WorldWideScience

Sample records for chandra x-ray spectrum

  1. The X-ray spectrum of delta Orionis observed by LETGS aboard Chandra

    CERN Document Server

    Raassen, A J J

    2013-01-01

    We analyze the high-resolution X-ray spectrum of the supergiant O-star delta Orionis (O9.5II) with line ratios of He-like ions and a thermal plasma model, and we examine its variability. The O-supergiant delta Ori was observed in the wavelength range 5-175 Angstrom by the X-ray detector HRC-S in combination with the grating LETG aboard Chandra. We studied the He-like ions in combination with the UV-radiation field to determine local plasma temperatures and to establish the distance of the X-ray emitting ions to the stellar surface. We measured individual lines by means of Gaussian profiles, folded through the response matrix, to obtain wavelengths, line fluxes, half widths at half maximum (HWHM) and line shifts to characterize the plasma. We consider multitemperature models in collisional ionization equilibrium (CIE) to determine temperatures, emission measures, and abundances. Analysis of the He-like triplets extended to N VI and C V implies ionization stratification with the hottest plasma to be found withi...

  2. X-ray outflows of active galactic nuclei warm absorbers: A 900 ks Chandra simulated spectrum

    CERN Document Server

    Ramirez-Velasquez, J M

    2016-01-01

    We report on the performance of the statistical, X-ray absorption lines identification procedure XLINE-ID. As illustration, it is used to estimate the time averaged gas density $n_H(r)$ of a representative AGN's warm absorber ($T\\approx 10^5$~K) X-ray simulated spectrum. The method relies on three key ingredients: (1) a well established emission continuum level; (2) a robust grid of photoionisation models spanning several orders of magnitude in gas density ($n_H$), plasma column density ($N_H$), and in ionization states; (3) theoretical curves of growth for a large set of atomic lines. By comparing theoretical and observed equivalent widths of a large set of lines, spanning highly ionized charge states from O, Ne, Mg, Si, S, Ar, and the Fe L-shell and K-shell, we are able to infer the location of the X-ray warm absorber.

  3. The Chandra COSMOS Legacy Survey: Energy Spectrum of the Cosmic X-Ray Background and Constraints on Undetected Populations

    Science.gov (United States)

    Cappelluti, Nico; Li, Yanxia; Ricarte, Angelo; Agarwal, Bhaskar; Allevato, Viola; Tasnim Ananna, Tonima; Ajello, Marco; Civano, Francesca; Comastri, Andrea; Elvis, Martin; Finoguenov, Alexis; Gilli, Roberto; Hasinger, Günther; Marchesi, Stefano; Natarajan, Priyamvada; Pacucci, Fabio; Treister, E.; Urry, C. Megan

    2017-03-01

    Using Chandra observations in the 2.15 deg2 COSMOS-legacy field, we present one of the most accurate measurements of the Cosmic X-ray Background (CXB) spectrum to date in the [0.3–7] keV energy band. The CXB has three distinct components: contributions from two Galactic collisional thermal plasmas at kT ∼ 0.27 and 0.07 keV and an extragalactic power law with a photon spectral index Γ = 1.45 ± 0.02. The 1 keV normalization of the extragalactic component is 10.91 ± 0.16 keV cm‑2 s‑1 sr‑1 keV‑1. Removing all X-ray-detected sources, the remaining unresolved CXB is best fit by a power law with normalization 4.18 ± 0.26 keV cm‑2 s‑1 sr‑1 keV‑1 and photon spectral index Γ = 1.57 ± 0.10. Removing faint galaxies down to {i}{AB}∼ 27{--}28 leaves a hard spectrum with {{Γ }}∼ 1.25 and a 1 keV normalization of ∼1.37 keV cm‑2 s‑1 sr‑1 keV‑1. This means that ∼91% of the observed CXB is resolved into detected X-ray sources and undetected galaxies. Unresolved sources that contribute ∼8%–9% of the total CXB show marginal evidence of being harder and possibly more obscured than resolved sources. Another ∼1% of the CXB can be attributed to still undetected star-forming galaxies and absorbed active galactic nuclei. According to these limits, we investigate a scenario where early black holes totally account for non-source CXB fraction and constrain some of their properties. In order to not exceed the remaining CXB and the z∼ 6 accreted mass density, such a population of black holes must grow in Compton-thick envelopes with {N}H > 1.6 × 1025 cm‑2 and form in extremely low-metallicity environments ({Z}ȯ )∼ {10}-3.

  4. The High Resolution X-ray Spectrum of SS 433 using the Chandra HETGS

    CERN Document Server

    Marshall, H L; Schulz, N S; Marshall, Herman L.; Canizares, Claude R.; Schulz, Norbert S.

    2001-01-01

    We present observations of SS 433 using the Chandra High Energy Transmission Grating Spectrometer. Many emission lines of highly ionized elements are detected with the relativistic blue and red Doppler shifts. The lines are measurably broadened to 1700 km/s (FWHM) and the widths do not depend significantly on the characteristic emission temperature, suggesting that the emission occurs in a freely expanding region of constant collimation with opening angle of 1.23 +/- 0.06 deg. The blue shifts of lines from low temperature gas are the same as those of high temperature gas within our uncertainties, again indicating that the hottest gas we observe to emit emission lines is already at terminal velocity. Fits to the emission line fluxes give a range of temperatures in the jet from 5e6 to 1e8 K. We derive the emission measure as a function of temperature for a four component model that fits the line flux data. Using the density sensitive Si XIII triplet, the characteristic electron density is 1e14 cm^{-3}, where th...

  5. The X-ray Spectrum of the Rapid Burster using the Chandra HETGS

    CERN Document Server

    Marshall, H L; Fox, D; Miller, J M; Guerriero, R; Morgan, E; Van der Klis, M; Bildsten, L; Dotani, T; Lewin, W H G

    2001-01-01

    We present observations of the Rapid Burster (RB, also known as MXB 1730-335) using the Chandra High Energy Transmission Grating Spectrometer. The average interval between type II (accretion) bursts was about 40 s. There was one type I (thermonuclear flash) burst and about 20 "mini-bursts" which are probably type II bursts whose peak flux is 10-40% of the average peak flux of the other type II bursts. The time averaged spectra of the type II bursts are well fit by a blackbody with a temperature of kT = 1.6 keV, a radius of 8.9 km for a distance of 8.6 kpc, and an interstellar column density of 1.7e22 per sq. cm. No narrow emission or absorption lines were clearly detected. The 3 sigma upper limits to the equivalent widths of any features are < 10 eV in the 1.1-7.0 keV band and as small as 1.5 eV near 1.7 keV. We suggest that Comptonization destroys absorption features such as the resonance line of Fe XXVI.

  6. High-Resolution {\\it Chandra} Spectroscopy of tau Scorpii A Narrow-Line X-ray Spectrum From a Hot Star

    CERN Document Server

    Cohen, D H; MacFarlane, J J; Miller, N A; Cassinelli, J P; Owocki, S P; Liedahl, D A; Cohen, David H.; Messi\\`{e}res, Genevi\\`{e}ve E. de; Farlane, Joseph J. Mac; Miller, Nathan A.; Cassinelli, Joseph P.; Owocki, Stanley P.; Liedahl, Duane A.

    2003-01-01

    Long known to be an unusual early-type star by virtue of its hard and strong X-ray emission, tau Scorpii poses a severe challenge to the standard picture of O star wind-shock X-ray emission. The Chandra HETGS spectrum now provides significant direct evidence that this B0.2 star does not fit this standard wind-shock framework. The many emission lines detected with the Chandra gratings are significantly narrower than what would be expected from a star with the known wind properties of tau Sco, although they are broader than the corresponding lines seen in late-type coronal sources. While line ratios are consistent with the hot plasma on this star being within a few stellar radii of the photosphere, from at least one He-like complex there is evidence that the X-ray emitting plasma is located more than a stellar radius above the photosphere. The Chandra spectrum of tau Sco is harder and more variable than those of other hot stars, with the exception of the young magnetized O star theta Ori C. We discuss these new...

  7. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  8. Interstellar X-ray Absorption Spectroscopy of Oxygen, Neon, and Iron with the Chandra LETGS Spectrum of X0614+091

    CERN Document Server

    Paerels, F B S; Van der Meer, R L J; Kaastra, J S; Kuulkers, E; Den Boggende, A J F; Predehl, P; Drake, J J; Kahn, S M; Savin, D W; McLaughlin, B M; Paerels, Frits; Drake, Jeremy J.; Kahn, Steven M.; Savin, Daniel W.; Laughlin, Brendan M. Mc

    2000-01-01

    We find resolved interstellar O K, Ne K, and Fe L absorption spectra in the Chandra Low Energy Transmission Grating Spectrometer spectrum of the low mass X-ray binary X0614+091. We measure the column densities in O and Ne, and find direct spectroscopic constraints on the chemical state of the interstellar O. These measurements probably probe a low-density line of sight through the Galaxy and we discuss the results in the context of our knowledge of the properties of interstellar matter in regions between the spiral arms.

  9. X-raying Galaxies: A Chandra Legacy

    CERN Document Server

    Wang, Q Daniel

    2010-01-01

    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete X-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and AGN feedback -- the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our Galaxy. The gas is concentrated around the Galactic bulge and disk on scales of a few kpc. The column density of chemically-enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the Galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The X-ray emission from hot gas is well...

  10. Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system I. The non-dip spectrum in the low/hard state

    CERN Document Server

    Hanke, Manfred; Nowak, Michael A; Pottschmidt, Katja; Schulz, Norbert S; Lee, Julia C

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1/HDE 226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for Cyg X-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe Kalpha line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect t...

  11. Chandra X-ray Observatory Optical Axis and Aimpoint

    Science.gov (United States)

    Zhao, Ping

    2016-01-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond resolution. Chandra comprises of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM). To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements stay rigid and stable for the entire life time of the Chandra operation. Tracking the Chandra optical axis and aimpoint with respect to detector positions is the most relevant measurement for understanding telescope stability. The study shows that both the optical axis and the aimpoint has been drifting since Chandra launch. I will discuss the telescope focal-point, optical axis, aimpoint, their positiondrifts during the mission, the impact to Chandra operations, and the permanent default aimpoint, to be implemented in Chandra cycle 18.

  12. Highlights and Discoveries from the Chandra X-ray Observatory

    CERN Document Server

    Tananbaum, H; Tucker, W; Wilkes, B; Edmonds, P

    2014-01-01

    Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding ...

  13. Highlights and discoveries from the Chandra X-ray Observatory.

    Science.gov (United States)

    Tananbaum, H; Weisskopf, M C; Tucker, W; Wilkes, B; Edmonds, P

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.

  14. Chandra Multiwavelength Project X-ray Point Source Catalog

    CERN Document Server

    Kim, M; Wilkes, B J; Green, P J; Kim, E; Anderson, C S; Barkhouse, W A; Evans, N R; Ivezic, Z; Karovska, M; Kashyap, V L; Lee, M G; Maksym, P; Mossman, A E; Silverman, J D; Tananbaum, H D; Kim, Minsun; Kim, Dong-Woo; Wilkes, Belinda J.; Green, Paul J.; Kim, Eunhyeuk; Anderson, Craig S.; Barkhouse, Wayne A.; Evans, Nancy R.; Ivezic, Zeljko; Karovska, Margarita; Kashyap, Vinay L.; Lee, Myung Gyoon; Maksym, Peter; Mossman, Amy E.; Silverman, John D.; Tananbaum, Harvey D.

    2006-01-01

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6,800 X-ray sources detected in 149 Chandra observations covering \\~10 deg^2. The full ChaMP catalog sample is seven times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124 ksec, corresponding to a deepest X-ray flux limit of f_{0.5-8.0} = 9 x 10^{-16} erg/cm2/sec. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines, and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in 8 different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability and positional uncertainty. To quantitatively assess those parameters, we performed extensive simulations. In particular, we present a set of empirical equations: the flux limit as a function of effective exposure time, and the p...

  15. Automated classification of Chandra X-ray sources

    Science.gov (United States)

    Brehm, Derek; Kargaltsev, O.; Rangelov, B.; Volkov, I.; Pavlov, G. G.

    2014-01-01

    With the advent of the latest generation X-ray telescopes there has been a major influx of data associated with the detection of hundreds of thousands X-ray sources. As one can rarely tell a source type from its X-ray properties alone, the full potential of the X-ray catalogs can only be unlocked by correlating multiwavelength (MW) properties via cross-identification with other surveys. However, one would spend an enormous amount of time classifying these objects by their physical nature if the classification was to be done on a source-by-source basis by humans. Therefore, we are using a supervised learning algorithm to classify sources detected by the Chandra X-ray Observatory. The classifications are based on a training dataset which currently includes about 7,000 X-ray sources of known nature (main sequence stars, Wolf-Rayet stars, young stars, active galactic nuclei, low mass X-ray binaries, high mass x-ray binaries, and neutron stars). For each source, the training dataset includes up to 24 multiwavelength properties. The efficiency and accuracy of the classification is verified by dividing the training dataset in two and performing cross-validation. The results are also inspected by plotting source properties in 2D slices of the parameter space. As an application of our automated procedure we classified unidentified sources in the supernova remnant (SNR) G352.7-0.1, in the field of HESS J1809-193, and in part of the Chandra Source Catalog 1.0. We present the results of the verification tests and the classification results. This research was partially supported by NASA/SAO grant AR3-14017X.

  16. Highlights and discoveries from the Chandra X-ray Observatory

    Science.gov (United States)

    Tananbaum, H.; Weisskopf, M. C.; Tucker, W.; Wilkes, B.; Edmonds, P.

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over timescales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.

  17. Chandra reveals a black-hole X-ray binary within the ultraluminous supernova remnant MF 16

    CERN Document Server

    Roberts, T P

    2003-01-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraodinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black-hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black-hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  18. Stellar X-ray sources in the Chandra COSMOS survey

    CERN Document Server

    Wright, Nicholas J; Civano, Francesca

    2010-01-01

    We present an analysis of the X-ray properties of a sample of solar- and late-type field stars identified in the Chandra Cosmic Evolution Survey (COSMOS), a deep (160ks) and wide (0.9 deg2) extragalactic survey. The sample of 60 sources was identified using both morphological and photometric star/galaxy separation methods. We determine X-ray count rates, extract spectra and light curves and perform spectral fits to determine fluxes and plasma temperatures. Complementary optical and near-IR photometry is also presented and combined with spectroscopy for 48 of the sources to determine spectral types and distances for the sample. We find distances ranging from 30pc to ~12kpc, including a number of the most distant and highly active stellar X-ray sources ever detected. This stellar sample extends the known coverage of the L_X-distance plane to greater distances and higher luminosities, but we do not detect as many intrinsically faint X-ray sources compared to previous surveys. Overall the sample is typically more...

  19. The X-ray Spectrum of Supernova Remnant 1987A

    CERN Document Server

    Michael, E; McCray, R; Hwang, U; Burrows, D N; Park, S; Garmire, G P; Holt, S S; Hasinger, G; Michael, Eli; Zhekov, Svetozar; Cray, Richard Mc; Hwang, Una; Burrows, David N.; Park, Sangwook; Garmire, Gordon P.; Holt, Stephen S.; Hasinger, Guenther

    2002-01-01

    We discuss the X-ray emission observed from Supernova Remnant 1987A with the Chandra X-ray Observatory. We analyze a high resolution spectrum obtained in 1999 October with the high energy transmission grating (HETG). From this spectrum we measure the strengths and an average profile of the observed X-ray lines. We also analyze a high signal-to-noise ratio CCD spectrum obtained in 2000 December. The good statistics (~ 9250 counts) of this spectrum and the high spatial resolution provided by the telescope allow us to perform spectroscopic analyses of different regions of the remnant. We discuss the relevant shock physics that can explain the observed X-ray emission. The X-ray spectra are well fit by plane parallel shock models with post-shock electron temperatures of ~ 2.6 keV and ionization ages of ~ 6 x 10^10 cm^3/s. The combined X-ray line profile has a FWHM of ~ 5000 km/s, indicating a blast wave speed of ~ 3500 km/s. At this speed, plasma with a mean post-shock temperature of ~ 17 keV is produced. This is ...

  20. Invisible Giant: Chandra's Limits on X-rays from Betelgeuse

    CERN Document Server

    Posson-Brown, J; Pease, D O; Drake, J J; Posson-Brown, Jennifer; Kashyap, Vinay L.; Pease, Deron O.; Drake, Jeremy J.

    2006-01-01

    We have analyzed Chandra calibration observations of Betelgeuse ($\\alpha$ Ori, M2 Iab, $m_{V} = 0.58$, 131 pc) obtained at the aimpoint locations of the HRC-I (8 ks), HRC-S (8 ks), and ACIS-I (5 ks). Betelgeuse is undetected in all the individual observations as well as cumulatively. We derive $3\\sigma$ upper limits to its X-ray count rates and compute the corresponding X-ray flux upper limits for isothermal coronal plasma over a range of temperatures, $T=0.3-10$~MK. We place a flux limit at the telescope of $\\fx\\approx4\\times10^{-15}$~ergs~s$^{-1}$ cm$^{-2}$ at T=1~MK. The upper limit is lowered by a factor of $\\approx3$ at higher temperatures, roughly an order of magnitude lower than that obtained previously. Assuming that the entire stellar surface is active, these fluxes correspond to a surface flux limit that ranges from 30-7000~ergs~s$^{-1}$ cm$^{-2}$ at T=1~MK, to $\\approx 1$~ergs~s$^{-1}$ cm$^{-2}$ at higher temperatures, five orders of magnitude lower than the quiet Sun X-ray surface flux. We discuss...

  1. A Deep Chandra X-ray Limit on the Putative IMBH in Omega Centauri

    CERN Document Server

    Haggard, Daryl; Heinke, Craig O; van der Marel, Roeland; Cohn, Haldan N; Lugger, Phyllis M; Anderson, Jay

    2013-01-01

    We report a sensitive X-ray search for the proposed intermediate mass black hole (IMBH) in the massive Galactic cluster, Omega Centauri (NGC 5139). Combining Chandra X-ray Observatory data from Cycles 1 and 13, we obtain a deep (~291 ks) exposure of the central regions of the cluster. We find no evidence for an X-ray point source near any of the cluster's proposed dynamical centers, and place an upper limit on the X-ray flux from a central source of f_X(0.5-7.0 keV) <= 5.0x10^-16 erg cm^-2 s^-1, after correcting for absorption. This corresponds to an unabsorbed X-ray luminosity of L_X(0.5-7.0 keV) <= 1.6x10^30 erg s^-1, for a cluster distance of 5.2 kpc, Galactic column density N_H = 1.2x10^21 cm^-2, and powerlaw spectrum with Gamma = 2.3. If a ~10^4 M_sun IMBH resides in the cluster's core, as suggested by some stellar dynamical studies, its Eddington luminosity would be L_Edd ~10^42 erg s^-1. The new X-ray limit would then establish an Eddington ratio of L_X/L_Edd <~ 10^-12, a factor of ~10 lower t...

  2. X-ray Mass Profiles from Chandra Galaxy Atlas

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra

    2016-04-01

    We present preliminary results of a Chandra/XMM-Newton joint analysis on a sample of three Early Type Galaxies (ETGs, namely NGC4649, NGC4636 and NGC5846). X-ray observations of the hot ISM is used to measure the total enclosed mass assuming hydrostatic equilibrium, and compasion with mass distributions obtained through optical kinematics data of globular clusters and planetary nebulae yields informations about disturbances in the ISM distribution due to nuclear activity, merging history, etc. Our analysis makes use of the Chandra Galaxy Atlas (CGA) data products - exploiting the unmatched spatial resolution of the ACIS detectors to reveal fine ISM features and disturbances in the inner galactic regions - and XMM-Newton data - relying on the large field of view of EPIC detector to extend the mass profiles to larger radii. We then measured the mass profiles in various pie sectors to separate different gas features (e.g., discontinuity and extended tail) and compared them with GCs/PNe based mass profiles. The X-ray mass profiles of NGC4649 show a generally relaxed morphology and, in agreement with previous analysis, the comparison with the optical mass profiles shows a significant deviations on parsec scale likely due to non-thermal pressure linked to nuclear activity. In significantly disturbed cases (NGC4648 and NGC5846) where we found discontinuities and extended tails, we found that the mass profiles are over-estimated toward the compressed discontinuity and under-estimated toward the extended tails, similar to inflow and outflow cases. These preliminary results are promising toward an extended analysis of the whole CGA sample in order to study the distribution of gas temperature and metal abundances in the ISM, and to investigate scaling relations between ETG global quantities like ISM temperature, luminosity and total mass.

  3. Chandra X-Ray Observatory Image of Crab Nebula

    Science.gov (United States)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  4. Chandra X-ray Observations of 12 Millisecond Pulsars in the Globular Cluster M28

    CERN Document Server

    Bogdanov, Slavko; Servillat, Mathieu; Heinke, Craig O; Grindlay, Jonathan E; Stairs, Ingrid H; Ransom, Scott M; Freire, Paulo C C; Bégin, Steve; Becker, Werner

    2011-01-01

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars (MSPs) in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the twelve known M28 pulsars. With the exception of PSRs B1821-24 and J1824-2452H, the detected pulsars have relatively soft spectra, with X-ray luminosities 10^30-31 ergs s^-1 (0.3-8 keV),similar to most "recycled" pulsars in 47 Tucanae and the field of the Galaxy, implying thermal emission from the pulsar magnetic polar caps. We present the most detailed X-ray spectrum to date of the energetic PSR B1821-24. It is well described by a purely non-thermal spectrum with spectral photon index 1.23 and luminosity 1.4x10^33Theta(D/5.5 kpc)^2 ergs s^-1 (0.3-8 keV), where Theta is the fraction of the sky covered by the X-ray emission beam(s). We find no evidence for the previously reported line emission feature around 3.3 keV, most likely as a consequence of improvements i...

  5. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Arévalo, P.; Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Puccetti, S. [ASDC-ASI, Via del Politecnico, I-00133 Roma (Italy); Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Koss, M. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Brightman, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching bei München (Germany); Christensen, F. E. [Danish Technical University, Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Gandhi, P. [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory and Department of Physics, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Madejski, G. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); and others

    2014-08-20

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N {sub H} = (6-10) × 10{sup 24} cm{sup –2}, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10{sup 42} erg s{sup –1}. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L{sub X} versus L {sub IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  6. The Chandra X-ray Observatory is prepped for solar panel deployment

    Science.gov (United States)

    1999-01-01

    In the Vertical Processing Facility, a TRW technician checks the attachment of the solar panel array (out of sight to the right) to the Chandra X-ray Observatory, at left. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93.

  7. Chandra Observation of the X-Ray Source Population of NGC 6946

    CERN Document Server

    Holt, S S; Hwang, U; Petre, R

    2003-01-01

    We present the results of a study of discrete X-ray sources in NGC 6946 using a deep Chandra ACIS observation. Based on the slope of the log N-log S distribution and the general correlation of sources with the spiral arms, we infer that the overall discrete source sample in NGC 6946 is dominated by high mass X-ray binaries, in contrast to the source distributions in M31 and the Milky Way. This is consistent with the higher star formation rate in NGC 6946 than in those galaxies. We find that the strong X-ray sources in the region of the galactic center do not correlate in detail with images of the region in the near-IR, although one of them may be coincident with the galactic center. The non-central ultra-luminous X-ray source in NGC 6946, previously identified with a supernova remnant, has an X-ray spectrum and luminosity that is inconsistent with either a traditional pulsar wind nebula or a blast wave remnant.

  8. The soft quiescent spectrum of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on the quiescent X-ray properties of the recently discovered transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5. Using two archival Chandra observations, we demonstrate that the quiescent spectrum of this neutron star low-mass X-ray binary is soft and can be fit to a

  9. Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    CERN Document Server

    Weisskopf, Martin C; Yakovlev, Dmitry G; Harding, Alice; Zavlin, Vyacheslav E; O'Dell, Stephen L; Elsner, Ronald F; Becker, Werner

    2011-01-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = $(5.28 \\pm 0.28)\\times10^{-4}$ ($4.9 \\times10^{-4}$ is solar abundance). We also measure for the first time the impact of scattering of flux out of the image by interstellar grains. We find $\\tau_{\\rm scat} = 0.147 \\pm 0.043$. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at...

  10. Chandra observations of the peculiar X-ray transient IGR J16358-4726

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.K.; Kouveliotou, C.; Tennant, A.; Woods, P.M.; Finger, M.; King, A.; Ubertini, P.; Winkler, C.; Courvoisier, T.J.-L.; Klis, M. van der; Wachter, S

    2004-06-01

    The new transient IGR J16358-4726 was discovered on 2003 March 19 with INTEGRAL. We detected the source serendipitously during our 2003 March 24 observation of SGR 1627 - 41 with the CHANDRA X-ray Observatory at the 1.7 x 10{sup -10} ergs s{sup -1} cm{sup -2} flux level (2-10 keV) with a very high absorption column (N{sub H}=3.3x10{sup 23} cm{sup -2}) and a hard power law spectrum of photon index 0.5(1). We discovered a very strong flux modulation with a period of 5880(50) s and peak-to-peak pulse fraction of 70(6) % (2-10 keV), clearly visible in the x-ray data. The nature, however, of IGR 16357-4726 remains unresolved. Most likely, we are looking at a galactic binary neutron star system as evidenced by the detection of rest frame fluorescence line emission from neutral Fe K (6.4 keV) in the Chandra spectrum. If the detected modulation is a spin period, this transient is a new kind of object, belonging to a class of very hard transients recently revealed with the unique INTEGRAL capabilities. The only neutron star systems known with similar spin periods are low luminosity persistent wind-fed pulsars, which exhibit very soft X-ray spectra. If this is an orbital period, then the system could be a compact Low Mass X-ray Binary.

  11. Chandra X-ray Observations of NGC 4258: Iron Absorption Lines from the Nucleus

    CERN Document Server

    Young, A J

    2004-01-01

    We report sub-arcsecond resolution X-ray imaging spectroscopy of the low luminosity active galactic nucleus of NGC 4258 and its immediate surroundings with the Chandra X-ray Observatory. NGC 4258 was observed four times, with the first two observations separated by one month, followed over a year later by two consecutive observations. The spectrum of the nucleus is well described by a heavily absorbed, hard X-ray power law of variable luminosity, plus a constant, thermal soft X-ray component. We do not detect an iron K alpha emission line with the upper limit to the equivalent width of a narrow, neutral iron line ranging between 94 and 887 eV (90% confidence) for the different observations. During the second observation on 2000-04-17, two narrow absorption features are seen with >99.5% confidence at ~6.4 keV and ~6.9 keV, which we identify as resonant absorption lines of Fe XVIII - Fe XIX K alpha and Fe XXVI K alpha, respectively. In addition, the 6.9 keV absorption line is probably variable on a timescale of...

  12. Deep Chandra Observations of the Compact Starburst Galaxy Henize 2-10: X-rays from the Massive Black Hole

    CERN Document Server

    Reines, Amy; Miller, Jon; Sivakoff, Gregory; Greene, Jenny; Hickox, Ryan; Johnson, Kelsey

    2016-01-01

    We present follow-up X-ray observations of the candidate massive black hole (BH) in the nucleus of the low-mass, compact starburst galaxy Henize 2-10. Using new high-resolution observations from the Chandra X-ray Observatory totaling 200 ks in duration, as well as archival Chandra observations from 2001, we demonstrate the presence of a previously unidentified X-ray point source that is spatially coincident with the known nuclear radio source in Henize 2-10 (i.e., the massive BH). We show that the hard X-ray emission previously identified in the 2001 observation is dominated by a source that is distinct from the nucleus, with the properties expected for a high-mass X-ray binary. The X-ray luminosity of the nuclear source suggests the massive BH is radiating significantly below its Eddington limit (~10^-6 L_Edd), and the soft spectrum resembles other weakly accreting massive BHs including Sagittarius A*. Analysis of the X-ray light curve of the nucleus reveals the tentative detection of a ~9-hour periodicity, ...

  13. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    Science.gov (United States)

    2000-11-01

    profiles have been observed for over one hundred years. "When you see a P Cygni profile, you immediately know the object you are observing is producing a powerful outflow," Brandt says. Chandra is the first X-ray observatory capable of capturing data of sufficiently high resolution to reveal an X-ray P Cygni profile. Brandt and Schulz say their discovery occurred because they were able to use Chandra continuously for one-third of a day to observe Circinus X-1, plus its signal in X rays is generally very bright, partly because it is relatively nearby in our own Galaxy. P Cygni lines at ultraviolet or optical wavelengths had not been previously seen from Circinus X-1 because a large amount of dust in the galactic plane lies between Earth and this system and this dust is an efficient absorber of ultraviolet and optical light. However, the energetic X rays created by Circinus X-1 could easily penetrate through the obscuring dust and gas--similar to the way medical X-rays on Earth can penetrate through people's bodies. "We were hoping to detect some kind of X-ray line emission from the accreting neutron star in Circinus X-1, but it caught us totally by surprise to observe a complex emission structure like a P Cygni profile in high-energy X rays." schulz says. "This detection clearly marks a new area in X-ray astrophysics, where we will be able to study dynamical structures in the universe like we currently do at ultraviolet or optical wavelengths." Brandt and Schulz used two of Chandra's instruments, known together as the High-Energy Transmission Grating Spectrometer (HETGS), to detect the X rays and produce a high-resolution X-ray spectrum of Circinus X-1. This spectrum is analogous to the rainbow we can see at optical wavelengths. "Chandra's X-ray spectrum is 50 times more detailed than previous X-ray observatories could obtain," Schulz says. First, the super-fine transmission gratings acted like a prism to separate the X-rays into discrete energy bands. Then, the Advanced

  14. The jet and counterjet of 3C 270 (NGC 4261) viewed in the X-ray with Chandra

    CERN Document Server

    Worrall, D M; O'Sullivan, E; Zezas, A; Wolter, A; Trinchieri, G; Fabbiano, G

    2010-01-01

    The radio source 3C 270, hosted by NGC 4261, is the brightest known example of counterjet X-ray emission from a low-power radio galaxy. We report on the X-ray emission of the jet and counterjet from 130 ks of Chandra data. We argue that the X-ray emission is synchrotron radiation and that the internal properties of the jet and counterjet are remarkably similar. We find a smooth connection in X-ray hardness and X-ray to radio ratio between the jet and one of the X-ray components within the core spectrum. We observe wedge-like depressions in diffuse X-ray surface brightness surrounding the jets, and interpret them as regions where an aged population of electrons provides pressure to balance the interstellar medium of NGC 4261. About 20% of the mass of the interstellar medium has been displaced by the radio source. Treating 3C 270 as a twin-jet system, we find an interesting agreement between the ratio of jet-to-counterjet length in X-rays and that expected if X-rays are observed over the distance that an outflo...

  15. The Making of the Chandra X-ray Observatory: the Project Scientist's Perspective

    CERN Document Server

    Weisskopf, Martin C

    2010-01-01

    We review the history of the development of the Chandra X-ray Observatory from our personal perspective. This review is necessarily biased and limited by space since it attempts to cover a time span approaching 5 decades.

  16. The Chandra Deep Field-North Survey and the Cosmic X-ray Background

    CERN Document Server

    Brandt, W N; Bauer, F E; Hornschemeier, A E

    2002-01-01

    Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multiwavelength (optical, infrared, submillimeter, and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources, and high-to-extreme redshift AGN. We also describe how stacking analyses have been used to probe the average X-ray emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.

  17. X-ray emission from the blazar AO 0235+16: the XMM-Newton and Chandra point of view

    CERN Document Server

    Raiteri, C M; Kadler, M; Krichbaum, T P; Böttcher, M; Fuhrmann, L; Orio, M

    2006-01-01

    In this paper we analyse five observations of the BL Lac object AO 0235+16 performed with the Chandra and XMM-Newton satellites during the years 2000-2005. In the February 2002 observation the source is found in a bright state and presents a steep X-ray spectrum, while in all the other epochs it is faint and the spectrum is hard. The soft X-ray spectrum appears to be strongly absorbed, likely by the intervening system at z=0.524, which also absorbs the optical-UV radiation. We find that models that consider spectral curvature are superior to single power law ones in fitting the X-ray spectrum. In particular, we favour a double power law model, which agrees with the assumption of a superposition of two different components in the X-ray domain. Both in the Chandra and in one of the XMM-Newton observations, a tentative detection of the redshifted Fe Kalpha emission line may suggest its origin from the inner part of an accretion disc. Thermal emission from this accretion disc might explain the UV-soft-X-ray bump ...

  18. Recovery of the Historical SN1957D in X-rays with Chandra

    CERN Document Server

    Long, Knox S; Godfrey, L E H; Kuntz, K D; Plucinsky, Paul P; Soria, Roberto; Stockdale, Christopher J; Whitmore, Bradley C; Winkler, P Frank

    2012-01-01

    SN1957D, located in one of the spiral arms of M83, is one of the small number of extragalactic supernovae that has remained detectable at radio and optical wavelengths during the decades after its explosion. Here we report the first detection of SN1957D in X-rays, as part of a 729 ks observation of M83 with \\chandra. The X-ray luminosity (0.3 - 8 keV) is 1.7 (+2.4,-0.3) 10**37 ergs/s. The spectrum is hard and highly self-absorbed compared to most sources in M83 and to other young supernova remnants, suggesting that the system is dominated at X-ray wavelengths by an energetic pulsar and its pulsar wind nebula. The high column density may be due to absorption within the SN ejecta. HST WFC3 images resolve the supernova remnant from the surrounding emission and the local star field. Photometry of stars around SN1957D, using WFC3 images, indicates an age of less than 10**7 years and a main sequence turnoff mass more than 17 solar masses. New spectra obtained with Gemini-South show that the optical spectrum continu...

  19. Finding Supernova Ia Progenitors with the Chandra X-ray Observatory

    DEFF Research Database (Denmark)

    Nielsen, Mikkel T. B.; Nelemans, Gijs; Voss, Rasmus

    2011-01-01

    We examine pre-supernova Chandra images to find X-ray luminosities of type Ia supernova progenitors. At present, we have one possible direct detection and upper limits for the X-ray luminosities of a number of other supernova progenitors. The method has also yielded a possible detection of a X...

  20. A Chandra X-Ray observation of the binary millisecond pulsar PSR J1023+0038

    NARCIS (Netherlands)

    Bogdanov, S.; Archibald, A.M.; Hessels, J.W.T.; Kaspi, V.M.; Lorimer, D.; McLaughlin, M.A.; Ransom, S.M.; Stairs, I.H.

    2011-01-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5σ) large-amplitude (factor of two to three) orbital variability over the

  1. A CHANDRA OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511-3057

    Energy Technology Data Exchange (ETDEWEB)

    Paizis, A. [Istituto Nazionale di Astrofisica, INAF-IASF, Via Bassini 15, 20133 Milano (Italy); Nowak, M. A. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Rodriguez, J.; Chaty, S. [Astrophysique, Instrumentation et Modelisation (AIM, UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Wilms, J. [Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universitaet Erlangen-Nuernberg, Sternwartstr. 7, 96049 Bamberg (Germany); Del Santo, M.; Ubertini, P., E-mail: ada@iasf-milano.inaf.it, E-mail: mnowak@space.mit.edu [IAPS, INAF, Via Fosso del Cavaliere 100, 00133 Rome (Italy)

    2012-08-10

    IGR J17511-3057 is a low-mass X-ray binary hosting a neutron star and is one of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on a 20 ks Chandra grating observation of IGR J17511-3057, performed on 2009 September 22. We determine the most accurate X-ray position of IGR J17511-3057, {alpha}{sub J2000} = 17{sup h}51{sup m}08.{sup s}66, {delta}{sub J2000} = -30 Degree-Sign 57'41.''0 (90% uncertainty of 0.''6). During the observation, a {approx}54 s long type-I X-ray burst is detected. The persistent (non-burst) emission has an absorbed 0.5-8 keV luminosity of 1.7 Multiplication-Sign 10{sup 36} erg s{sup -1} (at 6.9 kpc) and can be well described by a thermal Comptonization model of soft, {approx}0.6 keV, seed photons upscattered by a hot corona. The type-I X-ray burst spectrum, with average luminosity over the 54 s duration L{sub 0.5-8{sub keV}} = 1.6 Multiplication-Sign 10{sup 37} erg s{sup -1}, can be well described by a blackbody with kT{sub bb} {approx} 1.6 keV and R{sub bb} {approx} 5 km. While an evolution in temperature of the blackbody can be appreciated throughout the burst (average peak kT{sub bb} = 2.5{sup +0.8}{sub -0.4} keV to tail kT{sub bb} = 1.3{sup +0.2}{sub -0.1} keV), the relative emitting surface shows no evolution. The overall persistent and type-I burst properties observed during the Chandra observation are consistent with what was previously reported during the 2009 outburst of IGR J17511-3057.

  2. NASA's High Energy Vision: Chandra and the X-Ray Universe

    Science.gov (United States)

    Mais, D. E.; Stencel, R. E.; Richards, D.

    2004-05-01

    The Chandra X-Ray Observatory is the most sophisticated X-ray observatory launched by NASA. Chandra is designed to observe X-rays from high-energy regions of the universe, such as the remnants of supernovae explosions, col- liding galaxies, black holes, pulsars, neutron stars, quasars, and X-ray bi- nary stars. The spectacular results from the first five years of Chandra ob- servations are changing and redefining theories with each observation. Every exciting new image shows glimpses of such exotic phenomena as super-massive black holes, surprising black hole activity in old galaxies, rivers of grav- ity that define the cosmic landscape, unexpected x-ray activity in proto- stars and failed stars, puzzling distributions of elements in supernovae remnants, the sound waves from a super-massive black hole, and the even the tantalizing possibility of an entirely new form of matter - the strange quark star. On September 14, 2000, triggered by alerts from amateur astron- omers worldwide, Chandra observed the outburst of the brightest northern dwarf nova SS Cygni. The cooperation of hundreds of amateur variable star astronomers and the Chandra X-Ray scientists and spacecraft specialists pro- vided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.

  3. Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    Science.gov (United States)

    Weisskopf, Martin C.; Tennant, Allyn F.; Yakovlev, Dimitry G.; Harding, Alice; Zavlin, Vyacheslav E.; Elsner, Ronald F.; Becker, Werner

    2012-01-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (5.28+\\-0.28) x 10(exp -4) (4.9 x 10(exp -4) is solar abundance). \\rVe also measure for the first time the impact of scattering of flux out of the image by interstellar grains. \\rYe find T(sub scat) = 0.147+/-0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum - albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We compare these spectral variations to those observed in Gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data were also used to set new. and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere.

  4. A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum

    CERN Document Server

    Corcoran, M F; Pablo, H; Shenar, T; Pollock, A M T; Waldron, W L; Moffat, A F J; Richardson, N D; Russell, C M P; Hamaguchi, K; Huenemoerder, D P; Oskinova, L; Hamann, W -R; Naze, Y; Ignace, R; Evans, N R; Lomax, J R; Hoffman, J L; Gayley, K; Owocki, S P; Leutenegger, M; Gull, T R; Hole, K T; Lauer, J; Iping, R C

    2015-01-01

    We present an overview of four phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system which includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object which can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary, Delta Ori A provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ksec and covering nearly the entire binary orbit. Companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities simultaneous with the X-ray data to better constrain the system parame...

  5. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  6. Uranium M x-ray emission spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Krause, M.O.

    1977-03-01

    The uranium M x-ray spectrum from a thick metallic target excited by 12-keV electrons was measured by the PAX (photoelectron spectrometry for the analysis of x rays) technique. Energies of the strongest lines were obtained with an accuracy of 0.1 eV using Ag L..beta../sub 1/ and Ag L..cap alpha../sub 1/ as standards. Widths of the uranium lines were obtained by deconvoluting the measured Voigt profiles, and the experimental values were found to agree satisfactorily with McGuire's Hartree-Slater predictions. Natural widths of 4.0(3) and 3.8(3) eV were derived for the M/sub 4/ and M/sub 5/ levels, respectively, and the energies of the M/sub 4/, M/sub 5/, N/sub 2/, and N/sub 3/ levels in uranium metal were determined. Relative intensities of the M lines were measured, and branching ratios were found to be in fair agreement with relativistic Hartree-Slater predictions. The satellite structures of the M..cap alpha../sub 1/ and M..beta.. lines were interpreted in terms of the pertinent multiple-hole configurations. Finally, an approximate analytic expression for the Voigt half-width and its graphical representation are given.

  7. Chandra X-ray Spectroscopy of Kes75, its Young Pulsar, and its Synchrotron Nebula

    CERN Document Server

    Collins, B F; Helfand, D J

    2001-01-01

    We have observed the young Galactic supernova remnant Kes 75 with the Chandra X-ray Observatory. This object is one of an increasing number of examples of a shell-type remnant with a central extended radio core harboring a pulsar. Here we present a preliminary spatially resolved spectroscopic analysis of the Kes~75 system. We find that the spectrum of the pulsar is significantly harder than that of the wind nebula, and both of these components can be isolated from the diffuse thermal emission that seems to follow the same distribution as the extended radio shell. When we characterize the thermal emission with a model of an under-ionized plasma and non-solar elemental abundances, we require a significant diffuse high energy component, which we model as a power-law with a photon index similar to that of the synchrotron nebula.

  8. A DEEP CHANDRA X-RAY LIMIT ON THE PUTATIVE IMBH IN OMEGA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Cool, Adrienne M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132 (United States); Heinke, Craig O. [Department of Physics, University of Alberta, Room 238 CEB, Edmonton, AB T6G 2G7 (Canada); Van der Marel, Roeland; Anderson, Jay [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cohn, Haldan N.; Lugger, Phyllis M., E-mail: dhaggard@northwestern.edu, E-mail: cool@sfsu.edu [Department of Astronomy, Indiana University, 727 E. Third St., Bloomington, IN 47405 (United States)

    2013-08-20

    We report a sensitive X-ray search for the proposed intermediate-mass black hole (IMBH) in the massive Galactic cluster, {omega} Centauri (NGC 5139). Combining Chandra X-ray Observatory data from Cycles 1 and 13, we obtain a deep ({approx}291 ks) exposure of the central regions of the cluster. We find no evidence for an X-ray point source near any of the cluster's proposed dynamical centers, and place an upper limit on the X-ray flux from a central source of f{sub X}(0.5-7.0 keV) {<=}5.0 Multiplication-Sign 10{sup -16} erg cm{sup -2} s{sup -1}, after correcting for absorption. This corresponds to an unabsorbed X-ray luminosity of L{sub X}(0.5-7.0 keV) {<=}1.6 Multiplication-Sign 10{sup 30} erg s{sup -1}, for a cluster distance of 5.2 kpc, Galactic column density N{sub H} = 1.2 Multiplication-Sign 10{sup 21} cm{sup -2}, and power-law spectrum with {Gamma} = 2.3. If a {approx}10{sup 4} M{sub sun} IMBH resides in the cluster's core, as suggested by some stellar dynamical studies, its Eddington luminosity would be L{sub Edd} {approx}10{sup 42} erg s{sup -1}. The new X-ray limit would then establish an Eddington ratio of L{sub X}/L{sub Edd} {approx}< 10{sup -12}, a factor of {approx}10 lower than even the quiescent state of our Galaxy's notoriously inefficient supermassive black hole Sgr A*, and imply accretion efficiencies as low as {eta} {approx}< 10{sup -6}-10{sup -8}. This study leaves open three possibilities: either {omega} Cen does not harbor an IMBH or, if an IMBH does exist, it must experience very little or very inefficient accretion.

  9. Chandra x-ray results on v426 ophiuchi

    Directory of Open Access Journals (Sweden)

    Lee Homer

    2004-01-01

    Full Text Available De las observaciones de 45 ks de Chandra de V426 Oph hemos obtenido espectros de rayos X de alta resoluci on con relaci on se~nal-a-ruido moderada, y una curva de luz no interrumpida de buena calidad. Los espectros se adaptan razonablemente a un modelo de ujo de enfriamiento, similar a EX Hya y U Gem. Nuestro an alisis de las curvas de luz de Chandra y las adicionales de rayos X/ optico revela una modulaci on persistente a 4.2 hr desde 1988 hasta 2003, probablemente el per odo de giro de la enana blanca, indicando una naturaleza polar intermedia para V426 Oph.

  10. The 2-79 keV X-ray spectrum of the circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully compton-thick active galactic nucleus

    DEFF Research Database (Denmark)

    Arévalo, P.; Bauer, F. E.; Puccetti, S.;

    2014-01-01

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical...

  11. A Chandra X-ray Study of Cygnus A. 2; The Nucleus

    Science.gov (United States)

    Young, Andrew J.; Wilson, Andrew; Terashima, Yuichi; Arnaud, Keith A.; Smith, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report Chandra Advanced CCD Imaging Spectrometer and quasi-simultaneous Rossi X-Ray Timing Explorer (RXTE) observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (less than a few keV) X-ray emission is spatially unresolved with a size is approximately 1" (1.5 kpc, H(sub 0) = 50 km/s/Mpc) and coincides with the radio and near-infrared nuclei. In contrast, the soft (less than 2 keV) emission exhibits a bipolar nebulosity that aligns with the optical bipolar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] (lambda)5007 and H(alpha) + [N II] lambda(lambda)6548, 6583 nebulosity imaged with Hubble Space Telescope. At the location of the nucleus, there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the six detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power-law spectrum with Gamma(sub h) = 1.52(sup + 0.12, sub -0.12) (similar to other 0.12 narrow-line radio galaxies) and equivalent hydrogen column N(sub H)(nuc) = 2.0(sup +0.1, sub -0.1) x 10(exp 23)/sq cm. This 0.2 column is compatible with the dust obscuration to the near-infrared source for a normal gas-to-dust ratio. The soft (less than 2 keV) emission from the nucleus may be described by a power-law spectrum with the same index (i.e., Gamma(sub l) = Gamma(sub h), although direct fits suggest a slightly larger value for Gamma(sub l). Narrow emission lines from highly ionized neon and silicon, as well as a "neutral" Fe K(alpha) line, are detected in the nucleus and its vicinity (r approximately less than 2 kpc). The equivalent width (EW) of the Fe K(alpha) line

  12. X-rays beware: the deepest Chandra catalogue of point sources in M31

    Science.gov (United States)

    Vulic, N.; Gallagher, S. C.; Barmby, P.

    2016-10-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ˜1 Ms, we detected 795 X-ray sources in the bulge, north-east, and south-west fields of M31, covering an area of ≈0.6 deg2, to a limiting unabsorbed 0.5-8.0 keV luminosity of ˜1034 erg s-1. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's D25 isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49 per cent) of our Chandra sources (352 or 44 per cent unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to previous Chandra X-ray sources we detected 259. new sources in our catalogue. We created X-ray luminosity functions (XLFs) in the soft (0.5-2.0 keV) and hard (2.0-8.0 keV) bands that are the most sensitive for any large galaxy based on our detection limits. Completeness-corrected XLFs show a break around ≈1.3 × 1037 erg s-1, consistent with previous work. As in past surveys, we find that the bulge XLFs are flatter than the disc, indicating a lack of bright high-mass X-ray binaries in the disc and an aging population of low-mass X-ray binaries in the bulge.

  13. The Chandra X-Ray Observatory Radiation Environmental Model Update

    Science.gov (United States)

    Blackwell, William C.; Minow, Joseph I.; ODell, Stephen L.; Cameron, Robert A.; Virani, Shanil N.

    2003-01-01

    CRMFLX (Chandra Radiation Model of ion FLUX) is a radiation environment risk mitigation tool for use as a decision aid in planning the operation times for Chandra's Advanced CCD Imaging Spectrometer (ACIS) detector. The accurate prediction of the proton flux environment with energies of 100 - 200 keV is needed in order to protect the ACIS detector against proton degradation. Unfortunately, protons of this energy are abundant in the region of space where Chandra must operate. In addition, on-board particle detectors do not measure proton flux levels of the required energy range. CRMFLX is an engineering environment model developed to predict the proton flux in the solar wind, magnetosheath, and magnetosphere phenomenological regions of geospace. This paper describes the upgrades to the ion flux databases for the magnetosphere, magnetosheath, and solar wind regions. These data files were created by using Geotail and Polar spacecraft flux measurements only when the Advanced Composition Explorer (ACE) spacecraft's 0.14 MeV particle flux was below a threshold value. This new database allows for CRMFLX output to be correlated with both the geomagnetic activity level, as represented by the Kp index, as well as with solar proton events. Also, reported in this paper are results of analysis leading to a change in Chandra operations that successfully mitigates the false trigger rate for autonomous radiation events caused by relativistic electron flux contamination of proton channels.

  14. The Chandra Local Volume Survey: The X-ray Point Source Catalog of NGC 300

    CERN Document Server

    Binder, Breanna; Eracleous, Michael; Gaetz, Terrance J; Plucinsky, Paul P; Skillman, Evan D; Dalcanton, Julianne J; Anderson, Scott F; Weisz, Daniel R; Kong, Albert K H

    2012-01-01

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers ~88% of the D25 isophote (R~6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of ~10^36 erg s^-1. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 "X-ray transient candidate" sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7+/-0.2 kpc and a recent star formation rate of 0.12 Msun yr^-1, in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background AGN candidates. Finally, we present the X-ray luminos...

  15. Historical Remembrances of the Chandra X-ray Observatory: How Partnerships Created Success

    Science.gov (United States)

    Burke, Robert

    2009-09-01

    As the astronomy community plans for new ventures in space, we're forced to find creative solutions to operate within the ever increasing fiscal constraints of the current economic environment. The Chandra X-ray Observatory program offers an example of how missions can be successfully developed within manageable budget constraints. The ten year anniversary offers us the chance to look back at the Chandra team's special partnership between scientists, managers, and industry that led to our success.Chandra experienced many of the challenges common to major observatories: state-of-the-art technical requirements, budget-induced slips, and restructurings. Yet the Chandra team achieved excellent performance for dramatically lower cost. In fact, Chandra completed its prime mission for billions of dollars less than originally planned. In 1992, NASA MSFC and Northrop Grumman (then TRW) together led a major restructure that saved approximately 3.4B in program cost, while we improved the imaging capability and observing efficiency of Chandra. This was accomplished by a combination of team-work, systems engineering, advanced technology insertion, and effective approaches for program implementation, combined with a high performance culture that aligned goals and focused on mission success. Northrop Grumman is proud of our role in supporting the NASA Marshall Space Flight Center and our academic partners in advancing the frontiers of x-ray astronomy and scientific discovery with Chandra. As Chandra continues its extended mission, the observatory continues to provide superb scientific performance.

  16. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE CATALOG OF NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Binder, B.; Williams, B. F.; Dalcanton, J. J.; Anderson, S. F.; Weisz, D. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gaetz, T. J.; Plucinsky, P. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Skillman, E. D. [Astronomy Department, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2012-10-10

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers {approx}88% of the D{sub 25} isophote (R Almost-Equal-To 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of {approx}10{sup 36} erg s{sup -1}. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 'X-ray transient candidate' sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7 {+-} 0.2 kpc and a recent star formation rate of 0.12 M{sub Sun} yr{sup -1} in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering {approx}32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. Finally, we present the X-ray luminosity functions (XLFs) at different X-ray energies, and we find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations ({approx}< 50 Myr). We find that XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions.

  17. X-ray Sources with Periodic Variability in a Deep Chandra Image of the Galactic Center

    CERN Document Server

    Muno, M P; Bautz, M W; Brandt, W N; Garmire, G P; Ricker, G R

    2003-01-01

    We report the discovery of eight X-ray sources with periodic variability in 487 ks of observations of the Galactic center with Chandra. The sources are identified from a sample of 285 objects detected with 100-4200 net counts. Their periods range from 300 s to 4.5 h with amplitudes between 40% and 70% rms. They have luminosities of (1 - 5) \\times 10^{32} erg/sec (2--8 keV at 8 kpc). The spectra of seven of the eight sources are consistent with Gamma = 0 power laws absorbed by gas and dust with a column density equal to or higher than that toward the Galactic Center (6 times 10^{22} cm^{-2}). Four of these sources also exhibit emission lines near 6.7 keV from He-like Fe, with equivalent widths of 600-1000 eV. These properties are consistent with both magnetically accreting cataclysmic variables and wind-accreting neutron stars in high-mass X-ray binaries. The eighth source has an absorbing column of 5 \\times 10^{21} cm^{-2} that places it in the foreground. Its spectrum is consistent with either a Gamma = 1.4 ...

  18. Chandra X-Ray Observations of Nineteen Millisecond Pulsars in the Globular Cluster 47 Tucanae

    CERN Document Server

    Bogdanov, S; Heinke, C O; Camilo, F; Freire, P C C; Becker, W; Bogdanov, Slavko; Grindlay, Jonathan E.; Heinke, Craig O.; Camilo, Fernando; Freire, Paulo C. C.; Becker, Werner

    2006-01-01

    We present spectral and long-timescale variability analyses of \\textit{Chandra} ACIS-S observations of the 19 millisecond pulsars (MSPs) with precisely known positions in the globular cluster 47 Tucanae. The X-ray emission of the majority of these MSPs is well described by a thermal (blackbody or neutron star hydrogen atmosphere) spectrum with a temperature $T_{\\rm eff}\\sim(1-3)\\times10^6$ K, emission radius $R_{\\rm eff}\\sim0.1-3$ km, and luminosity $L_{X}\\sim10^{30-31}$ ergs s$^{-1}$. For several MSPs, there is indication that a second thermal component is required, similar to what is seen in some nearby field MSPs. The radio-eclipsing binary MSPs 47 Tuc J, O, and W show a significant non-thermal component, with photon index $\\Gamma\\sim 1-1.5$, which may originate in an shock formed due to interaction between the relativistic pulsar wind and matter from the stellar companion. We re-examine the X-ray--spindown luminosity relation ($L_{X}-\\dot{E}$) and find that due to the large uncertainties in both parameter...

  19. Modeling Contamination Migration on the Chandra X-Ray Observatory - III

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.

    2015-01-01

    During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations

  20. A bright thermonuclear X-ray burst simultaneously observed with Chandra and RXTE

    CERN Document Server

    Zand, J J M in t; Marshall, H L; Ballantyne, D R; Jonker, P G; Paerels, F B S; Palmer, D M; Patruno, A; Weinberg, N N

    2013-01-01

    The prototypical accretion-powered millisecond pulsar SAX J1808.4-3658 was observed simultaneously with Chandra-LETGS and RXTE-PCA near the peak of a transient outburst in November 2011. A single thermonuclear (type-I) burst was detected, the brightest yet observed by Chandra from any source, and the second-brightest observed by RXTE. We found no evidence for discrete spectral features during the burst; absorption edges have been predicted to be present in such bursts, but may require a greater degree of photospheric expansion than the rather moderate expansion seen in this event (a factor of a few). These observations provide a unique data set to study an X-ray burst over a broad bandpass and at high spectral resolution (lambda/delta-lambda=200-400). We find a significant excess of photons at high and low energies compared to the standard black body spectrum. This excess is well described by a 20-fold increase of the persistent flux during the burst. We speculate that this results from burst photons being sc...

