program Change

    Science.gov (United States)

    2013-03-08

    ... Aviation Safety Assessment (IASA) Program Change AGENCY: Federal Aviation Administration (FAA), DOT. ACTION..., into the U.S., or codeshare with a U.S. air carrier, complies with international aviation safety... subject to that country's aviation safety oversight can serve the United States using its own aircraft or...

  4. Using cognitive referents in making sense of teaching: A chemistry teacher's struggle to change assessment practices

    Science.gov (United States)

    Briscoe, Carol

    This qualitative case study focused on the role of cognitive referents in the sense-making process of one teacher as he attempted to change his classroom science assessment. The interpretations identify cultural myths, conceptual metonymys, as well as personally constructed beliefs as referents that constrained change. The teacher's cognitive struggle to make sense of assessment and his role as assessor are linked to conflicting referents he used in varying contexts including day-to-day assessment and summative assessment settings. The results of the study suggest that cognitive referents are important influences in driving how a teacher thinks about assessment and may constrain an individual teacher's implementation of innovative practices. Accordingly, identification of referents such as myths, their associated beliefs, and metonymic conceptual models that teachers use to make sense of their actions is an important first step in developing an understanding of constraints to educational change.

  5. Binational climate change vulnerability assessment of migratory birds in the Great Lakes Basins: Tools and impediments.

    Directory of Open Access Journals (Sweden)

    Robert S Rempel

    Full Text Available Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna, wood thrush (Hylocichla mustelina, and hooded warbler (Setophaga citrina. We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species.

  6. Changing the culture of assessment: the dominance of the summative assessment paradigm.

    Science.gov (United States)

    Harrison, Christopher J; Könings, Karen D; Schuwirth, Lambert W T; Wass, Valerie; van der Vleuten, Cees P M

    2017-04-28

    Despite growing evidence of the benefits of including assessment for learning strategies within programmes of assessment, practical implementation of these approaches is often problematical. Organisational culture change is often hindered by personal and collective beliefs which encourage adherence to the existing organisational paradigm. We aimed to explore how these beliefs influenced proposals to redesign a summative assessment culture in order to improve students' use of assessment-related feedback. Using the principles of participatory design, a mixed group comprising medical students, clinical teachers and senior faculty members was challenged to develop radical solutions to improve the use of post-assessment feedback. Follow-up interviews were conducted with individual members of the group to explore their personal beliefs about the proposed redesign. Data were analysed using a socio-cultural lens. Proposed changes were dominated by a shared belief in the primacy of the summative assessment paradigm, which prevented radical redesign solutions from being accepted by group members. Participants' prior assessment experiences strongly influenced proposals for change. As participants had largely only experienced a summative assessment culture, they found it difficult to conceptualise radical change in the assessment culture. Although all group members participated, students were less successful at persuading the group to adopt their ideas. Faculty members and clinical teachers often used indirect techniques to close down discussions. The strength of individual beliefs became more apparent in the follow-up interviews. Naïve epistemologies and prior personal experiences were influential in the assessment redesign but were usually not expressed explicitly in a group setting, perhaps because of cultural conventions of politeness. In order to successfully implement a change in assessment culture, firmly-held intuitive beliefs about summative assessment will need to

  7. A vulnerability and risk assessment of SEPTA's regional rail : a transit climate change adaptation assessment pilot.

    Science.gov (United States)

    2013-08-01

    This final report for the Federal Transit Administration (FTA) Transit Climate Change Adaptation Assessment Pilot describes the actions : taken, information gathered, analyses performed, and lessons learned throughout the pilot project. This report d...

  8. A global assessment of gross and net land change dynamics for current conditions and future scenarios

    Science.gov (United States)

    Fuchs, Richard; Prestele, Reinhard; Verburg, Peter H.

    2018-05-01

    land change dynamics that can be applied in Earth system models and integrated assessment models.

  9. A new economic assessment index for the impact of climate change on grain yield

    Science.gov (United States)

    Dong, Wenjie; Chou, Jieming; Feng, Guolin

    2007-03-01

    The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional “yield impact of meteorological factor (YIMF)” or “yield impact of weather factor” to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.

  10. A New Economic Assessment Index for the Impact of Climate Change on Grain Yield

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The impact of climate change on agriculture has received wide attention by the scientific community.This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore,the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China,and the results show that it has an encouraging application outlook.

  11. Practice and progress in integrated assessments of climate change

    International Nuclear Information System (INIS)

    Toth, F.L.