  1. The Chandra Local Volume Survey: The X-ray Point Source Population of NGC 404

    CERN Document Server

    Binder, B; Eracleous, M; Gaetz, T J; Kong, A K H; Skillman, E D; Weisz, D R

    2012-01-01

    We present a comprehensive X-ray point source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new, 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6x10^35 erg s^-1 in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping HST observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background AGN. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% comple...

  2. Near-infrared counterparts of Chandra X-ray sources toward the Galactic Center

    CERN Document Server

    DeWitt, Curtis; Eikenberry, Stephen S; Blum, Robert; Olsen, Knut; Sellgren, Kris; Sarajedini, Ata

    2010-01-01

    The Chandra X-ray Observatory has now discovered nearly 10,000 X-ray point sources in the 2 x 0.8 degree region around the Galactic Center (Muno 2009). The sources are likely to be a population of accreting binaries in the Galactic Center, but little else is known of their nature. We obtained JHKs imaging of the 17'x 17' region around Sgr A*, an area containing 4339 of these X-ray sources, with the ISPI camera on the CTIO 4-m telescope. We cross-correlate the Chandra and ISPI catalogs to find potential IR counterparts to the X-ray sources. The extreme IR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. We find 2137 IR/X-ray astrometrically matched sources: statistically we estimate that our catalog contains 289 +/- 13 true matches to soft X-ray sources and 154 +/- 39 matches to hard X-ray sources. However, the fraction of true counterparts to candidate counterparts for hard sources is just 11 %, compared to 60 % for s...

  3. Chandra observation of the fast X-ray transient IGR J17544-2619: evidence for a neutron star?

    CERN Document Server

    in 't Zand, J J M

    2005-01-01

    IGR J17544-2619 belongs to a distinct group of at least seven fast X-ray transients that cannot readily be associated with nearby flare stars or pre-main sequence stars and most probably are X-ray binaries with wind accretion. Sofar, the nature of the accretor has been determined in only one case (SAX J1819.3-2525/V4641 Sgr). We carried out a 20 ks Chandra ACIS-S observation of IGR J17544-2619 which shows the source in quiescence going into outburst. The Chandra position confirms the previous tentative identification of the optical counterpart, a blue O9Ib supergiant at 3 to 4 kpc (Pellizza, Chaty & Negueruela, in prep.). This is the first detection of a fast X-ray transient in quiescence. The quiescent spectrum is very soft. The photon index of 5.9+/-1.2 (90% confidence error margin) is much softer than 6 quiescent black hole candidates that were observed with Chandra ACIS-S (Kong et al. 2002; Tomsick et al. 2003). Assuming that a significant fraction of the quiescent photons comes from the accretor and ...

  4. A Comprehensive Archival Chandra Search for X-ray Emission from Ultracompact Dwarf Galaxies

    CERN Document Server

    Pandya, Viraj; Greene, Jenny E

    2016-01-01

    We present the first comprehensive archival study of the X-ray properties of ultracompact dwarf (UCD) galaxies, with the goal of identifying weakly-accreting central black holes in UCDs. Our study spans 578 UCDs distributed across thirteen different host systems, including clusters, groups, fossil groups, and isolated galaxies. Of the 336 spectroscopically-confirmed UCDs with usable archival Chandra imaging observations, 21 are X-ray-detected. Imposing a completeness limit of $L_X>2\\times10^{38}$ erg s$^{-1}$, the global X-ray detection fraction for the UCD population is $\\sim3\\%$. Of the 21 X-ray-detected UCDs, seven show evidence of long-term X-ray time variability on the order of months to years. X-ray-detected UCDs tend to be more compact than non-X-ray-detected UCDs, and we find tentative evidence that the X-ray detection fraction increases with surface luminosity density and global stellar velocity dispersion. The X-ray emission of UCDs is fully consistent with arising from a population of low-mass X-ra...

  5. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    CERN Document Server

    Clark, D M; Brandl, B R; Wilson, J C; Carson, J C; Henderson, C P; Hayward, T L; Barry, D J; Ptak, A F; Colbert, E J M

    2006-01-01

    We use deep J and Ks images of the Antennae (NGC 4038/9) obtained with WIRC on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2002a), to search for IR counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with 0.5" rms residuals over a \\~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks = 17.8 mag and < 1.0" from X-ray sources, and an additional 6 ``possible'' IR counterparts between 1.0" and 1.5" from X-ray sources. The surface density of IR sources near the X-ray sources suggests only ~2 of the ``strong'' counterparts and ~3 of the ``possible'' counterparts are chance superpositions of unrelated objects. Comparing both strong and possible IR counterparts to our photometric study of ~220 Antennae, IR clusters, we find the IR counterparts to X-ray sources are \\~1.2 mag more luminous in Ks than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regi...

  6. Chandra ACIS Survey of X-ray Point Sources in Nearby Galaxies. II. X-ray Luminosity Functions and Ultraluminous X-ray Sources

    CERN Document Server

    Wang, Song; Liu, Jifeng; Bregman, Joel N

    2016-01-01

    Based on the recently completed {\\it Chandra}/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library for 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ($\\alpha\\sim1.50\\pm0.07$) to elliptical ($\\sim1.21\\pm0.02$), to spirals ($\\sim0.80\\pm0.02$), to peculiars ($\\sim0.55\\pm0.30$), and to irregulars ($\\sim0.26\\pm0.10$). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosi...

  7. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE POPULATION OF NGC 404

    Energy Technology Data Exchange (ETDEWEB)

    Binder, B.; Williams, B. F.; Weisz, D. R. [University of Washington, Department of Astronomy, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Gaetz, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Skillman, E. D. [University of Minnesota, Astronomy Department, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-02-15

    We present a comprehensive X-ray point-source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of {approx}123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of {approx}6 Multiplication-Sign 10{sup 35} erg s{sup -1} in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low-mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background active galactic nuclei. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% completeness limit of 10{sup 35} erg s{sup -1} and 10{sup 36} erg s{sup -1}, respectively, significantly lower than previous X-ray studies of NGC 404. We find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10{sup 37} erg s{sup -1}) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main-sequence companions formed during an epoch of elevated star formation {approx}0.5 Gyr ago.

  8. X-rays from Saturn: A study with XMM-Newton and Chandra over the years 2002-05

    CERN Document Server

    Branduardi-Raymont, G; Elsner, R F; Rodriguez, P

    2009-01-01

    We present the results of the two most recent (2005) XMM-Newton observations of Saturn together with the re-analysis of an earlier (2002) observation from the XMM-Newton archive and of three Chandra observations in 2003 and 2004. While the XMM-Newton telescope resolution does not enable us to resolve spatially the contributions of the planet's disk and rings to the X-ray flux, we can estimate their strengths and their evolution over the years from spectral analysis, and compare them with those observed with Chandra. The spectrum of the X-ray emission is well fitted by an optically thin coronal model with an average temperature of 0.5 keV. The addition of a fluorescent oxygen emission line at ~0.53 keV improves the fits significantly. In accordance with earlier reports, we interpret the coronal component as emission from the planetary disk, produced by the scattering of solar X-rays in Saturn's upper atmosphere, and the line as originating from the Saturnian rings. The strength of the disk X-ray emission is se...

  9. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    CERN Document Server

    Israel, Gian Luca; Castillo, Guillermo Andres Rodriguez; Sidoli, Lara

    2016-01-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 years of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190,000 lightcurves out of about 430,000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS@BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above about 2,000s resembles that of...

  10. Chandra X-ray Detection of the Enigmatic Field Star BP Psc

    CERN Document Server

    Kastner, Joel H; Rodriguez, David; Grosso, Nicolas; Zuckerman, B; Perrin, Marshall D; Forveille, Thierry; Graham, James R

    2010-01-01

    BP Psc is a remarkable emission-line field star that is orbited by a dusty disk and drives a parsec-scale system of jets. We report the detection by the Chandra X-ray Observatory of a weak X-ray point source coincident with the centroids of optical/IR and submillimeter continuum emission at BP Psc. As the star's photosphere is obscured throughout the visible and near-infrared, the Chandra X-ray source likely represents the first detection of BP Psc itself. The X-rays most likely originate with magnetic activity at BP Psc and hence can be attributed either to a stellar corona or to star-disk interactions. The log of the ratio of X-ray to bolometric luminosity (log(L_X/L_{bol}) lies in the range -5.8 to -4.2. This is smaller than log(L_X/L_{bol}) ratios typical of low-mass, pre-main sequence stars, but is well within the log(L_X/L_{bol}) range observed for rapidly-rotating (FK Com-type) G giant stars. Hence, the Chandra results favor an exotic model wherein the disk/jet system of BP Psc is the result of its ver...

  11. Chandra Phase-resolved X-Ray Spectroscopy of the Crab Pulsar

    Science.gov (United States)

    Weisskopf, Martin C.; Tennant, Allyn F.; Yakovlev, Dmitry G.; Harding, Alice; Zavlin, Vyacheslav E.; O'Dell, Stephen L.; Elsner, Ronald F.; Becker, Werner

    2011-12-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-Ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line of sight to the Crab is underabundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms et al. we find [O/H] = (5.28 ± 0.28) × 10-4 (4.9 × 10-4 is solar abundance). We also measure for the first time the impact of scattering of flux out of the image by interstellar grains. We find τscat = 0.147 ± 0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum—albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We also compare these spectral variations to those observed in gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data are also used to set new, and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere. We discuss how such data are best connected to theoretical models of neutron star cooling and neutron star interiors. The data restrict the neutrino emission rate in the pulsar core and the amount of light elements in the heat-blanketing envelope. The observations allow the pulsar

  12. First X-ray observations of Low-Power Compact Steep Spectrum Sources

    CERN Document Server

    Kunert-Bajraszewska, M; Siemiginowska, A; Guainazzi, M

    2013-01-01

    We report first X-ray Chandra observations of a sample of seven low luminosity compact (LLC) sources. They belong to a class of young compact steep spectrum (CSS) radio sources. Four of them have been detected, the other three have upper limit estimations for X-ray flux, one CSS galaxy is associated with an X-ray cluster. We have used the new observations together with the observational data for known strong CSS and gigahertz-peaked spectrum (GPS) objects and large scale FRIs and FRIIs to study the relation between morphology, X-ray properties and excitation modes in radio-loud AGNs. We found that: (1) The low power objects fit well to the already established X-ray - radio luminosity correlation for AGNs and occupy the space among, weaker in the X-rays, FRI objects. (2) The high excitation galaxies (HEG) and low excitation galaxies (LEG) occupy distinct locus in the radio/X-ray luminosity plane, notwithstanding their evolutionary stage. This is in agreement with the postulated different origin of the X-ray em...

  13. The X-ray Spectra of Black Hole X-ray Novae in Quiescence as Measured by Chandra

    CERN Document Server

    Kong, A K H; García, M R; Murray, S S; Barret, D

    2002-01-01

    We present Chandra observations of black hole X-ray novae V404 Cyg, A0620-00, GRO J1655-40 and XTE J1550-564 in quiescence. Their quiescent spectra can be well fitted by a power-law model with slope $\\alpha \\sim 2$. While a coronal (Raymond-Smith) model is also a statistically acceptable representation of the spectra, the best fit temperatures of these models is $\\sim 5$ times higher than that seen in active stellar coronae. These four spectra of quiescent X-ray novae are all consistent with that expected for accretion via an advection-dominated accretion flow (ADAF) and inconsistent with that expected from a stellar corona. This evidence for continued accretion in quiescence further strengthens the case for the existence of event horizons in black holes. Both A0620-00 and GRO J1655-40 were fainter than in previous observations, while V404 Cyg was more luminous and varied by a factor of 2 in a few ksec. A reanalysis of the X-ray data for XTE J1550-564 shows that (like V404 Cyg and A0620-00) its luminosity exc...

  14. An Overview of the Performance of the Chandra X-Ray Observatory

    CERN Document Server

    Weisskopf, M C; Bautz, M; Cameron, R A; Dewey, D; Drake, J J; Grant, C E; Marshall, H L; Murray, S S

    2003-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA's Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST -- formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support a...

  15. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  16. Modeling Contamination Migration on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  17. The Chandra X-ray Observatory is prepped for solar panel deployment copy form; photos beginning with

    Science.gov (United States)

    1999-01-01

    TRW workers in the Vertical Processing Facility check equipment after deployment of the solar panel array above them, attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93.

  18. The End of Days -- Chandra Catches X-ray Glow From Supernova

    Science.gov (United States)

    1999-12-01

    Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the

  19. Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor

    CERN Document Server

    Grant, C E; Bautz, M W; O'Dell, S L

    2010-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telescope's focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. However, as Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. Here we investigate using the ACIS CCDs themselves as a radiation monitor. We explore the 10-year database to evaluate the CCDs' ...

  20. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    Science.gov (United States)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  1. Chandra Image Gives First Look at Mars Emitted X-Rays

    Science.gov (United States)

    2001-01-01

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  2. X-ray Sources in the Hubble Deep Field Detected by Chandra

    CERN Document Server

    Hornschemeier, A E; Garmire, G P; Schneider, D P; Broos, P S; Townsley, L K; Bautz, M W; Burrows, D N; Chartas, G; Feigelson, E D; Griffiths, R; Lumb, D H; Nousek, J A; Sargent, W L W

    2000-01-01

    We present first results from an X-ray study of the Hubble Deep Field North (HDF-N) and its environs obtained using 166 ks of data collected by the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-ray Observatory. This is the deepest X-ray observation ever reported, and in the HDF-N itself we detect six X-ray sources down to a 0.5--8 keV flux limit of 4E-16 erg cm^-2 s^-1. Comparing these sources with objects seen in multiwavelength HDF-N studies shows positional coincidences with the extremely red object NICMOS J123651.74 +621221.4, an active galactic nucleus (AGN), three elliptical galaxies, and one nearby spiral galaxy. The X-ray emission from the ellipticals is consistent with that expected from a hot interstellar medium, and the spiral galaxy emission may arise from a `super-Eddington' X-ray binary or ultraluminous supernova remnant. Four of the X-ray sources have been detected at radio wavelengths. We also place X-ray upper limits on AGN candidates found in the HDF-N, and we present the t...

  3. A Chandra observation of the accretion-driven millisecond X-ray pulsar XTE J0929-314 in quiescence

    CERN Document Server

    Wijnands, R; Heinke, C O; Miller, J M; Lewin, W H G; Wijnands, Rudy; Homan, Jeroen; Heinke, Craig O.; Miller, Jon M.; Lewin, Walter H. G.

    2004-01-01

    We observed the accretion-driven millisecond X-ray pulsar XTE J0929-314 in its quiescent state using Chandra. XTE J0929-314 is the second such source to be observed in quiescence, after SAX J1808.4-3658. We detected 22 source photons (in the energy range 0.3-8 keV) in ~24.4 ksec, resulting in a background-corrected count rate of 9+/-2 x 10^{-4} counts s^{-1}. This small number of photons detected did not allow for a detailed spectral analysis of the quiescent spectrum, but we can demonstrate that the spectrum is harder than simple thermal emission which is usually presumed to arise from a cooling neutron star that has been heated during the outbursts. Assuming a power-law model for the X-ray spectrum, we obtain a power-law index of 2.2+/-0.6 and an unabsorbed X-ray flux of 6.5^{+2.8}_{-2.1} x 10^{-15} ergs s^{-1} cm^{-2} (for the energy range 0.5-10 keV), resulting in a 0.5-10 keV X-ray luminosity of 8+/-3 x 10^{31} (d/10 kpc)^2 ergs s^{-1}, with d the distance toward the source in kpc. No thermal component c...

  4. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    Science.gov (United States)

    Mori, Hideyuki

    2013-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, including 5 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  5. PROBING WOLF–RAYET WINDS: CHANDRA/HETG X-RAY SPECTRA OF WR 6

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P.; Schulz, N. S. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Hamann, W.-R.; Oskinova, L.; Shenar, T. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Nichols, J. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS 34, Cambridge, MA 02138 (United States); Pollock, A. M. T., E-mail: dph@space.mit.edu, E-mail: ken.gayley@gmail.com, E-mail: wrh@astro.physik.uni-potsdam.de, E-mail: lida@astro.physik.uni-potsdam.de, E-mail: shtomer@astro.physik.uni-potsdam.de, E-mail: ignace@mail.etsu.edu, E-mail: jnichols@cfa.harvard.edu [European Space Agency, ESAC, Apartado 78, E-28691 Villanueva de la Cañada (Spain)

    2015-12-10

    With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.

  6. Contemporaneous Chandra HETG and Suzaku X-ray Observations of NGC 4051

    CERN Document Server

    Lobban, A P; Miller, L; Turner, T J; Braito, V; Kraemer, S B; Crenshaw, D M

    2011-01-01

    We present the results of a deep 300 ks Chandra HETG observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionised lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from O VII and Ne IX) plus high ionisation L-shell transitions from Fe XVII to Fe XXII and lower ionisation inner-shell lines (e.g. O VI). Modelling the data with XSTAR requires four distinct ionisation zones for the gas, all outflowing with velocities < 1000 km/s. A selection of the strongest emission/absorption lines appear to be resolved with FWHM of ~600 km/s. We also present the results from a quasi-simultaneous 350 ks Suzaku observation of NGC 4051 where the XIS spectrum reveals strong evidence for blueshifted absorption lines at ~6.8 and ~7.1 keV, consistent with previous findings. Modelling with XSTAR suggests that this i...

  7. Soft X-ray Spectroscopy of NGC 1068 with XMM-Newton RGS and Chandra LETGS

    CERN Document Server

    Kinkhabwala, A; Behar, E; Kahn, S M; Paerels, F B S; Brinkman, A C; Kaastra, J S; Van der Meer, R L J; Gu, M F; Liedahl, D A

    2002-01-01

    We present high-resolution soft-X-ray spectra of the prototypical Seyfert 2 galaxy, NGC 1068, taken with XMM-Newton RGS and Chandra LETGS. Its rich emission-line spectrum is dominated by recombination in a warm plasma (bright, narrow radiative recombination continua provide the ``smoking gun''), which is photoionized by the inferred nuclear power-law continuum. Radiative decay following photoexcitation of resonant transitions is also significant. A self-consistent model of an irradiated cone of gas is capable of reproducing the hydrogenic/heliumlike ionic line series in detail. The radial ionic column densities we infer are consistent with absorption measurements (the ``warm absorber'') in Seyfert 1 galaxies. This strongly suggests that the emission spectrum we observe from NGC 1068 emanates from its ``warm absorber.'' The observed extent of the ionization-cone/''warm absorber'' in NGC 1068 of 500 pc implies that a large fraction of the gas associated with generic ``warm absorbers'' may typically exist on the...

  8. An X-ray Tour of Massive Star-forming Regions with Chandra

    CERN Document Server

    Townsley, L K

    2006-01-01

    The Chandra X-ray Observatory is providing fascinating new views of massive star-forming regions, revealing all stages in the life cycles of massive stars and their effects on their surroundings. I present a Chandra tour of some of the most famous of these regions: M17, NGC 3576, W3, Tr14 in Carina, and 30 Doradus. Chandra highlights the physical processes that characterize the lives of these clusters, from the ionizing sources of ultracompact HII regions (W3) to superbubbles so large that they shape our views of galaxies (30 Dor). X-ray observations usually reveal hundreds of pre-main sequence (lower-mass) stars accompanying the OB stars that power these great HII region complexes, although in one case (W3 North) this population is mysteriously absent. The most massive stars themselves are often anomalously hard X-ray emitters; this may be a new indicator of close binarity. These complexes are sometimes suffused by soft diffuse X-rays (M17, NGC 3576), signatures of multi-million-degree plasmas created by fas...

  9. X-Rays Beware: The Deepest Chandra Catalogue of Point Sources in M31

    CERN Document Server

    Vulic, N; Barmby, P

    2016-01-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ~1 Ms, we detected 795 X-ray sources in the bulge, northeast, and southwest fields of M31, covering an area of approximately 0.6 deg$^{2}$, to a limiting unabsorbed 0.5-8.0 keV luminosity of $10^{34}$ erg/s. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's $D_{25}$ isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49%) of our Chandra sources (352 or 44% unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to ...

  10. X-ray observations of dust obscured galaxies in the Chandra Deep Field South

    CERN Document Server

    Corral, A; Comastri, A; Ranalli, P; Akylas, A; Salvato, M; Lanzuisi, G; Vignali, C; Koutoulidis, L

    2016-01-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra Deep Field South. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields. In that work, we only found a moderate percentage ($<$ 50%) of CT AGN among the DOGs sample, but we were limited by poor photon statistics. In this paper, we use not only a deeper 6 Ms Chandra survey of the Chandra Deep Field South (CDF-S), but combine these data with the 3 Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (but only 3 could be CT AGN), wherea...

  11. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  12. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  13. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    Science.gov (United States)

    Israel, G. L.; Esposito, P.; Rodríguez Castillo, G. A.; Sidoli, L.

    2016-11-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 yr of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190 000 light curves out of about 430 000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS @ BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above ˜2000 s resembles that of cataclysmic variables, while there is a paucity of sources with shorter period and low fluxes. Since there is not an obvious bias against these detections, a possible interpretation is in terms of a magnetic gating mechanism in accreting neutron stars. Finally, we note that CATS @ BAR is a living project and the detection algorithm will continue to be routinely applied to the new Chandra data as they become public. Based on the results obtained so far, we expect to discover about three new pulsators every year.

  14. Chandra X-Ray Spectroscopy of the Focused Wind in the Cygnus X-1 System. II. The Nondip Spectrum in the Low/Hard State - Modulations with Orbital Phase

    CERN Document Server

    Miškovičová, Ivica; Hanke, Manfred; Nowak, Michael A; Pottschmidt, Katja; Schulz, Norbert S; Grinberg, Victoria; Duro, Refiz; Madej, Oliwia K; Lohfink, Anne M; Rodriguez, Jérôme; Bel, Marion Cadolle; Bodaghee, Arash; Tomsick, John A; Lee, Julia C; Brown, Gregory V; Wilms, Jörn

    2016-01-01

    The accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1 as determined with data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This work concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al and highly ionized Fe (Fe xvii-Fe xxiv). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase dependence of these parameters. We show that the absorber is ...

  15. Contemporaneous Chandra HETG and Suzaku X-ray observations of NGC 4051

    Science.gov (United States)

    Lobban, A. P.; Reeves, J. N.; Miller, L.; Turner, T. J.; Braito, V.; Kraemer, S. B.; Crenshaw, D. M.

    2011-07-01

    We present the results of a deep 300 ks Chandra High Energy Transmission Grating (HETG) observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionized lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from O VII and Ne IX) plus high-ionization L-shell transitions from Fe XVII to Fe XXII and lower ionization inner-shell lines (e.g. O VI). Modelling the data with XSTAR requires four distinct ionization zones for the gas, all outflowing with velocities log ξ= 4.1+0.2-0.1; vout˜-0.02c) which potentially may have a significant effect on the host galaxy environment via feedback. Finally, we also simultaneously model the broad-band 2008 XIS+HXD (Hard X-ray Detector) Suzaku data with archival Suzaku data from 2005 when the source was observed to have entered an extended period of low flux in an attempt to analyse the cause of the long-term spectral variability. We find that we can account for this by allowing for large variations in the normalization of the intrinsic power-law component which may be interpreted as being due to significant changes in the covering fraction of a Compton-thick partial-coverer obscuring the central continuum emission.

  16. Chandra and XMM Monitoring of the Black Hole X-ray Binary IC 10 X-1

    OpenAIRE

    Laycock, Silas G. T.; Cappallo, Rigel C.; Moro, Matthew J.

    2014-01-01

    The massive black hole + Wolf-Rayet binary IC10 X-1 was observed in a series of 10 Chandra and 2 XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 x10^37 erg/s, with a spectral hardening event in 2009. We phase-connected the entire light-curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1)d. The duration of minimum-flux in the X-ray eclipse is ...

  17. Modeling Contamination Migration on the Chandra X-ray Observatory - II

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.

    2013-01-01

    During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.

  18. The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton and Chandra: a Fully Compton-Thick AGN

    CERN Document Server

    Arévalo, P; Puccetti, S; Walton, D J; Koss, M; Boggs, S E; Brandt, W N; Brightman, M; Christensen, F E; Comastri, A; Craig, W W; Fuerst, F; Gandhi, P; Grefenstette, B W; Hailey, C J; Harrison, F A; Luo, B; Madejski, G; Madsen, K K; Marinucci, A; Matt, G; Saez, C; Stern, D; Stuhlinger, M; Treister, E; Urry, C M; Zhang, W W

    2014-01-01

    The Circinus galaxy is one of the nearest obscured AGN, making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton-scattering by an optically-thick torus, where the intrinsic spectrum is a powerlaw of photon index $\\Gamma = 2.2-2.4$, the torus has an equatorial column density...

  19. A Chandra X-ray observation of the globular cluster Terzan 1

    CERN Document Server

    Cackett, E M; Heinke, C O; Pooley, D; Lewin, W H G; Grindlay, J E; Edmonds, P D; Jonker, P G; Miller, J M

    2005-01-01

    We present a 19 ks Chandra ACIS-S observation of the globular cluster Terzan 1. Fourteen sources are detected within 1.4 arcmin of the cluster center with 2 of these sources predicted to be not associated with the cluster (background AGN or foreground objects). The neutron star X-ray transient, X1732-304, has previously been observed in outburst within this globular cluster with the outburst seen to last for at least 12 years. Here we find 4 sources that are consistent with the ROSAT position for this transient, but none of the sources are fully consistent with the position of a radio source detected with the VLA that is likely associated with the transient. The most likely candidate for the quiescent counterpart of the transient has a relatively soft spectrum and an unabsorbed 0.5-10 keV luminosity of 2.6E32 ergs/s, quite typical of other quiescent neutron stars. Assuming standard core cooling, from the quiescent flux of this source we predict long (>400 yr) quiescent episodes to allow the neutron star to co...

  20. [X-ray diffraction spectrum of heroin].

    Science.gov (United States)

    Hu, X; Kan, J; Yuan, B

    1999-06-01

    In this paper, practical measured X-ray diffraction spectra of heroin and opium are given and the parameters of each diffraction peak of the heroin are listed. The heroin belongs to orthorhombic crystal system; the basic vectors of the primitive cell are: a = 8.003, b = 14.373, c = 16.092 x 10(-10) m. As compared with the standard spectra of pure heroin and sucrose, the main doped additive checked by us, is sugar affirmatively.

  1. First Images From Chandra X-Ray Observatory to be Released

    Science.gov (United States)

    1999-08-01

    The first images from the world's most powerful X-ray telescope, NASA's Chandra X-ray Observatory, will be unveiled at a media briefing at 1 p.m. EDT, Thursday, Aug. 26. The briefing will be held in the James E. Webb Auditorium at NASA Headquarters, 300 E St. SW, Washington, DC. The images include the spectacular remnants of a supernova and other astronomical objects. Panelists will be: - Dr. Edward Weiler, Associate Administrator for Space Science, NASA Headquarters, Washington, DC; - Dr. Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X-ray Center, Cambridge, MA; - Dr. Martin Weisskopf, NASA's Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL; and - Dr. Robert Kirshner, astrophysicist, Harvard University, Cambridge, MA. The event will be carried live on NASA Television with question-and-answer capability for reporters covering the briefing from participating NASA centers and from the Chandra Operations Control Center in Cambridge. NASA Television is available on transponder 9C, satellite GE-2 at 85 degrees West longitude, vertical polarization, frequency 3880 MHz, audio of 6.8 MHz. Chandra has been undergoing activation and checkout since it was placed into orbit during Space Shuttle mission STS-93 in July. Chandra will examine exploding stars, black holes, colliding galaxies and other high-energy cosmic phenomena to help scientists gain a better understanding of the structure and evolution of the universe. Chandra images and additional information will be available following the briefing on the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second

  2. Shelter from the Storm: Protecting the Chandra X-ray Observatory from Radiation

    Science.gov (United States)

    Cameron, Robert A.; Morris, David C.; Virani, Shanil N.; Wolk, Scott J.; Blackwell, William C.; Minow, Joseph I.; O'dell, Stephen L.

    NASA's Chandra X-ray Observatory was launched in July 1999, and the first images were recorded by the ACIS x-ray detector in August 1999. Shortly after first light, degradation of the energy resolution and charge transfer efficiency in the ACIS CCD detectors was observed, and this was quickly attributed to cumulative particle radiation damage in the CCD's, in particular from 100 keV to 200 keV protons. Since the onset of this radiation damage to ACIS, several improvements have been made to autonomous Chandra operation and ground-based operations and mission planning, to limit the effects of radiation while preserving optimum observing efficiency for the Observatory. These changes include implementing an automatic science instrument radiation protection system on Chandra, implementing a real-time radiation monitoring and alert system by the Science Operations Team, and improving the radiation prediction models used in mission planning for the Observatory. These satellite- and ground-based systems provide protection for Chandra from passages through the Earth's trapped radiation belts and outer magnetosphere and from flares and coronal mass ejections from the Sun. We describe the design and performance of the automatic on-board radiation protection system on Chandra, and the ground-based software systems and data products for real-time radiation monitoring. We also describe the development and characterize the performance of the Chandra Radiation Model (CRM), which provides predictions of the solar wind and magnetospheric proton fluxes along Chandra's orbit, indexed by the geomagnetic activity index, Kp. We compare the observed and predicted damage rates to ACIS based on net mission proton fluence, and outline planned enhancements to the CRM.

  3. Groups of Galaxies in AEGIS: The 200 ksec Chandra Extended X-ray Source catalogue

    CERN Document Server

    Jeltema, Tesla E; Laird, Elise S; Willmer, Christopher N A; Coil, Alison L; Cooper, Michael C; Davis, Marc; Nandra, Kirpal; Newman, Jeffrey A

    2009-01-01

    We present the discovery of seven X-ray emitting groups of galaxies selected as extended X-ray sources in the 200 ksec Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). In addition, we report on AGN activity associated to these systems. Using the DEEP2 Galaxy Redshift Survey coverage, we identify optical counterparts and determine velocity dispersions. In particular, we find three massive high-redshift groups at z>0.7, one of which is at z=1.13, the first X-ray detections of spectroscopically selected DEEP2 groups. We also present a first look at the the L_X-T, L_X-sigma, and sigma-T scaling relations for high-redshift massive groups. We find that the properties of these X-ray selected systems agree well with the scaling relations of similar systems at low redshift, although there are X-ray undetected groups in the DEEP2 catalogue with similar velocity dispersions. The other three X-ray groups with identified redshifts are associated with lower mass groups at z~0.07 and...

  4. Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX

    Science.gov (United States)

    Hornschemeier, Ann

    2006-01-01

    Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.

  5. The Chandra Cygnus OB2 Legacy Survey: Design and X-ray Point Source Catalog

    CERN Document Server

    Wright, Nicholas J; Guarcello, Mario G; Aldcroft, Tom L; Kashyap, Vinay L; Damiani, Francesco; DePasquale, Joe; Fruscione, Antonella

    2014-01-01

    The Cygnus OB2 association is the largest concentration of young and massive stars within 2 kpc of the Sun, including an estimated 65 O-type stars and hundreds of OB stars. The Chandra Cygnus OB2 Legacy Survey is a large imaging program undertaken with the Advanced CCD Imaging Spectrometer onboard the Chandra X-ray Observatory. The survey has imaged the central 0.5 deg^2 of the Cyg OB2 association with an effective exposure of 120ks and an outer 0.35 deg^2 area with an exposure of 60ks. Here we describe the survey design and observations, the data reduction and source detection, and present a catalog of 8,000 X-ray point sources. The survey design employs a grid of 36 heavily (~50%) overlapping pointings, a method that overcomes Chandra's low off-axis sensitivity and produces a highly uniform exposure over the inner 0.5 deg^2. The full X-ray catalog is described here and is made available online.

  6. Finding Rare AGN: X-ray Number Counts of Chandra Sources in Stripe 82

    CERN Document Server

    LaMassa, Stephanie M; Glikman, Eilat; Cappelluti, Nico; Civano, Francesca; Comastri, Andrea; Treister, Ezequiel; Arifin,; Boehringer, Hans; Cardamone, Carie; Chon, Gayoung; Kephart, Miranda; Murray, Stephen S; Richards, Gordon; Ross, Nic; Rozner, Joshua S; Schawinski, Kevin

    2012-01-01

    We present the first results of a wide area X-ray survey within the Sloan Digital Sky Survey (SDSS) Stripe 82, a 300 deg$^2$ region of the sky with a substantial investment in multi-wavelength coverage. We analyzed archival {\\it Chandra} observations that cover 7.5 deg$^2$ within Stripe 82 ("Stripe 82 ACX"), reaching 4.5$\\sigma$ flux limits of 7.9$\\times10^{-16}$, 3.4$\\times10^{-15}$ and 1.8$\\times10^{-15}$ erg s$^{-1}$ cm$^{-2}$ in the soft (0.5-2 keV), hard (2-7 keV) and full (0.5-7 keV) bands, to find 774, 239 and 1118 X-ray sources, respectively. Three hundred twenty-one sources are detected only in the full band and 9 sources are detected solely in the soft band. Utilizing data products from the {\\it Chandra} Source Catalog, we construct independent Log$N$-Log$S$ relationships, detailing the number density of X-ray sources as a function of flux, which show general agreement with previous {\\it Chandra} surveys. We compare the luminosity distribution of Stripe 82 ACX with the smaller, deeper CDF-S + E-CDFS...

  7. Chandra Smells a RRAT: X-ray Detection of a Rotating Radio Transient

    CERN Document Server

    Gaensler, B M; Reynolds, S; Borkowski, K; Rea, N; Possenti, A; Israel, G; Burgay, M; Camilo, F; Chatterjee, S; Krämer, M; Lyne, A; Stairs, I

    2006-01-01

    "Rotating RAdio Transients" (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population.

  8. The outer regions of galaxy clusters: Chandra constraints on the X-ray surface brightness

    CERN Document Server

    Ettori, S

    2008-01-01

    (Abridged version) We study the properties of the X-ray surface brightness profiles in a sample of galaxy clusters that are observed with Chandra and have emission detectable with a signal-to-noise ratio larger than 2 at a radius beyond R500 ~ 0.7 R200. Our study aims at measuring the slopes of the X-ray surface brightness and of the gas density profiles in the outskirts of massive clusters. These constraints are then compared to similar results obtained from observations and numerical simulations of the temperature and dark matter density profiles with the intention to present a consistent picture of the outer regions of galaxy clusters. We extract the surface brightness profiles S_b(r) from X-ray exposures obtained with Chandra of 52 X-ray luminous galaxy clusters at z>0.3. We estimate R200 both using a beta-model to reproduce the surface brightness profile and scaling relations from the literature, showing that the two methods converge to comparable values. We evaluate then the radius, R_S2N, at which the ...

  9. The Chandra COSMOS Survey: III. Optical and Infrared Identification of X-ray Point Sources

    CERN Document Server

    Civano, F; Brusa, M; Comastri, A; Salvato, M; Zamorani, G; Aldcroft, T; Bongiorno, A; Capak, P; Cappelluti, N; Cisternas, M; Fiore, F; Fruscione, A; Hao, H; Kartaltepe, J; Koekemoer, A; Gilli, R; Impey, C D; Lanzuisi, G; Lusso, E; Mainieri, V; Miyaji, T; Lilly, S; Masters, D; Puccetti, S; Schawinski, K; Scoville, N Z; Silverman, J; Trump, J; Urry, M; Vignali, C; Wright, N J

    2012-01-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg^2 of the COSMOS field down to limiting depths of 1.9 10^-16 erg cm^-2 s-1 in the 0.5-2 keV band, 7.3 10^-16 erg cm^-2 s^-1 in the 2-10 keV band, and 5.7 10^-16 erg cm^-2 s-1 in the 0.5-10 keV band. In this paper we report the i, K and 3.6micron identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only 2 sources are truly empty fields. Making use of the large number of X-ray sources, we update the "classic locus" of AGN and define a new locus containing 90% of the AGN in the survey with full band luminosi...

  10. Managing radiation degradation of CCDs on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Bissell, Bradley A.; Blackwell, William C.; Cameron, Robert A.; Chappell, Jon II.; DePasquale, Joseph M.; Gage, Kenneth R.; Grant, Catherine E.; Harbison, Christine F.

    2005-01-01

    The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra Team developed, implemented, and maintains a radiation-protection program. This program - involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing - has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 2.9x10^-6 (2.3%) for the front- illuminated CCDs and 0.95x10^-6 (6.5%) for the back-illuminated CCDs. This paper describes the current status of Chandra radiation-management program.

  11. Gain spectrum in gated x-ray MCPs

    Energy Technology Data Exchange (ETDEWEB)

    Kyrala, George A [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Archuleta, Thomas N [Los Alamos National Laboratory; Holder, Joe [LLNL

    2009-01-01

    The gain spectrum in a gated multichannel intensifier output depends on the gain and spatial averaging. The spectrum affects the minimum signal that can be detected as well as the signal to noise in the detected images. We will present data on the gain-spectrum for the GXD detector, a gated x-ray detector to be used at the National Ignition Facility. The data was recorded on a cooled CCD detector, with an x-ray gating time of approximately 75 ps, selected from a range of 0.2 and 1 ns electrical pulse width determined by pulse forming modules were also used. The detector was characterized at the TRIDENT laser facility, using a 2.4 ns long x-ray at 4.75 keV. The x-rays were generated by the interaction of the focused Trident laser beam with a Titanium target.

  12. A search for iron emission lines in the Chandra X-ray spectra of neutron star low-mass X-ray binaries

    CERN Document Server

    Cackett, E M; Homan, J; Van der Klis, M; Lewin, W H G; Méndez, M; Raymond, J; Steeghs, D; Wijnands, R

    2008-01-01

    While iron emission lines are well studied in black hole systems, both in X-ray binaries and Active Galactic Nuclei, there has been less of a focus on these lines in neutron star low-mass X-ray binaries (LMXBs). However, recent observations with Suzaku and XMM-Newton have revealed broad asymmetric iron line profiles in 4 neutron star LMXBs, confirming an inner disk origin for these lines in neutron star systems. Here, we present a search for iron lines in 6 neutron star LMXBs. For each object we have simultaneous Chandra and RXTE observations at 2 separate epochs, allowing for both a high resolution spectrum, as well as broadband spectral coverage. Out of the six objects in the survey, we only find significant iron lines in two of the objects, GX 17+2 and GX 349+2. However, we cannot rule out that there are weak, broad lines present in the other sources. The equivalent width of the line in GX 17+2 is consistent between the 2 epochs, while in GX 349+2 the line equivalent width increases by a factor of ~3 betwe...

  13. Chandra Reveals The X-Ray Glint In The Cat's Eye

    Science.gov (United States)

    2001-01-01

    SAN DIEGO -- Scientists have discovered a glowing bubble of hot gas and an unexpected X-ray bright central star within the planetary nebula known as the Cat's Eye using NASA's Chandra X-ray Observatory. The new results, presented today at the American Astronomical Society meeting, provide insight into the ways that stars like our Sun end their lives. Scientists believe they are witnessing the expulsion of material from a star that is in the last stages of its existence as a normal star. Material shed by the star is flying away at a speed of about 4 million miles per hour, and the star itself is expected to collapse to become a white dwarf star in a few million years. The X-ray data from the Cat's Eye Nebula, also known as NGC 6543, clearly show a bright central star surrounded by a cloud of multimillion-degree gas. By comparing the Chandra data with those from the Hubble Space Telescope, researchers are able to see where the hotter, X-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by Hubble. "Despite the complex optical appearance of the nebula, the X-ray emission illustrates unambiguously that the hot gas in the central bubble is driving the expansion of the optical nebula," said You-Hua Chu of the University of Illinois and lead author of the paper submitted to the Astrophysical Journal. "The Chandra data will help us to better understand how stars similar to our Sun produce planetary nebulas and evolve into white dwarfs as they grow old." With Chandra, astronomers measured the temperature of the central bubble of X-ray emitting material, and this presents a new puzzle. Though still incredibly energetic and hot enough to emit X-rays, this hot gas is cooler than scientists would have expected from the stellar wind that has come to stagnation from the initial high speed of 4 million miles per hour. At first, the researchers thought that the cooler, outer shell might have mixed with the energetic material closer to the

  14. The X-ray Flux Distribution of Sagittarius A* as Seen by Chandra

    CERN Document Server

    Neilsen, J; Nowak, M A; Dexter, J; Witzel, G; Barrière, N; Li, Y; Baganoff, F K; Degenaar, N; Fragile, P C; Gammie, C; Goldwurm, A; Grosso, N; Haggard, D

    2014-01-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-ray Observatory's 3 Ms Sgr A* X-ray Visionary Project (XVP) in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate $Q=(5.24\\pm0.08)\\times10^{-3}$ cts s$^{-1},$ and a variable component, represented by a power law process ($dN/dF\\propto F^{-\\xi},$ $\\xi=1.92_{-0.02}^{+0.03}$). This slope matches our recently-reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of $1.8^{+0.9}_{-0.6}\\times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ and a shape parameter $\\sigma=2.4\\pm0.2,$ but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely ...

  15. X-ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminous z>4 Quasars with Chandra

    CERN Document Server

    Vignali, C; Schneider, D P; Kaspi, S

    2005-01-01

    We report on Chandra observations of a sample of 11 optically luminous (Mb4 quasars known and hence represent ideal witnesses of the end of the "dark age ''. Nine quasars are detected by Chandra, with ~2-57 counts in the observed 0.5-8 keV band. These detections increase the number of X-ray detected AGN at z>4 to ~90; overall, Chandra has detected ~85% of the high-redshift quasars observed with snapshot (few kilosecond) observations. PSS 1506+5220, one of the two X-ray undetected quasars, displays a number of notable features in its rest-frame ultraviolet spectrum, the most prominent being broad, deep SiIV and CIV absorption lines. The average optical-to-X-ray spectral index for the present sample (=-1.88+/-0.05) is steeper than that typically found for z>4 quasars but consistent with the expected value from the known dependence of this spectral index on quasar luminosity. We present joint X-ray spectral fitting for a sample of 48 radio-quiet quasars in the redshift range 3.99-6.28 for which Chandra observati...

  16. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    Science.gov (United States)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  17. Chandra ACIS Survey of X-ray Point Sources: The Source Catalog

    CERN Document Server

    Wang, Song; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-01-01

    The $Chandra$ archival data is a valuable resource for various studies on different topics of X-ray astronomy. In this paper, we utilize this wealth and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 ACIS observations, which produces 363,530 source detections, belonging to 217,828 distinct X-ray sources. This number is twice the size of the $Chandra$ Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows 17,828 sources are located within the $D_{25}$ isophotes of 1110 galaxies, and 7504 sources are located between the $D_{25}$ and 2$D_{25}$ isophotes of 910 galaxies. Contamination analysis with the log$N$--log$S$ relation indicates that 51.3\\% of objects within 2$D_{25}$ isophotes are...

  18. Supernova Remnant 1987A: High Resolution Images and Spectrum from Chandra Observations

    CERN Document Server

    Park, S; Burrows, D N; Racusin, J L; McCray, R; Borkowski, K J; Park, Sangwook; Zhekov, Svetozar A.; Burrows, David N.; Racusin, Judith L.; Cray, Richard Mc; Borkowski, Kazimierz J.

    2005-01-01

    We report on the morphological and spectral evolution of SNR 1987A from the monitoring observations with the Chandra/ACIS. As of 2005, the X-ray-bright lobes are continuously brightening and expanding all around the ring. The softening of the overall X-ray spectrum also continues. The X-ray lightcurve is particularly remarkable: i.e., the recent soft X-ray flux increase rate is significantly deviating from the model which successfully fits the earlier data, indicating even faster flux increase rate since early 2004 (day ~6200). We also report results from high resolution spectral analysis with deep Chandra/LETG observations. The high resolution X-ray line emission features unambiguously reveal that the X-ray emission of SNR 1987A is originating primarily from a "disk" along the inner ring rather than from a spherical shell. We present the ionization structures, elemental abundances, and the shock velocities of the X-ray emitting plasma.

  19. Chandra and XMM-Newton Observations of the First Quasars: X-Rays from the Age of Cosmic Enlightenment

    Science.gov (United States)

    Vignali, C.; Brandt, W. N.; Schneider, D. P.; Anderson, S. F.; Fan, X.; Gunn, J. E.; Kaspi, S.; Richards, G. T.; Strauss, Michael A.

    2003-06-01

    We report on Chandra and XMM-Newton observations of a sample of 13 quasars at z~4.7-5.4 mostly taken from the Sloan Digital Sky Survey (SDSS). The present sample complements previous X-ray studies of z>=4 quasars, in which the majority of the objects are optically more luminous and at lower redshifts. All but two of our quasars have been detected in the X-ray band, thus doubling the number of z>=4.8 X-ray-detected quasars. The two nondetections are likely to be due to a short exposure time (SDSSp J033829.31+002156.3) and to the presence of intrinsic absorption (SDSSp J173744.87+582829.5). We confirm and extend to the highest redshifts the presence of a correlation between AB1450(1+z) magnitude and soft X-ray flux for z>=4 quasars and the presence of a steeper optical-to-X-ray spectral energy distribution (parameterized by αox) for high-luminosity, high-redshift quasars than for lower luminosity, lower redshift quasars. The second effect is likely due to the known anticorrelation between αox and rest-frame 2500 Å luminosity, whose significance is confirmed via partial correlation analysis. The joint ~2.5-36 keV rest-frame spectrum of the z>4.8 SDSS quasars observed thus far by Chandra is well parameterized by a power law with photon index Γ=1.84+0.31-0.30; this photon index is consistent with those of z~0-3 quasars and that obtained from joint spectral fitting of z~4.1-4.5 optically luminous Palomar Digital Sky Survey quasars. No evidence for widespread intrinsic X-ray absorption has been found (NH<~4.0×1022 cm-2 on average at 90% confidence). We also obtained Hobby-Eberly Telescope (HET) photometric observations for eight of our target quasars. None of these shows significant (greater than 30%) optical variability over the time interval of a few years (in the observed frame) between the SDSS and HET observations.

  20. The Chandra X-Ray Observatory's Radiation Environment and the AP-8/AE-8 Model

    CERN Document Server

    Virani, S N; Plucinsky, P P; Butt, Y M; Virani, Shanil N.; Mueller-Mellin, Reinhold; Plucinsky, Paul P.; Butt, Yousaf M.

    2000-01-01

    The Chandra X-ray Observatory (CXO) was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (~ 2.65 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center (CXC) currently uses the National Space Science Data Center's ``near Earth'' AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. However, our scheduling software uses only a simple dipole model of the Earth's magnetic field. The resulting B, L magnetic coordinates, do not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. We show this by comparing to the data from Chandra's on-board radiation monitor, the EPHIN (Electron, Proton, Helium Instrument particle detector) instr...

  1. Chandra and Swift X-ray Observations of the X-ray Pulsar SMC X-2 During the Outburst of 2015

    CERN Document Server

    Li, K L; Lin, L C C; Kong, Albert K H

    2016-01-01

    We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals (TOAs) analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipses or an ionized high-density shadow wind near the companion's surface. Finally, we propose that an outflow driven by the radiation pressure from day ~10 played an important role in the X-ray/optical evolution of the outburst.

  2. The First High Resolution X-ray Spectrum of Cyg X-1 Soft X-Ray Ionization and Absorption

    CERN Document Server

    Schulz, N S; Canizares, C R; Marshall, H L; Lee, J C; Miller, J M; Lewin, W H G

    2002-01-01

    We observed the black hole candidate Cyg X-1 for 15 ks with the High-Energy Transmission Grating Spectrometer aboard the CHANDRA X-ray Observatory. The source was observed during a period of intense flaring activity, so it was about a factor of 2.5 brighter than usual, with a 0.5-10 keV (1-24 A) luminosity of 1.6x10^37 erg/s (at a distance of 2.5 kpc). The spectrum of the source shows prominent absorption edges, some of which have complicated substructure. We use the most recent results from laboratory measurements and and calculations to model the observed substructure of the edges. From the model, we derive a total absorption column of 6.21+/-0.22 10^21 cm^-2. Furthermore, the results indicate that there are ~ 10 - 25% abundance variations relative to solar values for neon, oxygen and iron. The X-ray continuuum is described well by a two-component model that is often adopted for black hole candidates: a soft multicolor disk component (with kT = 203 eV) and a hard power law component (with a photon index of ...

  3. CHANDRA ACIS Survey of X-Ray Point Sources: The Source Catalog

    Science.gov (United States)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D 25 isophotes of 1110 galaxies, and 7504 sources are located between the D 25 and 2D 25 isophotes of 910 galaxies. Contamination analysis with the log N-log S relation indicates that 51.3% of objects within 2D 25 isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 1037, 1038, and 1039 erg s-1, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov-Smirnov (K-S) criterion (P K-S < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (˜2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to categorize these SSSs and pinpoint their properties. In addition

  4. Lessons from the development and operation of the Chandra x-ray observatory

    Science.gov (United States)

    Schwartz, Daniel A.

    2014-07-01

    Genuine teamwork was a key ingredient of the success of the Chandra x-ray observatory mission. Examples are the science center personnel working as part of the instrument principal investigators (IPI) teams during pre-launch development, the Smithsonian Astrophysical Observatory (SAO) supporting NASA/Marshall Space Flight Center (MSFC) by directly working with the prime contractor, TRW (now Northrop Grumman Aerospace Systems), and TRW acceptance of outside scientists performing the data reduction and analysis for qualification of the aspect camera. An end-to-end thread was defined early on, based on the MSFC/SAO operation of the Einstein observatory x-ray telescope, and covered the cycle from solicitation and peer review of observation proposals through scheduling to data processing and delivery. An open science working group chaired by MSFC included instrument principal investigators and interdisciplinary scientists spanning diverse astrophysical and instrumental expertise.

  5. A Synoptic X-ray Study of M31 with the Chandra-HRC

    CERN Document Server

    Williams, B F; Kong, A K H; Primini, F A; King, A R; Murray, S S; Williams, Benjamin F.; Garcia, Michael R.; Kong, Albert K. H.; Primini, Frank A.; Murray, Stephen S.

    2003-01-01

    We have obtained 17 epochs of Chandra High Resolution Camera (HRC) snapshot images, each covering most of the M31 disk. The data cover a baseline of ~2.5 years and contain a mean effective exposure of 17 ks. We have measured the mean fluxes and long-term lightcurves for 173 objects detected in these data. The cumulative luminosity function of the disk sources is a power-law, while that of the bulge is more complex. Bright disk sources tend to lie in the southwestern half of the disk. At least 25% of the sources show significant variability. We cross-correlate all of our sources with published X-ray, optical and radio catalogs, as well as new optical data, finding counterpart candidates for 53 sources. In addition, 17 sources are likely X-ray transients. We analyze follow-up HST WFPC2 data of two X-ray transients, finding U band counterparts. In both cases, the counterparts are variable. In one case, the optical counterpart is transient with U = 22.3+/-0.1. The X-ray and optical properties of this object are c...

  6. The Chandra COSMOS-Legacy survey: Source X-ray spectral properties

    CERN Document Server

    Marchesi, S; Civano, F; Iwasawa, K; Suh, H; Comastri, A; Zamorani, G; Allevato, V; Griffiths, R; Miyaji, T; Ranalli, P; Salvato, M; Schawinski, K; Silverman, J; Treister, E; Urry, C M; Vignali, C

    2016-01-01

    We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5-7 keV band. 38% of the sources are optically classified Type 1 active galactic nuclei (AGN), 60% are Type 2 AGN and 2% are passive, low-redshift galaxies. We study the distribution of AGN photon index and of the intrinsic absorption N(H,z) based on the sources optical classification: Type 1 have a slightly steeper mean photon index than Type 2 AGN, which on the other hand have average intrinsic absorption ~3 times higher than Type 1 AGN. We find that ~15% of Type 1 AGN have N(H,z)>1E22 cm^(-2), i.e., are obscured according to the X-ray spectral fitting; the vast majority of these sources have L(2-10keV)>$1E44 erg/s. The existence of these objects suggests that optical and X-ray obscuration can be caused by different phenomena, the X-ray obscuration being for example caused by dust-free material surrounding the inner part of the nuclei. ~18% of Type 2 AG...

  7. Chandra Observations of the X-ray Point Source Population in NGC 4636

    CERN Document Server

    Posson-Brown, J; Forman, W; Donnelly, R H; Jones, C; Posson-Brown, Jennifer; Raychaudhury, Somak; Forman, William; Jones, Christine

    2006-01-01

    We present an analysis of the X-ray point source population in the nearby Virgo elliptical galaxy NGC 4636 from four Chandra X-ray observations. These ACIS observations, totaling ~210 ks, were taken over a three year period. Using a wavelet decomposition detection algorithm, we detect 336 individual point sources. For our analysis, we use a subset of the 245 detections with >10 cts (a limiting luminosity of approximately 1E37 erg/s in the 0.5-2 keV band, outside the 1.5' bright galaxy core). Of these sources, ~120 are likely members of the galaxy. We examine, for the first time, variability over a period of years for X-ray point sources in an elliptical galaxy. We present a luminosity function for the point sources in NGC 4636, fit by a power-law with gamma= -1.24 +/- 0.04, as well as a radial source density profile, hardness ratios for the sources, and lightcurves for bright sources which display short-term variability. We find an upper limit to the current X-ray luminosity of the historical supernova SN1939...

  8. Simulating the sensitivity to stellar point sources of Chandra X-ray observations

    CERN Document Server

    Wright, Nicholas J; Guarcello, Mario G; Kashyap, Vinay L; Zezas, Andreas

    2015-01-01

    The Chandra Cygnus OB2 Legacy Survey is a wide and deep X-ray survey of the nearby and massive Cygnus OB2 association. The survey has detected ~8,000 X-ray sources, the majority of which are pre-main sequence X-ray emitting young stars in the association itself. To facilitate quantitative scientific studies of these sources as well as the underlying OB association it is important to understand the sensitivity of the observations and the level of completeness the observations have obtained. Here we describe the use of a hierarchical Monte Carlo simulation to achieve this goal by combining the empirical properties of the observations, analytic estimates of the source verification process, and an extensive set of source detection simulations. We find that our survey reaches a 90% completeness level for a pre-main-sequence population at the distance of Cyg OB2 at an X-ray luminosity of 4 x 10^30 ergs/s and a stellar mass of 1.3 Msun for a randomly distributed population. For a spatially clustered population such ...