    1995-01-01

    This paper is intended to provide an overview of the state of the art integrated socioeconomic-biophysical assessments of climate change as presented at the IIASA workshop in October 1993. The paper seeks to tally the major improvements facilitated by integrated assessments in understanding the global warming problem and the crucial unresolved problems they currently face. The basic conclusion is that, as a result of a healthy diversity in practice, integrated assessments show significant progress in structuring the economic issues of climate change and providing the first broad insights into policy options. But, as some of the simple and traditional cases seem to be solved, more complex and difficult contingencies come to the fore. This suggests a long way to go to develop skills that will be required to address the numerous open issues. (author)

  12. Land use allocation model considering climate change impact

    Science.gov (United States)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  13. Assessing alternative conceptual models of fracture flow

    International Nuclear Information System (INIS)

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  14. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model

    NARCIS (Netherlands)

    Marhaento, Hero; Booij, Martijn J.; Rientjes, T. H.M.; Hoekstra, Arjen Y.

    2017-01-01

    Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline-altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline

  15. Climate change impacts in Northern Canada: Assessing our current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Gill, M.J.; Eamer, J. [Environment Canada, Environmental Conservation Branch, Whitehorse, YT (Canada); Munier, A.; Ogden, A. [Yukon College, Northern Climate ExChange, Whitehorse, YT (Canada); Duerden, F. [Ryerson University, School of Applied Geography, Toronto, ON (Canada); Hik, D. [Alberta Univ., Dept. of Biological Sciences, Edmonton, AB (Canada); Fox, S.; Riedlinger, D.; Thorpe, N. [GeoNorth Limited, Whitehorse, YT (Canada); Johnson, I.; Jensen, M. [Legend Seekers Anthropological Research, Whitehorse, YT (Canada)

    2001-07-01

    A research project by the Northern Climate ExChange at Yukon College, undertaken to bring together into one document all relevant information that will help facilitate the identification of priorities for climate change research, monitoring, technological development and policy development in Canada's North, is described. In addition to the report, project deliverables also include a database of climate change information sources and a database of northern climate change contacts. The review includes scientific, local and Traditional Knowledge sources relating to climate change about each of seventeen natural and human systems (e.g. boreal forests, community health, mining, etc.), synthesized into a table for each system, with projected environmental changes crossed in matrix format with system components. Each cross-relationship was given a ranking; supporting information was included, based on the current state of knowledge of that relationship. In general, current information concerning northern systems, predicted climate changes and the impacts of those changes on northern systems is poor. However, much information does exist and the gap analysis revealed a number of general patterns relating to this information. Clearly, more research is required throughout northern Canada, but in particular, in the eastern Arctic, to provide a greater understanding of the implications of climate changes across the North, and to aid in the development of finer-scale, regional circulation models resulting in better predictive capacity of climate change and its impacts on northern areas.

  16. Assessment of Venous Thrombosis in Animal Models.

    Science.gov (United States)

    Grover, Steven P; Evans, Colin E; Patel, Ashish S; Modarai, Bijan; Saha, Prakash; Smith, Alberto

    2016-02-01

    Deep vein thrombosis and common complications, including pulmonary embolism and post-thrombotic syndrome, represent a major source of morbidity and mortality worldwide. Experimental models of venous thrombosis have provided considerable insight into the cellular and molecular mechanisms that regulate thrombus formation and subsequent resolution. Here, we critically appraise the ex vivo and in vivo techniques used to assess venous thrombosis in these models. Particular attention is paid to imaging modalities, including magnetic resonance imaging, micro-computed tomography, and high-frequency ultrasound that facilitate longitudinal assessment of thrombus size and composition. © 2015 American Heart Association, Inc.

  17. A model for assessment of telemedicine applications

    DEFF Research Database (Denmark)

    Kidholm, Kristian; Ekeland, Anne Granstrøm; Jensen, Lise Kvistgaard

    2012-01-01

    the European Commission initiated the development of a framework for assessing telemedicine applications, based on the users' need for information for decision making. This article presents the Model for ASsessment of Telemedicine applications (MAST) developed in this study.......Telemedicine applications could potentially solve many of the challenges faced by the healthcare sectors in Europe. However, a framework for assessment of these technologies is need by decision makers to assist them in choosing the most efficient and cost-effective technologies. Therefore in 2009...

  18. Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain

    Science.gov (United States)

    Raposo, Juan Ramón; Dafonte, Jorge; Molinero, Jorge

    2013-03-01

    Climate change can impact the hydrological processes of a watershed and may result in problems with future water supply for large sections of the population. Results from the FP5 PRUDENCE project suggest significant changes in temperature and precipitation over Europe. In this study, the Soil and Water Assessment Tool (SWAT) model was used to assess the potential impacts of climate change on groundwater recharge in the hydrological district of Galicia-Costa, Spain. Climate projections from two general circulation models and eight different regional climate models were used for the assessment and two climate-change scenarios were evaluated. Calibration and validation of the model were performed using a daily time-step in four representative catchments in the district. The effects on modeled mean annual groundwater recharge are small, partly due to the greater stomatal efficiency of plants in response to increased CO2 concentration. However, climate change strongly influences the temporal variability of modeled groundwater recharge. Recharge may concentrate in the winter season and dramatically decrease in the summer-autumn season. As a result, the dry-season duration may be increased on average by almost 30 % for the A2 emission scenario, exacerbating the current problems in water supply.

  19. Commitment to Change and Challenges to Implementing Changes After Workplace-Based Assessment Rater Training.

    Science.gov (United States)

    Kogan, Jennifer R; Conforti, Lisa N; Yamazaki, Kenji; Iobst, William; Holmboe, Eric S

    2017-03-01

    Faculty development for clinical faculty who assess trainees is necessary to improve assessment quality and impor tant for competency-based education. Little is known about what faculty plan to do differently after training. This study explored the changes faculty intended to make after workplace-based assessment rater training, their ability to implement change, predictors of change, and barriers encountered. In 2012, 45 outpatient internal medicine faculty preceptors (who supervised residents) from 26 institutions participated in rater training. They completed a commitment to change form listing up to five commitments and ranked (on a 1-5 scale) their motivation for and anticipated difficulty implementing each change. Three months later, participants were interviewed about their ability to implement change and barriers encountered. The authors used logistic regression to examine predictors of change. Of 191 total commitments, the most common commitments focused on what faculty would change about their own teaching (57%) and increasing direct observation (31%). Of the 183 commitments for which follow-up data were available, 39% were fully implemented, 40% were partially implemented, and 20% were not implemented. Lack of time/competing priorities was the most commonly cited barrier. Higher initial motivation (odds ratio [OR] 2.02; 95% confidence interval [CI] 1.14, 3.57) predicted change. As anticipated difficulty increased, implementation became less likely (OR 0.67; 95% CI 0.49, 0.93). While higher baseline motivation predicted change, multiple system-level barriers undermined ability to implement change. Rater-training faculty development programs should address how faculty motivation and organizational barriers interact and influence ability to change.

  20. Physical-Socio-Economic Modeling of Climate Change

    Science.gov (United States)

    Chamberlain, R. G.; Vatan, F.

    2008-12-01

    Because of the global nature of climate change, any assessment of the effects of plans, policies, and response to climate change demands a model that encompasses the entire Earth System, including socio- economic factors. Physics-based climate models of the factors that drive global temperatures, rainfall patterns, and sea level are necessary but not sufficient to guide decision making. Actions taken by farmers, industrialists, environmentalists, politicians, and other policy makers may result in large changes to economic factors, international relations, food production, disease vectors, and beyond. These consequences will not be felt uniformly around the globe or even across a given region. Policy models must comprehend all of these considerations. Combining physics-based models of the Earth's climate and biosphere with societal models of population dynamics, economics, and politics is a grand challenge with high stakes. We propose to leverage our recent advances in modeling and simulation of military stability and reconstruction operations to models that address all these areas of concern. Following over twenty years' experience of successful combat simulation, JPL has started developing Minerva, which will add demographic, economic, political, and media/information models to capabilities that already exist. With these new models, for which we have design concepts, it will be possible to address a very wide range of potential national and international problems that were previously inaccessible. Our climate change model builds on Minerva and expands the geographical horizon from playboxes containing regions and neighborhoods to the entire globe. This system consists of a collection of interacting simulation models that specialize in different aspects of the global situation. They will each contribute to and draw from a pool of shared data. The basic models are: the physical model; the demographic model; the political model; the economic model; and the media

  1. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1983-01-01

    This article reviews the forthcoming book Models and Parameters for Environmental Radiological Assessments, which presents a unified compilation of models and parameters for assessing the impact on man of radioactive discharges, both routine and accidental, into the environment. Models presented in this book include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Summaries are presented for each of the transport and dosimetry areas previously for each of the transport and dosimetry areas previously mentioned, and details are available in the literature cited. A chapter of example problems illustrates many of the methodologies presented throughout the text. Models and parameters presented are based on the results of extensive literature reviews and evaluations performed primarily by the staff of the Health and Safety Research Division of Oak Ridge National Laboratory

  2. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.

  3. Time-varying parameter models for catchments with land use change: the importance of model structure

    Science.gov (United States)

    Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid

    2018-05-01

    Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.

  4. Time-varying parameter models for catchments with land use change: the importance of model structure

    Directory of Open Access Journals (Sweden)

    S. Pathiraja

    2018-05-01

    Full Text Available Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2 in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.