  9. Chandra Observations of the Faintest Low-Mass X-ray Binaries

    CERN Document Server

    Wilson, C A; Kouveliotou, C; Jonker, P G; Van der Klis, M; Lewin, W H G; Belloni, T; Méndez, M; Wilson, Colleen. A.; Patel, Sandeep K.; Kouveliotou, Chryssa; Jonker, Peter G.; Klis, Michiel van der; Lewin, Walter H.G; Belloni, Tomaso; Mendez, Mariano

    2003-01-01

    There exists a group of persistently faint galactic X-ray sources that, based on their location in the galaxy, high L_x/L_opt, association with X-ray bursts, and absence of low frequency X-ray pulsations, are thought to be low-mass X-ray binaries (LMXBs). We present results from Chandra observations for eight of these systems: 4U 1708-408, 2S 1711-339, KS 1739-304, SLX 1735-269, GRS 1736-297, SLX 1746-331, 1E 1746.7-3224, and 4U 1812-12. Locations for all sources, excluding GRS 1736-297, SLX 1746-331, and KS 1739-304 (which were not detected) were improved to 0.6" error circles (90% confidence). Our observations support earlier findings of transient behavior of GRS 1736-297, KS 1739-304, SLX 1746-331, and 2S 1711-339 (which we detect in one of two observations). Energy spectra for 4U 1708-408, 2S 1711-339, SLX 1735-269, 1E 1746.7-3224, and 4U 1812-12 are hard, with power law indices typically 1.4-2.1, which are consistent with typical faint LMXB spectra.

  10. A Chandra observation of the neutron star X-ray transient and eclipsing binary MXB 1659-29 in quiescence

    CERN Document Server

    Wijnands, R; Miller, J M; Homan, J; Wachter, S; Lewin, W H G; Wijnands, Rudy; Nowak, Mike; Miller, Jon M.; Homan, Jeroen; Wachter, Stefanie; Lewin, Walter H. G.

    2003-01-01

    After almost 2.5 years of actively accreting, the neutron star X-ray transient and eclipsing binary MXB 1659-29 returned to quiescence in 2001 September. We report on a Chandra observation of this source taken a little over a month after this transition. The source was detected at an unabsorbed 0.5-10 keV flux of only (2.7 - 3.6) x 10^{-13} erg cm^-2 s^-1, which implies a 0.5-10 keV X-ray luminosity of approximately (3.2 - 4.3) x 10^{33} (d/10 kpc)^2 erg s^-1, with d is the distance to the source in kpc. Its spectrum had a thermal shape and could be well fitted by either a blackbody with a temperature kT of ~0.3 keV or with a neutron star atmosphere model with a kT of ~0.1 keV. The luminosity and spectral shape of MXB 1659-29 are very similar to those observed of the other neutron star X-ray transients when they are in their quiescent state. The source was variable during our observation, exhibiting a complete eclipse of the inner part of the system by the companion star. Dipping behavior was observed before ...

  11. The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    CERN Document Server

    Kastner, J H; Balick, B; Frew, D J; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Rapson, V; Zijlstra, A; Behar, E; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Ueta, T; Villaver, E

    2012-01-01

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 3 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of 68%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are...

  12. Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    Science.gov (United States)

    Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.

    2017-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.

  13. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data sources that are used to protect

  14. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  15. The 3 Ms Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    CERN Document Server

    Neilsen, J; Gammie, C; Dexter, J; Markoff, S; Haggard, D; Nayakshin, S; Wang, Q D; Grosso, N; Porquet, D; Tomsick, J A; Degenaar, N; Fragile, P C; Houck, J C; Wijnands, R; Miller, J M; Baganoff, F K

    2013-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic Center.

  16. The Chandra Survey of Extragalactic Sources in the 3CR Catalog: X-ray Emission from Nuclei, Jets, and Hotspots in the Chandra Archival Observations

    CERN Document Server

    Massaro, F; Liuzzo, E; Orienti, M; Paladino, R; Paggi, A; Tremblay, G R; Wilkes, B J; Kuraszkiewicz, J; Baum, S A; O'Dea, C P

    2016-01-01

    As part of our program to build a complete radio and X-ray database of all the 3CR extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have been already published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the VLA archive. For about 1/3 of the sources in the selected sample a comparison between the Chandra and the radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium of 15 galaxy clusters, two of which were most likely unknown previously.

  17. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+105 and the Evolution of Hard X-ray Spectrum

    Indian Academy of Sciences (India)

    R. K. Manchanda

    2000-06-01

    We report the spectral measurement of GRS 1915+105 in the hard X-ray energy band of 20-140keV. The observations were made on March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X-ray photons and the evolution of the spectrum by comparing the data with earlier measurements and an axiomatic model for the X-ray source.

  18. X-Ray Spectroscopy of diffuse Galactic Interstellar Matter with Chandra

    Science.gov (United States)

    Schulz, Norbert S.; Paerels, Frits

    One of the expectations with the advent of the High Energy Transmission Grating (HETG) spectrometer onboard the Chandra X-ray Observatory was to measure precise photoelectric edges of major cosmic elements such as O, Ne, Mg, Si, S, Ar, Ca, and Fe. Early studies revealed complex absorption structures around the O K, Fe L, and Ne K edges which were identified with absorption from the various phases of the interstellar medium and which could place limits on ionization fractions in these phases. The dust content in interstellar matter as well as, for example, the fraction of how much oxygen is locked into dust are issues of importance and here resolved X-ray edges can determine significant limits. I will review predictions made by cross-sections and depletion factors and compare with current observations specifically with respect to silicon absorption in the interstellar medium. Dust grain models and in conjunction with laboratory measurements are now used to improve current interstellar X-ray absorption models.

  19. Chandra Observations of the Gamma-ray Binary LSI+61303: Extended X-ray Structure?

    CERN Document Server

    Paredes, J M; Bosch-Ramon, V; West, J R; Butt, Y M; Torres, D F; Martí, J

    2007-01-01

    We present a 50 ks observation of the gamma-ray binary LSI+61303 carried out with the ACIS-I array aboard the Chandra X-ray Observatory. This is the highest resolution X-ray observation of the source conducted so far. Possible evidence of an extended structure at a distance between 5 and 12 arcsec towards the North of LSI+61303 have been found at a significance level of 3.2 sigma. The asymmetry of the extended emission excludes an interpretation in the context of a dust-scattered halo, suggesting an intrinsic nature. On the other hand, while the obtained source flux, of F_{0.3-10 keV}=7.1^{+1.8}_{-1.4} x 10^{-12} ergs/cm^2/s, and hydrogen column density, N_{H}=0.70+/-0.06 x 10^{22} cm^{-2}, are compatible with previous results, the photon index Gamma=1.25+/-0.09 is the hardest ever found. In light of these new results, we briefly discuss the physics behind the X-ray emission, the location of the emitter, and the possible origin of the extended emission ~0.1 pc away from LSI+61303.

  20. Too Young to Shine? Chandra analysis of X-ray emission in nearby primordial galaxies

    Science.gov (United States)

    Basu-Zych, Antara; Henry, Alaina L.; Yukita, Mihoko; Fragos, Tassos; Hornschemeier, Ann E.; Lehmer, Bret; Ptak, Andrew; Zezas, Andreas

    2017-01-01

    The 2—10 keV X-ray emission in star-forming galaxies traces the population of high mass X-ray binaries (HMXBs) and is a function of both the star formation rate (SFR) and metallicity, according to several studies. Theoretical studies predict that stars retain more mass over their lifetimes due to weaker stellar winds in lower metallicity environments, and therefore, produce more luminous and numerous HMXBs. We present Chandra analysis for a local sample of primordial galaxies, Hα emitters (HAEs). Our selection is based on large Hα equivalent widths (EW(Hα)>500Å, suggestive of bursts of star formation within 6 Myr), SFR >1 M⊙/yr and low metallicities (Z extreme youth (young stellar age) of the galaxies, where HMXBs may not have fully formed. Our investigation of HMXB formation as a function of stellar age, metallicity and SFR offers important refinements to the X-ray emission from the first galaxies and on predictions of black hole binaries, which are precursors of gravitational wave sources.

  1. X-ray spectral variability of seven LINER nuclei with XMM-Newton and Chandra data

    CERN Document Server

    Hernández-García, L; Márquez, I; Masegosa, J

    2013-01-01

    One of the most important features in active galactic nuclei (AGN) is the variability of their emission. Variability has been discovered at X-ray, UV, and radio frequencies on time scales from hours to years. Among the AGN family and according to theoretical studies, Low-Ionization Nuclear Emission Line Region (LINER) nuclei would be variable objects on long time scales. Our purpose is to investigate spectral X-ray variability in LINERs and to understand the nature of these kinds of objects, as well as their accretion mechanism. Chandra and XMM-Newton public archives were used to compile X-ray spectra of seven LINER nuclei at different epochs with time scales of years. To search for variability we fit all the spectra from the same object with a set of models, in order to identify the parameters responsible for the variability pattern. We also analyzed the light curves in order to search for short time scale (from hours to days) variability. Whenever possible, UV variability was also studied. We found spectral...

  2. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication

  3. Intrinsic Absorption in the Spectrum of Mrk 279: Simultaneous Chandra, FUSE, and STIS Observations

    OpenAIRE

    Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C; Arav, Nahum; Ogle, Patrick; Roraback, Kenneth; Weaver, Kimberly; Alexander, Tal; Brotherton, Michael; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Zheng, Wei

    2004-01-01

    We present a study of the intrinsic X-ray and far-ultraviolet absorption in the Seyfert 1.5 galaxy Markarian 279 using simultaneous observations from the Chandra X-ray Observatory, the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope, and the Far Ultraviolet Spectroscopic Explorer (FUSE). We also present FUSE observations made at three additional epochs. We detect the Fe K-alpha emission line in the Chandra spectrum, and its flux is consistent with the low X-ray continuu...

  4. Chandra and XMM monitoring of the black hole X-ray binary IC 10 X-1

    Science.gov (United States)

    Laycock, Silas G. T.; Cappallo, Rigel C.; Moro, Matthew J.

    2015-01-01

    The massive black hole (BH)+Wolf-Rayet (WR) binary IC 10 X-1 was observed in a series of 10 Chandra and two XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 × 1037 erg s-1, with a spectral hardening event in 2009. We phase connected the entire light curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1) d. The duration of minimum flux in the X-ray eclipse is ˜5 h which together with the optical radial velocity (RV) curve for the companion yields a radius for the eclipsing body of 8-10 R⊙ for the allowed range of masses. The orbital separation (a1 + a2) = 18.5-22 R⊙ then provides a limiting inclination i > 63° for total eclipses to occur. The eclipses are asymmetric (egress duration ˜0.9 h) and show energy dependence, suggestive of an accretion disc hotspot and corona. The eclipse is much (˜5×) wider than the 1.5-2 R⊙ WR star, pointing to absorption/scattering in the dense wind of the WR star. The same is true of the close analog NGC 300 X-1. RV measurements of the He II [λλ4686] line from the literature show a phase shift with respect to the X-ray ephemeris such that the velocity does not pass through zero at mid-eclipse. The X-ray eclipse leads inferior conjunction of the RV curve by ˜90°, so either the BH is being eclipsed by a trailing shock/plume, or the He II line does not directly trace the motion of the WR star and instead originates in a shadowed partially ionized region of the stellar wind.

  5. X-Ray Localization of the Intermediate-Mass Black Hole in the Globular Cluster G1 with Chandra

    CERN Document Server

    Kong, A K H; Di Stefano, R; Barmby, P; Lewin, W H G; Primini, F A

    2009-01-01

    We report the most accurate X-ray position of the giant globular cluster G1 in M31 by using the Chandra X-ray Observatory, Hubble Space Telescope (HST), and Canada-France-Hawaii Telescope (CFHT). G1 is clearly detected with Chandra and by cross-registering with HST and CFHT images, we derive a 1sigma error radius of 0.15", significantly smaller than the previous measurement by XMM-Newton. We conclude that the X-ray emission of G1 comes from within the core radius of the cluster. There are two possibilities for the origin of the X-ray emission: it could be due to either accretion of a central intermediate-mass black hole, or ordinary low-mass X-ray binaries. Based on the ratio of X-ray to the Eddington luminosity, an intermediate-mass black hole accreting from the cluster gas seems unlikely and we suggest that the X-rays are due to accretion from a companion. We also find that the X-ray emission may be offset from the radio emission. Future high-resolution and high-sensitivity radio imaging observations will r...

  6. Chandra-SDSS Normal and Star-Forming Galaxies I: X-ray Source Properties of Galaxies Detected by Chandra in SDSS DR2

    CERN Document Server

    Hornschemeier, A E; Ptak, A F; Tremonti, C A; Colbert, E J M

    2004-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra ACIS observations with a Sloan Digital Sky Survey (SDSS) Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray detected galaxies over the redshift interval 0.03 < z < 0.25. This pilot study will help fill in the "redshift gap" between local X-ray-studied samples of normal galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star-formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star-formation-rate (X-ray-SFR) correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components such as hot gas, low-mass X-ray binaries, and/or AGN. We are able to quantify a few pitfalls in the use of lower-resolution, lower signal-to-noise optical spectroscopy to identify ...

  7. Deep Chandra X-ray Imaging of a Nearby Radio Galaxy 4C+29.30: X-ray/Radio Connection

    CERN Document Server

    Siemiginowska, Aneta; Cheung, Chi C; Aldcroft, Thomas L; Bechtold, Jill; Burke, D J; Evans, Daniel; Holt, Joanna; Jamrozy, Marek; Migliori, Giulia; .,

    2012-01-01

    We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z=0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N(H)=3.95 (+0.27/-0.33)x10^23 atoms/cm^2) with an unabsorbed luminosity of L(2-10 keV) ~ (5.08 +/-0.52) 10^43 erg/s characteristic of Type 2 AGN. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlated with radio structures along the main radio axis indicating a strong relation between the two. The X-ray emission beyond the radio source correlates with the morphology of optical line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT ~ 0.5 with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming these regions were heated by weak shocks driven by the exp...

  8. Highly Ionized Absorption in the X-ray Spectrum of Cyg X-1

    CERN Document Server

    Marshall, H L; Fang, T; Cui, W; Canizares, C R; Miller, J M; Lewin, W H G

    2001-01-01

    Using the Chandra High Energy Transmission Grating Spectrometer (HETGS), we have found significant absorption features in the X-ray spectrum of Cyg X-1 taken in the continuous clocking mode. These features include resonance lines of He-like ions of S, Si, and Mg; the Ly alpha lines of H-like S, Si, Mg, and Ne; and several lower ionization lines of Fe XX, XXII, and XXIV. Preliminary analysis shows that the lines are resolved in many cases, giving line widths of order 300 km/s and are redshifted by 460 +/- 10 km/s. These features are interpreted in the context of an accreting stellar wind model that is ionized by the X-ray source. In addition, there are clear absorption features due to neutral Mg, Fe, and O in the interstellar medium.

  9. The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-ray Emission from Compact Planetary Nebulae

    CERN Document Server

    Freeman, M; Montez, R; Balick, B; Frew, D J; Jones, D; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Zijlstra, A; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q A; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Toalá, J A; Ueta, T; Villaver, E

    2014-01-01

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb ~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothes...

  10. X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

    CERN Document Server

    Iaria, R; D'Aì, A; Burderi, L; Mineo, T; Riggio, A; Papitto, A; Robba, N R

    2012-01-01

    The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the energy band between 0.35 and 12 keV. We confirm the presence of local neutral matter that partially covers the X-ray emitting region; the equivalent hydrogen column is $5 \\times 10^{22}$ cm$ ^{-2}$ and the covered fraction is about 60-65%. We identify emission lines from highly ionised elements, and a prominent fluorescence ...

  11. Unifying X-ray winds in radio galaxies with Chandra HETG

    Science.gov (United States)

    Tombesi, Francesco

    2013-09-01

    X-ray winds are routinely observed in the spectra of Seyfert galaxies. They can be classified as warm absorbers (WAs), with v~100-1,000km/s, and ultra-fast outflows (UFOs), with v>10,000km/s. In stark contrast, the lack of sensitive enough observations allowed the detection of WAs or UFOs only in very few radio galaxies. Therefore, we propose to observe a small sample of three radio galaxies with the Chandra HETG - 3C111 for 150ks, 3C390.3 for 150ks and 3C120 for 200ks - to detect and study in detail their WAs. We will quantify the importance of mechanical feedback from winds in radio galaxies and compare them to the radio jet power. We will also test whether WAs and UFOs can be unified in a single, multi-phase and multi-scale outflow, as recently reported for Seyferts.

  12. A Narrow Band Chandra X-ray Analysis of SNR 3C 391

    Institute of Scientific and Technical Information of China (English)

    Yang Su; Yang Chen

    2005-01-01

    We present narrow-band and equivalent width (EW) images of the thermal composite supernova remnant (SNR) 3C 391 in the X-ray emission lines of Mg, Si and S using the Chandra ACIS Observational data. The EW images re veal the spatial distribution of the emission of the metal species Mg, Si and S in the remnant. They have a clumpy structure similar to that seen in the broadband diffuse emission, suggesting that they are largely of interstellar origin. We find an interesting finger-like feature protruding outside the southwestern radio border of the remnant, somewhat similar to the jet-like Si structure found in the famous SNR Cas A. This feature may possibly be the debris of the jet of ejecta from an asymmetrical supernova explosion of a massive progenitor star.

  13. Impacts of Chandra X-ray Observatory Public Communications and Engagement

    Science.gov (United States)

    Arcand, Kimberly K.; Watzke, Megan; Lestition, Kathleen; Edmonds, Peter

    2015-01-01

    The Chandra X-ray Observatory Center runs a multifaceted Public Communications & Engagement program encompassing press relations, public engagement, and education. Our goals include reaching a large and diverse audience of national and international scope, establishing direct connections and working relationships with the scientists whose research forms the basis for all products, creating peer-reviewed materials and activities that evolve from an integrated pipeline design and encourage users toward deeper engagement, and developing materials that target underserved audiences such as women, Spanish speakers, and the sight and hearing impaired. This talk will highlight some of the key features of our program, from the high quality curated digital presence to the cycle of research and evaluation that informs our practice at all points of the program creation. We will also discuss the main impacts of the program, from the tens of millions of participants reached through the establishment and sustainability of a network of science 'volunpeers.'

  14. Annealing bounds to prevent further Charge Transfer Inefficiency increase of the Chandra X-ray CCDs

    Science.gov (United States)

    Monmeyran, Corentin; Patel, Neil S.; Bautz, Mark W.; Grant, Catherine E.; Prigozhin, Gregory Y.; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-12-01

    After the front-illuminated CCDs on board the X-ray telescope Chandra were damaged by radiation after launch, it was decided to anneal them in an effort to remove the defects introduced by the irradiation. The annealing led to an unexpected increase of the Charge Transfer Inefficiency (CTI). The performance degradation is attributed to point defect interactions in the devices. Specifically, the annealing at 30 °C activated the diffusion of the main interstitial defect in the device, the carbon interstitial, which led to its association with a substitutional impurity, ultimately resulting in a stable and electrically active defect state. Because the formation reaction of this carbon interstitial and substitutional impurity associate is diffusion limited, we recommend a higher upper bound for the annealing temperature and duration of any future CCD anneals, that of -50 °C for one day or -60 °C for a week, to prevent further CTI increase.

  15. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    CERN Document Server

    Bhardwaj, A; Elsner, R F; Ford, P G; Gladstone, G R; Bhardwaj, Anil; Cravens, Thomas E.; Elsner, Ronald F.; Ford, Peter G.

    2005-01-01

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn's disk X-ray emissions are found to be variable on time scales of hours to weeks to months, and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's polar (auroral) region have characteristics similar to those from its disk. This report, combined with earlier studies, establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  16. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    CERN Document Server

    Henley, D B; Pittard, J M; Stevens, I R; Hamaguchi, K; Gull, T R

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star Eta Carinae, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of Eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggestin...

  17. The Norma Arm Region Chandra Survey: X-ray Populations in the Spiral Arms

    CERN Document Server

    Fornasini, Francesca M; Bodaghee, Arash; Krivonos, Roman A; An, Hongjun; Rahoui, Farid; Gotthelf, Eric V; Bauer, Franz E; Stern, Daniel

    2014-01-01

    We present a catalog of 1415 X-ray sources identified in the Norma arm region Chandra survey (NARCS), which covers a 2 deg x 0.8 deg region in the direction of the Norma spiral arm to a depth of $\\approx$20 ks. Of these sources, 1130 are point-like sources detected with $\\geq3\\sigma$ confidence in at least one of three energy bands (0.5-10, 0.5-2, and 2-10 keV), five have extended emission, and the remainder are detected at low significance. Since most sources have too few counts to permit individual classification, they are divided into five spectral groups defined by their quantile properties. We analyze stacked spectra of X-ray sources within each group, in conjunction with their fluxes, variability, and infrared counterparts, to identify the dominant populations in our survey. We find that $\\sim$50% of our sources are foreground sources located within 1-2 kpc, which is consistent with expectations from previous surveys. Approximately 20% of sources are likely located in the proximity of the Scutum-Crux an...

  18. High Spatial Resolution X-Ray Spectroscopy of Cas A with Chandra

    Institute of Scientific and Technical Information of China (English)

    Xue-Juan Yang; Fang-Jun Lu; Li Chen

    2008-01-01

    We present high spatial resolution X-ray spectroscopy of the supernova remnant Cassiopeia A with the Chandra observations. The X-ray emitting region of this remnant was divided into 38 × 34 pixels of 10″× 10″ each. Spectra of 960 pixels were created and fitted with an absorbed two component non-equilibrium ionization model. From the results of the spectral analysis we obtained maps of absorbing column density, temperatures, ionization ages, and the abundances of Ne, Mg, Si, S, Ca and Fe. The Si, S and possibly Ca abundance maps show obvious jet structures, while Fe does not follow the jet but seems to be distributed perpendicular to it. The abundances of Si, S and Ca show tight correlations between one another over a range of about two dex. This suggests that they are ejecta from explosive Oburning and incomplete Si-buming. Meanwhile, the Ne abundance is well correlated with that of Mg, indicating them to be the ashes of explosive C/Ne burning. The Fe abundance is positively correlated with that of Si when the latter is lower than 3 times the solar value, and is negatively correlated when higher. We suggest that such a two phase correlation is due to the different ways in which Fe was synthesized.

  19. Chandra and XMM Monitoring of the Black Hole X-ray Binary IC 10 X-1

    CERN Document Server

    Laycock, Silas G T; Moro, Matthew J

    2014-01-01

    The massive black hole + Wolf-Rayet binary IC10 X-1 was observed in a series of 10 Chandra and 2 XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 x10^37 erg/s, with a spectral hardening event in 2009. We phase-connected the entire light-curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1)d. The duration of minimum-flux in the X-ray eclipse is 5 hr which together with the optical radial velocity curve for the companion yields a radius for the eclipsing body of 8-10 Rsun for the allowed range of masses. The orbital separation of 18.5-22 Rsun then provides a limiting inclination i>63 degrees for total eclipses to occur. The eclipses are asymmetric (egress duration 0.9 hr) and show energy dependence, suggestive of an accretion-disk hotspot and corona. The eclipse is much (5X) wider than the 1.5-2 Rsun WR star, pointing to absorption/scattering in the dense wind of...

  20. HST/ACS Imaging of Omega Centauri: Optical Counterparts of Chandra X-Ray Sources

    CERN Document Server

    Cool, Adrienne M; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Anderson, Jay

    2012-01-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel (WFC) images obtained using F625W, F435W, and F658N filters; with 9 pointings we cover the central ~10'x10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M_625 = 10.4 - 12.6, making them comparable in brightness to field CVs near the period minimum discovered in the SDSS (Gansicke et al. 2009). Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously-reported quiescent low-mass X-ray ...

  1. A Systematic Chandra study of Sgr A$^{\\star}$: I. X-ray flare detection

    CERN Document Server

    Yuan, Qiang

    2016-01-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{\\star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {\\it Chandra} observations obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare lightcurves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of $6\\%-14\\%$, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flar...

  2. The Norma arm region Chandra survey catalog: X-ray populations in the spiral arms

    Energy Technology Data Exchange (ETDEWEB)

    Fornasini, Francesca M. [Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720 (United States); Tomsick, John A.; Bodaghee, Arash; Krivonos, Roman A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); An, Hongjun [Department of Physics, McGill University, Rutherford Physics Building, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Rahoui, Farid [European Southern Observatory, Karl Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Gotthelf, Eric V. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Stern, Daniel, E-mail: f.fornasini@berkeley.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA 91109 (United States)

    2014-12-01

    We present a catalog of 1415 X-ray sources identified in the Norma Arm Region Chandra Survey (NARCS), which covers a 2° × 0.°8 region in the direction of the Norma spiral arm to a depth of ≈20 ks. Of these sources, 1130 are point-like sources detected with ≥3σ confidence in at least one of three energy bands (0.5-10, 0.5-2, and 2-10 keV), five have extended emission, and the remainder are detected at low significance. Since most sources have too few counts to permit individual classification, they are divided into five spectral groups defined by their quantile properties. We analyze stacked spectra of X-ray sources within each group, in conjunction with their fluxes, variability, and infrared counterparts, to identify the dominant populations in our survey. We find that ∼50% of our sources are foreground sources located within 1-2 kpc, which is consistent with expectations from previous surveys. Approximately 20% of sources are likely located in the proximity of the Scutum-Crux and near Norma arm, while 30% are more distant, in the proximity of the far Norma arm or beyond. We argue that a mixture of magnetic and nonmagnetic cataclysmic variables dominates the Scutum-Crux and near Norma arms, while intermediate polars and high-mass stars (isolated or in binaries) dominate the far Norma arm. We also present the cumulative number count distribution for sources in our survey that are detected in the hard energy band. A population of very hard sources in the vicinity of the far Norma arm and active galactic nuclei dominate the hard X-ray emission down to f{sub X} ≈ 10{sup –14} erg cm{sup –2} s{sup –1}, but the distribution curve flattens at fainter fluxes. We find good agreement between the observed distribution and predictions based on other surveys.

  3. Chandra Observations of a 1.9 kpc Separation Double X-ray Source in a Candidate Dual AGN Galaxy at z=0.16

    CERN Document Server

    Comerford, Julia M; Gerke, Brian F; Madejski, Greg M

    2011-01-01

    We report Chandra observations of a double X-ray source in the z=0.1569 galaxy SDSS J171544.05+600835.7. The galaxy was initially identified as a dual AGN candidate based on the double-peaked [O III] emission lines, with a line-of-sight velocity separation of 350 km/s, in its Sloan Digital Sky Survey spectrum. We used the Kast Spectrograph at Lick Observatory to obtain two longslit spectra of the galaxy at two different position angles, which reveal that the two AGN emission components have not only a velocity offset, but also a projected spatial offset of 1.9 kpc/h70 on the sky. Chandra/ACIS observations of two X-ray sources with the same spatial offset and orientation as the optical emission suggest the galaxy most likely contains Compton-thick dual AGN, although the observations could also be explained by AGN jets. Deeper X-ray observations that reveal Fe K lines, if present, would distinguish between the two scenarios. The observations of a double X-ray source in SDSS J171544.05+600835.7 are a proof of co...

  4. X-Ray/Ultraviolet Observing Campaign of the Markarian 279 Active Galactic Nucleus Outflow: a close look at the absorbing/emitting gas with Chandra-LETGS

    CERN Document Server

    Costantini, E; Arav, N; Kriss, G A; Steenbrugge, K C; Gabel, J R; Verbunt, F; Behar, E; Gaskell, C M; Korista, K T; Proga, D; Quijano, J K; Scott, J E; Klimek, E S; Hedrick, C H

    2006-01-01

    We present a Chandra-LETGS observation of the Seyfert 1 galaxy Mrk 279. This observation was carried out simultaneously with HST-STIS and FUSE, in the context of a multiwavelength study of this source. The Chandra pointings were spread over ten days for a total exposure time of ~360 ks. The spectrum of Mrk279 shows evidence of broad emission features, especially at the wavelength of the OVII triplet. We quantitatively explore the possibility that this emission is produced in the broad line region (BLR). We modeled the broad UV emission lines seen in the FUSE and HST-STIS spectra following the ``locally optimally emitting cloud" approach. We find that the X-ray lines luminosity derived from the best fit BLR model can match the X-ray features, suggesting that the gas producing the UV lines is sufficient to account also for the X-ray emission. The spectrum is absorbed by ionized gas whose total column density is ~5x10^{20} cm^{-2}. The absorption spectrum can be modeled by two distinct gas components (log xi ~ 0...

  5. Shuttle and Transfer Orbit Thermal Analysis and Testing of the Chandra X-Ray Observatory CCD Imaging Spectrometer Radiator Shades

    Science.gov (United States)

    Sharp, John R.

    2001-01-01

    Contents include the following: (1) Introduction: Chandra X-ray observatory. Advanced CCD imaging spectrometer. (2) LEO and transfer orbit analyses: Geometric modeling in TSS w/specularity. Low earth orbital heating calculations. (3) Thermal testing and LMAC. (4) Problem solving. (5) VDA overcoat analyses. (6) VDA overcoat testing and MSFC. (7) Post-MSFC test evaluation.

  6. Measurements of Variability of Low Mass X-ray Binary Candidates in the Early-Type Galaxy NGC 4697 from Multi-Epoch Chandra X-ray Observations

    CERN Document Server

    Sivakoff, Gregory R; Juett, Adrienne M; Sarazin, Craig L; Irwin, Jimmy A

    2008-01-01

    Multi-epoch Chandra X-ray observations of nearby massive early-type galaxies open up the study of an important regime of low-mass X-ray binary (LMXB) behavior -- long term variability. In a companion paper, we report on the detection of 158 X-ray sources down to a detection/completeness limit of 0.6/1.4 x 10^{37} ergs/s using five Chandra observations of NGC 4697, one of the nearest (11.3 Mpc), optically luminous (M_B < -20), elliptical (E6) galaxy. In this paper, we report on the variability of LMXB candidates measured on timescales from seconds to years. At timescales of seconds to hours, we detect five sources with significant variability. Approximately 7% of sources show variability between any two observations, and 16+/-4% of sources do not have a constant luminosity over all five observations. Among variable sources, we identify eleven transient candidates, with which we estimate that if all LMXBs in NGC 4697 are long-term transients then they are on for ~ 100 yr and have a 7% duty cycle. These numbe...

  7. Chandra Reveals Twin X-ray Jets in the Powerful FR-II Radio Galaxy 3C353

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; Stawarz, L.; Harris, D.E.; Siemiginowska, A.; Ostrowski, M.; Swain, M.R.; Hardcastle, M.J.; Goodger, J.L.; Iwasawa, K.; Edwards, P.G.

    2008-06-13

    We report X-ray imaging of the powerful FR II radio galaxy 3C 353 using the Chandra X-ray Observatory. 3C 353's two 4-inch wide and 2-feet long jets allow us to study in detail the internal structure of the large-scale relativistic outflows at both radio and X-ray photon energies with the sub-arcsecond spatial resolution provided by the VLA and Chandra instruments. In a 90 ks Chandra observation, we have detected X-ray emission from most radio structures in 3C 353, including the nucleus, the jet and the counterjet, the terminal jet regions (hotspots), and one radio lobe. We show that the detection of the X-ray emission associated with the radio knots and counterknots, which is most likely non-thermal in origin, puts several crucial constraints on the X-ray emission mechanisms in powerful large-scale jets of quasars and FR II sources. In particular, we show that this detection is inconsistent with the inverse-Compton model proposed in the literature, and instead implies a synchrotron origin of the X-ray jet photons. We also find that the width of the X-ray counterjet is possibly narrower than that measured in radio bands, that the radio-to-X-ray flux ratio decreases systematically downstream along the jets, and that there are substantial (kpc-scale) offsets between the positions of the X-ray and radio intensity maxima within each knot, whose magnitudes increase away from the nucleus. We discuss all these findings in the wider context of the physics of extragalactic jets, proposing some particular though not definitive solutions or interpretations for each problem. In general, we find that the synchrotron X-ray emission of extragalactic large-scale jets is not only shaped by the global hydrodynamical configuration of the outflows, but is also likely to be very sensitive to the microscopic parameters of the jet plasma. A complete, self-consistent model for the X-ray emission of extragalactic jets still remains elusive.

  8. HST/ACS IMAGING OF OMEGA CENTAURI: OPTICAL COUNTERPARTS OF CHANDRA X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Adrienne M.; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Anderson, Jay, E-mail: cool@sfsu.edu, E-mail: dhaggard@northwestern.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-02-15

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central {approx}10' Multiplication-Sign 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, {approx}40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M {sub 625} =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in {omega} Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in {omega} to Cen 20, the largest number yet known in any globular cluster.

  9. Extended X-ray Monitoring of Gravitational Lenses with Chandra and Joint Constraints on X-ray Emission Regions

    CERN Document Server

    Guerras, Eduardo; Steele, Shaun; Liu, Ang; Kochanek, Christopher S; Chartas, George; Morgan, Christopher W; Chen, Bin

    2016-01-01

    We present an X-ray photometric analysis of six gravitationally lensed quasars spanning from 5 to 14 years, measuring the total (0.83-21.8 keV restframe), soft (0.83-3.6 keV), and hard (3.6-21.8 keV) band image flux ratios for each epoch. Using the ratios of the model-predicted macro-magnifications as baselines, we build differential microlensing curves and obtain joint likelihood functions for the average X-ray emission region sizes. Our analysis yields a Probability Distribution Function for the average half-light radius of the X-Ray emission region in the sample that peaks slightly above 1 gravitational radius, and yields nearly indistinguishable 68 % confidence (one-sided) upper limits of 17.8 (18.9) gravitational radii for the soft (hard) X-ray emitting region, assuming a mean stellar mass of 0.3 solar masses. We see hints of energy dependent microlensing between the soft and hard bands in two of the objects. In a separate analysis on the root-mean-square (RMS) of the microlensing variability, we find si...

  10. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    Science.gov (United States)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  11. Fine-structure of nonthermal X-rays in the Chandra image of SNR RX J1713.7-3946

    CERN Document Server

    Uchiyama, Y; Takahashi, T

    2003-01-01

    We present morphological and spectroscopic studies of the northwest rim of the supernova remnant RX J1713.7-3946 based on observations by the Chandra X-ray observatory. We found a complex network of nonthermal (synchrotron) X-ray filaments, as well as a 'void' type structure -- a dim region of a circular shape -- in the northwest rim. It is remarkable that despite distinct brightness variations, the X-ray spectra everywhere in this region can be well fitted with a power-law model with photon index around 2.3. We briefly discuss some implications of these results and argue that the resolved X-ray features in the northwest rim may challenge the perceptions of standard (diffusive shock-acceleration) models concerning the production, propagation and radiation of relativistic particles in supernova remnants.

  12. Contributions of the "Great" X-Ray Observatories (XMM-Newton and Chandra) to Astronomy and Astrophysics

    Science.gov (United States)

    Weisskopf, Martin

    2011-01-01

    NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.

  13. NASA Chandra X-ray Observatory Selected as Editor's Choice in 2000 Discover Magazine Awards for Technological Innovation

    Science.gov (United States)

    2000-06-01

    The Chandra X-ray Observatory, NASA's newest and most powerful X-ray space telescope, has been selected as the winner of the Editor's Choice category of the 2000 Discover Magazine Awards for Technological Innovation. The team of government, industry, university and research institutions that designed, built and deployed Chandra for NASA's Marshall Space Flight Center, Huntsville, Ala, will be formally recognized June 24 at a gala awards celebration at Epcot at the Walt Disney World Resort in Orlando, Fl. Dr. Harvey Tananbaum, director of the Smithsonian Astrophysical Observatory's Chandra X-ray Science Center, Cambridge, Mass., which conducts the Chandra science mission for NASA, will receive the award on behalf of the team. "Chandra has opened a new window for astronomers into the universe of high-energy cosmic events such as pulsars, supernova remnants and black holes," said Tananbaum. "We're now able to create spectacularly detailed images of celestial phenomena whose mere existence we could only hypothesize before." Among Chandra's most significant discoveries to date, he lists the detection of a giant ring around the heart of the Crab Nebula, details of the shock wave created by an exploding star and resolution of the high-energy X-ray "glow" in the universe into millions of specific light sources. "The successful launch, deployment and on-orbit operations of NASA's Chandra X-ray Observatory is a testament to the solid partnership between TRW, NASA and the science community that has been enabling NASA's most important space science missions for the past 40 years," said Timothy W. Hannemann, executive vice president and general manager, TRW Space & Electronics Group. "The extraordinary images that Chandra is delivering daily speaks loudly not only to the quality of the science instruments on board, but also to the engineering talents and dedication to mission success exhibited by every member of NASA's Chandra mission team." Chandra, named in honor of Nobel

  14. The Origin of T Tauri X-ray Emission: New Insights from the Chandra Orion Ultradeep Project

    CERN Document Server

    Preibisch, T; Favata, F; Feigelson, E D; Flaccomio, E; Getman, K; Micela, G; Sciortino, S; Stassun, K G; Stelzer, B; Zinnecker, H; Preibisch, Thomas; Kim, Yong -Cheol; Favata, Fabio; Feigelson, Eric D.; Flaccomio, Ettore; Getman, Konstantin; Micela, Giusi; Sciortino, Salvatore; Stassun, Keivan; Stelzer, Beate; Zinnecker, Hans

    2005-01-01

    We use the data of the Chandra Orion Ultradeep Project (COUP) to study the nearly 600 X-ray sources that can be reliably identified with optically well characterized T Tauri stars (TTS) in the Orion Nebula Cluster. We detect X-ray emission from more than 97% of the optically visible late-type (spectral types F to M) cluster stars. This proofs that there is no ``X-ray quiet'' population of late-type stars with suppressed magnetic activity. All TTS with known rotation periods lie in the saturated or super-saturated regime of the relation between activity and Rossby numbers seen for main-sequence (MS) stars, but the TTS show a much larger scatter in X-ray activity than seen for the MS stars. Strong near-linear relations between X-ray luminosities, bolometric luminosities and mass are present. We also find that the fractional X-ray luminosity rises slowly with mass over the 0.1 - 2 M_sun range. The plasma temperatures determined from the X-ray spectra of the TTS are much hotter than in MS stars, but seem to follo...

  15. Near-Infrared Properties of Faint X-rays Sources from NICMOS Imaging in the Chandra Deep Fields

    CERN Document Server

    Colbert, J W; Yan, L; Malkan, M A; McCarthy, P; Colbert, James W.; Teplitz, Harry; Yan, Lin; Malkan, Matthew; Carthy, Patrick Mc

    2004-01-01

    We measure the near-infrared properties of 42 X-ray detected sources from the Chandra Deep Fields North and South, the majority of which lie within the NICMOS Hubble Deep Field North and Ultra Deep Field. We detect all 42 Chandra sources with NICMOS, with 95% brighter than H = 24.5. We find that X-ray sources are most often in the brightest and most massive galaxies. Neither the X-ray fluxes nor hardness ratios of the sample show any correlation with near-infrared flux, color or morphology. This lack of correlation indicates there is little connection between the two emission mechanisms and is consistent with the near-infrared emission being dominated by starlight rather than a Seyfert non-stellar continuum. Near-infrared X-ray sources make up roughly half of all extremely red (J-H > 1.4) objects brighter than H > 24.5. These red X-ray sources have a range of hardness ratios similar to the rest of the sample, decreasing the likelihood of dust-obscured AGN activity as the sole explanation for their red color. ...

  16. Chandra & XMM-Newton Observations of NGC5253. Analysis of the X-ray Emission from a Dwarf Starburst Galaxy

    CERN Document Server

    Summers, L K; Strickland, D K; Heckman, T M; Summers, Lesley K.; Stevens, Ian R.; Strickland, David K.; Heckman, Timothy M.

    2004-01-01

    We present Chandra and XMM-Newton X-ray data of NGC5253, a local starbursting dwarf elliptical galaxy, in the early stages of a starburst episode. Contributions to the X-ray emission come from discrete point sources and extended diffuse emission, in the form of what appear to be multiple superbubbles, and smaller bubbles probably associated with individual star clusters. Chandra detects 17 sources within the optical extent of NGC5253 down to a completeness level corresponding to a luminosity of 1.5E37 erg/s.The slope of the point source X-ray luminosity function is -0.54, similar to that of other nearby dwarf starburst galaxies. Several different types of source are detected within the galaxy, including X-ray binaries and the emission associated with star-clusters. Comparison of the diffuse X-ray emission with the observed Halpha emission shows similarities in their extent. The best spectral fit to the diffuse emission is obtained with an absorbed, two temperature model giving temperatures for the two gas com...

  17. Measuring redshift through X-ray spectroscopy of galaxy clusters: results from Chandra data and future prospects

    CERN Document Server

    Yu, Heng; Borgani, Stefano; Rosati, Piero; Zhu, Zong-Hong

    2011-01-01

    The ubiquitous presence of the Fe line complex in the X-ray spectra of galaxy clusters offers the possibility of measuring their redshift without resorting to spectroscopic follow-up observations. In this paper we assess the accuracy with which the redshift of galaxy clusters can be recovered from X-ray spectral analysis of Chandra archival data. This study indicates a strategy to build large surveys of clusters whose identification and redshift measurement are both based on X-ray data alone. We apply a blind search for K--shell and L--shell Fe line complex in X-ray cluster spectra using Chandra archival observations of galaxy clusters. The presence of the Fe line in the ICM spectra can be detected by simply analyzing the C-statistics variation $\\Delta C_{stat}$ as a function of the redshift parameter. We repeat the measurement under different conditions, and compare the X-ray derived redshift $z_X$ with the one obtained through optical spectroscopy $z_o$. We explore also how a number of priors on metallicity...

  18. Deep Chandra X-ray Observations of Low Mass X-ray Binary Candidates in the Early-Type Galaxy NGC 4697

    CERN Document Server

    Sivakoff, Gregory R; Juett, Adrienne M; Sarazin, Craig L; Irwin, Jimmy A

    2008-01-01

    Chandra X-ray observations routinely resolve tens to hundreds of low-mass X-ray binaries (LMXBs) per galaxy in nearby massive early-type galaxies. These studies have raised important issues regarding the behavior of this population of remnants of the once massive stars in early-type galaxies, namely the connection between LMXBs and globular clusters (GCs) and the nature of the LMXB luminosity function (LF). In this paper, we combine five epochs of Chandra observations and one central field Hubble Space Telescope Advance Camera for Surveys observation of NGC 4697, one of the nearest, optically luminous elliptical (E6) galaxies, to probe the GC-LMXB connection and LMXB-LF down to a detection/completeness limit of (0.6/1.4) x 10^{37} ergs/s. We detect 158 sources, present their luminosities and hardness ratios, and associate 34 LMXBs with GCs. We confirm that GCs with higher encounter rates (\\Gamma_h) and redder colors (higher metallicity Z) are more likely to contain GCs, and find that the expected number of LM...

  19. Electron Heating and Cosmic Rays at a Supernova Shock from Chandra X-ray Observations of E0102.2-7219

    CERN Document Server

    Hughes, J P; Decourchelle, A; Hughes, John P.; Rakowski, Cara E.; Decourchelle, Anne

    2000-01-01

    In this Letter we use the unprecedented spatial resolution of the Chandra X-ray Observatory to carry out, for the first time, a measurement of the post-shock electron temperature and proper motion of a young SNR, specifically to address questions about the post-shock partition of energy among electrons, ions, and cosmic rays. The expansion rate, 0.100 +/- 0.025 percent per yr, and inferred age, ~1000 yr, of E0102.2-7219, from a comparison of X-ray observations spanning 20 years, are fully consistent with previous estimates based on studies of high velocity oxygen-rich optical filaments in the remnant. With a radius of 6.4 pc for the blast wave estimated from the Chandra image, our expansion rate implies a blast wave velocity of ~6000 km/s and a range of electron temperatures 2.5 - 45 keV, dependent on the degree of collisionless electron heating. Analysis of the Chandra ACIS spectrum of the immediate post-shock region reveals a thermal plasma with abundances and column density typical of the Small Magellanic ...

  20. CHANDRA/ACIS-I STUDY OF THE X-RAY PROPERTIES OF THE NGC 6611 AND M16 STELLAR POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Guarcello, M. G.; Drake, J. J. [Smithsonian Astrophysical Observatory, MS-67, 60 Garden Street, Cambridge, MA 02138 (United States); Caramazza, M.; Micela, G.; Sciortino, S.; Prisinzano, L. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy)

    2012-07-10

    Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age {<=}3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of the outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.

  1. Evolution of temperature-dependent charge transfer inefficiency correction for ACIS on the Chandra X-ray Observatory

    Science.gov (United States)

    Grant, Catherine E.; Bautz, Marshall W.; Durham, R. Nick; Plucinsky, Paul P.

    2016-07-01

    As ACIS on the Chandra X-ray Observatory enters its seventeenth year of operation, it continues to perform well and produce spectacular scientific results. The response of ACIS has evolved over the lifetime of the observatory due to radiation damage and aging of the spacecraft. The ACIS instrument team developed a software tool which applies a correction to each X-ray event and mitigates charge transfer inefficiency (CTI) and spectral resolution degradation. The behavior of the charge traps that cause CTI are temperature dependent, however, and warmer temperatures reduce the effectiveness of the correction algorithm. As the radiator surfaces on Chandra age, ACIS cooling has become less efficient and temperatures can increase by a few degrees. A temperature-dependent component was added to the CTI correction algorithm in 2010. We present an evaluation of the effectiveness of this algorithm as the radiation damage and thermal environment continue to evolve and suggest updates to improve the calibration fidelity.

  2. Chandra X-ray Observations of the Young Stellar Cluster NGC 6193 in the Ara OB1 Association

    CERN Document Server

    Skinner, S L; Palla, F; Barbosa, C L D R

    2005-01-01

    A 90 ks Chandra HETG observation of the young stellar cluster NGC 6193 in the southern Ara OB1 association detected 43 X-ray sources in a 2' x 2' core region centered on the young O stars HD 150135 (O6.5V) and HD 150136 (O3+O6V). The cluster is dominated by exceptionally bright X-ray emission from the two O stars, which are separated by only 10 arcsecs. The X-ray luminosity of HD 150136 is log Lx = 33.39 (ergs/s), making it one of the most luminous O-star X-ray sources known. All of the fainter X-ray sources in the core region have near-IR counterparts, but JHK photometry provides little evidence for near-IR excesses. These core sources have typical mean photon energies of 2 keV and about one-third are variable. It is likely that some are young low-mass stars in the cluster, but cluster membership remains to be determined. Grating spectra show that the X-ray properties of HD 150135 and HD 150136 are similar, but not identical. Both have moderately broadened unshifted emission lines and their emission is domin...

  3. X-ray properties of radio-selected star forming galaxies in the Chandra-COSMOS survey

    CERN Document Server

    Ranalli, P; Zamorani, G; Cappelluti, N; Civano, F; Georgantopoulos, I; Gilli, R; Schinnerer, E; Smolcic, V; Vignali, C

    2012-01-01

    X-ray surveys contain sizable numbers of star forming galaxies, beyond the AGN which usually make the majority of detections. Many methods to separate the two populations are used in the literature, based on X-ray and multiwavelength properties. We aim at a detailed test of the classification schemes and to study the X-ray properties of the resulting samples. We build on a sample of galaxies selected at 1.4 GHz in the VLA-COSMOS survey, classified by Smolcic et al. (2008) according to their optical colours and observed with Chandra. A similarly selected control sample of AGN is also used for comparison. We review some X-ray based classification criteria and check how they affect the sample composition. The efficiency of the classification scheme devised by Smolcic et al. (2008) is such that ~30% of composite/misclassified objects are expected because of the higher X-ray brightness of AGN with respect to galaxies. The latter fraction is actually 50% in the X-ray detected sources, while it is expected to be muc...

  4. Chandra High Resolution Spectroscopy of the Burst Spectrum of EXO 0748-67

    NARCIS (Netherlands)

    Telis, G.; Paerels, F.; Audard, M.; Lanz, T.; Cottam, J.; Méndez, R.M.; Bildsten, L.; Chang, P.; Marshall, H.

    2004-01-01

    We have observed EXO0748-67 for approximately 300 ksec with the High Energy Transmission Grating Spectrometer on Chandra. A total of 35 Type I X-ray bursts occurred during our observation, and from these we obtained a composite burst spectrum with high sensitivity in the Fe K band. Along with the sp

  5. Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS

    CERN Document Server

    Hofmann, F; Nandra, K; Clerc, N; Gaspari, M

    2016-01-01

    In high-resolution X-ray observations of the hot plasma in clusters of galaxies significant structures caused by AGN feedback, mergers, and turbulence can be detected. Many clusters have been observed by Chandra in great depth and at high resolution. Using archival data taken with the Chandra ACIS instrument the aim was to study thermodynamic perturbations of the X-ray emitting plasma and to apply this to better understand the thermodynamic and dynamic state of the intra cluster medium (ICM). We analysed deep observations for a sample of 33 clusters with more than 100 ks of Chandra exposure each at distances between redshift 0.025 and 0.45. The combined exposure of the sample is 8 Ms. Fitting emission models to different regions of the extended X-ray emission we searched for perturbations in density, temperature, pressure, and entropy of the hot plasma. For individual clusters we mapped the thermodynamic properties of the ICM and measured their spread in circular concentric annuli. Comparing the spread of dif...

  6. Markov Chain Monte Carlo Joint Analysis of Chandra X-Ray Imaging Spectroscopy and Sunyaev-Zel'dovich Effect Data

    Science.gov (United States)

    Bonamente, Massimillano; Joy, Marshall K.; Carlstrom, John E.; Reese, Erik D.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zel'dovich effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from Chandra, which provides both spatial and spectral information, and Sunyaev-Zel'dovich effect data were obtained from the BIMA and Owens Valley Radio Observatory (OVRO) arrays. We introduce a Markov Chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev- Zel'dovich effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster A611. Comparisons with traditional likelihood ratio methods reveal the robustness of the method. This method will be used in follow-up paper to determine the distances to a large sample of galaxy cluster.

  7. The restless universe understanding X-ray astronomy in the age of Chandra and Newton

    CERN Document Server

    Schlegel, Eric M

    2002-01-01

    This title tells the story of the development and launch of a major space-based telescope, and explains the discoveries of the nature of the universe in the X-ray spectre. The author looks at the brief history of X-ray astronomy to explore what can and has been learnt by using X-ray.

  8. Impulse through-target x-ray tube spectrum

    Science.gov (United States)

    Kitov, B. I.; Mukhachyov, Yu. S.

    2002-07-01

    At present x-ray compact tubes with pass-through anodes operating either in the pulse mode or in the direct voltage one are applied to the equipment for the shady microscopy, and the local XRF analysis. The report presents the calculated spectral intensity distributions of the bremsstrahlung versus the pass-through anode thickness. The spectral function of the bremsstrahlung Mo tube with the anode thickness over 100 microns is demosntrated to contract to the narrow energy interval lying near the characteristic anode radiation range. However under the same conditions the spectrum of the pulse Cu-anode tube tends to be dichromatic. The spectral distributions of the tube bremsstrahlung operating at the direct current and pulse voltage are compared.

  9. Characterization of a triboelectric x-ray spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Moya-Sanchez, E. Ulises; Romo-Espejel, J. A.; Aceves-Aldrete, F. J. [Departamento de Fisica, CUCEI, Universidad de Guadalajara (Mexico)

    2012-10-23

    Low-energy X-ray imaging system has been useful in medical diagnostic in order to obtain high contrast in soft tissue. Recently, Camara et al. and most recently Hird et al. have produced low-energy X-rays using a triboelectric effect. The main aim of this work is to characterize the penetration (beam quality) of a triboelectric X-ray source in terms of the computed Half Value Layer (HVL). Additionally, the computed HVL of the triboelectric X-ray source has been compared with the HVL of X-ray tube Mo-anode (Apogee 5000). According to our computations the triboelectric X-ray source has a similar penetration such as a X-ray tube source.

  10. The MOJAVE Chandra Sample: A Correlation Study of Blazars and Radio Galaxies in X-ray and Radio Wavelengths

    Science.gov (United States)

    Hogan, Brandon Scott

    2011-05-01

    The Chandra X-ray observatory has increased the quality and number of detections the X-ray regime since its launch in 1999. It is an important tool for studying the jets which are associated with Active Galactic Nuclei (AGN) and their possible emission mechanisms. The MOJAVE Chandra Sample (MCS) is a sample of 27 AGN which have been selected from the radio flux-limited MOJAVE (Monitoring of Jets in AGN with VLBA Experiments) sample. The objects contained in the MOJAVE sample are traditionally associated with relativistically beamed jets that have small viewing angles. The MCS was created to study the correlation of X-ray and radio emission on kiloparsec scales. The complete sample is made up of all MOJAVE Fanaroff & Riley type II objects which have over 100 mJy of extended radio emission at 1.4 GHz and a radio structure of at least 3" in extent. Chandra observations have revealed X-ray and radio correlation in 21 of the 27 jets, bringing the detection rate to ˜78%. The selection criteria provides a quantitative method of discovering new X-ray jets associated with AGN from radio observations. The X-ray morphologies are usually well correlated with the radio emission, except for the sources which show extreme bending on the kiloparsec scale. The emission mechanism for these relativistically beamed quasars and radio galaxies can be interpreted as inverse Compton scattering off of the cosmic microwave background by the electrons in the jets (IC/CMB). The emission mechanism is reinforced by spectral energy distributions (SED) which model the emission mechanisms for sources with sufficient X-ray, optical, and radio data available. I have explored the effects of jet bending and jet deceleration in conjunction with the inverse Compton emission model and used different scenarios to derive best fit viewing angles and bulk Lorentz factors, which were calculated by using the superluminal speeds along with parameters that were derived from the IC/CMB model. The range of

  11. Around 200 new X-ray binary IDs from 13 years of Chandra observations of the M31 center

    CERN Document Server

    Barnard, R; Primini, F; Li, Z; Baganoff, F; Murray, S S

    2013-01-01

    We have created 0.3--10 keV, 13 year, unabsorbed luminosity lightcurves for 528 X-ray sources in the central 20' of M31. We have 174 Chandra observations spaced at ~1 month intervals thanks to our transient monitoring program, deeper observations of the M31 nucleus, and some public data from other surveys. We created 0.5--4.5 keV structure functions (SFs) for each source, for comparison with the ensemble structure function of AGN. We find 220 X-ray sources with luminosities > ~1E+35 erg/s that have SFs with significantly more variability than the ensemble AGN SF, and are likely X-ray binaries (XBs). A further 30 X-ray sources were identified as XBs using other methods. We therefore have 250 probable XBs in total, including ~200 new identifications. This result represents great progress over the ~50 XBs and ~40 XB candidates previously identified out of the ~2000 X-ray sources within the D_25 region of M31; it also demonstrates the power of SF analysis for identifying XBs in external galaxies. We also identify...

  12. Chandra/ACIS-I study of the X-ray properties of the NGC 6611 and M16 stellar population

    CERN Document Server

    Guarcello, M G; Micela, G; Sciortino, S; Drake, J J; Prisinzano, L

    2012-01-01

    Mechanisms regulating the origin of X-rays in YSOs and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age <= 3Myrs. We study an archival 78 ksec Chandra/ACIS-I observation of NGC6611, and two new 80ksec observations of the outer region of M16, one centered on the Column V, and one on a region of the molecular cloud with ongoing star-formation. We detect 1755 point sources, with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars, and analyze the X-ray spectral prope...

  13. Chandra and XMM-Newton observations of the first quasars X-rays from the age of cosmic enlightenment

    CERN Document Server

    Vignali, C; Schneider, D P; Anderson, S F; Fan, X; Gunn, J E; Kaspi, S; Richards, G T; Strauss, M A; Strauss, Michael A.

    2003-01-01

    We report on Chandra and XMM-Newton observations of a sample of 13 quasars at z~4.7-5.4 mostly taken from the Sloan Digital Sky Survey (SDSS). The present sample complements previous X-ray studies of z>4 quasars, in which the majority of the objects are optically more luminous and at lower redshifts. All but two of our quasars have been detected in the X-ray band, thus doubling the number of z>4.8 X-ray detected quasars. The two non-detections are likely to be due to a short exposure time and to the presence of intrinsic absorption. We confirm and extend to the highest redshifts the presence of a correlation between AB1450(1+z) magnitude and soft X-ray flux for z>4 quasars, and the presence of a steeper optical-to-X-ray spectral energy distribution (parameterized by aox) for high-luminosity, high-redshift quasars than for lower-luminosity, lower-redshift quasars. The second effect is likely due to the known anti-correlation between aox and rest-frame 2500 Angstrom luminosity, whose significance is confirmed v...

  14. The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    Science.gov (United States)

    Wevers, T.; Hodgkin, S. T.; Jonker, P. G.; Bassa, C.; Nelemans, G.; van Grunsven, T.; Gonzalez-Solares, E. A.; Torres, M. A. P.; Heinke, C.; Steeghs, D.; Maccarone, T. J.; Britt, C.; Hynes, R. I.; Johnson, C.; Wu, Jianfeng

    2016-06-01

    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centred at Galactic latitude b = 1.5° above and below the Galactic Centre, spanning (l × b) = (6° × 1°). The catalogue consists of two or more epochs of observations for each line of sight in r', i' and H α filters. The catalogue is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5σ depth is r' = 22.5 and i' = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ˜10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4σ X-ray error circle. This analysis yields 1480 potential counterparts (˜90 per cent of the sample). 584 counterparts have saturated photometry (r' ≤ 17, i' ≤ 16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i' band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.

  15. The O VII X-Ray Forest toward Markarian 421: Consistency between XMM-Newton and Chandra

    Science.gov (United States)

    Kaastra, J. S.; Werner, N.; Herder, J. W. A. den; Paerels, F. B. S.; de Plaa, J.; Rasmussen, A. P.; de Vries, C. P.

    2006-11-01

    Recently, the first detections of highly ionized gas associated with two warm-hot intergalactic medium (WHIM) filaments have been reported. The evidence is based on X-ray absorption lines due to O VII and other ions observed by Chandra toward the bright blazar Mrk 421. We investigate the robustness of this detection by a reanalysis of the original Chandra LETGS spectra, the analysis of a large set of XMM-Newton RGS spectra of Mrk 421, and additional Chandra observations. We address the reliability of individual spectral features belonging to the absorption components, and assess the significance of the detection of these components. We also use Monte Carlo simulations of spectra. We confirm the apparent strength of several features in the Chandra spectra, but demonstrate that they are statistically not significant. This decreased significance is due to the number of redshift trials that are made and that are not taken into account in the original discovery paper. Therefore, these features must be attributed to statistical fluctuations. This is confirmed by the RGS spectra, which have a higher signal-to-noise ratio than the Chandra spectra, but do not show features at the same wavelengths. Finally, we show that the possible association with a Lyα absorption system also lacks sufficient statistical evidence. We conclude that there is insufficient observational proof for the existence of the two proposed WHIM filaments toward Mrk 421, the brightest X-ray blazar in the sky. Therefore, the highly ionized component of the WHIM still remains to be discovered.

  16. Chandra measurements of non-thermal X-ray emission from massive, merging, radio-halo clusters

    CERN Document Server

    Million, E T

    2008-01-01

    We report the discovery of spatially-extended, non-thermal or hot, quasi-thermal emission components in Chandra X-ray spectra for five of a sample of seven massive, merging galaxy clusters with powerful radio halos: Abell 665, 2163, 2255, 2319, and 1E0657-56. The emission components can be fitted by power-law models with mean photon indices in the range 1.4 20 keV. A control sample of regular, dynamically relaxed clusters without radio halos but with comparable thermal temperatures and luminosities shows no evidence for similar components in their Chandra spectra. Detailed X-ray spectral mapping reveals the complex thermodynamic states of the radio halo clusters. We report the discovery of a clear, large-scale shock front in Abell 2219. Our deepest observations, of the Bullet Cluster 1E0657-56, demonstrate a spatial correlation between the strongest power law X-ray emission, highest thermal pressure, and brightest 1.34GHz radio halo emission in this cluster. The integrated flux and mean spectral index of the...

  17. Optical and infrared counterparts of the X-ray sources detected in the Chandra Cygnus OB2 Legacy Survey

    CERN Document Server

    Guarcello, M G; Wright, N J; Naylor, T; Flaccomio, E; Kashyap, V L; Garcia-Alvarez, D

    2015-01-01

    The young massive OB association Cygnus OB2, in the Cygnus X complex, is the closest (1400 pc) star forming region to the Sun hosting thousands of young low mass stars and up to 1000 OB stars, among which are some of the most massive stars known in our Galaxy. This region holds great importance for several fields of modern astrophysics, such as the study of the physical properties of massive and young low-mass stars and the feedback provided by massive stars on star and planet formation process. Cygnus OB2 has been recently observed with Chandra/ACIS-I as part of the 1.08Msec Chandra Cygnus OB2 Legacy Project. This survey detected 7924 X-ray sources in a square degree area centered on Cyg OB2. Since a proper classification and study of the observed X-ray sources also requires the analysis of their optical and infrared counterparts, we combined a large and deep set of optical and infrared catalogs available for this region with our new X-ray catalog. In this paper we describe the matching procedure and present...

  18. The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    CERN Document Server

    Wevers, T; Jonker, P G; Bassa, C; Nelemans, G; van Grunsven, T; Gonzalez-Solares, E A; Torres, M A P; Heinke, C; Steeghs, D; Maccarone, T J; Britt, C; Hynes, R I; Johnson, C; Wu, Jianfeng

    2016-01-01

    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r', i' and H{\\alpha} filters. It is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5{\\sigma} depth is r' = 22.5 and i' = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all o...

  19. Multiwavelength Study of Chandra X-Ray Sources in the Antennae

    CERN Document Server

    Clark, D M; Brandl, B R; Wilson, J C; Carson, J C; Henderson, C P; Hayward, T L; Barry, D J; Ptak, A F; Colbert, E J M

    2010-01-01

    We use WIRC, IR images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources (Zezas et al. 2006) to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources first identified in Clark et al. (2007). In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, K_s ~16 mag, with (J-K_s) = 1.1 mag. We then use archival HST images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star clu...

  20. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Trichas, Markos; Green, Paul J.; Aldcroft, Tom; Kim, Dong-Woo; Mossman, Amy [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Silverman, John D. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8568 (Japan); Barkhouse, Wayne [Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202 (United States); Cameron, Robert A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Constantin, Anca [Department of Physics and Astronomy, James Madison University, PHCH, Harrisonburg, VA 22807 (United States); Ellison, Sara L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Foltz, Craig [Division of Astronomical Sciences, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230 (United States); Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Jannuzi, Buell T. [NOAO, Kitt Peak National Observatory, Tucson, AZ 85726 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Perez, Laura M. [Department of Astronomy, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125 (United States); Romero-Colmenero, Encarni [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Ruiz, Angel [Osservatorio Astronomico di Brera-INAF, Milan (Italy); Smith, Malcolm G., E-mail: mtrichas@cfa.harvard.edu [Cerro Tololo Interamerican Observatory, La Serena (Chile); and others

    2012-06-01

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z {approx} 5.5 and galaxies out to z {approx} 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While {approx}58% of X-ray Seyferts (10{sup 42} erg s{sup -1} < L{sub 2-10keV} <10{sup 44} erg s{sup -1}) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L{sub 2-10keV} >10{sup 44} erg s{sup -1}) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO

  1. Chandra Characterization of X-ray Emission in the Young F-Star Binary System HD 113766

    CERN Document Server

    Lisse, C M; Wolk, S J; Günther, H M; Chen, C H; Grady, C A

    2016-01-01

    Using Chandra we have obtained imaging X-ray spectroscopy of the 10 to 16 Myr old F-star binary HD 113766. We individually resolve the binary components for the first time in the X-ray and find a total 0.3 to 2.0 keV luminosity of 2.2e29 erg/sec, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only 10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or sub-stellar member of HD113766 with Lx > 6e25 erg s-1 within 2 arcmin of the binary pair. The ratio of the two stars Xray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. (2012). The emission is soft for both stars, kTApec = 0.30 to 0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks which we rule out. A possible 2.8 +/- 0.15 (2{\\sigma}) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and...

  2. Chandra and XMM-Newton X-ray Observations of the Hyperactive T Tauri Star RY Tau

    CERN Document Server

    Skinner, Stephen L; Guedel, Manuel

    2016-01-01

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton. We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau's bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T_hot ~ 50 MK but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O VIII. X-ray light curves show complex variability consisting of short-duration (~hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly-varying (~one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g. coronal) origin. Soft and hard-band light ...

  3. High-Resolution X-ray Spectroscopy of SNR 1987A: Chandra LETG and HETG Observations in 2007

    CERN Document Server

    Zhekov, Svetozar A; Dewey, Daniel; Canizares, Claude R; Borkowski, Kazimierz J; Burrows, David N; Park, Sangwook

    2008-01-01

    We present an extended analysis of the deep Chandra LETG and HETG observations of the supernova remnant 1987A (SNR 1987A) carried out in 2007. The global fits to the grating spectra show that the temperature of the X-ray emitting plasma in the slower shocks in this system has remained stable for the last three years, while that in the faster shocks has decreased. This temperature evolution is confirmed by the first light curves of strong X-ray emission lines and their ratios. On the other hand, bulk gas velocities inferred from the X-ray line profiles are too low to account for the post-shock plasma temperatures inferred from spectral fits. This suggests that the X-ray emission comes from gas that has been shocked twice, first by the blast wave and again by shocks reflected from the inner ring of SNR 1987A. A new model that takes these considerations into account gives support to this physical picture.

  4. The O VII X-ray forest toward Markarian 421: Consistency between XMM-Newton and Chandra

    CERN Document Server

    Kaastra, J S; Den Herder, J W A; Paerels, F B S; De Plaa, J; Rasmussen, A P; De Vries, C P

    2006-01-01

    Recently the first detections of highly ionised gas associated with two Warm-Hot Intergalactic Medium (WHIM) filaments have been reported. The evidence is based on X-ray absorption lines due to O VII and other ions observed by Chandra towards the bright blazar Mrk 421. We investigate the robustness of this detection by a re-analysis of the original Chandra LETGS spectra, the analysis of a large set of XMM-Newton RGS spectra of Mrk 421, and additional Chandra observations. We address the reliability of individual spectral features belonging to the absorption components, and assess the significance of the detection of these components. We also use Monte Carlo simulations of spectra. We confirm the apparent strength of several features in the Chandra spectra, but demonstrate that they are statistically not significant. This decreased significance is due to the number of redshift trials that are made and that are not taken into account in the original discovery paper. Therefore these features must be attributed t...

  5. The Puzzling Detection of X-rays From Pluto by Chandra

    CERN Document Server

    Lisse, C M; Wolk, S J; Bagenal, F; Stern, S A; Gladstone, G R; Cravens, T E; Hill, M E; Kollmann, P; Weaver, H A; Strobel, D F; Elliott, H A; McComas, D J; Binzel, R P; Snios, B T; Bhardwaj, A; Chutjian, A; Young, L A; Olkin, C B; Ennico, K A

    2016-01-01

    Using Chandra ACIS-S, we have obtained imaging Xray spectrophotometry of the Pluto system in support of the New Horizons flyby on 14 July 2015. 174 ksec of observations were obtained on 4 visits in Feb 2014 to Aug 2015. We measured a net signal of 6.8 counts and a noise level of 1.2 counts in a comoving 11 x 11 pixel box (100 x 100 R_Pluto) in the 0.31 to 0.60 keV passband for a detection at > 99.95 C.L. The Pluto photons do not match the background spectrum, are coincident with a 90% flux aperture comoving with Pluto, and are not sky source confused. The mean 0.31 to 0.60 keV Xray power from Pluto is 200 MW, in the midrange of Xray power levels seen for known solar system emission sources: auroral precipitation, solar Xray scattering, and charge exchange (CXE) between solar wind (SW) ions & atmospheric neutrals. We eliminate auroral effects as a source, as Pluto has no known magnetic field & the New Horizons Alice UV spectrometer detected no airglow from Pluto during the flyby. Nano-scale atmospheric...

  6. Measurements of radio frequent cavity volt ages by X-ray spectrum measurements

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2005-01-01

    Full Text Available This paper deals with X-ray spectrum measurement as a method for the measurement of radio frequent cavity voltage and the theory of X-ray spectrum calculation. Experimental results at 72 MHz for three different values of the radio frequent power of ACCEL K250 super conducting cyclotron are being presented.

  7. The Effect of Variability on X-Ray Binary Luminosity Functions: Multiple-epoch Observations of NGC 300 with Chandra

    Science.gov (United States)

    Binder, B.; Gross, J.; Williams, B. F.; Eracleous, M.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.

    2017-01-01

    We have obtained three epochs of Chandra ACIS-I observations (totaling ∼184 ks) of the nearby spiral galaxy NGC 300 to study the logN–logS distributions of its X-ray point-source population down to ∼2 × 10‑15 erg s‑1 cm‑2 in the 0.35–8 keV band (equivalent to ∼1036 erg s‑1). The individual epoch logN–logS distributions are best described as the sum of a background active galactic nucleus (AGN) component, a simple power law, and a broken power law, with the shape of the logN–logS distributions sometimes varying between observations. The simple power law and AGN components produce a good fit for “persistent” sources (i.e., with fluxes that remain constant within a factor of ∼2). The differential power-law index of ∼1.2 and high fluxes suggest that the persistent sources intrinsic to NGC 300 are dominated by Roche-lobe-overflowing low-mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power-law index of ∼1.7, a bright-end index of ∼2.8–4.9, and a break flux of ∼ 8× {10}-15 erg s‑1 cm‑2 (∼4 × 1036 erg s‑1), suggesting that they are mostly outbursting, wind-fed high-mass X-ray binaries, although the logN–logS distribution of variable sources likely also contains low-mass X-ray binaries. We generate model logN–logS distributions for synthetic X-ray binaries and constrain the distribution of maximum X-ray fluxes attained during outburst. Our observations suggest that the majority of outbursting X-ray binaries occur at sub-Eddington luminosities, where mass transfer likely occurs through direct wind accretion at ∼1%–3% of the Eddington rate.

  8. A Joint Chandra and Swift View of the 2015 X-Ray Dust Scattering Echo of V404 Cygni

    CERN Document Server

    Heinz, S; Smith, R; Brandt, W N; Jonker, P G; Plotkin, R M; Neilsen, J

    2016-01-01

    We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray lightcurve of the June 2015 outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8.By deconvolving the intensity profiles with the reconstructed outburst lightcurve, we show that the rings correspond to eight separate dust concentrations with precise distance determinations. We further show that the column density of the clouds varies significantly across the field of view, with the centroid of most of the clouds shifted toward the Galactic plane, relative to the position of V404 Cyg, invalidating the assumption of uniform cloud column typically made in attempts to constrain dust properties from light echoes. We present a new XSPEC...

  9. ASCA observations of deep ROSAT fields V. The X-ray spectrum of hard X-ray selected QSOs

    CERN Document Server

    Pappa, A; Georgantopoulos, I; Griffiths, R E; Boyle, B J; Shanks, T

    2001-01-01

    We present an analysis of the \\rosat and \\asca spectra of 21 broad line AGN (QSOs) with $z\\sim 1$ detected in the 2-10 keV band with the \\asca \\gis. The summed spectrum in the \\asca band is well described by a power-law with $\\Gamma=1.56\\pm0.18$, flatter that the average spectral index of bright QSOs and consistent with the spectrum of the X-ray background in this band. The flat spectrum in the \\asca band could be explained by only a moderate absorption ($\\sim 10^{22} \\rm cm^{-2}$) assuming the typical AGN spectrum ie a power-law with $\\Gamma$=1.9. This could in principle suggest that some of the highly obscured AGN, required by most X-ray background synthesis models, may be associated with normal blue QSOs rather than narrow-line AGN. However, the combined 0.5-8 keV \\asca-\\rosat spectrum is well fit by a power-law of $\\Gamma=1.7\\pm0.2$ with a spectral upturn at soft energies. It has been pointed out that such an upturn may be an artefact of uncertainties in the calibration of the ROSAT or ASCA detectors. Nev...

  10. Intrinsic Absorption in the Spectrum of NGC 7469: Simultaneous Chandra, FUSE, and STIS Observations

    CERN Document Server

    Scott, J E; Lee, J C; Quijano, J K; Brotherton, M; Canizares, C R; Green, R F; Hutchings, J B; Kaiser, M E; Marshall, H; Oegerle, W; Ogle, P; Zheng, W; Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C.; Quijano, Jessica Kim; Brotherton, Michael; Canizares, Claude R.; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Ogle, Patrick; Zheng, Wei

    2005-01-01

    We present simultaneous X-ray, far-ultraviolet, and near-ultraviolet spectra of the Seyfert 1 galaxy NGC 7469 obtained with the Chandra X-Ray Observatory, the Far Ultraviolet Spectroscopic Explorer, and the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Previous non-simultaneous observations of this galaxy found two distinct UV absorption components, at -560 and -1900 km/s, with the former as the likely counterpart of the X-ray absorber. We confirm these two absorption components in our new UV observations, in which we detect prominent O VI, Ly alpha, N V, and C IV absorption. In our Chandra spectrum we detect O VIII emission, but no significant O VIII or O VII absorption. We also detect a prominent Fe K alpha emission line in the Chandra spectrum, as well as absorption due to hydrogen-like and helium-like neon, magnesium, and silicon at velocities consistent with the -560 km/s UV absorber. The FUSE data reveal that the H I and C IV column densities in this UV- and X-ray- absorbing compon...

  11. Constraints on the Physics of Type Ia Supernovae from the X-Ray Spectrum of the Tycho Supernova Remnant

    CERN Document Server

    Badenes, C; Hughes, J P; Hwang, U; Bravo, E; Badenes, Carles; Borkowski, Kazimierz J.; Hughes, John P.; Hwang, Una; Bravo, Eduardo

    2005-01-01

    In this paper we use high quality X-ray observations from XMM-Newton and Chandra to gain new insights into the explosion that originated Tycho's supernova 433 years ago. We perform a detailed comparison between the ejecta emission from the spatially integrated X-ray spectrum of the supernova remnant and current models for Type Ia supernova explosions. We use a grid of synthetic X-ray spectra based on hydrodynamic models of the evolution of the supernova remnant and self-consistent nonequilibrium ionization calculations for the state of the shocked plasma. We find that the fundamental properties of the X-ray emission in Tycho are well reproduced by a one-dimensional delayed detonation model with a kinetic energy of 1.2e51 erg. All the other paradigms for Type Ia explosions that we have tested fail to provide a good approximation to the observed ejecta emission, including one-dimensional deflagrations, pulsating delayed detonations and sub-Chandrasekhar explosions, as well as deflagration models calculated in t...

  12. Chandra Characterization of X-Ray Emission in the Young F-Star Binary System HD 113766

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Günther, H. M.; Chen, C. H.; Grady, C. A.

    2017-02-01

    Using Chandra, we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 1029 erg s‑1, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with Lx > 6 × 1025 erg s‑1 within 2‧ of the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kTApec = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2σ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to Lx ∼ 2 × 1029 erg s‑1 argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 106 years. At 1028–1029 erg s‑1 X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.

  13. Intrinsic Absorption in the Spectrum of Mrk 279: Simultaneous Chandra, FUSE, and STIS Observations

    CERN Document Server

    Scott, J E; Lee, J C; Arav, N; Ogle, P M; Roraback, K; Weaver, K; Alexander, T; Brotherton, M; Green, R F; Hutchings, J B; Kaiser, M E; Marshall, H; Oegerle, W; Zheng, W; Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C.; Arav, Nahum; Ogle, Patrick; Roraback, Kenneth; Weaver, Kimberly; Alexander, Tal; Brotherton, Michael; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Zheng, Wei

    2004-01-01

    We present a study of the intrinsic X-ray and far-ultraviolet absorption in the Seyfert 1.5 galaxy Markarian 279 using simultaneous observations from the Chandra X-ray Observatory, the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope, and the Far Ultraviolet Spectroscopic Explorer (FUSE). We also present FUSE observations made at three additional epochs. We detect the Fe K-alpha emission line in the Chandra spectrum, and its flux is consistent with the low X-ray continuum flux level of Mrk 279 at the time of the observation. Due to low signal-to-noise ratios in the Chandra spectrum, no O VII or O VIII absorption features are observable in the Chandra data, but the UV spectra reveal strong and complex absorption from HI and high-ionization species such as O VI, N V, and C IV, as well as from low-ionization species such as C III, N III, C II, and N II in some velocity components. The far-UV spectral coverage of the FUSE data provides information on high-order Lyman series absorption, which...

  14. Revealing the heavily obscured AGN population of High Redshift 3CRR Sources with Chandra X-ray Observations

    CERN Document Server

    Wilkes, Belinda J; Haas, Martin; Barthel, Peter; Leipski, Christian; Willner, S P; Worrall, D M; Birkinshaw, Mark; Antonucci, Robert; Ashby, M L N; Chini, Rolf; Fazio, G G; Lawrence, Charles; Ogle, Patrick; Schulz, Bernhard

    2013-01-01

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (10) indicating obscuration (log N_H ~ 22-24 cm^-2). These properties and the correlation between obscuration and radio core-fraction are consistent with orientation-dependent obscuration as in Unification models. About half the NLRGs have soft X-ray hardness ratios and/or high [OIII] emission line to X-ray luminosity ratio suggesting obscuration by Compton thick (CT) material so that scattered nuclear or extended X-ray emission dominates (as in NGC1068). The ratios of unobscured to Compton-thin (10^{22} 1.5 x 10^{24} cm^-2) is 2.5:1.4:1 in this high luminosity, radio-selected sample. The obscured fraction is 0.5, higher than is typically reported for AGN at comparable luminosities from multi-wavelength surveys (0.1-0.3). Assuming random nuclear orientation, the unobscured half-opening angle of the disk/wind/torus structure is ~ 60deg and the obscuring material covers 30deg of which ~ 12deg is Compton thick. The multi-wavelength prope...

  15. The Effect of Variability on X-Ray Binary Luminosity Functions: Multiple Epoch Observations of NGC 300 with Chandra

    CERN Document Server

    Binder, Breanna; Williams, Benjamin F; Eracleous, Michael; Gaetz, Terrance J; Plucinsky, Paul P; Skillman, Evan D

    2016-01-01

    We have obtained three epochs of Chandra ACIS-I observations (totaling $\\sim$184 ks) of the nearby spiral galaxy NGC~300 to study the logN-logS distributions of its X-ray point source population down to $\\sim$2$\\times$10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ in the 0.35-8 keV band (equivalent to $\\sim$10$^{36}$ erg s$^{-1}$). The individual epoch logN-logS distributions are best described as the sum of a background AGN component, a simple power law, and a broken power law, with the shape of the logN-logS distributions sometimes varying between observations. The simple power law and AGN components produce a good fit for "persistent" sources (i.e., with fluxes that remain constant within a factor of $\\sim$2). The differential power law index of $\\sim$1.2 and high fluxes suggest that the persistent sources intrinsic to NGC~300 are dominated by Roche lobe overflowing low mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power law index of $\\sim$1.7, a bright-end index ...

  16. Galaxy Cluster Scaling Relations between Bolocam Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements

    CERN Document Server

    Czakon, N G; Mantz, A; Golwala, S R; Downes, T P; Koch, P M; Lin, K -Y; Molnar, S M; Moustakas, L A; Mroczkowski, T; Pierpaoli, E; Shitanishi, J A; Siegel, S; Umetsu, K

    2014-01-01

    We present scaling relations between the integrated Sunyaev-Zel'dovich Effect (SZE) signal, $Y_{\\rm SZ}$, its X-ray analogue, $Y_{\\rm X}$$\\equiv$$M_{\\rm gas}$$T_{\\rm X}$, and total mass, $M_{\\rm tot}$, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) sample. All parameters are integrated within $r_{2500}$. $Y_{2500}$ values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, $T_{\\rm X}$, and mass, $M_{\\rm gas,2500}$, of the intracluster medium are determined using X-ray data collected with \\emph{Chandra}, and $M_{\\rm tot}$ is derived from $M_{\\rm gas}$ using a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the $Y_{2500}$-$Y_{\\rm X}$ scaling to have a logarithmic slope of $0.84\\pm0.07$, and a fractional intrinsic scatt...

  17. The spatial distribution of X-ray selected AGN in the Chandra deep fields: a theoretical perspective

    CERN Document Server

    Marulli, Federico; Branchini, Enzo; Gilli, Roberto; Moscardini, Lauro; Springel, Volker

    2009-01-01

    We study the spatial distribution of X-ray selected AGN in the framework of hierarchical co-evolution of supermassive black holes and their host galaxies and dark matter haloes. To this end, we have applied the model developed by Croton et al.(2006), De Lucia & Blaizot(2007) and Marulli et al.(2008) to the output of the Millennium Run and obtained hundreds of realizations of past light-cones from which we have extracted realistic mock AGN catalogues that mimic the Chandra deep fields. We find that the model AGN number counts are in fair agreement with observations, except at fluxes <1e-15 erg/cm^2/s. The spatial two-point correlation function predicted by the model is well described by a power-law relation out to 20 Mpc/h, in close agreement with observations. Our model matches the correlation length r_0 of AGN in the Chandra Deep Field North but underestimates it in the Chandra Deep Field South. When fixing the slope to gamma = 1.4, as in Gilli et al. (2005), the statistical significance of the mismat...

  18. Chandra observation of an ultraluminous X-ray source from the Galaxy NGC 12911

    CERN Document Server

    Luna, Juan C

    2009-01-01

    I report the analysis of an ultraluminous X-ray source (ULX) located in the galaxy NGC 1291. This X-ray point source is denominated IXO6 in the Catalog of Candidate IXO (Colbert & Ptak). An Intermediate-luminosity X-ray Object (IXO) is defined as an off-nuclear, compact object with luminosity Lx [2-10keV] >= 1039 erg s-1. The cutoff Lx is defined as a value greater than the Eddington luminosity of a 1.4 Mo black hole (10 38.3 erg s-1). IXO is an early denomination of what is call now a ULX point source. The Catalog was derived from a ROSAT survey and represents 87 IXOS in 54 galaxies. IXO6 was selected because of being positioned in the outer disk of the galaxy, with no near X-ray source neighbors. The study of this ULX pretends to confirm certain assumptions related to this class of objects (Roberts et al.)

  19. X-ray emission from open star clusters with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Ojha, D.K.; Schnopper, H.W.;

    1998-01-01

    throughput of SPECTRUM-Rontgen-Gamma will help detect main sequence stars like Sun in middle-aged and old clusters. We will study the relationships between various parameters - age, rotation, abundance, UBV colors, X-ray luminosity, coronal temperature etc. X-ray spectra of younger and brighter populations...

  20. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.;

    2009-01-01

    We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration of relati...

  1. Model-based x-ray energy spectrum estimation algorithm from CT scanning data with spectrum filter

    Science.gov (United States)

    Li, Lei; Wang, Lin-Yuan; Yan, Bin

    2016-10-01

    With the development of technology, the traditional X-ray CT can't meet the modern medical and industry needs for component distinguish and identification. This is due to the inconsistency of X-ray imaging system and reconstruction algorithm. In the current CT systems, X-ray spectrum produced by X-ray source is continuous in energy range determined by tube voltage and energy filter, and the attenuation coefficient of object is varied with the X-ray energy. So the distribution of X-ray energy spectrum plays an important role for beam-hardening correction, dual energy CT image reconstruction or dose calculation. However, due to high ill-condition and ill-posed feature of system equations of transmission measurement data, statistical fluctuations of X ray quantum and noise pollution, it is very hard to get stable and accurate spectrum estimation using existing methods. In this paper, a model-based X-ray energy spectrum estimation method from CT scanning data with energy spectrum filter is proposed. First, transmission measurement data were accurately acquired by CT scan and measurement using phantoms with different energy spectrum filter. Second, a physical meaningful X-ray tube spectrum model was established with weighted gaussian functions and priori information such as continuity of bremsstrahlung and specificity of characteristic emission and estimation information of average attenuation coefficient. The parameter in model was optimized to get the best estimation result for filtered spectrum. Finally, the original energy spectrum was reconstructed from filtered spectrum estimation with filter priori information. Experimental results demonstrate that the stability and accuracy of X ray energy spectrum estimation using the proposed method are improved significantly.

  2. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    CERN Document Server

    Hofmann, F; Nandra, K; Clerc, N; Gaspari, M

    2016-01-01

    Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter candidate. We aim at putting constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing-angle in a 7.1 keV sterile neutrino dark matter scenario. For a sample of 33 high-mass clusters of galaxies we merge all observations from the Chandra data archive. Each cluster has more than 100 ks of combined exposure. The resulting high signal-to-noise spectra are used to constrain the flux of an unidentified line emission at 3.55 keV in the individual spectra and a merged spectrum of all clusters. We obtained very detailed spectra around the 3.55 keV range and limits on an unidentified emission line. Assuming all dark matter were made of 7.1 keV sterile neutrinos the upper limits on the mixing angle are $\\rm{sin^2(2\\Theta...

  3. Suzaku observations of the hard X-ray spectrum of Vela Jr

    CERN Document Server

    Takeda, Sawako; Terada, Yukikatsu; Tashiro, Makoto S; Katsuda, Satoru; Yamazaki, Ryo; Ohira, Yutaka; Iwakiri, Wataru

    2016-01-01

    We report the results of Suzaku observations of the young supernova remnant, Vela Jr.\\ (RX J0852.0$-$4622), which is known to emit synchrotron X-rays, as well as TeV gamma-rays. Utilizing 39 Suzaku mapping observation data from Vela Jr., a significant hard X-ray emission is detected with the hard X-ray detector (HXD) from the north-west TeV-emitting region. The X-ray spectrum is well reproduced by a single power-law model with the photon index of 3.15$^{+1.18}_{-1.14}$ in the 12--22 keV band. Compiling this with the soft X-ray spectrum simultaneously observed with the X-ray imaging spectrometer (XIS) onboard Suzaku, we find that the wide-band X-ray spectrum in the 2--22 keV band is reproduced with a single power-law or concave broken power-law model, which are statistically consistent with each other. Whichever the model of a single or broken power-law is appropriate, clearly the spectrum has no rolloff structure. Applying this result to the method introduced in \\citet{yama2014}, we find that one-zone synchro...

  4. Precise Localization of the Soft Gamma Repeater SGR 1627-41 with Chandra and the Anomalous X-Ray Pulsar AXP 1E1841-045 with Chandra

    Science.gov (United States)

    Wachter, Stefanie; Patel, Sandeep K.; Kouveliotou, Chryssa; Bouchet, Patrice; Ozel, Feryal; Tennant, Allyn F.; Woods, Peter M.; Hurley, Kevin; Becker, Werner; Slane, Patrick

    2004-01-01

    We present precise localizations of AXP 1E184-045 and SGR 1627-41 with Chandra. We obtained new infrared observations of SGR 1627-41 and reanalyzed archival observations of AXP 1E1841-045 in order to refine their positions and search for infrared counterparts. A faint source is detected inside the error circle of AXP 1E1841-045. In the case of SGR 1627-41, several sources are located within the error radius of the X-ray position, and we discuss the likelihood of one of them being the counterpart. We compare the properties of our candidates to those of other known anomalous X-ray pulsar (AXP) and soft gamma repeater (SGR) counterparts. We find that the counterpart candidates for SGR 1627-41 and SGR 1806-20 would have to be intrinsically much brighter than AXPs in order to have counterparts detectable with the observational limits currently available for these sources. To confirm the reported counterpart of SGR 1806-20, we obtained new infrared observations during the 2003 July burst activation of the source. No brightening of the suggested counterpart is detected, implying that the counterpart of SGR 1806-20 remains yet to be identified.

  5. X-ray Sources in the Magellanic Clouds: analysis of 15 Years of XMM-Newton and Chandra Observations

    Science.gov (United States)

    Yang, J.; Laycock, S.; Christodoulou, D.; Drake, J.; Fingerman, S.; Hong, J.; Zezas, A.; Antoniou, V.; Coe, M.; Ho, W.

    2016-06-01

    Using ˜160 XMM-Newton, ˜180 Chandra, and all weekly RXTE observations, we have generated a comprehensive library of the known pulsars in the Small and Large Magellanic Clouds (SMC, LMC). We classify various pulsar properties in the range of log L_{X}=32-38 erg s^{-1} and incorporate related parameters in theoretical models. With the high time-resolution data of the EPIC and Chandra cameras and the latest calibration files and software, our 15 year pipeline generates a suite of useful products for each pulsar detection: event lists, high time-resolution light curves, periodograms, spectra, and complete histories of the dot{P}, the pulse fraction, etc., in the broad, soft (0.2-2 keV), and hard (2-12 keV) energy bands. After combining the observations from these telescopes, we found that 15 pulsars are clearly spinning up and another 15 pulsars are distinctly spinning down. We also used the faintest and brightest sources to map out the propeller line and the Eddington line, respectively. We compared the observed pulse profiles to geometric models of X-ray emission in order to constrain the physical parameters of the pulsars. We are preparing a public release of this library so that it can be used by other groups as well.

  6. X-ray calibration of SZ scaling relations with the ACCEPT catalogue of galaxy clusters observed by Chandra

    CERN Document Server

    Comis, B; Conte, A; Lamagna, L; De Gregori, S

    2011-01-01

    We explore the scaling relation between the flux of the Sunyaev-Zel'dovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue. The analysis is conducted over a sample of 226 objects, examining the relatively small scale corresponding to a cluster overdensity equal to 2500 times the critical density of the background universe, at which the total masses have been calculated exploiting the hydrostatic equilibrium hypothesis. Core entropy (K0) is strongly correlated with the central cooling time, and is therefore used to identify cooling-core (CC) objects in our sample. Our results confirm the self-similarity of the scaling relation between the integrated Comptonization parameter (Y) and the cluster mass, for both CC and NCC (non-cooling-core) clusters. The consistency of our calibration with recent ones has been checked, with further support for Y as a good mass proxy. We also investigate t...

  7. Chandra and ASCA X-ray Observations of the Radio Supernova SN1979C IN NGC 4321

    CERN Document Server

    Ray, A; Schlegel, E M

    2001-01-01

    We report on the X-ray observation of the radio selected supernova SN1979C carried out with ASCA in 1997 December and serendipitously available from a Chandra Guaranteed Time Observation in 1999 November. The supernova, of type SN II-Linear (SN IIL), was first observed in the optical and occurred in the weakly barred, almost face on spiral galaxy NGC 4321 (M100). The galaxy, a member of the Virgo S cluster, is at a distance of 17.1 Mpc, and contains at least three other supernovae discovered in this century. The useful exposure time was ~25 ks for the Solid-State Imaging Spectrometer (SIS), ~28 ks for the Gas Scintillation Imaging Spectrometer (GIS), and ~2.5 ks for Chandra's Advanced CCD Imaging Spectrometer (ACIS). No point source was detected at the radio position of SN1979C in a 3' diameter half power response circle in the ASCA data. The background and galaxy subtracted SN signal had a 3sigma upper limit to the flux of 6.3x10^-14 ergs/s/cm^-2 in the full ASCA SIS band (0.4-10.0 keV) and a 3sigma upper li...

  8. Chandra Survey of Nearby Highly-Inclined Disk Galaxies I: X-ray Measurements of Galactic Coronae

    CERN Document Server

    Li, Jiang-Tao

    2012-01-01

    We present a systematical analysis of the Chandra observations of 53 nearby highly-inclined (i>60 degree) disk galaxies to study the coronae around them. This sample covers a broad range of galaxy properties: e.g., about three orders of magnitude in the SFR and more than two orders of magnitude in the stellar mass. The Chandra observations of the diffuse soft X-ray emission from 20 of these galaxies are presented for the first time. The data are reduced in a uniform manner, including the excision/subtraction of both resolved and unresolved stellar contributions. Various coronal properties, such as the scale height and luminosity, are characterized for all the sample galaxies. For galaxies with high enough counting statistics, we also examine the thermal and chemical states of the coronal gas. We note on galaxies with distinct multi-wavelength characteristics which may affect the coronal properties. The uniformly processed images, spectra, and brightness profiles, as well as the inferred hot gas parameters, fo...

  9. X-ray spectrum estimation from transmission measurements by an exponential of a polynomial model

    Science.gov (United States)

    Perkhounkov, Boris; Stec, Jessika; Sidky, Emil Y.; Pan, Xiaochuan

    2016-04-01

    There has been much recent research effort directed toward spectral computed tomography (CT). An important step in realizing spectral CT is determining the spectral response of the scanning system so that the relation between material thicknesses and X-ray transmission intensity is known. We propose a few parameter spectrum model that can accurately model the X-ray transmission curves and has a form which is amenable to simultaneous spectral CT image reconstruction and CT system spectrum calibration. While the goal is to eventually realize the simultaneous image reconstruction/spectrum estimation algorithm, in this work we investigate the effectiveness of the model on spectrum estimation from simulated transmission measurements through known thicknesses of known materials. The simulated transmission measurements employ a typical X-ray spectrum used for CT and contain noise due to the randomness in detecting finite numbers of photons. The proposed model writes the X-ray spectrum as the exponential of a polynomial (EP) expansion. The model parameters are obtained by use of a standard software implementation of the Nelder-Mead simplex algorithm. The performance of the model is measured by the relative error between the predicted and simulated transmission curves. The estimated spectrum is also compared with the model X-ray spectrum. For reference, we also employ a polynomial (P) spectrum model and show performance relative to the proposed EP model.

  10. EXPLORING X-RAY BINARY POPULATIONS IN COMPACT GROUP GALAXIES WITH CHANDRA

    Energy Technology Data Exchange (ETDEWEB)

    Tzanavaris, P.; Hornschemeier, A. E. [Laboratory for X-ray Astrophysics, NASA/Goddard Spaceflight Center, Mail Code 662, Greenbelt, MD 20771 (United States); Gallagher, S. C.; Lenkić, L. [Department of Physics and Astronomy and Centre for Planetary and Space Exploration, The University of Western Ontario, London, ON N6A 3K7 (Canada); Desjardins, T. D. [Department of Physics and Astronomy, 177 Chem.-Phys. Building, University of Kentucky, 505 Rose Street, Lexington KY 40506-0055202 (United States); Walker, L. M. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Mulchaey, J. S. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States)

    2016-02-01

    We obtain total galaxy X-ray luminosities, L{sub X}, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. L{sub X}–star formation rate (SFR) correlation or have higher L{sub X} than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. L{sub X}–stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme L{sub X} values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high L{sub X} values can be observed due to strong XRB variability.

  11. On the X-ray spectrum of Kepler's supernova remnant

    Science.gov (United States)

    Borkowski, Kazimierz J.; Sarazin, Craig L.; Blondin, John M.

    1994-01-01

    We have devised a method to do nonequilibrium ionization calculations on the results of two-dimensional hydrodynamical simulations, based on the algorithm of Hughes & Helfand (1985). We have calculated the ionization structure and X-ray emission for a two-dimensional numerical hydrodynamical simulation for the remnant of Kepler's supernova (SN); the hydrodynamical model was presented in a previous paper. In this model, the progenitor of Kepler's SN is assumed to have been a massive runaway star ejected from the Galactic plane. In its red supergiant stage, its dense stellar wind was distorted and compressed into a bow shock by the ram pressure of the tenuous interstellar medium. The subsequent interaction of the supernova ejecta with this asymmetric circumstellar matter produced a strongly asymmetric supernova remnant (SNR). In this paper, we present calculated X-ray spectra for this hydrodynamical model. A comparison with observations implies a moderate overabundance of Fe in Kepler's SNR (only 50% larger than its cosmic value), in contrast to a large (6 to 15) Fe overabundance derived previously. However, we confirm earlier conclusions that Si and S abundances are 2 to 3 times solar. These modest enhancements of Si, S, and Fe may be attributed either to heavy-element enriched SN ejecta or to the initial chemical abundances of the SN progenitor, which originated in the metal-rich inner Galaxy. The comparison of our models with the observed spectra confirm theoretical predictions that moderate electron heating occurs at strong collisionless shock fronts, with the implied electron/mean temperature ratio of approximately 0.5.

  12. THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212 (United States); Kastner, J. H.; Freeman, M. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2015-02-10

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively ''hard'' (≥0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, L {sub X}, that appear uncorrelated with the CSPN bolometric luminosity, L {sub bol} and (2) lower-temperature plasmas with L {sub X}/L {sub bol} ∼ 10{sup –7}. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.

  13. Near-infrared counterparts to Chandra X-ray sources toward the Galactic Center. II. Discovery of Wolf-Rayet stars and O supergiants

    CERN Document Server

    Mauerhan, Jon C; Morris, Mark R; Stolovy, Susan R; Cotera, Angela S

    2009-01-01

    We present new identifications of infrared counterparts to the population of hard X-ray sources near the Galactic center detected by the Chandra X-ray Observatory. We have confirmed 16 new massive stellar counterparts to the X-ray population, including nitrogen-type (WN) and carbon-type (WC) Wolf-Rayet stars, and O supergiants. For the majority of these sources, the X-ray photometry is consistent with thermal emission from plasma having temperatures in the range of kT=1-8 keV or non-thermal emission having power-law indices in the range of -1X-ray luminosities in the range of Lx~1e32-1e34 erg/s. Several sources have exhibited X-ray variability of several factors between separate observations. The X-ray properties are not a ubiquitous feature of single massive stars but are typical of massive binaries, in which the high-energy emission is generated by the collision of supersonic winds, or by accretion onto a compact companion. However, the possibility of intrinsic hard X-ray generation from...

  14. The Chandra Local Volume Survey I: The X-ray Point Source Populations of NGC 55, NGC 2403, and NGC 4214

    CERN Document Server

    Binder, B; Eracleous, M; Plucinsky, P P; Gaetz, T J; Anderson, S F; Skillman, E D; Dalcanton, J J; Kong, A K H; Weisz, D R

    2015-01-01

    We present comprehensive X-ray point source catalogs of NGC~55, NGC~2403, and NGC~4214 as part of the Chandra Local Volume Survey. The combined archival observations have effective exposure times of 56.5 ks, 190 ks, and 79 ks for NGC~55, NGC~2403, and NGC~4214, respectively. When combined with our published catalogs for NGC 300 and NGC 404, our survey contains 629 X-ray sources total down to a limiting unabsorbed luminosity of $\\sim5\\times10^{35}$ erg s$^{-1}$ in the 0.35-8 keV band in each of the five galaxies. We present X-ray hardness ratios, spectral analysis, radial source distributions, and an analysis of the temporal variability for the X-ray sources detected at high significance. To constrain the nature of each X-ray source, we carried out cross-correlations with multi-wavelength data sets. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections to provide preliminary classifications for each X-ray source as a likely X-ray binary, background AGN, su...

  15. Research of laser plasma X-ray spectrum from spherical targets

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, P.D. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation); Gusikhina, I.A. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation); Lobanova, Yu.L. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation); Zhidkov, N.V. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation); Subbotin, A.N. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation)]. E-mail: subbotin@otd470.vniief.ru; Tsoi, E.S. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation)

    2007-05-21

    The paper describes the results of measurements carried out at VNIIEF on a laser facility ISKRA-5 with spherical targets of different type. Spectra of X-rays are measured with the aid of cylindrical Ni/C multilayer mirror (MM). To absolutely normalize the results of spectral measurements, there is additionally registered X-rays by semiconductor detectors with different filters. Detectors' serviceability at operation in the mode of deep current saturation is demonstrated. Experimental and calculation data of spectrum of target X-rays are presented and compared.

  16. [Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].

    Science.gov (United States)

    Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan

    2010-04-01

    Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.

  17. Testing for Shock-Heated X-Ray Gas around Compact Steep Spectrum Radio Galaxies

    Science.gov (United States)

    Noel-Storr, Jacob; O'Dea, Christopher; Worrall, Diana M.; Clarke, Tracy E.; Tremblay, Grant; Baum, Stefi; Christiansen, Kevin; Mullarkey, Christopher; Mittal, Rupal

    2017-01-01

    We present Chandra and XMM-Newton X-ray, VLA radio, and optical observations of two CSS radio galaxies. B3 1445+410 is a low excitation emission line galaxy with possibly a hybrid FRI/II (or Fat Double) radio morphology. The Chandra observations are point-like and well fit with a power-law consistent with emission from a Doppler boosted core. PKS B1017-325 is a galaxy with a bent double radio morphology. The XMM-Newton observations are consistent with an ISM with a contribution from hot shocked gas. We compile selected radio and X-ray properties of the nine CSS radio galaxies with X-ray detections so far. We find that 1/3 show evidence for hot shocked gas. We note that the counts in the sources are low and the properties of the 3 sources with evidence for hot shocked gas are typical of the other CSS radio galaxies. We suggest that hot shocked gas may be typical of CSS radio galaxies due to their propagation through their host galaxies.

  18. The X-ray spectrum of RX J1914.4+2456 revisited

    CERN Document Server

    Ramsay, Gavin

    2007-01-01

    It has been proposed that RX J1914.4+2456 is a stellar binary system with an orbital period of 9.5 mins. As such it shares many similar properties with RX J0806.3+1527 (5.4 mins). However, while the X-ray spectrum of RX J0806.3+1527 can be modelled using a simple absorbed blackbody, the X-ray spectrum of RX J1914.4+2456 has proved difficult to fit using a physically plausible model. In this paper we re-examine the available X-ray spectra of RX J1914.4+2456 taken using XMM-Newton. We find that the X-ray spectra can be fitted using a simple blackbody and an absorption component which has a significant enhancement of neon compared to the solar value. We propose that the material in the inter-binary system is significantly enhanced with neon. This makes its intrinsic X-ray spectrum virtually identical to RX J0806.3+1527. We re-access the X-ray luminosity of RX J1914.4+2456 and the implications of these results.

  19. Chandra Studies of the X-ray Gas Properties of Fossil Systems

    CERN Document Server

    Qin, Zhenzhen

    2015-01-01

    We study ten galaxy groups and clusters suggested in the literature to be "fossil system (FS)" based on \\chandra\\ observations. According to the $M_{500}-T$ and $L_{\\rm X}-T$ relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the $f_{\\rm gas,~2500}-T$ relation and find that the FS exhibits same as ordinary systems. The gas densities of FSs within $0.1r_{200}$, are $\\sim 10^{-3}$ cm$^{-3}$, which is the same order as galaxy clusters. The entropies within $0.1r_{200}$ ($S_{0.1r_{200}}$) of FSs are systematically lower than those in ordinary galaxy groups which is consistent with previous report, but we find their $S_{0.1r_{200}}-T$ relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk, \\& White model in $(0.1-1)r_{200}$, and the relation between scale radius $r_{\\rm s}$ and characteristic mass density $ta_{\\rm c}$ indicates the self-similarity of dark matter halos of FSs....

  20. Chandra Studies of the X-ray gas properties of fossil systems

    Science.gov (United States)

    Qin, Zhen-Zhen

    2016-03-01

    We study ten galaxy groups and clusters suggested in the literature to be “fossil systems (FSs)” based on Chandra observations. According to the M500 - T and LX - T relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the fgas, 2500 - T relation and find that the FSs exhibit the same trend as ordinary systems. The gas densities of FSs within 0.1r200 are ˜ 10-3 cm-3, which is the same order of magnitude as galaxy clusters. The entropies within 01r200 (S0.1r200) of FSs are systematically lower than those inordinary galaxy groups, which is consistent with previous reports, but we find their S0.1r200 - T relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk and White model in (0.1 - 1)r200, and the relation between scale radius rs and characteristic mass density δc indicates self-similarity of dark matter halos of FSs. The ranges of rs and δc for FSs are also close to those of galaxy clusters. Therefore, FSs share more common characteristics with galaxy clusters. The special birth place of the FS makes it a distinct type of galaxy system.

  1. MOG Weak Field Approximation: A Modified Gravity Compatible with Chandra X-ray Clusters

    CERN Document Server

    Moffat, J W

    2013-01-01

    We use the covariant Scalar-Vector-Tensor theory of gravity (so-called MOG), in the weak field approximation limit to study the dynamics of clusters of galaxies. The ionized gas density and the temperature profile of the clusters are our observables, which have been measured by the Chandra telescope for the nearby clusters. The MOG effective gravitational potential in the weak field approximation is composed of attractive Newtonian and repulsive Yukawa terms. Two parameters $\\alpha$ and $\\mu$ in the effective potential determine the asymptotic gravitational constant and the mass of the vector field, respectively. These parameters have been fixed by fitting MOG dynamics to the rotation curves of galaxies. Our analysis shows that the internal dynamics of clusters can be well explained within $1\\sigma$ with a virial theorem in the framework of MOG, such that the best fit for the ratio of the dynamical mass to the baryonic mass is: $M_{\\rm dyn}/M_{\\rm b} = 0.98^{+0.02}_{-0.02}$. This result means that MOG is a th...

  2. Chandra X-Ray Observations of Young Clusters. III. NGC 2264 and the Orion Flanking Fields

    CERN Document Server

    Rebull, L M; Micela, G; Ramírez, S V; Sciortino, S; Stauffer, J R; Strom, S E; Wolff, S C

    2006-01-01

    Chandra observations of solar-like pre-main sequence (PMS) stars in the Orion Flanking Fields (age ~1 Myr) and NGC 2264 (~3 Myr) are compared with the results of the COUP survey of similar objects in the ONC (~0.5 Myr). The correlations between log Lx and mass found for PMS stars on convective tracks in these clusters are consistent with the relationships found for the ONC, indicating little change in the median values of either log Lx or log Lx/Lbol during the first ~3-5 Myr of evolution down convective tracks. The fraction of stars with extreme values of Lx, more than 10 times higher than the average for a given Lbol or with log Lx/Lbol greater than the canonical saturation value of -2.9, is however larger by a factor of two in the younger ONC when compared with the Orion FF and NGC 2264. PMS stars in NGC 2264 on radiative tracks have Lx/Lbol values that are systematically lower by a factor of ~10 times than those found for stars of similar mass on convective tracks. The dramatic decrease in flux from conve...

  3. Monte Carlo simulations for 20 MV X-ray spectrum reconstruction of a linear induction accelerator

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; LI Qin; JIANG Xiao-Guo

    2012-01-01

    To study the spectrum reconstruction of the 20 MV X-ray generated by the Dragon-I linear induction accelerator,the Monte Carlo method is applied to simulate the attenuations of the X-ray in the attenuators of different thicknesses and thus provide the transmission data.As is known,the spectrum estimation from transmission data is an ill-conditioned problem.The method based on iterative perturbations is employed to derive the X-ray spectra,where initial guesses are used to start the process.This algorithm takes into account not only the minimization of the differences between the measured and the calculated transmissions but also the smoothness feature of the spectrum function.In this work,various filter materials are put to use as the attenuator,and the condition for an accurate and robust solution of the X-ray spectrum calculation is demonstrated.The influences of the scattering photons within different intervals of emergence angle on the X-ray spectrum reconstruction are also analyzed.

  4. The Field X-ray AGN Fraction to z=0.7 from the Chandra Multiwavelength Project and the Sloan Digital Sky Survey

    CERN Document Server

    Haggard, Daryl; Anderson, Scott F; Constantin, Anca; Aldcroft, Tom L; Kim, Dong-Woo; Barkhouse, Wayne A

    2010-01-01

    We employ the Chandra Multiwavelength Project (ChaMP) and the Sloan Digital Sky Survey (SDSS) to study the fraction of X-ray-active galaxies in the field out to z = 0.7. We utilize spectroscopic redshifts from SDSS and ChaMP, as well as photometric redshifts from several SDSS catalogs, to compile a parent sample of more than 100,000 SDSS galaxies and nearly 1,600 Chandra X-ray detections. Detailed ChaMP volume completeness maps allow us to investigate the local fraction of active galactic nuclei (AGN), defined as those objects having broad-band X-ray luminosities L_X (0.5-8 keV) > 10^42 erg s^-1, as a function of absolute optical magnitude, X-ray luminosity, redshift, mass, and host color/morphological type. In five independent samples complete in redshift and i-band absolute magnitude, we determine the field AGN fraction to be between 0.16 +/- 0.06% (for z M_i > -20) and 3.80 +/- 0.92% (for z < 0.7 and M_i < -23). We find striking agreement between our ChaMP/SDSS field AGN fraction and the Chandra clu...

  5. Astrophysical Fluids of Novae: High Resolution Pre-decay X-ray spectrum of V4743 Sagittarii

    CERN Document Server

    Ramírez-Velasquez, J M

    2016-01-01

    Eight X-ray observations of V4743 Sgr (2002), observed with Chandra and XMM-Newton are presented. The nova turned off some time between days 301.9 and 371, and the X-ray flux subsequently decreased from day 301.9 to 526 following an exponential decline time scale of $(96 \\pm 3)$ days. We use the absorption lines present in the SSS spectrum for diagnostic purposes, and characterize the physics and the dynamics of the expanding atmosphere during the explosion of the nova. The information extracted from this first stage is then used as input for computing full photoionization models of the ejecta in V4743 Sgr. The SSS spectrum is modeled with a simple black-body and multiplicative Gaussian lines, which provides us of a general kinematical picture of the system, before it decays to its faint phase (Ness et al. 2003). In the grating spectra taken between days 180.4 and 370, we can resolve the line profiles of absorption lines arising from H-like and He-like C, N, and O, including transitions involving higher princ...

  6. Behavior of the x-ray spectrum of multiply charged ions during forced plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.G.; Marchenko, V.S.

    1982-07-01

    The behavior of the x-ray emission spectrum of a dense plasma during forced expansion is studied. The optical transparency of the plasma varies during the expansion. The plasma emission spectrum integrated over the expansion time is calculated from the analytic solutions of the equations. The intensity of the line emission is calculated in the average-ion approximation.

  7. A Chandra/ACIS Study of 30 Doradus II. X-ray Point Sources in the Massive Star Cluster R136 and Beyond

    CERN Document Server

    Townsley, L K; Feigelson, E D; Garmire, G P; Getman, K V

    2006-01-01

    We have studied the X-ray point source population of the 30 Doradus star-forming complex in the Large Magellanic Cloud using high-spatial-resolution X-ray images and spatially-resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. Here we describe the X-ray sources in a 17' x 17' field centered on R136, the massive star cluster at the center of the main 30 Dor nebula. We detect 20 of the 32 Wolf-Rayet stars in the ACIS field. R136 is resolved at the subarcsecond level into almost 100 X-ray sources, including many typical O3--O5 stars as well as a few bright X-ray sources previously reported. Over two orders of magnitude of scatter in L_X is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and binarity of each system, rather than reflecting the widely-reported characteristic value L_X/L_bol ~ 10^{-7}. Such a canonical ratio may exist for single massive stars in R136, ...

  8. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: The AGN Fraction and X-ray Properties of Submillimeter Galaxies

    CERN Document Server

    Wang, S X; Luo, B; Smail, I; Alexander, D M; Danielson, A L R; Hodge, J A; Karim, A; Lehmer, B D; Simpson, J M; Swinbank, A M; Walter, F; Wardlow, J L; Xue, Y Q; Chapman, S C; Coppin, K E K; Dannerbauer, H; De Breuck, C; Menten, K M; van der Werf, P

    2013-01-01

    The large gas and dust reservoirs of submm galaxies (SMGs) could potentially provide ample fuel to trigger an Active Galactic Nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with ALMA and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submm-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey (ALESS). We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which 8 were identified as AGNs using several techniques that enable cross-checking. The other 2 X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by the...

  9. A Chandra Perspective On Galaxy-Wide X-ray Binary Emission And Its Correlation With Star Formation Rate And Stellar Mass: New Results From Luminous Infrared Galaxies

    CERN Document Server

    Lehmer, B D; Bauer, F E; Brandt, W N; Goulding, A D; Jenkins, L P; Ptak, A; Roberts, T P

    2010-01-01

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D < 60 Mpc and low Galactic column densities of N_H < 5 X 10^20 cm^-2. The LIRGs in our sample have total infrared (8-1000um) luminosities in the range of L_IR ~ (1-8) X 10^11 L_sol. The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei (AGNs) and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star-formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M*) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (LX) traces the combined emission from high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs), and that the power output from these components are linearly correlated with SFR and M*, respectively, we constrain the relation ...

  10. Reconstruction of the X-ray tube spectrum from a scattering measurement

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jorge E., E-mail: jorge.fernandez@unibo.it [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Scot, Viviana [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Bare, Jonathan [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Laboratory of Nuclear and Radiological Physics, Institut Superieur Industriel de Bruxelles (ISIB) (Belgium); Tondeur, Francois [Laboratory of Nuclear and Radiological Physics, Institut Superieur Industriel de Bruxelles (ISIB) (Belgium); Gallardo, Sergio; Rodenas, Jose [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia (Spain); Rossi, Pier Luca [Operational Unit of Health Physics, Alma Mater Studiorum University of Bologna (Italy)

    2012-07-15

    An inverse technique has been designed to unfold the x-ray tube spectrum from the measurement of the photons scattered by a target interposed in the path of the beam. A special strategy is necessary to circumvent the ill-conditioning of the forward transport algebraic problem. The proposed method is based on the calculation of both, the forward and adjoint analytical solutions of the Boltzmann transport equation. After testing the method with numerical simulations, a simple prototype built at the Operational Unit of Health Physics of the University of Bologna was used to test the method experimentally. The reconstructed spectrum was validated by comparison with a straightforward measurement of the X-ray beam. The influence of the detector was corrected in both cases using standard unfolding techniques. The method is capable to accurately characterize the intensity distribution of an X-ray tube spectrum, even at low energies where other methods fail. - Highlights: Black-Right-Pointing-Pointer A complete inverse technique of source unfolding is presented. Black-Right-Pointing-Pointer The X-ray tube spectrum is recovered from a scattering measurement. Black-Right-Pointing-Pointer The ill conditioning of the plain forward transport algebraic problem is avoided. Black-Right-Pointing-Pointer Forward and adjoint solutions of the Boltzmann transport equation are used. Black-Right-Pointing-Pointer The technique characterizes X-ray tube spectra even at low energies.

  11. Monitoring the Health and Safety of the ACIS Instrument On-Board the Chandra X-ray Observatory

    CERN Document Server

    Virani, S N; De Pasquale, J M; Plucinsky, P P; Virani, Shanil N.; Ford, Peter G.; Pasquale, Joseph M. De; Plucinsky, Paul P.

    2002-01-01

    The Chandra X-ray Observatory (CXO), NASA's latest ``Great Observatory'', was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (~2.65 days). Communication with the CXO nominally consists of 1-hour contacts spaced 8-hours apart. Thus, once a communication link has been established, it is very important that the health and safety status of the scientific instruments as well as the Observatory itself be determined as quickly as possible. In this paper, we focus exclusively on the automated health and safety monitoring scripts developed for the Advanced CCD Imaging Spectrometer (ACIS) to use during those 1-hour contacts. ACIS is one of the two focal plane instruments on-board the CXO. We present an overview of the real-time ACIS Engineering Data Web Page and the alert schemes developed for monitoring the instrument status during each communication contact. A suite of ...

  12. Cosmic Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence from Chandra X-ray Observations

    CERN Document Server

    Warren, J S; Badenes, C; Ghavamian, P; McKee, C F; Moffett, D; Plucinsky, P P; Rakowski, C; Reynoso, E; Slane, P O

    2005-01-01

    We present evidence for cosmic ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamical models of SNR evolution. The CD:BW ratio can be explained if cosmic ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Ka emission from the T...

  13. Chandra X-ray Observations of the 0.6 < z < 1.1 Red-Sequence Cluster Survey Sample

    CERN Document Server

    Hicks, Amalia K; Bautz, Mark; Cain, Benjamin; Gilbank, David; Gladders, M D; Hoekstra, Henk; Yee, Howard; Garmire, Gordon

    2007-01-01

    We present the results of Chandra observations of 13 optically-selected clusters with 0.63; though 3 were not observed long enough to support detailed analysis. Surface brightness profiles are fit to beta-models. Integrated spectra are extracted within R(2500), and Tx and Lx information is obtained. We derive gas and total masses within R(2500) and R(500). Cosmologically corrected scaling relations are investigated, and we find the RCS clusters to be consistent with self-similar scaling expectations. However discrepancies exist between the RCS sample and lower-z X-ray selected samples for relationships involving Lx, with the higher-z RCS clusters having lower Lx for a given Tx. In addition, we find that gas mass fractions within R(2500) for the high-z RCS sample are lower than expected by a factor of ~2. This suggests that the central entropy of these high-z objects has been elevated by processes such as pre-heating, mergers, and/or AGN outbursts, that their gas is still infalling, or that they contain compar...

  14. The X-ray variability of NGC 6814 - Power spectrum

    Science.gov (United States)

    Done, C.; Madejski, G. M.; Mushotzky, R. F.; Turner, T. J.; Koyama, K.; Kunieda, H.

    1992-01-01

    The existence of the periodic component seen in NGC 6814 with Exosat at 12,000 +/- 100 s is confirmed by a power spectrum and folded light curve analysis of unevenly sampled Ginga data. A comparison of the power spectra produced from simulated light curves with that observed enables the intrinsic shape of the power spectrum of the source to be determined despite the distortions introduced by the window function. The best estimate for the period is 12,132 +/- 3 s, where the error is that derived from simulations. An upper limit to the rate of change of period of about 10 exp -9 is inferred if the light curves are truly phase-coherent, but as this is not required by the data, the conservative upper limit is not greater than 5 x 10 exp -7. The large amount of power in the periodic component and its stability both suggest occultation of the source as its origin.

  15. High-Energy Processes in Young Stars: Chandra X-ray Spectroscopy of HDE 283572, RY Tau, and LkCa 21

    CERN Document Server

    Audard, M; Smith, K W; Güdel, M; Pallavicini, R; Audard, Marc; Skinner, Stephen L.; Smith, Kester W.; Guedel, Manuel; Pallavicini, Roberto

    2004-01-01

    Weak-lined T Tauri stars (WTTS) represent the important stage of stellar evolution between the accretion phase and the zero-age main sequence. At this stage, the star decouples from its accretion disk, and spins up to a higher rotation rate than in the preceding classical T Tauri phase. Consequently, dynamo processes can be expected to become even stronger at this stage. High energy processes can have effects on the remaining circumstellar material, possibly including protoplanets and planetesimals, and these effects may account for certain observable properties of asteroids in the current solar system. Chandra observed for 100 ks the WTTS HDE 283572 which probes the PMS stage of massive A-type stars. We present first results of the analysis of its high-resolution X-ray spectrum obtained with the High-Energy Transmission Grating Spectrometer. A wide range of Fe lines of high ionization states are observed, indicating a continuous emission measure distribution. No significant signal is detected longward of the...

  16. A Chandra X-ray study of the young star cluster NGC 6231: low-mass population and initial mass function

    CERN Document Server

    Damiani, F; Sciortino, S

    2016-01-01

    NGC6231 is a massive young star cluster, near the center of the Sco OB1 association. While its OB members are well studied, its low-mass population has received little attention. We present high-spatial resolution Chandra ACIS-I X-ray data, where we detect 1613 point X-ray sources. Our main aim is to clarify global properties of NGC6231 down to low masses through a detailed membership assessment, and to study the cluster stars' spatial distribution, the origin of their X-ray emission, the cluster age and formation history, and initial mass function. We use X-ray data, complemented by optical/IR data, to establish cluster membership. The spatial distribution of different stellar subgroups also provides highly significant constraints on cluster membership, as does the distribution of X-ray hardness. We perform spectral modeling of group-stacked X-ray source spectra. We find a large cluster population down to ~0.3 Msun (complete to ~1 Msun), with minimal non-member contamination, with a definite age spread (1-8 ...

  17. The Evolution of Normal Galaxy X-ray Emission Through Cosmic History: Constraints from the 6 Ms Chandra Deep Field-South

    CERN Document Server

    Lehmer, B D; Mineo, S; Brandt, W N; Eufrasio, R T; Fragos, T; Hornschemeier, A E; Luo, B; Xue, Y Q; Bauer, F E; Gilfanov, M; Ranalli, P; Schneider, D P; Shemmer, O; Tozzi, P; Trump, J R; Vignali, C; Wang, J -X; Yukita, M; Zezas, A

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from $z \\approx$ 0-7 using local galaxies and galaxy samples in the 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed- frame < 1 keV emission at $z < 1$. We show that a single scaling relation between X-ray luminosity ($L_{\\rm X}$) and star-formation rate (SFR) is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass ($M_\\star$) and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at $z \\approx$ 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) an...

  18. The Chandra Planetary Nebulae Survey (ChanPlaNS): III. X-ray Emission from the Central Stars of Planetary Nebulae

    CERN Document Server

    Montez, R; Balick, B; Behar, E; Blackman, E; Bujarrabal, V; Chu, Y -H; Corradi, R L M; De Marco, O; Frank, A; Freeman, M; Frew, D J; Guerrero, M A; Jones, D; Lopez, J A; Miszalski, B; Nordhaus, J; Parker, Q A; Sahai, R; Sandin, C; Schonberner, D; Soker, N; Sokoloski, J L; Steffen, M; Toalá, J A; Ueta, T; Villaver, E; Zijlstra, A

    2014-01-01

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey (ChanPlaNS) observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively "hard" ($\\geq0.5$~keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically-thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, $L_{\\rm X}$, that appear uncorrelated with the CSPN bolometric luminosity, $L_{\\rm bol}$; and (2) lower-temperature plasmas with $L_{\\rm X}/L_{\\rm bol}\\sim10^{-7}$. We suggest these two classes correspond to the physical processes of magnetically active binary comp...

  19. New Constraints on Dark Energy from Chandra X-rayObservations of the Largest Relaxed Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Allen, S.W.; Rapetti, D.A.; /KIPAC, Menlo Park; Schmidt, R.W.; /Heidelberg, Astron. Rechen Inst.; Ebeling, H.; /Inst. Astron., Honolulu; Morris, G.; /KIPAC, Menlo Park; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2007-06-06

    We present constraints on the mean matter density, {Omega}{sub m}, dark energy density, {Omega}{sub DE}, and the dark energy equation of state parameter, w, using Chandra measurements of the X-ray gas mass fraction (fgas) in 42 hot (kT > 5keV), X-ray luminous, dynamically relaxed galaxy clusters spanning the redshift range 0.05 < z < 1.1. Using only the fgas data for the 6 lowest redshift clusters at z < 0.15, for which dark energy has a negligible effect on the measurements, we measure {Omega}{sub m}=0.28{+-}0.06 (68% confidence, using standard priors on the Hubble Constant, H{sub 0}, and mean baryon density, {Omega}{sub b}h{sup 2}). Analyzing the data for all 42 clusters, employing only weak priors on H{sub 0} and {Omega}{sub b}h{sup 2}, we obtain a similar result on {Omega}{sub m} and detect the effects of dark energy on the distances to the clusters at {approx}99.99% confidence, with {Omega}{sub DE}=0.86{+-}0.21 for a non-flat LCDM model. The detection of dark energy is comparable in significance to recent SNIa studies and represents strong, independent evidence for cosmic acceleration. Systematic scatter remains undetected in the f{sub gas} data, despite a weighted mean statistical scatter in the distance measurements of only {approx}5%. For a flat cosmology with constant w, we measure {Omega}{sub m}=0.28{+-}0.06 and w=-1.14{+-}0.31. Combining the fgas data with independent constraints from CMB and SNIa studies removes the need for priors on {Omega}{sub b}h{sup 2} and H{sub 0} and leads to tighter constraints: {Omega}{sub m}=0.253{+-}0.021 and w=-0.98{+-}0.07 for the same constant-w model. More general analyses in which we relax the assumption of flatness and/or allow evolution in w remain consistent with the cosmological constant paradigm. Our analysis includes conservative allowances for systematic uncertainties. The small systematic scatter and tight constraints bode well for future dark energy studies using the f{sub gas} method.

  20. Chandra Discovery of 10 New X-Ray Jets Associated With FR II Radio Core-Selected AGNs in the MOJAVE Sample

    CERN Document Server

    Hogan, Brandon; Kharb, Preeti; Marshall, Herman; Cooper, Nathan

    2011-01-01

    The Chandra X-ray observatory has proven to be a vital tool for studying high-energy emission processes in jets associated with Active Galactic Nuclei (AGN).We have compiled a sample of 27 AGN selected from the radio flux-limited MOJAVE (Monitoring of Jets in AGN with VLBA Experiments) sample of highly relativistically beamed jets to look for correlations between X-ray and radio emission on kiloparsec scales. The sample consists of all MOJAVE quasars which have over 100 mJy of extended radio emission at 1.4 GHz and a radio structure of at least 3" in size. Previous Chandra observations have revealed X-ray jets in 11 of 14 members of the sample, and we have carried out new observations of the remaining 13 sources. Of the latter, 10 have Xray jets, bringing the overall detection rate to ~ 78%. Our selection criteria, which is based on highly compact, relativistically beamed jet emission and large extended radio flux, thus provides an effective method of discovering new X-ray jets associated with AGN. The detect...

  1. Chandra observation of an unusually long and intense X-ray flare from a young solar-like star in M78

    CERN Document Server

    Grosso, N; Feigelson, E D; Forbes, T G

    2004-01-01

    LkHA312 has been observed serendipitously with the ACIS-I detector on board Chandra with 26h continuous exposure. This H_alpha emission line star belongs to the star-forming region M78 (NGC2068). From the optical and NIR data, we show that it is a pre-main sequence (PMS) low-mass star with a weak NIR excess. This genuine T Tauri star displayed an X-ray flare with an unusual long rise phase (~8h). The X-ray emission was nearly constant during the first 18h of the observation, and then increased by a factor of 13 during a fast rise phase (~2h), and reached a factor of 16 above the quiescent X-ray level at the end of a gradual phase (~6h) showing a slower rise. To our knowledge this flare, with \\~0.4-~0.5 cts/s, has the highest count rate observed so far with Chandra from a PMS low-mass star. By chance, the source position, 8.2' off-axis, protected this observation from pile-up. We make a spectral analysis of the X-ray emission versus time, showing that the plasma temperature of the quiescent phase and the flare...

  2. A Chandra study of X-ray sources in the field of the z=2.16 radio galaxy MRC 1138-262

    CERN Document Server

    Pentericci, L; Carilli, C L; Harris, D E; Miley, G K; Röttgering, H J A

    2002-01-01

    We present results from a Chandra X-ray Observatory study of the field X-ray source population in the vicinity of the radio galaxy MRC 1138-262. Many serendipitous X-ray sources are detected in an area of 8'x8' around the radio source and 90% are identified in our deep VLT images. The space density of such sources is higher than expected on the basis of the statistics of ROSAT and Chandra deep surveys. The most likely explanation is in terms of a concentration of AGN associated with the protocluster at z=2.16 which was found around the radio galaxy in previous studies. Two sources have a confirmed spectroscopic redshift close to that of the radio galaxy, and for three more sources other observations suggest that they are associated with the protocluster. Four of these five X-ray sources form, together with the radio galaxy, a filament in the plane of the sky. The direction of the filament is similar to that of the radio source axis, the large scale distribution of the other protocluster members, the 150 kpc-s...

  3. Chandra X-ray Observatory Arcsecond Imaging of the Young, Oxygen-rich Supernova Remnant 1E0102.2-7219

    CERN Document Server

    Gaetz, T J; Edgar, R J; Eriksen, K A; Plucinsky, P P; Schlegel, E M; Smith, R K; Butt, Yousaf M.; Edgar, Richard J.; Eriksen, Kristoffer A.; Plucinsky, Paul P.; Schlegel, Eric M.; Smith, Randall K.

    2000-01-01

    We present observations of the young, Oxygen-rich supernova remnant 1E0102.2-7219 taken by the Chandra X-ray Observatory during Chandra's Orbital Activation and Checkout phase. The boundary of the blast wave shock is clearly seen for the first time, allowing the diameter of the remnant and the mean blast wave velocity to be accurately determined. The prominent X-ray bright ring of material may be the result of the reverse shock encountering ejecta; the radial variation of O VII vs. O VIII emission indicates an ionizing shock propagating inwards, possibly through a strong density gradient in the ejecta. We compare the X-ray emission to Australia Telescope Compact Array 6 cm radio observations (Amy and Ball 1993) and to archival Hubble Space Telescope [O III] observations. The ring of radio emission is predominantly inwards of the outer blast wave, consistent with an interpretation as synchrotron radiation originating behind the blast wave, but outwards of the bright X-ray ring of emission. Many (but not all) o...

  4. A phenomenological model for the X-ray spectrum of Nova V2491 Cygni

    CERN Document Server

    Pinto, Ciro; Verbunt, Frank; Kaastra, Jelle S; Costantini, Elisa; Detmers, Rob G

    2012-01-01

    The X-ray flux of Nova V2491 Cyg reached a maximum some forty days after optical maximum. The X-ray spectrum at that time, obtained with the RGS of XMM-Newton, shows deep, blue-shifted absorption by ions of a wide range of ionization. We show that the deep absorption lines of the X-ray spectrum at maximum, and nine days later, are well described by the following phenomenological model with emission from a central blackbody and from a collisionally ionized plasma (CIE). The blackbody spectrum (BB) is absorbed by three main highly-ionized expanding shells; the CIE and BB are absorbed by cold circumstellar and interstellar matter that includes dust. The outflow density does not decrease monotonically with distance. The abundances of the shells indicate that they were ejected from an O-Ne white dwarf. We show that the variations on time scales of hours in the X-ray spectrum are caused by a combination of variation in the central source and in the column density of the ionized shells. Our phenomenological model gi...

  5. Beyond Chandra (towards the X-ray Surveyor mission): possible solutions for the implementation of very high angular resolution X-ray telescopes in the new millennium based on fused silica segments

    Science.gov (United States)

    Pareschi, G.; Basso, S.; Civitani, M. M.; Ghigo, M.; Parodi, G.; Pelliciari, C.; Salmaso, B.; Spiga, D.; Vecchi, G.

    2016-07-01

    An important challenge for the X-ray astronomy of the new millennium is represented by the implementation of an Xray telescope able to maintain the exquisite angular resolution of Chandra (with a sub-arcsec HEW, on-axis) but, at the same time, being characterized by a much larger throughput and grasp. A mission with similar characteristics is represented by the X-ray Surveyor Mission. The project has been recently proposed in USA and is being currently studied by NASA. It will host an X-ray telescope with an effective area of more than 2 square meters at 1 keV (i.e. 30 times greater than Chandra) and a 15-arcminutes field-of-view, with 1-arcsecond or better half-power diameter (versus the 4 arcmin diameter of Chandra). While the scientific reasons for implementing a similar mission are clear, being related to compelling problems like e.g. the formation and subsequent growth of black hole seeds at very high redshift or the identification of the first galaxy groups and proto-clusters, the realization of a grazing-angle optics system able to fulfil these specs remain highly challenging. Different technologies are being envisaged, like e.g. the use of adjustable segmented mirrors (with use of piezoelectric or magneto-restrictive film actuators on the back surface) or the direct polishing of a variety of thin substrates or the use of innovative correction methods like e.g. differential deposition, ionfiguring or the correction of the profile via controlled stress films. In this paper we present a possible approach based on the direct polishing (with final ion figuring correction of the profile) of thin SiO2 segmented substrates (typically 2 mm thick), discussing different aspects of the technology under implementation and presenting some preliminary results.

  6. The Plerionic Supernova Remnant G21.5-0.9 Powered by PSR J1833-1034: New Spectroscopic and Imaging Results Revealed with the Chandra X-ray Observatory

    Science.gov (United States)

    Matheson, Heather; Safi-Harb, Samar

    2010-11-01

    In 1999, the Chandra X-ray Observatory revealed a 150'' radius halo surrounding the 40'' radius pulsar wind nebula (PWN) G21.5-0.9. A 2005 imaging study of G21.5-0.9 showed that the halo is limb-brightened and suggested that this feature is a candidate for the long-sought supernova remnant (SNR) shell. We present a spectral analysis of SNR G21.5-0.9, using the longest effective observation to date (578.6 ks with the Advanced CCD Imaging Spectrometer (ACIS) and 278.4 ks with the High-Resolution Camera (HRC)) to study unresolved questions about the spectral nature of remnant features, such as the limb brightening of the X-ray halo and the bright knot in the northern part of the halo. The Chandra analysis favors the non-thermal interpretation of the limb. Its spectrum is fit well with a power-law model with a photon index Γ = 2.13 (1.94-2.33) and a luminosity of Lx (0.5-8 keV) = (2.3 ± 0.6) × 1033 erg s-1 (at an assumed distance of 5.0 kpc). An srcut model was also used to fit the spectrum between the radio and X-ray energies. While the absence of a shell in the radio still prohibits constraining the spectrum at radio wavelengths, we assume a range of spectral indices to infer the 1 GHz flux density and the rolloff frequency of the synchrotron spectrum in X-rays and find that the maximum energy to which electrons are accelerated at the shock ranges from ~60 to 130 TeV (B/10 μG)-1/2, where B is the magnetic field in units of μG. For the northern knot, we constrain previous models and find that a two-component power-law (or srcut) + pshock model provides an adequate fit, with the pshock model requiring a very low ionization timescale and solar abundances for Mg and Si. Our spectroscopic study of PSR J1833-1034, the highly energetic pulsar powering G21.5-0.9, shows that its spectrum is dominated by hard non-thermal X-ray emission with some evidence of a thermal component that represents ~9% of the observed non-thermal emission and that suggests non-standard rapid

  7. Cosmic-Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence from Chandra X-Ray Observations

    Science.gov (United States)

    Warren, Jessica S.; Hughes, John P.; Badenes, Carles; Ghavamian, Parviz; McKee, Christopher F.; Moffett, David; Plucinsky, Paul P.; Rakowski, Cara; Reynoso, Estela; Slane, Patrick

    2005-11-01

    We present evidence for cosmic-ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamic models of SNR evolution. The CD:BW ratio can be explained if cosmic-ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Kα emission from the Tycho ejecta, imply that the RS is not accelerating cosmic rays. We also extract radial profiles from ~34% of the rim of Tycho and compare them to models of surface brightness profiles behind the BW for a purely thermal plasma with an adiabatic shock. The observed morphology of the rim is much more strongly peaked than predicted by the model, indicating that such thermal emission is implausible here. Spectral analysis also implies that the rim emission is nonthermal in nature, lending further support to the idea that Tycho's forward shock is accelerating cosmic rays.

  8. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    Science.gov (United States)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; Mainieri, V.; Silverman, J.D.; Tozzi, P.; Wolf, C.

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  9. A theoretical method based on Fourier spectrum analysis for the focusing performances of the X-ray compound refractive lenses

    Institute of Scientific and Technical Information of China (English)

    Jian Ye(叶坚); Zichun Le(乐孜纯); Jingqiu Liang(梁静秋); Kai Liu(刘恺); Bisheng Quan(全必胜); Yali Qin(覃亚丽); Guangxin Zhu(朱广信)

    2004-01-01

    It is important to predict the intensity distribution in focusing plane for designing the X-ray compound refractive lenses. On the basis of analyzing the structure of X-ray compound lenses and comparing it with Fraunhofer diffraction system, it is concluded that the X-ray focusing system can be regarded as a kind of Fraunhofer diffraction system. Therefore, a method based on Fourier spectrum analysis is presented to predict the intensity distribution in the focusing plane for the X-ray lenses. A brief analysis on the relationship between the parameters of X-ray lenses and their focusing performance is also given in this paper.

  10. Simulations of X-ray spectrum and HVL for mammographic equipment using MCNP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rafael Toledo F. de; Alvarez, Matheus; Velo, Alexandre F.; Oliveira, Marcela de; Miranda, Jose Ricardo A. [Universidade Estadual Paulista Julio de mesquita Filho (UNESP), Botucatu, SP (Brazil). Inst. de Biociencias de Botucatu. Dept. de Fisica e Biofisica; Pina, Diana R. [Universidade Estadual Paulista Julio de mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Medicina. Dept. de Doencas Tropicais e Diagnostico por Imagem

    2012-07-01

    Full text: The main goal of mammography is early detection of breast cancer. Thus, the mammograph should be designed so that the X-ray photons are emitted within an appropriate energy range, to distinguish the normal breast tissue and cancerous tissue. The distribution of the photons amount of X-ray beam, with their respective energies, is called the spectrum. From the spectrum it is possible to estimate the quality of the X-ray beam from the Half Value Layer (HVL). Objectives: This study aims to simulate the Senographe 600T mammography unit, manufactured by General Electric (GE), using the MCNP5 Monte Carlo code, to obtain its spectrum and HVL, and compare the HVL of the simulated model with experimental data. Method: the mammography unit was simulated using a simplified model which a beam of 2x10{sup 8} electrons focuses on a Mo target angled 12 degrees, within a capsule filled with vacuum. The incident electrons were converted into photons. The capsule has a beryllium window, allowing the passage of the X-ray beam. The beam is detected by an air cylinder with 1 cm thickness placed 60 cm from the target. On the path of X-ray beam, is inserted a 0.03 mm Mo filter located 1.6 cm after the beryllium window. The space between the capsule and the detector cylinder was filled with air. The quality of X-ray beam was verified from the HVL using the MCNP5 code and the experimental method for the voltage range typically used in clinical routine (26-31 kVp). Results and discussion: the X-ray spectrum of the mammography device is satisfactorily simulated by MCNP5, showing the characteristic radiation peaks of molybdenum at 17.479 keV and 19.602 keV, the filtered spectrum generated by Bremsstrahlung, and reducing the total number of photons with the decrease in applied tension (kVp). The HVL obtained by MCNP5 and experimental measurements show a maximum difference of 5.31% (for 31 kVp). The result of both methods are within acceptable limits established by national

  11. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    Science.gov (United States)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu 103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  12. XMM-Newton and Chandra X-ray follow-up observations of the VHE gamma-ray source HESS J1507-622

    CERN Document Server

    Tibolla, O; Kosack, K

    2014-01-01

    Context. The discovery of the unique source HESS J1507-622 in the very high energy (VHE) range (100 GeV-100 TeV) opened new possibilities to study the parent population of ultra-relativistic particles found in astrophysical sources and underlined the possibility of new scenarios/mechanisms crucial for understanding the underlying astrophysical processes in nonthermal sources. Aims. The follow-up X-ray (0.2 - 10 keV) observations on HESS J1507-622 are reported, and possibilities regarding the nature of the VHE source and that of the newly discovered X-ray sources are investigated. Methods.We obtained bservations with the X-ray satellites XMM-Newton and Chandra. Background corrections were applied to the data to search for extended diffuse emission. Since HESS J1507-622 covers a large part of the field of view of these instruments, blank-sky background fields were used. Results. The discovery of several new X-ray sources and a new, faint, extended X-ray source with a flux of ~6e-14 erg cm^-2 s^-1 is reported. I...

  13. Constraining High Redshift X-ray Sources with Next Generation 21 cm Power Spectrum Measurements

    CERN Document Server

    Ewall-Wice, Aaron; Mesinger, Andrei; Dillon, Joshua S; Liu, Adrian; Pober, Jonathan

    2015-01-01

    We use the Fisher matrix formalism and semi-numerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high redshift intergalactic medium. Incorporating observations between $z=5$ and $z=25$, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing $\\lesssim 10\\%$ constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated "wedge" or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of ...

  14. Observations of a hard X-ray component in the spectrum of Nova Ophiuchi

    Science.gov (United States)

    Wilson, C. K.; Rothschild, R. E.

    1983-01-01

    The spectrum and time variation of Nova Ophiuchi (H1705-25) in the 10-200 keV range as measured by the UCSD/MIT instruments aboard HEAO 1 during the period 1977 August 25 to September 28 are reported. The composite curve is best fitted by a kT = 2 keV thin thermal bremsstrahlung model below 10 keV and a separate hard X-ray component fitted equally well by a power-law component with photon index 2.19 + or - 0.06 or a kT = 32.1 + or - 2.4 keV thermal bremsstrahlung model. This is the first observation of a hard tail in the spectrum of a transient X-ray source with sufficient statistical significance to allow a detailed study of its spectral and temporal variability. It is found that the intensity variations of the high-energy X-rays are consistent with the variability at lower energies (3-6 keV), but no hard X-ray spectral index variability is found on time scales from 2 days to 2 weeks. The results can be interpreted as due to accretion onto a neutron star (or possibly onto a black hole) that may also be surrounded by an extended corona.

  15. Extremely Weak Reflection Features in the X-ray Spectrum of XTE J1118+480 Possible Evidence for X-ray-Emitting Jets?

    CERN Document Server

    Miller, J M; Fabian, A C; Lewin, W H G

    2002-01-01

    We have simultaneously fit Chandra and RXTE spectra of the Galactic black hole XTE J1118+480 with three models for X-ray reflection. We explored a range of accretion disc ionizations (log(xi)=1-4; xi=L_X/nR^{2}) and iron abundances (0.10-1.00). Our fits with the constant density ionized disc models of Ross & Fabian indicate that less than 0.5 per cent (90 per cent confidence upper-limit) of the observed flux is reflected. Fits with the "pexrav" of model Magdziarz & Zdziarski indicate that the two-dimensional solid angle (Omega/2pi) subtended by the disc relative to a central source of incident hard X-rays is 0.01 +0.06 -0.01. A combination of the high inclination (i=81 degrees), Comptonization, and bulk velocities may each contribute to the low reflection fractions we have measured. The results are also consistent with extended jets being the source of the hard X-ray flux, as the disc would then represent a small solid angle as seen from the emission region.

  16. To understand the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    CERN Document Server

    Guo, Yan-Jun; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2014-01-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either magnetar model or fallback disk system. Using data from $\\it Suzaku$ and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs, 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by bulk-motion Comptonization (BMC) process as was first suggested by Tr$\\"u$mper et al., showing that the accretion scenario could be compatible with X-ray emission of AXPs/SGRs. HXMT simulations for BMC model show that the spectra would have discrepancies from power-law, especially the cutoff at $\\sim$ 200 keV. Thus future observations are promising to distinguish different models for the hard tail and may help us understand the nature of AXPs/SGRs.

  17. The energy spectrum of X-rays from rocket-triggered lightning

    Science.gov (United States)

    Arabshahi, S.; Dwyer, J. R.; Cramer, E. S.; Grove, J. E.; Gwon, C.; Hill, J. D.; Jordan, D. M.; Lucia, R. J.; Vodopiyanov, I. B.; Uman, M. A.; Rassoul, H. K.

    2015-10-01

    Although the production of X-rays from natural and rocket-triggered lightning leaders have been studied in detail over the last 10 years, the energy spectrum of the X-rays has never been well measured because the X-rays are emitted in very short but intense bursts that result in pulse pileup in the detectors. The energy spectrum is important because it provides information about the source mechanism for producing the energetic runaway electrons and about the electric fields that they traverse. We have recently developed and operated the first spectrometer for the energetic radiation from lightning. The instrument is part of the Atmospheric Radiation Imagery and Spectroscopy (ARIS) project and will be referred to as ARIS-S (ARIS Spectrometer). It consists of seven 3'' NaI(Tl)/photomultiplier tube scintillation detectors with different thicknesses of attenuators, ranging from no attenuator to more than 1'' of lead placed over the detector (all the detectors are in a 1/8'' thick aluminum box). Using X-ray pulses preceding 48 return strokes in 8 rocket-triggered lightnings, we found that the spectrum of X-rays from leaders is too soft to be consistent with Relativistic Runaway Electron Avalanche. It has a power law dependence on the energies of the photons, and the power index, λ, is between 2.5 and 3.5. We present the details of the design of the instrument and the results of the analysis of the lightning data acquired during the summer of 2012.

  18. X-Ray Ccds for Space Applications: Calibration, Radiation Hardness, and Use for Measuring the Spectrum of the Cosmic X-Ray Background

    Science.gov (United States)

    Gendreau, Keith Charles

    1995-01-01

    This thesis has two distinct components. One concerns the physics of the high energy resolution X-ray charge coupled devices (CCD) detectors used to measure the cosmic X-ray background (XRB) spectrum. The other involves the measurements and analysis of the XRB spectrum and instrumental background with these detectors on board the advanced satellite for cosmology and astrophysics (ASCA). The XRB has a soft component and a hard component divided at ~2 keV. The hard component is extremely isotropic, suggesting a cosmological origin. The soft component is extremely anisotropic. A galactic component most likely dominates the soft band with X-ray line emission due to a hot plasma surrounding the solar system. ASCA is one of the first of a class of missions designed to overlap the hard and soft X-ray bands. The X-ray CCD's energy resolution allows us to spectrally separate the galactic and cosmological components. Also, the resolution offers the ability to test several specific cosmological models which would make up the XRB. I have concentrated on models for the XRB origin which include active galactic nuclei (AGN) as principal components. I use ASCA data to put spectral constraints on the AGN synthesis model for the XRB. The instrumental portion of this thesis concerns the development and calibration of the X-ray CCDs. I designed, built and operated an X-ray calibration facility for these detectors. It makes use of a reflection grating spectrometer to measure absolute detection efficiency, characteristic absorption edge strengths, and spectral redistribution in the CCD response function. Part of my thesis research includes a study of radiation damage mechanisms in CCDs. This work revealed radiation damage-induced degradation in the spectral response to X-rays. It also uncovered systematic effects which affect both data analysis and CCD design. I have developed a model involving trap energy levels in the CCD band gap structure. These traps reduce the efficiency in which

  19. The statistical uncertainties on X-ray flux and spectral parameters from Chandra ACIS-I observations of faint sources: Application to the Cygnus OB2 Association

    CERN Document Server

    Albacete-Colombo, J F; Drake, J J; Wright, N J; Guarcello, M; Kashyap, V

    2016-01-01

    We investigate the uncertainties of fitted X-ray model parameters and fluxes for relatively faint Chandra ACIS-I source spectra. Monte-Carlo (MC) simulations are employed to construct a large set of 150,000 fake X-ray spectra in the low photon count statistics regime (from 20 to 350 net counts) using the XSPEC spectral model fitting package. The simulations employed both absorbed thermal (APEC) and non-thermal (power-law) models, in concert with the Chandra ACIS-I instrument response and interstellar absorption. Simulated X-ray spectra were fit assuming a wide set of different input parameters and C-statistic minimization criteria to avoid numerical artifacts in the accepted solutions. Results provide an error estimate for each parameter (absorption, NH, plasma temperature, kT, or power-law slope, Gamma, and flux, and for different background contamination levels. The distributions of these errors are studied as a function of the 1 sigma quantiles and we show how these correlate with different model parameter...

  20. Performance as Promised: How the Chandra X-ray Observatory Accomplished One of Nasa's Most Challenging Missions for Billions of Dollars Less than Originally Planned

    Science.gov (United States)

    Davidson, Greg; Hefner, Keith

    2004-01-01

    As the nation looks toward bold new ventures in space, the Chandra X-ray Observatory program offers an example of how billion-dollar missions can be successfully developed within tightening fiscal constraints. Chandra experienced many of challenges facing bold space programs (state-of-the-art technical requirements and budget-induced slips and restructurings), and yet the Chandra team achieved nearly all the originally envisioned performance for dramatically lower cost. This was accomplished by a combination of team- work, systems engineering, advanced technology insertion, and effective approaches for program implementation. A thorough tradeoff of science utility vs. cost led to the selection of a highly elliptical orbit with uncrewed robotic delivery, deployment, and maintenance. Progressive, focused technology demonstrations were accomplished prior to commitment of major resources to critical elements of the system design, such as the high resolution mirror assembly (HRMA). Pathfinder hardware was developed to reduce risks. A variety of schedule risk reduction measures were implemented and resulted in the X-ray calibration taking place exactly within five days of its originally planned date after after five years of development. The team worked together in an effective manner to contain requirements creep. reductions such as the ACIS-2 chip device. It is estimated that the above combination of measures achieved the avoidance of over $4B in costs, while enabling a highly successful mission.

  1. A CHANDRA-VLA INVESTIGATION OF THE X-RAY CAVITY SYSTEM AND RADIO MINI-HALO IN THE GALAXY CLUSTER RBS 797

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Alberto [Argelander-Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany); Gitti, Myriam; Brighenti, Fabrizio [Dipartimento di Astronomia, Universita di Bologna, via Ranzani 1, Bologna 40127 (Italy); Ettori, Stefano [Astronomical Observatory of Bologna-INAF, via Ranzani 1, I-40127 Bologna (Italy); Nulsen, Paul E. J.; McNamara, Brian R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-07-01

    We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and Very Large Array (VLA) data. RBS 797 (z = 0.35) is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate a higher metallicity along the cavity directions. This is likely due to the active galactic nucleus outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than the surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally, we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow, as it nicely follows the trend P{sub radio} versus P{sub CF} predicted by the reacceleration model.

  2. A Chandra - VLA Investigation of the X-ray Cavity System and Radio Mini-Halo in the Galaxy Cluster RBS 797

    CERN Document Server

    Doria, Alberto; Ettori, Stefano; Brighenti, Fabrizio; Nulsen, Paul E J; McNamara, Brian R

    2012-01-01

    We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and VLA data. RBS 797 (z = 0.35), is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate an higher metallicity along the cavity directions. This is likely due to the AGN outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than the surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow (CF), as it nicely follows the trend P_radio vs. P_CF predicted by the...

  3. The X-ray Spectrum and Spectral Energy Distribution of FIRST J155633.8+351758: a LoBAL Quasar with a Probable Polar Outflow

    CERN Document Server

    Berrington, Robert C; Gallagher, Sarah C; Ganguly, Rajib; Shang, Zhaohui; DiPompeo, Michael; Chatterjee, Ritaban; Lacy, Mark; Gregg, Michael D; Hall, Patrick B; Laurent-Muehleisen, S A

    2013-01-01

    We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD Imaging Spectrometer S-array (ACIS-S) observation of the reddened, radio-selected, highly polarized `FeLoBAL' quasar FIRST J1556+3517. We investigated a number of models of varied sophistication to fit the 531-photon spectrum. These models ranged from simple power laws to power laws absorbed by hydrogen gas in differing ionization states and degrees of partial covering. Preferred fits indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity, i.e., an intrinsic, dereddened and unabsorbed optical to X-ray spectral index of -1.7. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Gamma = 1.7 or flatter at a >99% confidence for a neutral hydrogen absorber model). Absorption is present, with a column density a few times 10^23 cm^-2, with both partially ionized models and partially covering neutral hydrogen models providi...

  4. Measurements of the spectrum and energy dependence of X-ray transition radiation

    Science.gov (United States)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  5. The Soft X-ray Spectrum of the High Mass X-Ray Binary V0332+53 in Quiescence

    CERN Document Server

    Elshamouty, K; Chouinard, R

    2016-01-01

    The propeller effect should cut off accretion in fast-spinning neutron star high mass X-ray binaries (HMXBs) at low mass transfer rates. However, accretion continues in some HMXBs at $L_{x} < 10^{34}$ erg s$^{-1}$, as evidenced by continuing pulsations. Indications of spectral softening in systems in the propeller regime suggest that some HMXBs are undergoing fundamental changes in their accretion regime. A 39 ks \\textit{XMM-Newton} observation of the transient HMXB V0332+53 found it at a very low X-ray luminosity ($L_{x} \\sim 4\\times 10^{32}$ erg s${^{-1}}$). A power-law spectral fit requires an unusually soft spectral index ($4.4^{+0.9}_{-0.6}$), while a magnetized neutron star atmosphere model, with temperature \\lt\\ 6.7$\\pm 0.2$ K and inferred emitting radius of $\\sim0.2-0.3$ km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. We could not detect pulsations from V0332+53, due to the low count rate. Due to the high...

  6. Non-equilibrium electron features in X-ray emission spectrum from inertial confinement fusion implosions

    Science.gov (United States)

    Kagan, Grigory; Landen, O. L.; Svyatsky, D.; Thorn, D.; Schneider, M. B.; Bradley, D.; Kilkenny, J. D.

    2016-10-01

    An X-ray spectrometer proposed for the National Ignition Facility will infer the imploded core electron temperature from the free-free continuum spectra of the emitted photons with energies of 15 to 30 keV. In this range reabsorption rates are low so one might expect a rather unambiguous temperature measurement from the spectrum slope at the higher energy cut-off. It can be noticed, however, that the harder X-ray radiation is emitted by the tail of the electron distribution. The mean- free-path for the suprathermal electrons is much larger than for their thermal counterparts, making this tail to deviate from Maxwellian and obscuring interpretation of the data. We utilize solutions for the reduced kinetic equation to investigate modification to the X-ray spectra due to suprathermal electrons' deviation from equilibrium. The logarithmic slope of the spectrum from the depleted electron distribution is found to increasingly drop at higher photon energies compared to the case of perfectly Maxwellian electrons. Interpreting the spectrum from a depleted distribution with assumption of Maxwellian electrons enforced gives the electron temperature lower than the actual one. The newly predicted effects are further enhanced in the presence of hydrodynamic mix. This work is performed under the auspices of the U.S. Department of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  7. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    CERN Document Server

    Mekaru, H; Hattori, T

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the p...

  8. The Extended Chandra Deep Field-South Survey: Optical spectroscopy of faint X-ray sources with the VLT and Keck

    CERN Document Server

    Silverman, J D; Salvato, M; Hasinger, G; Bergeron, J; Capak, P; Szokoly, G; Finoguenov, A; Gilli, R; Rosati, P; Tozzi, P; Vignali, C; Alexander, D M; Brandt, W N; Lehmer, B D; Luo, B; Rafferty, D; Xue, Y Q; Balestra, I; Bauer, F E; Brusa, M; Comastri, A; Kartaltepe, J; Koekemoer, A M; Miyaji, T; Schneider, D P; Treister, E; Wisotski, L; Schramm, M

    2010-01-01

    We present the results of a program to acquire high-quality optical spectra of X-ray sources detected in the E-CDF-S and its central area. New spectroscopic redshifts are measured for 283 counterparts to Chandra sources with deep exposures (t~2-9 hr per pointing) using multi-slit facilities on both the VLT and Keck thus bringing the total number of spectroscopically-identified X-ray sources to over 500 in this survey field. We provide a comprehensive catalog of X-ray sources detected in the E-CDF-S including the optical and near-infrared counterparts, and redshifts (both spectroscopic and photometric) that incorporate published spectroscopic catalogs thus resulting in a final sample with a high fraction (80%) of X-ray sources having secure identifications. We demonstrate the remarkable coverage of the Lx-z plane now accessible from our data while emphasizing the detection of AGNs that contribute to the faint end of the luminosity function at 1.5

  9. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  10. X-ray properties of radio-selected star forming galaxies in the Chandra-COSMOS survey

    OpenAIRE

    Ranalli, P.; Comastri, A.; Zamorani, G.; Cappelluti, N.; Civano, F.; Georgantopoulos, I.; Gilli, R.; Schinnerer, E.; Smolcic, V.; Vignali, C.

    2012-01-01

    X-ray surveys contain sizable numbers of star forming galaxies, beyond the AGN which usually make the majority of detections. Many methods to separate the two populations are used in the literature, based on X-ray and multiwavelength properties. We aim at a detailed test of the classification schemes and to study the X-ray properties of the resulting samples. We build on a sample of galaxies selected at 1.4 GHz in the VLA-COSMOS survey, classified by Smolcic et al. (2008) according to their o...

  11. [Application of the racial algorithm in energy dispersive X-ray fluorescence overlapped spectrum analysis].

    Science.gov (United States)

    Zeng, Guo-Qiang; Luo, Yao-Yao; Ge, Liang-Quan; Zhang, Qing-Xian; Gu, Yi; Cheng, Feng

    2014-02-01

    In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

  12. Liquid X-ray scattering with a pink-spectrum undulator.

    Science.gov (United States)

    Bratos, S; Leicknam, J-Cl; Wulff, M; Khakhulin, D

    2014-01-01

    X-ray scattering from a liquid using the spectrum from the undulator fundamental is examined as a function of the bandwidth of the spectrum. The synchrotron-generated X-ray spectrum from an undulator is 'pink', i.e. quasi-monochromatic but having a saw-tooth-shaped spectrum with a bandwidth from 1 to 15%. It is shown that features in S(q) are slightly shifted and dampened compared with strictly monochromatic data. In return, the gain in intensity is 250-500 which makes pink beams very important for time-resolved experiments. The undulator spectrum is described by a single exponential with a low-energy tail. The tail shifts features in the scattering function towards high angles and generates a small reduction in amplitude. The theoretical conclusions are compared with experiments. The r-resolved Fourier transformed signals are discussed next. Passing from q- to r-space requires a sin-Fourier transform. The Warren convergence factor is introduced in this calculation to suppress oscillatory artifacts from the finite qM in the data. It is shown that the deformation of r-resolved signals from the pink spectrum is small compared with that due to the Warren factor. The q-resolved and the r-resolved pink signals thus behave very differently.

  13. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence

    Science.gov (United States)

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-01

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  14. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    Science.gov (United States)

    Kim, Y.; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C.; Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S.

    2016-11-01

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO2 clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1-3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  15. Evolution of the X-ray spectrum in the flare model of Active Galactic Nuclei

    CERN Document Server

    Collin, S; Dumont, A M; Petrucci, P O; Rózanska, A R

    2003-01-01

    Nayakshin & Kazanas (2002) have considered the time-dependent illumination of an accretion disc in Active Galactic Nuclei, in the lamppost model. We extend their study to the flare model, which postulates the release of a large X-ray flux above a small region of the accretion disc. A fundamental difference with the lamppost model is that the region of the disc below the flare is not illuminated before the onset of the flare. A few test models show that the spectrum which follows immediately the increase in continuum flux should display the characteristics of a highly illuminated but dense gas, i.e. very intense X-ray emission lines and ionization edges in the soft X-ray range. The behaviour of the iron line is different in the case of a "moderate" and a ``strong'' flare: for a moderate flare, the spectrum displays a neutral component of the Fe K$\\alpha$ line at 6.4 keV, gradually leading to more highly ionized lines. For a strong flare, the lines are already emitted by FeXXV (around 6.7 keV) after the ons...

  16. Hard X-Ray Spectrum from West Lobe of Radio Galaxy Fornax A Observed with Suzaku

    CERN Document Server

    Tashiro, Makoto S; Seta, Hiromi; Matsuta, Keiko; Yaji, Yuichi

    2009-01-01

    An observation of the West lobe of radio galaxy Fornax A (NGC 1316) with Suzaku is reported. Since Feigelson et al. (1995) and Kaneda et al. (1995) discovered the cosmic microwave background boosted inverse-Comptonized (IC) X-rays from the radio lobe, the magnetic field and electron energy density in the lobes have been estimated under the assumption that a single component of the relativistic electrons generates both the IC X-rays and the synchrotron radio emission. However, electrons generating the observed IC X-rays in the 1 -- 10 keV band do not possess sufficient energy to radiate the observed synchrotron radio emission under the estimated magnetic field of a few micro-G. On the basis of observations made with Suzaku, we show in the present paper that a 0.7 -- 20 keV spectrum is well described by a single power-law model with an energy index of 0.68 and a flux density of 0.12+/-0.01 nJy at 1 keV from the West lobe. The derived multiwavelength spectrum strongly suggests that a single electron energy distr...

  17. Hard X-ray Spectrum of Mkn 421 during the Active Phase

    Indian Academy of Sciences (India)

    R. K. Manchanda

    2001-06-01

    Spectral measurement of Mkn 421 were made in the hard X-ray energy band of 20–200 keV using a high sensitivity, large area scintillation counter telescope on November 21, 2000 and these coincided with the onset of an active X-ray phase as seen in the ASM counting rates on board RXTE. The observed spectrum can not be fitted to a single power law similar to the PDS data of BeppoSAX. The data can be fitted both by a two component power-law function or a combination of an exponential function with a power law component at the high energies above 80 keV. We identify these components with those arising from the synchrotron self compton and the high energy power-law tail arising from the upgrading of the thermal photons due to multiple Compton scattering a la Cyg X-1. A comparison with the earlier data clearly suggests a spectral variability in the hard X-ray spectrum of the source. We propose a continuously flaring geometry for the source as the underlying mechanism for energy release.

  18. Segmentation-free x-ray energy spectrum estimation for computed tomography

    CERN Document Server

    Zhao, Wei; Niu, Tianye

    2016-01-01

    X-ray energy spectrum plays an essential role in imaging and related tasks. Due to the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and are usually suffered from various limitations. The recently proposed indirect transmission measurement-based method requires at least the segmentation of one material, which is insufficient for CT images of highly noisy and with artifacts. To combat for the bottleneck of spectrum estimation using segmented CT images, in this study, we develop a segmentation-free indirect transmission measurement based energy spectrum estimation method using dual-energy material decomposition. The general principle of the method is to compare polychromatic forward projection with raw projection to calibrate a set of unknown weights which are used to express the unknown spectrum together with a set of model spectra. After applying dual-energy material decomposition using high- and low-energy raw projection data, polychromatic forward projection ...

  19. Chandra and HST Imaging of the Quasars PKS B0106+013 and 3C 345: Inverse Compton X-Rays and Magnetized Jets

    Science.gov (United States)

    Kharb, P.; Lister, M. L.; Marshall, H. L.; Hogan, B. S.

    2012-04-01

    We present results from deep (~70 ks) Chandra/ACIS observations and Hubble Space Telescope (HST) Advanced Camera for Surveys F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C 345). These observations reveal X-ray and optical emissions from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles—the X-ray emission is brightest at the first prominent kiloparsec jet bend. A picture of a helical kiloparsec jet with the first kiloparsec-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end, however, peaks at about 0farcs4 (~3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0farcs2 (~1.3 kpc) in the short projected jet of 3C 345. HST optical emission is seen in an arc-like structure coincident with the bright radio hot spot, which we propose is a sharp (apparent) jet bend instead of a terminal point, that crosses our line of sight and consequently has a higher Doppler beaming factor. A weak radio hot spot is indeed observed less than 1'' downstream of the bright radio hot spot, but has no optical or X-ray counterpart. By making use of the parsec-scale radio and the kiloparsec-scale radio/X-ray data, we derive constraints on the jet Lorentz factors (Γjet) and inclination angles (θ): for a constant jet speed from parsec to kiloparsec scales, we obtain a Γjet of ~70 for 0106+013 and ~40 for 3C 345. On relaxing this assumption, we derive a Γjet of ~2.5 for both the sources. Upper limits on θ of ~13° are obtained for the two quasars. Broadband (radio-optical-X-ray) spectral

  20. The hard quiescent spectrum of the neutron-star X-ray transient EXO 1745-248 in the globular cluster Terzan 5

    CERN Document Server

    Wijnands, R; Pooley, D; Edmonds, P D; Lewin, W H G; Grindlay, J E; Jonker, P G; Miller, J M; Wijnands, Rudy; Heinke, Craig O.; Pooley, David; Edmonds, Peter D.; Lewin, Walter H. G.; Grindlay, Jonathan E.; Jonker, Peter G.; Miller, Jon M.

    2003-01-01

    We present a Chandra observation of the globular cluster Terzan 5 during times when the neutron-star X-ray transient EXO 1745-248 located in this cluster was in its quiescent state. We detected the quiescent system with a (0.5-10 keV) luminosity of ~2 x 10^{33} ergs/s. This is similar to several other neutron-star transients observed in their quiescent states. However, the quiescent X-ray spectrum of EXO 1745--48 was dominated by a hard power-law component instead of the soft component that usually dominates the quiescent emission of other neutron-star X-ray transients. This soft component could not conclusively be detected in EXO 1745-248 and we conclude that it contributed at most 10% of the quiescent flux in the energy range 0.5-10 keV. EXO 1745-248 is only the second neutron-star transient whose quiescent spectrum is dominated by the hard component (SAX J1808.4-3658 is the other one). We discuss possible explanations for this unusual behavior of EXO 1745-248, its relationship to other quiescent neutron-st...

  1. The discovery of lensed radio and X-ray sources behind the Frontier Fields cluster MACS J0717.5+3745 with the JVLA and Chandra

    CERN Document Server

    van Weeren, R J; Jones, C; Forman, W R; Andrade-Santos, F; Bonafede, A; Brüggen, M; Bulbul, E; Clarke, T E; Churazov, E; David, L; Dawson, W A; Donahue, M; Goulding, A; Kraft, R P; Mason, B; Merten, J; Mroczkowski, T; Murray, S S; Nulsen, P E J; Rosati, P; Roediger, E; Randall, S W; Sayers, J; Umetsu, K; Vikhlinin, A; Zitrin, A

    2015-01-01

    We report on high-resolution JVLA and Chandra observations of the HST Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0-6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample we find 7 lensed sources with amplification factors larger than $2$. None of these sources are identified as multiply-lensed. Based on the radio luminosities, the majority of these sources are likely star forming galaxies with star formation rates of 10-50 M$_\\odot$ yr$^{-1}$ located at $1 \\lesssim z \\lesssim 2$. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely AGN, given their $2-10$ keV X-ray luminosities of $\\sim 10^{43-44}$ erg s$^{-1}$. From the derived radio luminosity function, we find evidence...

  2. Broad band X-ray spectrum of KS 1947+300 with BeppoSAX

    CERN Document Server

    Naik, S; Dotani, T; Paul, B

    2006-01-01

    We present results obtained from three BeppoSAX observations of the accretion-powered transient X-ray pulsar KS 1947+300 carried out during the declining phase of its 2000 November -- 2001 June outburst. A detailed spectral study of KS 1947+300 across a wide X-ray band (0.1--100.0 keV) is attempted for the first time here. Timing analysis of the data clearly shows a 18.7 s pulsation in the X-ray light curves in the above energy band. The pulse profile of KS 1947+300 is characterized by a broad peak with sharp rise followed by a narrow dip. The dip in the pulse profile shows a very strong energy dependence. Broad-band pulse-phase-averaged spectroscopy obtained with three of the BeppoSAX instruments shows that the energy spectrum in the 0.1--100 keV energy band has three components, a Comptonized component, a ~0.6 keV blackbody component, and a narrow and weak iron emission line at 6.7 keV with a low column density of material in the line of sight. We place an upper limit on the equivalent width of the iron K_\\...

  3. A variable absorption feature in the X-ray spectrum of a magnetar.

    Science.gov (United States)

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss.

  4. Time dependent spectrum of an X-ray irradiated accretion disc with stochastic perturbations

    Science.gov (United States)

    Maqbool, Bari; Wani, Naveel; Iqbal, Naseer; Misra, Ranjeev

    2016-07-01

    The X-rays emitted by the inner regions of the accretion disk induce structural changes in the outer regions of the disk. We study here how the effective temperature and hence the corresponding spectrum of the disk is altered by stochastic perturbations in the outer regions and thereby try to study the long term variability which has been observed in some X-ray binaries. We use a time dependent global hydrodynamic code to study the variations in the effective temperature of the disk in response to sinusoidal accretion rate perturbations introduced at different radii and with different time periods. To quantify the results, we calculate the root mean square effective temperature at different radii and the root mean square flux at different frequencies. From our calculations of the time-lags in accretion rate, effective temperature and the different frequencies, we find that the time-lags in presence of X-ray irradiation is significantly smaller than the expected viscous time-scale.

  5. A variable absorption feature in the X-ray spectrum of a magnetar

    CERN Document Server

    Tiengo, Andrea; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Gotz, Diego; Israel, GianLuca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-01-01

    Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of AXPs and SGRs are greater than - or at the high end of the range of - those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature an...

  6. Deep Chandra observations of NGC 7457, the X-ray point source populations of a low mass early-type galaxy

    Science.gov (United States)

    Peacock, Mark B.; Zepf, Stephen E.; Kundu, Arunav; Maccarone, Thomas J.; Lehmer, Bret D.; Gonzalez, Anthony H.; Maraston, Claudia

    2017-01-01

    We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive galaxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of 1.7× 10^{10} {L_{K⊙}}, allowing us to investigate the populations in a relatively low mass galaxy. We classify the detected X-ray sources into field LMXBs, globular cluster LMXBs, and background AGN based on identifying optical counterparts in new HST/ACS images. We detect 10 field LMXBs within the rext ellipse of NGC 7457 (with semi-major axis ˜ 9.1 kpc, ellipticity = 0.55). The corresponding number of LMXBs with {Lx} > 2 × 10^{37} {{erg s^{-1}}} per stellar luminosity is consistent with that observed in more massive galaxies, ˜7 per 10^{10} {L_{K⊙}}. We detect a small globular cluster population in these HST data and show that its colour distribution is likely bimodal and that its specific frequency is similar to that of other early type galaxies. However, no X-ray emission is detected from any of these clusters. Using published data for other galaxies, we show that this non-detection is consistent with the small stellar mass of these clusters. We estimate that 0.11 (and 0.03) LMXBs are expected per 106 {M_{⊙}} in metal-rich (and metal-poor) globular clusters. This corresponds to 1100 (and 330) LMXBs per 10^{10} {L_{K⊙}}, highlighting the enhanced formation efficiency of LMXBs in globular clusters. A nuclear X-ray source is detected with Lx varying from 2.8-6.8× 10^{38} {{erg s^{-1}}}. Combining this Lx with a published dynamical mass estimate for the central SMBH in NGC 7457, we find that {Lx}/L_{Edd} varies from 0.5 - 1.3 × 10-6.

  7. The unusual X-ray morphology of NGC4636 revealed by deep Chandra observations: cavities and shocks created by past AGN outbursts

    CERN Document Server

    Baldi, A; Jones, C; Kraft, R; Nulsen, P; Churazov, E; David, L; Giacintucci, S

    2009-01-01

    We present Chandra ACIS-I and ACIS-S observations ($\\sim$200 ks in total) of the X-ray luminous elliptical galaxy NGC 4636, located in the outskirts of the Virgo cluster. A soft band (0.5-2 keV) image shows the presence of a bright core in the center surrounded by an extended X-ray corona and two pronounced quasi-symmetric, 8 kpc long, arm-like features. Each of this features defines the rimof an ellipsoidal bubble. An additional bubble-like feature, whose northern rim is located $\\sim2$ kpc south of the north-eastern arm, is detected as well. We present surface brightness and temperature profiles across the rims of the bubbles, showing that their edges are sharp and characterized by temperature jumps of about 20-25%. Through a comparison of the observed profiles with theoretical shock models, we demonstrate that a scenario where the bubbles were produced by shocks, probably driven by energy deposited off-center by jets, is the most viable explanation to the X-ray morphology observed in the central part of NG...

  8. The Megasecond Chandra X-Ray Visionary Project Observation of NGC 3115 (III): luminosity functions of LMXBs and dependence on stellar environments

    CERN Document Server

    Lin, Dacheng; Wong, Ka-wah; Jennings, Zachary G; Homan, Jeroen; Romanowsky, Aaron J; Strader, Jay; Brodie, Jean P; Sivakoff, Gregory R; Remillard, Ronald A

    2015-01-01

    We have studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project Observation. With a total exposure time of ~1.1 Ms, we constructed the XLF down to a limiting luminosity of ~10^36 erg/s, much deeper than typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL \\propto L^{-2.2\\pm0.4} above 5.5x10^37 erg/s to dN/dL \\propto L^{-1.0\\pm0.1} below it, though we could not rule out a fit with a higher break at ~1.6x10^38 erg/s. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrup...

  9. The Hot Interstellar Medium of Normal Elliptical Galaxies. I. A Chandra Gas Gallery and Comparison of X-ray and Optical Morphology

    CERN Document Server

    Diehl, S; Diehl, Steven; Statler, Thomas S.

    2006-01-01

    We present an X-ray analysis of 54 normal elliptical galaxies in the Chandra archive and isolate their hot gas component from the contaminating point source emission. This makes it possible to conduct, for the first time, a complete morphological analysis on the gas alone. A comparison with optical DSS images and published optical photometry shows that the hot gas morphology has surprisingly little in common with the shape of the stellar distribution. In particular, we observe no correlation between optical and X-ray ellipticity, as would be expected if the gas had settled into hydrostatic equilibrium with the underlying gravitational potential. In fact, the observed X-ray ellipticity exceeds the optical ellipticity in many cases. We exclude rotational support as the dominant factor to produce these high ellipticities. Instead, we find that the gas appears to be very disturbed and that the general perception of normal elliptical galaxies hosting calm, hydrostatic gas has to be revised. We conclude that, even ...

  10. A Chandra observation of the long-duration X-ray transient KS 1731-260 in quiescence too cold a neutron star?

    CERN Document Server

    Wijnands, R; Markwardt, C B; Lewin, W H G; Van der Klis, M; Wijnands, Rudy; Miller, Jon M.; Markwardt, Craig; Lewin, Walter H. G.; Klis, Michiel van der

    2001-01-01

    After more than a decade of actively accreting at about a tenth of the Eddington critical mass accretion rate, the neutron-star X-ray transient KS 1731-260 returned to quiescence in early 2001. We present a Chandra/ACIS-S observation taken several months after this transition. We detected the source at an unabsorbed flux of ~2 x 10^{-13} erg/s/cm^2 (0.5-10 keV). For a distance of 7 kpc, this results in a 0.5-10 keV luminosity of ~1 x 10^{33} erg/s and a bolometric luminosity approximately twice that. The quiescent luminosity of KS 1731-260 is very similar to that of the other quiescent neutron star systems. However, if this quiescent X-ray luminosity is due to the cooling of the neutron star, this low luminosity may indicate that the source spends several hundreds of years in quiescence in between outbursts for the neutron star to cool. If true, then it might be the first such X-ray transient to be identified and a class of several hundred similar systems might be present in the Galaxy. Alternatively, enhance...

  11. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    Science.gov (United States)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  12. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    Science.gov (United States)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  13. A Chandra X-ray analysis of Abell 1664: cooling, feedback, and star formation in the central cluster galaxy

    NARCIS (Netherlands)

    Kirkpatrick, C.C.; McNamara, B.R.; Rafferty, D.A.; Nulsen, P.E.J.; Bîrzan, L.; Kazemzadeh, F.; Wise, M.W.; Gitti, M.; Cavagnolo, K.W.

    2009-01-01

    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of similar to 23 M-circle dot yr(-1). The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5 x 10(8) yr and entropy of 10.4 keV cm(2) are consistent with other star

  14. A Chandra X-ray Analysis of Abell 1664: Cooling, Feedback and Star Formation in the Central Cluster Galaxy

    CERN Document Server

    Kirkpatrick, C C; Rafferty, D A; Nulsen, P E J; Birzan, L; Kazemzadeh, F; Wise, M W; Gitti, M; Cavagnolo, K W

    2009-01-01

    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of ~ 23 M_{\\sun} yr^{-1}. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5x10^8 yr and entropy of 10.4 keV cm^2 are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, "bar-like" X-ray structure whose mass is comparable to the mass of molecular hydrogen, ~ 10^{10} M_{\\sun} in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of Birzan et al. 2008 to show that the AGN is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low-state of an AGN feedback cycle that regulates the rates of cooling and...

  15. The era of synoptic galactic archeology: using HST and Chandra observations to constrain the evolution of elliptical galaxies through the spatial distribution of globular clusters and X-ray binaries.

    Science.gov (United States)

    D'Abrusco, Raffaele; Fabbiano, Giuseppina; Zezas, Andreas

    2017-01-01

    Most of the stellar mass observed today in early-type galaxies is thought to be due to merging and accretion of smaller companions, but the details of these processes are still poorly constrained. Globular clusters, visible from the center to the halo of galaxies, reflect the evolution of their host galaxy in their kinematic, photometric and spatial distributions. By characterizing the spatial distribution of the population of globular clusters extracted from archival HST data of some of the most massive elliptical galaxies in the local Universe with a novel statistical approach, we recently discovered that two-dimensional spatial structures at small radii are common (D’Abrusco et al. 2014a; 2014b; 2015). Such structures, not detectable from ground-based data, can be linked to events in the evolution of the host galaxy. Moreover, we devised an interpretative framework that, based on the form, area and number of globular clusters of such structures, infers the frequency of major mergers and the mass spectrum of the accreted companions.For some of the galaxies investigated, X-ray data from Chandra joint observing programs were also available. Our method, applied to the distribution of X-ray binaries, has revealed, at least in the case of two galaxies (D’Abrusco et al. 2014a; D’Abrusco et al.23014c) the existence of overdensities that are not associated to globular cluster structures. These findings provide complementary hints about the evolution of the stellar component of these galaxies that can be used to further refine the sequence of events that determined their growth.In this contribution, we will summarize our main results and highlight the novelty of our approach. Furthermore, we will advocate the fundamental importance of joint observations of galaxies by HST and Chandra as a way to provide unique, complementary views of such systems and unlock the mysteries of their evolution.

  16. Impulsive solar X-ray bursts. 4: Polarization, directivity and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.

  17. Effects of X-rays spectrum on the dose; Efectos del espectro de rayos X sobre la dosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez I, J. L.; Hernandez A, P. L.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Rivera M, T., E-mail: johann_greenday@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The X-ray equipment for diagnosis comes in different sizes and shapes depending on the scan type to perform. The X-ray spectrum is the energy distribution of the beam photons and consists of a continuous spectrum of photons braking and discrete spectrum due to the characteristic photons. The knowledge of the X-rays spectrum is important to understand like they affect the voltage changes (k Vp), current (m A), time (s) and the type of filter in the interaction mechanisms between X-rays and patient's body, the image receptor or other material that gets in the beam. Across the spectrum can be estimated the absorbed dose in any point of the patient, the quality of the image and the scattered radiation (which is related to the dose received by the equipment operator). The Monte Carlo method was used by MCNP5 code to calculate the spectrum of X-rays that occurs when a monoenergetic electron beam of 250 keV interact with targets of Mo, Rh and W. The spectra were calculated with and without filter, and the values of ambient dose equivalent were estimated, as well as the air kerma. (Author)

  18. X-ray irradiated protoplanetary disk atmospheres I: Predicted emission line spectrum and photoevaporation

    CERN Document Server

    Ercolano, Barbara; Raymond, John C; Clarke, Cathie C

    2008-01-01

    We present MOCASSIN 2D photoionisation and dust radiative transfer models of a prototypical T Tauri disk irradiated by X-rays from the young pre-main sequence star. The calculations demonstrate a layer of hot gas reaching temperatures of ~10^6 K at small radii and ~10^4 K at a distance of 1 AU. The gas temperatures decrease sharply with depth, but appear to be completely decoupled from dust temperatures down to a column depth of ~5*10^21 cm^-2. We predict that several fine-structure and forbidden lines of heavy elements, as well as recombination lines of hydrogen and helium, should be observable with current and future instrumentation, although optical lines may be smothered by the stellar spectrum. Predicted line luminosities are given for the the brightest collisionally excited lines (down to ~10^-8L_sun, and for recombination transitions from several levels of HI and HeI. The mass loss rate due to X-ray photoevaporation estimated from our models is of the order of 10^-8 M_sun yr^-1, implying a dispersal ti...

  19. X-ray Spectral Variability and Rapid Variability of the Soft X-ray Spectrum Seyfert 1 Galaxies Ark 564 and Ton S180

    CERN Document Server

    Edelson, R; Pounds, K; Vaughan, S; Markowitz, A R; Marshall, H; Dobbie, P D; Warwick, R; Edelson, Rick; Pounds, Ken; Vaughan, Simon; Markowitz, Alex; Marshall, Herman; Dobbie, Paul; Warwick, Robert

    2001-01-01

    The bright, soft X-ray spectrum Seyfert 1 galaxies Ark 564 and Ton S180 were monitored for 35 days and 12 days with ASCA and RXTE (and EUVE for Ton S180). The short time scale (hours-days) variability patterns were very similar across energy bands, with no evidence of lags between any of the energy bands studied. The fractional variability amplitude was almost independent of energy band. It is difficult to simultaneously explain soft Seyferts stronger variability, softer spectra, and weaker energy-dependence of the variability relative to hard Seyferts. The soft and hard band light curves diverged on the longest time scales probed, consistent with the fluctuation power density spectra that showed relatively greater power on long time scales in the softest bands. The simplest explanation is that a relatively hard, rapidly-variable component dominates the total X-ray spectrum and a slowly-variable soft excess is present in the lowest energy channels of ASCA. Although it would be natural to identify the latter w...

  20. Shuttle and Transfer Orbit Thermal Analysis and Testing of the Chandra X-Ray Observatory Charge-Couple Device Imaging Spectrometer Radiator Shades

    Science.gov (United States)

    Sharp, John R.

    1999-01-01

    Thermal analyses of the Shuttle and Transfer Orbit of the Advanced X-Ray Astrophysics Facility Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS), one of two science instruments on the Chandra X-Ray Observatory, revealed a low-earth orbit (LEO) overheating problem on the goldized Kapton faces of two radiator shades. The shades were coated with the goldized Kapton to provide a low hemispherical emittance to minimize direct and backloaded heating from the sun and the observatory and high specularity to optimize the coupling to space on two passive radiators which cool the focal plane to -120 C +/- 1 C during on-orbit operations. Since the observatory has a highly elliptical final orbit of 10,000 kilometers by 140,000 kilometers and the ACIS radiators and shades are oriented anti-sun, the high solar absorptance to emittance ratio of the goldized Kapton was not an issue. However, during Shuttle bay-to-earth operations, the short duration solar heating occurring near the eclipse entry and exit resulted in shade temperatures in excess of the cure temperature of the adhesive used to bond the goldized Kapton and honeycomb face-sheets. The detailed thermal analysis demonstrating the LEO overheating as well as the redesign options and thermal testing of a redesigned development unit shade are presented.

  1. X-Ray Visions of SS Cygni

    Science.gov (United States)

    Young, D. L.

    2004-12-01

    The Chandra X-Ray Observatory is the most sophisticated X-ray observatory launched by NASA. Chandra is designed to observe X-rays from highenergy regions of the universe, such as X-ray binary stars. On September 14, 2000, triggered by alerts from amateur astronomers worldwide, Chandra observed the outburst of the brightest northern dwarf nova SS Cygni. The cooperation of hundreds of amateur variable star astronomers and the Chandra X-Ray scientists and spacecraft specialists provided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.

  2. Chandra Survey in the AKARI North Ecliptic Pole Deep Field. I. X-ray Data, Point-like Source Catalog, Sensitivity Maps, and Number Counts

    CERN Document Server

    Krumpe, M; Brunner, H; Hanami, H; Ishigaki, T; Takagi, T; Markowitz, A G; Goto, T; Malkan, M A; Matsuhara, H; Pearson, C; Ueda, Y; Wada, T

    2014-01-01

    We present data products from the 300 ks Chandra survey in the AKARI North Ecliptic Pole (NEP) deep field. This field has a unique set of 9-band infrared photometry covering 2-24 micron from the AKARI Infrared Camera, including mid-infrared (MIR) bands not covered by Spitzer. The survey is one of the deepest ever achieved at ~15 micron, and is by far the widest among those with similar depths in the MIR. This makes this field unique for the MIR-selection of AGN at z~1. We design a source detection procedure, which performs joint Maximum Likelihood PSF fits on all of our 15 mosaicked Chandra pointings covering an area of 0.34 square degree. The procedure has been highly optimized and tested by simulations. We provide a point source catalog with photometry and Bayesian-based 90 per cent confidence upper limits in the 0.5-7, 0.5-2, 2-7, 2-4, and 4-7 keV bands. The catalog contains 457 X-ray sources and the spurious fraction is estimated to be ~1.7 per cent. Sensitivity and 90 per cent confidence upper flux limit...

  3. The Multi-Component Nature of the Vela Pulsar Nonthermal X-ray Spectrum

    CERN Document Server

    Harding, A K; Gwinn, C R; McCulloch, P M; Moffet, D; Harding, Alice K.; Strickman, Mark S.; Gwinn, Carl; Culloch, Peter Mc; Moffet, David

    2002-01-01

    We report on our analysis of a 274 ks observation of the Vela pulsar with the Rossi X-Ray Timing Explorer (RXTE). The double-peaked, pulsed emission at 2 - 30 keV, which we had previously detected during a 93 ks observation, is confirmed with much improved statistics. There is now clear evidence, both in the spectrum and the light curve, that the emission in the RXTE band is a blend of two separate non-thermal components. The spectrum of the harder component connects smoothly with the OSSE, COMPTEL and EGRET spectrum and the peaks in the light curve are in phase coincidence with those of the high-energy light curve. The spectrum of the softer component is consistent with an extrapolation to the pulsed optical flux, and the second RXTE pulse is in phase coincidence with the second optical peak. In addition, we see a peak in the 2-8 keV RXTE pulse profile at the radio phase.

  4. Discovery of a Transient Absorption Edge in the X-ray Spectrum of GRB 990705

    CERN Document Server

    Amati, L; Vietri, M; in 't Zand, J J M; Soffitta, P; Costa, E; Del Sordo, S; Pian, E; Piro, L; Antonelli, L A; Dal Fiume, D; Feroci, M; Gandolfi, G; Guidorzi, C; Heise, J; Kuulkers, E; Masetti, N; Montanari, E; Nicastro, L; Orlandini, M; Palazzi, E

    2000-01-01

    We report the discovery of a transient equivalent hydrogen column density with an absorption edge at ~3.8 kiloelectron volts in the spectrum of the prompt x-ray emission of gamma-ray burst (GRB) 990705. This feature can be satisfactorily modeled with a photoelectric absorption by a medium located at a redshift of ~0.86 and with an iron abundance of ~75 times the solar one. The transient behavior is attributed to the strong ionization produced in the circumburst medium by the GRB photons. The high iron abundance points to the existence of a burst environment enriched by a supernova along the line of sight. The supernova explosion is estimated to have occurred about 10 years before the burst. Our results agree with models in which GRBs originate from the collapse of very massive stars and are preceded by a supernova event

  5. X-ray nova MAXI J1828-249. Evolution of the broadband spectrum during its 2013-2014 outburst

    CERN Document Server

    Grebenev, S A; Burenin, R A; Krivonos, R A; Mescheryakov, A V

    2016-01-01

    Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013-2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source's "high" state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its "low" ("hard") state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiati...

  6. Measurement of x-ray energy spectrum by using HPGe detection in 14.5 GHz ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Chang, Dae Sik; Oh, Byung Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seo, Chang Seog; Kim, Yong Kyun [Institute for Basic Science, Daejeon (Korea, Republic of)

    2013-04-15

    The Electron Cyclotron Resonance (ECR) ion source is used to produce intense, high charge state ion beams of intermediate and heavy mass elements. It is widely used to produce ion beams for accelerator, atomic physics research and industrial application. The basic principle of the ECR ion source is the resonance absorption of energy by electron from microwave that has the same frequency as the electron's frequency in the resonance zone. The ECR ion source produces soft and hard x-rays because of efficient heating of electrons. The x-rays are created by electron-ion collisions in the ECR plasma or, when free electrons collide with ECR plasma chamber wall. The generated x-rays are influenced by various input parameters of the ECR ion source. In this study, The x-ray spectrum was measured by using a 14.5 GHz ECR ion source at Korea Atomic Energy Research Institute (KAERI). ECR ion source is used to generate ion beams of heavy mass elements. KAERI has a 14.5 GHz ECR ion source to produce high current ion beam. In this study, experimental condition is provided to generate stable plasma through x-ray spectrum measurement. In the future, x-rays spectra will be measured at various operation conditions such as gas-pressure, trim coil and solenoid current.

  7. A characterization of the NGC 4051 soft X-ray spectrum as observed by XMM-Newton

    CERN Document Server

    Nucita, A A; Longinotti, A L; Santos-Lleo, M; Maruccia, Y; Bianchi, S

    2010-01-01

    Soft X-rays high resolution spectroscopy of obscured AGNs shows the existence of a complex soft $X$-ray spectrum dominated by emission lines of He and H-like transitions of elements from Carbon to Neon, as well as L-shell transitions due to iron ions. In this paper we characterize the XMM-Newton RGS spectrum of the Seyfert 1 galaxy NGC 4051 observed during a low flux state and infer the physical properties of the emitting and absorbing gas in the soft X-ray regime. X-ray high-resolution spectroscopy offers a powerful diagnostic tool since the observed spectral features strongly depend on the physical properties of matter (ionization parameter U, electron density n_e, hydrogen column density N_H), which in turn are tightly related to the location and size of the X-ray emitting clouds. We carried out a phenomenological study to identify the atomic transitions detected in the spectra. This study suggests that the spectrum is dominated by emission from a photoionised plasma. Then, we used the photoionization code...

  8. Establishment of ISO 4037-1 X-ray Narrow-Spectrum Series at SSDL of Algiers.

    Science.gov (United States)

    Herrati, A; Arib, M; Sidahmed, T; Khalal-Kouache, K

    2016-04-21

    The aim of this work was to develop some X-ray qualities recommended by the International Standardization Organization (ISO) in its standard ISO 4037-1. X-ray qualities corresponding to narrow-spectrum series were established, determined their characteristics and found good agreement with those of reference X-ray beam qualities [difference between first half-value layer (HVL1) X-ray spectra corresponding to developed X-ray qualities with Monte Carlo code PENELOPE (PENetration and Energy Loss Of Positrons and Electrons) was simulated. The characteristics [HVL1, HVL2, homogeneity coefficient (HC) and mean energy ( ITALIC! Emean)] of simulated spectra have been calculated and compared to those of measured spectra at Physikalisch-Technische Bundesanstalt taken as reference spectra. The obtained results showed a good agreement between simulated and measured spectra (differences in HVL1, HVL2, HC and ITALIC! Emeanwere 1.7, 1.44, 0.44 and 1.3%, respectively). The comparison between simulated and measured spectra by calculating the conversion coefficients from air kerma to the personal dose equivalent, ITALIC! h ITALIC! p ITALIC! k(10), and to the ambient dose equivalent, ITALIC! h ITALIC! k(*)(10), was supplemented. The comparison between the calculated quantities ( ITALIC! h ITALIC! p ITALIC! k(10) and ITALIC! h ITALIC! k(*)(10)) for the two X-ray spectra series showed a good agreement (the maximum difference was X-ray qualities have been fully characterised (measurement and Monte Carlo simulation). These X-ray beams can be used for calibration of radiation protection instruments and for reference irradiations.

  9. The NuSTAR X-ray Spectrum of Hercules X-1: A Radiation-Dominated Radiative Shock

    CERN Document Server

    Wolff, Michael T; Gottlieb, Amy M; Fürst, Felix; Hemphill, Paul B; Marcu-Cheatham, Diana M; Pottschmidt, Katja; Schwarm, Fritz-Walter; Wilms, Jörn; Wood, Kent S

    2016-01-01

    We report new spectral modeling of the accreting X-ray pulsar Hercules X- 1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker & Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase averaged 4 to 78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main- on phase of the Her X-1 35-day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.

  10. Intrinsic Absorption in the Spectrum of NGC 7469: Simultaneous Chandra, FUSE, and STIS Observations

    OpenAIRE

    Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C; Quijano, Jessica Kim; Brotherton, Michael; Canizares, Claude R.; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Ogle, Patrick; Zheng, Wei

    2005-01-01

    We present simultaneous X-ray, far-ultraviolet, and near-ultraviolet spectra of the Seyfert 1 galaxy NGC 7469 obtained with the Chandra X-Ray Observatory, the Far Ultraviolet Spectroscopic Explorer, and the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Previous non-simultaneous observations of this galaxy found two distinct UV absorption components, at -560 and -1900 km/s, with the former as the likely counterpart of the X-ray absorber. We confirm these two absorption co...

  11. A detailed X-ray investigation of {\\zeta} Puppis III. A spectral analysis of the whole RGS spectrum

    CERN Document Server

    Hervé, A; Nazé, Y

    2013-01-01

    Context. Zeta Pup is the X-ray brightest O-type star of the sky. This object was regularly observed with the RGS instrument aboard XMM-Newton for calibration purposes, leading to an unprecedented set of high-quality spectra. Aims. We have previously reduced and extracted this data set and combined it into the most detailed high-resolution X-ray spectrum of any early-type star so far. Here we present the analysis of this spectrum accounting for the presence of structures in the stellar wind. Methods. For this purpose, we use our new modeling tool that allows fitting the entire spectrum with a multi-temperature plasma. We illustrate the impact of a proper treatment of the radial dependence of the X-ray opacity of the cool wind on the best-fit radial distribution of the temperature of the X-ray plasma. Results. The best fit of the RGS spectrum of Zeta Pup is obtained assuming no porosity. Four plasma components at temperatures between 0.10 and 0.69 keV are needed to adequately represent the observed spectrum. Wh...

  12. An Extensive Census of Hubble Space Telescope Counterparts to Chandra X-Ray Sources in the Globular Cluster 47 Tucanae. II. Time Series and Analysis

    Science.gov (United States)

    Edmonds, Peter D.; Gilliland, Ronald L.; Heinke, Craig O.; Grindlay, Jonathan E.

    2003-10-01

    We report time series and variability information for the optical identifications of X-ray sources in 47 Tucanae reported in Paper I (at least 22 cataclysmic variables [CVs] and 29 active binaries). The radial distribution of the CVs is indistinguishable from that of the millisecond pulsars (MSPs) detected by Freire et al. A study of the eight CVs with secure orbital periods (two obtained from the Chandra study of Grindlay et al.) shows that the 47 Tuc CVs have fainter accretion disks, in the V band, than field CVs with similar periods. These faint disks and the faint absolute magnitudes (MV) of the 47 Tuc CVs suggests they have low accretion rates. One possible explanation is that the 47 Tuc objects may be a more representative sample of CVs, down to our detection threshold, than the CVs found in the field (where many low accretion rate systems are believed to be undiscovered), showing the advantages of deep globular cluster observations. The median FX/Fopt value for the 47 Tuc CVs is higher than that of all known classes of field CV, partly because of the faint MV values and partly because of the relatively high X-ray luminosities (LX). The latter are only seen in DQ Her systems in the field, but the 47 Tuc CVs are much fainter optically than most field DQ Her's. Previous work by Edmonds et al. has shown that the four brightest CVs in NGC 6397 have optical spectra and broadband colors that are consistent with DQ Her's having lower than average accretion rates. Some combination of magnetic behavior and low accretion rates may be able to explain our observations, but the results at present are ambiguous, since no class of field CV has distributions of both LX and MV that are consistent with those of the 47 Tuc CVs. The radial distribution of the X-ray detected active binaries is indistinguishable from that of the much larger sample of optical variables (eclipsing and contact binaries and BY Dra variables) detected in previous Wide Field Planetary Camera 2 (WFPC2

  13. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  14. Chandra Detection of the First X-ray Forest along the Line of Sight To Mkn 421

    CERN Document Server

    Nicastro, F; Elvis, M; Drake, J; Fiore, F; Fang, T; Fruscione, A; Krongold, Y; Marshall, H; Williams, R; Nicastro, Fabrizio; Mathur, Smita; Elvis, Martin; Drake, Jeremy; Fiore, Fabrizio; Fang, Taotao; Fruscione, Antonella; Krongold, Yair; Marshall, Herman; Williams, Rik

    2005-01-01

    We present the first >=3.5 sigma (conservative) or >=5.8 sigma (sum of lines significance) detection of two Warm-Hot Intergalactic Medium (WHIM) filaments at z>0, which we find along the line of sight to the blazar Mkn 421. These systems are detected through highly ionized resonant metal absorption in high quality Chandra-ACIS and -HRC Low Energy Transmission Grating (LETG) spectra of Mkn 421, obtained following our two Target of Opportunity requests during two outburst phases. The two intervening WHIM systems that we detect, have OVII and NVII columns of N(OVII)=(1.0 +/- 0.3) x 1e15 cm-2} N(NVII)=(0.8 +/- 0.4) x 1e15 cm-2, and N(OVII)=(0.7 +/- 0.3) x 1e15 cm-2, N(NVII)=(1.4 +/- 0.5) x 1e15 cm-2 respectively. From the detected number of WHIM filaments along this line of sight we can estimate the number of OVII filaments per unit redshift with columns larger than 7e14 cm-2, dP(OVII)/dz(N(OVII)>=7e14) = 67^{+88}_{-43}, consistent, within the large 1-sigma errors, with the hydrodynamical simulation predictions o...

  15. Detection of X-ray Emission from the Warm-Hot Intergalactic Medium through the Angular Autocorrelation Function with Chandra

    CERN Document Server

    Galeazzi, Massimiliano; Huffenberger, Kevin; Ursino, Eugenio

    2012-01-01

    We have used the angular Autocorrelation Function (AcF) on the angular scale of a few arcminutes to detect and characterize the emission from the Warm-Hot Intergalactic Medium (WHIM) in a pointing with Chandra's ACIS-S instrument. We focused our attention on the energy bands 0.4-0.6 keV, where the WHIM emission is expected to be strongest, due to the redshifted O VII and O VIII lines, and 0.7-0.9 keV, where the WHIM emission is expected to be significantly smaller. After removing identified point sources, and any spurious signal due to detector background and unidentified point sources, in the lower energy band we found a clear AcF signal that we attribute to the WHIM, with a statistical significance of several sigmas (chi2=129, N=31). The attribution of the signal to the WHIM (and not to other spurious emissions, such as unresolved point sources) is confirmed by the higher energy band where the signal is compatible with zero.

  16. Chandra measurements of a complete sample of X-ray luminous galaxy clusters: the luminosity-mass relation

    Science.gov (United States)

    Giles, P. A.; Maughan, B. J.; Dahle, H.; Bonamente, M.; Landry, D.; Jones, C.; Joy, M.; Murray, S. S.; van der Pyl, N.

    2017-02-01

    We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15 ≤ z ≤ 0.3 observed with Chandra. We investigate the luminosity-mass (LM) relation for the cluster sample, with the masses obtained via a full hydrostatic mass analysis. We utilize a method to fully account for selection biases when modelling the LM relation, and find that the LM relation is significantly different from the relation modelled when not account for selection effects. We find that the luminosity of our clusters is 2.2 ± 0.4 times higher (when accounting for selection effects) than the average for a given mass and its mass is 30 per cent lower than the population average for a given luminosity. Equivalently, using the LM relation measured from this sample without correcting for selection biases would lead to the underestimation by 40 per cent of the average mass of a cluster with a given luminosity. Comparing the hydrostatic masses to mass estimates determined from the YX parameter, we find that they are entirely consistent, irrespective of the dynamical state of the cluster.

  17. High energy x-ray reflectivity and scattering study from spectrum-x-gamma flight mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Budtz-Jørgensen, Carl; Frederiksen, P. Kk

    1993-01-01

    Line radiation from Fe K-alpha(1), Cu K-alpha(1), and Ag K-alpha(1) is used to study the high energy X-ray reflectivity and scattering behavior of flight-quality X-ray mirrors having various Al substrates. When both the specular and the scattered radiation are integrated, near theoretical...

  18. The X-ray spectrum of the black hole candidate Swift J1753.5-0127

    NARCIS (Netherlands)

    Mostafa, Reham; Mendez, Mariano; Hiemstra, Beike; Soleri, Paolo; Belloni, Tomaso; Ibrahim, Alaa I.; Yasein, Mohammed N.

    2013-01-01

    We present a spectral analysis of the black hole candidate and X-ray transient source Swift J1753.5-0127 making use of simultaneous observations of XMM-Newton and Rossi X-ray Timing Explorer in 2006, when the source was in outburst. The aim of this paper is to test whether a thermal component due to

  19. The broad-band X-ray spectrum of Cygnus X-2

    Science.gov (United States)

    Pravdo, S. H.

    1983-01-01

    Cygnus X-2 was observed with the broad-band X-ray spectroscopy experiment, HEAO 1 A-2, in the energy range 0.4-18 keV for four intervals of approximately 31 s over the course of 5 days in 1977. The spectra can be adequately represented by single-temperature thermal bremmstrahlung continua with temperatures ranging from 3.7 x 10 to the 7th K to 6.4 x 10 to the 7th K. An examination of the spectra and the spectra-luminosity relationship effectively rules out one degenerate dwarf model for the X-ray emission. The far-UV continuum emission could be dominated by this continuum component during X-ray high states, an effect which would be detected in optical UV line observations. A Comptonized X-ray cloud around a neutron star remains a viable model for the observed X-ray spectra.

  20. A Deep Chandra ACIS Study of NGC 4151. I. the X-ray Morphology of the 3 kpc-diameter Circum-nuclear Region and Relation to the Cold Interstellar Medium

    CERN Document Server

    Wang, Junfeng; Risaliti, Guido; Elvis, Martin; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G; Dumas, Gaelle; Schinnerer, Eva

    2011-01-01

    We report on the imaging analysis of 200 ks sub-arcsecond resolution Chandra ACIS-S observations of the nearby Seyfert 1 galaxy NGC 4151. Bright, structured soft X-ray emission is observed to extend from 30 pc to 1.3 kpc in the south-west from the nucleus, much farther than seen in earlier X-ray studies. The terminus of the north-eastern X-ray emission is spatially coincident with a CO gas lane, where the outflow likely encounters dense gas in the host galactic disk. X-ray emission is also detected outside the boundaries of the ionization cone, which indicates that the gas there is not completely shielded from the nuclear continuum, as would be the case for a molecular torus collimating the bicone. In the central r<200 pc region, the subpixel processing of the ACIS data recovers the morphological details on scales of <30~pc (<0.5") first discovered in Chandra HRC images. The X-ray emission is more absorbed towards the boundaries of the ionization cone, as well as perpendicular to the bicone along the...

  1. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils

    Energy Technology Data Exchange (ETDEWEB)

    Ishimatsu, Naoki, E-mail: naoki@sci.hiroshima-u.ac.jp; Matsumoto, Ken; Maruyama, Hiroshi [Department of Physics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526 (Japan); Kawamura, Naomi; Mizumaki, Masaichiro [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Sumiya, Hitoshi [Electronics and Materials R& D Laboratories, Sumitomo Electric Industries, 1-1-1 Koyakita, Itami, Hyogo 664-0016 (Japan); Irifune, Tetsuo [Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2012-09-01

    Nano-polycrystalline diamond has been used to obtain a glitch-free X-ray absorption spectrum under high pressure. The advantage and capability of nano-polycrystalline diamond anvils is discussed by a comparison of the glitch map with that of single-crystal diamond anvils. Nano-polycrystalline diamond (NPD) [Irifune et al. (2003 ▶), Nature (London), 421, 599] has been used to obtain a glitch-free X-ray absorption spectrum under high pressure. In the case of conventional single-crystal diamond (SCD) anvils, glitches owing to Bragg diffraction from the anvils are superimposed on X-ray absorption spectra. The glitch has long been a serious problem for high-pressure research activities using X-ray spectroscopy because of the difficulties of its complete removal. It is demonstrated that NPD is one of the best candidate materials to overcome this problem. Here a glitch-free absorption spectrum using the NPD anvils over a wide energy range is shown. The advantage and capability of NPD anvils is discussed by a comparison of the glitch map with that of SCD anvils.

  2. An XMM-Newton observation of Ark 120: the X-ray spectrum of a `bare' Seyfert 1 nucleus

    CERN Document Server

    Vaughan, S; Ballantyne, D R; De Rosa, A; Piro, L; Matt, G

    2004-01-01

    We report on a long (100 ks) XMM-Newton observation of the bright Seyfert 1 galaxy Arakelian 120. The source previously showed no signs of intrinsic reddening in its infrared-ultraviolet continuum and previous observations had shown no evidence for ionized absorption in either the ultraviolet or X-ray bands. The new XMM-Newton RGS data place tight limits on the presence of an ionized X-ray absorber and confirm that the X-ray spectrum of Ark 120 is essentially unmodified by intervening matter. Thus Ark 120 can be considered a `bare' Seyfert 1 nucleus. This observation therefore offers a clean view of the X-ray spectrum of a `normal' Seyfert galaxy free from absorption effects. The spectrum shows a Doppler broadened iron emission line (FWHM ~ 3*10^4 km/s) and a smooth, continuous soft excess which appears to peak at an energy ~0.5 keV. This adds weight to the claim that genuine soft excesses (i.e. those due to a real steepening of the underlying continuum below ~2 keV) are ubiquitous in Seyfert 1 spectra. Howev...

  3. Constraining the fraction of Compton-thick AGN in the Universe by modelling the diffuse X-ray background spectrum

    CERN Document Server

    Akylas, A; Georgantopoulos, I; Brightman, M; Nandra, K

    2012-01-01

    This paper investigates what constraints can be placed on the fraction of Compton-thick (CT) AGN in the Universe from the modeling of the spectrum of the diffuse X-ray background (XRB). We present a model for the synthesis of the XRB that uses as input a library of AGN X-ray spectra generated by the Monte Carlo simulations described by Brightman & Nandra. This is essential to account for the Compton scattering of X-ray photons in a dense medium and the impact of that process on the spectra of obscured AGN. We identify a small number of input parameters to the XRB synthesis code which encapsulate the minimum level of uncertainty in reconstructing the XRB spectrum. These are the power-law index and high energy cutoff of the intrinsic X-ray spectra of AGN, the level of the reflection component in AGN spectra and the fraction of CT AGN in the Universe. We then map the volume of the space allowed to these parameters by current observations of the XRB spectrum in the range 3-100 keV. One of the least constraine...

  4. Probing the clumping structure of Giant Molecular Clouds through the spectrum, polarisation and morphology of X-ray Reflection Nebulae

    CERN Document Server

    Molaro, Margherita; Sunyaev, Rashid

    2015-01-01

    We suggest a method for probing global properties of clump populations in Giant Molecular Clouds (GMCs) in the case where these act as X-ray reflection nebulae (XRNe), based on the study of the clumping's overall effect on the reflected X-ray signal, in particular on the Fe K-alpha line's shoulder. We consider the particular case of Sgr B2, one of the brightest and most massive XRN in our Galaxy. We parametrise the gas distribution inside the cloud using a simple clumping model, with the slope of the clump mass function (alpha), the minimum clump mass (m_{min}), the fraction of the cloud's mass contained in clumps (f_{DGMF}), and the mass-size relation of individual clumps as free parameters, and investigate how these affect the reflected X-ray spectrum. In the case of very dense clumps, similar to those presently observed in Sgr B2, these occupy a small volume of the cloud and present a small projected area to the incoming X-ray radiation. We find that these contribute negligibly to the scattered X-rays. Clu...

  5. Identification of Faint Chandra X-ray Sources in the Core-Collapsed Globular Cluster NGC 6397: Evidence for a Bimodal Cataclysmic Variable Population

    CERN Document Server

    Cohn, Haldan N; Couch, Sean M; Anderson, Jay; Cool, Adrienne M; Berg, Maureen van den; Bogdanov, Slavko; Heinke, Craig O; Grindlay, Jonathan E; 10.1088/0004-637X/722/1/20

    2011-01-01

    We have searched for optical identifications for 79 Chandra X-ray sources that lie within the half-mass radius of the nearby, core-collapsed globular cluster NGC 6397, using deep Hubble Space Telescope Advanced Camera for Surveys Wide Field Channel imaging in H-alpha, R, and B. Photometry of these images allows us to classify candidate counterparts based on color-magnitude diagram location. In addition to recovering nine previously detected cataclysmic variables (CVs), we have identified six additional faint CV candidates, a total of 42 active binaries (ABs), two millisecond pulsars (MSPs), one candidate active galactic nucleus, and one candidate interacting galaxy pair. Of the 79 sources, 69 have a plausible optical counterpart. The 15 likely and possible CVs in NGC 6397 mostly fall into two groups: a brighter group of six for which the optical emission is dominated by contributions from the secondary and accretion disk, and a fainter group of seven for which the white dwarf dominates the optical emission. T...

  6. A broadband X-ray spectral study of the intermediate-mass black hole candidate M82 X-1 with NuSTAR, Chandra and Swift

    CERN Document Server

    Brightman, Murray; Barret, Didier; Davis, Shane W; Fürst, Felix; Madsen, Kristin K; Middleton, Matthew; Miller, Jon M; Stern, Daniel; Tao, Lian; Walton, Dominic J

    2016-01-01

    M82 X-1 is one of the brightest ultraluminous X-ray sources (ULXs) known, which, assuming Eddington-limited accretion and other considerations, makes it one of the best intermediate-mass black hole (IMBH) candidates. However, the ULX may still be explained by super-Eddington accretion onto a stellar-remnant black hole. We present simultaneous NuSTAR, Chandra and Swift/XRT observations during the peak of a flaring episode with the aim of modeling the emission of M82 X-1 and yielding insights into its nature. We find that thin-accretion disk models all require accretion rates at or above the Eddington limit in order to reproduce the spectral shape, given a range of black hole masses and spins. Since at these high Eddington ratios the thin-disk model breaks down due to radial advection in the disk, we discard the results of the thin-disk models as unphysical. We find that the temperature profile as a function of disk radius ($T(r)\\propto r^{-p}$) is significantly flatter ($p=0.55^{+ 0.07}_{- 0.04}$) than expecte...

  7. Moving the Frontier of Quantum Control into the Soft X-Ray Spectrum

    Directory of Open Access Journals (Sweden)

    A. Aquila

    2011-01-01

    Full Text Available The femtosecond nature of X-ray free electron laser (FEL pulses opens up exciting research possibilities in time-resolved studies including femtosecond photoemission and diffraction. The recent developments of seeding X-ray FELs extend their capabilities by creating stable, temporally coherent, and repeatable pulses. This in turn opens the possibility of spectral engineering soft X-ray pulses to use as a probe for the control of quantum dynamics. We propose a method for extending coherent control pulse-shaping techniques to the soft X-ray spectral range by using a reflective geometry 4f pulse shaper. This method is based on recent developments in asymmetrically cut multilayer optic technology and piezoelectric substrates.

  8. Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, Esra; Foster, Adam; Smith, Randall K.; Randall, Scott W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Markevitch, Maxim [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Loewenstein, Michael, E-mail: ebulbul@cfa.harvard.edu [CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-01

    We detect a weak unidentified emission line at E = (3.55-3.57) ± 0.03 keV in a stacked XMM-Newton spectrum of 73 galaxy clusters spanning a redshift range 0.01-0.35. When the full sample is divided into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at >3σ statistical significance in all three independent MOS spectra and the PN 'all others' spectrum. It is also detected in the Chandra spectra of the Perseus Cluster. However, it is very weak and located within 50-110 eV of several known lines. The detection is at the limit of the current instrument capabilities. We argue that there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with m{sub s} = 2E = 7.1 keV, our detection corresponds to a neutrino decay rate consistent with previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples. This appears to be because of an anomalously bright line at E = 3.62 keV in Perseus, which could be an Ar XVII dielectronic recombination line, although its emissivity would have to be 30 times the expected value and physically difficult to understand. Another alternative is the above anomaly in the Ar line combined with the nearby 3.51 keV K line also exceeding expectation by a factor of 10-20. Confirmation with Astro-H will be critical to determine the nature of this new line.

  9. A Change in the Quiescent X-Ray Spectrum of the Neutron Star Low-mass X-Ray Binary MXB 1659-29

    NARCIS (Netherlands)

    E.M. Cackett; E.F. Brown; A. Cumming; N. Degenaar; J. Fridriksson; J. Homan; J.M. Miller; R. Wijnands

    2013-01-01

    The quasi-persistent neutron star low-mass X-ray binary MXB 1659-29 went into quiescence in 2001, and we have followed its quiescent X-ray evolution since. Observations over the first 4 yr showed a rapid drop in flux and temperature of the neutron star atmosphere, interpreted as cooling of the neutr

  10. The first high-resolution X-ray spectrum of a Herbig Star: The case of AB Aurigae

    CERN Document Server

    Telleschi, A; Briggs, K R; Skinner, S L; Audard, M; Franciosini, E

    2006-01-01

    We present the first high-resolution X-ray spectrum of a prototypical Herbig star (AB Aurigae), measure and interpret various spectral features, and compare our results with model predictions. We use X-ray spectroscopy data from XMM-Newton. The spectra are interpreted using thermal, optically thin emission models with variable element abundances and a photoelectric absorption component. We interpret line flux ratios in He-like triplet of O VII as a function of electron density and the UV radiation field. We use the nearby co-eval classical T Tauri star SU Aur as a comparison. AB Aurigae reveals a soft X-ray spectrum, most plasma being concentrated at 1-6 MK. The He-like triplet reveals no signatures of increased densities and there are no clear indications for strong abundance anomalies. The light curve displays modulated variability, with a period of ~ 42 hr. It is unlikely that a nearby, undetected lower-mass companion is the source of the X-rays. Accretion shocks close to the star should be irradiated by t...

  11. A detailed X-ray investigation of ζ Puppis. III. Spectral analysis of the whole RGS spectrum

    Science.gov (United States)

    Hervé, A.; Rauw, G.; Nazé, Y.

    2013-03-01

    Context. ζ Pup is the X-ray brightest O-type star of the sky. This object was regularly observed with the RGS instrument onboard XMM-Newton for calibration purposes, which led to an unprecedented set of high-quality spectra. Aims: We have previously reduced and extracted this data set and integrated it into the most detailed high-resolution X-ray spectrum of any early-type star so far. Here we present the analysis of this spectrum, taking into account for the presence of structures in the stellar wind. Methods: For this purpose, we used our new modeling tool that allows fitting the entire spectrum with a multi-temperature plasma. We illustrate the impact of a proper treatment of the radial dependence of the X-ray opacity of the cool wind on the best-fit radial distribution of the temperature of the X-ray plasma. Results: The best-fit of the RGS spectrum of ζ Pup is obtained assuming no porosity. Four plasma components at temperatures between 0.10 and 0.69 keV are needed to adequately represent the observed spectrum. Whilst the hardest emission is concentrated between ~3 and 4 R∗, the softer emission starts already at 1.5 R∗ and extends to the outer regions of the wind. Conclusions: The inferred radial distribution of the plasma temperatures agrees rather well with theoretical expectations. The mass-loss rate and CNO abundances corresponding to our best-fit model also agree quite well with the results of recent studies of ζ Pup in the UV and optical domain. Based on observations collected with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  12. The 1 keV to 200 keV X-ray Spectrum of NGC 2992 and NGC 3081

    CERN Document Server

    Beckmann, Volker; Tueller, Jack

    2007-01-01

    The Seyfert 2 galaxies NGC 2992 and NGC 3081 have been observed by INTEGRAL and Swift. We report about the results and the comparison of the spectrum above 10 keV based on INTEGRAL IBIS/ISGRI, Swift/BAT, and BeppoSAX/PDS. A spectrum can be extracted in the X-ray energy band ranging from 1 keV up to 200 keV. Although NGC 2992 shows a complex spectrum below 10 keV, the hard tail observed by various missions exhibits a slope with photon index = 2, independent on the flux level during the observation. No cut-off is detectable up to the detection limit around 200 keV. In addition, NGC 3081 is detected in the INTEGRAL and Swift observation and also shows an unbroken Gamma = 1.8 spectrum up to 150 keV. These two Seyfert galaxies give further evidence that a high-energy cut-off in the hard X-ray spectra is often located at energies E_C >> 100 keV. In NGC 2992 a constant spectral shape is observed over a hard X-ray luminosity variation by a factor of 11. This might indicate that the physical conditions of the emitting...

  13. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94131 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Babul, Arif; Bildfell, Chris [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Jeltema, Tesla [Santa Cruz Institute for Particle Physics, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Henry, J. Patrick [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-04-20

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  14. The highly variable X-ray spectrum of the luminous Seyfert 1 galaxy 1H 0419-577

    CERN Document Server

    Page, K L; Reeves, J N; O'Brien, P T

    2002-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 is presented. We find that the spectrum is well fitted by a power law of canonical slope (gamma ~ 1.9) and 3 blackbody components (to model the strong soft excess). The XMM data are compared and contrasted with observations by ROSAT in 1992 and by ASCA and BeppoSAX in 1996. We find that the overall X-ray spectrum has changed substantially over the period, and suggest that the changes are driven by the soft X-ray component. When bright, as in our XMM-Newton observation, it appears that the enhanced soft flux cools the Comptonising corona, causing the 2-10 keV power law to assume a `typical' slope, in contrast to the unusually hard (`photon-starved') spectra observed by ASCA and BeppoSAX four years earlier.

  15. The effect of turbulent density fluctuations on wave-particle interactions and solar flare X-ray spectrum

    CERN Document Server

    Hannah, I G; Reid, H A S

    2012-01-01

    To demonstrate the effect of turbulent background density fluctuations on flare accelerated electron transport in the solar corona. Using the quasi-linear approximation, we numerically simulate the propagation of a beam of accelerated electrons from the solar corona to chromosphere, including the self-consistent response of the inhomogeneous background plasma in the form of Langmuir waves. We calculate the X-ray spectrum from these simulations using the bremsstrahlung cross-section and fit the footpoint spectrum using the collisional "thick-target" model, a standard approach adopted in observational studies. We find that the interaction of the Langmuir waves with the background electron density gradient shifts the waves to higher phase velocity where they then resonate with higher velocity electrons. The consequence is that some of the electrons are shifted to higher energies, producing more high energy X-rays than expected in the cases where the density inhomogeneity is not considered. We find that the level...

  16. The high-energy X-ray spectrum of black hole candidate GX 339-4 during a transition

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Orwig, L. E.

    1987-01-01

    The X-ray emitting system GX 339-4 contains one of the prime candidates for a stellar mass-sized black hole. Determining the observational similarities and differences between the members of this group is of value in specifying which characteristics can be used to identify systems containing a black hole, especially those for which no mass determination can be made. The first observations of the E greater than 20 keV spectrum of GX 339-4 during a transition between luminosity states are reported here. The hard spectral state is the lower luminosity state of the system. GX 339-4 has a power-low spectrum above 20 keV which pivots during transitions between distinct luminosity states. The only other X-ray sources known to exhibit this behavior, Cyg XR-1 and (probably) A0620-00, are leading candidates for systems containing a black hole component based on their measured spectrocopic mass function.

  17. The soft X-ray spectrum of the luminous narrow line Seyfert galaxy PG1211+143

    CERN Document Server

    Pounds, K A

    2013-01-01

    An XMM-Newton observation of the luminous Seyfert galaxy PG1211+143 in 2001 showed the first evidence for a highly ionised high speed wind (in a non-BAL AGN), with a velocity of v~0.1c based on the identification of blue-shifted absorption lines in both EPIC and RGS spectra. An order-of-magnitude lower velocity was subsequently claimed based on an ion-by-ion model fit to the soft X-ray data. Although repeated observations with XMM-Newton, Chandra and Suzaku confirmed a high velocity, all were based on detection of blue-shifted absorption lines of highly ionised Fe. We show here, in a new analysis of the XMM-Newton RGS data, that the high velocity is indeed present in the soft X-ray spectra, with the higher spectral resolution providing evidence for a second, lower ionisation component close to the systemic velocity of PG1211+143. Variability of the more highly ionised absorption component conforms with that found previously in EPIC spectra in excluding a local origin, while broad emission features are identif...

  18. Thermal X-Ray Emission from Shocked Ejecta in Type Ia Supernova Remnants II: Parameters Affecting the Spectrum

    CERN Document Server

    Badenes, C; Bravo, E

    2005-01-01

    The supernova remnants left behind by Type Ia supernovae provide an excellent opportunity for the study of these enigmatic objects. In a previous work, we showed that it is possible to use the X-ray spectra of young Type Ia supernova remnants to explore the physics of Type Ia supernovae and identify the relevant mechanism underlying these explosions. Our simulation technique is based on hydrodynamic and nonequilibrium ionization calculations of the interaction of a grid of Type Ia explosion models with the surrounding ambient medium, coupled to an X-ray spectral code. In this work we explore the influence of two key parameters on the shape of the X-ray spectrum of the ejecta: the density of the ambient medium around the supernova progenitor and the efficiency of collisionless electron heating at the reverse shock. We also discuss the performance of recent 3D simulations of Type Ia SN explosions in the context of the X-ray spectra of young SNRs. We find a better agreement with the observations for Type Ia supe...

  19. Near-Infrared Spectroscopy of Faint Discrete X-ray Point Sources Constituting the Galactic Ridge X-ray Emission

    CERN Document Server

    Morihana, Kumiko; Dubath, Pierre; Yoshida, Tessei; Suzuki, Kensuke; Ebisawa, Ken

    2016-01-01

    The Galactic Ridge X-ray Emission (GRXE) is apparently extended X-ray emission along the Galactic Plane. The X-ray spectrum is characterized by hard continuum with a strong Fe K emission feature in the 6-7 keV band. A substantial fraction (~80%) of the GRXE in the Fe band was resolved into point sources by deep Chandra imaging observations, thus GRXE is mostly composed of dim Galactic X-ray point sources at least in this energy band. To investigate the populations of these dim X-ray point sources, we carried out Near-Infrared (NIR) follow-up spectroscopic observations in two deep Chandra fields located in the Galactic plane at (l,b)=(0.1{\\arcdeg}, -1.4{\\arcdeg}) and (28.5{\\arcdeg}, 0.0{\\arcdeg}) using NTT/SofI and Subaru/MOIRCS. We obtained well-exposed NIR spectra from 65 objects and found that there are three main classes of Galactic sources based on the X-ray color and NIR spectral features: those having (A) hard X-ray spectra and NIR emission features such as HI(Br{\\gamma}), HeI, and HeII (2 objects), (B)...

  20. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  1. Quenching the X-ray spectrum of hot halos with AGN outflows and turbulence

    Science.gov (United States)

    Gaspari, M.

    2016-06-01

    I highlight recent advancements in the astrophysics of AGN outflow feedback and diffuse hot gas. Thanks to XMM RGS resolution, we know that the X-ray cores of clusters, groups, and massive galaxies have a strong deficit of soft X-ray emission compared with the classic cooling flow prediction: dL_{x}/dT ∝ (T/T_{hot})^{2±1}. Using 3D hydrodynamic simulations, I show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow feedback. Multiphase filaments condense out of the hot plasma, they rain onto the central SMBH, and boost the AGN outflows via chaotic cold accretion. The sub-relativistic outflows thermalize in the core via shocks and turbulence, releasing more heat in the inner cooler phase, thus inducing the observed soft X-ray decline. I discuss how we can leverage XMM capabilities in the next decade by probing turbulence, conduction, AGN accretion and outflows via the information contained in X-ray spectra and surface brightness. I focus on the importance of selecting a few objects with Ms exposure and how we can unveil multiphase halos through the synergy between simulations and multiwavelength observations.

  2. A NuSTAR observation of the reflection spectrum of the low-mass X-ray binary 4U 1728-34

    DEFF Research Database (Denmark)

    Sleator, Clio C.; Tomsick, John A.; King, Ashley L.

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with k...

  3. A strong and broad Fe line in the XMM-Newton spectrum of the new X-ray transient and black hole candidate XTEJ1652-453

    NARCIS (Netherlands)

    Hiemstra, Beike; Méndez, Mariano; Done, Chris; Díaz Trigo, María; Altamirano, Diego; Casella, Piergiorgio

    2011-01-01

    We observed the new X-ray transient and black hole candidate XTEJ1652-453 simultaneously with XMM-Newton and the Rossi X-ray Timing Explorer (RXTE). The observation was done during the decay of the 2009 outburst, when XTEJ1652-453 was in the hard-intermediate state. The spectrum shows a strong and b

  4. A strong and broad Fe line in the XMM-Newton spectrum of the new X-ray transient and black hole candidate XTE J1652-453

    NARCIS (Netherlands)

    Hiemstra, Beike; Méndez, Mariano; Done, Chris; Díaz Trigo, María; Altamirano, Diego; Casella, Piergiorgio

    2011-01-01

    We observed the new X-ray transient and black hole candidate XTE J1652-453 simultaneously with XMM-Newton and the Rossi X-ray Timing Explorer (RXTE). The observation was done during the decay of the 2009 outburst, when XTE J1652-453 was in the hard-intermediate state. The spectrum shows a strong and

  5. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)

    2016-06-15

    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  6. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  7. The NuSTAR X-ray Spectrum of Hercules X-1: A Radiation-Dominated Radiative Shock

    Science.gov (United States)

    Wolff, Michael Thomas; Becker, Peter A.; Gottlieb, Amy; Fuerst, Felix; Britton Hemphill, Paul; Marcu-Cheatham, Diana; Pottschmidt, Katja; Schwarm, Fritz-Walter; Wilms, Joern; Wood, Kent

    2016-04-01

    We report on new spectral modeling of an observation of the accreting X-ray pulsar Her X-1 by the Nuclear Spectroscopic Telescope Array (NuSTAR). We utilize a radiation-dominated radiative shock model that is an implementation of the analytic work of Becker & Wolff (2007) on Comptonized accretion flows onto magnetic neutron stars within the XSPEC analysis environment. We obtain a good fit to the Her X-1 spin-phase averaged 4 to 78 keV X-ray spectrum observed by NuSTAR during a main-on phase of the Her X-1 35-day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous spectral models that characterized the shape of the X-ray spectrum but could not determine the physical parameters of the accretion flow. We describe the details of our spectral fitting model and we discuss the interpretation of the resulting accretion flow physical parameters.This research is supported by the NASA Astrophysics Data Analysis Program.

  8. The high energy X-ray spectrum of 4U 1700-37 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Maurer, G. S.

    1980-01-01

    The most intense hard X-ray source in the confused region in Scorpius has been identified as 4U 1700-37 (=HD 153919). Observations extending over three binary periods in 1978 September were carried out with the high-energy X-ray spectrometer on OSO 8. The 3.4 day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photonumber spectrum from 20 to 150 keV is well represented by a single power law with a photonumber spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 (+15, -7)keV. The counting rate above 20 keV outside of eclipse shows no evidence for the 96.8 minute X-ray modulation previously reported at lower energies. Despite the difficulties that exist in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with our currently accepted theories of the evolution and physical properties of neutron stars, the observed properties of 4U 1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  9. No Signatures of Black-Hole Spin in the X-ray Spectrum of the Seyfert 1 Galaxy Fairall 9

    CERN Document Server

    Yaqoob, Tahir; Tatum, Malachi M; Trevor, Max; Scholtes, Alexis

    2016-01-01

    Fairall 9 is one of several type 1 active galactic nuclei for which it has been claimed that the angular momentum (or spin) of the supermassive black hole can be robustly measured, using the Fe K$\\alpha$ emission line and Compton-reflection continuum in the X-ray spectrum. The method rests upon the interpretation of the Fe K$\\alpha$ line profile and associated Compton-reflection continuum in terms of relativistic broadening in the strong gravity regime in the innermost regions of an accretion disc, within a few gravitational radii of the black hole. Here, we re-examine a Suzaku X-ray spectrum of Fairall 9 and show that a face-on toroidal X-ray reprocessor model involving only nonrelativistic and mundane physics provides an excellent fit to the data. The Fe K$\\alpha$ line emission and Compton reflection continuum are calculated self-consistently, the iron abundance is solar, and an equatorial column density of $\\sim 10^{24} \\ \\rm cm^{-2}$ is inferred. In this scenario, neither the Fe K$\\alpha$ line, nor the Co...

  10. Design of Time-Resolved Shifted Dual Transmission Grating Spectrometer for the X-Ray Spectrum Diagnostics

    Science.gov (United States)

    Wang, Baoqing; Yi, Tao; Wang, Chuanke; Zhu, Xiaoli; Li, Tingshuai; Li, Jin; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-07-01

    A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion. supported by National Natural Science Foundation of China (Nos. 11405158 and 11435011) and Development Foundation of China Academy of Engineering Physics (Nos. 2014B0102011 and 2014B0102012)

  11. Bandpass Dependence of X-ray Temperatures in Galaxy Clusters

    CERN Document Server

    Cavagnolo, Kenneth W; Voit, G Mark; Sun, Ming

    2008-01-01

    We explore the band dependence of the inferred X-ray temperature of the intracluster medium (ICM) for 192 well-observed galaxy clusters selected from the Chandra Data Archive. If the hot ICM is nearly isothermal in the projected region of interest, the X-ray temperature inferred from a broad-band (0.7-7.0 keV) spectrum should be identical to the X-ray temperature inferred from a hard-band (2.0-7.0 keV) spectrum. However, if unresolved cool lumps of gas are contributing soft X-ray emission, the temperature of a best-fit single-component thermal model will be cooler for the broad-band spectrum than for the hard-band spectrum. Using this difference as a diagnostic, the ratio of best-fitting hard-band and broad-band temperatures may indicate the presence of cooler gas even when the X-ray spectrum itself may not have sufficient signal-to-noise to resolve multiple temperature components. To test this possible diagnostic, we extract X-ray spectra from core-excised annular regions for each cluster in our archival sam...

  12. The soft X-ray spectrum of the high-mass X-ray binary V0332+53 in quiescence

    Science.gov (United States)

    Elshamouty, Khaled G.; Heinke, Craig O.; Chouinard, Rhys

    2016-11-01

    The behaviour of neutron stars in high-mass X-ray binaries (HMXBs) during periods of low mass transfer is of great interest. Indications of spectral softening in systems at low mass-transfer rates suggest that some HMXBs are undergoing fundamental changes in their accretion regime, but the nature of the quiescent X-ray emission is not clear. We performed a 39 ks XMM-Newton observation of the transient HMXB V0332+53, finding it at a very low X-ray luminosity (Lx ˜ 4 × 1032 erg s-1). A power-law spectral fit requires an unusually soft spectral index (4.4^{+0.9}_{-0.6}), while a magnetized neutron star atmosphere model, with temperature LogTeff 6.7 ± 0.2 K and inferred emitting radius of ˜0.2-0.3 km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hotspot on the surface of the neutron star. No conclusions on the presence of pulsations could be drawn due to the low count rate. Due to the high absorption column, thermal emission from the rest of the neutron star could be only weakly constrained, to LogTeff <6.14^{+0.05}_{-6.14} K, or <3 × 1033 erg s-1.

  13. ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    Science.gov (United States)

    Arefiev, V.; Pavlinsky, M.; Lapshov, I.; Thachenko, A.; Sazonov, S.; Revnivtsev, M.; Semena, N.; Buntov,M.; Vikhlinin, A.; Gubarev, M.; ODell, S.; Ramsey, B.; Romaine, S.; Swartz. D/; Weisskopf, M.; Hasinger, G.; Predehl, P.; Grigorovich, S.; Litvin, D.; Meidinger, N.; Strueder, L. W.

    2008-01-01

    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs.

  14. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  15. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ostorero, L.; /Turin U. /INFN, Turin; Moderski, R.; /Warsaw, Copernicus Astron. Ctr. /KIPAC, Menlo Park; Stawarz, L.; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Diaferio, A.; /Turin U. /INFN, Turin; Kowalska, I.; /Warsaw U. Observ.; Cheung, C.C.; /NASA, Goddard /Naval Research Lab, Wash., D.C.; Kataoka, J.; /Waseda U., RISE; Begelman, M.C.; /JILA, Boulder; Wagner, S.J.; /Heidelberg Observ.

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  16. The First Chandra Field

    OpenAIRE

    Weisskopf, Martin C.; Aldcroft, Thomas L.; Cameron, Robert A.; Gandhi, Poshak; Foellmi, Cédric; Elsner, Ronald F.; Patel, Sandeep K.; Wu, Kinwah; O'Dell, Stephen L.

    2005-01-01

    Before the official first-light images, the Chandra X-Ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ``Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Sou...

  17. Prediction soft-X-ray spectrum of solar flares from Very Low Frequency observations: an inverse problem in ionospheric science

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    Earth's lower ionosphere and upper atmosphere absorb X-rays and gamma-rays from astronomical sources such as solar flares, Short Gamma ray Repeaters (SGRs) or Gamma Ray Bursts (GRBs). The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectrum and hence vary from one source to another. Obviously the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we examine the possibility of inverting the electron density-height profiles uniquely by deconvolution of the VLF amplitude signal to obtain information on the injected spectrum. We have been able to reproduce the soft-X-ray part of the injected spectra from two different classes of solar flares with satisfactory accuracy. With the possibilities of probing even lower parts of the atmosphere, the method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. We show that to a certain accuracy, the Earth's atmosphere may be used as a gigantic detector of relatively strong ionizing extra-terrestrial events.

  18. Inverse problem in ionospheric science: prediction of solar soft-X-ray spectrum from very low frequency radiosonde results

    Science.gov (United States)

    Palit, S.; Ray, S.; Chakrabarti, S. K.

    2016-05-01

    X-rays and gamma-rays from astronomical sources such as solar flares are mostly absorbed by the Earth's atmosphere. Resulting electron-ion production rate as a function of height depends on the intensity and wavelength of the injected spectrum and therefore the effects vary from one source to another. In other words, the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we investigate whether we can invert the problem uniquely by deconvolution of the VLF amplitude signal to obtain the details of the injected spectrum. We find that it is possible to do this up to a certain accuracy. This leads us to the possibility of uninterrupted observation of X-ray photon spectra of solar flares that are often hindered by the restricted observation window of space satellites to avoid charge particle damages. Such continuous means of observation are essential in deriving information on time evolution of physical processes related to electron acceleration and interaction with plasma in solar atmosphere. Our method is useful to carry out a similar exercise to infer the spectra of more energetic events such as the Gamma Ray Bursts (GRBs), Soft Gamma-ray Repeaters (SGRs) etc., by probing even the lower part of the Earth's atmosphere. We thus show that to certain extent, the Earth's atmosphere could be used as a gigantic detector of relatively strong astronomical events.

  19. Chandra View of the Ultra-Steep Spectrum Radio Source in Abell 2443: Merger Shock-Induced Compression of Fossil Radio Plasma?

    CERN Document Server

    Clarke, T E; Sarazin, C L; Blanton, E L; Giacintucci, S

    2013-01-01

    We present a new Chandra X-ray observation of the intracluster medium in the galaxy cluster Abell 2443, hosting an ultra-steep spectrum radio source. The data reveal that the intracluster medium is highly disturbed. The thermal gas in the core is elongated along a northwest to southeast axis and there is a cool tail to the north. We also detect two X-ray surface brightness edges near the cluster core. The edges appear to be consistent with an inner cold front to the northeast of the core and an outer shock front to the southeast of the core. The southeastern edge is coincident with the location of the radio relic as expected for shock (re)acceleration or adiabatic compression of fossil relativistic electrons.

  20. The impact of accretion disk winds on the X-ray spectrum of AGN: Part 2 - XSCORT + Hydrodynamic Simulations

    CERN Document Server

    Schurch, N J; Proga, D

    2008-01-01

    abridged: We use XSCORT, together with the hydrodynamic accretion disc wind simulation from Proga & Kallman (2004), to calculate the impact that the accretion disk wind has on the X-ray spectrum from a 1E8 solar mass black hole Active Galactic Nuclei (AGN) accreting at 0.5 L/L_Edd. The properties of the resulting spectra depend on viewing angle and clearly reflect the distinct regions apparent in the original hydrodynamic simulation. Very equatorial lines-of-sight (l.o.s) are dominated by Compton scattering and nearly-neutral absorption. Polar l.o.s result in largely featureless spectra. Finally, l.o.s that intersect the transition region between these extremes have a wide range of absorption features imprinted on the spectrum. Both polar and transition region l.o.s produce spectra that show highly-ionized, blue-shifted, Fe absorption features that are qualitatively similar to features observed in the X-ray spectra of a growing number of AGN. The spectra presented here clearly demonstrate that current sim...

  1. The High Energy X-ray Spectrum of 4U1700-37 Observed from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Maurer, G. S.; Orwig, L. E.

    1979-01-01

    The most intense hard X-ray source in the confused region in Scorpius is identified as 4U1700-37. The 3.4-day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photon-number spectrum from 20 to 150 keV is well represented by a single power law with a photo-number spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 96.8-min X-ray modulation previously reported at lower energies. Despite the difficulties in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with theories of the evolution and physical properties of neutron stars, the observed properties of 4U1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  2. Multilayer x-ray mirrors for the objective crystal spectrometer on the Spectrum Roentgen Gamma satellite

    DEFF Research Database (Denmark)

    Louis, E.; Spiller, E.; Abdali, S.

    1995-01-01

    We carried out experiments to determine the optimum parameters for the production of multilayer x-ray mirrors for the lambda equals 4.4 - 7.1 nm range using electron beam evaporation and ion-polishing. We report on the deposition of Co/C and Ni/C coatings, of which we polished the metal layers...... with Kr+- and Ar+- ions of 300, 500, and 1000 eV. We examined the effect of different polishing parameters on the smoothening of the Co- and Ni-layers. The in-situ reflectivity of lambda equals 3.16 nm during deposition and the ex-situ grazing incidence reflectivity of Cu-K(alpha ) radiation (lambda...

  3. Monitoring Chandra observations of the quasi-persistent neutron-star X-ray transient MXB 1659-29 in quiescence: the cooling curve of the heated neutron-star crust

    CERN Document Server

    Wijnands, R; Miller, J M; Lewin, W H G; Wijnands, Rudy; Homan, Jeroen; Miller, Jon M.; Lewin, Walter H. G.

    2004-01-01

    We have observed the quasi-persistent neutron-star X-ray transient and eclipsing binary MXB 1659-29 in quiescence on three occasions with Chandra. The purpose of our observations was to monitor the quiescent behavior of the source after its last prolonged (~2.5 years) outburst which ended in September 2001. The X-ray spectra of the source are consistent with thermal radiation from the neutron-star surface. We found that the bolometric flux of the source decreased by a factor of 7-9 over the time-span of 1.5 years between our first and last Chandra observations. The effective temperature also decreased, but by a factor of 1.6-1.7. The decrease in time of the bolometric flux and effective temperature can be described using exponential decay functions, with e-folding times of ~0.7 and ~3 years, respectively. Our results are consistent with the hypothesis that we observed a cooling neutron-star crust which was heated considerably during the prolonged accretion event and which is still out of thermal equilibrium w...

  4. On Neutral Absorption and Spectral Evolution in X-ray Binaries

    CERN Document Server

    Miller, J M; Reis, R C

    2009-01-01

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low energy spectrum of X-ray binaries should properly be attributed t...

  5. A Photoionization Model For The Soft X-Ray Spectrum Of NGC 4151

    CERN Document Server

    Armentrout, B K; Turner, T J

    2007-01-01

    We present analysis of archival data from multiple XMM-Newton observations of the Seyfert 1 galaxy NGC 4151. Spectral data from the RGS instruments reveal several strong soft X-ray emission lines, chiefly from hydrogen-like and helium-like oxygen, nitrogen, neon and carbon. Radiative recombination continua (RRC) from oxygen and carbon are also detected. Our analysis suggests that the emission data are consistent with photoionization. Using the CLOUDY photoionization code, we found that, while a two-component, high column density model (10e23 cm-2) with low covering factor proved adequate in reproducing all detected Lyman series lines, it proved insufficient in modeling He-like triplets observed (neon, oxygen, and nitrogen). If resonance line data were ignored, the two-component model was sufficient to match flux from intercombination and forbidden lines. However, with the inclusion of resonance line data, He-like triplets could no longer be modeled with only two components. We found that observed oxygen G and...

  6. NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A

    CERN Document Server

    Fuerst, F; Madsen, K K; Lanz, L; Rivers, E; Brightman, M; Arevalo, P; Balokovic, M; Beuchert, T; Boggs, S E; Christensen, F E; Craig, W W; Dauser, T; Farrah, D; Graefe, C; Hailey, C J; Harrison, F A; Kadler, M; King, A; Krauss, F; Madejski, G; Matt, G; Marinucci, A; Markowitz, A; Ogle, P; Ojha, R; Rothschild, R; Stern, D; Walton, D J; Wilms, J; Zhang, W

    2015-01-01

    We present simultaneous XMM-Newton and NuSTAR observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A), performed during a very high flux state. The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but finds no evidence for an extended source or other off-nuclear point-sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power-law with a photon index {\\Gamma} = 1.815 +/- 0.005 and a fluorescent Fe K{\\alpha} line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of E_fold > 1MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature of kT_e ~ 220 k...

  7. NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A

    DEFF Research Database (Denmark)

    Fürst, F.; Müller, C.; Madsen, K. K.;

    2016-01-01

    We present simultaneous XMM-Newton and NuSTAR observations spanning 3–78 keV of the nearest radiogalaxy, Centaurus A (Cen A), performed during a very high flux state. The accretion geometry around thecentral engine in Cen A is still debated, and we investigate possible configurations using detailed...... X-ray spectralmodeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above10 keV for the first time, but finds no evidence for an extended source or other off-nuclear point-sources.The XMM-Newton and NuSTAR spectra agree well and can be described...... with an absorbed power-law witha photon index Γ = 1.815 ± 0.005 and a fluorescent Fe Kα line in good agreement with literature values.The spectrum does not require a high-energy exponential rollover, with a constraint of Efold > 1 MeV. Athermal Comptonization continuum describes the data well, with parameters...

  8. The Geometry of the Infrared and X-Ray Obscurer in a Dusty Hyperluminous Quasar

    DEFF Research Database (Denmark)

    Farrah, Duncan; Baloković, Mislav; Stern, Daniel;

    2016-01-01

    We study the geometry of the active galactic nucleus (AGN) obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at z = 0.442, using infrared data from Spitzer and Herschel, X-ray data from NuSTAR, Swift, Suzaku, and Chandra, and an optical spectrum from Palomar. The infrare...

  9. Connections between the Radio, Optical and Soft X-ray Luminosities for Flat-Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    Zhi-Fu Chen; Cai-Juan Pan; You-Bing Li; Yu-Tao Zhou

    2014-09-01

    We investigate the connections between radio, optical and soft X-ray luminosities with a sample of 538 FSRQs. We find that the radio luminosity is strongly correlated with the optical luminosity, as well as with the soft X-ray luminosity. We also find that the optical luminosity is strongly correlated with the soft X-ray luminosity.

  10. Proper motions of ROSAT discovered isolated neutron stars measured with Chandra: First X-ray measurement of the large proper motion of RX J1308.6+2127/RBS 1223

    CERN Document Server

    Motch, C; Haberl, F; Schwope, A; Zavlin, V E

    2007-01-01

    The unprecedented spatial resolution of the Chandra observatory opens the possibility to detect with relatively high accuracy proper motions at X-ray wavelengths. We have conducted an astrometric study of three of the "Magnificent Seven", the thermally emitting radio quiet isolated neutron stars (INSs) discovered by ROSAT. These three INSs (RX J0420.0-5022, RX J0806.4-4123 and RX J1308.6+2127/RBS 1223) either lack an optical counterpart or have one too faint to be used for astrometric purposes. We obtained ACIS observations 3 to 5 years apart to constrain or measure the displacement of the sources on the X-ray sky using as reference the background of extragalactic or remote galactic X-ray sources. Upper limits of 138 mas/yr and 76 mas/yr on the proper motion of RX J0420.0-5022 and RX J0806.4-4123, respectively, have already been presented in Motch et al. (2007). Here we report the very significant measurement (~ 10 sigma) of the proper motion of the third INS of our program, RX J1308.6+2127/RBS1223. Comparing...

  11. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  12. Toxicity modulation, resistance enzyme evasion, and A-site X-ray structure of broad-spectrum antibacterial neomycin analogs.

    Science.gov (United States)

    Maianti, Juan Pablo; Kanazawa, Hiroki; Dozzo, Paola; Matias, Rowena D; Feeney, Lee Ann; Armstrong, Eliana S; Hildebrandt, Darin J; Kane, Timothy R; Gliedt, Micah J; Goldblum, Adam A; Linsell, Martin S; Aggen, James B; Kondo, Jiro; Hanessian, Stephen

    2014-09-19

    Aminoglycoside antibiotics are pseudosaccharides decorated with ammonium groups that are critical for their potent broad-spectrum antibacterial activity. Despite over three decades of speculation whether or not modulation of pKa is a viable strategy to curtail aminoglycoside kidney toxicity, there is a lack of methods to systematically probe amine-RNA interactions and resultant cytotoxicity trends. This study reports the first series of potent aminoglycoside antibiotics harboring fluorinated N1-hydroxyaminobutyryl acyl (HABA) appendages for which fluorine-RNA contacts are revealed through an X-ray cocrystal structure within the RNA A-site. Cytotoxicity in kidney-derived cells was significantly reduced for the derivative featuring our novel β,β-difluoro-HABA group, which masks one net charge by lowering the pKa without compromising antibacterial potency. This novel side-chain assists in evasion of aminoglycoside-modifying enzymes, and it can be easily transferred to impart these properties onto any number of novel analogs.

  13. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Chandra data have also solved a long-running mystery about X-rays from the dark side of the Moon, as reported by Brad Wargelin of the Harvard-Smithsonian Center for Astrophysics. Wargelin discussed how data from the German Roentgen satellite (ROSAT) obtained in 1990 showed a clear X-ray signal from the dark side. These puzzling "dark-Moon X-rays" were tentatively ascribed to energetic electrons streaming away from the Sun and striking the lunar surface. However, Chandra's observations of the energies of individual X-rays, combined with simultaneous measurements of the number of particles flowing away from the Sun in the solar wind, indicate that the X-rays only appear to come from the Moon. In reality they come from much closer to home. "Our results strongly indicate that the so-called dark Moon X-rays do not come from the dark side of the Moon," said Wargelin. "The observed X-ray spectrum, the intensity of the X-rays, and the variation of the X-ray intensity with time, can all be explained by emission from Earth's extended outer atmosphere, through which Chandra is moving." In the model cited by Wargelin and colleagues, collisions of heavy ions of carbon, oxygen and neon in the solar wind with atmospheric hydrogen atoms located tens of thousands of miles above the surface of the Earth give rise to these X-rays. In the collisions, the solar ions capture electrons from hydrogen atoms. The solar ions then kick out X-rays as the captured electrons drop to lower energy states. "This idea has been kicking around among a small circle of believers for several years supported by theory and a few pieces of evidence," said Wargelin. "These new results should really clinch it." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory

  14. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    Science.gov (United States)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  15. Spatially resolving a starburst galaxy at hard X-ray energies: NuSTAR, CHANDRA, AND VLBA observations of NGC 253

    DEFF Research Database (Denmark)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.;

    2014-01-01

    Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR data set, comprised of three ~165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253...... 100" of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting...... of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy-dominated by the off-nuclear ULX and nuclear sources, which are also likely ULXs-falls steeply (photon index ≳ 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background...

  16. Detection of a high frequency break in the X-ray power spectrum of Ark 564

    CERN Document Server

    Papadakis, I E; Negoro, H; Gliozzi, M

    2001-01-01

    We present a power spectrum analysis of the long ASCA observation of Ark 564 in June/July 2001. The observed power spectrum covers a frequency range of ~ 3.5 decades. We detect a high frequency break at ~ 0.002 Hz. The power spectrum has an rms of ~30% and a slope of ~ -1 and ~ -2 below and above the break frequency. When combined with the results from a long RXTE observation (Pounds et al. 2001), the observed power spectra of Ark 564 and Cyg X-1 (in the low/hard state) are almost identical, showing a similar shape and rms amplitude. However, the ratio of the high frequency breaks is very small (~ 10e{3-4}), implying that these characteristic frequencies are not indicative of the black hole mass. This result supports the idea of a small black hole mass/high accretion rate in Ark 564.

  17. Spatial structure of X-ray filaments in SN 1006

    CERN Document Server

    Morlino, G; Blasi, P; Caprioli, D

    2009-01-01

    The theory of Non-Linear Diffusive Shock Acceleration (NLDSA) predicts the formation of a precursor upstream of the shock, where accelerated particles diffuse and induce magnetic field amplification through streaming instability. The non detection of this precursor in X-rays in {\\it Chandra} observations of the north-eastern region of SN 1006 (G329.6+14.6) led to impose an upper limit to the X-ray emission generated by accelerated electrons diffusing in this precursor, at an emissivity level of <1.5 per cent of the emission from the downstream region (Long et al. 2003). This has been used as an argument against Fermi acceleration at this shock. Here we calculate the spectrum and spatial distribution of accelerated particles in SN 1006 and show that Chandra results (including more recent data) are in perfect agreement with the predictions of NLDSA suggesting efficient particle acceleration and magnetic field amplification upstream of the shock by a factor ~10.

  18. Complex resonance absorption structure in the X-ray spectrum of IRAS13349+2438

    CERN Document Server

    Sako, M; Behar, E; Kaastra, J S; Brinkman, A C; Boller, T; Puchnarewicz, E M; Starling, R; Liedahl, D A; Clavel, J; Santos-Lleó, M; Boller, Th.

    2001-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM-Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (v ~ 1400 km/s FWHM) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L-shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 Ang identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from at least two distinct regions, one of which is tentatively associated with the medium that produces the op...

  19. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NARCIS (Netherlands)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-01-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly diff

  20. Inverse problem in Ionospheric Science: Prediction of solar soft-X-ray spectrum from Very Low Frequency Radiosonde results

    CERN Document Server

    Palit, Sourav; Chakrabarti, Sandip K

    2015-01-01

    X-rays and gamma-rays from astronomical sources such as solar flares are mostly absorbed by the Earth's atmosphere. Resulting electron-ion production rate as a function of height depends on the intensity and wavelength of the injected spectrum and therefore the effects vary from one source to another. In other words, the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we investigate whether we can invert the problem uniquely by deconvolution of the VLF amplitude signal to obtain the details of the injected spectrum. We find that it is possible to do this up to a certain accuracy. Our method is useful to carry out a similar exercise to infer the spectra of more energetic events such as the Gamma Ray Bursts (GRBs), Soft Gamma Ray Repeaters (SGRs) etc. by probing even the lower part of the atmosphere. We thus show that to certain extent, the Earth's atmosphere could be used as a gigantic detector of relatively strong events.

  1. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating

    CERN Document Server

    Ewall-Wice, A; Hewitt, J N; Loeb, A; Mesinger, A; Neben, A R; Offringa, A R; Tegmark, M; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Emrich, D; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Hurley-Walker, N; Johnston-Hollit, M; Jacobs, Daniel C; Kaplan, D L; Kasper, J C; Kim, HS; Kratzenberg, E; Lenc, E; Line, J; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Thyagarajan, Nithyanandan; Oberoi, D; Ord, S M; Paul, S; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2016-01-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most se...

  2. The Discovery of a Very Faint X-ray Transient in the Globular Cluster M15

    CERN Document Server

    Heinke, Craig O; Lugger, Phyllis M

    2008-01-01

    We have identified an X-ray transient (hereafter M15 X-3) in the globular cluster M15 from an archival Chandra grating observation. M15 X-3 appears at an X-ray luminosity of 6*10^{33} ergs/s with a spectrum consistent with an absorbed power law of photon index 1.51+-0.14. The object is identifiable in archival Chandra HRC-I observations with an X-ray luminosity of 2-6*10^{31} ergs/s and apparently soft colors, suggesting a neutron star low-mass X-ray binary in quiescence. We also observe it in outburst in a 2007 Chandra HRC-I observation, and in archival 1994-1995 ROSAT HRI observations. We identify a likely optical/UV counterpart with a (possibly transient) UV excess from archival HST data, which suggests a main sequence companion. We argue that M15 X-3's behavior is similar to that of the very faint X-ray transients which have been observed in the Galactic Center. We discuss several explanations for its very low X-ray luminosity, with the assumption that we have detected its companion. M15 X-3's uniquely lo...

  3. Modelling the Extreme X-ray Spectrum of IRAS 13224-3809

    CERN Document Server

    Chiang, Chia-Ying; Fabian, A C; Wilkins, D R; Gallo, L C

    2014-01-01

    The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability, frequency depended time lags, and strong Fe K line and Fe L features in the long 2011 XMM-Newton observation. In this work we study the spectral properties of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the nature of the source, focusing in particular on the spectral variability exhibited. The RGS spectrum shows no obvious signatures of absorption by partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra with a model that includes relativistic reflection from the inner accretion disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV) blackbody, which may originate in the accretion disc, either as direct or reprocessed thermal emission. We find that the reflection model explains the time-averaged spectrum well, and we also undertake flux-resolved and time-resolved spectral analyses, which provide evidence of gravitational light-bending effects. Additionally, the temperature ...

  4. The Low X-Ray State of LS 5039 / RX J1826.2-1450

    CERN Document Server

    Martocchia, A; Negueruela, I

    2004-01-01

    Recent XMM-Newton and Chandra observations of the high mass X-ray binary LS 5039 / RX J1826.2-1450 caught the source in a faint X-ray state. In contrast with previous RXTE observations, we fail to detect any evidence of iron line emission. We also fail to detect X-ray pulsations. The X-ray spectrum can be well fitted by a simple powerlaw, slightly harder than in previous observations, and does not require the presence of any additional disk or blackbody component. XMM-Newton data imply an X-ray photoelectric absorption ($N_{\\rm H} \\sim 7 \\times 10^{21}$ cm$^{-2}$) consistent with optical reddening, indicating that no strong local absorption occurs at the time of these observations. We discuss possible source emission mechanisms and hypotheses on the nature of the compact object, giving particular emphasis to the young pulsar scenario.

  5. [X-ray fluorescence spectrum analysis of chemical element for spider and silkworm silk and its applications].

    Science.gov (United States)

    Yuan, Bo; Xu, Ze-ren; Xie, Zhuo-jun; Shi, Qiang; Zhang, Xing-kang; Xu, Si-chuan

    2010-07-01

    Elemental compositions in spider and silkworm silks were determined by X-ray fluorescence (XRF) spectrum to probe the silk-forming mechanisms and an elemental basis for spider silk with excellent characteristics. XRF analysis demonstrates that in the silkworm silk, the elemental content is 47.10% for C, 29.92% for O and 16. 52% for N, including metal elemental contents: 0.166 2% for Ca, 0.104 0% for Mg and 0.039 5% for K, while Na, Zn, Ni, Fe and Cr show less micro quantity. Due to relative high quantity for Ca and Mg, they both play an important role in the silk-forming mechanism by silkworm. In the spider silk, the determined main nonmetal elemental contents are 44.09% for C, 26.64% for O and 22.34% for N. The high content of nitrogen may be an elemental basis for spider silk with excellent characteristic. The main metal elemental contents are 0.268 0% for Na, 0.081 4% for K and 0.011 6% for Mg, while Ca, Zn, Ni, Cu and Cr possess less micro quantity in the spider silk. Because of relative high quantity for Na and K, they both play an important role in the silk-forming mechanism by spider. The elemental compositions investigated by using mathematic statistic method are quite in agreement with those demonstrated by using XRF spectrum, which validates the experimentally determined elemental compositions in the spider and silkworm silks.

  6. The effects of high density on the X-ray spectrum reflected from accretion discs around black holes

    Science.gov (United States)

    García, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Michael L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jörn

    2016-10-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter ξ, which is the ratio of the incident flux to the gas density. The density is typically fixed at ne = 1015 cm-3. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for ne ≳ 1017 cm-3 that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies ≲ 2 keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  7. The Complex 0.1-100 keV X-Ray Spectrum of PKS2155-304

    CERN Document Server

    Giommi, P

    1998-01-01

    A long ($>100,000$ seconds) observation of the bright BL Lac object PKS 2155-304 has been carried out with the Narrow Field Instruments of the BeppoSAX satellite as part of the Science Verification Phase. The source was detected between 0.1 and about 100 keV at an intermediate intensity level compared to previous observations. The unique spectral coverage of BeppoSAX has allowed us to detect a number of spectral features. Between 0.1 and 10 keV the spectrum can be well described by a convex spectrum with (energy) slope gradually steepening from 1.1 to 1.6. At higher energies evidence for a sharp spectral hardening is found, while in the soft X-rays (0.1-1.0 keV) some evidence for an absorption feature was found. Indication for an emission line at 6.4 keV in the source rest frame is present. Repeated variability of $\\approx 20-30%$ around the mean flux is clearly detected on time scales of a few hours. From the symmetry and timescale of the observed variations we derive limits on the magnetic field and on the ...

  8. The Radio-to-X-Ray Spectrum of GRB 970508 on 1997 May 21.0 UT

    Science.gov (United States)

    Galama, T. J.; Wijers, R. A. M. J.; Bremer, M.; Groot, P. J.; Strom, R. G.; Kouveliotou. C.; vanParadijs, J.

    1998-01-01

    We have reconstructed the spectrum of the afterglow of GRB 970508 on 1997 May 21.0 UT (12.1 days after the gamma-ray burst burst) on the basis of observations spanning, the X-ray-to-radio range. The low-frequency power-law index of the spectrum, alpha = 0.44 +/- 0.07 (F, proportional to nu(sup alpha)) is in agreement with the expected value alpha = 1/3 for optically thin synchrotron radiation. The 1.4 emission is self-absorbed. We infer constraints on the break frequencies nu(sub c) and nu(sub m) on 1997 May 21.0 UT from a spectral transition from F, approximately nu(sup -0.6) to F, approximately nu(sup -1.1) in the optical passband around 1.4 days. A model of an adiabatically expanding blast wave emitting synchrotrons radiation, in which a significant fraction of the electrons cool rapidly, provides a successful and consistent description of the afterglow observations over nine decades in frequency, ranging in time from trigger until several months later.

  9. The hard X-ray spectrum of NGC 5506 as seen by NuSTAR

    CERN Document Server

    Matt, G; Marinucci, A; Ballantyne, D R; Boggs, S E; Christensen, F E; Comastri, A; Craig, W W; Gandhi, P; Hailey, C J; Harrison, F A; Madejski, G; Madsen, K K; Stern, D; Zhang, W W

    2014-01-01

    NuSTAR observed the bright Compton-thin, narrow line Seyfert 1 galaxy, NGC 5506, for about 56 ks. In agreement with past observations, the spectrum is well fit by a power law with Gamma~1.9, a distant reflection component and narrow ionized iron lines. A relativistically blurred reflection component is not required by the data. When an exponential high energy cutoff is added to the power law, a value of 720(+130,-190) keV (90% confidence level) is found. Even allowing for systematic uncertainties, we find a 3 sigma lower limit to the high-energy cutoff of 350 keV, the highest lower limit to the cutoff energy found so far in an AGN by NuSTAR.

  10. Distant and disk reflection in the average X-ray spectrum of AGN in the V\\'eron-Cetty & V\\'eron catalogue

    CERN Document Server

    Falocco, S; Barcons, X; Miniutti, G; Corral, A

    2014-01-01

    The X-ray spectra of active galactic nuclei (AGN) unveil properties of matter around the super massive black hole (SMBH). We investigate the X-ray spectra of AGN focusing on Compton reflection and fluorescence, important processes of interaction between primary radiation and circum-nuclear material. Unresolved emission lines (most notably the Fe line) in the X-ray spectra of AGN indicate that this material is located far away from the SMBH. Contributions from the inner accretion disk, affected by relativistic effects, have also been detected in several cases. We studied the average X-ray spectrum of a sample of 263 X-ray unabsorbed AGN that yield 419023 counts in the 2-12 keV rest-frame band distributed among 388 XMM-Newton spectra. We fitted the average spectrum using a (basically) unabsorbed power law (primary radiation). From second model that represents the interaction of the primary radiation with matter located far away from the SMBH, we found that it was very significantly detected. Finally, we added a...

  11. On the Putative Detection of z>0 X-ray Absorption Features in the Spectrum of Markarian 421

    CERN Document Server

    Rasmussen, A P; Den Herder, J W A; Kaastra, J; Kahn, S M; Paerels, F; Herder, Jan Willem den; Kaastra, Jelle; Kahn, Steven M.; Paerels, Frits; Rasmussen, Andrew P.; Vries, Cor de

    2006-01-01

    In a series of papers, Nicastro et al. have claimed the detection of z>0 O VII absorption features in the spectrum of Mrk 421 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We evaluate those claims in the context of a high quality spectrum of the same source obtained with the Reflection Grating Spectrometer (RGS) on XMM-Newton. The data comprise over 955~ksec of usable exposure time and more than 26000 counts per 50 milliAngstroms at 21.6 Angstroms. We concentrate on the spectrally clean region (21.3 < lambda < 22.5 Angstrom) where sharp features due to the astrophysically abundant O VII may reveal an intervening, warm-hot intergalactic medium (WHIM). In spite of the fact that the sensitivity of the RGS data is higher than that of the original LETGS data presented by Nicastro et al., we do not confirm detection of any of the intervening systems claimed to date. Rather, we detect only three unsurprising, astrophysically expected features down to the Log(N)~14.6 (3sigma) s...

  12. The Future of X-Ray Optics

    Science.gov (United States)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  13. 工业CT锥束X射线能谱及强度的分布模拟%The Simulation of Cone Beam X-ray Spectrum and Intensity Distribution of X-ray in Industrial CT System

    Institute of Scientific and Technical Information of China (English)

    王玮; 李公平; 潘小东; 王云波

    2014-01-01

    In this paper,the physical process of producing X-rays in the X-ray source used in cone-beam industrial CT system was simulated by Monte Carlo method.The X-ray spectrums with and with no 2 mm iron as filter layers were obtained,respectively.In addition,the angular distribution of the outgoing X-ray flux under different target angles was calculated.Then,the intensity distribution of the X-rays which passed through the obj ect under test was simulated.We obtain the distribution of SPR value and the distribution of X-ray intensity in different positions of the detector plane in different conditions,which are in the same distance between the ray source and the detector and passing through the object of the same diameter.Besides,we also obtain the flux spectrum distribution in the centre of detector and the spatial distribution of the X-ray intensity in some special position.The simulation results in this paper can provide some help and basis for the scatter correction and beam hardening correction in the process of image reconstruction and help to determine the minimum sensitivity of the detector,and provide a reference for the shielding system design.%利用蒙特卡罗方法模拟了锥束工业CT系统中X射线的产生过程,分别得到了未加过滤层和加2 mm铁片作为过滤层情况下的X射线能谱;计算了不同靶面倾角下出射X射线相对强度的角分布。随后模拟了X射线通过被测物体后射线强度的分布,分别得到了射线源与探测器间距离相同时,穿过不同直径被测物体以及经过相同的被测物体,但射线源与探测器间距离不同的两种情况下的系统SPR值的分布以及探测器平面不同位置下射线强度的分布。此外还模拟得到了有无被测物体情况下的探测器中心位置的通量能谱分布及一些特殊位置下射线强度的空间分布。模拟结果可以为CT系统图像重建时的散射校正和射束硬化校正提供数据依据,有助于

  14. Discovery of Oxygen Kalpha X-ray Emission from the Rings of Saturn

    CERN Document Server

    Bhardwaj, A; Waite, J H; Gladstone, G R; Cravens, T E; Ford, P G; Bhardwaj, Anil; Elsner, Ronald F.; Cravens, Thomas E.; Ford, Peter G.

    2005-01-01

    Using the Advanced CCD Imaging Spectrometer (ACIS), the Chandra X-ray Observatory (CXO) observed the Saturnian system for one rotation of the planet (~37 ks) on 20 January, 2004, and again on 26-27 January, 2004. In this letter we report the detection of X-ray emission from the rings of Saturn. The X-ray spectrum from the rings is dominated by emission in a narrow (~130 eV wide) energy band centered on the atomic oxygen K-alpha fluorescence line at 0.53 keV. The X-ray power emitted from the rings in the 0.49-0.62 keV band is 84 MW, which is about one-third of that emitted from Saturn disk in the photon energy range 0.24-2.0 keV. Our analysis also finds a clear detection of X-ray emission from the rings in the 0.49-0.62 keV band in an earlier (14-15 April, 2003) Chandra ACIS observation of Saturn. Fluorescent scattering of solar X-rays from oxygen atoms in the H2O icy ring material is the likely source mechanism for ring X-rays, consistent with the scenario of solar photo-production of a tenuous ring oxygen at...

  15. X-Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  16. Spectrum reconstruction with X rays and flat panel wedge PMMA by Monte Carlo codes and Penelope MCNPS; Reconstruccion del esptro de rayos X con flat panel y cuna de PMMa mediante los codigos de monte Carlo Penelope y MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Pozuelo, F.; Querol, A.; Juste, B.; Gallardo, S.; Rodenas, J.; Verdu, G.

    2012-07-01

    Obtaining the primary spectrum of X-rays to determine the quality of a photon beam produced by an X-ray tube, since the dosimetric characteristics of a radiation beam to have a direct relation to the primary X-ray spectrum. In this work are studied, the depth dose curves obtained in the energy range of diagnostic radiology, between 40 and 130 keV.

  17. ASCA View of the Supernova Remnant Gamma Cygni (G78.2+2.1) Bremsstrahlung X-ray Spectrum from Loss-flattened Electron Distribution

    CERN Document Server

    Uchiyama, Y; Aharonian, F A; Mattox, J R; Uchiyama, Yasunobu; Takahashi, Tadayuki; Aharonian, Felix; Mattox, John

    2002-01-01

    We perform X-ray studies of the shell-type supernova remnant (SNR) gamma-Cygni associated with the brightest EGRET unidentified source 3EG J2020+4017. In addition to the thermal emissions with characteristic temperature of kT = 0.5-0.9 keV, we found an extremely hard X-ray component from several clumps localized in the northern part of the remnant. This component is described by a power-law with a photon index of 0.8-1.5. Both the absolute flux and the spectral shape of the nonthermal X-rays cannot be explained by the synchrotron or inverse-Compton mechanisms. We argue that the unusually hard X-ray spectrum can be naturally interpreted in terms of nonthermal bremsstrahlung from Coulomb-loss-flattened electron distribution in dense environs with the gas density about 10 to 100 cm^-3 . For given spectrum of the electron population, the ratio of the bremsstrahlung X- and gamma-ray fluxes depends on the position of the ``Coulomb break'' in the electron spectrum. The bulk of gamma-rays detected by EGRET would come...

  18. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    Science.gov (United States)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  19. The Chandra COSMOS Legacy Survey: Clustering of X-ray selected AGN at 2.9

    CERN Document Server

    Allevato, V; Finoguenov, A; Marchesi, S; Zamorani, G; Hasinger, G; Salvato, M; Miyaji, T; Gilli, R; Cappelluti, N; Brusa, M; Suh, H; Lanzuisi, G; Trakhtenbrot, B; Griffiths, R; Vignali, C; Schawinski, K; Karim, A

    2016-01-01

    We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$\\leq$z$\\leq$5.5 ($\\langle L_{bol} \\rangle \\sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $\\pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$\\sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{\\odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $\\sigma_z$ = 0.052 of our sample at z$\\geq$2.9. Once we integrate the projected 2pcf up to $\\pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and \\textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only...

  20. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  1. On the Putative Detection of z > 0 X-Ray Absorption Features in the Spectrum of Mrk 421

    Science.gov (United States)

    Rasmussen, Andrew P.; Kahn, Steven M.; Paerels, Frits; Herder, Jan Willem den; Kaastra, Jelle; de Vries, Cor

    2007-02-01

    In a series of papers, Nicastro et al. have reported the detection of z>0 O VII absorption features in the spectrum of Mrk 421 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We evaluate this result in the context of a high-quality spectrum of the same source obtained with the Reflection Grating Spectrometer (RGS) on XMM-Newton. The data comprise over 955 ks of usable exposure time and more than 2.6×104 counts per 50 mÅ at 21.6 Å. We concentrate on the spectrally clean region (21.3 <λ<22.5 ), where sharp features due to the astrophysically abundant O VII may reveal an intervening, warm-hot intergalactic medium (WHIM). We do not confirm detection of any of the intervening systems claimed to date. Rather, we detect only three unsurprising, astrophysically expected features down to the log(Ni)~14.6 (3 σ) sensitivity level. Each of the two purported WHIM features is rejected with a statistical confidence that exceeds that reported for its initial detection. While we cannot rule out the existence of fainter, WHIM related features in these spectra, we suggest that previous discovery claims were premature. A more recent paper by Williams et al. claims to have demonstrated that the RGS data we analyze here do not have the resolution or statistical quality required to confirm or deny the LETGS detections. We show that our analysis resolves the issues encountered by Williams et al. and recovers the full resolution and statistical quality of the RGS data. We highlight the differences between our analysis and those published by Williams et al. as this may explain our disparate conclusions.

  2. X-ray emission line spectroscopy of cataclysmic variables. II. Temperatures and densities from line ratios in the Chandra HETG band

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, E. M.; Shipley, H. V. [Department of Physics and Astronomy, University of Texas-San Antonio, San Antonio, TX 78249 (United States); Rana, V. R. [Space Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Barrett, P. E. [US Naval Observatory, Washington, DC 20392-5420 (United States); Singh, K. P., E-mail: eric.schlegel@utsa.edu, E-mail: vrana@srl.caltech.edu, E-mail: barrett.paul@usno.navy.mil, E-mail: singh@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India)

    2014-12-10

    We summarize the results of a line-by-line fitting analysis of the available spectra obtained using the Chandra High-Energy Transmission Grating. We confirm the existence of broad ionization and electron temperature ranges and high number densities in cataclysmic variables (CVs) of all subtypes. Temperatures range from ∼0.4 keV to ∼5-10 keV or more with a broad range detected in any given CV. In other words, single-temperature models do not describe the line emission. Number densities also cover a broad range, from 10{sup 12} to >10{sup 16} cm{sup –3}. We demonstrate that much of the plasma is in a nonequilibrium state; the Fe emission, however, may arise from plasma in the ionization equilibrium.

  3. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  4. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  5. A KPC-scale X-ray jet in the BL LAC Source S5 2007+777

    Science.gov (United States)

    Sambruna, Rita; Maraschi, Laura; Tavecchio, Fabrizio

    2008-01-01

    The BL Lac S3 2007++777, a classical radio-selected BL Lac from the sample of Stirkel et al. exhibiting an extended (19") radio jet. was observed with Chandra revealing an X-ray jet with simi1ar morphology. The hard X-ray spectrum and broad band SED is consistent with an IC/CMB origin for the X-ray emission, implying a highly relativistic flow at small angle to the line of sight with an unusually large deprojected length, 300 kpc. A structured jet consisting of a fast spine and slow wall is consistent with the observations.

  6. Obscuring Supersoft X-ray Sources in Stellar Winds

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Thomas Bøje; Dominik, Carsten; Nelemans, Gijs

    2011-01-01

    We investigate the possibility of obscuring supersoft X-ray sources in the winds of companion stars. We derive limits on the amount of circumstellar material needed to fully obscure a 'canonical' supersoft X-ray source in the Large Magellanic Cloud, as observed with the Chandra X-ray Observatory....

  7. Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the SMC

    CERN Document Server

    Hénault-Brunet, V; Guerrero, M A; Sun, W; Chu, Y -H; Evans, C J; Gallagher, J S; Gruendl, R A; Reyes-Iturbide, J

    2011-01-01

    We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power-law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low density surroundings of NGC 602. We detect a shell nebula around 2dFS 3831 in H-alpha and [O III] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion...

  8. X-ray studies of solar system objects: now and the next decade

    Science.gov (United States)

    Branduardi-Raymont, G.

    2016-06-01

    XMM-Newton and Chandra have revealed the multiplicity of X-ray emissions from planets, comets and minor bodies in our solar system. This presentation will review the main findings so far and will look forward to the unique contributions that XMM-Newton can continue to provide in solar system exploration. As a prime example, Jupiter's polar regions show bright soft X-ray aurorae with a line-rich spectrum arising from charge exchange interactions of atmospheric neutrals with local and/or solar wind high charge-state heavy ions. At energies above ˜3 keV the auroral X-ray spectrum is featureless, pointing to an origin from electron bremsstrahlung. Jupiter's atmosphere scatters solar X-rays, so that the planet's disk displays an X-ray spectrum that closely resembles that of solar flares. The arrival of Juno at Jupiter this July will enable in situ measurements simultaneous with XMM-Newton observations, offering unique opportunities to validate models developed to describe the planet's behaviour. Unlike Jupiter, Mars and Venus lack a strong magnetic field, yet they show X-ray emissions from their disks and exospheres, via solar X-ray scattering and charge exchange. Future XMM-Newton observations of solar system targets, under different solar activity conditions, will provide ever deeper insights into their close relationships with their parent star.

  9. A Search for X-ray Counterparts of Radio Pulsars

    CERN Document Server

    Prinz, Tobias

    2015-01-01

    We describe a systematic search for X-ray counterparts of radio pulsars. The search was accomplished by cross-correlating the radio timing positions of all radio pulsars from the ATNF pulsar database (version 1.54) with archival XMM-Newton and Chandra observations publicly released by August 1st 2015. In total, 171 of the archival XMM-Newton observations and 215 of the archival Chandra datasets where found to have a radio pulsar serendipitously in the field of view. From the 283 radio pulsars covered by these datasets we identified 19 previously undetected X-ray counterparts. For 6 of them the statistics was sufficient to model the energy spectrum with one- or two-component models. For the remaining new detections and for those pulsars for which we determined an upper limit to their counting rate we computed the energy flux by assuming a Crab-like spectrum. Additionally, we derived upper limits on the neutron stars' surface temperature and on the non-thermal X-ray efficiency for those pulsars for which the sp...

  10. Prompt and afterglow X-ray emission from the X-Ray Flash of 2002 April 27

    CERN Document Server

    Amati, L; in 't Zand, J J M; Capalbi, M; Landi, R; Soffitta, P; Vetere, L; Antonelli, L A; Costa, E; Del Sordo, S; Feroci, M; Guidorzi, C; Heise, J; Masetti, N; Montanari, E; Nicastro, L; Palazzi, E; Piro, L

    2004-01-01

    We report on the X-ray observations of the X-ray flash (XRF) which occurred on 2002 April 27, three days before BeppoSAX was switched off. The event was detected with the BeppoSAX Wide Field Cameras but not with the Gamma ray Burst Monitor. A follow-up observation with the BeppoSAX Narrow Field Instruments was soon performed and a candidate afterglow source was discovered. We present the results obtained. We also include the results obtained from the observations of the XRF field with the Chandra X-ray satellite. The spectral analysis of the prompt emission shows that the peak energy of the EF(E) spectrum is lower than 5.5 keV, with negligible spectral evolution. The X-ray afterglow spectrum is consistent with a power law model with photon index of about 2, while the 2-10 keV flux fades as a power law with a decay index -1.33. Both these indices are typical of GRBs. A very marginal excess around 4.5-5 keV is found in the afterglow spectrum measured by BeppoSAX . As for many GRBs, the extrapolation of the 2-10...

  11. Determination voltage applied to an X-ray tube using the spectrum; Determinacao da tensao aplicada em um tubo de raios-X usando o espectro

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, M.A.G.; David, M.G.; Almeida, Carlos Eduardo de; Magalhaes, Luis Alexandre Goncalves, E-mail: malbuqueque@hotmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Peixoto, Guilherme [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This work shows the methodology used to determine the voltage applied in an X-ray tube using their spectra. The measurements were made using a detector Cadmium telluride . Before the measurements are carried out detector was calibrated with a source of {sup 241}Am. After obtaining the spectra , the mean energies were calculated , the electron accelerating potential (k Vp ) of each spectrum is constructed a calibration straight for the kVp this tube. (author)

  12. An X-ray Imaging Survey of Quasar Jets -- Testing the Inverse Compton Model

    CERN Document Server

    Marshall, H L; Schwartz, D A; Murphy, D W; Lovell, J E J; Worrall, D M; Birkinshaw, M; Perlman, E S; Godfrey, L; Jauncey, D L

    2011-01-01

    We present results from continued Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. X-rays are detected from 24 of the 39 jets observed so far. We compute the distribution of alpha_rx, the spectral index between the X-ray and radio bands, showing that it is broad, extending at least from 0.8 to 1.2. While there is a general trend that the radio brightest jets are detected most often, it is clear that predicting the X-ray flux from the radio knot flux densities is risky so a shallow X-ray survey is the most effective means for finding jets that are X-ray bright. We test the model in which the X-rays result from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by relativistic electrons in the jet moving with high bulk Lorentz factor nearly along the line of sight. Depending on how the jet magnetic fields vary with z, the observed X-ray to radio flux ratios do not follow the redshift dependence exp...

  13. X-rays from solar system objects

    CERN Document Server

    Bhardwaj, Anil; Gladstone, G Randall; Cravens, Thomas E; Lisse, Carey M; Dennerl, Konrad; Branduardi-Raymont, Graziella; Wargelin, Bradford J; Waite, J Hunter; Robertson, Ina; Ostgaard, Nikolai; Beiersdorfer, Peter; Snowden, Steven L; Kharchenko, Vasili; 10.1016/j.pss.2006.11.009

    2010-01-01

    During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-ray...

  14. The Correlation between Dispersion Measure and X-ray Column Density from Radio Pulsars

    CERN Document Server

    He, C; Kaspi, V M

    2013-01-01

    Pulsars are remarkable objects that emit across the entire electromagnetic spectrum, providing a powerful probe of the interstellar medium. In this study, we investigate the relation between dispersion measure (DM) and X-ray absorption column density NH using 68 radio pulsars detected at X-ray energies with the Chandra X-ray Observatory or XMM-Newton. We find a best-fit empirical linear relation of NH (10^20 cm^-2)= 0.30+0.13-0.09 DM (pc cm^-3), which corresponds to an average ionization of 10+4-3%, confirming the ratio of one free electron per ten neutral hydrogen atoms commonly assumed in the literature. We also compare different NH estimates and note that some NH values obtained from X-ray observations are higher than the total Galactic HI column density along the same line of sight, while the optical extinction generally gives the best NH predictions.

  15. X-ray studies of the Black Widow Pulsar PSR B1957+20

    CERN Document Server

    Huang, R H H; Takata, J; Hui, C Y; Lin, L C C; Cheng, K S

    2012-01-01

    We report on Chandra observations of the black widow pulsar, PSR B1957+20. Evidence for a binary-phase dependence of the X-ray emission from the pulsar is found with a deep observation. The binary-phase resolved spectral analysis reveals non-thermal X-ray emission of PSR B1957+20, confirming the results of previous studies. This suggests that the X-rays are mostly due to intra-binary shock emission which is strongest when the pulsar wind interacts with the ablated material from the companion star. The geometry of the peak emission is determined in our study. The marginal softening of the spectrum of the non-thermal X-ray tail may indicate that particles injected at the termination shock is dominated by synchrotron cooling.

  16. X-ray studies of the black widow pulsar PSR B1957+20

    Science.gov (United States)

    Huang, R. H. H.; Kong, A. K. H.; Takata, J.; Hui, C. Y.; Lin, L. C. C.; Cheng, K. S.

    2013-03-01

    We report on Chandra observations of the black widow pulsar, PSR B1957+20. Evidence for a binary-phase dependence of the X-ray emission from the pulsar is found with a deep observation. The binary-phase resolved spectral analysis reveals non-thermal X-ray emission of PSR B1957+20, confirming the results of previous studies. This suggests that the X-rays are mostly due to intra-binary shock emission which is strongest when the pulsar wind interacts with the ablated material from the companion star. The geometry of the peak emission is determined in our study. The marginal softening of the spectrum of the non-thermal X-ray tail may indicate that particles injected at the termination shock is dominated by synchrotron cooling.

  17. The heating of X-ray gas by radio gas in cluster PKS0745-191

    Science.gov (United States)

    Xiang, F.; Chen, Y.; Wu, M.; Lu, F. J.; Song, L. M.; Jia, S. M..

    2004-05-01

    A calculation about the energy evolution of the relativistic particles in galaxy clusters is presented. The heating of X-ray gas by radio gas in cluster PKS 0745-191 is derived through a combined analysis of Chandra data and VLA radio observations. It was found that the heating of X-ray gas by radio gas is not enough to supply the energy lose by the X-ray emission when the low energy cut-off in the power-law spectrum of the relativistic electrons is set to 0.001erg. Therefore further computing is made to study the heating of X-ray gas by radio gas with different low energy cut-off is computed and the low energy cut-off values.

  18. Measurement of characteristic to total spectrum ratio of tungsten X-ray spectra for the validation of the modified Tbc model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez G, A. H.; Costa, P. R. [University of Sao Paulo, Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, Matao Street, alley R, 187, 66318 Sao Paulo (Brazil); Tomal, A., E-mail: ahlopezg@usp.br [Universidade Federal de Goias, Physics Institute, Campus Samambaia, 131 Goiania, Goias (Brazil)

    2014-08-15

    Primary X-ray spectra were measured in the range of 80 to 150 kV in order to validate a computer program based on a semiempirical model for X-ray spectra evaluation(tbc and mod). The ratio between the characteristic lines and total spectrum was considered for comparing the simulated results and experimental data. The raw spectra measured by the Cd Te detector were corrected by the detector efficiency, Compton effects and characteristic Cd and Te X-rays escape peaks, using a software specifically developed. The software Origin 8.5.1 was used to calculate the spectra and characteristic peaks areas. The obtained result shows that the experimental spectra have higher effective energy than the simulated spectra computed with tbc and mod software. The behavior of the ratio between the characteristic lines and total spectrum for simulated data presents discrepancy with the experimental result. Computed results are in good agreement with theoretical data published by Green, for spectra obtained with 3.04 mm of additional aluminum filtration. The difference of characteristic to total spectrum ratio between experimental and simulated data increases with the tube voltage. (Author)

  19. A multielement Ge detector with complete spectrum readout for x-ray fluorescence microprobe and microspectroscopy (abstract)

    Science.gov (United States)

    Rivers, Mark L.; Sutton, Stephen R.; Rarback, Harvey

    1995-02-01

    Multielement Ge and Si(Li) detectors have been used in recent years to improve the increase count rate capability and to improve the solid-angle efficiency in fluorescence x-ray absorption spectroscopy (XAS). Such systems have typically been equipped with one or more single-channel analyzers (SCAs) for each detector element. Such SCA-based electronics are sufficient when only the counts in one or two well-resolved peaks are of interest. For the fluorescence (XRF) microprobe at beamline X-26A at the NSLS, SCA-based electronics were not a satisfactory solution for two reasons: (1) for XRF experiments, the entire fluorescence spectrum is required; (2) for micro-XAS studies of trace elements in complex systems, the fluorescence peak often sits on a significant background or partially overlaps another fluorescence peak, requiring software background subtraction or peak deconvolution. An electronics system which permits collection of the entire fluorescence spectrum from each detector element has been designed. The system is made cost-effective by the use of analog multiplexors, reducing the number of analog-to-digital converters (ADCs) and multichannel analyzers (MCAs) required. The system was manufactured by Canberra Industries and consists of: (1) a 13 element Ge detector (11 mm diameter detector elements), (2) 13 NIM spectroscopy amplifiers with programmable gains, (3) four analog multiplexors with maximum of eight inputs each, (4) four ADCs with programmable offsets and gains and 800 ns conversion time, and (5) two MCAs with Ethernet communications ports and two ADC inputs each. The amplifiers have shaping times which are adjustable from 0.5 to 12 μs. The analog multiplexors were modified to perform pileup rejection. The analog multiplexing does not significantly reduce the count rate capability of the system, even at the shortest amplifier shaping times. The average detector resolution is 170 eV at 12 μs shaping time and 200 eV at 4 μs shaping time. The maximum

  20. Proper motions of ROSAT discovered isolated neutron stars measured with Chandra: First X-ray measurement of the large proper motion of RX J1308.6+2127/RBS 1223

    Science.gov (United States)

    Motch, C.; Pires, A. M.; Haberl, F.; Schwope, A.; Zavlin, V. E.

    2008-02-01

    The unprecedented spatial resolution of the Chandra observatory opens the possibility to detect with relatively high accuracy proper motions at X-ray wavelengths. We have conducted an astrometric study of three of the ``Magnificent Seven'', the thermally emitting radio quiet isolated neutron stars (INSs) discovered by ROSAT. These three INSs (RX J0420.0-5022, RX J0806.4-4123 and RX J1308.6+2127/RBS 1223) either lack an optical counterpart or have one too faint to be used for astrometric purposes. We obtained ACIS observations 3 to 5 years apart to constrain or measure the displacement of the sources on the X-ray sky using as reference the background of extragalactic or remote galactic X-ray sources. Upper limits of 138 mas/yr and 76 mas/yr on the proper motion of RX J0420.0-5022 and RX J0806.4-4123, respectively, have already been presented in [7]. Here we report the very significant measurement (~10 sigma) of the proper motion of the third INS of our program, RX J1308.6+2127/RBS 1223. Comparing observations obtained in 2002 and 2007 reveals a displacement of 1.1 arcsec implying a yearly proper motion of 223 mas, the second fastest measured for the ROSAT discovered INSs. The source is rapidly moving away from the galactic plane at a speed which precludes any significant accretion of matter from the interstellar medium. Its transverse velocity of ~740 (d/700 pc) km/s might be the largest of the ``Magnificent Seven'' and among the fastest recorded for neutron stars. RX J1308.6+2127/RBS 1223 is thus a young high velocity cooling neutron star. The source may have its origin in the closest part of the Scutum OB2 association about 0.8 Myr ago, an age consistent with that expected from cooling curves, but significantly younger than inferred from pulse timing measurements (1.5 Myr).

  1. X 射线能谱过滤的 MC 模拟研究%The Theory and Simulation of X-ray Energy Spectrum Filtration

    Institute of Scientific and Technical Information of China (English)

    徐佳; 宋玉收; 孙光智; 代传波; 罗鹏; 徐卫峰; 聂凌霄

    2014-01-01

    能量低于300 keV且能谱简单的稳定放射性核素较少,作为替代,利用X射线机产生X射线,并经过不同厚度的材料的过滤,可以得到用于对辐射防护仪器进行校准和确定其能量响应和角响应的一系列规定辐射质的参考辐射。由于材料的质量衰减系数与X射线在物质中各种作用过程有关,并强烈的依赖于光子的能量,基于这一物理现象,可以通过X射线在物质中的衰减规律,计算产生规定辐射质的过滤材料的厚度。针对过滤材料的厚度这一问题,本文运用Geant4程序模拟了不同能量的电子打靶,统计韧致辐射的X射线,以获得计算所需X射线能谱,再由文中滤片厚度计算方法,计算产生规定辐射质过滤材料的厚度。模拟计算的结果显示,过滤后的X射线能谱能够很好的满足标准要求,从而验证了能谱过滤的理论计算的合理性。%X-ray machine is often used to produce the X-ray instead of a few stable primordial radionuclides for the energy spectrum below 300 keV.A series of specialized X-ray spectrum can be obtained to calibrate and determine the energy response and angular response of radiation detector by setting several layers of filters. These filter sheets are used to filter original X-ray spectrum with a certain distribution.The mass attenuation coefficient strongly depends on the energy of the photons.Based on X-ray attenuation in material, this paper describes a method to calculate the thicknesses of filters.Monte Carlo code Geant4 was used to simulate brems-strahlung produced by electrons hitting the anode target.The X-ray from bremsstrahlung was calculated as well.After X-ray spectrums were obtained, the thickness of the lead and tin filter sheet were calculated ac-cording to the paper.The results show that the optimized X-ray spectrum agrees with the standards very well. It demonstrates the correctness of the theoretical calculation of spectrum

  2. X-ray and Radio Variability of M31*, The Andromeda Galaxy Nuclear Supermassive Black Hole

    CERN Document Server

    Garcia, Michael R; Baganoff, Frederick K; Galache, Jose; Melia, Fulvio; Murray, Stephen S; Primini, Frank A; Sjouwerman, Lorant O; Williams, Ben

    2009-01-01

    We confirm our earlier tentative detection of M31* in X-rays and measure its light-curve and spectrum. Observations in 2004-2005 find M31* rather quiescent in the X-ray and radio. However, X-ray observations in 2006-2007 and radio observations in 2002 show M31* to be highly variable at times. A separate variable X-ray source is found near P1, the brighter of the two optical nuclei. The apparent angular Bondi radius of M31* is the largest of any black hole, and large enough to be well resolved with Chandra. The diffuse emission within this Bondi radius is found to have an X-ray temperature ~0.3 keV and density 0.1 cm-3, indistinguishable from the hot gas in the surrounding regions of the bulge given the statistics allowed by the current observations. The X-ray source at the location of M31* is consistent with a point source and a power law spectrum with energy slope 0.9+/-0.2. Our identification of this X-ray source with M31* is based solely on positional coincidence.

  3. Synergy between X-ray and infrared observations

    CERN Document Server

    Alexander, D M

    2016-01-01

    We briefly review the synergy between X-ray and infrared observations for Active Galactic Nuclei (AGNs) detected in cosmic X-ray surveys, primarily with XMM-Newton, Chandra, and NuSTAR. We focus on two complementary aspects of this X-ray-infrared synergy (1) the identification of the most heavily obscured AGNs and (2) the connection between star formation and AGN activity. We also briefly discuss future prospects for X-ray-infrared studies over the next decade.

  4. X-Ray- and fast neutron induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    NARCIS (Netherlands)

    Dellaert, L.M.W.

    1980-01-01

    The genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT), are the main subjects of this thesis.Chapters I and II deal with the effects of radiation - with or with

  5. Two Years of Chandra Observations: Neutron Stars and Pulsars with Emphasis on the Pulsar in the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory is entering its third year of operation. The Observatory, the premiere x-ray telescope for high-resolution imaging, has exceeded all expectations. The sub-arc second angular resolution together with other instrumental capabilities has allowed for new insights into the understanding of compact x-ray emitting objects including neutron stars and pulsars. We briefly review the Chandra Program and the first two years of observation with emphasis on these interesting objects. We detail the results of our observations of the pulsar in the Crab Nebula including the first continuum spectrum that is virtually uncontaminated by any dust-scattered radiation.

  6. Simulation of Computed Tomography Reconstruction Algorithm Based on Consecutive X -ray Spectrum%基于连续X射线谱的CT重建算法仿真

    Institute of Scientific and Technical Information of China (English)

    蔡彪; 潘晋孝; 陈平

    2011-01-01

    Traditional reconstruction algorithms assume that the X - ray is monochromatic, while in fact, X - ray is polychromatic in actual CT. When the polychromatic projection data are used to reconstruct the images directly,metal artifacts and beam - hardening artifacts appear in the reconstructed images, which reduces image quality and affects medical or industrial diagnosis. This paper considers the consecution of X - ray spectrum, and simulats the statistical reconstruction algorithm based on consecutive X - ray spectrum. Firstly, consecutive spectrum was discretized as monochromatic spectrum. Secondly, according to the workpiece material information and mass attenuation coefficient corresponding to X - ray energy, the workpiece material model was formulated based on consecutive spectrum. Finally, using the polychromatic - energy statistics iterate algorithm, the reconstruction was caried out based on polychromatic projection data. Through the simulation experiment, the algorithm reduces the artifacts to a certain extent, and improves the image quality.%关于提高CT图像精度的问题,传统的CT重建算法都是基于X射线源是单色源的假设,忽略了X射线的多色性.直接用多色投影数据进行图像重建易产生金属、硬化等伪影,降低图像质量,影响CT值标定,从而影响医学或工业诊断.考虑到X射线能谱的连续性,采用仿真手段实现连续X射线谱的统计重建.首先将连续X射线谱离散成若干单能谱,再根据待检工件的材质信息以及射线能量所对应的质量衰减系数,构建基于连续X射线谱的工件材质模型;最后利用多能统计重建算法对多能投影数据进行迭代重建.仿真结果表明,算法充分地利用了X射线的多能性,在一定程度上可以有效地降低图像伪影,提高CT重建图像质量.

  7. A strong and broad iron line in the XMM-Newton spectrum of the new X-ray transient and black-hole candidate XTE J1652-453

    NARCIS (Netherlands)

    Hiemstra, Beike; Mendez, Mariano; Done, Chris; Trigo, Maria Diaz; Altamirano, Diego; Casella, Piergiorgio

    2010-01-01

    ABSTRACT We observed the new X-ray transient and black-hole candidate XTE J1652−453 si- multaneously with XMM-Newton and the Rossi X-ray Timing Explorer (RXTE). The observation was done during the decay of the 2009 outburst, when XTE J1652−453 was in the hard-intermediate state. The spectrum shows a

  8. Recurring X-ray Outbursts in the Supernova Impostor SN~2010da in NGC~300

    CERN Document Server

    Binder, B; Kong, A K H; Gaetz, T J; Plucinsky, P P; Skillman, E D; Dolphin, A

    2016-01-01

    We present new observations of the "supernova impostor" SN 2010da using the Chandra X-ray Observatory and the Hubble Space Telescope. During the initial 2010 outburst, the 0.3-10 keV luminosity was observed by Swift to be $\\sim5\\times10^{38}$ erg s$^{-1}$ and faded by a factor of $\\sim$25 in a four month period. Our two new Chandra observations show a factor of $\\sim$10 increase in the 0.35-8 keV X-ray flux, from $\\sim$4$\\times10^{36}$ erg s$^{-1}$ to $4\\times10^{37}$ erg s$^{-1}$ in $\\sim$6 months, and the X-ray spectrum is consistent in both observations with a power law photon index of $\\Gamma\\sim0$. We find evidence of X-ray spectral state changes: when SN 2010da is in a high-luminosity state, the X-ray spectrum is harder ($\\Gamma\\sim0$) compared to the low-luminosity state ($\\Gamma\\sim1.2\\pm0.8$). Using our Hubble observations, we fit the color magnitude diagram of the coeval stellar population to estimate a time since formation of the SN 2010da progenitor system of $\\lesssim$5 Myr. Our observations are ...

  9. X-ray softening in the new X-ray transient XTE J1719-291 during its 2008 outburst decay

    CERN Document Server

    Padilla, M Armas; Patruno, A; Russell, D M; Linares, M; Maccarone, T J; Homan, J; Wijnands, R

    2011-01-01

    The X-ray transient XTE J1719-291 was discovered with RXTE/PCA during its outburst in 2008 March, which lasted at least 46 days. Its 2-10 keV peak luminosity is 7E35 erg/s assuming a distance of 8 kpc, which classifies the system as a very faint X-ray transient. The outburst was monitored with Swift, RXTE, Chandra and XMM-Newton. We analysed the X-ray spectral evolution during the outburst. We fitted the overall data with a simple power-law model corrected for absorption and found that the spectral index increased with decreasing luminosity. However, the XMM-Newton spectrum can not be fitted with a simple one-component model, but it can be fitted with a thermal component (black body or disc black body) plus power-law model affected by absorption. Therefore, the softening of the X-ray spectrum with decreasing X-ray luminosity might be due to a change in photon index or alternatively it might be due to a change in the properties of the soft component. Assuming that the system is an X-ray binary, we estimated a ...

  10. Chest X Ray?

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. Chest X Ray A chest x ray is a fast and painless imaging test ... tissue scarring, called fibrosis. Doctors may use chest x rays to see how well certain treatments are ...

  11. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  12. Medical X-Rays

    Science.gov (United States)

    ... Benefits The discovery of X-rays and the invention of CT represented major advances in medicine. X- ... in X-ray and CT Examinations — X-ray definition, dose measurement, safety precautions, risk, and consideration with ...

  13. X-ray fluorescence spectrum of highly charged Fe ions driven by strong free-electron-laser fields

    CERN Document Server

    Oreshkina, Natalia S; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    The influence of nonlinear dynamical effects is analyzed on the observed spectra of controversial 3C and 3D astrophysically relevant x-ray lines in neonlike Fe${}^{16+}$ and the A, B, C lines in natriumlike Fe${}^{15+}$ ions. First, a large-scale configuration-interaction calculation of oscillator strengths is performed with the inclusion of higher-order electron-correlation effects. Also, quantum-electrodynamic corrections to the transition energies are calculated. Further considered dynamical effects provide a possible resolution of the discrepancy between theory and experiment found by recent x-ray free-electron-laser measurements of these controversial lines. We find that, for strong x-ray sources, the modeling of the spectral lines by a peak with an area proportional to the oscillator strength is not sufficient and nonlinear dynamical effects have to be taken into account. Thus, we advocate the use of light-matter-interaction models also valid for strong light fields in the analysis and interpretation of...

  14. A Hard X-ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    CERN Document Server

    Yukita, M; Lehmer, B D; Ptak, A; Wik, D R; Zezas, A; Antoniou, V; Maccarone, T J; Replicon, V; Tyler, J B; Venters, T; Argo, M K; Bechtol, K; Boggs, S; Christensen, F E; Craig, W W; Hailey, C; Harrison, F; Krivonos, R; Kuntz, K; Stern, D; Zhang, W W

    2016-01-01

    We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum ...

  15. X-ray and radio emission from Type In supernova SN 2010jl

    CERN Document Server

    Chandra, Poonam; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M

    2015-01-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR and Swift-XRT. The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for \\chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day $\\sim 300$. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with t...

  16. Measurement of the 1s2l3l’ Dielectronic Recombination Emission Line in Li-Like Ar and Its Contribution to the Faint X-Ray Feature Found in the Stacked Spectrum of Galaxy Clusters

    Science.gov (United States)

    Gall, Amy Christina; Silwal, Roshani; Dreiling, Joan; Borovik, Alexander; Ajello, Marco; Gillaspy, John; Kilgore, Ethan; Ralchenko, Yuri; Takacs, Endre

    2016-06-01

    Driven by the recent detection of an unidentified emission line previously reported at 3.55-3.57 keV in a stacked spectrum of galaxy clusters, we investigated the resonant DR process in Li-like Ar as a possible source of, or contributor to, the emission line. The Li-like transition 1s22l-1s2l3l’ was suggested to produce a 3.62 keV photon [1] near the unidentified line at 3.57 keV and was the primary focus of our investigation. Apart from the mentioned transitions, we have found other features that can be possible contributors to the emission in this region. The Electron Beam Ion Trap at NIST was used to produce and trap the highly-charged ions of argon. The energy of the quasi-monoenergetic electron beam was incremented in steps of 15 eV to scan over all of the Li-like Ar DR resonances. A Johann-type crystal spectrometer and a solid-state germanium detector were used to take x-ray measurements perpendicular to the electron beam. The DR cross sections were measured and normalized to the well-known photoionization cross sections using radiative recombination peaks in the measured spectra. Corrections for different instrument and method related effects such as charge state balance, electron beam space charge, and charge exchange have been considered. Our high-resolution crystal spectra allowed the experimental separation of features that are less than 2 eV apart. We have used a collisional radiative model NOMAD [2] aided by atomic data calculations by FAC [3] to interpret our observations and account for the corrections and uncertainties. Experimental results were compared to the AtomDB theoretical emission lines used to fit the galaxy cluster spectra containing the unidentified 3.57 keV line. These data points can be added benchmarks in the database and used to accurately interpret spectra from current x-ray satellites, including Hitomi, Chandra, and XMM-Newton x-ray observatories.[1] Bulbul E. et al., 2014, ApJ, 789, 13[2] Ralchenko Yu. et al., 2014, JQSRT, 71

  17. The X-ray synchrotron emission of RCW 86 and the implications for its age

    CERN Document Server

    Vink, J; Van der Heyden, K J; Bykov, A; Bamba, A; Yamazaki, R; Vink, Jacco; Bleeker, Johan; Heyden, Kurt van der; Bykov, Andrei; Bamba, Aya; Yamazaki, Ryo

    2006-01-01

    We report here X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 with Chandra and XMM-Newton. Along this part of the shell the dominant X-ray radiation mechanism changes from thermal to synchrotron emission. We argue that both the presence of X-ray synchrotron radiation and the width of the synchrotron emitting region suggest a locally higher shock velocity of V_s = 2700 km/s and a magnetic field of B = 24+/-5 microGauss. Moreover, we also show that a simple power law cosmic ray electron spectrum with an exponential cut-off cannot explain the broad band synchrotron emission. Instead a concave electron spectrum is needed, as predicted by non-linear shock acceleration models. Finally, we show that the derived shock velocity strengthens the case that RCW 86 is the remnant of SN 185.

  18. Hard X-ray view of microlensing events in RX J1131-1231

    CERN Document Server

    Neronov, A; Walter, R

    2016-01-01

    RX J1131-1231 is a gravitationally lensed system which includes four images of a quasar lensed by an elliptical galaxy. The flux in the individual images is known to be affected by microlensing effect in the visible and X-ray bands. We study the multi-wavelength properties of RX J1131-1231 over a broad energy range, from optical to hard X-ray, during the periods of the microlensing caustic crossings. We aim to constrain the spatial extent of the X-ray emission region at different energies. We combine the data of the source monitoring in the visible band with the X-ray data of the Burst Alert Telescope (BAT) on board of SWIFT satellite and Chandra X-ray observatory. Inspecting the broad band spectrum and lightcurves of the source we identify several microlensing caustic crossing events, and study the details of variability of the source during these events. The caustic crossings of image A on MJD 55150 and 55500 produce strong variations of the overall X-ray flux from the source. In the soft X-ray band, the ca...

  19. The accretion-heated crust of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on a Chandra Director’s Discretionary Time observation of the globular cluster Terzan 5, carried out ∼7 weeks after the cessation of the 2010 outburst of the newly discovered transiently accreting 11-Hz X-ray pulsar. We detect a thermal spectrum that can be fitted with a neutron star atmos

  20. Calculation of the X-Ray Spectrum of a Mammography System with Various Voltages and Different Anode-Filter Combinations Using MCNP Code

    Directory of Open Access Journals (Sweden)

    Lida Gholamkar

    2016-09-01

    Full Text Available Introduction One of the best methods in the diagnosis and control of breast cancer is mammography. The importance of mammography is directly related to its value in the detection of breast cancer in the early stages, which leads to a more effective treatment. The purpose of this article was to calculate the X-ray spectrum in a mammography system with Monte Carlo codes, including MCNPX and MCNP5. Materials and Methods The device, simulated using the MCNP code, was Planmed Nuance digital mammography device (Planmed Oy, Finland, equipped with an amorphous selenium detector. Different anode/filter materials, such as molybdenum-rhodium (Mo-Rh, molybdenum-molybdenum (Mo-Mo, tungsten-tin (W-Sn, tungsten-silver (W-Ag, tungsten-palladium (W-Pd, tungsten-aluminum (W-Al, tungsten-molybdenum (W-Mo, molybdenum-aluminum (Mo-Al, tungsten-rhodium (W-Rh, rhodium-aluminum (Rh-Al, and rhodium-rhodium (Rh-Rh, were simulated in this study. The voltage range of the X-ray tube was between 24 and 34 kV with a 2 kV interval. Results The charts of changing photon flux versus energy were plotted for different types of anode-filter combinations. The comparison with the findings reported by others indicated acceptable consistency. Also, the X-ray spectra, obtained from MCNP5 and MCNPX codes for W-Ag and W-Rh combinations, were compared. We compared the present results with the reported data of MCNP4C and IPEM report No. 78 for Mo-Mo, Mo-Rh, and W-Al combinations. Conclusion The MCNPX calculation outcomes showed acceptable results in a low-energy X-ray beam range (10-35 keV. The obtained simulated spectra for different anode/filter combinations were in good conformity with the finding of previous research.

  1. High Energy Vision: Processing X-rays

    CERN Document Server

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  2. Complex X-ray Absorption and the Fe Kalpha Profile in NGC 3516

    CERN Document Server

    Turner, T J; George, I M; Reeves, J N; Bottorff, M C

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and Nov. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of ~1100 km/s has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (~2.5 x 10E23 cm^-2) of highly ionized gas with a covering fraction ~50%. This low covering fraction suggests that the absorber lies within a few lt-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two...

  3. Calculation of the X-Ray Spectrum of a Mammography System with Various Voltages and Different Anode-Filter Combinations Using MCNP Code

    OpenAIRE

    Lida Gholamkar; Mahdi Sadeghi; Ali Asghar Mowlavi; Mitra Athari

    2016-01-01

    Introduction One of the best methods in the diagnosis and control of breast cancer is mammography. The importance of mammography is directly related to its value in the detection of breast cancer in the early stages, which leads to a more effective treatment. The purpose of this article was to calculate the X-ray spectrum in a mammography system with Monte Carlo codes, including MCNPX and MCNP5. Materials and Methods The device, simulated using the MCNP code, was Planmed Nuance digital mammog...

  4. Comets: mechanisms of x-ray activity

    Science.gov (United States)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  5. The ASCA X-Ray Spectrum Of The Broad-Line Radio Galaxy Pictor A A Simple Power Law With No Fe K-$\\alpha$ Line

    CERN Document Server

    Eracleous, M; Eracleous, Michael; Halpern, Jules P.

    1998-01-01

    We present the X-ray spectrum of the broad-line radio galaxy Pictor A as observed by ASCA in 1996. The main objective of the observation was to detect and study the profiles of the Fe~K$\\alpha$ lines. The motivation was the fact that the Balmer lines of this object show well-separated displaced peaks, suggesting an origin in an accretion disk. The 0.5-10 keV X-ray spectrum is described very well by a model consisting of a power law of photon index 1.77 modified by interstellar photoelectric absorption. We find evidence for neither a soft nor a hard (Compton reflection) excess. More importantly, we do not detect an Fe K-alpha line, in marked contrast with the spectra of typical Seyfert galaxies and other broad-line radio galaxies observed by ASCA. The 99%-confidence upper limit on the equivalent width of an unresolved line at a rest energy of 6.4 keV is 100 eV, while for a broad line (FWHM of approximately 60,000 km/s) the corresponding upper limit is 135 eV. We discuss several possible explanations for the we...

  6. A NuSTAR observation of the reflection spectrum of the low mass X-ray binary 4U 1728-34

    CERN Document Server

    Sleator, Clio C; King, Ashley L; Miller, Jon M; Boggs, Steven E; Bachetti, Matteo; Barret, Didier; Chenevez, Jerome; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Rahoui, Farid; Stern, Daniel K; Walton, Dominic J; Zhang, William W

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and well described by a black body with kT = 1.5 keV and a cutoff power law with {\\Gamma} = 1.5. Residuals between 6 and 8 keV provide strong evidence of a broad Fe K{\\alpha} line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of $R_{\\rm in} \\leq 2R_{\\rm ISCO}$ . Consequently we find that $R_{\\rm NS} \\leq 23$ km, assuming M = 1.4 $\\rm\\,M_{\\mathord\\odot}$ and a = 0.15. We also find an upper limit on the magnetic field of $B \\leq 2\\times 10^8$ G

  7. Chandra Observations of MRK 273 Unveiling the Central AGN and the Extended Hot Gas Halo

    CERN Document Server

    Xia, X Y; Mao, S; Boller, T; Deng, Z G; Wu, H; Boller, Th.

    2001-01-01

    We report X-ray observations of the field containing the ultraluminous IRAS galaxy Mrk~273 Using the ACIS-S3 instrument on board Chandra. The high resolution X-ray image, for the first time, reveals a compact hard X-ray nucleus in Mrk~273. Its X-ray energy distribution is well described by a heavily obscured power-law spectrum plus a narrow $\\Feka$ emission line at 6.4 keV. The neutral hydrogen column density is about $4\\times10^{23}\\cm^{-2}$, implying an absorption -corrected X-ray luminosity (0.1--10 keV) for the nucleus of $\\Lx\\approx 6.5\\times 10^{43} \\ergs$. There are also bright soft X-ray clumps and diffuse soft X-ray emissions surrounding the central hard X-ray nucleus within the $10\\arcsec$ of the nuclear region. Its spectrum can be fitted by a MEKAL thermal model with temperature of about 0.8 keV and high metallicity ($Z\\sim 1.5Z_\\odot$) plus emission lines from $\\alpha$ elements and ions. Further outside the central region, the Chandra observations reveal a very extended hot gas halo with a project...

  8. Identification of the optical and quiescent counterparts to the bright X-ray transient in NGC 6440

    CERN Document Server

    in 't Zand, J J M; Pooley, D; Verbunt, F; Wijnands, R; Lewin, W H G

    2001-01-01

    After 3 years of quiescence, the globular cluster NGC 6440 exhibited a bright transient X-ray source turning on in August 2001, as noted with the RXTE All-Sky Monitor. We carried out a short target of opportunity observation with the Chandra X-ray Observatory and are able to associate the transient with the brightest of 24 X-ray sources detected during quiescence in July 2000 with Chandra. Furthermore, we securely identify the optical counterpart and determine that the 1998 X-ray outburst in NGC 6440 was from the same object. This is the first time that an optical counterpart to a transient in a globular cluster is securely identified. Since the transient is a type I X-ray burster, it is established that the compact accretor is a neutron star. Thus, this transient provides an ideal case to study the quiescent emission in the optical and X-ray of a transiently accreting neutron star while knowing the distance and reddening accurately. One model that fits the quiescent spectrum is an absorbed power law plus neu...

  9. SXP214, an X-ray Pulsar in the Small Magellanic Cloud, Crossing the Circumstellar Disk of the Companion

    CERN Document Server

    Hong, JaeSub; Zezas, Andreas; Haberl, Frank; Drake, Jeremy J; Plucinsky, Paul P; Gaetz, Terrance; Sasaki, Manami; Williams, Benjamin; Long, Knox S; Blair, William P; Winkler, P Frank; Wright, Nicholas J; Laycock, Silas; Udalski, Andrzej

    2016-01-01

    Located in the Small Magellanic Cloud (SMC), SXP214 is an X-ray pulsar in a high mass X-ray binary system with a Be-star companion. A recent survey of the SMC under a Chandra X-ray Visionary program found the source in a transition when the X-ray flux was on a steady rise. The Lomb-Scargle periodogram revealed a pulse period of 211.49 +/- 0.42 s, which is significantly (>5sigma) shorter than the previous measurements with XMM-Newton and RXTE. This implies that the system has gone through sudden spin-up episodes recently. The pulse profile shows a sharp eclipse-like feature with a modulation amplitude of >95%. The linear rise of the observed X-ray luminosity from <~2x to 7x10^35 erg s^-1 is correlated with steady softening of the X-ray spectrum, which can be described by the changes in the local absorption from N_H ~ 10^24 to <~10^20 cm^-2 for an absorbed power-law model. The soft X-ray emission below 2 keV was absent in the early part of the observation when only the pulsating hard X-ray component was o...

  10. Chandra Survey of Nearby Galaxies: The Catalog

    Science.gov (United States)

    She, Rui; Ho, Luis C.; Feng, Hua

    2017-02-01

    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 1037 erg s‑1 on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  11. Optics Developments for X-Ray Astronomy

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  12. Observations of X-rays and Thermal Dust Emission from the Supernova Remnant Kes 75

    CERN Document Server

    Morton, T D; Borkowski, K J; Reynolds, S P; Helfand, D J; Gaensler, B M; Hughes, J P

    2007-01-01

    We present Spitzer Space Telescope and Chandra X-ray Observatory observations of the composite Galactic supernova remnant Kes 75 (G29.7-0.3). We use the detected flux at 24 microns and hot gas parameters from fitting spectra from new, deep X-ray observations to constrain models of dust emission, obtaining a dust-to-gas mass ratio M_dust/M_gas ~0.001. We find that a two-component thermal model, nominally representing shocked swept-up interstellar or circumstellar material and reverse-shocked ejecta, adequately fits the X-ray spectrum, albeit with somewhat high implied densities for both components. We surmise that this model implies a Wolf-Rayet progenitor for the remnant. We also present infrared flux upper limits for the central pulsar wind nebula.

  13. A new soft X-ray spectral model for polars with an application to AM Herculis

    CERN Document Server

    Beuermann, K; Burwitz, V

    2012-01-01

    We present a simple heuristic model for the time-averaged soft X-ray temperature distribution in the accretion spot on the white dwarf in polars. The model is based on the analysis of the Chandra LETG spectrum of the prototype polar AM Her and involves an exponential distribution of the emitting area vs. blackbody temperature a(T) = a0 exp(-T/T0). With one free parameter besides the normalization, it is mathematically as simple as the single blackbody, but is physically more plausible and fits the soft X-ray and far-ultraviolet spectral fluxes much better. The model yields more reliable values of the wavelength-integrated flux of the soft X-ray component and the implied accretion rate than reported previously.

  14. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES.

    Energy Technology Data Exchange (ETDEWEB)

    DILMANIAN,F.A.; WEINMANN,H.J.; ZHONG,Z.; BACARIAN,T.; RIGON,L.; BUTTON,T.M.; REN,B.; WU,X.Y.; ZHONG,N.; ATKINS,H.L.

    2001-02-17

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with {approximately} twice higher output become available.

  15. X-Ray Emission from the Pre-Planetary Nebula Henize 3-1475

    CERN Document Server

    Sahai, R; Frank, A; Morris, M; Blackman, E G; Sahai, Raghvendra; Kastner, Joel H.; Frank, Adam; Morris, Mark; Blackman, Eric G.

    2003-01-01

    We report the first detection of X-ray emission in a pre-planetary nebula, Hen 3-1475. Pre-planetary nebulae are rare objects in the short transition stage between the Asymptotic Giant Branch and planetary nebula evolutionary phases, and Hen 3-1475, characterised by a remarkable S-shaped chain of optical knots, is one of the most noteworthy members of this class. Observations with the Advanced CCD Imaging Spectrometer (ACIS) onboard the Chandra X-Ray observatory show the presence of compact emission coincident with the brightest optical knot in this bipolar object, which is displaced from the central star by 2.7 arcsec along the polar axis. Model fits to the X-ray spectrum indicate an X-ray temperature and luminosity, respectively, of (4.3-5.7) 10^6 K and (4+/-1.4) 10^{31} (D/5 kpc)^2 erg s^{-1}, respectively. Our 3-sigma upper limit on the luminosity of compact X-ray emission from the central star in Hen 3-1475 is ~5 10^{31} (D/5 kpc)^2 erg s^{-1}. The detection of X-rays in Hen 3-1475 is consistent with mod...

  16. X-ray observations of VY Scl type nova-like binaries in the high and low state

    CERN Document Server

    Zemko, P; Mukai, K; Shugarov, S

    2014-01-01

    Four VY Scl-type nova-like systems were observed in X-rays during both the low and the high optical states. We examined Chandra, ROSAT, Swift and Suzaku archival observations of BZ Cam, MV Lyr, TT Ari, and V794 Aql. The X-ray flux of BZ Cam is higher during the low state, but there is no supersoft X-ray source (SSS) as hypothesized in previous articles. No SSS was detected in the low state of the any of the other systems, with the X-ray flux decreasing by a factor between 2 and 50. The best fit to the Swift X-ray spectra is obtained with a multi-component model of plasma in collisional ionization equilibrium. The high state high resolution spectra of TT Ari taken with Chandra ACIS-S and the HETG gratings show a rich emission line spectrum, with prominent lines of in Mg, Si, Ne, and S. The complexity of this spectrum seems to have origin in more than one region, or more than one single physical mechanism. While several emission lines are consistent with a cooling flow in an accretion stream, there is at least ...

  17. New Observations of the Solar 0.5-5 keV Soft X-ray Spectrum

    CERN Document Server

    Caspi, Amir; Warren, Harry P

    2015-01-01

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ~0.2 and ~4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially-integrated solar spectral irradiance from ~0.5 to ~5 keV, with ~0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5-10 MK) emission and are well fit by simple power-law temperature distributions with indices of ~6, ...

  18. 15 Years of Chandra Observations of Capella

    Science.gov (United States)

    Kashyap, Vinay

    2014-11-01

    Capella is the strongest coronal line source accessible to Chandra. It has been cumulatively observed with gratings for over 1.2 Ms. The accumulated spectrum represents astrophysical ground truth for atomic physics calculations that is unprecedented in quality. We analyze co-added spectra to generate a comprehensive list of detectable lines and their locations, spanning two orders of magnitude in photon energy. We compare the locations of identifiable lines with locations from atomic databases ATOMDB and Chianti and characterize the uncertainties in the databases. The full line lists and comparisons will be made available at the Dataverse at http://dx.doi.org/10.7910/DVN/27084 This work is supported by Chandra grant AR0-11001X and NASA Contract NAS8-03060 to the Chandra X-Ray Center.

  19. MO-FG-BRA-02: Modulation of Clinical Orthovoltage X-Ray Spectrum Further Enhances Radiosensitization of Cancer Cells Targeted with Gold Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T; Reynoso, F; Cho, J; Quini, C; Cortez, M; Manohar, N; Krishnan, S; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To assess the potential to amplify radiosensitization of cancer cells targeted with gold nanoparticles by augmenting selective spectral components of X-ray beam. Methods: Human prostate cancer cells were treated for 24h with gold nanorods conjugated to goserelin acetate or pegylated, systematically washed and irradiated with 250 kVp X-rays (25mA, 0.25mm Cu- filter, 8x8cm{sup 2} field size, 50cm SSD) with or without an additional 0.25 mm Erbium (Er) filter. As demonstrated in a companion Monte Carlo study, Er-filter acted as an external target to feed Erbium K-shell X-ray fluorescence photons (∼50 keV) into the 250 kVp beam. After irradiation, we performed measurements of clonogenic viability with doses between 0 -6Gy, irreparable DNA damage assay to measure double-strand breaks via γH2AX-foci staining, and production of stable reactive oxygen species (ROS). Results: The clonogenic assay for the group treated with conjugated nanoparticles showed radiosensitization enhancement factor (REF), calculated at the 10% survival fraction aisle, of (1.62±0.07) vs. (1.23±0.04) with/without the Er-filter in the 250 kVp beam, respectively. The group treated with pegylated nanoparticles, albeit retained in modest amounts within the cells, also showed statistically significant REF (1.13±0.09) when the Erbium filter was added to the beam. No significant radiosensitization was observed for other groups. Measurements of ROS levels showed increments of (1.9±0.2) vs. (1.4±0.1) for combined treatment with targeted nanoparticles and Er-filtered beam. γH2AX-foci showed 50% increase for the same treatment combination, confirming the enhanced radiosensitization in a consistent fashion. Conclusion: Our study demonstrates the feasibility of enhancing radiosensitization of cancer cells by combining actively targeted gold nanoparticles and modulating the X-ray spectrum in the desired energy range. The established technique will not only help develop strategies to maximize

  20. Abdominal x-ray

    Science.gov (United States)

    ... are, or may be, pregnant. Alternative Names Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... Assistant Studies, Department of Family Medicine, UW Medicine, School of Medicine, University of Washington, Seattle, WA. Also ...

  1. Extremity x-ray

    Science.gov (United States)

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Arthritis Other conditions for which the test ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Review Date 7/3/2016 Updated ...

  2. The hard synchrotron X-ray spectrum of the TeV BL Lac 1ES 1426+428

    CERN Document Server

    Wolter, A; Ghisellini, G; Tavecchio, F; Maraschi, L; Costamante, L; Celotti, A; Ghirlanda, G

    2007-01-01

    We have observed 1ES 1426+428 with INTEGRAL detecting it up to $\\sim$150 keV. The spectrum is hard, confirming that this source is an extreme BL Lac object, with a synchrotron component peaking, in a $\

  3. Chandra LETG Observations of Supernova Remnant 1987A

    CERN Document Server

    Zhekov, S A; Burrows, D N; McCray, R; Park, S; Borkowski, Kazimierz J.; Burrows, David N.; Cray, Richard Mc; Park, Sangwook; Zhekov, Svetozar A.

    2006-01-01

    We discuss the results from deep Chandra LETG observations of the supernova remnant 1987A (SNR 1987A). We find that a distribution of shocks, spanning the same range of velocities (from 300 to 1700 km/s) as deduced in the first part of our analysis (Zhekov et al. 2005, ApJL, 628, L127), can account for the entire X-ray spectrum of this object. The post-shock temperature distribution is bimodal, peaking at kT 0.5 and 3 keV. Abundances inferred from the X-ray spectrum have values similar to those for the inner circumstellar ring, except that the abundances of nitrogen and oxygen are approximately a factor of two lower than those inferred from the optical/UV spectrum. The velocity of the X-ray emitting plasma has decreased since 1999, apparently because the blast wave has entered the main body of the inner circumstellar ring.

  4. The hard X-ray view of the young supernova remnant G1.9+0.3

    DEFF Research Database (Denmark)

    Zoglauer, Andreas; Reynolds, Stephen P.; An, Hongjun

    2015-01-01

    NuSTAR observed G1.9+0.3, the youngest known supernova remnant in the Milky Way, for 350 ks and detected emission up to ~30 keV. The remnant's X-ray morphology does not change significantly across the energy range from 3 to 20 keV. A combined fit between NuSTAR and Chandra shows that the spectrum...

  5. Maximising the mileage from the Chandra podcasts

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.

    2008-06-01

    NASA's Chandra X-ray Observatory captures X-ray images and measures spectra of many highenergy cosmic phenomena. There is a constant challenge to devise new and appropriate means to bring these potentially esoteric science results and concepts in a digestible way to the public. One of the ideas to address this challenge became the Chandra podcast.

  6. The quasi-persistent neutron star soft X-ray transient 1M 1716-315 in quiescence

    CERN Document Server

    Jonker, P G; Wachter, S

    2007-01-01

    We report on our analysis of a 20 ksec Chandra X-ray observation of the quasi-persistent neutron star soft X-ray transient (SXT) 1M1716-315 in quiescence. Only one source was detected in the HEAO-I error region. Its luminosity is 1.6E32-1.3E33 erg s-1. In this the range is dominated by the uncertainty in the source distance. The source spectrum is well described by an absorbed soft spectrum, e.g. a neutron star atmosphere or black body model. No optical or near-infrared counterpart is present at the location of the X-ray source, down to a magnitude limit of I> 23.5 and K_s> 19.5. The positional evidence, the soft X-ray spectrum together with the optical and near-infrared non-detections provide strong evidence that this source is the quiescent neutron star SXT. The source is 10-100 times too bright in X-rays in order to be explained by stellar coronal X-ray emission. Together with the interstellar extinction measured in outburst and estimates for the source distance, the reported optical and near-infrared limi...

  7. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance

    Science.gov (United States)

    Lee, J. H.; Sohn, S. G.; Jung, H. I.; An, Y. J.; Lee, S. H.

    2013-07-01

    OXA-17, an extended-spectrum β-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates β-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino β-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 Å resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P212121, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 Å. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  8. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum {beta}-lactamase conferring severe antibiotic resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: msgjhlee@mju.ac.kr; Sohn, S. G., E-mail: sgsohn@mju.ac.kr; Jung, H. I., E-mail: jhinumber1@hanmail.net; An, Y. J., E-mail: anyj0120@hanmail.net; Lee, S. H., E-mail: sangheelee@mju.ac.kr [Myongji University, Drug Resistance Proteomics Laboratory, Department of Biological Sciences (Korea, Republic of)

    2013-07-15

    OXA-17, an extended-spectrum {beta}-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates {beta}-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino {beta}-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 A resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 A. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  9. Discovery of a bipolar X-ray jet from the T Tauri star DG Tau

    CERN Document Server

    Güdel, M; Audard, M; Briggs, K R; Cabrit, S

    2007-01-01

    We have obtained and analyzed Chandra ACIS-S observations of the strongly accreting classical T Tauri star DG Tau. Our principal goals are to map the immediate environment of the star to characterize possible extended X-rays formed in the jet, and to re-visit the anomalous, doubly absorbed X-ray spectrum of DG Tau itself. We combine our new ACIS-S data with a data set previously obtained. The data are superimposed to obtain flux and hardness images. Separate X-ray spectra are extracted for DG Tau and areas outside its point spread function. We detect a prominent X-ray jet at a position angle of PA ~225 deg (tentatively suggested by Guedel et al. 2005), coincident with the optical jet axis. We also identify a counter jet at PA = 45 deg. The X-ray jets are detected out to a distance of ~5" from the star, their sources being extended at the ACIS-S resolution. The jet spectra are soft, with a best-fit electron temperature of 3.4 MK. We find evidence for excess absorption of the counter jet. The spectrum of the DG...

  10. Extranuclear X-ray Emission in the Edge-on Seyfert Galaxy NGC 2992

    CERN Document Server

    Colbert, E J M; Veilleux, S; Weaver, K A; Colbert, Edward J. M.; Strickland, David K.; Veilleux, Sylvain; Weaver, Kimberly A.

    2005-01-01

    We found several extranuclear (r >~ 3") X-ray nebulae within 40" (6.3 kpc at 32.5 Mpc) of the nucleus of the Seyfert galaxy NGC 2992. The net X-ray luminosity from the extranuclear sources is ~2-3 E39 erg/s (0.3-8.0 keV). The X-ray core itself (r <~ 1") is positioned at 9:45:41.95 -14:19:34.8 (J2000) and has a remarkably simple power-law spectrum with photon index Gamma=1.86 and Nh=7E21 /cm2. The near-nuclear (3" <~ r <~ 18") Chandra spectrum is best modelled by three components: (1) a direct AGN component with Gamma fixed at 1.86, (2) cold Compton reflection of the AGN component, and (3) a 0.5 keV low-abundance (Z < 0.03 Zsolar) "thermal plasma," with ~10% of the flux of either of the first two components. The X-ray luminosity of the 3rd component (the "soft excess") is ~1.4E40 erg/s, or ~5X that of all of the detected extranuclear X-ray sources. We suggest that most (~75-80%) of the soft excess emission originates from 1" < r < 3", which is not imaged in our observation due to severe CCD p...

  11. Morphology of gold nanoparticles determined by full-curve fitting of the light absorption spectrum. Comparison with X-ray scattering and electron microscopy data

    Science.gov (United States)

    Slyusarenko, Kostyantyn; Abécassis, Benjamin; Davidson, Patrick; Constantin, Doru

    2014-10-01

    UV-Vis absorption spectroscopy is frequently used to characterize the size and shape of gold nanoparticles. We present a full-spectrum model that yields reliable results for the commonly encountered case of mixtures of spheres and rods in varying proportions. We determine the volume fractions of the two populations, the aspect ratio distribution of the nanorods (average value and variance) and the interface damping parameter. We validate the model by checking the fit results against small-angle X-ray scattering and transmission electron microscopy data and show that correctly accounting for the polydispersity in aspect ratio is essential for a quantitative description of the longitudinal plasmon peak.UV-Vis absorption spectroscopy is frequently used to characterize the size and shape of gold nanoparticles. We present a full-spectrum model that yields reliable results for the commonly encountered case of mixtures of spheres and rods in varying proportions. We determine the volume fractions of the two populations, the aspect ratio distribution of the nanorods (average value and variance) and the interface damping parameter. We validate the model by checking the fit results against small-angle X-ray scattering and transmission electron microscopy data and show that correctly accounting for the polydispersity in aspect ratio is essential for a quantitative description of the longitudinal plasmon peak. Electronic supplementary information (ESI) available: TEM images of nanoparticles and detailed analysis, simplified relations for the AS model, alternative estimate for the concentration and discussion of the dielectric constant chosen for bulk gold. See DOI: 10.1039/c4nr04155k

  12. X-Ray Supernovae

    CERN Document Server

    Immler, S; Immler, Stefan; Lewin, Walter H.G.

    2002-01-01

    We present a review of X-ray observations of supernovae (SNe). By observing the (~0.1--100 keV) X-ray emission from young SNe, physical key parameters such as the circumstellar matter (CSM) density, mass-loss rate of the progenitor and temperature of the outgoing and reverse shock can be derived as a function of time. Despite intensive search over the last ~25 years, only 15 SNe have been detected in X-rays. We review the individual X-ray observations of these SNe and discuss their implications as to our understanding of the physical processes giving rise to the X-ray emission.

  13. Hunting for X-ray Outbursts from Galactic Nuclei

    Science.gov (United States)

    Brandt, W. N.

    2005-09-01

    Transient X-ray outbursts from galactic nuclei are likely caused by inevitable fueling events of nuclear supermassive black holes when a star, planet, or gas cloud is tidally disrupted and partially accreted. We propose to extend current studies of such events by searching for new X-ray outbursts with harder X-ray spectra, lower X-ray luminosities, and higher redshifts. We will pursue a two-pronged strategy utilizing a combination of (1) about 380 fields with moderate-depth coverage by both Chandra and XMM-Newton and (2) deep Chandra surveys, primarily the Chandra Deep Fields. Aside from their innate interest, our results will be useful for planning future missions such as the Black Hole Finder Probe, Lobster, ROSITA, and LISA.

  14. Two eclipsing ultraluminous X-ray sources in M 51

    CERN Document Server

    Urquhart, Ryan

    2016-01-01

    We present the discovery, from archival Chandra and XMM-Newton data, of X-ray eclipses in two ultraluminous X-ray sources (ULXs), located in the same region of the galaxy M 51: CXOM51 J132940.0$+$471237 (ULX-1, for simplicity) and CXOM51 J132939.5$+$471244 (ULX-2). Three eclipses were detected for ULX-1, two for ULX-2. The presence of eclipses puts strong constraints on the viewing angle, suggesting that both ULXs are seen almost edge-on and are certainly not beamed towards us. Despite the similar viewing angles and luminosities ($L_{\\rm X} \\approx 2 \\times 10^{39}$ erg s$^{-1}$ in the $0.3$-$8$ keV band for both sources), their X-ray properties are different. ULX-1 has a soft spectrum, well fitted by Comptonization emission from a medium with electron temperature $kT_e \\approx 1$ keV. ULX-2 is harder, well fitted by a slim disk with $kT_{\\rm in} \\approx 1.5$-$1.8$ keV and normalization consistent with a $\\sim 10 M_{\\odot}$ black hole. ULX-1 has a significant contribution from multi-temperature thermal plasma...

  15. X-ray Observations of High-B Radio Pulsars

    CERN Document Server

    Olausen, S A; Vogel, J K; Kaspi, V M; Lyne, A G; Espinoza, C M; Stappers, B W; Manchester, R N; McLaughlin, M A

    2013-01-01

    The study of high-magnetic-field pulsars is important for examining the relationships between radio pulsars, magnetars, and X-ray-isolated neutron stars (XINSs). Here we report on X-ray observations of three such high-magnetic-field radio pulsars. We first present the results of a deep XMM-Newton observation of PSR J1734-3333, taken to follow up on its initial detection in 2009. The pulsar's spectrum is well fit by a blackbody with a temperature of 300 +/- 60 eV, with bolometric luminosity L_bb = 2.0(+2.2 -0.7)e+32 erg/s = 0.0036E_dot for a distance of 6.1 kpc. We detect no X-ray pulsations from the source, setting a 1 sigma upper limit on the pulsed fraction of 60% in the 0.5-3 keV band. We compare PSR J1734-3333 to other rotation-powered pulsars of similar age and find that it is significantly hotter, supporting the hypothesis that the magnetic field affects the observed thermal properties of pulsars. We also report on XMM-Newton and Chandra observations of PSRs B1845-19 and J1001-5939. We do not detect eit...

  16. X-ray emission processes in stars

    CERN Document Server

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the HR diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, evolution of X-ray activity with age), to X-ray generating processes (e.g. accretion, jets, magnetically confined winds) that were poorly understood in the pre-Chandra/XMM-Newton era. I discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics no...

  17. X-ray Echo Spectroscopy.

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  18. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  19. X-ray echo spectroscopy

    CERN Document Server

    Shvyd'ko, Yuri

    2015-01-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1--0.02-meV ultra-high-resolution IXS applications (resolving power $> 10^8$) with broadband $\\simeq$~5--13~meV dispersing systems are introduced featuring more than $10^3$ signal e...

  20. The broad-band X-ray spectrum of IC 4329A from a joint NuSTAR/Suzaku observation

    DEFF Research Database (Denmark)

    Brenneman, L. W.; Madejski, G.; Fuerst, F.

    2014-01-01

    We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku andNuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption, and distant reflection components in the spectrum. The absorbing column is found...