  5. Using Bayesian networks to assess the vulnerability of Hawaiian terrestrial biota to climate change

    Science.gov (United States)

    Fortini, L.; Jacobi, J.; Price, J.; Vorsino, A.; Paxton, E.; Amidon, F.; 'Ohukani'ohi'a Gon, S., III; Koob, G.; Brink, K.; Burgett, J.; Miller, S.

    2012-12-01

    As the effects of climate change on individual species become increasingly apparent, there is a clear need for effective adaptation planning to prevent an increase in species extinctions worldwide. Given the limited understanding of species responses to climate change, vulnerability assessments and species distribution models (SDMs) have been two common tools used to jump-start climate change adaptation efforts. However, although these two approaches generally serve the same purpose of understanding species future responses to climate change, they have rarely mixed. In collaboration with research and management partners from federal, state and non-profit organizations, we are conducting a climate change vulnerability assessment for hundreds of plant and forest bird species of the Main Hawaiian Islands. This assessment is the first to comprehensively consider the potential threats of climate change to a significant portion of Hawaii's fauna and flora (over one thousand species considered) and thus fills a critical gap defined by natural resource scientists and managers in the region. We have devised a flexible approach that effectively integrates species distribution models into a vulnerability assessment framework that can be easily updated with improved models and data. This tailors our assessment approach to the Pacific Island reality of often limited and fragmented information on species and large future climate uncertainties, This vulnerability assessment is based on a Bayesian network-based approach that integrates multiple landscape (e.g., topographic diversity, dispersal barriers), species trait (e.g., generation length, fecundity) and expert-knowledge based information (e.g., capacity to colonize restored habitat) relevant to long-term persistence of species under climate change. Our presentation will highlight some of the results from our assessment but will mainly focus on the utility of the flexible approach we have developed and its potential

  6. Changing the culture of assessment: the dominance of the summative assessment paradigm

    OpenAIRE

    Harrison, Christopher J.; Konings, Karen D.; Schuwirth, Lambert W. T.; Wass, Valerie; van der Vleuten, Cees P. M.

    2017-01-01

    BACKGROUND: Despite growing evidence of the benefits of including assessment for learning strategies within programmes of assessment, practical implementation of these approaches is often problematical. Organisational culture change is often hindered by personal and collective beliefs which encourage adherence to the existing organisational paradigm. We aimed to explore how these beliefs influenced proposals to redesign a summative assessment culture in order to improve students' use of asses...

  7. Conceptual models for cumulative risk assessment.

    Science.gov (United States)

    Linder, Stephen H; Sexton, Ken

    2011-12-01

    In the absence of scientific consensus on an appropriate theoretical framework, cumulative risk assessment and related research have relied on speculative conceptual models. We argue for the importance of theoretical backing for such models and discuss 3 relevant theoretical frameworks, each supporting a distinctive "family" of models. Social determinant models postulate that unequal health outcomes are caused by structural inequalities; health disparity models envision social and contextual factors acting through individual behaviors and biological mechanisms; and multiple stressor models incorporate environmental agents, emphasizing the intermediary role of these and other stressors. The conclusion is that more careful reliance on established frameworks will lead directly to improvements in characterizing cumulative risk burdens and accounting for disproportionate adverse health effects.

  8. Agent Model Development for Assessing Climate-Induced Geopolitical Instability.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B.; Backus, George A.

    2005-12-01

    We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3

  9. Assessing and managing stressors in a changing marine environment.

    Science.gov (United States)

    Chapman, Peter M

    2017-11-30

    We are facing a dynamic future in the face of multiple stressors acting individually and in combination: climate change; habitat change/loss; overfishing; invasive species; harmful algal blooms/eutrophication; and, chemical contaminants. Historic assessment and management approaches will be inadequate for addressing risks from climate change and other stressors. Wicked problems (non-linear, complex, competing risks and benefits, not easily solvable), will become increasingly common. We are facing irreversible changes to our planetary living conditions. Agreed protection goals and considering both the negatives (risks) and the positives (benefits) of all any and all actions are required, as is judicious and appropriate use of the Precautionary Principle. Researchers and managers need to focus on: determining tipping points (alternative stable points); maintaining ecosystem services; and, managing competing ecosystem services. Marine (and other) scientists are urged to focus their research on wicked problems to allow for informed decision-making on a planetary basis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Assessment of the Health Impacts of Climate Change in Kiribati

    Science.gov (United States)

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-01-01

    Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health. PMID:24830452

  11. A parsimonious dynamic model for river water quality assessment.

    Science.gov (United States)

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate