WorldWideScience

Sample records for chandra x-ray observatory

  1. Chandra X-Ray Observatory (CXO) Overview

    CERN Document Server

    Weisskopf, M C; Van Speybroeck, L P; O'Dell, S L

    2000-01-01

    The Chandra X-Ray Observatory (CXO), the x-ray component of NASA's Great Observatories, was launched early in the morning of 1999, July 23 by the Space Shuttle Columbia. The Shuttle launch was only the first step in placing the observatory in orbit. After release from the cargo bay, the Inertial Upper Stage performed two firings, and separated from the observatory as planned. Finally, after five firings of Chandra's own Integral Propulsion System--- the last of which took place 15 days after launch--- the observatory was placed in its highly elliptical orbit of 140,000 km apogee and 10,000 km perigee. After activation, the first x-rays focussed by the telescope were observed on 1999, August 12. Beginning with these initial observations one could see that the telescope had survived the launch environment and was operating as expected. The month following the opening of the sunshade door was spent adjusting the focus for each set of instrument configurations, determining the optical axis, calibrating the star c...

  2. The Chandra X-Ray Observatory: Five Years of Operation

    OpenAIRE

    Weisskopf, Martin C.

    2005-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program and has been operating successfully for over five years. We present here brief overview of the technical performance and some of the remarkable discoveries.

  3. The Chandra X-Ray Observatory (CXO): An Overview

    OpenAIRE

    Weisskopf, Martin C.

    1999-01-01

    Significant advances in science inevitably occur when the state of the art in instrumentation improves. NASA's newest Great Observatory, the Chandra X-Ray Observatory (CXO) -- formally known as the Advanced X-Ray Astrophysics Facility (AXAF) -- launched on July 23, 1999 and represents such an advance. The CXO is designed to study the x-ray emission from all categories of astronomical objects from normal stars to quasars.

  4. Contributions of the NASA's Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2011-01-01

    NASA's Chandra X-ray Observatory performed its first observations over a decade ago. Chandra's spectacular images and detailed spectra of astrophysical systems ranging from solar system objects to distant galaxies and galaxy clusters have provided information on such diverse topics as the properties of planetary and cometary atmospheres, stellar formation and demise, black hole-galaxy-cluster interactions, and properties of dark matter and dark energy. This presentation highlights some discoveries made with Chandra and briefly discusses future prospects.

  5. The Chandra X-Ray Observatory: Observations of Neutron Stars

    OpenAIRE

    Weisskopf, Martin C.

    2004-01-01

    We present here an overview of the status of the Chandra X-ray Observatory which has now been operating for five years. The Observatory is running smoothly, and the scientific return continues to be outstanding. We provide some details on the molecular contamination of the ACIS filters and its impact on observations. We review the observations with Chandra of the pulsar in the Crab Nebula and add some general comments as to the analysis of X-ray spectra. We conclude with comments about the fu...

  6. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    OpenAIRE

    Weisskopf, Martin C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution ...

  7. Chandra X-Ray Observatory (CXO) on Orbit Animation

    Science.gov (United States)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  8. Highlights and discoveries from the Chandra X-ray Observatory.

    Science.gov (United States)

    Tananbaum, H; Weisskopf, M C; Tucker, W; Wilkes, B; Edmonds, P

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy. PMID:24913425

  9. The Chandra X-Ray Observatory: Progress Report and Highlights

    CERN Document Server

    Weisskopf, Martin C

    2012-01-01

    Over the past 13 years, the Chandra X-ray Observatory's ability to provide high resolution X-ray images and spectra have established it as one of the most versatile and powerful tools for astrophysical research in the 21st century. Chandra explores the hot, x-ray-emitting regions of the universe, observing sources with fluxes spanning more than 10 orders of magnitude, from the X-ray brightest, Sco X-1, to the faintest sources in the Chandra Deep Field South survey. Thanks to its continuing operational life, the Chandra mission now also provides a long observing baseline which, in and of itself, is opening new research opportunities. In addition, observations in the past few years have deepened our understanding of the co-evolution of supermassive black holes and galaxies, the details of black hole accretion, the nature of dark energy and dark matter, the details of supernovae and their progenitors, the interiors of neutron stars, the evolution of massive stars, and the high-energy environment of protoplanetar...

  10. Highlights and Discoveries from the Chandra X-ray Observatory

    CERN Document Server

    Tananbaum, H; Tucker, W; Wilkes, B; Edmonds, P

    2014-01-01

    Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding ...

  11. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  12. First Terrestrial Soft X-Ray Auroral Observation by the Chandra X-Ray Observatory

    Science.gov (United States)

    Bhardwaj, Anil; Gladstone, G. Randall; Elsner, Ronald F.; Oestgaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2007-01-01

    Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each approx.20 min duration) between mid- December 2003 and mid-April 2004. These observations aimed at searching for Earth's soft (X-ray aurora in a comparative study with Jupiter's X-ray aurora, where a pulsating X-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft X-ray observations of Earth's aurora show that it is highly variable 0ntense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.

  13. The Making of the Chandra X-ray Observatory: the Project Scientist's Perspective

    OpenAIRE

    Weisskopf, Martin C.

    2010-01-01

    The history of the development of the Chandra X-Ray Observatory is reviewed from a personal perspective. This review is necessarily biased and limited by space because it attempts to cover a time span approaching five decades.

  14. Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor

    OpenAIRE

    Grant, C. E.; LaMarr, B.; Bautz, M.W.; O'Dell, S. L.

    2010-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telesc...

  15. Chandra X-ray Observatory Study of the Orion Nebula Cluster and BN/KL Region

    OpenAIRE

    Garmire, Gordon,; Feigelson, Eric D.; Broos, Patrick; Hillenbrand, Lynne A.; Pravdo, Steven H.; Townsley, Leisa; Tsuboi, Yohko

    2000-01-01

    About 1000 X-ray emitting young pre-main sequence (PMS) stars distributed in mass from 0.05 to 50 solar masses are detected in an image of the Orion Nebula obtained with the Advanced CCD Imaging Spectrometer on board the Chandra X-ray Observatory. This is the richest field of sources ever obtained in X-ray astronomy. ACIS sources include 85-90% of V

  16. An Overview of the Performance of the Chandra X-Ray Observatory

    CERN Document Server

    Weisskopf, M C; Bautz, M; Cameron, R A; Dewey, D; Drake, J J; Grant, C E; Marshall, H L; Murray, S S

    2003-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA's Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST -- formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support a...

  17. An Overview of the Performance of the Chandra X-ray Observatory

    Science.gov (United States)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2003-08-01

    The Chandra X-ray Observatory is the X-ray component of NASA’s Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA’s Marshall Space Flight Center (MSFC) manages the project and provides project science; Northrop Grumman Space Technology (NGST formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institüt für extraterrestrische Physik (MPE), and the University of Kiel also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  18. Historical Remembrances of the Chandra X-ray Observatory: How Partnerships Created Success

    Science.gov (United States)

    Burke, Robert

    2009-09-01

    As the astronomy community plans for new ventures in space, we're forced to find creative solutions to operate within the ever increasing fiscal constraints of the current economic environment. The Chandra X-ray Observatory program offers an example of how missions can be successfully developed within manageable budget constraints. The ten year anniversary offers us the chance to look back at the Chandra team's special partnership between scientists, managers, and industry that led to our success.Chandra experienced many of the challenges common to major observatories: state-of-the-art technical requirements, budget-induced slips, and restructurings. Yet the Chandra team achieved excellent performance for dramatically lower cost. In fact, Chandra completed its prime mission for billions of dollars less than originally planned. In 1992, NASA MSFC and Northrop Grumman (then TRW) together led a major restructure that saved approximately 3.4B in program cost, while we improved the imaging capability and observing efficiency of Chandra. This was accomplished by a combination of team-work, systems engineering, advanced technology insertion, and effective approaches for program implementation, combined with a high performance culture that aligned goals and focused on mission success. Northrop Grumman is proud of our role in supporting the NASA Marshall Space Flight Center and our academic partners in advancing the frontiers of x-ray astronomy and scientific discovery with Chandra. As Chandra continues its extended mission, the observatory continues to provide superb scientific performance.

  19. Modeling Contamination Migration on the Chandra X-Ray Observatory - III

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.

    2015-01-01

    During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations

  20. Modeling Contamination Migration on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  1. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  2. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    Science.gov (United States)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  3. Modeling Contamination Migration on the Chandra X-ray Observatory - II

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.

    2013-01-01

    During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.

  4. Observations of the core of the Pleiades with the Chandra X-ray Observatory

    CERN Document Server

    Krishnamurthi, A; Linsky, J L; Martin, E; Gagna, M; Krishnamurthi, Anita; Reynolds, Christopher S; Linsky, Jeffrey L.; Martin, Eduardo; Gagna, Marc

    2001-01-01

    We present results from a 36-ksec observation of the core of the Pleiades open cluster using ACIS-I on the Chandra X-ray Observatory. We have detected 57 sources, most of which do not have previously known optical counterparts. Follow-up photometry indicates that many of the detections are likely to be AGNs, in accordance with extragalactic source counts, but some of the sources may be previously undiscovered low-mass members of the Pleiades. We discuss our dataset and our findings about X-ray emission from early-type stars as well as very late type stars. In particular, the large X-ray fluxes, lack of variability, and hardness ratios of the four Pleiades B6 IV -- F4 V stars suggest a tentative conclusion that Pleiades stars in this spectral type range are intrinsic X-ray sources rather than previously unknown binaries in which the X-ray emission is from a late-type companion. Also the sensitivity of Chandra allowed us to detect nonflare X-ray emission from late-M stars.

  5. Lessons from the development and operation of the Chandra x-ray observatory

    Science.gov (United States)

    Schwartz, Daniel A.

    2014-07-01

    Genuine teamwork was a key ingredient of the success of the Chandra x-ray observatory mission. Examples are the science center personnel working as part of the instrument principal investigators (IPI) teams during pre-launch development, the Smithsonian Astrophysical Observatory (SAO) supporting NASA/Marshall Space Flight Center (MSFC) by directly working with the prime contractor, TRW (now Northrop Grumman Aerospace Systems), and TRW acceptance of outside scientists performing the data reduction and analysis for qualification of the aspect camera. An end-to-end thread was defined early on, based on the MSFC/SAO operation of the Einstein observatory x-ray telescope, and covered the cycle from solicitation and peer review of observation proposals through scheduling to data processing and delivery. An open science working group chaired by MSFC included instrument principal investigators and interdisciplinary scientists spanning diverse astrophysical and instrumental expertise.

  6. Supernova Remnant 1987A: The Latest Report from the Chandra X-Ray Observatory

    CERN Document Server

    Park, S; Burrows, D N; Garmire, G P; McCray, D; Park, Sangwook; Zhekov, Svetozar A.; Burrows, David N.; Garmire, Gordon P.; Cray, Dick Mc

    2005-01-01

    We continue monitoring supernova remnant (SNR) 1987A with the {\\it Chandra X-ray Observatory}. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, Since 2002 December, can be described by a planar shock with an electron temperature of $\\sim$2.1 keV. The soft X-ray flux is now 8 $\\times$ 10$^{-13}$ ergs cm$^{-2}$ s$^{-1}$, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the H{\\small II} region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of $L_X$ = 1.3 $\\times$ 10$^{34}$ ergs s$^{-1}$ on the 3$-$10 keV band X-ray luminosity.

  7. Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II

    CERN Document Server

    Grant, C E; Bautz, M W; O'Dell, S L

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  8. X-Ray Spectroscopy of Optically Bright Planets using the Chandra Observatory

    Science.gov (United States)

    Ford, P. G.; Elsner, R. F.

    2005-01-01

    Since its launch in July 1999, Chandra's Advanced CCD Imaging Spectrometer (ACIS) has observed several planets (Venus, Mars, Jupiter and Saturn) and 6 comets. At 0.5 arc-second spatial resolution, ACIS detects individual x-ray photons with good quantum efficiency (25% at 0.6 KeV) and energy resolution (20% FWHM at 0.6 KeV). However, the ACIS CCDs are also sensitive to optical and near-infrared light, which is absorbed by optical blocking filters (OBFs) that eliminate optical contamination from all but the brightest extended sources, e.g., planets. .Jupiter at opposition subseconds approx.45 arc-seconds (90 CCD pixels.) Since Chandra is incapable of tracking a moving target, the planet takes 10 - 20 kiloseconds to move across the most sensitive ACIS CCD, after which the observatory must be re-pointed. Meanwhile, the OBF covering that CCD adds an opt,ical signal equivalent to approx.110 eV to each pixel that lies within thc outline of the Jovian disk. This has three consequences: (1) the observatory must be pointed away from Jupiter while CCD bias maps are constructed; (2) most x-rays from within the optical image will be misidentified as charged-particle background and ignored; and (3) those x-rays that are reported will bc assigned anomalously high energies. The same also applies to thc other planets, but is less serious since they are either dimmer at optical wavelengths, or they show less apparent motion across the sky, permitting reduced CCD exposure times: the optical contamination from Saturn acids approx.15 eV per pixel, and from Mars and Venus approx.31 eV. After analyzing a series of short .Jupiter observations in December 2000, ACIS parameters were optimized for the February 2003 opposition. CCD bias maps were constructed while Chandra pointed away from Jupiter, and the subsequent observations employed on-board software to ignore any pixel that contained less charge than that expected from optical leakage. In addition, ACIS was commanded to report 5 x 5

  9. Managing Radiation Degradation of CCDs on the Chandra X-Ray Observatory--III

    Science.gov (United States)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Blackwell, William C.; Bucher, Sabina L.; Chappell, Jon H.; DePasquale, Joseph M.; Grant, Catherine E.; Juda, Michael; Martin, Eric R.; Minow, Joseph I.; Murray, Stephen S.; Plucinsky, Paul P.; Shropshire, Daniel P.; Spitzbart, Bradley J.; Viens, Paul R.; Wolk, Scott J.; Schwartz, Daniel A.

    2007-01-01

    The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra team developed, implemented, and maintains a radiation-protection program. This program--involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing--has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 3.2x 10(exp -6) (2.3 percent) for the front-illuminated CCDs and 1.0x10(exp -6) (6.7 percent) for the back-illuminated CCDs. This paper describes the current status of the Chandra radiation-management program, emphasizing enhancements implemented since the previous papers.

  10. Finding Supernova Ia Progenitors with the Chandra X-ray Observatory

    OpenAIRE

    Nielsen, M. T. B.; Nelemans, G.A.; Voss, R.

    2010-01-01

    We examine pre-supernova Chandra images to find X-ray luminosities of type Ia supernova progenitors. At present, we have one possible direct detection and upper limits for the X-ray luminosities of a number of other supernova progenitors. The method has also yielded a possible detection of a X-ray binary Wolf-Rayet system as the progenitor of a type Ib supernova.

  11. Contributions of the "Great" X-Ray Observatories (XMM-Newton and Chandra) to Astronomy and Astrophysics

    Science.gov (United States)

    Weisskopf, Martin

    2011-01-01

    NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.

  12. NASA Chandra X-ray Observatory Selected as Editor's Choice in 2000 Discover Magazine Awards for Technological Innovation

    Science.gov (United States)

    2000-06-01

    The Chandra X-ray Observatory, NASA's newest and most powerful X-ray space telescope, has been selected as the winner of the Editor's Choice category of the 2000 Discover Magazine Awards for Technological Innovation. The team of government, industry, university and research institutions that designed, built and deployed Chandra for NASA's Marshall Space Flight Center, Huntsville, Ala, will be formally recognized June 24 at a gala awards celebration at Epcot at the Walt Disney World Resort in Orlando, Fl. Dr. Harvey Tananbaum, director of the Smithsonian Astrophysical Observatory's Chandra X-ray Science Center, Cambridge, Mass., which conducts the Chandra science mission for NASA, will receive the award on behalf of the team. "Chandra has opened a new window for astronomers into the universe of high-energy cosmic events such as pulsars, supernova remnants and black holes," said Tananbaum. "We're now able to create spectacularly detailed images of celestial phenomena whose mere existence we could only hypothesize before." Among Chandra's most significant discoveries to date, he lists the detection of a giant ring around the heart of the Crab Nebula, details of the shock wave created by an exploding star and resolution of the high-energy X-ray "glow" in the universe into millions of specific light sources. "The successful launch, deployment and on-orbit operations of NASA's Chandra X-ray Observatory is a testament to the solid partnership between TRW, NASA and the science community that has been enabling NASA's most important space science missions for the past 40 years," said Timothy W. Hannemann, executive vice president and general manager, TRW Space & Electronics Group. "The extraordinary images that Chandra is delivering daily speaks loudly not only to the quality of the science instruments on board, but also to the engineering talents and dedication to mission success exhibited by every member of NASA's Chandra mission team." Chandra, named in honor of Nobel

  13. The Chandra X-Ray Optics

    CERN Document Server

    Weisskopf, Martin C

    2011-01-01

    Significant advances in science always take place when the state of the art in instrumentation improves dramatically. NASA's Chandra X-Ray Observatory represents such an advance. Launched in July of 1999, Chandra is an observatory designed to study the x-ray emission from all categories of astronomical objects --- from comets, planets, and normal stars to quasars, galaxies, and clusters of galaxies. At the heart of this observatory is the precision X-Ray optic that has been vital for Chandra's outstanding success and which features an angular resolution improved by an order of magnitude compared to its forerunners. The Chandra mission is now entering its 13-th year of operation. Given that the Observatory was designed for a minimum of 3 years of operation testifies to its robust and carefully thought out design. We review the design and construction of the remarkable telescope, present examples of its usage for astronomy and astrophysics, and speculate upon the future.

  14. Comparative Analysis and Variability of the Jovian X-Ray Spectra Detected by the Chandra and XMM-Newton Observatories

    International Nuclear Information System (INIS)

    Expanding upon recent work, a more comprehensive spectral model based on charge exchange induced X-ray emission by ions precipitating into the Jovian atmosphere is used to provide new understanding of the polar auroras. In conjunction with the Xspec spectral fitting software, the model is applied to analyze observations from both Chandra and XMM-Newton by systematically varying the initial precipitating ion parameters to obtain the best fit model for the observed spectra. In addition to the oxygen and sulfur ions considered previously, carbon is included to discriminate between solar wind and Jovian magnetospheric ion origins, enabled by the use of extensive databases of both atomic collision cross sections and radiative transitions. On the basis of fits to all the Chandra observations, we find that carbon contributes negligibly to the observed polar X-ray emission suggesting that the highly accelerated precipitating ions are of magnetospheric origin. Most of the XMM-Newton fits also favor this conclusion with one exception that implies a possible carbon contribution. Comparison among all the spectra from these two observatories in light of the inferred initial energies and relative abundances of precipitating ions from the modeling show that they are significantly variable in time (observation date) and space (north and south polar X-ray auroras).

  15. Chandra X-Ray Observatory Observation of the High-Redshift Cluster MS 1054-0321

    CERN Document Server

    Jeltema, T E; Bautz, M W; Malm, M R; Donahue, M; Garmire, G P; Jeltema, Tesla E.; Canizares, Claude R.; Bautz, Mark W.; Malm, Michael R.; Donahue, Megan; Garmire, Gordon P.

    2001-01-01

    We observed MS 1054-0321, the highest redshift cluster of galaxies in the Einstein Medium Sensitivity Survey (EMSS), with the Chandra ACIS-S detector. We find the X-ray temperature of the cluster to be 10.4 +1.7 -1.5 keV, lower than, but statistically consistent with, the temperature inferred previously. This temperature agrees well with the observed velocity dispersion and that found from weak lensing. We are also able to make the first positive identification of an iron line in this cluster and find a value of 0.26 +/- 0.15 for the abundance relative to solar, consistent with early enrichment of the ICM. We confirm significant substructure in the form of two distinct clumps in the X-ray distribution. The eastern clump seems to coincide with the main cluster component. It has a temperature of 10.5 +3.4 -2.1 keV, approximately the same as the average spectral temperature for the whole cluster. The western clump is cooler, with a temperature of 6.7 +1.7 -1.2 and may be a subgroup falling into the cluster. Thou...

  16. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  17. Monitoring the Health and Safety of the ACIS Instrument On-Board the Chandra X-ray Observatory

    CERN Document Server

    Virani, S N; De Pasquale, J M; Plucinsky, P P; Virani, Shanil N.; Ford, Peter G.; Pasquale, Joseph M. De; Plucinsky, Paul P.

    2002-01-01

    The Chandra X-ray Observatory (CXO), NASA's latest ``Great Observatory'', was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (~2.65 days). Communication with the CXO nominally consists of 1-hour contacts spaced 8-hours apart. Thus, once a communication link has been established, it is very important that the health and safety status of the scientific instruments as well as the Observatory itself be determined as quickly as possible. In this paper, we focus exclusively on the automated health and safety monitoring scripts developed for the Advanced CCD Imaging Spectrometer (ACIS) to use during those 1-hour contacts. ACIS is one of the two focal plane instruments on-board the CXO. We present an overview of the real-time ACIS Engineering Data Web Page and the alert schemes developed for monitoring the instrument status during each communication contact. A suite of ...

  18. Chandra X-ray Observatory Arcsecond Imaging of the Young, Oxygen-rich Supernova Remnant 1E0102.2-7219

    OpenAIRE

    Gaetz, T. J.; Butt, Yousaf M.; Edgar, Richard J.; Eriksen, Kristoffer A.; Plucinsky, Paul P.; Schlegel, Eric M.; Smith, Randall K.

    2000-01-01

    We present observations of the young, Oxygen-rich supernova remnant 1E0102.2-7219 taken by the Chandra X-ray Observatory during Chandra's Orbital Activation and Checkout phase. The boundary of the blast wave shock is clearly seen for the first time, allowing the diameter of the remnant and the mean blast wave velocity to be determined accurately. The prominent X-ray bright ring of material may be the result of the reverse shock encountering ejecta; the radial variation of O VII vs. O VIII emi...

  19. The Lunar X-ray Observatory (LXO)

    Science.gov (United States)

    Porter, F. Scott

    2008-01-01

    X-ray emission from charge exchange recombination between the highly ionized solar wind and neutral material i n Earth's magnetosheath has complicated x-ray observations of celestial objects with x-ray observatories including ROSAT, Chandra, XMM-Newton, and Suzaku. However, the charge-exchange emission can also be used as an important diagnostic of the solar-wind interacting with the magnetosheath. Soft x-ray observations from low-earth orbit or even the highly eccentric orbits of Chandra and XMM-Newton are likely superpositions of the celestial object of interest, the true extra-solar soft x-ray background, geospheric charge exchange, and heliospheric charge exchange. We show that with a small x-ray telescope placed either on the moon, in a similar vein as the Apollo ALSOP instruments, or at a stable orbit near L1, we can begin t o disentangle the complicated emission structure in the soft x-ray band. Here we present initial results of a feasibility study recently funded by NASA t o place a small x-ray telescope on the lunar surface. The telescope operates during lunar night to observe charge exchange interactions between the solar wind and magnetospheric neutrals, between the solar wind and the lunar atmosphere, and an unobstructed view of the soft x-ray background without the geospheric component.

  20. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  1. Cross-calibration of the X-ray Instruments onboard the Chandra, INTEGRAL, RXTE, Suzaku, Swift, and XMM-Newton Observatories using G21.5-0.9

    CERN Document Server

    Tsujimoto, Masahiro; Plucinsky, Paul P; Beardmore, Andrew P; Ishida, Manabu; Natalucci, Lorenzo; Posson-Brown, Jennifer L L; Read, Andrew M; Saxton, Richard D; Shaposhnikov, Nikolai V

    2010-01-01

    Context. The Crab nebula has been used as a celestial calibration source of the X-ray flux and spectral shape for many years by X-ray astronomy missions. However, the object is often too bright for current and future missions equipped with instruments with improved sensitivity. Aims. We use G21.5-0.9 as a viable, fainter substitute to the Crab, which is another pulsar-wind nebula with a time-constant powerlaw spectrum with a flux of a few milli Crab in the X-ray band. Using this source, we conduct a cross-calibration study of the instruments onboard currently active observatories: Chandra ACIS, Suzaku XIS, Swift XRT, XMM-Newton EPIC (MOS and pn) for the soft-band, and INTEGRAL IBIS-ISGRI, RXTE PCA, and Suzaku HXD-PIN for the hard band. Methods. We extract spectra from all the instruments and fit them under the same astrophysical assumptions. We compare the spectral parameters of the G21.5-0.9 model: power-law photon index, H-equivalent column density of the interstellar photoelectric absorption, flux in the s...

  2. First Terrestrial Soft X-ray Aurora Observations by Chandra

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Ostgaard, Nikolai; Chang, Shen-Wu; Metzger, Albert E.; Majeed, Tariq

    2004-01-01

    Northern polar "auroral" regions of Earth was observed by High-Resolution Camera in imaging mode (T32C-I) aboard Chandra X-Ray Observatory (CXO) during mid December 2003 - mid April 2004. Ten CXO observations, each approximately 20 min duration, were made in a non-conventional method (due to CXO technical issues), such that Chandra was aimed at a fixed point in sky and the Earth's polar cusp was allowed to drift through the HRC-I field-of-view. The observations were performed when CXO was near apogee and timed during northern winter mostly near midnight (6 hr), except two observations which occurred around 1200 UT, so that northern polar region is entirely in dark and solar fluoresced x-ray contamination can be avoided. These observations were aimed at searching the Earth's soft x-ray aurora and to do a comparative study with Jupiter's x-ray aurora, where a pulsating x-ray hot-spot near the northern magnetic pole has been observed by Chandra that implies a particle source region near Jupiter's magnetopause, and entry of heavy solar wind ions due to high-latitude reconnection as a viable explanation for the soft x-ray emissions. The first Chandra soft (0.1-2 keV) x-ray observations of Earth's aurora show that it is highly variable (intense arc, multiple arcs, diffuse, at times almost absent). In at least one of the observations an isolated blob of emission is observed where we expect cusp to be: giving indication of solar wind charge-exchange signature in x-rays. We are comparing the Chandra x-ray observations with observations at other wavelengths and particle data from Earth-orbiting satellites and solar wind measurements from near-Earth ACE and SOH0 spacecraft. Preliminary results from these unique CXO-Earth observations will be presented and discussed.

  3. Chandra Finds Most Distant X-ray Galaxy Cluster

    Science.gov (United States)

    2001-02-01

    The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the

  4. The CHANDRA X-ray Grating Spectrum of Eta Carinae

    CERN Document Server

    Corcoran, M F; Petre, R; Ishibashi, K; Davidson, K; Townsley, L K; Smith, R; White, S; Viotti, R; Damineli, A

    2001-01-01

    Eta Car may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emisssion. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively ``resolving'' the shock. The pre-shock wind velocities are ~500 and ~ 2000 km/s in our analysis, and these velocities are interpreted as the terminal velocities of the winds from Eta Car and from the hidden companion star. The abundances of Si and Fe are significantly non-solar based on the strengths of the observed H- and He-like emission lines. The iron fluorescent line at 1.93 Angstrom, first detected by ASCA, is clearly resolved from the thermal iron line in th...

  5. THE CHANDRA CARINA COMPLEX PROJECT: DECIPHERING THE ENIGMA OF CARINA'S DIFFUSE X-RAY EMISSION

    International Nuclear Information System (INIS)

    We present a 1.42 deg2 mosaic of diffuse X-ray emission in the Great Nebula in Carina from the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer camera. After removing >14,000 X-ray point sources from the field, we smooth the remaining unresolved emission, tessellate it into segments of similar apparent surface brightness, and perform X-ray spectral fitting on those tessellates to infer the intrinsic properties of the X-ray-emitting plasma. By modeling faint resolved point sources, we estimate the contribution to the extended X-ray emission from unresolved point sources and show that the vast majority of Carina's unresolved X-ray emission is truly diffuse. Line-like correlated residuals in the X-ray spectral fits suggest that substantial X-ray emission is generated by charge exchange at the interfaces between Carina's hot, rarefied plasma and its many cold neutral pillars, ridges, and clumps.

  6. The CHANDRA HETGS X-ray Grating Spectrum of Eta Car

    OpenAIRE

    Corcoran, M. F; Swank, J.H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; S. White; Viotti, R; A. Damineli

    2001-01-01

    Eta Car may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emisssion. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on...

  7. Chandra Observations of SN 1987A: The Soft X-Ray Light Curve Revisited

    Science.gov (United States)

    Helder, E. A.; Broos, P. S.; Dewey, D.; Dwek, E.; McCray, R.; Park, S.; Racusin, J. L.; Zhekov, S. A.; Burrows, D. N.

    2013-01-01

    We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by approximately 6 x 10(exp-13) erg s(exp-1)cm(exp-2) per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.

  8. The SAS-3 X-ray observatory

    Science.gov (United States)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  9. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    Science.gov (United States)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  10. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  11. Escape of Pluto's Atmosphere: In Situ Measurements from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on New Horizons and Remote Observations from the Chandra X-ray observatory

    Science.gov (United States)

    McNutt, Ralph L.; Hill, Matthew E.; Lisse, Carey M.; Kollmann, Peter; Bagenal, Fran; Krimigis, Stamatios M.; McComas, David J.; Elliott, Heather A.; Wolk, Scott J.; Strobel, Darrell F.; Zhu, Xun; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K.; Olkin, C. B.

    2015-11-01

    The escape rate of Pluto's atmosphere is of significant scientific interest. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) is a compact, energy by time-of-flight (TOF) instrument developed to help address this science goal. Pluto is known to have an atmosphere, and pre-encounter models have postulated a majority N2 composition with free escape of up to ~1028 molecules/sec. The expected major ionization product near Pluto is singly ionized N2 molecules with pickup energies sufficient to be measured with PEPSSI. In the process of measuring the local energetic particle environment, such measurements can also provide constraints on the local density of Pluto's extended atmosphere, which, along with plasma measurements from the Solar Wind Around Pluto (SWAP) instrument, also on New Horizons, could allow the inference of the strengh and extent of mass-loading of the solar wind due to Pluto's atmosphere. Pluto's neutral atmosphere also provides a source population for charge exchange of highly ionized, minor ions in the solar wind, such as O, C, and N. This process allows these ions to capture one electron and be left in an excited state. That state, in turn decays with the emission of a low-energy (100 eV to 1 keV) X-ray. Observations of such solar wind charge exchange (SWCX) X-rays have been made in the past of the Earth's geocorona and Mars's extended atmosphere. The award of almost 40 hours of Director's Discretionary Time (DDT) for observing Pluto with the Chandra X-ray observatory near the period of closest approach of New Horizons to Pluto potentially enabled a remote determination of Pluto's global outgassing rate using the local solar wind flux as measured by the SWAP instrument. Preliminary anaysis of data returned from these observations reveal a definite interaction of Pluto with the solar wind, but at a lower strength than had been predicted. This work was supported by NASA's New Horizons project.

  12. The CHANDRA HETGS X-ray Grating Spectrum of Eta Carinae

    Science.gov (United States)

    Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; White, S.; Viotti, R.; Damineli, A.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Eta Carinae may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emission. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively 'resolving' the shock. If so, the pre-shock wind velocities are approximately 700 and 1800 km/s in our analysis, and these velocities may be interpreted as the terminal velocities of the winds from 71 Carinae and from the hidden companion star. The forbidden-to-intercombination line ratios for the He-like ions of S, Si, and Fe are large, indicating that the line forming region lies far from the stellar photosphere. The iron fluorescent line at 1.93 angstroms, first detected by ASCA, is clearly resolved from the thermal iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in our CHANDRA observation than in any of the ASCA spectra. The CHANDRA observation also provides the first high-time resolution lightcurve of the uncontaminated stellar X-ray emission from 77 Carinae and shows that there is no significant, coherent variability during the CHANDRA observation. The 77 Carinae CHANDRA grating spectrum is unlike recently published X-ray grating spectra of single massive stars in significant ways and is generally consistent with colliding wind emission in a massive binary.

  13. Discovery of X-rays from Mars with Chandra

    CERN Document Server

    Dennerl, K

    2002-01-01

    On 4 July 2001, X-rays from Mars were detected for the first time. The observation was performed with the ACIS-I detector onboard Chandra and yielded data of high spatial and temporal resolution, together with spectral information. Mars is clearly detected as an almost fully illuminated disk, with an indication of limb brightening at the sunward side, accompanied by some fading on the opposite side. The morphology and the X-ray luminosity of ~4 MW are fully consistent with fluorescent scattering of solar X-rays in the upper Mars atmosphere. The X-ray spectrum is dominated by a single narrow emission line, which is most likely caused by O-K_alpha fluorescence. No evidence for temporal variability is found. This is in agreement with the solar X-ray flux, which was almost constant during the observation. In addition to the X-ray fluorescence, there is evidence for an additional source of X-ray emission, indicated by a faint X-ray halo which can be traced to about three Mars radii, and by an additional component ...

  14. Chandra Discovery of a 100 kpc X-ray Jet in PKS 0637-752

    CERN Document Server

    Schwartz, D A; Lovell, J E J; Piner, B G; Tingay, S J; Birkinshaw, M; Chartas, G; Elvis, M; Feigelson, E D; Ghosh, K K; Harris, D E; Hirabayashi, H; Hooper, E J; Jauncey, D L; Lanzetta, K M; Mathur, S D; Preston, R A; Tucker, W H; Virani, S N; Wilkes, B; Worrall, D M

    2000-01-01

    The quasar PKS 0637-753, the first celestial X-ray target of the Chandra X-ray Observatory, has revealed asymmetric X-ray structure extending from 3 to 12 arcsec west of the quasar, coincident with the inner portion of the jet previously detected in a 4.8 GHz radio image (Tingay et al. 1998). At a redshift of z=0.651, the jet is the largest (~100 kpc) and most luminous (~10^{44.6} ergs/s) of the few so far detected in X-rays. This letter presents a high resolution X-ray image of the jet, from 42 ks of data when PKS 0637-753 was on-axis and ACIS-S was near the optimum focus. For the inner portion of the radio jet, the X-ray morphology closely matches that of new ATCA radio images at 4.8 and 8.6 GHz. Observations of the parsec scale core using the VSOP space VLBI mission show structure aligned with the X-ray jet, placing important constraints on the X-ray source models. HST images show that there are three small knots coincident with the peak radio and X-ray emission. Two of these are resolved, which we use to ...

  15. The International X-ray Observatory

    Science.gov (United States)

    Smith, Randall; Ixo Team

    2009-09-01

    The International X-ray Observatory (IXO), a joint ESA-JAXA-NASA effort, will address fundamental and timely questions in astrophysics: What happens close to a black hole? How did supermassive black holes grow? How does large scale structure form? What is the connection between these processes? To address these questions IXO will trace orbits close to the event horizon of black holes, measure black hole spin for several hundred active galactic nuclei (AGN), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, search for super-massive black holes out to redshift z = 10, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes inject energy on galactic and intergalactic scales. IXO will employ optics with 3 sq m collecting area and 5 arc sec angular resolution - 20 times more collecting area at 1 keV than any previous X-ray observatory. Focal plane instruments will deliver a 100-fold increase in effective area for high-resolution spectroscopy, deep spectral imaging over a wide field of view, deep polarimetric sensitivity, microsecond spectroscopic timing, and high count rate capability. The mission is being planned for launch in 2021 to an L2 orbit, with a five-year lifetime and consumables for 10 years. Previous experience assures us that unexpected discoveries will abound - a key feature of great observatories.

  16. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    CERN Document Server

    Israel, Gian Luca; Castillo, Guillermo Andres Rodriguez; Sidoli, Lara

    2016-01-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 years of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190,000 lightcurves out of about 430,000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS@BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above about 2,000s resembles that of...

  17. The discovery of X-rays from Venus with Chandra

    OpenAIRE

    Dennerl, K.; Burwitz, V.; Englhauser, J.; Lisse, C.; Wolk, S.

    2002-01-01

    On January 10 and 13, 2001, Venus was observed for the first time with an X-ray astronomy satellite. The observation, performed with the ACIS-I and LETG/ACIS-S instruments on Chandra, yielded data of high spatial, spectral, and temporal resolution. Venus is clearly detected as a half-lit crescent, with considerable brightening on the sunward limb. The morphology agrees well with that expected from fluorescent scattering of solar X-rays in the planetary atmosphere. The radiation is observed at...

  18. Discovery of X-rays from Venus with Chandra

    OpenAIRE

    Dennerl, K.; Burwitz, V.; Englhauser, J.; Lisse, C.; Wolk, S.

    2002-01-01

    On January 10 and 13, 2001, Venus was observed for the first time with an X-ray astronomy satellite. The observation, performed with the ACIS-I and LETG/ACIS-S instruments on Chandra, yielded data of high spatial, spectral, and temporal resolution. Venus is clearly detected as a half-lit crescent, with considerable brightening on the sunward limb. The morphology agrees well with that expected from fluorescent scattering of solar X-rays in the planetary atmosphere. The radiation is observed at...

  19. Discovery of X-rays from Mars with Chandra

    OpenAIRE

    Dennerl, Konrad

    2002-01-01

    On 4 July 2001, X-rays from Mars were detected for the first time. The observation was performed with the ACIS-I detector onboard Chandra and yielded data of high spatial and temporal resolution, together with spectral information. Mars is clearly detected as an almost fully illuminated disk, with an indication of limb brightening at the sunward side, accompanied by some fading on the opposite side. The morphology and the X-ray luminosity of ~4 MW are fully consistent with fluorescent scatter...

  20. Chandra Observations of Variable Embedded X-ray sources in Orion. Paper I: Resolving Orion Trapezium

    OpenAIRE

    Schulz, N. S.; Canizares, C.; Huenemoerder, D.; Kastner, J.H.; Taylor, S. C.; Bergstrom, E. J.

    2000-01-01

    We used the High Energy Transmission Grating Spectrometer (HETGS) onboard the Chandra X-ray Observatory to perform two observations, separated by three weeks, of the Orion Trapezium region. The zeroth order images on the Advanced CCD Imaging Spectrometer (ACIS) provide spatial resolution of 0.5" and moderate energy resolution. Within a 160"x140" region around the Orion Trapezium we resolve 111 X-ray sources with luminosities between 7x10^{28} ergs/s and 2x10^{32} ergs/s. We do not detect any ...

  1. A Catalog of Chandra X-ray Sources in the Carina Nebula

    CERN Document Server

    Broos, Patrick S; Feigelson, Eric D; Getman, Konstantin V; Garmire, Gordon P; Preibisch, Thomas; Smith, Nathan; Babler, Brian L; Hodgkin, Simon; Indebetouw, Rémy; Irwin, Mike; King, Robert R; Lewis, Jim; Majewski, Steven R; McCaughrean, Mark J; Meade, Marilyn R; Zinnecker, Hans

    2011-01-01

    We present a catalog of ~14,000 X-ray sources observed by the ACIS instrument on the Chandra X-ray Observatory within a 1.42 square degree survey of the Great Nebula in Carina, known as the Chandra Carina Complex Project (CCCP). This study appears in a Special Issue of the ApJS devoted to the CCCP. Here, we describe the data reduction and analysis procedures performed on the X-ray observations, including calibration and cleaning of the X-ray event data, point source detection, and source extraction. The catalog appears to be complete across most of the field to an absorption-corrected total-band luminosity of ~10^{30.7} erg/s for a typical low-mass pre-main sequence star. Counterparts to the X-ray sources are identified in a variety of visual, near-infrared, and mid-infrared surveys. The X-ray and infrared source properties presented here form the basis of many CCCP studies of the young stellar populations in Carina.

  2. An X-ray photometry system I: Chandra ACIS

    CERN Document Server

    Grimm, H -J; Fabbiano, G; Elvis, M

    2008-01-01

    We present a system of X-ray photometry for the Chandra satellite. X-ray photometry can be a powerful tool to obtain flux estimates, hardness ratios, and colors unbiased by assumptions about spectral shape and independent of temporal and spatial changes in instrument characteristics. The system we have developed relies on our knowledge of effective area and the energy-to-channel conversion to construct filters similar to photometric filters in the optical bandpass. We show that the filters are well behaved functions of energy and that this X-ray photometric system is able to reconstruct fluxes to within about 20%, without color corrections, for non-pathological spectra. Even in the worst cases it is better than 50%. Our method also treats errors in a consistent manner, both statistical as well as systematic.

  3. A Chandra Search for Coronal X Rays from the Cool White Dwarf GD 356

    CERN Document Server

    Weisskopf, M C; Trimble, V; O'Dell, S L; Elsner, R F; Zavlin, V E; Kouveliotou, C; Weisskopf, Martin C.; Wu, Kinwah; Trimble, Virginia; Dell, Stephen L. O'; Elsner, Ronald F.; Zavlin, Vyacheslav E.; Kouveliotou, Chryssa

    2006-01-01

    We report observations with the Chandra X-ray Observatory of the single, cool, magnetic white dwarf GD 356. For consistent comparison with other X-ray observations of single white dwarfs, we also re-analyzed archival ROSAT data for GD 356 (GJ 1205), G 99-47 (GR 290 = V1201 Ori), GD 90, G 195-19 (EG250 = GJ 339.1), and WD 2316+123 and archival Chandra data for LHS 1038 (GJ 1004) and GD 358 (V777 Her). Our Chandra observation detected no X rays from GD 356, setting the most restrictive upper limit to the X-ray luminosity from any cool white dwarf -- L_{X} < 6.0 x 10^{25} ergs/s, at 99.7% confidence, for a 1-keV thermal-bremsstrahlung spectrum. The corresponding limit to the electron density is n_{0} < 4.4 x 10^{11} cm^{-3}. Our re-analysis of the archival data confirmed the non-detections reported by the original investigators. We discuss the implications of our and prior observations on models for coronal emission from white dwarfs. For magnetic white dwarfs, we emphasize the more stringent constraints i...

  4. A Chandra/HETGS Census of X-ray Variability From Sgr A* During 2012

    CERN Document Server

    Neilsen, J; Gammie, C; Dexter, J; Markoff, S; Haggard, D; Nayakshin, S; Wang, Q D; Grosso, N; Porquet, D; Tomsick, J A; Degenaar, N; Fragile, P C; Wijnands, R; Miller, J M; Baganoff, F K

    2013-01-01

    We present the first systematic analysis of the X-ray variability of Sgr A* during the Chandra X-ray Observatory's 2012 Sgr A* X-ray Visionary Project (XVP). With 38 High Energy Transmission Grating Spectrometer (HETGS) observations spaced an average of 7 days apart, this unprecedented campaign enables detailed study of the X-ray emission from this supermassive black hole at high spatial, spectral and timing resolution. In 3 Ms of observations, we detect 39 X-ray flares from Sgr A*, lasting from a few hundred seconds to approximately 8 ks, and ranging in 2-10 keV luminosity from ~1e34 erg/s to 2e35 erg/s. Despite tentative evidence for a gap in the distribution of flare peak count rates, there is no evidence for X-ray color differences between faint and bright flares. Our preliminary X-ray flare luminosity distribution dN/dL is consistent with a power law with index -1.9 (+0.3 -0.4); this is similar to some estimates of Sgr A*'s NIR flux distribution. The observed flares contribute one-third of the total X-ra...

  5. Chandra X-ray observation of the HII region Gum 31 in the Carina Nebula complex

    CERN Document Server

    Preibisch, T; Townsley, L; Broos, P; Ratzka, T

    2014-01-01

    (abridged) We used the Chandra observatory to perform a deep (70 ksec) X-ray observation of the Gum 31 region and detected 679 X-ray point sources. This extends and complements the X-ray survey of the central Carina nebula regions performed in the Chandra Carina Complex Project. Using deep near-infrared images from our recent VISTA survey of the Carina nebula complex, our Spitzer point-source catalog, and optical archive data, we identify counterparts for 75% of these X-ray sources. Their spatial distribution shows two major concentrations, the central cluster NGC 3324 and a partly embedded cluster in the southern rim of the HII region, but majority of X-ray sources constitute a rather homogeneously distributed population of young stars. Our color-magnitude diagram analysis suggests ages of ~1-2 Myr for the two clusters, whereas the distributed population shows a wider age range up to ~10 Myr. We also identify previously unknown companions to two of the three O-type members of NGC 3324 and detect diffuse X-ra...

  6. The 3 Ms Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    CERN Document Server

    Neilsen, J; Gammie, C; Dexter, J; Markoff, S; Haggard, D; Nayakshin, S; Wang, Q D; Grosso, N; Porquet, D; Tomsick, J A; Degenaar, N; Fragile, P C; Houck, J C; Wijnands, R; Miller, J M; Baganoff, F K

    2013-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic Center.

  7. Chandra Phase-Resolved X-Ray Spectroscopy of the Crab Pulsar

    Science.gov (United States)

    Weisskopf, Martin C.; ODell, Stephen L.; Paerels, Frits; Elsner, Ronald F.; Becker, Werner E.; Tennant, Allyn F.; Swartz, Douglas A.

    2003-01-01

    We present here the first phase-resolved study of the X-ray spectral properties of the Crab Pulsar that covers all pulse phases. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity, even at pulse minimum. Analysis of the pulse-averaged spectrum measures interstellar photoelectric absorption and scattering by dust grains in the direction of the Crab Nebula. Analysis of the spectrum as a function of pulse phase measures the low-energy X-ray spectral index even at pulse minimum - albeit with large statistical uncertainty. The data are used to set a new upper limit to any thermal component.

  8. The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    CERN Document Server

    Kastner, J H; Balick, B; Frew, D J; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Rapson, V; Zijlstra, A; Behar, E; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Ueta, T; Villaver, E

    2012-01-01

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 3 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of 68%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are...

  9. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  10. Enhancing the International X-ray Observatory

    Science.gov (United States)

    Danner, Rolf; Dailey, Dean; Lillie, Charles; Spittler, Connie

    2010-07-01

    Over the last two years, we have studied system concepts for the International X-ray Observatory (IXO) with the goal of increasing the science return of the mission and to reduce technical and cost risk. We have developed an optical bench concept that has the potential to increase the focal length from 20 to 25 m within the current mass and stability requirements. Our deployable bench is a tensegrity structure formed by two telescoping booms (compression) and a hexapod cable (tension) truss. This arrangement achieves the required stiffness for the optical bench at minimal mass while employing only high TRL components and flight proven elements. The concept is based on existing elements, can be fully tested on the ground and does not require new technology. Our design further features hinged, articulating solar panels, an optical bench fully enclosed in MLI and an instrument module with radially facing radiator panels. We find that our design can be used over a wide range of sun angles, thereby greatly increasing IXO's field of regard, without distorting the optical bench. This makes a much larger fraction of the sky instantaneously accessible to IXO.

  11. The Chandra High Energy Transmission Grating Observation of an X-ray Ionization Cone in Markarian 3

    OpenAIRE

    Sako, Masao; Kahn, Steven M.; Paerels, Frits; Liedahl, Duane A.

    2000-01-01

    We present a preliminary analysis of the first high-resolution X-ray spectrum of a Seyfert 2 galaxy, Mkn 3, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. The high-energy spectrum (lambda < 4 Ang) is dominated by reflection of the AGN continuum radiation in a cold optically thick medium and contains bright K-alpha fluorescent lines from iron and silicon, as well as weak, blended lines from sulfur and magnesium. The soft X-ray emission (4...

  12. CHANDRA X-RAY OBSERVATIONS OF 12 MILLISECOND PULSARS IN THE GLOBULAR CLUSTER M28

    International Nuclear Information System (INIS)

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the 12 known M28 pulsars. With the exception of PSRs B1821-24 and J1824-2452H, the detected pulsars have relatively soft spectra, with X-ray luminosities 1030-1031 erg s-1 (0.3-8 keV), similar to most recycledpulsars in 47 Tucanae and the field of the Galaxy, implying thermal emission from the pulsar magnetic polar caps. We present the most detailed X-ray spectrum to date of the energetic PSR B1821-24. It is well described by a purely non-thermal spectrum with spectral photon index Γ = 1.23 and luminosity 1.4 x 1033Θ(D/5.5 kpc)2 erg s-1 (0.3-8 keV), where Θ is the fraction of the sky covered by the X-ray emission beam(s). We find no evidence for the previously reported line emission feature around 3.3 keV, most likely as a consequence of improvements in instrument calibration. The X-ray spectrum and pulse profile of PSR B1821-24 suggest that the bulk of unpulsed emission from this pulsar is not of thermal origin, and is likely due to low-level non-thermal magnetospheric radiation, an unresolved pulsar wind nebula, and/or small-angle scattering of the pulsed X-rays by interstellar dust grains. The peculiar binary PSR J1824-2452H shows a relatively hard X-ray spectrum and possible variability at the binary period, indicative of an intrabinary shock formed by interaction between the relativistic pulsar wind and matter from its non-degenerate companion star.

  13. Chandra Observations of the Anomalous X-ray Pulsar 4U 0142+61

    Science.gov (United States)

    Patel, Sandeep K.; Kouveliotou, Chryssa; Woods, Peter M.; Tennant, Allyn F.; Weisskopf, Martin C.; Finger, Mark H.; Wilson-Hodge, Colleen; Gogus, Ersin; VanderKlis, Michiel; Belloni, Tomaso; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present X-ray imaging, timing, and phase resolved spectroscopy of the anomalous X-ray pulsar 4U 0142+61 using the Chandra X-ray Observatory. The spectrum is well described by a power law plus blackbody model with Gamma = 3.35(2), kT=0.458(3) keV, and N-H = 0.91(2) x 10(exp 22)/sq cm); we find no significant evidence for spectral features (0.5 - 7.0 keV). Time resolved X-ray spectroscopy shows evidence for evolution in phase in either Gamma, or kT or some combination thereof as a function of pulse phase. We derive a precise X-ray position for the source and determine its spin period, P=8.68866(30) s. We have detected emission beyond 4 arcsec from the central source and extending beyond 100 arcsec, likely due to dust scattering in the interstellar medium.

  14. The X-ray Flux Distribution of Sagittarius A* as Seen by Chandra

    CERN Document Server

    Neilsen, J; Nowak, M A; Dexter, J; Witzel, G; Barrière, N; Li, Y; Baganoff, F K; Degenaar, N; Fragile, P C; Gammie, C; Goldwurm, A; Grosso, N; Haggard, D

    2014-01-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-ray Observatory's 3 Ms Sgr A* X-ray Visionary Project (XVP) in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate $Q=(5.24\\pm0.08)\\times10^{-3}$ cts s$^{-1},$ and a variable component, represented by a power law process ($dN/dF\\propto F^{-\\xi},$ $\\xi=1.92_{-0.02}^{+0.03}$). This slope matches our recently-reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of $1.8^{+0.9}_{-0.6}\\times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ and a shape parameter $\\sigma=2.4\\pm0.2,$ but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely ...

  15. Chandra Imaging of the X-ray Core of the Virgo Cluster

    CERN Document Server

    Young, A J; Mundell, C G

    2002-01-01

    We report sub-arcsecond X-ray imaging spectroscopy of M87 and the core of the Virgo cluster with the Chandra X-ray Observatory. The X-ray morphology shows structure on arcsecond (~100 pc) to ten arcminute (~50 kpc) scales, the most prominent feature being an "arc" running from the east, across the central region of M87 and off to the southwest. A ridge in the radio map, ending in an "ear"-shaped structure, follows the arc to the east, and the radio emission appears to be wrapped around the arc to the southwest. Depressions in the X-ray surface brightness correspond to the inner radio lobes. There are also at least two approximately circular (centered near the nucleus) "edges" in the X-ray brightness distribution, the radii of which are similar to the nuclear distances of the inner radio lobes and intermediate radio ridges. We speculate that these discontinuities may be spherical pulses or "fronts" driven by the same jet activity as is responsible for the radio structure; such pulses are found in recent numeri...

  16. X-ray Mass Profiles from Chandra Galaxy Atlas

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra

    2016-04-01

    We present preliminary results of a Chandra/XMM-Newton joint analysis on a sample of three Early Type Galaxies (ETGs, namely NGC4649, NGC4636 and NGC5846). X-ray observations of the hot ISM is used to measure the total enclosed mass assuming hydrostatic equilibrium, and compasion with mass distributions obtained through optical kinematics data of globular clusters and planetary nebulae yields informations about disturbances in the ISM distribution due to nuclear activity, merging history, etc. Our analysis makes use of the Chandra Galaxy Atlas (CGA) data products - exploiting the unmatched spatial resolution of the ACIS detectors to reveal fine ISM features and disturbances in the inner galactic regions - and XMM-Newton data - relying on the large field of view of EPIC detector to extend the mass profiles to larger radii. We then measured the mass profiles in various pie sectors to separate different gas features (e.g., discontinuity and extended tail) and compared them with GCs/PNe based mass profiles. The X-ray mass profiles of NGC4649 show a generally relaxed morphology and, in agreement with previous analysis, the comparison with the optical mass profiles shows a significant deviations on parsec scale likely due to non-thermal pressure linked to nuclear activity. In significantly disturbed cases (NGC4648 and NGC5846) where we found discontinuities and extended tails, we found that the mass profiles are over-estimated toward the compressed discontinuity and under-estimated toward the extended tails, similar to inflow and outflow cases. These preliminary results are promising toward an extended analysis of the whole CGA sample in order to study the distribution of gas temperature and metal abundances in the ISM, and to investigate scaling relations between ETG global quantities like ISM temperature, luminosity and total mass.

  17. Astronomical Honeymoon Continues as X-Ray Observatory Marks First Anniversary

    Science.gov (United States)

    2000-08-01

    NASA's Chandra X-ray Observatory celebrates its initial year in orbit with an impressive list of firsts. Through Chandra's unique X-ray vision, scientists have seen for the first time the full impact of a blast wave from an exploding star, a flare from a brown dwarf, and a small galaxy being cannibalized by a larger one. Chandra is the third in NASA's family of great observatories, complementing the Hubble Space Telescope and the Compton Gamma Ray Observatory. "Our goal is to identify never-before-seen phenomena, whether they're new or millions of years old. All this leads to a better understanding of our universe, " said Martin Weisskopf, chief project scientist for the Chandra program at NASA's Marshall Space Flight Center, Huntsville, AL. "Indeed, Chandra has changed the way we look at the universe." Chandra was launched in July 1999. After only two months in space, the observatory revealed a brilliant ring around the heart of the Crab Pulsar in the Crab Nebula ­ the remains of a stellar explosion ­ providing clues about how the nebula is energized by a pulsing neutron, or collapsed, star. Chandra also detected a faint X-ray source in the Milky Way galaxy, which may be the long-sought X-ray emission from the known massive black hole at the galaxy's center. A black hole is a region of space with so much concentrated mass there is no way for a nearby object, even light, to escape its gravitational pull. The observatory captured as well an image that revealed gas funneling into a massive black hole in the heart of a galaxy, two million light years from our own Milky Way, is much cooler than expected. "Chandra is teaching us to expect the unexpected about all sorts of objects ranging from comets in our solar system and relatively nearby brown dwarfs to distant black holes billions of light years away," said Harvey Tananbaum, director of the Chandra X-ray Center in Cambridge, MA. Perhaps one of Chandra's greatest contributions to X-ray astronomy is the resolution

  18. X-ray Monitoring of Gravitational Lenses With Chandra

    CERN Document Server

    Chen, Bin; Kochanek, Christopher S; Chartas, George; Blackburne, Jeffery A; Morgan, Christopher W

    2012-01-01

    We present \\emph{Chandra} monitoring data for six gravitationally lensed quasars: QJ 0158$-$4325, HE 0435$-$1223, HE 1104$-$1805, SDSS 0924+0219, SDSS 1004+4112, and Q 2237+0305. We detect X-ray microlensing variability in all six lenses with high confidence. We detect energy dependent microlensing in HE 0435$-$1223, SDSS 1004+4112, SDSS 0924+0219 and Q 2237+0305. We present a detailed spectral analysis for each lens, and find that simple power-law models plus Gaussian emission lines give good fits to the spectra. We detect intrinsic spectral variability in two epochs of Q 2237+0305. We detect differential absorption between images in four lenses. We also detect the \\feka\\ emission line in all six lenses, and the Ni XXVII K$\\alpha$ line in two images of Q 2237+0305. The rest frame equivalent widths of the \\feka\\ lines are measured to be 0.4--1.2 keV, significantly higher than those measured in typical active galactic nuclei of similar X-ray luminosities. This suggests that the \\feka\\ emission region is more c...

  19. Inferring coronal structure using X-ray spectra: A Chandra study of AB Dor

    CERN Document Server

    Hussain, G A J; Dupree, A K; Jardine, M; Van Ballegooijen, A A; Cameron, A C; Donati, J F; Favata, F

    2004-01-01

    The Chandra X-ray observatory monitored the single cool star, AB Doradus, continuously for a period lasting 88ksec (1.98 Prot) in 2002 December with the LETG/HRC-S. The X-ray lightcurve shows significant rotational modulation. It can be represented as having a flat level of emission superimposed with bright flaring regions that appear at the same phases in both rotation cycles. Phase-binned OVIII line profiles show centroid shifts that also repeat in consecutive rotation cycles. These Doppler shifts trace a roughly sinusoidal pattern with a a semi-amplitude of 30 +/-10km/s. By taking both the lightcurve and spectral diagnostics into account along with constraints on the rotational broadening of line profiles (provided by archival Chandra HETG FeXVII line profiles) we can construct a simple model of the X-ray corona. The corona can be described as having two components, one component is homogeneously distributed, extending less than 1.75R*; and the other consists of at least two compact emitting regions near t...

  20. The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-ray Emission from Compact Planetary Nebulae

    CERN Document Server

    Freeman, M; Montez, R; Balick, B; Frew, D J; Jones, D; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Zijlstra, A; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q A; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Toalá, J A; Ueta, T; Villaver, E

    2014-01-01

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb ~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothes...

  1. THE X-RAY FLUX DISTRIBUTION OF SAGITTARIUS A* AS SEEN BY CHANDRA

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, J. [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Markoff, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Nowak, M. A.; Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Dexter, J. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720-3411 (United States); Witzel, G. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Barrière, N. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Li, Y. [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Degenaar, N. [Institute of Astronomy, University of Cambridge, Cambridge, CB3 OHA (United Kingdom); Fragile, P. C. [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States); Gammie, C. [Department of Astronomy, University of Illinois Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Goldwurm, A. [AstroParticule et Cosmologie (APC), Université Paris 7 Denis Diderot, F-75205 Paris cedex 13 (France); Grosso, N. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Haggard, D., E-mail: jneilsen@space.mit.edu [Department of Physics and Astronomy, AC# 2244, Amherst College, Amherst, MA 01002 (United States)

    2015-02-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-Ray Observatory's 3 Ms Sgr A* X-ray Visionary Project in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q = (5.24 ± 0.08) × 10{sup –3} counts s{sup –1}, and a variable component, represented by a power law process (dN/dF∝F {sup –ξ}, ξ=1.92{sub −0.02}{sup +0.03}). This slope matches our recently reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of 1.8{sub −0.6}{sup +0.8}×10{sup −14} erg s{sup –1} cm{sup –2} and a shape parameter σ = 2.4 ± 0.2, but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ∼10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism.

  2. Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    CERN Document Server

    Weisskopf, Martin C; Yakovlev, Dmitry G; Harding, Alice; Zavlin, Vyacheslav E; O'Dell, Stephen L; Elsner, Ronald F; Becker, Werner

    2011-01-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = $(5.28 \\pm 0.28)\\times10^{-4}$ ($4.9 \\times10^{-4}$ is solar abundance). We also measure for the first time the impact of scattering of flux out of the image by interstellar grains. We find $\\tau_{\\rm scat} = 0.147 \\pm 0.043$. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at...

  3. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    Science.gov (United States)

    2000-11-01

    NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such

  4. Helium-like triplet density diagnostics: Applications to CHANDRA--LETGS X-ray observations of Capella and Procyon

    OpenAIRE

    Ness, J. U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen, A. J. J.; Porquet, D.; Kaastra, J. S.; Van Der Meer, R.L.J.; Burwitz, V.; Predehl, P.

    2000-01-01

    Electron density diagnostics based on the triplets of Helium-like CV, NVI, and OVII are applied to the X-ray spectra of Capella and Procyon measured with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra X-ray Observatory. New theoretical models for the calculation of the line ratios between the forbidden (f), intercombination (i), and the resonance (r) lines of the helium-like triplets are used. The derived densities are quite typical of densities found in the sol...

  5. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations

    Science.gov (United States)

    Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J. J.; Fraser, M.; Poutanen, J.

    2016-03-01

    The progenitors of hydrogen-poor core-collapse supernovae (SNe) of Types Ib, Ic and IIb are believed to have shed their outer hydrogen envelopes either by extremely strong stellar winds, characteristic of classical Wolf-Rayet stars, or by binary interaction with a close companion star. The exact nature of the progenitors and the relative importance of these processes are still open questions. One relatively unexplored method to constrain the progenitors is to search for high-mass X-ray binaries (HMXBs) at SN locations in pre-explosion X-ray observations. In an HMXB, one star has already exploded as a core-collapse SN, producing a neutron star or a stellar mass black hole. It is likely that the second star in the system will also explode as an SN, which should cause a detectable long-term change in the system's X-ray luminosity. In particular, a pre-explosion detection of an HMXB coincident with an SN could be informative about the progenitor's nature. In this paper, we analyse pre-explosion ACIS observations of 18 nearby Type Ib, Ic and IIb SNe from the Chandra X-ray observatory public archive. Two sources that could potentially be associated with the SN are identified in the sample. Additionally we make similar post-explosion measurements for 46 SNe. Although our modelling indicates that progenitor systems with compact binary companions are probably quite rare, studies of this type can in the future provide more stringent constraints as the number of discovered nearby SNe and suitable pre-explosion X-ray data are both increasing.

  6. CHANDRA-LETGS X-ray observations of Capella Temperature, density and abundance diagnostics

    CERN Document Server

    Ness, J U; Schmitt, J H M M; Raassen, A J J; Porquet, D; Kaastra, J S; Van der Meer, R L J; Burwitz, V; Predehl, P

    2001-01-01

    Electron density diagnostics based on the triplets of Helium-like CV, NVI, and OVII are applied to the X-ray spectra of Capella and Procyon measured with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra X-ray Observatory. New theoretical models for the calculation of the line ratios between the forbidden (f), intercombination (i), and the resonance (r) lines of the helium-like triplets are used. The derived densities are quite typical of densities found in the solar active regions, and also pressures and temperatures in Procyon's and Capella's corona at a level of T=10^6K are quite similar. We find no evidence for densities as high as measured in solar flares. Comparison of our Capella and Procyon measurements with the Sun shows little difference in the physical properties of the layers producing the CV, NVI, and OVII emission. Assuming the X-ray emitting plasma to be confined in magnetic loops, we obtain typical loop length scales of L_Capella > 8 L_Procyon from the loop scaling ...

  7. Chandra Reveals Twin X-ray Jets in the Powerful FR-II Radio Galaxy 3C353

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; Stawarz, L.; Harris, D.E.; Siemiginowska, A.; Ostrowski, M.; Swain, M.R.; Hardcastle, M.J.; Goodger, J.L.; Iwasawa, K.; Edwards, P.G.

    2008-06-13

    We report X-ray imaging of the powerful FR II radio galaxy 3C 353 using the Chandra X-ray Observatory. 3C 353's two 4-inch wide and 2-feet long jets allow us to study in detail the internal structure of the large-scale relativistic outflows at both radio and X-ray photon energies with the sub-arcsecond spatial resolution provided by the VLA and Chandra instruments. In a 90 ks Chandra observation, we have detected X-ray emission from most radio structures in 3C 353, including the nucleus, the jet and the counterjet, the terminal jet regions (hotspots), and one radio lobe. We show that the detection of the X-ray emission associated with the radio knots and counterknots, which is most likely non-thermal in origin, puts several crucial constraints on the X-ray emission mechanisms in powerful large-scale jets of quasars and FR II sources. In particular, we show that this detection is inconsistent with the inverse-Compton model proposed in the literature, and instead implies a synchrotron origin of the X-ray jet photons. We also find that the width of the X-ray counterjet is possibly narrower than that measured in radio bands, that the radio-to-X-ray flux ratio decreases systematically downstream along the jets, and that there are substantial (kpc-scale) offsets between the positions of the X-ray and radio intensity maxima within each knot, whose magnitudes increase away from the nucleus. We discuss all these findings in the wider context of the physics of extragalactic jets, proposing some particular though not definitive solutions or interpretations for each problem. In general, we find that the synchrotron X-ray emission of extragalactic large-scale jets is not only shaped by the global hydrodynamical configuration of the outflows, but is also likely to be very sensitive to the microscopic parameters of the jet plasma. A complete, self-consistent model for the X-ray emission of extragalactic jets still remains elusive.

  8. Development of X-Ray Optics for the International X-Ray Observatory (IXO)

    Science.gov (United States)

    Zhang, William W.; Bolognese, J.; Byron, G.; Caldwell, D.; Chan, K.; Content, D. A.; Gubarev, M.; Davis, W.; Freeman, M.; Hadjimichael, T. J.; He, C.; Hong, M.; Kolos, L.; Jones, W. D.; Lehan, . P.; Lozipone, L.; Mazzarella, J.; McClelland, R.; Nguyen, D. T.; Olsen, L.; Petre, R.; Podgorski, W.; Robinson, D.; Russell, R.; Romaine, S.

    2009-01-01

    The International X-ray Observatory requires mirror assemblies with unprecedented characteristics that cannot be provided by existing optical technologies. In the past several years, the project has supported a vigorous mirror technology development program. This program includes the fabrication of lightweight mirror segments by slumping commercially available thin glass sheets, the support and mounting of these thin mirror segments for accurate metrology, the mounting and attachment of these mirror segments for the purpose of X-ray tests, and development of methods for aligning and integrating these mirror segments into mirror assemblies. This paper describes our efforts and developments in these areas.

  9. Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    Science.gov (United States)

    Weisskopf, Martin C.; Tennant, Allyn F.; Yakovlev, Dimitry G.; Harding, Alice; Zavlin, Vyacheslav E.; Elsner, Ronald F.; Becker, Werner

    2012-01-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (5.28+\\-0.28) x 10(exp -4) (4.9 x 10(exp -4) is solar abundance). \\rVe also measure for the first time the impact of scattering of flux out of the image by interstellar grains. \\rYe find T(sub scat) = 0.147+/-0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum - albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We compare these spectral variations to those observed in Gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data were also used to set new. and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere.

  10. High-Resolution Chandra X-ray Imaging and Spectroscopy of the Sigma Orionis Cluster

    OpenAIRE

    Skinner, S.L.; Sokal, K. R.; Cohen, D. H.; Gagne, M.; Owocki, S.P.; Townsend, R. D.

    2008-01-01

    We present results of a 90 ksec Chandra X-ray observation of the young sigma Orionis cluster (age ~3 Myr) obtained with the High Energy Transmission Grating Spectrometer. We use the high resolution grating spectrum and moderate resolution CCD spectrum of the massive central star sigma Ori AB (O9.5V + B0.5V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the p...

  11. The Large Observatory for X-ray Timing (LOFT)

    DEFF Research Database (Denmark)

    Feroci, M.; Stella, L.; van der Klis, M.;

    2012-01-01

    High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m²-class instrument in combination with good spectral resolution is required to exploit the relevant...... Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an...

  12. A DEEP CHANDRA X-RAY LIMIT ON THE PUTATIVE IMBH IN OMEGA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Cool, Adrienne M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132 (United States); Heinke, Craig O. [Department of Physics, University of Alberta, Room 238 CEB, Edmonton, AB T6G 2G7 (Canada); Van der Marel, Roeland; Anderson, Jay [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cohn, Haldan N.; Lugger, Phyllis M., E-mail: dhaggard@northwestern.edu, E-mail: cool@sfsu.edu [Department of Astronomy, Indiana University, 727 E. Third St., Bloomington, IN 47405 (United States)

    2013-08-20

    We report a sensitive X-ray search for the proposed intermediate-mass black hole (IMBH) in the massive Galactic cluster, {omega} Centauri (NGC 5139). Combining Chandra X-ray Observatory data from Cycles 1 and 13, we obtain a deep ({approx}291 ks) exposure of the central regions of the cluster. We find no evidence for an X-ray point source near any of the cluster's proposed dynamical centers, and place an upper limit on the X-ray flux from a central source of f{sub X}(0.5-7.0 keV) {<=}5.0 Multiplication-Sign 10{sup -16} erg cm{sup -2} s{sup -1}, after correcting for absorption. This corresponds to an unabsorbed X-ray luminosity of L{sub X}(0.5-7.0 keV) {<=}1.6 Multiplication-Sign 10{sup 30} erg s{sup -1}, for a cluster distance of 5.2 kpc, Galactic column density N{sub H} = 1.2 Multiplication-Sign 10{sup 21} cm{sup -2}, and power-law spectrum with {Gamma} = 2.3. If a {approx}10{sup 4} M{sub sun} IMBH resides in the cluster's core, as suggested by some stellar dynamical studies, its Eddington luminosity would be L{sub Edd} {approx}10{sup 42} erg s{sup -1}. The new X-ray limit would then establish an Eddington ratio of L{sub X}/L{sub Edd} {approx}< 10{sup -12}, a factor of {approx}10 lower than even the quiescent state of our Galaxy's notoriously inefficient supermassive black hole Sgr A*, and imply accretion efficiencies as low as {eta} {approx}< 10{sup -6}-10{sup -8}. This study leaves open three possibilities: either {omega} Cen does not harbor an IMBH or, if an IMBH does exist, it must experience very little or very inefficient accretion.

  13. Development Roadmap for an Adjustable X-Ray Optics Observatory

    Science.gov (United States)

    Schwartz, Dan; Brissenden, R.; Bookbinder, J.; Davis, W.; Forman, W.; Freeman, M.; O'Dell, S.; Ramsey, B.; Reid, P.; Romaine, S.; Tananbaum, H.; Trolier-McKinstry, S.; Wilke, R.; Vikhlinin, A.

    2011-01-01

    We are developing adjustable X-ray optics to use on a mission such as SMART-X (see posters 38.02, 38.03 and Presentation 30.03). To satisfy the science problems expected to be posed by the next decadal survey, we anticipate requiring effective area greater than 1 square meter and Chandra-like angular resolution: approximately equal to 0.5 inches. To achieve such precise resolution we are developing adjustable mirror technology for X-ray astronomy application. This uses a thin film of piezoelectric material deposited on the back surface of the mirror to correct for figure distortions, including manufacturing errors and deflections due to gravity and thermal effects. We present here a plan to raise this technology from its current Level 2, to Level 6, by 2018.

  14. Chandra Observatory Uncovers Hot Stars In The Making

    Science.gov (United States)

    2000-11-01

    Cambridge, Mass.--In resolving the hot core of one of the Earth's closest and most massive star-forming regions, the Chandra X-ray Observatory showed that almost all the young stars' temperatures are more extreme than expected. Orion Trapezium JPEG, TIFF, PS The Orion Trapezium as observed on October 31st UT 05:47:21 1999. The colors represent energy, where blue and white indicate very high energies and therefore exterme temperatures. The size of the X-ray source in the image also reflects its brightness, i.e. more bright sources appear larger in size. The is an artifact caused by the limiting blur of the telescope optics. The projected diameter of the field of view is about 80 light days. Credit: NASA/MIT Orion Trapezium JPEG, TIFF, PS The Orion Trapezium as observed on November 24th UT 05:37:54 1999. The colors represent energy, where blue and white indicate very high energies and therefore exterme temperatures. The size of the X-ray source in the image also reflects its brightness, i.e. more bright sources appear larger in size. The is an artifact caused by the limiting blur of the telescope optics. The projected diameter of the field of view is about 80 light days. Credit: NASA/MIT The Orion Trapezium Cluster, only a few hundred thousand years old, offers a prime view into a stellar nursery. Its X-ray sources detected by Chandra include several externally illuminated protoplanetary disks ("proplyds") and several very massive stars, which burn so fast that they will die before the low mass stars even fully mature. One of the major highlights of the Chandra observations are identification of proplyds as X-ray point source in the near vicinity of the most massive star in the Trapezium. Previous observations did not have the ability to separate the contributions of the different objects. "We've seen high temperatures in stars before, but what clearly surprised us was that nearly all the stars we see appear at rather extreme temperatures in X-rays, independent of

  15. VizieR Online Data Catalog: Chandra X-ray observations of M81 (Swartz+, 2003)

    Science.gov (United States)

    Swartz, D. A.; Ghosh, K. K.; McCollough, M. L.; Pannuti, T. G.; Tennant, A. F.; Wu, K.

    2003-02-01

    The primary X-ray data set is a 49926s observation of M81 obtained on 2000 May 7 with the Chandra Advanced CCD Imaging Spectrometer (ACIS) spectroscopy array operating in imaging mode. Unless otherwise noted, references to X-ray data will refer to this data set. The X-ray data were reprocessed by the Chandra X-ray Center (CXC) on 2001 January 4. This reprocessed data are used in this work. There are no significant differences between the reprocessed data and the originally distributed data analyzed by Tennant et al. (2001ApJ...549L..43T). The observation was taken in faint timed exposure mode at 3.241s/frame at a focal plane temperature of -120{deg}C. Standard CXC processing has applied aspect corrections and compensated for spacecraft dither. The primary target, SN 1993J, was located near the nominal aimpoint on the back-illuminated (BI) device S3. The nucleus of M81 lies 2.79' from SN 1993J toward the center of S3 in this observation. Accurate positions of these two objects and two G0 stars located on device S2 were used to identify any offset and to determine absolute locations of the remaining Chandra sources as well as objects in other X-ray images and those obtained at other wavelengths. No offset correction was applied to the Chandra X-ray positions. (2 data files).

  16. Markov Chain Monte Carlo Joint Analysis of Chandra X-Ray Imaging Spectroscopy and Sunyaev-Zel'dovich Effect Data

    Science.gov (United States)

    Bonamente, Massimillano; Joy, Marshall K.; Carlstrom, John E.; Reese, Erik D.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zel'dovich effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from Chandra, which provides both spatial and spectral information, and Sunyaev-Zel'dovich effect data were obtained from the BIMA and Owens Valley Radio Observatory (OVRO) arrays. We introduce a Markov Chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev- Zel'dovich effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster A611. Comparisons with traditional likelihood ratio methods reveal the robustness of the method. This method will be used in follow-up paper to determine the distances to a large sample of galaxy cluster.

  17. Inferring coronal structure from X-ray lightcurves and Doppler shifts: a Chandra study of AB Doradus

    CERN Document Server

    Hussain, G A J; Dupree, A K; Jardine, M M; Van Ballegooijen, A A; Hoogerwerf, R; Cameron, A C; Donati, J F; Favata, F

    2004-01-01

    The Chandra X-ray observatory monitored the single cool star, AB Doradus, continuously for a period lasting 88 ksec (1.98 Prot) in 2002 December with the LETG/HRC-S. The X-ray lightcurve shows rotational modulation, with three peaks that repeat in two consecutive rotation cycles. These peaks may indicate the presence of compact emitting regions in the quiescent corona. Centroid shifts as a function of phase in the strongest line profile, O VIII 18.97 A, indicate Doppler rotational velocities with a semi-amplitude of 30 +/- 10 km/s. By taking these diagnostics into account along with constraints on the rotational broadening of line profiles (provided by archival Chandra HETG Fe XVII and FUSE Fe XVIII profile) we can construct a simple model of the X-ray corona that requires two components. One of these components is responsible for 80% of the X-ray emission, and arises from the pole and/or a homogeneously distributed corona. The second component consists of two or three compact active regions that cause modula...

  18. The Large Observatory For x-ray Timing

    OpenAIRE

    Feroci, M.; den Herder, J. W.; Bozzo, E.; D. Barret(IRAP, Toulouse, France); Brandt, S; Hernanz, M.; van der Klis, M; Pohl, M; Santangelo, A; Stella, L.; Watts, A; J. Wilms; Zane, S.; Ahangarianabhari, M; Albertus, C.

    2014-01-01

    © 2014 SPIE. The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranucl...

  19. Fabrication of Glass Mirror Segments for the International X-Ray Observatory

    Science.gov (United States)

    Zhang, William W.

    2010-01-01

    As the next major X-ray astronomical mission of NASA, ESA, and JAXA, the International X-ray Observatory (IXO) requires a mirror assembly that has an unprecedented effective area and an angular resolution better than all past missions except Chandra. This mirror assembly consists of approximately 15,000 mirror segments, which need to be fabricated, measured, aligned and integrated. In this talk we will present the latest results from our effort of developing an efficient and fast process of making these mirror segments by slumping commercially available glass sheets. We will report on our progress both in terms of perfecting the slumping process as well as the metrology process. In particular, we will discuss what additional work needs to be done to fully facilitate the manufacture of these mirror segments, meeting both budgetary and schedule requirements.

  20. Chandra x-ray results on v426 ophiuchi

    Directory of Open Access Journals (Sweden)

    Lee Homer

    2004-01-01

    Full Text Available De las observaciones de 45 ks de Chandra de V426 Oph hemos obtenido espectros de rayos X de alta resoluci on con relaci on se~nal-a-ruido moderada, y una curva de luz no interrumpida de buena calidad. Los espectros se adaptan razonablemente a un modelo de ujo de enfriamiento, similar a EX Hya y U Gem. Nuestro an alisis de las curvas de luz de Chandra y las adicionales de rayos X/ optico revela una modulaci on persistente a 4.2 hr desde 1988 hasta 2003, probablemente el per odo de giro de la enana blanca, indicando una naturaleza polar intermedia para V426 Oph.

  1. The ELAIS deep X-ray survey - I. Chandra source catalogue and first results

    OpenAIRE

    Manners, J. C.; Johnson, O; Almaini, O; Willott, C. J.; Gonzalez-Solares, E; Lawrence, A.; Mann, R. G.; Perez-Fournon, I.; Dunlop, J. S.; McMahon, R. G.; Oliver, S. J.; Rowan-Robinson, M.; Serjeant, S.

    2003-01-01

    We present an analysis of two deep (75 ks) Chandra observations of the European Large Area ISO Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well studied regions with extensive multi-wavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to 2 soft extended sources...

  2. A Chandra X-ray Study of NGC 1068: II. The Luminous X-ray Source Population

    OpenAIRE

    Smith, David A.; Wilson, Andrew S.

    2003-01-01

    We present an analysis of the compact X-ray source population in the Seyfert~2 galaxy NGC 1068, imaged with Chandra. We find a total of 84 compact sources, of which 66 are projected onto the galactic disk of NGC 1068. Spectra of the brightest sources have been modeled with both multi-color disk blackbody and power-law models. The power-law model provides the better description of the spectrum for most of these sources. Five sources have 0.4-8 keV intrinsic luminosities greater than 10^{39} er...

  3. X-ray spectral properties of AGN in the Chandra Deep Field South

    OpenAIRE

    Tozzi, P.; Gilli, R.; Mainieri, V.; C. Norman(JHU, Baltimore, USA); Risaliti, G.; Rosati, P.; Bergeron, J.; Borgani, S.; Giacconi, R.; Hasinger, G.; Nonino, M.; Streblyanska, A.; Szokoly, G.; Wang, J X; Zheng, W.

    2006-01-01

    We present a detailed X-ray spectral analysis of the sources in the 1Ms catalog of the Chandra Deep Field South (CDFS) taking advantage of optical spectroscopy and photometric redshifts for 321 sources. As a default spectral model, we adopt a power law with slope Gamma with an intrinsic redshifted absorption N_H, a fixed Galactic absorption and an unresolved Fe emission line. For 82 X-ray bright sources, we perform the X-ray spectral analysis leaving both Gamma and N_H free. The weighted mean...

  4. Observatory Science with the NICER X-ray Timing Instrument

    Science.gov (United States)

    Remillard, Ronald A.

    2016-04-01

    This presentation is submitted on behalf of the NICER Observatory Science Working Group. NICER will be deployed on the International Space Station later in 2016. The X-ray sensitivity spans 0.2-12 keV, with CCD-like spectral resolution, low background rates, and unprecedented timing accuracy. A Guest Observer (GO) Program has been approved by NASA as one of the proposed Science Enhancement Options, contingent on NICER meeting its Prime Mission Science Objectives. The NICER Science team will observe limited Observatory Science targets (i.e., sources other than neutron stars) in year 1, and GO observations will constitute 50% of the exposures in year 2. Thereafter, NICER will compete for continuation via the NASA Senior Review process. NICER Instrument performance is compared with Missions such as XMM-Newton and RXTE. We briefly highlight the expected themes for Observatory Science relating to accreting black holes on all mass scales, magnetic CVs, active stars, and clusters of galaxies.

  5. Cosmic Star Formation History and Deep X-ray Imaging in the XMM-NEWTON and CHANDRA Era

    OpenAIRE

    Ghosh, Pranab

    2002-01-01

    I summarize X-ray diagnostic studies of cosmic star formation in terms of evolutionary schemes for X-ray binary evolution in normal galaxies with evolving star formation. Deep X-ray imaging studies by CHANDRA and XMM-NEWTON are beginning to constrain both the X-ray luminosity evolution of galaxies and the log N - log S diagnostics of the X-ray background: I discuss these in the above context, summarizing current understanding and future prospects.

  6. The X-Ray Microcalorimeter Spectrometer for the International X-Ray Observatory

    International Nuclear Information System (INIS)

    The International X-Ray Observatory (IXO) is under formulation by NASA, ESA and JAXA for deployment in 2022. IXO emerged over the last 18 months as the NASA Constellation-X and ESA/JAXA X-Ray Evolving Universe Spectrometer (XEUS) missions were combined. The driving performance requirements for the X-Ray Microcalorimeter Spectrometer (XMS) are a spectral resolution of 2.5 eV over the central 2'x2' in the 0.3-7.0 keV band, and 10 eV to the edge of the 5'x5' field of view (FOV). The XMS is now based on a microcalorimeter array of Transition-Edge Sensor (TES) thermometers with Au/Bi absorbers and a SQUID MUX readout. One of the concepts studied as part of the mission formulation has a core 40x40 array corresponding to a 2'x2' FOV with 3'' pixels surrounded by an outer, annular 52x52 array of 6'' pixels that extends the field of view to 5.4'x5.4' with better than 10 eV resolution. There are several options for implementing the readout and cooling system of the XMS under study in the US, Europe and Japan. The ADR system will have from two to five stages depending on the performance of the cryocooler. Mechanical coolers with sufficient cooling power at 4K are available now, and ∼2K coolers are under development. In this paper we give an overview of the XMS instrument, and some of the tradeoffs to be addressed for this observatory instrument.

  7. LOFT: the Large Observatory for X-ray Timing

    CERN Document Server

    Bozzo, E; Romano, P

    2012-01-01

    LOFT, the large observatory for X-ray timing, was selected by the European Space Agency (ESA) in February 2011 as one of four medium size mission concepts for the Cosmic Vision program that will compete for a launch opportunity in the early 2020s. LOFT will carry out high-time resolution (10 {\\mu}s) and spectroscopic observations (<260 eV) of compact objects in the X-ray band (2-80 keV), with unprecedented throughput, thanks to its 10 m^2 effective area. LOFT will address the fundamental questions of the Cosmic Vision Theme "Matter under extreme conditions": What is the fundamental equation of state of a compact object? Does matter orbiting close to the event horizon follow the predictions of general relativity?

  8. The International X-ray Observatory - RFI#2

    CERN Document Server

    Bookbinder, Jay

    2010-01-01

    The International X-ray Observatory (IXO) is a joint NASA-ESA-JAXA effort. X-ray observations will resolve pressing astrophysical questions such as: What happens close to a black hole? How do supermassive black holes grow? How does large scale structure form? What is the connection between these processes? To address these questions requires dramatic increases in collection area combined with sensitive new instrumentation. IXO's spectroscopic, timing, and polarimetric capabilities will probe close to the event horizon of super-massive black holes (SMBH) where strong gravity dominates. IXO will determine the evolution and origin of SMBH by measuring their spin to understand their merger history, surveying them to find their luminosity distribution out to high redshift (z~8), and spectroscopically characterizing their outflows during peak activity. IXO will revolutionize our understanding of galaxy clusters by mapping their bulk motions and turbulence. IXO will observe the process of cosmic feedback where black...

  9. CHANDRA PHASE-RESOLVED X-RAY SPECTROSCOPY OF THE CRAB PULSAR

    International Nuclear Information System (INIS)

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-Ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line of sight to the Crab is underabundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms et al. we find [O/H] = (5.28 ± 0.28) × 10–4 (4.9 × 10–4 is solar abundance). We also measure for the first time the impact of scattering of flux out of the image by interstellar grains. We find τscat = 0.147 ± 0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum—albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We also compare these spectral variations to those observed in gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data are also used to set new, and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere. We discuss how such data are best connected to theoretical models of neutron star cooling and neutron star interiors. The data restrict the neutrino emission rate in the pulsar core and the amount of light elements in the heat-blanketing envelope. The observations allow the pulsar

  10. Testing EUV/X-ray Atomic Data for the Solar Dynamics Observatory

    CERN Document Server

    Testa, Paola; Landi, Enrico

    2011-01-01

    The Atmospheric Imaging Assembly (AIA) and the Exteme-ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory include spectral windows in the X-ray/EUV band. Accuracy and completeness of the atomic data in this wavelength range is essential for interpretation of the spectrum and irradiance of the solar corona, and of SDO observations made with the AIA and EVE instruments. Here we test the X-ray/EUV data in the CHIANTI database to assess their completeness and accuracy in the SDO bands, with particular focus on the 94A and 131A AIA passbands. Given the paucity of solar observations adequate for this purpose, we use high-resolution X-ray spectra of the low-activity solar-like corona of Procyon obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We find that while spectral models overall can reproduce quite well the observed spectra in the soft X-ray range ll 130A, they significantly underestimate the observed flux in the 50-130A wavelength range. The model und...

  11. A Comprehensive Archival Chandra Search for X-ray Emission from Ultracompact Dwarf Galaxies

    CERN Document Server

    Pandya, Viraj; Greene, Jenny E

    2016-01-01

    We present the first comprehensive archival study of the X-ray properties of ultracompact dwarf (UCD) galaxies, with the goal of identifying weakly-accreting central black holes in UCDs. Our study spans 578 UCDs distributed across thirteen different host systems, including clusters, groups, fossil groups, and isolated galaxies. Of the 336 spectroscopically-confirmed UCDs with usable archival Chandra imaging observations, 21 are X-ray-detected. Imposing a completeness limit of $L_X>2\\times10^{38}$ erg s$^{-1}$, the global X-ray detection fraction for the UCD population is $\\sim3\\%$. Of the 21 X-ray-detected UCDs, seven show evidence of long-term X-ray time variability on the order of months to years. X-ray-detected UCDs tend to be more compact than non-X-ray-detected UCDs, and we find tentative evidence that the X-ray detection fraction increases with surface luminosity density and global stellar velocity dispersion. The X-ray emission of UCDs is fully consistent with arising from a population of low-mass X-ra...

  12. Chandra reveals a black-hole X-ray binary within the ultraluminous supernova remnant MF 16

    OpenAIRE

    Roberts, T P; Colbert, E. J. M.

    2003-01-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraodinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black-hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black-hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly...

  13. Athena+: The first Deep Universe X-ray Observatory

    CERN Document Server

    Barret, D; Barcons, X; Fabian, A; Herder, J-W den; Piro, L; Watson, M; Aird, J; Branduardi-Raymont, G; Cappi, M; Carrera, F; Comastri, A; Costantini, E; Croston, J; Decourchelle, A; Done, C; Dovciak, M; Ettori, S; Finoguenov, A; Georgakakis, A; Jonker, P; Kaastra, J; Matt, G; Motch, C; O'Brien, P; Pareschi, G; Pointecouteau, E; Pratt, G; Rauw, G; Reiprich, T; Sanders, J; Sciortino, S; Willingale, R; Wilms, J

    2013-01-01

    The Advanced Telescope for High-energy Astrophysics (Athena+) is being proposed to ESA as the L2 mission (for a launch in 2028) and is specifically designed to answer two of the most pressing questions for astrophysics in the forthcoming decade: How did ordinary matter assemble into the large scale structures we see today? and how do black holes grow and shape the Universe? For addressing these two issues, Athena+ will provide transformational capabilities in terms of angular resolution, effective area, spectral resolution, grasp, that will make it the most powerful X-ray observatory ever flown. Such an observatory, when opened to the astronomical community, will be used for virtually all classes of astrophysical objects, from high-z gamma-ray bursts to the closest planets in our solar neighborhood. In this paper, we briefly review the core science objectives of Athena+, present the science requirements and the foreseen implementation of the mission, and illustrate its transformational capabilities compared t...

  14. The International X-ray Observatory - RFI#1

    CERN Document Server

    Bookbinder, Jay

    2010-01-01

    The International X-ray Observatory (IXO), a joint NASA-ESA-JAXA effort, will address fundamental and timely questions in astrophysics: What happens close to a black hole? How did supermassive black holes grow? How does large scale structure form? What is the connection between these processes? To address these science questions, IXO will trace orbits close to the event horizon of black holes, measure black hole spin for several hundred active galactic nuclei (AGN), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, search for supermassive black holes out to redshift z = 10, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes inject energy on galactic and intergalactic scales. IXO will employ optics with 20 times more collecting area at 1 keV than any previous X-ray observatory. Focal plane instruments will deliver a 100-fold increase i...

  15. The Chandra High Energy Transmission Grating Observation of an X-ray Ionization Cone in Markarian 3

    CERN Document Server

    Sako, M; Paerels, F B S; Liedahl, D A; Sako, Masao; Kahn, Steven M.; Paerels, Frits; Liedahl, Duane A.

    2000-01-01

    We present a preliminary analysis of the first high-resolution X-ray spectrum of a Seyfert 2 galaxy, Mkn 3, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. The high-energy spectrum (lambda < 4 Ang) is dominated by reflection of the AGN continuum radiation in a cold optically thick medium and contains bright K-alpha fluorescent lines from iron and silicon, as well as weak, blended lines from sulfur and magnesium. The soft X-ray emission (4 < lambda < 23 Ang) is spatially extended along the [O III] ionization cone and shows discrete signatures of emission following recombination and photoexcitation produced in a warm photoionized region. The measured iron L line fluxes indicate that emission from collisionally ionized plasma is almost completely negligible, and does not contribute significantly to the total energy budget of the X-ray emission. We find that significant fractions of the H- and He-like resonance lines, as well as the observed iron L l...

  16. Probing Wolf-Rayet Winds: Chandra/HETG X-Ray Spectra of WR 6

    CERN Document Server

    Huenemoerder, David P; Hamann, Wolf-Rainer; Ignace, Richard; Nichols, Joy S; Oskinova, Lidia; Pollock, Andrew M T; Schulz, Norbert S; Shenar, Tomer

    2015-01-01

    With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.

  17. Chandra X-ray spectroscopy of a clear dip in GX 13+1

    CERN Document Server

    D'Aì, A; Di Salvo, T; Riggio, A; Burderi, L; Robba, N R

    2014-01-01

    The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an accreting neutron star. It shows highly ionized absorption features, with a blueshift of $\\sim$ 400 km s$^{-1}$ and an outflow-mass rate similar to the accretion rate. Many other X-ray sources exhibit warm absorption features, and they all show periodic dipping behavior at the same time. Recently, a dipping periodicity has also been determined for GX 13+1 using long-term X-ray folded light-curves, leading to a clear identification of one of such periodic dips in an archival Chandra observation. We give the first spectral characterization of the periodic dip of GX 13+1 found in this archival Chandra observation performed in 2010. We used Chandra/HETGS data (1.0--10 keV band) and contemporaneous RXTE/PCA data (3.5--25 keV) to analyze the broadband X-ray spectrum. We adopted different spectral models to describe the continuum emission and used the XSTAR-derived warm absorber component to constrain the highly ionized absorption features. ...

  18. X-Rays Beware: The Deepest Chandra Catalogue of Point Sources in M31

    CERN Document Server

    Vulic, N; Barmby, P

    2016-01-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ~1 Ms, we detected 795 X-ray sources in the bulge, northeast, and southwest fields of M31, covering an area of approximately 0.6 deg$^{2}$, to a limiting unabsorbed 0.5-8.0 keV luminosity of $10^{34}$ erg/s. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's $D_{25}$ isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49%) of our Chandra sources (352 or 44% unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to ...

  19. X-ray observations of dust obscured galaxies in the Chandra Deep Field South

    CERN Document Server

    Corral, A; Comastri, A; Ranalli, P; Akylas, A; Salvato, M; Lanzuisi, G; Vignali, C; Koutoulidis, L

    2016-01-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra Deep Field South. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields. In that work, we only found a moderate percentage ($<$ 50%) of CT AGN among the DOGs sample, but we were limited by poor photon statistics. In this paper, we use not only a deeper 6 Ms Chandra survey of the Chandra Deep Field South (CDF-S), but combine these data with the 3 Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (but only 3 could be CT AGN), wherea...

  20. Testing Photoionization Calculations Using Chandra X-ray Spectra

    Science.gov (United States)

    Kallman, Tim

    2008-01-01

    A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn on many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. In such cases the most practical approach to understanding the sensitivity of observables to atomic cross sections is to perform numerical experiments, by calculating models with various rates perturbed by random (but known) factors. In addition, it is useful to compare the results of such experiments with some sample observations, in order to focus attention on the rates which are of the greatest relevance to real observations. In this paper I will present some attempts to carry out this program, focussing on two sample datasets taken with the Chandra HETG. I will discuss the sensitivity of synthetic spectra to atomic data affecting ionization balance, temperature, and line opacity or emissivity, and discuss the implications for the ultimate goal of inferring astrophysical parameters.

  1. Raytracing with MARX: x-ray observatory design, calibration, and support

    Science.gov (United States)

    Davis, John E.; Bautz, Marshall W.; Dewey, Daniel; Heilmann, Ralf K.; Houck, John C.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Randall K.

    2012-09-01

    MARX is a portable ray-trace program that was originally developed to simulate event data from the trans- mission grating spectrometers on-board the Chandra X-ray Observatory (CXO). MARX has since evolved to include detailed models of all CXO science instruments and has been further modified to serve as an event simulator for future X-ray observatory design concepts. We first review a number of CXO applications of MARX to demonstrate the roles such a program could play throughout the life of a mission, including its design and calibration, the production of input data products for the development of the various software pipelines, and for observer proposal planning. We describe how MARX was utilized in the design of a proposed future X-ray spectroscopy mission called ÆGIS (Astrophysics Experiment for Grating and Imaging Spectroscopy), a mission concept optimized for the 0.2 to 1 keV soft X-ray band. ÆGIS consists of six independent Critical Angle Transmission Grating Spectrometers (CATGS) arranged to provide a resolving power of 3000 and an effective area exceeding 1000 cm2 across its passband. Such high spectral resolution and effective area will permit ÆGIS to address many astrophysics questions including those that pertain to the evolution of Large Scale Structure of the universe, and the behavior of matter at very high densities. The MARX ray-trace of the ÆGIS spectrometer yields quantitative estimates of how the spectrometer’s performance is affected by misalignments between the various system elements, and by deviations of those elements from their idealized geometry. From this information, we are able to make the appropriate design tradeoffs to maximize the performance of the system.

  2. Chandra Observations and Modeling of Geocoronal Charge Exchange X-Ray Emission During Solar Wind Gusts

    Science.gov (United States)

    Kornbleuth, Marc; Wargelin, Bradford J.; Juda, Michael

    2014-06-01

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O7+ collide with neutral gas. The best known examples of this occur around comets, but SWCX emission also arises in the Earth's tenuous outer atmosphere and throughout the heliosphere as neutral H and He from the interstellar medium flows into the solar system. This geocoronal and heliospheric emission comprises much of the soft X-ray background and is seen in every X-ray observation. Geocoronal emission, although usually weaker than heliospheric emission, arises within a few tens of Earth radii and therefore responds much more quickly (on time scales of less than an hour) to changes in solar wind intensity than the widely distributed heliospheric emission.We have studied a dozen Chandra observations when the flux of solar wind protons and O7+ ions was at its highest. These gusts of wind cause correspondingly abrupt changes in geocoronal SWCX X-ray emission,which may or may not be apparent in Chandra data depending on a given observation's line of sight through the magnetosphere. We compare observed changes in the X-ray background with predictions from a fully 3D analysis of SWCX emission based on magnetospheric simulations using the BATS-R-US model.

  3. The Nature of the Faint Chandra X-ray Sources in the Galactic Centre

    OpenAIRE

    Ruiter, A.J.; Belczynski, K.; Harrison, T. E.

    2005-01-01

    Recent Chandra observations have revealed a large population of faint X-ray point sources in the Galactic Centre. The observed population consists of about 2000 faint sources in the luminosity range ~10^31-10^33 erg/s. The majority of these sources (70%) are described by hard spectra, while the rest are rather soft. The nature of these sources still remains unknown. Belczynski & Taam (2004) demonstrated that X-ray binaries with neutron star or black hole accretors may account for most of the ...

  4. A Chandra X-ray Study of Cygnus A - III. The Cluster of Galaxies

    OpenAIRE

    Smith, David A.; Wilson, Andrew S.; Arnaud, Keith A.; Terashima, Yuichi; Young, Andrew J.

    2001-01-01

    The results from a recent Chandra ACIS-S study of the cluster surrounding Cygnus A are presented. We have deprojected the X-ray spectra taken from various elliptical shells in order to derive the run of temperature, density, pressure, and abundance for the ICM as a function of radius. We confirm a drop in temperature of the X-ray emitting gas from $\\sim 8$ keV more than $\\sim 2^{\\prime}$ from the center to $\\simeq 5$ keV some $30^{\\prime\\prime}$ from the center, with the coolest gas immediate...

  5. A Systematic Chandra study of Sgr A$^{\\star}$: I. X-ray flare detection

    OpenAIRE

    Yuan, Qiang; Wang, Q. Daniel

    2015-01-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{\\star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {\\it Chandra} observations obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare...

  6. The Large Observatory For x-ray Timing

    DEFF Research Database (Denmark)

    Feroci, M.; Herder, J. W. den; Bozzo, E.;

    2014-01-01

    behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2......The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the...... trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study....

  7. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    Science.gov (United States)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  8. The High Resolution Chandra X-Ray Spectrum of 3C273

    Science.gov (United States)

    Fruscione, Antonella; Lavoie, Anthony (Technical Monitor)

    2000-01-01

    The bright quasar 3C273 was observed by Chandra in January 2000 for 120 ksec as a calibration target. It was observed with all detector- plus-grating combinations (ACIS+HETG, ACIS+LETG, and HRC+LETG) yielding an X-ray spectrum across the entire 0.1-10 keV band with unprecedented spectral resolution. At about 10 arcsec from the nucleus, an X-ray jet is also clearly visible and resolved in the Oth order images. While the jet is much fainter than the nuclear source, the Chandra spatial resolution allows, for the first time, spectral analysis of both components separately. We will present detailed spectral analysis with particular emphasis on possible absorption features and comparison with simultaneous BeppoSAX data.

  9. Chandra and NuSTAR studies of the ultraluminous X-ray sources in M82

    Science.gov (United States)

    Brightman, Murray; Harrison, Fiona; Walton, Dom; Fuerst, Felix; Bachetti, Matteo; Zezas, Andreas; Ptak, Andrew; Hornschemeier, Ann E.; Yukita, Mihoko; Tendulkar, Shriharsh P.; Grefenstette, Brian

    2016-04-01

    With the discovery of the ultraluminous X-ray pulsar in M82 by Bachetti et al (2014), there has been renewed interest in the galaxy, which also hosts one of the best candidates for an intermediate-mass black hole. We present results on the spectral and temporal properties of the pulsar from 15 years of Chandra observations with implications for theoretical modeling of the source, as well as the high-energy constraints on both sources from NuSTAR.

  10. Groups of Galaxies in AEGIS: The 200 ksec Chandra Extended X-ray Source catalogue

    CERN Document Server

    Jeltema, Tesla E; Laird, Elise S; Willmer, Christopher N A; Coil, Alison L; Cooper, Michael C; Davis, Marc; Nandra, Kirpal; Newman, Jeffrey A

    2009-01-01

    We present the discovery of seven X-ray emitting groups of galaxies selected as extended X-ray sources in the 200 ksec Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). In addition, we report on AGN activity associated to these systems. Using the DEEP2 Galaxy Redshift Survey coverage, we identify optical counterparts and determine velocity dispersions. In particular, we find three massive high-redshift groups at z>0.7, one of which is at z=1.13, the first X-ray detections of spectroscopically selected DEEP2 groups. We also present a first look at the the L_X-T, L_X-sigma, and sigma-T scaling relations for high-redshift massive groups. We find that the properties of these X-ray selected systems agree well with the scaling relations of similar systems at low redshift, although there are X-ray undetected groups in the DEEP2 catalogue with similar velocity dispersions. The other three X-ray groups with identified redshifts are associated with lower mass groups at z~0.07 and...

  11. Near-Infrared Counterparts to Chandra X-ray Sources toward the Galactic Center. I. Statistics and a Catalog of Candidates

    CERN Document Server

    Mauerhan, Jon C; Morris, Mark R; Bauer, Franz E; Nishiyama, Shogo; Nagata, Tetsuya

    2009-01-01

    We present a catalog of 5184 candidate infrared counterparts to X-ray sources detected towards the Galactic center. The X-ray sample contains 9017 point sources detected in this region by the Chandra X-ray Observatory, including data from a recent deep survey of the central 2 x 0.8 deg of the Galactic plane. A total of 6760 of these sources have hard X-ray colors, and the majority of them lie near the Galactic center; while most of the remaining 2257 soft X-ray sources lie in the foreground. We cross-correlated the X-ray source positions with the 2MASS and SIRIUS near-infrared catalogs, which collectively contain stars with a 10-sigma limiting flux of K_s=0.9 and <=0.9 mag, respectively. We find that 5.8(1.5)% of the hard X-ray sources have real infrared counterparts, of which 228(99) are red and 166(27) are blue. The red counterparts are probably comprised of WR/O stars, HMXBs, and symbiotics near the Galactic center. We also find that 39.4(1.0)% of the soft X-ray sources have blue infrared counterparts; ...

  12. X-ray luminous galaxies I. Chandra observations of IRAS00317-2142

    CERN Document Server

    Georgantopoulos, I; Ward, M J

    2003-01-01

    We present Chandra observations of the enigmatic galaxy IRAS00317-2142, which is classified as a star-forming galaxy on the basis of the ionization level of its emission lines. However, a weak broad H\\alpha wing and a high X-ray luminosity give away the presence of an active nucleus. The Chandra image reveals a nuclear point source (L_(2-10 keV) 6x10^{41} erg s-1), contributing over 80% of the galaxy X-ray counts in the 0.3-8 keV band. This is surrounded by some fainter nebulosity extending up to 6 kpc. The nucleus does not show evidence for short-term variability. However, we detect long term variations between the ROSAT, ASCA and Chandra epoch. Indeed,the source has decreased its flux by over a factor of 25 in a period of about 10 years. The nuclear X-ray spectrum is well represented by a power-law with a photon index of 1.91^{+0.17}_{-0.15} while the extended emission by a Raymond-Smith component with a temperature of 0.6 keV. We find no evidence for the presence of an Fe line. The nucleus is absorbed by a...

  13. Finding Rare AGN: X-ray Number Counts of Chandra Sources in Stripe 82

    CERN Document Server

    LaMassa, Stephanie M; Glikman, Eilat; Cappelluti, Nico; Civano, Francesca; Comastri, Andrea; Treister, Ezequiel; Arifin,; Boehringer, Hans; Cardamone, Carie; Chon, Gayoung; Kephart, Miranda; Murray, Stephen S; Richards, Gordon; Ross, Nic; Rozner, Joshua S; Schawinski, Kevin

    2012-01-01

    We present the first results of a wide area X-ray survey within the Sloan Digital Sky Survey (SDSS) Stripe 82, a 300 deg$^2$ region of the sky with a substantial investment in multi-wavelength coverage. We analyzed archival {\\it Chandra} observations that cover 7.5 deg$^2$ within Stripe 82 ("Stripe 82 ACX"), reaching 4.5$\\sigma$ flux limits of 7.9$\\times10^{-16}$, 3.4$\\times10^{-15}$ and 1.8$\\times10^{-15}$ erg s$^{-1}$ cm$^{-2}$ in the soft (0.5-2 keV), hard (2-7 keV) and full (0.5-7 keV) bands, to find 774, 239 and 1118 X-ray sources, respectively. Three hundred twenty-one sources are detected only in the full band and 9 sources are detected solely in the soft band. Utilizing data products from the {\\it Chandra} Source Catalog, we construct independent Log$N$-Log$S$ relationships, detailing the number density of X-ray sources as a function of flux, which show general agreement with previous {\\it Chandra} surveys. We compare the luminosity distribution of Stripe 82 ACX with the smaller, deeper CDF-S + E-CDFS...

  14. The outer regions of galaxy clusters: Chandra constraints on the X-ray surface brightness

    CERN Document Server

    Ettori, S

    2008-01-01

    (Abridged version) We study the properties of the X-ray surface brightness profiles in a sample of galaxy clusters that are observed with Chandra and have emission detectable with a signal-to-noise ratio larger than 2 at a radius beyond R500 ~ 0.7 R200. Our study aims at measuring the slopes of the X-ray surface brightness and of the gas density profiles in the outskirts of massive clusters. These constraints are then compared to similar results obtained from observations and numerical simulations of the temperature and dark matter density profiles with the intention to present a consistent picture of the outer regions of galaxy clusters. We extract the surface brightness profiles S_b(r) from X-ray exposures obtained with Chandra of 52 X-ray luminous galaxy clusters at z>0.3. We estimate R200 both using a beta-model to reproduce the surface brightness profile and scaling relations from the literature, showing that the two methods converge to comparable values. We evaluate then the radius, R_S2N, at which the ...

  15. High-Resolution Chandra X-ray Imaging and Spectroscopy of the Sigma Orionis Cluster

    CERN Document Server

    Skinner, S L; Cohen, D H; Gagné, M; Owocki, S P; Townsend, R D

    2008-01-01

    We present results of a 90 ksec Chandra X-ray observation of the young sigma Orionis cluster (age ~3 Myr) obtained with the High Energy Transmission Grating Spectrometer. We use the high resolution grating spectrum and moderate resolution CCD spectrum of the massive central star sigma Ori AB (O9.5V + B0.5V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the primary CCD (ACIS-S3). All but five have near-IR or optical counterparts and about one-fourth are variable. Notable high-mass stellar detections are sigma Ori AB, the magnetic B star sigma Ori E, and the B5V binary HD 37525. Most of the other detections have properties consistent with lower mass K or M-type stars. We present the first X-ray spectrum of the unusual infrared source IRS1 located 3.3 arc-sec north of sigma Ori AB, which is likely an embedded T Tauri star whose disk/envelope is being photoevaporated by sigma Or...

  16. A spectral and spatial analysis of eta Carinae's diffuse X-ray emission using CHANDRA

    CERN Document Server

    Weis, K; Bomans, D J; Davidson, K; Weis, Kerstin; Corcoran, Michael F.; Bomans, Dominik J.; Davidson, Kris

    2004-01-01

    The luminous unstable star (star system) eta Carinae is surrounded by an optically bright bipolar nebula, the Homunculus and a fainter but much larger nebula, the so-called outer ejecta. As images from the EINSTEIN and ROSAT satellites have shown, the outer ejecta is also visible in soft X-rays, while the central source is present in the harder X-ray bands. With our CHANDRA observations we show that the morphology and properties of the X-ray nebula are the result of shocks from fast clumps in the outer ejecta moving into a pre-existing denser circumstellar medium. An additional contribution to the soft X-ray flux results from mutual interactions of clumps within the ejecta. Spectra extracted from the CHANDRA data yield gas temperatures kT of 0.6-0.76 keV. The implied pre-shock velocities of 670-760 km/s are within the scatter of the velocities we measure for the majority of the clumps in the corresponding regions. Significant nitrogen enhancements over solar abundances are needed for acceptable fits in all pa...

  17. A DEEP CHANDRA OBSERVATION OF THE GIANT H II REGION N11. I. X-RAY SOURCES IN THE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Nazé, Yaël [GAPHE, Department AGO, Université de Liège, Allée du 6 Août 17 Bat. B5C, B-4000 Liège (Belgium); Wang, Q. Daniel [Department of Astronomy, B619E-LGRT, University of Massachusetts, Amherst, MA 01003 (United States); Chu, You-Hua; Gruendl, Robert [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Oskinova, Lida, E-mail: naze@astro.ulg.ac.be [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany)

    2014-08-01

    A very sensitive X-ray investigation of the giant H II region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10{sup 32} erg s{sup –1}, increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log (L {sub X}/L {sub BOL}) ∼–6.5 to –7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log (L {sub X}/L {sub BOL}) ∼–7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.

  18. Testing EUV/X-Ray Atomic Data for the Solar Dynamics Observatory

    Science.gov (United States)

    Testa, Paola; Drake, Jeremy J.; Landi, Enrico

    2012-02-01

    The Atmospheric Imaging Assembly (AIA) and the Extreme-ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) include spectral windows in the X-ray/EUV band. Accuracy and completeness of the atomic data in this wavelength range is essential for interpretation of the spectrum and irradiance of the solar corona, and of SDO observations made with the AIA and EVE instruments. Here, we test the X-ray/EUV data in the CHIANTI database to assess their completeness and accuracy in the SDO bands, with particular focus on the 94 Å and 131 Å AIA passbands. Given the paucity of solar observations adequate for this purpose, we use high-resolution X-ray spectra of the low-activity solar-like corona of Procyon obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We find that while spectral models overall can reproduce quite well the observed spectra in the soft X-ray range λ ~ 130 Å, they significantly underestimate the observed flux in the 50-130 Å wavelength range. The model underestimates the observed flux by a variable factor ranging from ≈1.5, at short wavelengths below ~50 Å, up to ≈5-7 in the ~70-125 Å range. In the AIA bands covered by LETGS, i.e., 94 Å and 131 Å, we find that the observed flux can be underestimated by large factors (~3 and ~1.9, respectively, for the case of Procyon presented here). We discuss the consequences for analysis of AIA data and possible empirical corrections to the AIA responses to model more realistically the coronal emission in these passbands.

  19. The Large Observatory For x-ray Timing

    CERN Document Server

    Feroci, M; Bozzo, E; Barret, D; Brandt, S; Hernanz, M; van der Klis, M; Pohl, M; Santangelo, A; Stella, L; Watts, A; Wilms, J; Zane, S; Ahangarianabhari, M; Albertus, C; Alford, M; Alpar, A; Altamirano, D; Alvarez, L; Amati, L; Amoros, C; Andersson, N; Antonelli, A; Argan, A; Artigue, R; Artigues, B; Atteia, J -L; Azzarello, P; Bakala, P; Baldazzi, G; Balman, S; Barbera, M; van Baren, C; Bhattacharyya, S; Baykal, A; Belloni, T; Bernardini, F; Bertuccio, G; Bianchi, S; Bianchini, A; Binko, P; Blay, P; Bocchino, F; Bodin, P; Bombaci, I; Bidaud, J -M Bonnet; Boutloukos, S; Bradley, L; Braga, J; Brown, E; Bucciantini, N; Burderi, L; Burgay, M; Bursa, M; Budtz-Jørgensen, C; Cackett, E; Cadoux, F R; Cais, P; Caliandro, G A; Campana, R; Campana, S; Capitanio, F; Casares, J; Casella, P; Castro-Tirado, A J; Cavazzuti, E; Cerda-Duran, P; Chakrabarty, D; Château, F; Chenevez, J; Coker, J; Cole, R; Collura, A; Cornelisse, R; Courvoisier, T; Cros, A; Cumming, A; Cusumano, G; D'Aì, A; D'Elia, V; Del Monte, E; De Luca, A; De Martino, D; Dercksen, J P C; De Pasquale, M; De Rosa, A; Del Santo, M; Di Cosimo, S; Diebold, S; Di Salvo, T; 1), I Donnarumma; (32), A Drago; (33), M Durant; (107), D Emmanoulopoulos; (135), M H Erkut; (85), P Esposito; (1, Y Evangelista; 1b),; (24), A Fabian; (34), M Falanga; (25), Y Favre; (35), C Feldman; (128), V Ferrari; (3), C Ferrigno; (133), M Finger; (36), M H Finger; (35, G W Fraser; +),; (2), M Frericks; (7), F Fuschino; (125), M Gabler; (37), D K Galloway; (6), J L Galvez Sanchez; (6), E Garcia-Berro; (10), B Gendre; (62), S Gezari; (39), A B Giles; (40), M Gilfanov; (10), P Giommi; (102), G Giovannini; (102), M Giroletti; (4), E Gogus; (105), A Goldwurm; (86), K Goluchová; (16), D Götz; (16), C Gouiffes; (56), M Grassi; (42), P Groot; (17), M Gschwender; (128), L Gualtieri; (32), C Guidorzi; (3), L Guy; (2), D Haas; (50), P Haensel; (29), M Hailey; (19), F Hansen; (42), D H Hartmann; (43), C A Haswell; (88), K Hebeler; (37), A Heger; (2), W Hermsen; (28), J Homan; (19), A Hornstrup; (23, R Hudec; 72),; (45), J Huovelin; (5), A Ingram; (2), J J M in't Zand; (27), G Israel; (20), K Iwasawa; (47), L Izzo; (2), H M Jacobs; (17), F Jetter; (118, T Johannsen; 127),; (2), P Jonker; (126), J Josè; (49), P Kaaret; (123), G Kanbach; (23), V Karas; (6), D Karelin; (29), D Kataria; (49), L Keek; (29), T Kennedy; (17), D Klochkov; (50), W Kluzniak; (17), K Kokkotas; (45), S Korpela; (51), C Kouveliotou; (87), I Kreykenbohm; (2), L M Kuiper; (19), I Kuvvetli; (7), C Labanti; (52), D Lai; (53), F K Lamb; (2), P P Laubert; (105), F Lebrun; (8), D Lin; (29), D Linder; (54), G Lodato; (55), F Longo; (19), N Lund; (131), T J Maccarone; (14), D Macera; (8), S Maestre; (62), S Mahmoodifar; (17), D Maier; (56), P Malcovati; (120), I Mandel; (144), V Mangano; (50), A Manousakis; (7), M Marisaldi; (109), A Markowitz; (35), A Martindale; (59), G Matt; (107), I M McHardy; (60), A Melatos; (61), M Mendez; (85), S Mereghetti; (68), M Michalska; (20), S Migliari; (85, R Mignani; 108),; (62), M C Miller; (49), J M Miller; (57), T Mineo; (112), G Miniutti; (64), S Morsink; (65), C Motch; (13), S Motta; (66), M Mouchet; (8), G Mouret; (19), J Mulačová; (1, F Muleri; (140), T Muñoz-Darias; (95), I Negueruela; (28), J Neilsen; (43), A J Norton; (28), M Nowak; (35), P O'Brien; (19), P E H Olsen; (102), M Orienti; (99, M Orio; 110),; (7), M Orlandini; (68), P Orleanski; (35), J P Osborne; (69), R Osten; (70), F Ozel; (1, L Pacciani; (119), M Paolillo; (6), A Papitto; (20), J M Paredes; (83, A Patruno; 141),; (71), B Paul; (17), E Perinati; (115), A Pellizzoni; (47), A V Penacchioni; (136), M A Perez; (72), V Petracek; (10), C Pittori; (95), J Pons; (6), J Portell; (115), A Possenti; (73), J Poutanen; (122), M Prakash; (16), P Le Provost; (70), D Psaltis; (8), D Rambaud; (8), P Ramon; (76), G Ramsay; (1, M Rapisarda; (77), A Rachevski; (77), I Rashevskaya; (78), P S Ray; (6), N Rea; (80), S Reddy; (113, P Reig; 81),; (63), M Reina Aranda; (28), R Remillard; (62), C Reynolds; (124), L Rezzolla; (20), M Ribo; (2), R de la Rie; (115), A Riggio; (138), A Rios; (82, P Rodríguez- Gil; 104),; (16), J Rodriguez; (3), R Rohlfs; (57), P Romano; (83), E M R Rossi; (50), A Rozanska; (29), A Rousseau; (84), F Ryde; (63), L Sabau-Graziati; (6), G Sala; (85), R Salvaterra; (61), A Sanna; (134), J Sandberg; (130), S Scaringi; (16), S Schanne; (86), J Schee; (87), C Schmid; (117), S Shore; (27), R Schneider; (88), A Schwenk; (89), A D Schwope; (114), J -Y Seyler; (90), A Shearer; (29), A Smith; (58), D M Smith; (29), P J Smith; (23), V Sochora; (1), P Soffitta; (61), P Soleri; (29), A Spencer; (91), B Stappers; (80), A W Steiner; (92), N Stergioulas; (10), G Stratta; (93), T E Strohmayer; (86), Z Stuchlik; (17), S Suchy; (17), V Sulemainov; (94), T Takahashi; (15), F Tamburini; (129), T Tauris; (17), C Tenzer; (6), L Tolos; (62), F Tombesi; (121), J Tomsick; (86), G Torok; (95), J M Torrejon; (96), D F Torres; (3), A Tramacere; (1), A Trois; (15), R Turolla; (101), S Turriziani; (17), P Uter; (5), P Uttley; (77), A Vacchi; (105), P Varniere; (35), S Vaughan; (57), S Vercellone; (97), V Vrba; (29), D Walton; (94), S Watanabe; (68), R Wawrzaszek; (8), N Webb; (28), N Weinberg; (17), H Wende; (98), P Wheatley; (5), R Wijers; (5), R Wijnands; (87), M Wille; (44), C A Wilson-Hodge; (29), B Winter; (78), K Wood; (77), G Zampa; (77), N Zampa; (99), L Zampieri; (50), L Zdunik; (50), A Zdziarski; (100), B Zhang; (2), F Zwart; (142), M Ayre; (142), T Boenke; (142), C Corral van Damme; (143), E Kuulkers; (, D Lumb (142); IAPS-INAF,; Rome,; Italy,; INFN,; Vergata, Sez Roma Tor; SRON,; Netherlands, The; ISDC,; University, Geneve; Switzerland,; University, Sabanci; Istanbul,; Turkey,; Pannekoek, Astronomical Institute Anton; Amsterdam, University of; IEEC-CSIC-UPC-UB,; Barcelona,; Spain,; INAF-IASF-Bologna,; IRAP,; Toulouse,; France,; Physical, Faculty of; Sciences, Applied; Southampton, University of; Kingdom, United; ASDC,; University, Middle East Technical; Ankara,; Fisica, Dipartimento di Chimica e; University, Palermo; Brera, INAF-OA; Milano, Politecnico; Physics, Dept of; Padua, Astronomy University of; Saclay, CEA; DSM/IRFU/SAp,; Tuebingen, IAAT; Germany,; INPE,; Campos, São José dos; Brazil,; Institute, National Space; Lyngby,; Denmark,; DAM,; ICC-UB,; de Barcelona, Universitat; Observatory, Arcetri; INAF,; Firenze,; University, Cagliari; Republic, Astronomical Institute of the Academy of Sciences of the Czech; Republic, Czech; University, Cambridge; Cambridge,; DPNC,; de Bordeaux, Laboratoire d'Astrophysique; Rome, INAF-OA; MIT,; States, United; MSSL,; Surrey,; University, McGill; Montréal,; Canada,; Capodimonte, INAF-OA; Napoli,; University, Ferrara; Ferrara,; Biophysics, Department of Medical; Toronto, University of; Bern, ISSI; University, Leicester; Association, Universities Space Research; Huntsville,; Astrophysics, Monash Centre for; Physics, School of; Sciences, School of Mathematical; University, Monash; Australia,; University, Johns Hopkins; Baltimore,; Tasmania, University of; Garching, MPA; University, Radboud; University, Clemson; University, Open; Center, NASA/Marshall Space Flight; Helsinki, University of; Finland,; University, Durham; University, Sapienza; ICRA,; Iowa, University of; University, Michigan state; Center, Copernicus Astronomical; Warsaw,; Poland,; University, Cornell; Ithaca,; Illinois, University of; di Fisica, Dipartimento; di Milano, Università degli Studi; Trieste, University of; University, Pavia; IFC, INAF; Palermo,; California, University of; Rome, University of; Melbourne, University of; Institute, Kapteyn Astronomical; Groningen, University of; Maryland, University of; Technology, National Institute of Aerospace; Spain,; Alberta, University of; Canada,; de Strasbourg, Observatoire Astronomique; France,; France, Université Paris Diderot; Torino, INAF-OA; Italy,; Centre, Space Research; Warsaw,; Poland,; Institute, Space Telescope; States, United; Arizona, University of; Institute, Raman Research; India,; Prague, Czech Technical University in; Republic, Czech; Observatory, Tuorla; Turku, University of; Finland,; Observatory, Armagh; Kingdom, United; INFN,; Trieste,; NRL,; Washington,; Theory, Institute for Nuclear; Washington, University of; Crete, University of; Greece,; de Canarias, Instituto de Astrofisica; Tenerife,; Observatory, Leiden; Netherlands, The; Technology, KTH Royal Institute of; Stockholm,; Sweden,; INAF-IASF-Milano,; Opava, Silesian University in; Erlangen-Nuremberg, University of; Germany,; Kernphysik, Institut für; Darmstadt, Technische Universität; EMMI, ExtreMe Matter Institute; GmbH, GSI Helmholtzzentrum für Schwerionenforschung; Potsdam, Leibniz-Institut fuer Astrophysik; Ireland, National University of; Ireland,; Manchester, University of; Thessaloniki, Aristotle University of; Center, Goddard Space Flight; Greenbelt,; ISAS,; Kanagawa,; Japan,; Alicante, University of; ICREA,; Barcelona,; Republic, Physical Institute of the Academy of Sciences of the Czech; Warwick, University of; Padova, INAF-OA; Padova,; Nevada, University of; Vegas, Las; Vergata, University of Rome Tor; INAF-IRA-Bologna,; Bologna, University of; de La Laguna, Universidad; de Tenerife, Santa Cruz; APC,; Diderot, Université Paris; CEA/Irfu,; de Paris, Observatoire; di Palermo, INAF- Osservatorio Astronomico; Physics, School of; Astronomy,; Southampton, University of; Astronomy, Kepler Institute of; Gòra, University of Zielona; California, University of; Diego, San; Wisconsin, University of; University, Wayne State; Detroit,; de Astrobiologia, Centro; Madrid,; Research, Foundation for; Technology,; Heraklion,; Greece,; CNES,; Toulouse,; France,; Cagliari, INAF-OA; Italy,; de Andalucia, Instituto Astrofisica; Granada,; Spain,; Pisa, University of; Waterloo,; Canada,; Fedelico, Università di Napoli; Physics, School of; Astronomy,; Birmingham, University of; Kingdom, United; California, University of; Berkeley,; Laboratory, Space Sciences; States, United; University, Ohio; Physik, Max-Planck-Institut fuer extraterrestrische; Garching,; Germany,; Physics, Max Planck Institute for Gravitational; Valencia, University of; Catalonia, Technical University of; Barcelona,; Physics, Department of; Waterloo, University of; University, Sapienza; Rome,; Astronomie, Argelander-Institut für; Bonn,; Leuven, Institute for Astronomy K U; Leuven,; Belgium,; University, Texas Tech; Research, Tata Institute of Fundamental; Mumbai,; India,; Prague, Charles University in; Republic, Czech; Consulting, Jorgen Sandberg; Denmark,; University, Istanbul Kültür; Turkey,; Salamanca, Facultad de Ciencias-Trilingüe University of; de Granada, Universidad; Surrey, University of; University, Washington; University, Oxford; ASTRON,; Netherlands, The; Agency, European Space; ESTEC,; Centre, European Space Astronomy; Madrid,; University, The Pennsylvania State; States), United

    2014-01-01

    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we ...

  20. TWO RAPIDLY VARIABLE GALACTIC X-RAY TRANSIENTS OBSERVED WITH CHANDRA, XMM-NEWTON, AND SUZAKU

    International Nuclear Information System (INIS)

    We have identified two moderately bright, rapidly variable transients in new and archival X-ray data near the Galactic center. Both objects show strong, flaring variability on timescales of tens to thousands of seconds, evidence of NH variability, and hard spectra. XMMU J174445.5-295044 is seen at 2-10 keV fluxes of 3 x 10-11 to -12 erg cm-2 s-1, with NH at or above 5 x 1022 cm-2, by XMM-Newton, Chandra, and Suzaku. A likely Two Micron All Sky Survey (2MASS) counterpart with KS = 10.2 shows colors indicative of a late-type star. CXOU J174042.0-280724 is a likely counterpart to the fast hard transient IGR J17407-2808. Chandra observations find FX (2-10 keV) ∼10-12 erg cm-2 s-1, with large NH variations (from 2 x 1022 to >2 x 1023 cm-2). No 2MASS counterpart is visible, to KS >13. XMMU J174445.5-295044 seems likely to be a new symbiotic star or symbiotic X-ray binary, while CXOU J174042.0-280724 is more mysterious, likely an unusual low-mass X-ray binary.

  1. Chandra ACIS Survey of X-ray Point Sources: The Source Catalog

    CERN Document Server

    Wang, Song; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-01-01

    The $Chandra$ archival data is a valuable resource for various studies on different topics of X-ray astronomy. In this paper, we utilize this wealth and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 ACIS observations, which produces 363,530 source detections, belonging to 217,828 distinct X-ray sources. This number is twice the size of the $Chandra$ Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows 17,828 sources are located within the $D_{25}$ isophotes of 1110 galaxies, and 7504 sources are located between the $D_{25}$ and 2$D_{25}$ isophotes of 910 galaxies. Contamination analysis with the log$N$--log$S$ relation indicates that 51.3\\% of objects within 2$D_{25}$ isophotes are...

  2. Localizing INTEGRAL Sources with Chandra: X-Ray and Multi-Wavelength Identifications and Energy Spectra

    CERN Document Server

    Tomsick, John A; Chaty, Sylvain; Rodriguez, Jerome; Rahoui, Farid; Halpern, Jules; Kalemci, Emrah; Arabaci, Mehtap Ozbey

    2012-01-01

    We report on Chandra observations of 18 hard X-ray (>20 keV) sources discovered with the INTEGRAL satellite near the Galactic plane. For 14 of the INTEGRAL sources, we have uncovered one or two potential Chandra counterparts per source. These provide soft X-ray (0.3-10 keV) spectra and sub-arcsecond localizations, which we use to identify counterparts at other wavelengths, providing information about the nature of each source. Despite the fact that all of the sources are within 5 degrees of the plane, four of the IGR sources are AGN (IGR J01545+6437, IGR J15391-5307, IGR J15415-5029, and IGR J21565+5948) and four others are likely AGN (IGR J03103+5706, IGR J09189-4418, IGR J16413-4046, and IGR J16560-4958) based on each of them having a strong IR excess and/or extended optical or near-IR emission. We compare the X-ray and near-IR fluxes of this group of sources to those of AGN selected by their 2-10 keV emission in previous studies and find that these IGR AGN are in the range of typical values. There is evide...

  3. Chandra and XMM-Newton X-ray observations of AWM 7 - I: Investigating X-ray surface brightness fluctuations

    CERN Document Server

    Sanders, J S

    2011-01-01

    We investigate the levels of small scale structure in surface brightness images of the core of the X-ray bright cool-core galaxy cluster AWM 7. After subtraction of a model of the smooth cluster emission, we find a number of approximately radial surface brightness depressions which are not present in simulated images and are seen in both the Chandra and XMM-Newton data. The depressions are most strongly seen in the south of the cluster and have a magnitude of around 4 per cent in surface brightness. We see these features in both an energy band sensitive to the density (0.6 to 5 keV) and a band more sensitive to the pressure (3.5 to 7.5 keV). Histograms of surface brightness in the data, when compared to realisations of a smooth model, reveal stronger surface brightness variations. We use the Delta-variance technique to characterise the magnitude of the fluctuations as a function of length scale. We find that the spectrum in the 0.6 to 5 keV band is flatter than expected for Kolmogorov index fluctuations. If c...

  4. The ELAIS Deep X-ray Survey I Chandra Source Catalogue and First Results

    CERN Document Server

    Manners, J C; Almaini, O; Willott, C J; González-Solares, E A; Lawrence, A; Mann, R G; Pérez-Fournon, I; Dunlop, J S; McMahon, R G; Oliver, S J; Rowan-Robinson, M; Serjeant, S

    2003-01-01

    We present an analysis of two deep (75 ks) Chandra observations of the European Large Area ISO Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well studied regions with extensive multi-wavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to 2 soft extended sources, which are found to be associated with galaxy clusters. An overdensity of sources is found in N1 with 30% more sources than N2, which we attribute to large-scale structure. A similar variance is seen between other deep Chandra surveys. The log(N) - log(S) relations reveal an increasing fraction of hard sources at fainter fluxes. A similar trend is seen with the number of galaxy-like optical counterparts increasing towards fainter fluxes, consistent with the emergence of a population of obscured sources.

  5. Chandra and Swift X-ray Observations of the X-ray Pulsar SMC X-2 During the Outburst of 2015

    CERN Document Server

    Li, K L; Lin, L C C; Kong, Albert K H

    2016-01-01

    We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals (TOAs) analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipses or an ionized high-density shadow wind near the companion's surface. Finally, we propose that an outflow driven by the radiation pressure from day ~10 played an important role in the X-ray/optical evolution of the outburst.

  6. CHANDRA ACIS Survey of X-Ray Point Sources: The Source Catalog

    Science.gov (United States)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D 25 isophotes of 1110 galaxies, and 7504 sources are located between the D 25 and 2D 25 isophotes of 910 galaxies. Contamination analysis with the log N–log S relation indicates that 51.3% of objects within 2D 25 isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 1037, 1038, and 1039 erg s‑1, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov–Smirnov (K–S) criterion (P K–S sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (∼2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to categorize these SSSs and pinpoint their properties. In addition, this survey can

  7. The Chandra COSMOS-Legacy survey: Source X-ray spectral properties

    CERN Document Server

    Marchesi, S; Civano, F; Iwasawa, K; Suh, H; Comastri, A; Zamorani, G; Allevato, V; Griffiths, R; Miyaji, T; Ranalli, P; Salvato, M; Schawinski, K; Silverman, J; Treister, E; Urry, C M; Vignali, C

    2016-01-01

    We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5-7 keV band. 38% of the sources are optically classified Type 1 active galactic nuclei (AGN), 60% are Type 2 AGN and 2% are passive, low-redshift galaxies. We study the distribution of AGN photon index and of the intrinsic absorption N(H,z) based on the sources optical classification: Type 1 have a slightly steeper mean photon index than Type 2 AGN, which on the other hand have average intrinsic absorption ~3 times higher than Type 1 AGN. We find that ~15% of Type 1 AGN have N(H,z)>1E22 cm^(-2), i.e., are obscured according to the X-ray spectral fitting; the vast majority of these sources have L(2-10keV)>$1E44 erg/s. The existence of these objects suggests that optical and X-ray obscuration can be caused by different phenomena, the X-ray obscuration being for example caused by dust-free material surrounding the inner part of the nuclei. ~18% of Type 2 AG...

  8. Chandra Observations of the X-Ray Jet of 3C273

    CERN Document Server

    Sambruna, R M; Tavecchio, F; Maraschi, L; Scarpa, R; Chartas, G; Muxlow, T W B; Sambruna, Rita M.

    2001-01-01

    We report results from Chandra observations of the X-ray jet of 3C~273 during the calibration phase in 2000 January. The zeroeth-order images and spectra from two 40-ks exposures with the HETG and LETG+ACIS-S show a complex X-ray structure. The brightest optical knots are detected and resolved in the 0.2-8 keV energy band. The X-ray morphology tracks well the optical. However, while the X-ray brightness decreases along the jet, the outer parts of the jet tend to be increasingly bright with increasing wavelength. The spectral energy distributions of four selected regions can best be explained by inverse Compton scattering of (beamed) cosmic microwave background photons. The model parameters are compatible with equipartition and a moderate Doppler factor, which is consistent with the one-sidedness of the jet. Alternative models either imply implausible physical conditions and energetics (the synchrotron self-Compton model) or are sufficiently ad hoc to be unconstrained by the present data (synchrotron radiation...

  9. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    OpenAIRE

    Wu, MH; Hui, CY; Kong, AKH; Tam, PH; Cheng, KS; Dogel, V

    2014-01-01

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index $\\Gamma\\sim1.0$ and plasma temperature $kT\\sim0.2$ keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could...

  10. The Soft X-ray Spectrum from NGC 1068 Observed with LETGS on Chandra

    OpenAIRE

    Brinkman, A. C.; Kaastra, J.S.; Van Der Meer, R.L.J.; Kinkhabwala, A.; Behar, E; Kahn, S. M.; Paerels, F. B. S.; Sako, M.

    2002-01-01

    Using the combined spectral and spatial resolving power of the Low Energy Transmission Grating (LETGS) on board Chandra, we obtain separate spectra from the bright central source of NGC 1068 (Primary region), and from a fainter bright spot 4" to the NE (Secondary region). Both spectra are dominated by line emission from H- and He-like ions of C through S, and from Fe L-shell ions, but also include narrow radiative recombination continua, indicating that most of the soft X-ray emission arises ...

  11. High-resolution X-ray spectroscopy of Procyon by Chandra and XMM-Newton

    OpenAIRE

    Raassen, A.J.J.; Mewe, R.; Audard, M.; Guedel, M.; Behar, E; Kaastra, J.S.; Van Der Meer, R.L.J.; Foley, C. R.; Ness, J.-U.

    2002-01-01

    We report the analysis of the high-resolution soft X-ray spectrum of the nearby F-type star Procyon in the wavelength range from 5 to 175 Angstrom obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board Chandra and with the Reflection Grating Spectrometers (RGS) and the EPIC-MOS CCD spectrometers on board XMM-Newton. Line fluxes have been measured separately for the RGS and LETGS. Spectra have been fitted globally to obtain self-consistent temperatures, emission measur...

  12. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    OpenAIRE

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. ...

  13. Contemporaneous Chandra HETG and Suzaku X-ray Observations of NGC 4051

    OpenAIRE

    Lobban, AP; Reeves, JN; Miller, LL; Turner, TJ; Braito, V.; Kraemer, SB; Crenshaw, DM

    2011-01-01

    We present the results of a deep 300ks Chandra High Energy Transmission Grating (HETG) observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionized lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from Ovii and Neix) plus high-ionization L-shell transitions from Fexvii to Fex...

  14. NEAR-INFRARED COUNTERPARTS TO CHANDRA X-RAY SOURCES TOWARD THE GALACTIC CENTER. I. STATISTICS AND A CATALOG OF CANDIDATES

    International Nuclear Information System (INIS)

    We present a catalog of 5184 candidate infrared counterparts to X-ray sources detected toward the Galactic center. The X-ray sample contains 9017 point sources detected in this region by the Chandra X-ray Observatory during the past decade, including data from a recent deep survey of the central 20 x 0.08 of the Galactic plane. A total of 6760 of these sources have hard X-ray colors, and the majority of them lie near the Galactic center, while most of the remaining 2257 soft X-ray sources lie in the foreground. We cross-correlated the X-ray source positions with the 2MASS and SIRIUS near-infrared catalogs, which collectively contain stars with a 10σ limiting flux of Ks ≤ 15.6 mag. In order to distinguish absorbed infrared sources near the Galactic center from those in the foreground, we defined red and blue sources as those which have H - Ks ≥ 0.9 and <0.9 mag, respectively. We find that 5.8% ± 1.5% (2σ) of the hard X-ray sources have real infrared counterparts, of which 228 ± 99 are red and 166 ± 27 are blue. The red counterparts are probably comprised of Wolf-Rayet and O stars, high-mass X-ray binaries, and symbiotic binaries located near the Galactic center. Foreground X-ray binaries suffering intrinsic X-ray absorption could be included in the sample of blue infrared counterparts to hard X-ray sources. We also find that 39.4% ± 1.0% of the soft X-ray sources have blue infrared counterparts; most of these are probably coronally active dwarfs in the foreground. There is a noteworthy collection of ∼20 red counterparts to hard X-ray sources near the Sagittarius B H II region, which are probably massive binaries that have formed within the last several Myr. For each of the infrared matches to X-ray sources in our catalog we derived the probability that the association is real, based on the source properties and the results of the cross-correlation analysis. These data are included in our catalog and will serve spectroscopic surveys to identify infrared

  15. Source Contamination in X-ray Studies of Star-Forming Regions: Application to the Chandra Carina Complex Project

    CERN Document Server

    Getman, Konstantin V; Feigelson, Eric D; Townsley, Leisa K; Povich, Matthew S; Garmire, Gordon P; Montmerle, Thierry; Yonekura, Yoshinori; Fukui, Yasuo

    2011-01-01

    We describe detailed simulations of X-ray-emitting populations to evaluate the levels of contamination by both Galactic and extragalactic X-ray sources unrelated to a star-forming region under study. For Galactic contaminations, we consider contribution from main-sequence stars and giants (not including cataclysmic variables and other classes of accretion-driven X-ray binary systems) as they make the dominant contribution at the position of the Carina Nebula. The simulations take into consideration a variety of technical factors involving a Galactic population synthesis model, stellar X-ray luminosity functions, Chandra telescope response, source detection methodology, and possible spatial variations in the X-ray background and absorption through molecular clouds. When applied to the 1.42 square-degree field of the Chandra Carina Complex Project (CCCP), the simulations predict ~5000 contaminating sources (1 source per square arcminute of the survey), evenly distributed across the field. The results of the sim...

  16. Simultaneous H.E.S.S. and Chandra observations of Sgr A* during an X-ray flare

    OpenAIRE

    Hinton, Jim; Vivier, Matthieu; Bühler, Rolf; Pühlhofer, Gerd; Wagner, Stefan

    2007-01-01

    The rapidly varying non-thermal X-ray emission observed from Sgr A* points to particle acceleration taking place close to the supermassive black hole. The TeV gamma-ray source HESS J1745-290 is coincident with Sgr A* and may be closely related to the X-ray emission. Simultaneous X-ray and TeV observations are required to elucidate the relationship between these two objects. Here we report on joint H.E.S.S./Chandra observations in July 2005, during which an X-ray flare was detected. Despite a ...

  17. Searching for the pulsar in G18.95-1.1: Discovery of an X-ray point source and associated synchrotron nebula with Chandra

    CERN Document Server

    Tuellmann, R; Gaetz, T J; Slane, P; Hughes, J P; Harrus, I; Pannuti, T G

    2010-01-01

    Using the Chandra X-ray Observatory, we have pinpointed the location of a faint X-ray point source (CXOUJ182913.1-125113) and an associated diffuse nebula in the composite supernova remnant G18.95-1.1. These objects appear to be the long-sought pulsar and its wind nebula. The X-ray spectrum of the point source is best described by an absorbed powerlaw model with Gamma=1.6 and an N_H of ~1x10^(22) cm^(-2). This model predicts a relatively low unabsorbed X-ray luminosity of about L_X (0.5-8.0keV) = 4.1x10^(31)D_2^2 erg s^(-1), where D_2 is the distance in units of 2kpc. The best-fitted model of the diffuse nebula is a combination of thermal (kT = 0.48keV) and non-thermal (1.4 < Gamma < 1.9) emission. The unabsorbed X-ray luminosity of L_X = 5.4x10^(33)D_2^2 erg s^(-1) in the 0.5-8keV energy band seems to be largely dominated by the thermal component from the SNR, providing 87% of L_X in this band. No radio or X-ray pulsations have been reported for CXOUJ182913.1-125113. If we assume an age of ~5300yr for ...

  18. THE CHANDRA COSMOS SURVEY. III. OPTICAL AND INFRARED IDENTIFICATION OF X-RAY POINT SOURCES

    International Nuclear Information System (INIS)

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg2 of the COSMOS field down to limiting depths of 1.9 × 10–16 erg cm–2 s–1 in the soft (0.5-2 keV) band, 7.3 × 10–16 erg cm–2 s–1 in the hard (2-10 keV) band, and 5.7 × 10–16 erg cm–2 s–1 in the full (0.5-10 keV) band. In this paper we report the i, K, and 3.6 μm identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only two sources are truly empty fields. The full catalog, including spectroscopic and photometric redshifts and classification described here in detail, is available online. Making use of the large number of X-ray sources, we update the 'classic locus' of active galactic nuclei (AGNs) defined 20 years ago in soft X-ray surveys and define a new locus containing 90% of the AGNs in the survey with full-band luminosity >1042 erg s–1. We present the linear fit between the total i-band magnitude and the X-ray flux in the soft and hard bands, drawn over two orders of magnitude in X-ray flux, obtained using the combined C-COSMOS and XMM-COSMOS samples. We focus on the X-ray to optical flux ratio (X/O) and we test its known correlation with redshift and luminosity, and a recently introduced anti-correlation with the concentration index (C). We find a strong anti-correlation (though the dispersion is of the order of 0.5 dex) between X/O computed in the hard band and C and that 90% of the obscured AGNs in the sample with morphological information live in galaxies with regular morphology (bulgy and disky/spiral), suggesting that secular

  19. Near-Infrared Counterparts to Chandra X-Ray Sources Toward the Galactic Center. I. Statistics and a Catalog of Candidates

    Science.gov (United States)

    Mauerhan, J. C.; Muno, M. P.; Morris, M. R.; Bauer, F. E.; Nishiyama, S.; Nagata, T.

    2009-09-01

    We present a catalog of 5184 candidate infrared counterparts to X-ray sources detected toward the Galactic center. The X-ray sample contains 9017 point sources detected in this region by the Chandra X-ray Observatory during the past decade, including data from a recent deep survey of the central 2° × 0fdg8 of the Galactic plane. A total of 6760 of these sources have hard X-ray colors, and the majority of them lie near the Galactic center, while most of the remaining 2257 soft X-ray sources lie in the foreground. We cross-correlated the X-ray source positions with the 2MASS and SIRIUS near-infrared catalogs, which collectively contain stars with a 10σ limiting flux of Ks red and blue sources as those which have H - Ks >= 0.9 and red and 166 ± 27 are blue. The red counterparts are probably comprised of Wolf-Rayet and O stars, high-mass X-ray binaries, and symbiotic binaries located near the Galactic center. Foreground X-ray binaries suffering intrinsic X-ray absorption could be included in the sample of blue infrared counterparts to hard X-ray sources. We also find that 39.4% ± 1.0% of the soft X-ray sources have blue infrared counterparts; most of these are probably coronally active dwarfs in the foreground. There is a noteworthy collection of ≈20 red counterparts to hard X-ray sources near the Sagittarius B H II region, which are probably massive binaries that have formed within the last several Myr. For each of the infrared matches to X-ray sources in our catalog we derived the probability that the association is real, based on the source properties and the results of the cross-correlation analysis. These data are included in our catalog and will serve spectroscopic surveys to identify infrared counterparts to X-ray sources near the Galactic center.

  20. The XBootes Chandra Survey Paper II: The X-ray Source Catalog

    CERN Document Server

    Kenter, A; Forman, W R; Jones, C; Green, P; Kochanek, C S; Vikhlinin, A; Fabricant, D; Fazio, G; Brand, K; Brown, M J I; Dey, A; Jannuzi, B T; Najita, J; McNamara, B; Shields, J; Rieke, M; Kenter, Almus; Murray, Stephen S.; Forman, William R.; Jones, Christine; Green, Paul; Kochanek, Christopher S.; Vikhlinin, Alexey; Fabricant, Daniel; Fazio, Giovani; Brand, Katherine; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Najita, Joan; Namara, Brian Mc; Shields, Joseph; Rieke, Marcia

    2005-01-01

    We present results from a Chandra survey of the nine square degree Bootes field of the NOAO Deep Wide-Field Survey (NDWFS). This XBootes survey consists of 126 separate contiguous ACIS-I observations each of approximately 5000 seconds in duration. These unique Chandra observations allow us to search for large scale structure and to calculate X-ray source statistics o ver a wide, contiguous field of view with arcsecond angular resolution and uniform coverage. Optical spectroscopic follow-up observations and the rich NDWFS data set will allow us to identify and classify these X-ray selected sources. Using wavelet decomposition, we detect 4642 point sources with n $\\ge$ 2 counts. In order to keep our detections ~99% reliable, we limit our list to sources with n $\\ge$ 4 counts. The full 0.5--7 keV band n $\\ge$ 4 count list has 3293 point sources. In addition to the point sources, 43 extended sources have been detected consistent, with the depth of these observations and the number counts of clusters. We present h...

  1. Polarization from Relativistic Astrophysical X-ray Sourses: The PRAXyS Small Explorer Observatory

    Science.gov (United States)

    Kallman, Timothy R.; Jahoda, Keith; Kouveliotou, Chryssa; The PRAXyS Team

    2016-04-01

    Polarization is a sensitive probe of geometry near compact objects, but remains largely unexplored in the X-ray band. Polarization is expected from cosmic X-ray sources, yielding insight into the geometry of black hole emission, and the origin and nature of X-ray emission in neutron stars and magnetars. Recent progress with detectors capable of imaging the track of a photoelectron generated by a detection of a cosmic X-ray have made sensitive X-ray polarization observatories possible within the constraints of a NASA Small Explorer mission. We report on the observational capabilities and the scientific goals of the "Polarization from Relativistic Astrophysical X-ray Sources" (PRAXyS) Observatory. PRAXyS is a small explorer which has been selected by NASA for a phase A study.

  2. LOCALIZING INTEGRAL SOURCES WITH CHANDRA: X-RAY AND MULTI-WAVELENGTH IDENTIFICATIONS AND ENERGY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Tomsick, John A.; Bodaghee, Arash [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Chaty, Sylvain; Rodriguez, Jerome [AIM (UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay, FR-91191 Gif-sur-Yvette Cedex (France); Rahoui, Farid [Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Halpern, Jules [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States); Kalemci, Emrah [Faculty of Engineering and Natural Sciences, Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Oezbey Arabaci, Mehtap, E-mail: jtomsick@ssl.berkeley.edu [Physics Department, Middle East Technical University, Ankara 06531 (Turkey)

    2012-08-01

    We report on Chandra observations of 18 hard X-ray (>20 keV) sources discovered with the INTEGRAL satellite near the Galactic plane. For 14 of the INTEGRAL sources, we have uncovered one or two potential Chandra counterparts per source. These provide soft X-ray (0.3-10 keV) spectra and subarcsecond localizations, which we use to identify counterparts at other wavelengths, providing information about the nature of each source. Despite the fact that all of the sources are within 5 Degree-Sign of the plane, four of the IGR sources are active galactic nuclei (AGNs; IGR J01545+6437, IGR J15391-5307, IGR J15415-5029, and IGR J21565+5948) and four others are likely AGNs (IGR J03103+5706, IGR J09189-4418, IGR J16413-4046, and IGR J16560-4958) based on each of them having a strong IR excess and/or extended optical or near-IR emission. We compare the X-ray and near-IR fluxes of this group of sources to those of AGNs selected by their 2-10 keV emission in previous studies and find that these IGR AGNs are in the range of typical values. There is evidence in favor of four of the sources being Galactic (IGR J12489-6243, IGR J15293-5609, IGR J16173-5023, and IGR J16206-5253), but only IGR J15293-5609 is confirmed as a Galactic source as it has a unique Chandra counterpart and a parallax measurement from previous optical observations that puts its distance at 1.56 {+-} 0.12 kpc. The 0.3-10 keV luminosity for this source is (1.4{sup +1.0}{sub -0.4}) Multiplication-Sign 10{sup 32} erg s{sup -1}, and its optical/IR spectral energy distribution is well described by a blackbody with a temperature of 4200-7000 K and a radius of 12.0-16.4 R{sub Sun }. These values suggest that IGR J15293-5609 is a symbiotic binary with an early K-type giant and a white dwarf accretor. We also obtained likely Chandra identifications for IGR J13402-6428 and IGR J15368-5102, but follow-up observations are required to constrain their source types.

  3. The ASTRO-H X-ray Observatory

    CERN Document Server

    Takahashi, Tadayuki; Kelley, Richard; Aharonian, Henri AartsFelix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Maria; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; Herder, Jan-Willem den; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; Dell, Steve O'; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stephane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yoichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yoko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki

    2012-01-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit o...

  4. X-ray Source Population in the Elliptical Galaxy NGC 720 with Chandra

    CERN Document Server

    Jeltema, T E; Buote, D A; Garmire, G P; Jeltema, Tesla E.; Canizares, Claude R.; Buote, David A.; Garmire, Gordon P.

    2003-01-01

    With a Chandra ACIS-S3 observation, we detect 42 X-ray point sources in the elliptical galaxy NGC 720, including a possible central source. Most of these sources will be low-mass X-ray binaries (LMXBs), and 12 are located within 2" of globular cluster candidates. We investigate both the hardness ratios and combined spectra of the sources. They exhibit a distribution of X-ray colors similar to those seen in other early-type galaxies. We find that there is a population of highly absorbed sources located at large distances from the center of the galaxy. The overall spatial distribution of sources is consistent with the ellipticity and position angle of the galaxy, but the sources appear to form several arcs. NGC 720 contains nine ultraluminous sources (L_x >= 10^39 ergs/s). This number is more than have previously been detected in an early-type galaxy but similar to the number seen in the Antennae merger system. The ratio L_ULX/L_B for NGC 720 is more than double the ratio for the S0 galaxy NGC 1553 and a factor...

  5. Chandra and Swift X-ray Observations of the X-ray Pulsar SMC X-2 During the Outburst of 2015

    OpenAIRE

    Li, K L; Hu, C. -P; Lin, L. C. C.; Kong, Albert K. H.

    2016-01-01

    We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arriva...

  6. CHANDRA OBSERVATIONS OF THE X-RAY POINT SOURCE POPULATION IN NGC 4636

    International Nuclear Information System (INIS)

    We present the X-ray point-source population in the nearby Virgo elliptical galaxy NGC 4636 from three Chandra X-ray observations. These observations, totaling ∼193 ks after time filtering, were taken with the Advanced CCD Imaging Camera (ACIS) over a three-year period. Using a wavelet decomposition detection algorithm, we detect 318 individual point sources. For our analysis, we use a subset of 277 detections with ≥ net 10 counts (a limiting luminosity of approximately 1.2 x 1037 erg s-1 in the 0.5-2 keV band, outside the central 1.'5 bright galaxy core). We present a radial distribution of the point sources. Between 1.'5 and 6' from the center, 25% of our sources are likely to be background sources (active galactic nuclei (AGNs)) and 75% are low-mass X-ray binaries (LMXBs) within the galaxy, while at radial distances greater than 6', background sources (AGN) will dominate the point sources. We explore short and long-term variability (over timescales of 1 day to three years) for X-ray point sources in this elliptical galaxy. 54 sources (24%) in the common ACIS fields of view show significant variability between observations. Of these, 37 are detected with at least 10 net counts in only one observation and thus may be 'transient'. In addition, ∼10% of the sources in each observation show significant short-term variability; we present an example light curve for a variable bright source. The cumulative luminosity function (LF) for the point sources in NGC 4636 can be represented as a power law of slope α = 1.14 ± 0.03. We do not detect, but estimate an upper limit of ∼4.5 x 1037 erg s-1 to the current X-ray luminosity of the historical supernova SN1939A. We find 77 matches between X-ray point sources and globular cluster (GC) candidates found in deep optical images of NGC 4636. In the annulus from 1.'5 to 6' of the galaxy center, 48 of the 129 X-ray point sources (37%) with ≥10 net counts are matched with GC candidates. Since we expect 25% of these

  7. Critical-angle transmission grating spectrometer for high-resolution soft x-ray spectroscopy on the International X-ray Observatory

    Science.gov (United States)

    Heilmann, Ralf K.; Davis, John E.; Dewey, Daniel; Bautz, Mark W.; Foster, Rick; Bruccoleri, Alex; Mukherjee, Pran; Robinson, David; Huenemoerder, David P.; Marshall, Herman L.; Schattenburg, Mark L.; Schulz, Norbert S.; Guo, L. Jay; Kaplan, Alex F.; Schweikart, Russell B.

    2010-07-01

    High-resolution spectroscopy at energies below 1 keV covers the lines of C, N, O, Ne and Fe ions, and is central to studies of the Interstellar Medium, the Warm Hot Intergalactic Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, etc. The large collecting area, long focal length, and 5 arcsecond half power diameter telescope point-spread function of the International X-ray Observatory will present unprecedented opportunity for a grating spectrometer to address these areas at the forefront of astronomy and astrophysics. We present the current status of a transmission grating spectrometer based on recently developed high-efficiency critical-angle transmission (CAT) gratings that combine the traditional advantages of blazed reflection and transmission gratings. The optical design places light-weight grating arrays close to the telescope mirrors, which maximizes dispersion distance and thus spectral resolution and minimizes demands on mirror performance. It merges features from the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer, and provides resolving power R = E/ΔE = 3000 - 5000 (full width half max) and effective area >1000 cm2 in the soft x-ray band. We discuss recent results on ray-tracing and optimization of the optical design, instrument configuration studies, and grating fabrication.

  8. Coordinated Optical/X-ray observations of the CTTS V2129 Oph The Chandra View

    Science.gov (United States)

    Flaccomio, E.; Argiroffi, C.; Alencar, S. H. P.; Bouvier, J.; Donati, J.-F.; Getman, K.; Gregory, S. G.; Hussain, G.; Ibrahimov, M.; Jardine, M. M.; Skelly, M.; Walter, F.

    2011-12-01

    Young low-mass accreting stars (classical T Tauri stars; CTTSs) possess strong magnetic fields that are responsible for the regulation of the accretion and outflow processes, and the confinement and heating of coronal plasma. Understanding the physics of CTTS magnetospheres and of their interaction with circumstellar disks can elucidate the history and evolution of our own Sun and Solar System, at the stage when planets were being formed. In June 2009 we have conducted an extensive multi-wavelength observing campaign of V2129 Oph, a K5 CTTS in the ρ Ophiuchi molecular cloud, with the goal of obtaining a synoptic view of its photosphere, magnetic field, coronal plasma, and of its accretion spot(s) and funnel flow(s). We here report on the X-ray emission, as observed by the Chandra High Energy Transmission Grating (HETG). High-density plasma, presumably from the accretion shock, is responsible for the soft X-ray emission, at least during the first half of the observation. The X-ray emission from both the coronal plasma (T˜20MK) and the cooler and denser material from the accretion spot (T˜3MK) is observed to vary between the first and second half of the observation. From the high-resolution X-ray spectra we constrain the emission measure of the two components and the density of the cool plasma. Finally we interpret the time variability of the cool plasma component in terms of stellar rotation and the time-changing viewing angle of the accretion stream, as constrained by simultaneous optical observations.

  9. A Joint Chandra and Swift View of the 2015 X-Ray Dust Scattering Echo of V404 Cygni

    OpenAIRE

    Heinz, S.; Corrales, L.; Smith, R.; Brandt, W. N.; Jonker, P.G.; Plotkin, R.M.; Neilsen, J.

    2016-01-01

    We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray lightcurve of the June 2015 outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8.By deconvolving the intensity...

  10. Deep Chandra X-ray Imaging of a Nearby Radio Galaxy 4C+29.30: X-ray/Radio Connection

    CERN Document Server

    Siemiginowska, Aneta; Cheung, Chi C; Aldcroft, Thomas L; Bechtold, Jill; Burke, D J; Evans, Daniel; Holt, Joanna; Jamrozy, Marek; Migliori, Giulia; .,

    2012-01-01

    We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z=0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N(H)=3.95 (+0.27/-0.33)x10^23 atoms/cm^2) with an unabsorbed luminosity of L(2-10 keV) ~ (5.08 +/-0.52) 10^43 erg/s characteristic of Type 2 AGN. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlated with radio structures along the main radio axis indicating a strong relation between the two. The X-ray emission beyond the radio source correlates with the morphology of optical line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT ~ 0.5 with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming these regions were heated by weak shocks driven by the exp...

  11. The Large Observatory for X-ray Timing (LOFT)

    Czech Academy of Sciences Publication Activity Database

    Feroci, M.; Stella, L.; van der Klis, M.; Courvoisier, T. J.-L.; Hernanz, M.; Hudec, René; Bursa, Michal; Dovčiak, Michal; Horák, Jiří; Karas, Vladimír

    2012-01-01

    Roč. 34, č. 2 (2012), s. 415-444. ISSN 0922-6435 Grant ostatní: ESA(XE) ESA-PECS project No. 98040 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-ray astronomy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.969, year: 2012

  12. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. II. Optically Elusive X-Ray AGNs

    Science.gov (United States)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-06-01

    In the Chandra-COSMOS (C-COSMOS) survey, we have looked for X-ray-selected active galactic nuclei (AGNs), which are not detected as such in the optical, the so-called elusive AGNs. A previous study based on XMM-Newton and Sloan Digital Sky Survey observations has found a sample of 31 X-ray AGNs optically misclassified as star-forming (SF) galaxies at z\\lt 0.4, including 17 elusive Sy2s. Using Chandra observations provides a sample of fainter X-ray sources and so, for a given X-ray luminosity, extends to higher redshifts. To study the elusive Sy2s in the C-COSMOS field, we have removed the NLS1s that contaminate the narrow-line sample. Surprisingly, the contribution of NLS1s is much lower in the C-COSMOS sample (less than 10% of the optically misclassified X-ray AGNs) than in Pons & Watson. The optical misclassification of the X-ray AGNs ({L}{{X}}\\gt {10}42 {erg} {{{s}}}-1) can be explained by the intrinsic weakness of these AGNs, in addition to, in some cases, optical dilution by the host galaxies. Interestingly, we found the fraction of elusive Sy2s (narrow emission-line objects) optically misclassified as SF galaxies up to z∼ 1.4 to be 10% ± 3% to 17% ± 4%, compared to the 6% ± 1.5% of the Pons & Watson work (up to z∼ 0.4). This result seems to indicate an evolution with redshift of the number of elusive Sy2s.

  13. Exploratory Chandra Observations of the Highest-Redshift Quasars: X-rays from the Dawn of the Modern Universe

    OpenAIRE

    Vignali, C.; Brandt, W. N.; Fan, X; Gunn, J. E.; Kaspi, S.; Schneider, D. P.; Strauss, Michael A.

    2001-01-01

    We report exploratory Chandra observations of 14 high-redshift (z=4.06-5.27), optically selected quasars. Ten of these quasars are detected, increasing the number of z>4 X-ray detected quasars by 71%. Our detections include four of the five highest-redshift X-ray detected quasars to date, among them SDSSp J021043.17-001818.4, the highest-redshift (z=4.77) radio-loud quasar detected in the X-ray band. The four undetected objects are the Broad Absorption Line quasars SDSSp J112956.10-014212.4 a...

  14. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    International Nuclear Information System (INIS)

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons

  15. Unifying X-ray winds in radio galaxies with Chandra HETG

    Science.gov (United States)

    Tombesi, Francesco

    2013-09-01

    X-ray winds are routinely observed in the spectra of Seyfert galaxies. They can be classified as warm absorbers (WAs), with v~100-1,000km/s, and ultra-fast outflows (UFOs), with v>10,000km/s. In stark contrast, the lack of sensitive enough observations allowed the detection of WAs or UFOs only in very few radio galaxies. Therefore, we propose to observe a small sample of three radio galaxies with the Chandra HETG - 3C111 for 150ks, 3C390.3 for 150ks and 3C120 for 200ks - to detect and study in detail their WAs. We will quantify the importance of mechanical feedback from winds in radio galaxies and compare them to the radio jet power. We will also test whether WAs and UFOs can be unified in a single, multi-phase and multi-scale outflow, as recently reported for Seyferts.

  16. High-resolution X-ray spectroscopy of Procyon by Chandra and XMM-Newton

    CERN Document Server

    Raassen, A J J; Audard, M; Güdel, M; Behar, E; Kaastra, J S; Van der Meer, R L J; Foley, C R; Ness, J U

    2002-01-01

    We report the analysis of the high-resolution soft X-ray spectrum of the nearby F-type star Procyon in the wavelength range from 5 to 175 Angstrom obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board Chandra and with the Reflection Grating Spectrometers (RGS) and the EPIC-MOS CCD spectrometers on board XMM-Newton. Line fluxes have been measured separately for the RGS and LETGS. Spectra have been fitted globally to obtain self-consistent temperatures, emission measures, and abundances. The total volume emission measure is ~4.1 x 10e50/cm3 with a peak between 1 and 3 MK. No indications for a dominant hot component (T > 4 MK) were found. We present additional evidence for the lack of a solar-type FIP-effect, confirming earlier EUVE results.

  17. High Resolution Spectroscopy of the X-ray Photoionized Wind in Cygnus X-3 with the Chandra High Energy Transmission Grating Spectrometer

    CERN Document Server

    Paerels, F B S; Sako, M; Liedahl, D A; Brinkman, A C; Van der Meer, R L J; Kaastra, J S; Predehl, P; Paerels, Frits; Cottam, Jean; Sako, Masao; Liedahl, Duane A.

    2000-01-01

    We present a preliminary analysis of the 1--10 keV spectrum of the massiveX-ray binary Cyg X-3, obtained with the High Energy Transmission GratingSpectrometer on the Chandra X-ray Observatory. The source reveals a richlydetailed discrete emission spectrum, with clear signatures ofphotoionization-driven excitation. Among the spectroscopic novelties in the data are the first astrophysicaldetections of a number of He-like 'triplets' (Si, S, Ar) with emission lineratios characteristic of photoionization equilibrium, fully resolved narrowradiative recombination continua of Mg, Si, and S, the presence of the H-likeFe Balmer series, and a clear detection of a ~ 800 km/s large scale velocityfield, as well as a ~1500 km/s FWHM Doppler broadening in the source. Webriefly touch on the implications of these findings for the structure of theWolf-Rayet wind.

  18. The Norma Arm Region Chandra Survey: X-ray Populations in the Spiral Arms

    CERN Document Server

    Fornasini, Francesca M; Bodaghee, Arash; Krivonos, Roman A; An, Hongjun; Rahoui, Farid; Gotthelf, Eric V; Bauer, Franz E; Stern, Daniel

    2014-01-01

    We present a catalog of 1415 X-ray sources identified in the Norma arm region Chandra survey (NARCS), which covers a 2 deg x 0.8 deg region in the direction of the Norma spiral arm to a depth of $\\approx$20 ks. Of these sources, 1130 are point-like sources detected with $\\geq3\\sigma$ confidence in at least one of three energy bands (0.5-10, 0.5-2, and 2-10 keV), five have extended emission, and the remainder are detected at low significance. Since most sources have too few counts to permit individual classification, they are divided into five spectral groups defined by their quantile properties. We analyze stacked spectra of X-ray sources within each group, in conjunction with their fluxes, variability, and infrared counterparts, to identify the dominant populations in our survey. We find that $\\sim$50% of our sources are foreground sources located within 1-2 kpc, which is consistent with expectations from previous surveys. Approximately 20% of sources are likely located in the proximity of the Scutum-Crux an...

  19. HST/ACS Imaging of Omega Centauri: Optical Counterparts of Chandra X-Ray Sources

    CERN Document Server

    Cool, Adrienne M; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Anderson, Jay

    2012-01-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel (WFC) images obtained using F625W, F435W, and F658N filters; with 9 pointings we cover the central ~10'x10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M_625 = 10.4 - 12.6, making them comparable in brightness to field CVs near the period minimum discovered in the SDSS (Gansicke et al. 2009). Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously-reported quiescent low-mass X-ray ...

  20. A Chandra X-Ray Survey of Ejecta in the Cassiopeia A Supernova Remnant

    Science.gov (United States)

    Hwang, Una; Laming, J. Martin

    2011-01-01

    We present a survey of the X-ray emitting ejecta in the Cassiopeia A supernova remnant based on an extensive analysis of over 6000 spectral regions extracted on 2.5-10" angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray emitting ejecta as well as showing the distribution of the mass of various elements over the remnant. The total shocked Fe mass appears to be roughly 0.14 Solar Mass, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with normal Si-burning and that associated with alpha-rich freeze-out, with a mass ratio of approximately 2:1. Surprisingly, essentially all of this Fe (both components) is well outside the central regions of the SNR, presumably having been ejected by hydrodynamic instabilities during the explosion. We discuss this, and its implications for the neutron star kick.

  1. A soft X-ray study of Type I AGN observed with Chandra HETGS

    CERN Document Server

    McKernan, Barry; Reynolds, Chris

    2007-01-01

    We present the results of a uniform analysis of the soft X-ray spectra of fifteen type I AGN observed with the high resolution X-ray gratings on board \\emph{Chandra}. We found that ten of the fifteen AGN exhibit signatures of an intrinsic ionized absorber. The absorbers are photoionized and outflowing, with velocities in the range $\\sim 10^{1}-10^{3}$ km $\\rm{s}^{-1}$. The column density of the warm absorbing gas is $\\sim 10^{20-23} \\rm{cm}^{-2}$. Nine of the ten AGN exhibiting warm absorption are best--fit by multiple ionization components and three of the ten AGN \\emph{require} multiple kinematic components. The warm absorbing gas in our AGN sample has a wide range of ionization parameter, spanning roughly four orders of magnitude ($\\xi \\sim 10^{0-4}$ ergs cm $\\rm{s}^{-1}$) in total, and often spanning three orders of magnitude in the same gas. Warm absorber components with ionization parameter $\\xi<10$ generate an unresolved transition array due to Fe in seven of the ten AGN exhibiting warm absorption. ...

  2. A Systematic Chandra study of Sgr A$^{\\star}$: I. X-ray flare detection

    CERN Document Server

    Yuan, Qiang

    2016-01-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{\\star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {\\it Chandra} observations obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare lightcurves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of $6\\%-14\\%$, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flar...

  3. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    CERN Document Server

    Brickhouse, N S; Dupree, A K; Luna, G J M; Wolk, S

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/- 0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model pred...

  4. The Norma arm region Chandra survey catalog: X-ray populations in the spiral arms

    Energy Technology Data Exchange (ETDEWEB)

    Fornasini, Francesca M. [Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720 (United States); Tomsick, John A.; Bodaghee, Arash; Krivonos, Roman A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); An, Hongjun [Department of Physics, McGill University, Rutherford Physics Building, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Rahoui, Farid [European Southern Observatory, Karl Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Gotthelf, Eric V. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Stern, Daniel, E-mail: f.fornasini@berkeley.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA 91109 (United States)

    2014-12-01

    We present a catalog of 1415 X-ray sources identified in the Norma Arm Region Chandra Survey (NARCS), which covers a 2° × 0.°8 region in the direction of the Norma spiral arm to a depth of ≈20 ks. Of these sources, 1130 are point-like sources detected with ≥3σ confidence in at least one of three energy bands (0.5-10, 0.5-2, and 2-10 keV), five have extended emission, and the remainder are detected at low significance. Since most sources have too few counts to permit individual classification, they are divided into five spectral groups defined by their quantile properties. We analyze stacked spectra of X-ray sources within each group, in conjunction with their fluxes, variability, and infrared counterparts, to identify the dominant populations in our survey. We find that ∼50% of our sources are foreground sources located within 1-2 kpc, which is consistent with expectations from previous surveys. Approximately 20% of sources are likely located in the proximity of the Scutum-Crux and near Norma arm, while 30% are more distant, in the proximity of the far Norma arm or beyond. We argue that a mixture of magnetic and nonmagnetic cataclysmic variables dominates the Scutum-Crux and near Norma arms, while intermediate polars and high-mass stars (isolated or in binaries) dominate the far Norma arm. We also present the cumulative number count distribution for sources in our survey that are detected in the hard energy band. A population of very hard sources in the vicinity of the far Norma arm and active galactic nuclei dominate the hard X-ray emission down to f{sub X} ≈ 10{sup –14} erg cm{sup –2} s{sup –1}, but the distribution curve flattens at fainter fluxes. We find good agreement between the observed distribution and predictions based on other surveys.

  5. The Norma arm region Chandra survey catalog: X-ray populations in the spiral arms

    International Nuclear Information System (INIS)

    We present a catalog of 1415 X-ray sources identified in the Norma Arm Region Chandra Survey (NARCS), which covers a 2° × 0.°8 region in the direction of the Norma spiral arm to a depth of ≈20 ks. Of these sources, 1130 are point-like sources detected with ≥3σ confidence in at least one of three energy bands (0.5-10, 0.5-2, and 2-10 keV), five have extended emission, and the remainder are detected at low significance. Since most sources have too few counts to permit individual classification, they are divided into five spectral groups defined by their quantile properties. We analyze stacked spectra of X-ray sources within each group, in conjunction with their fluxes, variability, and infrared counterparts, to identify the dominant populations in our survey. We find that ∼50% of our sources are foreground sources located within 1-2 kpc, which is consistent with expectations from previous surveys. Approximately 20% of sources are likely located in the proximity of the Scutum-Crux and near Norma arm, while 30% are more distant, in the proximity of the far Norma arm or beyond. We argue that a mixture of magnetic and nonmagnetic cataclysmic variables dominates the Scutum-Crux and near Norma arms, while intermediate polars and high-mass stars (isolated or in binaries) dominate the far Norma arm. We also present the cumulative number count distribution for sources in our survey that are detected in the hard energy band. A population of very hard sources in the vicinity of the far Norma arm and active galactic nuclei dominate the hard X-ray emission down to fX ≈ 10–14 erg cm–2 s–1, but the distribution curve flattens at fainter fluxes. We find good agreement between the observed distribution and predictions based on other surveys.

  6. Contemporaneous Chandra HETG and Suzaku X-ray observations of NGC 4051

    Science.gov (United States)

    Lobban, A. P.; Reeves, J. N.; Miller, L.; Turner, T. J.; Braito, V.; Kraemer, S. B.; Crenshaw, D. M.

    2011-07-01

    We present the results of a deep 300 ks Chandra High Energy Transmission Grating (HETG) observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionized lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from O VII and Ne IX) plus high-ionization L-shell transitions from Fe XVII to Fe XXII and lower ionization inner-shell lines (e.g. O VI). Modelling the data with XSTAR requires four distinct ionization zones for the gas, all outflowing with velocities X-ray Imaging Spectrometer (XIS) spectrum reveals strong evidence for blueshifted absorption lines at ˜6.8 and ˜7.1 keV, consistent with previous findings. Modelling with XSTAR suggests that this is the signature of a highly ionized, high-velocity outflow (log ξ= 4.1+0.2-0.1; vout˜-0.02c) which potentially may have a significant effect on the host galaxy environment via feedback. Finally, we also simultaneously model the broad-band 2008 XIS+HXD (Hard X-ray Detector) Suzaku data with archival Suzaku data from 2005 when the source was observed to have entered an extended period of low flux in an attempt to analyse the cause of the long-term spectral variability. We find that we can account for this by allowing for large variations in the normalization of the intrinsic power-law component which may be interpreted as being due to significant changes in the covering fraction of a Compton-thick partial-coverer obscuring the central continuum emission.

  7. Chandra Discovery of an X-ray jet and Extended X-ray Structure in z=0.63 quasar, B2 0738+313

    CERN Document Server

    Siemiginowska, A L; Brunetti, G; Fiore, F; Aldcroft, T L; Bechtold, J; Elvis, M; Murray, S S; Antonelli, L A; Colafrancesco, S; Siemiginowska, Aneta; Stanghellini, Carlo; Brunetti, Gianfranco; Fiore, Fabrizio; Aldcroft, Thomas L.; Bechtold, Jill; Elvis, Martin; Murray, Stephen S.

    2003-01-01

    We have made a 30 ksec Chandra observation of the redshift z=0.63 GPS quasar B2 0738+313. We detected X-ray emission from the core and have discovered a 200 kpc (projected on the sky) X-ray jet. The X-ray jet is narrow and curves, following the extended radio structure to the south of the quasar, and ending with a hot spot at the southernmost part of the radio lobe. The jet has a knot at ~13 arcsec away from the core. The knot emission is consistent with the X-rays being created by the inverse Compton scattering of the cosmic microwave background (CMB) photons and requires jet bulk Lorentz factors of a few (Gamma_{bulk} ~ 5-7). We discuss the emission mechanisms that may be responsible for the jet emission. We present new VLA data of the core and jet, and discuss the relation between the extended radio and X-ray emission. Extended emission observed in several GPS sources has been interpreted as a signature of the source past activity, while the GPS source is young and newly expanded. We argue that B2~0738+313...

  8. New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism

    International Nuclear Information System (INIS)

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows

  9. New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Jester, Sebastian; /Fermilab; Harris, D.E.; /Smithsonian Astrophys. Observ.; Marshall, H.L.; /MIT, MKI; Meisenheimer, K.; /Heidelberg, Max Planck Inst. Astron.

    2006-05-01

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.

  10. New Chandra observations of the jet in 3C273. I. Softer X-ray than radio spectra and the X-ray emission mechanism

    CERN Document Server

    Jester, S; Marshall, H L; Meisenheimer, K

    2006-01-01

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyse the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright "knot A", ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.

  11. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    CERN Document Server

    Henley, D B; Pittard, J M; Stevens, I R; Hamaguchi, K; Gull, T R

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star Eta Carinae, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of Eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggestin...

  12. A Deep Chandra X-Ray Spectrum of the Accreting Young Star TW Hydrae

    Science.gov (United States)

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-02-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature Te , electron density Ne , hydrogen column density NH , relative elemental abundances, and velocities, and reveals its source in three distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that Te = 2.50 ± 0.25 MK and Ne = 3.0 ± 0.2 × 1012 cm-3 in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model predictions for the postshock plasma. This gas is expected to cool radiatively, producing O VII as it flows into an increasingly dense stellar atmosphere. Surprisingly, O VII indicates Ne = 5.7+4.4 -1.2 × 1011 cm-3, 5 times lower than Ne in the accretion shock itself and ~7 times lower than the model prediction. We estimate that the postshock region producing O VII has roughly 300 times larger volume and 30 times more emitting mass than the shock itself. Apparently, the shocked plasma heats the surrounding stellar atmosphere to soft X-ray emitting temperatures and supplies this material to nearby large magnetic structures—which may be closed magnetic loops or open magnetic field leading to mass outflow. Our model explains the soft X-ray excess found in many accreting systems as well as the failure to observe high Ne signatures in some stars. Such accretion-fed coronae may be ubiquitous in the atmospheres of accreting young stars.

  13. LOFT: the Large Observatory For x-ray Timing

    OpenAIRE

    Feroci, M.; Herder, den, J.W.A.; Bozzo, E.; D. Barret(IRAP, Toulouse, France); Brandt, S; Hernanz, M.; Klis, van der, M.; Pohl, M; Santangelo, A; Stella, L.; Watts, A; J. Wilms; Zane, S.; Ahangarianabhari, M; Alpar, A.

    2012-01-01

    The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will ...

  14. LOFT: the Large Observatory for X-ray Timing

    OpenAIRE

    Feroci, M.; den Herder, J. W.; Bozzo, E.; Barrett, D.; Brandt, S; Hernanz, M.; van der Klis, M; Pohl, M; Santangelo, A; Stella, L.; Watts, A; J. Wilms; Zane, S.; Ahangarianabhari, M; Alpar, A.

    2012-01-01

    The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will ...

  15. LOFT - a Large Observatory For x-ray Timing

    CERN Document Server

    Feroci, M; Vacchi, A; Labanti, C; Rapisarda, M; Attinà, P; Belloni, T; Campana, R; Campana, S; Costa, E; Del Monte, E; Donnarumma, I; Evangelista, Y; Israel, G L; Muleri, F; Porta, P; Rashevsky, A; Zampa, G; Zampa, N; Baldazzi, G; Bertuccio, G; Bonvicini, V; Bozzo, E; Burderi, L; Corongiu, A; Covino, S; Dall’Osso, S; De Martino, D; Di Cosimo, S; Di Persio, G; Di Salvo, T; Fuschino, F; Grassi, M; Lazzarotto, F; Malcovati, P; Marisaldi, M; Mastropietro, M; Mereghetti, S; Morelli, E; Orio, M; Pellizzoni, A; Pacciani, L; Papitto, A; Picolli, L; Possenti, A; Rubini, A; Soffitta, P; Turolla, R; Zampieri, L

    2010-01-01

    The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Technological limitations are unavoidably faced in the conception and development of experiments with effective area of several square meters, as needed in order to meet the scientific requirements. We are developing large-area monolithic Silicon Drift Detectors offering high time and energy resolution at room temperature, which require modest resources and operation complexity (e.g., read-out) per unit area. Based on the properties of the detector and read-out electronics that we mea...

  16. X-ray selected Infrared Excess AGN in the Chandra Deep Fields: a moderate fraction of Compton-thick sources

    CERN Document Server

    Georgantopoulos, I; Xilouris, E M; Comastri, A; Akylas, A

    2010-01-01

    We examine the properties of the X-ray detected, Infrared Excess AGN or Dust Obscured Galaxies (DOGs) in the Chandra Deep Fields (CDF). We find 26 X-ray selected sources which obey the 24 micron to R-band flux ratio criterion f_24/f_R>1000. These are at a median redshift of 2.3 while their IR luminosities are above 10^12 solar. Their X-ray luminosities are all above a few times 10^42 erg s-1 in the 2-10 keV band unambiguously arguing that these host AGN. Nevertheless, their IR Spectral Energy Distributions are split between AGN (Mrk231) and star-forming templates (Arp220). Our primary goal is to examine their individual X-ray spectra in order to assess whether this X-ray detected DOG population contains heavily obscured or even Compton-thick sources. The X-ray spectroscopy reveals a mixed bag of objects. We find that four out of the 12 sources with adequate photon statistics and hence reliable X-ray spectra, show evidence for a hard X-ray spectral index (~1) or harder,consistent with a Compton-thick spectrum....

  17. Testing EUV/X-ray Atomic Data for the Solar Dynamics Observatory

    OpenAIRE

    Testa, Paola; Drake, Jeremy J.; Landi, Enrico

    2011-01-01

    The Atmospheric Imaging Assembly (AIA) and the Exteme-ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory include spectral windows in the X-ray/EUV band. Accuracy and completeness of the atomic data in this wavelength range is essential for interpretation of the spectrum and irradiance of the solar corona, and of SDO observations made with the AIA and EVE instruments. Here we test the X-ray/EUV data in the CHIANTI database to assess their completeness and accuracy ...

  18. Potential solar axion signatures in X-ray observations with the XMM-Newton observatory

    OpenAIRE

    Fraser, G. W.; Read, A. M.; Sembay, S.; Carter, J. A.; Schyns, E.

    2014-01-01

    The soft X-ray flux produced by solar axions in the Earth's magnetic field is evaluated in the context of ESA's XMM-Newton observatory. Recent calculations of the scattering of axion-conversion X-rays suggest that the sunward magnetosphere could be an observable source of 0.2-10 keV photons. For XMM-Newton, any conversion X-ray intensity will be seasonally modulated by virtue of the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined w...

  19. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    Science.gov (United States)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  20. A systematic Chandra study of Sgr A⋆ - I. X-ray flare detection

    Science.gov (United States)

    Yuan, Qiang; Wang, Q. Daniel

    2016-02-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sagittarius A⋆ (Sgr A⋆) - the supermassive black hole at the centre of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive Chandra observations obtained from 1999 to 2012, totalling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pileup effect in the modelling of the flare light curves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of 6-14 per cent, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flare rate over the 14 years. In particular, we see no evidence of changing quiescent emission and flare rate around the pericentre passage of the S2 star around 2002. We show clear evidence of a short-term clustering for the Advanced CCD Imaging Spectrometer - Spectroscopy array/high energy transmission gratings 0th-order flares on time-scale of 20-70 ks. We further conduct detailed simulations to characterize the detection incompleteness and bias, which is critical to a comprehensive follow-up statistical analysis of flare properties. These studies together will help to establish Sgr A⋆ as a unique laboratory to understand the astrophysics of prevailing low-luminosity black holes in the Universe.

  1. Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification

    CERN Document Server

    Ebisawa, K; Paizis, A; Hamaguchi, K; Bamba, A; Cutri, R; Kaneda, H; Maeda, Y; Sato, G; Senda, A; Ueno, M; Yamauchi, S; Beckmann, V; Courvoisier, T J L; Nishihara, P D E

    2005-01-01

    Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) ~ (28.5, 0.0), where no discrete X-ray source had been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partially overlapping ACIS-I fields (~250 arcmin^2in total). Sum of all the detected point source fluxes accounts for only ~ 10 % of the total X-ray flux in the field of view. Even hypothesizing a new population of much dimmer and numerous Galactic point sources, the total observed X-ray flux cannot be explained. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than ...

  2. Chandra Detection of X-ray Emission from Ultra-compact Dwarf Galaxies and Extended Star Clusters

    CERN Document Server

    Hou, Meicun

    2016-01-01

    We have conducted a systematic study of X-ray emission from ultra-compact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival {\\sl Chandra} observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5-8 keV luminosities above $\\sim$$5\\times10^{36} {\\rm~erg~s^{-1}}$ are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, $(3.3\\pm0.8)$\\%, while lower than that of the X-ray-detected GCs [($7.0\\pm0.4)$\\%], is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5-8 keV luminosity...

  3. Chandra & XMM-Newton Observations of NGC5253. Analysis of the X-ray Emission from a Dwarf Starburst Galaxy

    CERN Document Server

    Summers, L K; Strickland, D K; Heckman, T M; Summers, Lesley K.; Stevens, Ian R.; Strickland, David K.; Heckman, Timothy M.

    2004-01-01

    We present Chandra and XMM-Newton X-ray data of NGC5253, a local starbursting dwarf elliptical galaxy, in the early stages of a starburst episode. Contributions to the X-ray emission come from discrete point sources and extended diffuse emission, in the form of what appear to be multiple superbubbles, and smaller bubbles probably associated with individual star clusters. Chandra detects 17 sources within the optical extent of NGC5253 down to a completeness level corresponding to a luminosity of 1.5E37 erg/s.The slope of the point source X-ray luminosity function is -0.54, similar to that of other nearby dwarf starburst galaxies. Several different types of source are detected within the galaxy, including X-ray binaries and the emission associated with star-clusters. Comparison of the diffuse X-ray emission with the observed Halpha emission shows similarities in their extent. The best spectral fit to the diffuse emission is obtained with an absorbed, two temperature model giving temperatures for the two gas com...

  4. X-ray Spectroscopy and Variability of AGN Detected in the 2 Ms Chandra Deep Field-North Survey

    OpenAIRE

    Bauer, F. E.; Vignali, C.; Alexander, D M; Brandt, W. N.; Garmire, G. P.; Hornschemeier, A. E.; Broos, P. S.; Townsley, L. K.; Schneider, D. P.

    2002-01-01

    We investigate the nature of the faint X-ray source population through X-ray spectroscopy and variability analyses of 136 AGN detected in the 2 Ms Chandra Deep Field-North survey with > 200 background-subtracted 0.5-8.0 keV counts [F(0.5-8.0 keV)=(1.4-200)e-15 erg cm^{-2} s^{-1}]. Our preliminary spectral analyses yield median spectral parameters of Gamma=1.61 and intrinsic N_H=6.2e21 cm^{-2} (z=1 assumed when no redshift available) when the AGN spectra are fitted with a simple absorbed power...

  5. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.;

    2009-01-01

    of relations between the total cluster mass and its X-ray indicators (TX , M gas, and YX ) based on a subsample of low-z relaxed clusters, and present a first measurement of the evolving LX -M tot relation (with M tot estimated from YX ) obtained from a well defined statistically complete cluster sample......We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration...... at a fixed mass threshold, e.g., by a factor of 5.0 ± 1.2 at M 500 = 2.5 × 1014 h –1 M sun between z = 0 and 0.5. This evolution reflects the growth of density perturbations, and can be used for the cosmological constraints complementing those from the distance-redshift relation....

  6. The Soft X-ray Spectrum from NGC 1068 Observed with LETGS on Chandra

    CERN Document Server

    Brinkman, A C; Van der Meer, R L J; Kinkhabwala, A; Behar, E; Kahn, S M; Paerels, F B S; Sako, M

    2002-01-01

    Using the combined spectral and spatial resolving power of the Low Energy Transmission Grating (LETGS) on board Chandra, we obtain separate spectra from the bright central source of NGC 1068 (Primary region), and from a fainter bright spot 4" to the NE (Secondary region). Both spectra are dominated by line emission from H- and He-like ions of C through S, and from Fe L-shell ions, but also include narrow radiative recombination continua, indicating that most of the soft X-ray emission arises in low-temperature (kT few eV) photoionized plasma. We confirm the conclusions of Kinkhabwala et al. (2002), based on XMM-Newton RGS observations, that the entire nuclear spectrum can be explained by recombination/radiative cascade following photoionization, and radiative decay following photoexcitation, with no evidence for hot, collisionally ionized plasma. In addition, this model also provides an excellent fit to the spectrum of the Secondary region, albeit with radial column densities a factor of three lower, as would...

  7. High-Resolution X-Ray Spectroscopy of the Seyfert 2 Galaxy Circinus with Chandra

    Science.gov (United States)

    Sambruna, Rita M.; Netzer, Hagai; Kaspi, Shai; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Nousek, John A.; Weaver, K. A.

    2000-01-01

    Results from a 60 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observation of the nearby Seyfert 2 Circinus are presented. The spectrum shows a wealth of emission lines at both soft and hard X-rays, including lines of Ne, Mg, Si, S, Ar, Ca, and Fe, and a prominent Fe K(alpha) line at 6.4 keV. We identify several of the He-like components and measure several of the Lyman lines of the N-like ions. The lines' profiles are unresolved at the limited signal-to-noise ratio of the data. Our analysis of the zeroth-order image in a companion paper constrains the size of the emission region to be 20-60 pc, suggesting that emission within this volume is almost entirely due to the reprocessing of the obscured central source. Here we show that a model containing two distinct components can reproduce almost all the observed properties of this gas. The ionized component can explain the observed intensities of the ionized species, assuming twice-solar composition and an N is proportional r(exp -1.5) density distribution. The neutral component is highly concentrated, well within the 0.8" point source, and is responsible for almost all of the observed K(alpha) (6.4 keV) emission. Circinus seems to be different than Mkn 3 in terms of its gas distribution.

  8. Soft X-ray Spectroscopy of NGC 1068 with XMM-Newton RGS and Chandra LETGS

    CERN Document Server

    Kinkhabwala, A; Behar, E; Kahn, S M; Paerels, F B S; Brinkman, A C; Kaastra, J S; Van der Meer, R L J; Gu, M F; Liedahl, D A

    2002-01-01

    We present high-resolution soft-X-ray spectra of the prototypical Seyfert 2 galaxy, NGC 1068, taken with XMM-Newton RGS and Chandra LETGS. Its rich emission-line spectrum is dominated by recombination in a warm plasma (bright, narrow radiative recombination continua provide the ``smoking gun''), which is photoionized by the inferred nuclear power-law continuum. Radiative decay following photoexcitation of resonant transitions is also significant. A self-consistent model of an irradiated cone of gas is capable of reproducing the hydrogenic/heliumlike ionic line series in detail. The radial ionic column densities we infer are consistent with absorption measurements (the ``warm absorber'') in Seyfert 1 galaxies. This strongly suggests that the emission spectrum we observe from NGC 1068 emanates from its ``warm absorber.'' The observed extent of the ionization-cone/''warm absorber'' in NGC 1068 of 500 pc implies that a large fraction of the gas associated with generic ``warm absorbers'' may typically exist on the...

  9. The Wide Field Imager of the International X-ray Observatory

    International Nuclear Information System (INIS)

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m2 at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100μm2 size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  10. The Wide Field Imager of the International X-ray Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, A., E-mail: astefan@hll.mpg.d [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Johannes Gutenberg-Universitaet, Inst. f. anorganische und analytische Chemie, 55099 Mainz (Germany); Bautz, M.W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Burrows, D.N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bombelli, L.; Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano (Italy); INFN Sezione di Milano, Milano (Italy); Fraser, G. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Heinzinger, K. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Herrmann, S. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Kuster, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstr. 9, 64289 Darmstadt (Germany); Lauf, T. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Lechner, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Lutz, G. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Majewski, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Meuris, A. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Murray, S.S. [Harvard/Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2010-12-11

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m{sup 2} at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100{mu}m{sup 2} size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  11. Obscuring Supersoft X-ray Sources in Stellar Winds

    OpenAIRE

    Nielsen, M.B.T.; Dominik, C.; Nelemans, G.A.

    2011-01-01

    We investigate the possibility of obscuring supersoft X-ray sources in the winds of companion stars. We derive limits on the amount of circumstellar material needed to fully obscure a ‘canonical’ supersoft X-ray source in the Large Magellanic Cloud, as observed with the Chandra X-ray Observatory.

  12. Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS

    CERN Document Server

    Hofmann, F; Nandra, K; Clerc, N; Gaspari, M

    2016-01-01

    In high-resolution X-ray observations of the hot plasma in clusters of galaxies significant structures caused by AGN feedback, mergers, and turbulence can be detected. Many clusters have been observed by Chandra in great depth and at high resolution. Using archival data taken with the Chandra ACIS instrument the aim was to study thermodynamic perturbations of the X-ray emitting plasma and to apply this to better understand the thermodynamic and dynamic state of the intra cluster medium (ICM). We analysed deep observations for a sample of 33 clusters with more than 100 ks of Chandra exposure each at distances between redshift 0.025 and 0.45. The combined exposure of the sample is 8 Ms. Fitting emission models to different regions of the extended X-ray emission we searched for perturbations in density, temperature, pressure, and entropy of the hot plasma. For individual clusters we mapped the thermodynamic properties of the ICM and measured their spread in circular concentric annuli. Comparing the spread of dif...

  13. The restless universe understanding X-ray astronomy in the age of Chandra and Newton

    CERN Document Server

    Schlegel, Eric M

    2002-01-01

    This title tells the story of the development and launch of a major space-based telescope, and explains the discoveries of the nature of the universe in the X-ray spectre. The author looks at the brief history of X-ray astronomy to explore what can and has been learnt by using X-ray.

  14. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    Science.gov (United States)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  15. X-ray studies of quasars with the Einstein observatory. II

    International Nuclear Information System (INIS)

    Using the Einstein Observatory, we have carried out X-ray observations of 107 quasars and have detected 79. From the analysis of this sample of objects we find a correlation between optical emission and X-ray emission. Our data for radio-loud quasars also show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is approx.3 times higher than that of ratio-quiet quasars. In addition, our data suggest that the radio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. Taking into account the differences in X-ray luminosity between radio-loud and radio-quiet quasars, and between low-redshift and high-redshift quasars, we estimate that approx.30% of the observed X-ray background is contributed by quasars brighter than m/sub B/roughly-equal20, while much of the remainder can be contributed by still fainter quasars. Our data also imply that the optical log N--m/sub B/ relation for quasars cannot be extrapolated much beyond m/sub B/roughly-equal20 with the steep slope used to characterize optical source counts at brighter magnitudes. This situation supports the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift. We briefly discuss the observed correlation of X-ray luminosity with radio luminosity in the context of current quasar models

  16. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    International Nuclear Information System (INIS)

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  17. Around 200 new X-ray binary IDs from 13 YR of Chandra observations of the M31 center

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.; Garcia, M. R.; Primini, F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Li, Z. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Baganoff, F. K. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Murray, S. S. [Johns Hopkins University, Baltimore, MD (United States)

    2014-01-01

    We have created 0.3-10 keV, 13 yr, unabsorbed luminosity lightcurves for 528 X-ray sources in the central 20' of M31. We have 174 Chandra observations spaced at ∼1 month intervals due to our transient monitoring program, deeper observations of the M31 nucleus, and some public data from other surveys. We created 0.5-4.5 keV structure functions (SFs) for each source for comparison with the ensemble SF of active galactic nuclei (AGN). We find 220 X-ray sources with luminosities ≳10{sup 35} erg s{sup –1} that have SFs with significantly more variability than the ensemble AGN SF, and which are likely X-ray binaries (XBs). A further 30 X-ray sources were identified as XBs using other methods. We therefore have 250 probable XBs in total, including ∼200 new identifications. This result represents great progress over the ∼50 XBs and ∼40 XB candidates previously identified out of the ∼2000 X-ray sources within the D {sub 25} region of M31; it also demonstrates the power of SF analysis for identifying XBs in external galaxies. We also identify a new transient black hole candidate, associated with the M31 globular cluster B128.

  18. Chandra and XMM-Newton X-Ray Observations of the Hyperactive T Tauri Star RY Tau

    Science.gov (United States)

    Skinner, Stephen L.; Audard, Marc; Güdel, Manuel

    2016-07-01

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton. We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau’s bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T hot ˜ 50 MK, but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O viii. X-ray light curves show complex variability consisting of short-duration (˜hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly varying (˜one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g., coronal) origin. Soft- and hard-band light curves undergo similar slow variability implying that at least some of the cool plasma shares a common magnetic origin with the hot plasma. Any contribution to the X-ray emission from cool shocked plasma is small compared to the dominant hot component but production of individual low-temperature lines such as O viii in an accretion shock is not ruled out.

  19. X-Ray Properties of the Point Source Population in the Spiral Galaxy NGC 5055 (M63) with Chandra

    CERN Document Server

    Luo, B; Zhang, Z; Wang, Y; Wang, J; Xu, H; Luo, Bing; Chen, Jiyao; Zhang, Zhongli; Wang, Yu; Wang, Jingying; Xu, Haiguang

    2007-01-01

    By analyzing the Chandra ACIS S3 data we studied the X-ray properties of the low-mass and high-mass X-ray binary populations in the nearby spiral galaxy NGC 5055. A total of 43 X-ray point sources were detected within the 2 effective radii, with 31 sources located on the disk and the rest 12 sources in the bulge. The resolved point sources dominate the total X-ray emission of the galaxy by accounting for about 80% of the total counts in 0.3--10 keV. By carrying out the spectral fittings we calculated the 0.3--10.0 keV luminosities of all the detected X-ray point sources and found that they span a wide range from a few 10^{37} erg s^{-1} to over 10^{39} erg s^{-1}. After compensating for the incompleteness at the low luminosity end, we find that the corrected XLF of the bulge population is well fitted with a broken power-law model with a break at 1.57^{+0.21}_{-0.20}\\times 10^{38} erg s^{-1}, while the profile of the disk population's XLF agrees with a single power-law distribution with a slope of 0.93^{+0.07}...

  20. Simultaneous H.E.S.S. and Chandra observations of Sgr A* during an X-ray flare

    CERN Document Server

    Hinton, Jim; Bühler, Rolf; Pühlhofer, Gerd; Wagner, Stefan

    2007-01-01

    The rapidly varying non-thermal X-ray emission observed from Sgr A* points to particle acceleration taking place close to the supermassive black hole. The TeV gamma-ray source HESS J1745-290 is coincident with Sgr A* and may be closely related to the X-ray emission. Simultaneous X-ray and TeV observations are required to elucidate the relationship between these two objects. Here we report on joint H.E.S.S./Chandra observations in July 2005, during which an X-ray flare was detected. Despite a factor >10 increase in the X-ray flux of Sgr A*, no evidence is found for an increase in the TeV gamma-ray flux. We find that an increase of the gamma-ray flux of a factor 2 or greater can be excluded at a confidence level of 99%. This finding disfavours scenarios in which the bulk of the gamma-ray emission observed is produced close to Sgr A*.

  1. The microcalorimeter spectrometer on the ASTRO-E X-ray observatory

    International Nuclear Information System (INIS)

    The Astro-E Observatory will employ a high-resolution X-ray spectrometer based on a 32 pixel array of microcalorimeters with an energy resolution of about 12 eV at 6 keV (the Fe-K region). This will provide spectral resolving power 10 times higher than any other non-dispersive X-ray spectrometer. The instrument incorporates a three-stage cooling system capable of maintaining the temperature of the detector stage at 60 mK for about two years in orbit with a 97% duty cycle. The array sits at the focus of a grazing incidence conical mirror. The quantum efficiency of the microcalorimeters and the reflectivity of the X-ray mirror system combine to give high throughput over the 0.3-12 keV energy band. This new capability will enable the study of a wide range of high-energy astrophysical sources with unprecedented spectral sensitivity

  2. The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    Science.gov (United States)

    Wevers, T.; Hodgkin, S. T.; Jonker, P. G.; Bassa, C.; Nelemans, G.; van Grunsven, T.; Gonzalez-Solares, E. A.; Torres, M. A. P.; Heinke, C.; Steeghs, D.; Maccarone, T. J.; Britt, C.; Hynes, R. I.; Johnson, C.; Wu, Jianfeng

    2016-06-01

    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centred at Galactic latitude b = 1.5° above and below the Galactic Centre, spanning (l × b) = (6° × 1°). The catalogue consists of two or more epochs of observations for each line of sight in r', i' and H α filters. The catalogue is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5σ depth is r' = 22.5 and i' = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ˜10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4σ X-ray error circle. This analysis yields 1480 potential counterparts (˜90 per cent of the sample). 584 counterparts have saturated photometry (r' ≤ 17, i' ≤ 16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i' band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.

  3. CHANDRA X-RAY OBSERVATIONS OF THE REDSHIFT 1.53 RADIO-LOUD QUASAR 3C 270.1

    International Nuclear Information System (INIS)

    Chandra X-ray observations of the high redshift (z = 1.532) radio-loud quasar 3C 270.1 in 2008 February show the nucleus to have a power-law spectrum, Γ = 1.66 ± 0.08, typical of a radio-loud quasar, and a marginally detected Fe Kα emission line. The data also reveal extended X-ray emission, about half of which is associated with the radio emission from this source. The southern emission is co-spatial with the radio lobe and peaks at the position of the double radio hot spot. Modeling this hot spot, including Spitzer upper limits, rules out synchrotron emission from a single power-law population of electrons, favoring inverse Compton emission with a field of ∼11 nT, roughly a third of the equipartition value. The northern emission is concentrated close to the location of a 40° bend where the radio jet is presumed to encounter an external medium. It can be explained by inverse Compton emission involving cosmic microwave background photons with a field of ∼3 nT, a factor of 7-10 below the equipartition value. The remaining, more diffuse X-ray emission is harder (HR = –0.09 ± 0.22). With only 22.8 ± 5.6 counts, the spectral form cannot be constrained. Assuming thermal emission with a temperature of 4 keV yields an estimate for the luminosity of 1.8× 1044 erg s–1, consistent with the luminosity-temperature relation of lower-redshift clusters. However, deeper Chandra X-ray observations are required to delineate the spatial distribution and better constrain the spectrum of the diffuse emission to verify that we have detected X-ray emission from a high-redshift cluster.

  4. The O VII X-Ray Forest Toward Markarian 421: Consistency between XMM-Newton and Chandra

    Energy Technology Data Exchange (ETDEWEB)

    Kaastra, J.S.; Werner, N.; Herder, J.W.A.den; /SRON, Utrecht; Paerels, F.B.S.; /Columbia U., Astron. Astrophys.; de Plaa, J.; /SRON, Utrecht; Rasmussen, A.P.; /KIPAC, Menlo; de Vries, C.P.; /SRON, Utrecht

    2006-04-28

    Recently the first detections of highly ionized gas associated with two Warm-Hot Intergalactic Medium (WHIM) filaments have been reported. The evidence is based on X-ray absorption lines due to O VII and other ions observed by Chandra towards the bright blazar Mrk 421. We investigate the robustness of this detection by a re-analysis of the original Chandra LETGS spectra, the analysis of a large set of XMM-Newton RGS spectra of Mrk 421, and additional Chandra observations. We address the reliability of individual spectral features belonging to the absorption components, and assess the significance of the detection of these components. We also use Monte Carlo simulations of spectra. We confirm the apparent strength of several features in the Chandra spectra, but demonstrate that they are statistically not significant. This decreased significance is due to the number of redshift trials that are made and that are not taken into account in the original discovery paper. Therefore these features must be attributed to statistical fluctuations. This is confirmed by the RGS spectra, which have a higher signal to noise ratio than the Chandra spectra, but do not show features at the same wavelengths. Finally, we show that the possible association with a Ly{alpha} absorption system also lacks sufficient statistical evidence. We conclude that there is insufficient observational proof for the existence of the two proposed WHIM filaments towards Mrk 421, the brightest X-ray blazar on the sky. Therefore, the highly ionized component of the WHIM still remains to be discovered.

  5. Chandra measurements of non-thermal X-ray emission from massive, merging, radio-halo clusters

    CERN Document Server

    Million, E T

    2008-01-01

    We report the discovery of spatially-extended, non-thermal or hot, quasi-thermal emission components in Chandra X-ray spectra for five of a sample of seven massive, merging galaxy clusters with powerful radio halos: Abell 665, 2163, 2255, 2319, and 1E0657-56. The emission components can be fitted by power-law models with mean photon indices in the range 1.4 20 keV. A control sample of regular, dynamically relaxed clusters without radio halos but with comparable thermal temperatures and luminosities shows no evidence for similar components in their Chandra spectra. Detailed X-ray spectral mapping reveals the complex thermodynamic states of the radio halo clusters. We report the discovery of a clear, large-scale shock front in Abell 2219. Our deepest observations, of the Bullet Cluster 1E0657-56, demonstrate a spatial correlation between the strongest power law X-ray emission, highest thermal pressure, and brightest 1.34GHz radio halo emission in this cluster. The integrated flux and mean spectral index of the...

  6. The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    CERN Document Server

    Wevers, T; Jonker, P G; Bassa, C; Nelemans, G; van Grunsven, T; Gonzalez-Solares, E A; Torres, M A P; Heinke, C; Steeghs, D; Maccarone, T J; Britt, C; Hynes, R I; Johnson, C; Wu, Jianfeng

    2016-01-01

    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r', i' and H{\\alpha} filters. It is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5{\\sigma} depth is r' = 22.5 and i' = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all o...

  7. Background Simulations of the Wide Field Imager of the ATHENA X-Ray Observatory

    CERN Document Server

    Hauf, Steffen; Pia, Maria Grazia; Hoffmann, Dieter H H; Lang, Philipp; Neff, Stephan; Stefanescu, Alexander; Strüder, Lothar

    2011-01-01

    The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and timing resolution imaging and spectroscopic observations the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal plane detector, providing a field of view of 18 arcsec will be the main detector. Based on the actual mechanics, thermal and shielding design we present estimates for the WFI cosmic ray induced background obtained by the use of Monte-Carlo simulations and possible background reduction measures.

  8. Constellation X-Ray Observatory Unlocking the Mysteries of Black Holes, Dark Matter and Life Cycles of Matter in the Universe

    Science.gov (United States)

    Weaver, Kim; Wanjek, Christopher

    2004-01-01

    This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.

  9. International X-ray Observatory (IXO) Assessment Study Report for the ESA Cosmic Vision 2015-2025

    CERN Document Server

    Barcons, X; Bautz, M; Bookbinder, J; Bregman, J; Dotani, T; Flanagan, K; Fraga-Encinas, R; Grady, J; Kunieda, H; Lumb, D H; Mitsuda, K; Nandra, K; Ohashi, T; Piro, L; Rando, N; Strüder, L; Takahashi, T; Tsuru, T G; White, N E

    2011-01-01

    The International X-Ray Observatory (IXO) will address fundamental questions in astrophysics, including "When did the first SMBH form? How does large scale structure evolve? What happens close to a black hole? What is the connection between these processes? What is the equation of state of matter at supra-nuclear density?" This report presents an overview of the assessment study phase of the IXO candidate ESA L-class Cosmic Vision mission. We provide a description of the IXO science objectives, the mission implementation and the payload. The performance will offer more than an order of magnitude improvement in capability compared with Chandra and XMM-Newton. This observatory-class facility comprises a telescope with highly nested grazing incidence optics with a performance requirement of 2.5 sq.m. of effective area at 1.25 keV with a 5" PSF. There is an instrument complement that provides capabilities in imaging, spatially resolved spectroscopy, timing, polarimetry and high resolution dispersive spectroscopy....

  10. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    International Nuclear Information System (INIS)

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z ∼ 5.5 and galaxies out to z ∼ 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While ∼58% of X-ray Seyferts (1042 erg s–1 2–10keV 44 erg s–1) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L2–10keV >1044 erg s–1) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a

  11. A CHANDRA X-RAY STUDY OF THE INTERACTING BINARIES IN THE OLD OPEN CLUSTER NGC 6791

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, Maureen [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Verbunt, Frank [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Tagliaferri, Gianpiero; Belloni, Tomaso [INAF/Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy); Bedin, Luigi R. [INAF/Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Platais, Imants, E-mail: M.C.vandenBerg@uva.nl [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2013-06-20

    We present the first X-ray study of NGC 6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to L{sub X} Almost-Equal-To 1 Multiplication-Sign 10{sup 30} erg s{sup -1} (0.3-7 keV). We detect 86 sources within 8' of the cluster center, including 59 inside the half-mass radius. We identify 20 sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy, we confirm the nature of one CV. We discover one new, X-ray variable candidate CV with Balmer and He II emission lines in its optical spectrum; this is the first X-ray-selected CV in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC 6791 are primordial. We compare the X-ray properties of NGC 6791 with those of a few old open (NGC 6819, M 67) and globular clusters (47 Tuc, NGC 6397). It is puzzling that the number of ABs brighter than 1 Multiplication-Sign 10{sup 30} erg s{sup -1} normalized by cluster mass is lower in NGC 6791 than in M 67 by a factor {approx}3-7. CVs, ABs, and sub-subgiants brighter than 1 Multiplication-Sign 10{sup 30} erg s{sup -1} are under-represented per unit mass in the globular clusters compared to the oldest open clusters, and this accounts for the lower total X-ray luminosity per unit mass of the former. This indicates that the net effect of dynamical encounters may be the destruction of even some of the hardest (i.e., X-ray-emitting) binaries.

  12. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    Science.gov (United States)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray

  13. Chandra and XMM-Newton X-ray Observations of the Hyperactive T Tauri Star RY Tau

    CERN Document Server

    Skinner, Stephen L; Guedel, Manuel

    2016-01-01

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton. We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau's bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T_hot ~ 50 MK but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O VIII. X-ray light curves show complex variability consisting of short-duration (~hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly-varying (~one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g. coronal) origin. Soft and hard-band light ...

  14. Chandra observations of NGC4342, an optically faint, X-ray gas-rich early-type galaxy

    CERN Document Server

    Bogdan, Akos; Kraft, Ralph P; Jones, Christine; Randall, Scott W; Zhang, Zhongli; Zhuravleva, Irina; Churazov, Eugene; Li, Zhiyuan; Nulsen, Paul E J; Vikhlinin, Alexey; Boehringer, Hans; Schindler, Sabine

    2012-01-01

    Chandra X-ray observations of NGC4342, a low stellar mass (M_K=-22.79 mag) early-type galaxy, show luminous, diffuse X-ray emission originating from hot gas with temperature of kT~0.56 keV. The observed 0.5-2 keV band luminosity of the diffuse X-ray emission within the D_25 ellipse is L_0.5-2keV = 2.7 x 10^39 erg/s. The hot gas has a significantly broader distribution than the stellar light, and shows strong hydrodynamic disturbances with a sharp surface brightness edge to the northeast and a trailing tail. We identify the edge as a cold front and conclude that the distorted morphology of the hot gas is produced by ram pressure as NGC4342 moves through external gas. From the thermal pressure ratios inside and outside the cold front, we estimate the velocity of NGC4342 and find that it moves supersonically (M~2.6) towards the northeast. We also resolve eight bright (L_0.5-8keV > 3 x 10^37 erg/s) point sources within the D_25 ellipse of the galaxy, most of them being low-mass X-ray binaries (LMXBs). The luminos...

  15. A Chandra X-ray study of the interacting binaries in the old open cluster NGC6791

    CERN Document Server

    Berg, Maureen van den; Tagliaferri, Gianpiero; Belloni, Tomaso; Bedin, Luigi R; Platais, Imants

    2013-01-01

    We present the first X-ray study of NGC6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to Lx ~ 1e30 erg/s (0.3-7 keV). We detect 86 sources within 8 arcmin of the cluster center, including 59 inside the half-mass radius. We identify twenty sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy we confirm the nature of one CV. We discover one new, X-ray variable candidate CV with Balmer and HeII emission lines in its optical spectrum; this is the first X-ray--selected CV confirmed in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC6791 are primordial. We compare the X-ray properties of NGC6791 with those of a few old open (NGC6819, M67) and globular clusters (47Tuc, NGC6397). It is puzzling that the numbe...

  16. X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

    OpenAIRE

    Iaria, R.; T. Di Salvo; D'Aì, A.; Burderi, L.; Mineo, T.; Riggio, A.; Papitto, A.; Robba, N.

    2012-01-01

    The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectr...

  17. The spatial distribution of X-ray selected AGN in the Chandra deep fields: a theoretical perspective

    OpenAIRE

    Marulli, Federico; Bonoli, Silvia; Branchini, Enzo; Gilli, Roberto; Moscardini, Lauro; Springel, Volker

    2009-01-01

    We study the spatial distribution of X-ray selected AGN in the framework of hierarchical co-evolution of supermassive black holes and their host galaxies and dark matter haloes. To this end, we have applied the model developed by Croton et al.(2006), De Lucia & Blaizot(2007) and Marulli et al.(2008) to the output of the Millennium Run and obtained hundreds of realizations of past light-cones from which we have extracted realistic mock AGN catalogues that mimic the Chandra deep fields. We find...

  18. XMM-Newton X-ray Observatory Guest Observer program (AO-1) at CASA

    Science.gov (United States)

    Skinner, Stephen L.

    2003-01-01

    In this research program, we obtained and analyzed X-ray observations of the Wolf-Rayet (WR) star WR 110 (HD 165688) using the XMM-Newton space-based observatory. Radio observations were also obtained using the Very Large Array (VLA) radio telescope located in New Mexico and operated by the Natl. Radio Astronomy Observatory (NRAO). This star was targeted for observations primarily because it is believed to be a single WR star without a companion. Single WR stars are thought to emit X-rays from cool plasma in shocks distributed throughout their powerful stellar winds. However, there has been little observational work done to test this idea since single WR stars are relatively weak X-ray sources and have been difficult to detect with previous generation telescopes. The launch of XMM-Newton provides a new telescope that is much more sensitive than its predecessors, allowing single WR stars to be studied in detail for the first time. X-ray emission was clearly detected from WR 110. Analysis of its spectrum yields a surprising result. Its X-ray emitting plasma is distributed over a range of temperatures and is dominated by relatively cool plasma with a characteristic temperature T is approximately 6 million K. Such plasma can be explained by existing theoretical wind shock models. However, the spectrum also shows hotter plasma whose temperature is uncertain but is thought to be in excess of T approximately 30 million K. The origin of this hotter plasma is yet unknown, but possible mechanisms are identified

  19. Maximising the mileage from the Chandra podcasts

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.

    2008-06-01

    NASA's Chandra X-ray Observatory captures X-ray images and measures spectra of many highenergy cosmic phenomena. There is a constant challenge to devise new and appropriate means to bring these potentially esoteric science results and concepts in a digestible way to the public. One of the ideas to address this challenge became the Chandra podcast.

  20. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    Science.gov (United States)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  1. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    Science.gov (United States)

    Hofmann, F.; Sanders, J. S.; Nandra, K.; Clerc, N.; Gaspari, M.

    2016-08-01

    Context. Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter (DM) candidate. Aims: We aim to put constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing angle in a 7.1 keV sterile neutrino DM scenario. Methods: For a sample of 33 high-mass clusters of galaxies, we merge all observations from the Chandra data archive. Each cluster has more than 100 ks of combined exposure. The resulting high signal-to-noise spectra are used to constrain the flux of an unidentified line emission at 3.55 keV in the individual spectra and a merged spectrum of all clusters. Results: We obtained very detailed spectra around the 3.55 keV range and limits on an unidentified emission line. Assuming all DM were made of 7.1 keV sterile neutrinos, the upper limits on the mixing angle are sin2(2Θ) < 10.1×10-11 from ACIS-I and < 40.3×10-11 from ACIS-S data at 99.7 per cent confidence level. Conclusions: We do not find evidence for an unidentified emission line at 3.55 keV. The sample extends the list of objects searched for an emission line at 3.55 keV and will help to identify the best targets for future studies of the potential DM decay line with upcoming X-ray observatories like Hitomi (Astro-H), eROSITA, and Athena.

  2. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    Science.gov (United States)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).

  3. A Joint Chandra and Swift View of the 2015 X-Ray Dust Scattering Echo of V404 Cygni

    CERN Document Server

    Heinz, S; Smith, R; Brandt, W N; Jonker, P G; Plotkin, R M; Neilsen, J

    2016-01-01

    We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray lightcurve of the June 2015 outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8.By deconvolving the intensity profiles with the reconstructed outburst lightcurve, we show that the rings correspond to eight separate dust concentrations with precise distance determinations. We further show that the column density of the clouds varies significantly across the field of view, with the centroid of most of the clouds shifted toward the Galactic plane, relative to the position of V404 Cyg, invalidating the assumption of uniform cloud column typically made in attempts to constrain dust properties from light echoes. We present a new XSPEC...

  4. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    Science.gov (United States)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  5. Automated X-ray and Optical Analysis of the Virtual Observatory and Grid Computing

    Science.gov (United States)

    Ptak, A.; Krughoff, S.; Connolly, A.

    2011-01-01

    We are developing a system to combine the Web Enabled Source Identification with X-Matching (WESIX) web service, which emphasizes source detection on optical images,with the XAssist program that automates the analysis of X-ray data. XAssist is continuously processing archival X-ray data in several pipelines. We have established a workflow in which FITS images and/or (in the case of X ray data) an X-ray field can be input to WESIX. Intelligent services return available data (if requested fields have been processed) or submit job requests to a queue to be performed asynchronously. These services will be available via web services (for non-interactive use by Virtual Observatory portals and applications) and through web applications (written in the Django web application framework). We are adding web services for specific XAssist functionality such as determining .the exposure and limiting flux for a given position on the sky and extracting spectra and images for a given region. We are improving the queuing system in XAssist to allow for "watch lists" to be specified by users, and when X-ray fields in a user's watch list become publicly available they will be automatically added to the queue. XAssist is being expanded to be used as a survey planning 1001 when coupled with simulation software, including functionality for NuStar, eRosita, IXO, and the Wide Field Xray Telescope (WFXT), as part of an end to end simulation/analysis system. We are also investigating the possibility of a dedicated iPhone/iPad app for querying pipeline data, requesting processing, and administrative job control.

  6. THE CHANDRA SURVEY OF THE SMALL MAGELLANIC CLOUD 'BAR'. II. OPTICAL COUNTERPARTS OF X-RAY SOURCES

    International Nuclear Information System (INIS)

    We present the most likely optical counterparts of 113 X-ray sources detected in our Chandra survey of the central region of the Small Magellanic Cloud (SMC) based on the OGLE-II and Magellanic Clouds Photometric Survey catalogs. We estimate that the foreground contamination and chance coincidence probability are minimal for the bright optical counterparts (corresponding to OB type stars; 35 in total). We propose here for the first time 13 high-mass X-ray binaries, of which four are Be/X-ray binaries (Be-XRBs), and we confirm the previous classification of 18 Be-XRBs. We estimate that the new candidate Be-XRBs have an age of ∼15-85 Myr, consistent with the age of Be stars. We also examine the 'overabundance' of Be-XRBs in the SMC fields covered by Chandra, in comparison with the Galaxy. In luminosities down to ∼1034 erg s-1, we find that SMC Be-XRBs are ∼1.5 times more common when compared to the Milky Way even after taking into account the difference in the formation rates of OB stars. This residual excess can be attributed to the lower metallicity of the SMC. Finally, we find that the mixing of Be-XRBs with other than their natal stellar population is not an issue in our comparisons of Be-XRBs and stellar populations in the SMC. Instead, we find indication for variation of the SMC XRB populations on kiloparsec scales, related to local variations of the formation rate of OB stars and slight variation of their age, which results in different relative numbers of Be stars and therefore XRBs.

  7. X-ray outflows of active galactic nuclei warm absorbers: A 900 ks Chandra simulated spectrum

    CERN Document Server

    Ramirez-Velasquez, J M

    2016-01-01

    We report on the performance of the statistical, X-ray absorption lines identification procedure XLINE-ID. As illustration, it is used to estimate the time averaged gas density $n_H(r)$ of a representative AGN's warm absorber ($T\\approx 10^5$~K) X-ray simulated spectrum. The method relies on three key ingredients: (1) a well established emission continuum level; (2) a robust grid of photoionisation models spanning several orders of magnitude in gas density ($n_H$), plasma column density ($N_H$), and in ionization states; (3) theoretical curves of growth for a large set of atomic lines. By comparing theoretical and observed equivalent widths of a large set of lines, spanning highly ionized charge states from O, Ne, Mg, Si, S, Ar, and the Fe L-shell and K-shell, we are able to infer the location of the X-ray warm absorber.

  8. Two Rapidly Variable Galactic X-ray Transients Observed with Chandra, XMM and Suzaku

    CERN Document Server

    Heinke, C O; Yusef-Zadeh, F; Grindlay, J E

    2009-01-01

    We have identified two moderately bright, rapidly variable transients in new and archival X-ray data near the Galactic center. Both objects show strong, flaring variability on timescales of tens to thousands of seconds, evidence of N_H variability, and hard spectra. XMMU J174445.5-295044 is seen at 2-10 keV fluxes of 3*10^{-11} to 2*10^23 cm^{-2}). No 2MASS counterpart is visible, to K_S>13. XMMU J174445.5-295044 seems likely to be a new symbiotic star or symbiotic X-ray binary, while CXOU J174042.0-280724 is more mysterious, likely an unusual low-mass X-ray binary.

  9. X-ray outflows of active galactic nuclei warm absorbers: A 900 ks Chandra simulated spectrum

    OpenAIRE

    Ramirez-Velasquez, J. M.; Garcia, J.

    2016-01-01

    We report on the performance of the statistical, X-ray absorption lines identification procedure XLINE-ID. As illustration, it is used to estimate the time averaged gas density $n_H(r)$ of a representative AGN's warm absorber ($T\\approx 10^5$~K) X-ray simulated spectrum. The method relies on three key ingredients: (1) a well established emission continuum level; (2) a robust grid of photoionisation models spanning several orders of magnitude in gas density ($n_H$), plasma column density ($N_H...

  10. The Large Area Detector of LOFT: the Large Observatory for X-ray Timing

    CERN Document Server

    Zane, S; Kennedy, T; Feroci, M; Herder, J -W Den; Ahangarianabhari, M; Argan, A; Azzarello, P; Baldazzi, G; Barbera, M; Barret, D; Bertuccio, G; Bodin, P; Bozzo, E; Bradley, L; Cadoux, F; Cais, P; Campana, R; Coker, J; Cros, A; Del Monte, E; De Rosa, A; Di Cosimo, S; Donnarumma, I; Evangelista, Y; Favre, Y; Feldman, C; Fraser, G; Fuschino, F; Grassi, M; Hailey, M R; Hudec, R; Labanti, C; Macera, D; Malcovati, P; Marisaldi, M; Martindale, A; Mineo, T; Muleri, F; Nowak, M; Orlandini, M; Pacciani, L; Perinati, E; Petracek, V; Pohl, M; Rachevski, A; Smith, P; Santangelo, A; Seyler, J -Y; Schmid, C; Soffitta, P; Suchy, S; Tenzer, C; Uttley, P; Vacchi, A; Zampa, G; Zampa, N; Wilms, J; Winter, B

    2014-01-01

    LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be re- proposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.

  11. Design and analysis of the International X-Ray Observatory mirror modules

    Science.gov (United States)

    McClelland, Ryan S.; Carnahan, Timothy M.; Robinson, David W.; Saha, Timo T.

    2010-07-01

    The Soft X-Ray Telescope (SXT) modules are the fundamental focusing assemblies on NASA's next major X-ray telescope mission, the International X-Ray Observatory (IXO). The preliminary design and analysis of these assemblies has been completed, addressing the major engineering challenges and leading to an understanding of the factors effecting module performance. Each of the 60 modules in the Flight Mirror Assembly (FMA) supports 200-300 densely packed 0.4 mm thick glass mirror segments in order to meet the unprecedented effective area required to achieve the scientific objectives of the mission. Detailed Finite Element Analysis (FEA), materials testing, and environmental testing have been completed to ensure the modules can be successfully launched. Resulting stress margins are positive based on detailed FEA, a large factor of safety, and a design strength determined by robust characterization of the glass properties. FEA correlates well with the results of the successful modal, vibration, and acoustic environmental tests. Deformation of the module due to on-orbit thermal conditions is also a major design driver. A preliminary thermal control system has been designed and the sensitivity of module optical performance to various thermal loads has been determined using optomechanical analysis methods developed for this unique assembly. This design and analysis furthers the goal of building a module that demonstrates the ability to meet IXO requirements, which is the current focus of the IXO FMA technology development team.

  12. Preliminary design of the International X-ray Observatory flight mirror assembly

    Science.gov (United States)

    McClelland, Ryan S.; Carnahan, Timoth M.; Choi, Michael K.; Robinson, David W.; Saha, Timo T.

    2009-08-01

    The Flight Mirror Assembly (FMA) preliminary mechanical design for NASA's next major X-ray telescope mission, the International X-Ray Observatory (IXO), has been developed at NASA Goddard Space Flight Center (GSFC). The design addresses some unique engineering challenges presented by the unprecedented combination of high angular resolution and large effective area required to achieve the desired scientific objectives. To meet these requirements, the Wolter-I Soft X-Ray Telescope (SXT) optical design consists of about 14,000 0.4 mm thick glass mirror segments densely packed into a 3.4 m diameter FMA and supported with micron level accuracy and stability. Key engineering challenges addressed include ensuring positive stress margins for the glass segments with a high Factor of Safety, keeping the structure light enough to launch, providing a large effective area, and preventing unacceptable thermal distortion. Standard mechanical design techniques such as FEM modeling and optimization, integrated optomechanical analysis, and development testing were applied to this unique problem. The thin mirror segments are mounted into 60 intermediate wedge shaped structures called modules. Modules are kinematically mounted to the FMA primary structure which is optimized for minimum mass and obscuration of the clear aperture. The preliminary design demonstrates the feasibility of building and launching a large space-based SXT using slumped glass mirrors which meets the IXO effective area, mass, structural, and thermal requirements.

  13. Chandra detection of increased X-ray activity from SAX J1747.0-2853

    Science.gov (United States)

    Clavel, M.; Tomsick, J. A.; Terrier, R.; Goldwurm, A.

    2016-06-01

    We report the detection of a bright halo in the Chandra ACIS-I observation obtained on 2016 May 17 (ObsID 18852, MJD 57525). The shape of this diffuse emission is consistent with a dust scattering halo surrounding the neutron star LMXB SAX J1747.0-2853, which is outside of the field of view.

  14. Probing the wind-wind collision in Gamma Velorum with high-resolution Chandra X-ray spectroscopy: evidence for sudden radiative braking and non-equilibrium ionization

    OpenAIRE

    Henley, D. B.; Stevens, I. R.; Pittard, J. M.

    2004-01-01

    We present a new analysis of an archived Chandra HETGS X-ray spectrum of the WR+O colliding wind binary Gamma Velorum. The spectrum is dominated by emission lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a combination of broad-band spectral analysis and an analysis of line flux ratios we infer a wide range of temperatures in the X-ray emitting plasma (~4-40 MK). As in the previously published analysis, we find the X-ray emission lines are essentially unshifted, with ...

  15. Chandra Observations of Extended X-ray Emission in Arp 220

    CERN Document Server

    McDowell, J C; Lamb, S A; Shaked, S; Hearn, N C; Colina, L; Mundell, C; Borne, K; Baker, A C; Arribas, S

    2003-01-01

    We resolve the extended X-ray emission from the prototypical ultraluminous infrared galaxy Arp 220. Extended, faint edge-brightened, soft X-ray lobes outside the optical galaxy are observed to a distance of 10 to 15 kpc on each side of the nuclear region. Bright plumes inside the optical isophotes coincide with the optical line emission and extend 11 kpc from end to end across the nucleus. The data for the plumes cannot be fit by a single temperature plasma, and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from bright, diffuse circumnuclear emission in the inner 3 kpc centered on the Halpha peak, which is displaced from the radio nuclei. There is a close morphological correspondence between the Halpha and soft X-ray emission on all spatial scales. We interpret the plumes as a starburst-driven superwind, and discuss two interpretations of the emission from the lobes in the context of simulations of the merger dynamics of Arp 220.

  16. A Joint Chandra and Swift View of the 2015 X-ray Dust-scattering Echo of V404 Cygni

    Science.gov (United States)

    Heinz, S.; Corrales, L.; Smith, R.; Brandt, W. N.; Jonker, P. G.; Plotkin, R. M.; Neilsen, J.

    2016-07-01

    We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using a stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray light curve of the 2015 June outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8. By deconvolving the intensity profiles with the reconstructed outburst light curve, we show that the rings correspond to eight separate dust concentrations with precise distance determinations. We further show that the column density of the clouds varies significantly across the field of view, with the centroid of most of the clouds shifted toward the Galactic plane, relative to the position of V404 Cyg, invalidating the assumption of uniform cloud column typically made in attempts to constrain dust properties from light echoes. We present a new XSPEC spectral dust-scattering model that calculates the differential dust-scattering cross section for a range of commonly used dust distributions and compositions and use it to jointly fit the entire set of Swift echo data. We find that a standard Mathis–Rumpl–Nordsieck model provides an adequate fit to the ensemble of echo data. The fit is improved by allowing steeper dust distributions, and models with simple silicate and graphite grains are preferred over models with more complex composition.

  17. The Lunar X-ray Observatory (LXO)/Magnetosheath Explorer in X-Rays (MagEX)

    Science.gov (United States)

    Collier, M.R.; Abbey, T.F.; Bannister, N.P.; Carter, J.A.; Choi, M.; Cravens, T.; Evans, M.; Fraser, G.W.; Hills, H.K.; Kuntz, K.; Lyons, J.; Omidi, N.; Porter, F.S.; Read, A.M.; Robertson, I.; Rozmarynowski, P.; Sembay, S.; Sibeck, D.G.; Snowden, S.L.; Stubbs, T.; Travnicek, P.

    2009-01-01

    X-ray observations of solar wind charge exchange (SWCX) emission, a nuisance to astrophysicists, will dramatically enhance our ability to determine the structure and variability of the Earth's magnetosheath. Such observations could be made from the lunar surface or an Earth-orbiting spacecraft and will resolve key controversies about magnetopause physics as well as better characterize SWCX emission with the aim of avoiding or removing it from astrophysical observations.

  18. A Catalog of X-ray Point Sources from Two Megaseconds of Chandra Observations of the Galactic Center

    CERN Document Server

    Muno, M P; Baganoff, F K; Bandyopadhyay, R M; Bower, G C; Brandt, W N; Broos, P S; Cotera, A; Eikenberry, S S; Garmire, G P; Hyman, S D; Kassim, N E; Lang, C C; Lazio, T J W; Law, C; Mauerhan, J C; Morris, M R; Nagata, T; Nishiyama, S; Park, S; Ramírez, S V; Stolovy, S R; Wijnands, R; Wang, Q D; Wang, Z; Yusef-Zadeh, F

    2008-01-01

    We present a catalog of 9017 X-ray sources identified in Chandra observations of a 2 by 0.8 degree field around the Galactic center. We increase the number of known X-ray sources in the region by a factor of 2.5. The catalog incorporates all of the ACIS-I observations as of 2007 August, which total 2.25 Msec of exposure. At the distance to the Galactic center (8 kpc), we are sensitive to sources with luminosities >4e32 erg/s (0.5-8.0 keV; 90% confidence) over an area of one square degree, and up to an order of magnitude more sensitive in the deepest exposure (1.0 Msec) around Sgr A*. The positions of 60% of our sources are accurate to <1" (95% confidence), and 20% have positions accurate to <0.5". We search for variable sources, and find that 3% exhibit flux variations within an observation, 10% exhibit variations from observation-to-observation. We also find one source, CXOUGC J174622.7-285218, with a periodic 1745 s signal (1.4% chance probability), which is probably a magnetically-accreting cataclysm...

  19. The Megasecond Chandra X-Ray Visionary Project Observation of NGC 3115 (II): properties of point sources

    CERN Document Server

    Lin, Dacheng; Wong, Ka-wah; Jennings, Zachary G; Homan, Jeroen; Romanowsky, Aaron J; Strader, Jay; Sivakoff, Gregory R; Brodie, Jean P; Remillard, Ronald A

    2015-01-01

    We have carried out an in-depth study of low-mass X-ray binaries (LMXBs) detected in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project observation (total exposure time 1.1 Ms). In total we found 136 candidate LMXBs in the field and 49 in globular clusters (GCs) above 2\\sigma\\ detection, with 0.3--8 keV luminosity L_X ~10^36-10^39 erg/s. Other than 13 transient candidates, the sources overall have less long-term variability at higher luminosity, at least at L_X > 2x10^37 erg/s. In order to identify the nature and spectral state of our sources, we compared their collective spectral properties based on single-component models (a simple power law or a multicolor disk) with the spectral evolution seen in representative Galactic LMXBs. We found that in the L_X versus photon index \\Gamma_PL and L_X versus disk temperature kT_MCD plots, most of our sources fall on a narrow track in which the spectral shape hardens with increasing luminosity below L_X~7x10^37 erg/s but is rela...

  20. X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

    CERN Document Server

    Iaria, R; D'Aì, A; Burderi, L; Mineo, T; Riggio, A; Papitto, A; Robba, N R

    2012-01-01

    The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the energy band between 0.35 and 12 keV. We confirm the presence of local neutral matter that partially covers the X-ray emitting region; the equivalent hydrogen column is $5 \\times 10^{22}$ cm$ ^{-2}$ and the covered fraction is about 60-65%. We identify emission lines from highly ionised elements, and a prominent fluorescence ...

  1. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    Science.gov (United States)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  2. Localization of the solar flare SF900610 in X-rays with the WATCH instrument of the GRANAT observatory

    DEFF Research Database (Denmark)

    Terekhov, O.V.; Kuzmin, A.G.; Shevchenko, A.V.;

    2002-01-01

    During the solar flare of June 10, 1990, the WATCH instrument of the GRANAT space observatory obtained 110 localizations of the X-ray source in the X-ray range 8-20 keV. Its coordinates were measured with an accuracy of similar to2 arcmin at a 3sigma confidence level. The coordinates of the X......-ray source do not coincide with the coordinates of the Ha-line flare. The X-ray source moved over the solar disk during the flare. This probably implies that, as the X-ray emission was generated, different parts of one loop or a system of magnetic loops dominated at different flare times....

  3. X-ray Sources in the Magellanic Clouds: analysis of 15 Years of XMM-Newton and Chandra Observations

    Science.gov (United States)

    Yang, J.; Laycock, S.; Christodoulou, D.; Drake, J.; Fingerman, S.; Hong, J.; Zezas, A.; Antoniou, V.; Coe, M.; Ho, W.

    2016-06-01

    Using ˜160 XMM-Newton, ˜180 Chandra, and all weekly RXTE observations, we have generated a comprehensive library of the known pulsars in the Small and Large Magellanic Clouds (SMC, LMC). We classify various pulsar properties in the range of log L_{X}=32-38 erg s^{-1} and incorporate related parameters in theoretical models. With the high time-resolution data of the EPIC and Chandra cameras and the latest calibration files and software, our 15 year pipeline generates a suite of useful products for each pulsar detection: event lists, high time-resolution light curves, periodograms, spectra, and complete histories of the dot{P}, the pulse fraction, etc., in the broad, soft (0.2-2 keV), and hard (2-12 keV) energy bands. After combining the observations from these telescopes, we found that 15 pulsars are clearly spinning up and another 15 pulsars are distinctly spinning down. We also used the faintest and brightest sources to map out the propeller line and the Eddington line, respectively. We compared the observed pulse profiles to geometric models of X-ray emission in order to constrain the physical parameters of the pulsars. We are preparing a public release of this library so that it can be used by other groups as well.

  4. X-ray calibration of SZ scaling relations with the ACCEPT catalogue of galaxy clusters observed by Chandra

    CERN Document Server

    Comis, B; Conte, A; Lamagna, L; De Gregori, S

    2011-01-01

    We explore the scaling relation between the flux of the Sunyaev-Zel'dovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue. The analysis is conducted over a sample of 226 objects, examining the relatively small scale corresponding to a cluster overdensity equal to 2500 times the critical density of the background universe, at which the total masses have been calculated exploiting the hydrostatic equilibrium hypothesis. Core entropy (K0) is strongly correlated with the central cooling time, and is therefore used to identify cooling-core (CC) objects in our sample. Our results confirm the self-similarity of the scaling relation between the integrated Comptonization parameter (Y) and the cluster mass, for both CC and NCC (non-cooling-core) clusters. The consistency of our calibration with recent ones has been checked, with further support for Y as a good mass proxy. We also investigate t...

  5. Exploring X-Ray Binary Populations in Compact Group Galaxies with Chandra

    Science.gov (United States)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Lenkić, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-02-01

    We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.

  6. Exploring X-ray Binary Populations in Compact Group Galaxies with $Chandra$

    CERN Document Server

    Tzanavaris, P; Gallagher, S C; Lenkic, L; Desjardins, T D; Walker, L M; Johnson, K E; Mulchaey, J S

    2015-01-01

    We obtain total galaxy X-ray luminosities, $L_X$, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the $\\pm1\\sigma$ scatter of the Mineo et al. (2012) $L_X$ - star formation rate (SFR) correlation or have higher $L_X$ than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. (2011) $L_X$ - stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual ef...

  7. The X-ray microcalorimeter instruments on the Astro-E2 and Constellation-X X-ray observatories

    International Nuclear Information System (INIS)

    X-ray microcalorimeter arrays are well suited to address key problems in high-energy astrophysics. The Japan/US Astro-E2 mission will deploy a 32-pixel array of microcalorimeters with 6 eV resolution. This mission is scheduled for launch in 2005. Beyond Astro-E2, NASA is formulating the Constellation-X mission to provide a dramatic increase in collecting area with four separate spacecraft each with large area optics and 1 k-pixel calorimeter arrays providing an energy resolution of 2-4 eV.We will describe the microcalorimeter instrumentation on these missions and mention some of their scientific objectives

  8. The Einstein Observatory catalog of IPC x ray sources. Volume 1E: Documentation

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics, which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  9. Development of a TES-Based Anti-Coincidence Detector for Future X-ray Observatories

    Science.gov (United States)

    Bailey, Catherine

    2011-01-01

    Microcalorimeters onboard future x-ray observatories require an anti-coincidence detector to remove environmental backgrounds. In order to most effectively integrate this anticoincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We will present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.

  10. Development of TES-based detectors array for the X-ray Integral Field Unit (X-IFU) on the future x-ray observatory ATHENA

    CERN Document Server

    Gottardi, Luciano; Barret, Didier; Bruijn, Marcel P; Hartog, Roland H den; Herder, Jan-Willem den; Hoevers, Henk F C; Kiviranta, Mikko; van der Kuur, Jan; van der Linden, Anton J; Jackson, Brian D; Jambunathan, Madu; Ridder, Marcel L

    2016-01-01

    We are developing transition-edge sensor (TES)-based microcalorimeters for the X-ray Integral Field Unit (XIFU) of the future European X-Ray Observatory Athena. The microcalorimeters are based on TiAu TESs coupled to 250{\\mu}m squared, AuBi absorbers. We designed and fabricated devices with different contact geometries between the absorber and the TES to optimise the detector performance and with different wiring topology to mitigate the self-magnetic field. The design is tailored to optimise the performance under Frequency Domain Multiplexing. In this paper we review the main design feature of the pixels array and we report on the performance of the 18 channels, 2-5MHz frequency domain multiplexer that will be used to characterised the detector array.

  11. X-ray source populations in the Magellanic Clouds

    OpenAIRE

    Haberl, F.; Pietsch, W.

    2007-01-01

    Early X-ray surveys of the Magellanic Clouds (MCs) were performed with the imaging instruments of the Einstein, ASCA and ROSAT satellites revealing discrete X-ray sources and large-scale diffuse emission. Large samples of supernova remnants, high and low mass X-ray binaries and super-soft X-ray sources could be studied in detail. Today, the major X-ray observatories XMM-Newton and Chandra with their advanced angular and spectral resolution and extended energy coverage are ideally suited for d...

  12. An alma survey of submillimeter galaxies in the extended Chandra deep field-south: The agn fraction and X-ray properties of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. X.; Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Smail, I.; Alexander, D. M.; Danielson, A. L. R.; Karim, A.; Simpson, J. M.; Swinbank, A. M. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hodge, J. A.; Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Wardlow, J. L. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Xue, Y. Q. [Key Laboratory for Research in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Coppin, K. E. K. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dannerbauer, H. [Universität Wien, Institute für Astrophysik, Türkenschanzstraße 17, 1180 Wien (Austria); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße 2, D-85748 Garching (Germany); Menten, K. M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Van der Werf, P., E-mail: xxw131@psu.edu, E-mail: niel@astro.psu.edu [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands)

    2013-12-01

    The large gas and dust reservoirs of submillimeter galaxies (SMGs) could potentially provide ample fuel to trigger an active galactic nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with Atacama Large Millimeter/submillimeter Array (ALMA) and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submillimeter-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey. We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which eight were identified as AGNs using several techniques that enable cross-checking. The other two X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by their star formation activity. Six of the eight SMG-AGNs are moderately/highly absorbed, with N {sub H} > 10{sup 23} cm{sup –2}. An analysis of the AGN fraction, taking into account the spatial variation of X-ray sensitivity, yields an AGN fraction of 17{sub −6}{sup +16}% for AGNs with rest-frame 0.5-8 keV absorption-corrected luminosity ≥7.8 × 10{sup 42} erg s{sup –1}; we provide estimated AGN fractions as a function of X-ray flux and luminosity. ALMA's high angular resolution also enables direct X-ray stacking at the precise positions of SMGs for the first time, and we found four potential SMG-AGNs in our stacking sample.

  13. High Energy Vision: Processing X-rays

    CERN Document Server

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  14. Chandra Studies of the X-ray gas properties of fossil systems

    Science.gov (United States)

    Qin, Zhen-Zhen

    2016-03-01

    We study ten galaxy groups and clusters suggested in the literature to be “fossil systems (FSs)” based on Chandra observations. According to the M500 - T and LX - T relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the fgas, 2500 - T relation and find that the FSs exhibit the same trend as ordinary systems. The gas densities of FSs within 0.1r200 are ˜ 10-3 cm-3, which is the same order of magnitude as galaxy clusters. The entropies within 01r200 (S0.1r200) of FSs are systematically lower than those inordinary galaxy groups, which is consistent with previous reports, but we find their S0.1r200 - T relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk and White model in (0.1 - 1)r200, and the relation between scale radius rs and characteristic mass density δc indicates self-similarity of dark matter halos of FSs. The ranges of rs and δc for FSs are also close to those of galaxy clusters. Therefore, FSs share more common characteristics with galaxy clusters. The special birth place of the FS makes it a distinct type of galaxy system.

  15. Chandra Studies of the X-ray Gas Properties of Fossil Systems

    CERN Document Server

    Qin, Zhenzhen

    2015-01-01

    We study ten galaxy groups and clusters suggested in the literature to be "fossil system (FS)" based on \\chandra\\ observations. According to the $M_{500}-T$ and $L_{\\rm X}-T$ relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the $f_{\\rm gas,~2500}-T$ relation and find that the FS exhibits same as ordinary systems. The gas densities of FSs within $0.1r_{200}$, are $\\sim 10^{-3}$ cm$^{-3}$, which is the same order as galaxy clusters. The entropies within $0.1r_{200}$ ($S_{0.1r_{200}}$) of FSs are systematically lower than those in ordinary galaxy groups which is consistent with previous report, but we find their $S_{0.1r_{200}}-T$ relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk, \\& White model in $(0.1-1)r_{200}$, and the relation between scale radius $r_{\\rm s}$ and characteristic mass density $ta_{\\rm c}$ indicates the self-similarity of dark matter halos of FSs....

  16. MOG Weak Field Approximation: A Modified Gravity Compatible with Chandra X-ray Clusters

    CERN Document Server

    Moffat, J W

    2013-01-01

    We use the covariant Scalar-Vector-Tensor theory of gravity (so-called MOG), in the weak field approximation limit to study the dynamics of clusters of galaxies. The ionized gas density and the temperature profile of the clusters are our observables, which have been measured by the Chandra telescope for the nearby clusters. The MOG effective gravitational potential in the weak field approximation is composed of attractive Newtonian and repulsive Yukawa terms. Two parameters $\\alpha$ and $\\mu$ in the effective potential determine the asymptotic gravitational constant and the mass of the vector field, respectively. These parameters have been fixed by fitting MOG dynamics to the rotation curves of galaxies. Our analysis shows that the internal dynamics of clusters can be well explained within $1\\sigma$ with a virial theorem in the framework of MOG, such that the best fit for the ratio of the dynamical mass to the baryonic mass is: $M_{\\rm dyn}/M_{\\rm b} = 0.98^{+0.02}_{-0.02}$. This result means that MOG is a th...

  17. Chandra & HST Imaging of the Quasars PKS B0106+013 & 3C345: Inverse Compton X-rays and Magnetized Jets

    CERN Document Server

    Kharb, Preeti; Marshall, Herman; Hogan, Brandon

    2012-01-01

    We present results from deep (70 ks) Chandra ACIS observations and Hubble Space Telescope ACS F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C345). These observations reveal X-ray and optical emission from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles - the X-ray emission is brightest at the first prominent kpc jet bend. A picture of a helical kpc jet with the first kpc-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end however peaks at about 0.4" (~3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0.2" (~1...

  18. Chandra X-ray observations of the HII region G5.89-0.39 and TeV Source HESSJ1800-240B

    Science.gov (United States)

    Rowell, G.; Horns, D.; Uchiyama, Y.; Funk, S.; Wagner, S.; Nicholas, B.; H.E.S.S. Collaboration

    The TeV gamma-ray sources in the field of the old age (> 10000 yr) supernova remnant (SNR) W28 present a unique opportunity to probe for a new type of multi-TeV particle accelerator, namely, HII regions. One such example is the TeV source HESS J1800-240B which is found towards the highly unusual HII region complex G5.89-0.39. In this context X-rays studies are highly valuable in probing the particle acceleration potential of such HII regions and their subsequent contribution to the gamma-ray emission. Previous high resolution XMM-Newton X-ray observations despite being affected by stray light from a nearby X-ray binary, revealed several sources co-located with the two star forming components of G5.89-0.39, namely G5.89-0.39A, a HII region, as well as G5.89-0.39B, an ultracompact or UCHII region. Here we describe preliminary analysis and results from our Chandra observations towards G5.89-0.39 and HESS J1800-240B (∼80 ks) which are not affected by stray light. With Chandra, we reveal over 200 X-ray sources which appear to cluster somewhat towards G5.89-0.39A and B respectively. This includes possibly extended emission towards a massive O5 or earlier spectral type star (known as Feldt's star) thought to provide much of the ionisation and energetics in G5.89-0.39B. Some of the X-ray sources exhibit energetics typical of young moderate to high mass stars. Our Chandra observations reveal for the first time the extent of star formation in the two HII components. Ongoing work centres on detailed spectral studies, cross-correlation with stellar catalogues, and the search for extended X-ray emission.

  19. HST/Acs Weak-Lensing and Chandra X-Ray Studies of the High-Redshift Cluster MS 1054-0321

    CERN Document Server

    Jee, M J; Ford, H C; Blakeslee, J P; Illingworth, G D; Coe, D A; Tran, K V H

    2005-01-01

    We present Hubble Space Telescope/Advanced Camera for Surveys (ACS) weak-lensing and Chandra X-ray analyses of MS 1054-0321 at z=0.83, the most distant and X-ray luminous cluster in the Einstein Extended Medium-Sensitivity Survey (EMSS). The high-resolution mass reconstruction through ACS weak-lensing reveals the complicated dark matter substructure in unprecedented detail, characterized by the three dominant mass clumps with the four or more minor satellite groups within the current ACS field. The direct comparison of the mass map with the Chandra X-ray image shows that the eastern weak-lensing substructure is not present in the X-ray image and, more interestingly, the two X-ray peaks are displaced away from the hypothesized merging direction with respect to the corresponding central and western mass clumps, possibly because of ram pressure. In addition, as observed in our previous weak-lensing study of another high-redshift cluster CL 0152-1357 at z=0.84, the two dark matter clumps of MS 1054-0321 seem to b...

  20. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: The AGN Fraction and X-ray Properties of Submillimeter Galaxies

    CERN Document Server

    Wang, S X; Luo, B; Smail, I; Alexander, D M; Danielson, A L R; Hodge, J A; Karim, A; Lehmer, B D; Simpson, J M; Swinbank, A M; Walter, F; Wardlow, J L; Xue, Y Q; Chapman, S C; Coppin, K E K; Dannerbauer, H; De Breuck, C; Menten, K M; van der Werf, P

    2013-01-01

    The large gas and dust reservoirs of submm galaxies (SMGs) could potentially provide ample fuel to trigger an Active Galactic Nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with ALMA and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submm-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey (ALESS). We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which 8 were identified as AGNs using several techniques that enable cross-checking. The other 2 X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by the...

  1. Optics Developments for X-Ray Astronomy

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  2. High-Resolution X-ray and Ultraviolet Spectroscopy of the Complex Intrinsic Absorption in NGC 4051 with Chandra and HST

    OpenAIRE

    Collinge, M. J.; Brandt, W. N.; Kaspi, Shai; Crenshaw, D. Michael; Elvis, Martin; Kraemer, Steven B.; Reynolds, Christopher S.; Sambruna, Rita M.; Wills, Beverley J.

    2001-01-01

    We present the results from simultaneous observations of the Narrow-Line Seyfert 1 galaxy NGC 4051 with the Chandra High Energy Transmission Grating Spectrometer and the HST Space Telescope Imaging Spectrograph. The X-ray grating spectrum reveals absorption and emission lines from hydrogen-like and helium-like ions of O, Ne, Mg and Si. We resolve two distinct X-ray absorption systems: a high-velocity blueshifted system at -2340+/-130 km/s and a low-velocity blueshifted system at -600+/-130 km...

  3. Chandra and ASCA Observations of the X-ray-brightest T-Tauri Stars in the Rho Ophiuchi Cloud

    CERN Document Server

    Imanishi, K; Koyama, K; Imanishi, Kensuke; Tsujimoto, Masahiro; Koyama, Katsuji

    2002-01-01

    We present the Chandra ACIS and ASCA GIS results for a series of four long-term observations on DoAr 21, ROXs 21 and ROXs 31; the X-ray brightest T-Tauri stars (TTSs) in the Rho Ophiuchi cloud. In the four observations with a net exposure of ~600 ksec, we found six, three and two flares from DoAr 21, ROXs 21 and ROXs 31, respectively; hence the flare rate is fairly high. The spectra of DoAr 21 are well fitted with a single-temperature plasma model, while those of ROXs 21 and ROXs 31 need an additional soft plasma component. Since DoAr 21 is younger (~10^5 yr) than ROXs 21 and ROXs 31 (~10^6 yr), these results may indicate that the soft component gradually increases as T-Tauri stars age. The abundances are generally sub-solar and vary from element to element. Both high-FIP (first ionization potential) and low-FIP elements show enhancement over the mean abundances. An unusual giant flare is detected from ROXs 31. The peak luminosity and temperature are ~10^33 ergs s^-1 and ~10 keV, respectively. The temperature...

  4. Chandra X-Ray Spectral Analysis of Cooling Flow Clusters, 2A 0335+096 and Abell 2199

    CERN Document Server

    Kawano, N; Fukazawa, Y; Kawano, Naomi; Ohto, Akimitsu; Fukazawa, Yasushi

    2003-01-01

    We report on a spatially resolved analysis of Chandra X-ray data on a nearby typical cooling flow cluster of galaxies 2A 0335+096, together with A 2199 for a comparison. As recently found in the cores of other clusters, the temperature around the central part of 2A 0335+096 is 1.3--1.5 keV, which is higher than that inferred from the cooling flow picture. Furthermore, the absorption column density is almost constant against the radius in 2A 0335+096; there is no evidence of excess absorption up to 200--250 kpc. This indicates that no significant amount of cold material, which has cooled down, is present. These properties are similar to those of A 2199. Since the cooling time in the central part is much shorter than the age of the clusters, a heating mechanism, which weakens the effect of radiative cooling, is expected to be present in the central part of both clusters of galaxies. Both 2A 0335+096 and A 2199 have radio jets associated with their cD galaxy. We discuss the possibility of heating processes cause...

  5. X-ray lighthouses of the high-redshift Universe. Probing the most luminous z>4 Palomar Digital Sky Survey Quasars with Chandra

    OpenAIRE

    Vignali, C.; Brandt, W. N.; Schneider, D. P.; Garmire, G.P.; Kaspi, S.

    2002-01-01

    We present the results from exploratory Chandra observations of nine high-z (z=4.1-4.5) optically selected quasars. These quasars, taken from the DPOSS, are among the optically most luminous z>4 quasars known (M_B=-28.4 to -30.2). All have been detected by Chandra in exposure times of 5-6 ks, tripling the number of highly luminous quasars with X-ray detections at z>4. These quasars' average broad-band SEDs are characterized by steeper aox values (=-1.81+/-0.03) than those of lower-luminosity,...

  6. X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

    Science.gov (United States)

    Iaria, R.; Di Salvo, T.; D'Aì, A.; Burderi, L.; Mineo, T.; Riggio, A.; Papitto, A.; Robba, N. R.

    2013-01-01

    Context. The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. Its inclination angle (≃82.5°) is high enough that flux from the neutron star is blocked by the edge-on accretion disc. Because the neutron star's direct emission is hidden, its ADC emission is visible. The physical properties of the ADC in X1822-371 have been widely studied, but are still debated in literature. In light of the recent literature and of the results reported in this work we show that the ADC is optically thin. Aims: We analyse two Chandra observations and one XMM-Newton observation to study the discrete features in this source and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. Methods: The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the energy band between 0.35 and 12 keV. Results: We confirm the presence of local neutral matter that partially covers the X-ray emitting region; the equivalent hydrogen column is 5 × 1022 cm-2 and the covered fraction is about 60-65%. We identify several emission lines of He-like and H-like ions, and a prominent fluorescence iron line associated with a blending of Fe i-Fe xv resonant transitions. The transitions of He-like ions show that the intercombination dominates over the forbidden and resonance lines. The line fluxes are the highest during the orbital phases between 0.04 and 0.75. Conclusions: We discuss the presence of an extended, optically thin corona with optical depth of about 0.01 that scatters the X-ray photons from the innermost region into the line of sight. The photoionised plasma producing the O viii

  7. A Chandra X-ray study of the young star cluster NGC 6231: low-mass population and initial mass function

    CERN Document Server

    Damiani, F; Sciortino, S

    2016-01-01

    NGC6231 is a massive young star cluster, near the center of the Sco OB1 association. While its OB members are well studied, its low-mass population has received little attention. We present high-spatial resolution Chandra ACIS-I X-ray data, where we detect 1613 point X-ray sources. Our main aim is to clarify global properties of NGC6231 down to low masses through a detailed membership assessment, and to study the cluster stars' spatial distribution, the origin of their X-ray emission, the cluster age and formation history, and initial mass function. We use X-ray data, complemented by optical/IR data, to establish cluster membership. The spatial distribution of different stellar subgroups also provides highly significant constraints on cluster membership, as does the distribution of X-ray hardness. We perform spectral modeling of group-stacked X-ray source spectra. We find a large cluster population down to ~0.3 Msun (complete to ~1 Msun), with minimal non-member contamination, with a definite age spread (1-8 ...

  8. High-Resolution X-ray and Ultraviolet Spectroscopy of the Complex Intrinsic Absorption in NGC 4051 with Chandra and HST

    CERN Document Server

    Collinge, M J; Kaspi, S; Crenshaw, D M; Elvis, M; Krämer, S B; Reynolds, C S; Sambruna, R M; Wills, B J; Kaspi, Shai; Elvis, Martin; Kraemer, Steven B.; Reynolds, Christopher S; Sambruna, Rita M.; Wills, Beverley J.

    2001-01-01

    We present the results from simultaneous observations of the Narrow-Line Seyfert 1 galaxy NGC 4051 with the Chandra High Energy Transmission Grating Spectrometer and the HST Space Telescope Imaging Spectrograph. The X-ray grating spectrum reveals absorption and emission lines from hydrogen-like and helium-like ions of O, Ne, Mg and Si. We resolve two distinct X-ray absorption systems: a high-velocity blueshifted system at -2340+/-130 km/s and a low-velocity blueshifted system at -600+/-130 km/s. In the UV spectrum we detect strong absorption, mainly from C IV, N V and Si IV, that is resolved into as many as nine different intrinsic absorption systems with velocities between -650 km/s and 30 km/s. Although the low-velocity X-ray absorption is consistent in velocity with many of the UV absorption systems, the high-velocity X-ray absorption seems to have no UV counterpart. In addition to the absorption and emission lines, we also observe rapid X-ray variability and a state of low X-ray flux during the last ~15 k...

  9. The Evolution of Normal Galaxy X-ray Emission Through Cosmic History: Constraints from the 6 Ms Chandra Deep Field-South

    CERN Document Server

    Lehmer, B D; Mineo, S; Brandt, W N; Eufrasio, R T; Fragos, T; Hornschemeier, A E; Luo, B; Xue, Y Q; Bauer, F E; Gilfanov, M; Ranalli, P; Schneider, D P; Shemmer, O; Tozzi, P; Trump, J R; Vignali, C; Wang, J -X; Yukita, M; Zezas, A

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from $z \\approx$ 0-7 using local galaxies and galaxy samples in the 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed- frame < 1 keV emission at $z < 1$. We show that a single scaling relation between X-ray luminosity ($L_{\\rm X}$) and star-formation rate (SFR) is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass ($M_\\star$) and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at $z \\approx$ 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) an...

  10. Chandra X-ray spectroscopy of the very early O supergiant HD 93129A: constraints on wind shocks and the mass-loss rate

    CERN Document Server

    Cohen, David H; Leutenegger, Maurice A; MacArthur, James P; Wollman, Emma E; Sundqvist, Jon O; Fullerton, Alex W; Owocki, Stanley P

    2011-01-01

    We present analysis of both the resolved X-ray emission line profiles and the broadband X-ray spectrum of the O2 If* star HD 93129A, measured with the Chandra HETGS. This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10% of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths Rstar. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star's closest visual companion at a distance of ~100 AU. The broadband X-ray spectrum ...

  11. The statistical uncertainties on X-ray flux and spectral parameters from Chandra ACIS-I observations of faint sources: Application to the Cygnus OB2 Association

    CERN Document Server

    Albacete-Colombo, J F; Drake, J J; Wright, N J; Guarcello, M; Kashyap, V

    2016-01-01

    We investigate the uncertainties of fitted X-ray model parameters and fluxes for relatively faint Chandra ACIS-I source spectra. Monte-Carlo (MC) simulations are employed to construct a large set of 150,000 fake X-ray spectra in the low photon count statistics regime (from 20 to 350 net counts) using the XSPEC spectral model fitting package. The simulations employed both absorbed thermal (APEC) and non-thermal (power-law) models, in concert with the Chandra ACIS-I instrument response and interstellar absorption. Simulated X-ray spectra were fit assuming a wide set of different input parameters and C-statistic minimization criteria to avoid numerical artifacts in the accepted solutions. Results provide an error estimate for each parameter (absorption, NH, plasma temperature, kT, or power-law slope, Gamma, and flux, and for different background contamination levels. The distributions of these errors are studied as a function of the 1 sigma quantiles and we show how these correlate with different model parameter...

  12. X-ray emission properties of galaxies in Abell 3128

    CERN Document Server

    Smith, R J

    2003-01-01

    We use archival Chandra X-ray Observatory data to investigate X-ray emission from early-type galaxies in the rich z=0.06 cluster Abell 3128. By combining the X-ray count-rates from an input list of optically-selected galaxies, we obtain a statistical detection of X-ray flux, unbiased by X-ray selection limits. Using 87 galaxies with reliable Chandra data, X-ray emission is detected for galaxies down to M_B ~ -19.0, with only an upper limit determined for galaxies at M_B ~ -18.3. The ratio of X-ray to optical luminosities is consistent with recent determinations of the low-mass X-ray binary content of nearby elliptical galaxies. Taken individually, in contrast, we detect significant (3sigma) flux for only six galaxies. Of these, one is a foreground galaxy, while two are optically-faint galaxies with X-ray hardness ratios characteristic of active galactic nuclei. The remaining three detected galaxies are amongst the optically-brightest cluster members, and have softer X-ray spectra. Their X-ray flux is higher t...

  13. High-energy radiation from thunderstorms and lightning with LOFT. White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing

    DEFF Research Database (Denmark)

    Marisaldi, M.; Smith, D. M.; Brandt, Søren;

    The Large Observatory for X-ray Timing, LOFT, is designed to perform fast X-ray timing and spectroscopy with uniquely large throughput (Feroci et al., 2014). LOFT focuses on two fundamental questions of ESA’s Cosmic Vision Theme “Matter under extreme conditions”: what is the equation of state of ...

  14. 12 YEARS OF X-RAY VARIABILITY IN M31 GLOBULAR CLUSTERS, INCLUDING 8 BLACK HOLE CANDIDATES, AS SEEN BY CHANDRA

    International Nuclear Information System (INIS)

    We examined 134 Chandra observations of the population of X-ray sources associated with globular clusters (GCs) in the central region of M31. These are expected to be X-ray binary systems (XBs), consisting of a neutron star or black hole accreting material from a close companion. We created long-term light curves for these sources, correcting for background, interstellar absorption, and instrumental effects. We tested for variability by examining the goodness of fit for the best-fit constant intensity. We also created structure functions (SFs) for every object in our sample, the first time this technique has been applied to XBs. We found significant variability in 28 out of 34 GCs and GC candidates; the other 6 sources had 0.3-10 keV luminosities fainter than ∼2 × 1036 erg s–1, limiting our ability to detect similar variability. The SFs of XBs with 0.3-10 keV luminosities ∼2-50 × 1036 erg s–1 generally showed considerably more variability than the published ensemble SF of active galactic nuclei (AGNs). Our brightest XBs were mostly consistent with the AGN SF; however, their 2-10 keV fluxes could be matched by <1 AGN per square degree. These encouraging results suggest that examining the long-term light curves of other X-ray sources in the field may provide an important distinction between X-ray binaries and background galaxies, as the X-ray emission spectra from these two classes of X-ray sources are similar. Additionally, we identify 3 new black hole candidates (BHCs) using additional XMM-Newton data, bringing the total number of M31 GC BHCs to 9, with 8 covered in this survey.

  15. The Evolution of Normal Galaxy X-Ray Emission through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    Science.gov (United States)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eufrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Luo, B.; Xue, Y. Q.; Bauer, F. E.; Gilfanov, M.; Ranalli, P.; Schneider, D. P.; Shemmer, O.; Tozzi, P.; Trump, J. R.; Vignali, C.; Wang, J.-X.; Yukita, M.; Zezas, A.

    2016-07-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z\\quad ≈ 0–7 using local galaxies and galaxy samples in the ≈6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame ≲1 keV emission at z ≲ 1. We show that a single scaling relation between X-ray luminosity ({L}{{X}}) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass ({M}\\star ) and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z\\quad ≈ 0–7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with {M}\\star and SFR, respectively. We find {L}2-10{keV}(LMXB)/{M}\\star \\propto {(1+z)}2-3 and {L}2-10{keV}(HMXB)/SFR \\propto \\quad (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  16. CHANDRA OBSERVATIONS OF FIVE INTEGRAL SOURCES: NEW X-RAY POSITIONS FOR IGR J16393–4643 AND IGR J17091–3624

    International Nuclear Information System (INIS)

    The Chandra High Resolution Camera observed the fields of five hard X-ray sources in order to help us obtain X-ray coordinates with subarcsecond precision. These observations provide the most accurate X-ray positions known for IGR J16393–4643 and IGR J17091–3624. The obscured X-ray pulsar IGR J16393–4643 lies at R.A. (J2000) = 16h39m05.s47, and decl. = –46°42'13.''0 (error radius of 0.''6 at 90% confidence). This position is incompatible with the previously proposed counterpart 2MASS J16390535–4642137, and it points instead to a new counterpart candidate that is possibly blended with the Two Micron All Sky Survey star. The black hole candidate IGR J17091–3624 was observed during its 2011 outburst providing coordinates of R.A. = 17h09m07.s59, and decl. = –36°24'25.''4. This position is compatible with those of the proposed optical/IR and radio counterparts, solidifying the source's status as a microquasar. Three targets, IGR J14043–6148, IGR J16358–4726, and IGR J17597–2201, were not detected. We obtained 3σ upper limits of, respectively, 1.7, 1.8, and 1.5 × 10–12 erg cm–2 s–1 on their 2-10 keV fluxes.

  17. Chandra observations of five INTEGRAL sources: new X-ray positions for IGR J16393-4643 and IGR J17091-3624

    CERN Document Server

    Bodaghee, Arash; Tomsick, John A; Rodriguez, Jerome

    2012-01-01

    The Chandra High Resolution Camera observed the fields of five hard X-ray sources in order to help us obtain X-ray coordinates with sub-arcsecond precision. These observations provide the most accurate X-ray positions known for IGR J16393-4643 and for IGR J17091-3624. The obscured X-ray pulsar IGR J16393-4643 lies at R.A. (J2000) = 16:39:05.47, and Dec. = -46:42:13.0 (error radius of 0.6" at 90% confidence). This position is incompatible with the previously-proposed counterpart 2MASS J16390535-4642137, and it points instead to a new counterpart candidate that is possibly blended with the 2MASS star. The black hole candidate IGR J17091-3624 was observed during its 2011 outburst providing coordinates of R.A. = 17:09:07.59, and Dec. = -36:24:25.4. This position is compatible with those of the proposed optical/IR and radio counterparts, solidifying the source's status as a microquasar. The other three targets, IGR J14043-6148, IGR J16358-4726, and IGR J17597-2201, were not detected with 3{\\sigma} upper limits of,...

  18. Spatially Resolving a Starburst Galaxy at Hard X-ray Energies: NuSTAR, Chandra, AND VLBA Observations of NGC 253

    CERN Document Server

    Wik, Daniel R; Hornschemeier, Ann E; Yukita, Mihoko; Ptak, Andrew; Zezas, Andreas; Antoniou, Vallia; Argo, Megan K; Bechtol, Keith; Boggs, Steven; Christensen, Finn; Craig, William; Hailey, Charles; Harrison, Fiona; Krivanos, Roman; Maccarone, Thomas J; Stern, Daniel; Venters, Tonia; Zhang, William W

    2014-01-01

    Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR dataset, comprised of three ~165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and VLBA monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within 100" of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy - dominated by the off-nuclear ULX and nuclear sources, whic...

  19. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    OpenAIRE

    Hofmann, F.; Sanders, J. S.; Nandra, K.; Clerc, N; De Gaspari, M.

    2016-01-01

    Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter candidate. We aim at putting constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing-angle in a 7.1 keV sterile neutrino dark matter scenario. For a sample of 33 high-mass clusters of galaxie...

  20. Interstellar X-ray Absorption Spectroscopy of Oxygen, Neon, and Iron with the Chandra LETGS Spectrum of X0614+091

    CERN Document Server

    Paerels, F B S; Van der Meer, R L J; Kaastra, J S; Kuulkers, E; Den Boggende, A J F; Predehl, P; Drake, J J; Kahn, S M; Savin, D W; McLaughlin, B M; Paerels, Frits; Drake, Jeremy J.; Kahn, Steven M.; Savin, Daniel W.; Laughlin, Brendan M. Mc

    2000-01-01

    We find resolved interstellar O K, Ne K, and Fe L absorption spectra in the Chandra Low Energy Transmission Grating Spectrometer spectrum of the low mass X-ray binary X0614+091. We measure the column densities in O and Ne, and find direct spectroscopic constraints on the chemical state of the interstellar O. These measurements probably probe a low-density line of sight through the Galaxy and we discuss the results in the context of our knowledge of the properties of interstellar matter in regions between the spiral arms.

  1. An X-ray look at the Seyfert 1 Galaxy Mrk 590: XMM-Newton and Chandra reveal complexity in circumnuclear gas

    OpenAIRE

    Longinotti, A. L.; Bianchi, S.; Santos-Lleo, M.; Rodriguez-Pascual, P.; Guainazzi, M.; Cardaci, M.; Pollock, A.M.T.

    2007-01-01

    This paper reports on a partially simultaneous observation of the bright Seyfert 1 Galaxy Mrk590, performed by XMM-Newton and Chandra. The long exposure (~100 ks) allows to investigate with great detail the Fe K complex at 6-7 keV and the presence of soft X-ray spectral features. We have analysed XMM-Newton data from the European Photon Imaging Camera (EPIC) in the 0.5-12 keV band and from the Reflection Grating Spectrometer (RGS) in the 0.35-2.5 keV band, and data from the High Energy Transm...

  2. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST

    Science.gov (United States)

    Weisskopf, Martin C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.

  3. CHANDRA AND HST IMAGING OF THE QUASARS PKS B0106+013 AND 3C 345: INVERSE COMPTON X-RAYS AND MAGNETIZED JETS

    International Nuclear Information System (INIS)

    We present results from deep (∼70 ks) Chandra/ACIS observations and Hubble Space Telescope (HST) Advanced Camera for Surveys F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C 345). These observations reveal X-ray and optical emissions from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles—the X-ray emission is brightest at the first prominent kiloparsec jet bend. A picture of a helical kiloparsec jet with the first kiloparsec-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end, however, peaks at about 0.''4 (∼3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0.''2 (∼1.3 kpc) in the short projected jet of 3C 345. HST optical emission is seen in an arc-like structure coincident with the bright radio hot spot, which we propose is a sharp (apparent) jet bend instead of a terminal point, that crosses our line of sight and consequently has a higher Doppler beaming factor. A weak radio hot spot is indeed observed less than 1'' downstream of the bright radio hot spot, but has no optical or X-ray counterpart. By making use of the parsec-scale radio and the kiloparsec-scale radio/X-ray data, we derive constraints on the jet Lorentz factors (Γjet) and inclination angles (θ): for a constant jet speed from parsec to kiloparsec scales, we obtain a Γjet of ∼70 for 0106+013 and ∼40 for 3C 345. On relaxing this assumption, we derive a Γjet of ∼2.5 for both the sources. Upper limits on θ of ∼13° are obtained for the two quasars. Broadband (radio-optical-X-ray

  4. CHANDRA AND HST IMAGING OF THE QUASARS PKS B0106+013 AND 3C 345: INVERSE COMPTON X-RAYS AND MAGNETIZED JETS

    Energy Technology Data Exchange (ETDEWEB)

    Kharb, P. [Department of Physics, Rochester Institute of Technology, Rochester, NY 14623 (United States); Lister, M. L.; Hogan, B. S. [Department of Physics, Purdue University, West Lafayette, IN 47906 (United States); Marshall, H. L., E-mail: kharb@cis.rit.edu [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-04-01

    We present results from deep ({approx}70 ks) Chandra/ACIS observations and Hubble Space Telescope (HST) Advanced Camera for Surveys F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C 345). These observations reveal X-ray and optical emissions from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles-the X-ray emission is brightest at the first prominent kiloparsec jet bend. A picture of a helical kiloparsec jet with the first kiloparsec-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end, however, peaks at about 0.''4 ({approx}3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0.''2 ({approx}1.3 kpc) in the short projected jet of 3C 345. HST optical emission is seen in an arc-like structure coincident with the bright radio hot spot, which we propose is a sharp (apparent) jet bend instead of a terminal point, that crosses our line of sight and consequently has a higher Doppler beaming factor. A weak radio hot spot is indeed observed less than 1'' downstream of the bright radio hot spot, but has no optical or X-ray counterpart. By making use of the parsec-scale radio and the kiloparsec-scale radio/X-ray data, we derive constraints on the jet Lorentz factors ({Gamma}{sub jet}) and inclination angles ({theta}): for a constant jet speed from parsec to kiloparsec scales, we obtain a {Gamma}{sub jet} of {approx}70 for 0106+013 and {approx}40 for 3C 345. On relaxing this assumption, we derive a {Gamma}{sub jet} of {approx}2.5 for both the sources

  5. The LOFT (Large Observatory for X-ray Timing) background simulations

    DEFF Research Database (Denmark)

    Campana, R.; Feroci, M.; Del Monte, E.;

    2012-01-01

    design. The two main contributions to the background are cosmic diffuse X-rays and high energy cosmic rays; also, albedo emission from the Earth is significant. These contributions to the background for both the Large Area Detector and the Wide Field Monitor are discussed, on the basis of extrensive...

  6. The First Chandra Field

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; /NASA, Marshall; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Cameron, Robert A.; /Harvard-Smithsonian Ctr. Astrophys. /SLAC; Gandhi,; Foellmi, Cedric; /European Southern Obs., Chile; Elsner, Ronald F.; /NASA, Marshall; Patel, Sandeep K.; /USRA, Huntsville; Wu, Kinwah; /Mullard Space Sci. Lab.; O' Dell, Stephen; /NASA, Marshall

    2005-09-09

    Before the official first-light images, the Chandra X-ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ''Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a Type-1 (unobscured) active galactic nucleus (AGN) at a redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the Eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive ({ge} 10{sup 9} M{sub {circle_dot}}) black hole, accreting at a rate approaching its Eddington limit.

  7. Large Observatory For X-ray Timing (LOFT-P): A Probe-Class Mission Concept

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco

    2016-04-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, >10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (~2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multi-messenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M-3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters), the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE (~2000 refereed publications.) In May 2016, MSFC’s Advanced Concepts Office will perform a study of a US-led probe-class LOFT concept. This is presented on behalf of the LOFT consortium.

  8. Deep XMM and Chandra observations of ClJ1226.9+3332: A detailed X-ray mass analysis of a z=0.89 galaxy cluster

    CERN Document Server

    Maughan, B J; Jones, L R; Van Speybroeck, L

    2006-01-01

    Deep XMM and Chandra observations of ClJ1226.9+3332 at z=0.89 have enabled the most detailed X-ray mass analysis of any such high-redshift galaxy cluster. The XMM temperature profile of the system shows no sign of central cooling, with a hot core and a radially declining profile. A temperature map shows asymmetry with a hot region that appears to be associated with a subclump of galaxies at the cluster redshift, but is not visible in the X-ray surface brightness. This is likely to be result of a merger event in the cluster, but does not appear to significantly affect the overall temperature profile. The XMM temperature profile, and combined Chandra and XMM emissivity profile allowed precise measurements of the global properties of ClJ1226.9+3332; we find kT=10.4+/-0.6keV, Z=0.16+/-0.05\\Zsol, and M=5.2^{+1.0}_{-0.8}x10^{14}Msol. We obtain profiles of the metallicity, entropy, cooling time and gas fraction, and find a high concentration parameter for the total density profile of the system. The global propertie...

  9. The discovery of lensed radio and X-ray sources behind the Frontier Fields cluster MACS J0717.5+3745 with the JVLA and Chandra

    CERN Document Server

    van Weeren, R J; Jones, C; Forman, W R; Andrade-Santos, F; Bonafede, A; Brüggen, M; Bulbul, E; Clarke, T E; Churazov, E; David, L; Dawson, W A; Donahue, M; Goulding, A; Kraft, R P; Mason, B; Merten, J; Mroczkowski, T; Murray, S S; Nulsen, P E J; Rosati, P; Roediger, E; Randall, S W; Sayers, J; Umetsu, K; Vikhlinin, A; Zitrin, A

    2015-01-01

    We report on high-resolution JVLA and Chandra observations of the HST Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0-6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample we find 7 lensed sources with amplification factors larger than $2$. None of these sources are identified as multiply-lensed. Based on the radio luminosities, the majority of these sources are likely star forming galaxies with star formation rates of 10-50 M$_\\odot$ yr$^{-1}$ located at $1 \\lesssim z \\lesssim 2$. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely AGN, given their $2-10$ keV X-ray luminosities of $\\sim 10^{43-44}$ erg s$^{-1}$. From the derived radio luminosity function, we find evidence...

  10. Cosmology with X-ray Cluster Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Eric V.

    2007-04-10

    X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g., Chandra X-ray Observatory, XMM-Newton) and next generation (e.g., Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1percent and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)0.03.

  11. X-Ray Emission from Jupiter, Saturn, and Earth: A Short Review

    OpenAIRE

    Bhardwaj, Anil

    2006-01-01

    Jupiter, Saturn, and Earth - the three planets having dense atmosphere and a well developed magnetosphere - are known to emit X-rays. Recently, Chandra X-ray Observatory has observed X-rays from these planets, and XMM-Newton has observed them from Jupiter and Saturn. These observations have provided improved morphological, temporal, and spectral characteristics of X-rays from these planets. Both auroral and non-auroral (low-latitude) 'disk' X-ray emissions have been observed on Earth and Jupi...

  12. Atomic Data Needs for the New Generation of X-ray Observatories

    Science.gov (United States)

    Garcia, Javier; 6174967980

    2016-06-01

    Modeling X-ray spectra produced by photoionized plasmas is crucial for the physical interpretation of many astrophysical sources. These models rely on theoretical and numerical techniques, but importantly also on the availability of reliable atomic data. The need for accurate data continues to grow with the advent of new and more sensitive instruments. I will describe atomic-data requirements for addressing three astrophysical problems: (1) atomic, molecular, and dust absorption in the ISM; (2) detection and characterization of inner-shell lines from various trace elements or Fe-peak elements (e.g., P, K, Cr, Mn, Co); and (3) modeling X-ray spectra reflected from black hole accretion disks in the high-density limit. I will discuss the importance ofthese studies, and the limitations of the theoretical models presently being used to fit data from such current missions as NuSTAR and Astro-H (Hitomi).

  13. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. I. NATURE OF THE NUCLEAR IONIZING SOURCES

    International Nuclear Information System (INIS)

    Kiloparsec-scale binary active galactic nuclei (AGNs) signal active supermassive black hole (SMBH) pairs in merging galaxies. Despite their significance, unambiguously confirmed cases remain scarce and most have been discovered serendipitously. In a previous systematic search, we optically identified four kpc-scale binary AGNs from candidates selected with double-peaked narrow emission lines at z = 0.1-0.2. Here, we present Chandra and Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging of these four systems. We critically examine and confirm the binary-AGN scenario for two of the four targets, by combining high angular resolution X-ray imaging spectroscopy with Chandra ACIS-S, better nuclear position constraints from WFC3 F105W imaging, and direct starburst estimates from WFC3 F336W imaging; for the other two targets, the existing data are still consistent with the binary-AGN scenario, but we cannot rule out the possibility of only one AGN ionizing gas in both merging galaxies. We find tentative evidence for a systematically smaller X-ray-to-[O III] luminosity ratio and/or higher Compton-thick fraction in optically selected kpc-scale binary AGNs than in single AGNs, possibly caused by a higher nuclear gas column due to mergers and/or a viewing angle bias related to the double-peak narrow-line selection. While our result lends some further support to the general approach of optically identifying kpc-scale binary AGNs, it also highlights the challenge and ambiguity of X-ray confirmation.

  14. Measuring mass-loss rates and constraining shock physics using X-ray line profiles of O stars from the Chandra archive

    CERN Document Server

    Cohen, David H; Leutenegger, Maurice A; Sundqvist, Jon O; Fullerton, Alex W; Zsargo, Janos; Owocki, Stanley P

    2014-01-01

    We quantitatively investigate the extent of wind absorption signatures in the X-ray grating spectra of all non-magnetic, effectively single O stars in the Chandra archive via line profile fitting. Under the usual assumption of a spherically symmetric wind with embedded shocks, we confirm previous claims that some objects show little or no wind absorption. However, many other objects do show asymmetric and blue shifted line profiles, indicative of wind absorption. For these stars, we are able to derive wind mass-loss rates from the ensemble of line profiles, and find values lower by an average factor of 3 than those predicted by current theoretical models, and consistent with H-alpha if clumping factors of f_cl ~ 20 are assumed. The same profile fitting indicates an onset radius of X-rays typically at r ~ 1.5 R_star, and terminal velocities for the X-ray emitting wind component that are consistent with that of the bulk wind. We explore the likelihood that the stars in the sample that do not show significant wi...

  15. Spatially resolving a starburst galaxy at hard X-ray energies: NuSTAR, CHANDRA, AND VLBA observations of NGC 253

    DEFF Research Database (Denmark)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.;

    2014-01-01

    intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy-dominated by the off-nuclear ULX and nuclear sources, which are also likely ULXs-falls steeply (photon index ≳ 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background is...... the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated...... within 100" of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of...

  16. Chandra X-ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot Region of Puppis A

    CERN Document Server

    Hwang, U; Petre, R; Hwang, Una; Flanagan, Kathryn A.

    2005-01-01

    We present Chandra X-ray images and spectra of the most prominent cloud-shock interaction region in the Puppis A supernova remnant. The Bright Eastern Knot (BEK) has two main morphological components: (1) a bright compact knot that lies directly behind the apex of an indentation in the eastern X-ray boundary and (2) lying 1' westward behind the shock, a curved vertical structure (bar) that is separated from a smaller bright cloud (cap) by faint diffuse emission. Based on hardness images and spectra, we identify the bar and cap as a single shocked interstellar cloud. Its morphology strongly resembles the ``voided sphere'' structures seen at late times in Klein et al.'s experimental simulations of cloud-shock interactions, when the crushing of the cloud by shear instabilities is well underway. We infer an interaction time of roughly 3 cloud-crushing timescales, which translates to 2000-4000 years, based on the X-ray temperature, physical size, and estimated expansion of the shocked cloud. This is the first X-ra...

  17. The Megasecond Chandra X-Ray Visionary Project Observation of NGC 3115 (III): luminosity functions of LMXBs and dependence on stellar environments

    CERN Document Server

    Lin, Dacheng; Wong, Ka-wah; Jennings, Zachary G; Homan, Jeroen; Romanowsky, Aaron J; Strader, Jay; Brodie, Jean P; Sivakoff, Gregory R; Remillard, Ronald A

    2015-01-01

    We have studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project Observation. With a total exposure time of ~1.1 Ms, we constructed the XLF down to a limiting luminosity of ~10^36 erg/s, much deeper than typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL \\propto L^{-2.2\\pm0.4} above 5.5x10^37 erg/s to dN/dL \\propto L^{-1.0\\pm0.1} below it, though we could not rule out a fit with a higher break at ~1.6x10^38 erg/s. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrup...

  18. The X-ray Zurich Environmental Study (X-ZENS). I. Chandra and XMM-Newton observations of AGNs in galaxies in nearby groups

    CERN Document Server

    Silverman, J D; Finoguenov, A; Carollo, C M; Cibinel, A; Lilly, S J; Schawinski, K

    2013-01-01

    We describe X-ray observations with Chandra and XMM-Newton of 18 galaxy groups (M_group ~ 1-6x10^13 Msolar, z~0.05) from the Zurich Environmental Study (ZENS). We aim to establish the frequency and properties, unaffected by host galaxy dilution and obscuration, of AGNs in central and satellite galaxy members, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of 177 observed galaxies, down to a limit of f_(0.5-8 keV) ~ 5x10^-15 erg cm^-2 s^-1, corresponding to a limiting luminosity of L_(0.5-8 keV)~3x10^40 erg s^-1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L_Edd>~10^-4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift, and compare the structural/morphological properties between AGN-active and non-active galaxies of different rank and location within the group halos. We see a slight tendency for AGN hosts to have either relatively brighter/denser disks (or re...

  19. Probing the wind-wind collision in Gamma Velorum with high-resolution Chandra X-ray spectroscopy: evidence for sudden radiative braking and non-equilibrium ionization

    CERN Document Server

    Henley, D B; Pittard, J M

    2004-01-01

    We present a new analysis of an archived Chandra HETGS X-ray spectrum of the WR+O colliding wind binary Gamma Velorum. The spectrum is dominated by emission lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a combination of broad-band spectral analysis and an analysis of line flux ratios we infer a wide range of temperatures in the X-ray emitting plasma (~4-40 MK). As in the previously published analysis, we find the X-ray emission lines are essentially unshifted, with a mean FWHM of 1240 +/- 30 km/s. Calculations of line profiles based on hydrodynamical simulations of the wind-wind collision predict lines that are blueshifted by a few hundred km/s. The lack of any observed shift in the lines may be evidence of a large shock-cone opening half-angle (> 85 degrees), and we suggest this may be evidence of sudden radiative braking. From the R and G ratios measured from He-like forbidden-intercombination-resonance triplets we find evidence that the Mg XI emission originates from hotter gas c...

  20. Soft X-Ray Emissions from Planets and Moons

    Science.gov (United States)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These

  1. The X-Ray Zurich Environmental Study (X-ZENS). I. Chandra and XMM-Newton Observations of Active Galactic Nuclei in Galaxies in nearby Groups

    Science.gov (United States)

    Silverman, J. D.; Miniati, F.; Finoguenov, A.; Carollo, C. M.; Cibinel, A.; Lilly, S. J.; Schawinski, K.

    2014-01-01

    We describe X-ray observations with Chandra and XMM-Newton of 18 M group ~ 1-6 × 1013 M ⊙, z ~ 0.05 galaxy groups from the Zurich ENvironmental Study. The X-ray data aim at establishing the frequency and properties, unaffected by host galaxy dilution and obscuration, of active galactic nuclei (AGNs) in central and satellite galaxies, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of the 177 galaxies, down to a sensitivity level of f 0.5 - 8 keV ~ 5 × 10-15 erg cm-2 s-1, corresponding to a limiting luminosity of L 0.5 - 8 keV ~ 3 × 1040 erg s-1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L Edd >~ 10-4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift and compare the structural and morphological properties between AGN-active and non-active galaxies. At galaxy mass scales <1011 M ⊙, central galaxies appear to be a factor of ~4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to be hosted by massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner parts of group halos, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data indicate that the rate of decline with redshift of AGN activity in galaxy groups matches that of the global AGN population, indicating that either AGN activity occurs preferentially in group halos or that the evolution rate is independent of halo mass.

  2. The X-ray Zurich environmental study (X-zens). I. Chandra and XMM-Newton observations of active galactic nuclei in galaxies in nearby groups

    International Nuclear Information System (INIS)

    We describe X-ray observations with Chandra and XMM-Newton of 18 M group ∼ 1-6 × 1013 M ☉, z ∼ 0.05 galaxy groups from the Zurich ENvironmental Study. The X-ray data aim at establishing the frequency and properties, unaffected by host galaxy dilution and obscuration, of active galactic nuclei (AGNs) in central and satellite galaxies, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of the 177 galaxies, down to a sensitivity level of f 0.5 – 8 keV ∼ 5 × 10–15 erg cm–2 s–1, corresponding to a limiting luminosity of L 0.5 – 8 keV ∼ 3 × 1040 erg s–1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L Edd ≳ 10–4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift and compare the structural and morphological properties between AGN-active and non-active galaxies. At galaxy mass scales <1011 M ☉, central galaxies appear to be a factor of ∼4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to be hosted by massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner parts of group halos, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data indicate that the rate of decline with redshift of AGN activity in galaxy groups matches that of the global AGN population, indicating that either AGN activity occurs preferentially in group halos or that the evolution rate is independent of halo mass.

  3. A CHANDRA X-RAY ANALYSIS OF ABELL 1664: COOLING, FEEDBACK, AND STAR FORMATION IN THE CENTRAL CLUSTER GALAXY

    International Nuclear Information System (INIS)

    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of ∼ 23 M sun yr-1. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5 x 108 yr and entropy of 10.4 keV cm2 are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, 'barlike' X-ray structure whose mass is comparable to the mass of molecular hydrogen, ∼1010 M sun in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of BIrzan et al. to show that the active galactic nucleus (AGN) is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low state of an AGN feedback cycle that regulates the rates of cooling and star formation. Modeling the emission as a single-temperature plasma, we find that the metallicity peaks 100 kpc from the X-ray center, resulting in a central metallicity dip. However, a multi-temperature cooling flow model improves the fit to the X-ray emission and is able to recover the expected, centrally peaked metallicity profile.

  4. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    F. Nagase

    2002-03-01

    Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.

  5. New X-ray quasars behind the Small Magellanic Cloud

    OpenAIRE

    Dobrzycki, A.; Stanek, K. Z.; Macri, L. M.; Groot, P.J.

    2003-01-01

    We present five X-ray quasars behind the Small Magellanic Cloud, increasing the number of known quasars behind the SMC by ca. 40%. They were identified via follow-up spectroscopy of serendipitous sources from the Chandra X-ray Observatory matched with objects from the OGLE database. All quasars lie behind dense parts of the SMC, and could be very useful for proper motion studies. We analyze X-ray spectral and timing properties of the quasars. We discuss applications of those and other recentl...

  6. The CfA Einstein Observatory extended deep X-ray survey

    Science.gov (United States)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  7. The square meter arcsecond resolution x-ray telescope: SMART-X

    Science.gov (United States)

    Schwartz, Daniel A.; Aldcroft, Thomas L.; Bookbinder, Jay A.; Cotroneo, Vincenzo; Davis, William N.; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul; Tananbaum, Harvey; Vikhlinin, Alexey; Trolier-McKinstry, Susan; Wilke, Derek; Johnson-Wilke, Raegan

    2012-10-01

    We describe an X-ray Observatory mission with 0.5" angular resolution, comparable to the Chandra X-ray Observatory, but with 30 times more effective collecting area. The concept is based on developing the new technology of adjustable X-ray optics for ultra thin (0.4 mm), highly nested grazing incidence X-ray mirrors. Simulations to date indicate that the corrections for manufacturing and mounting can be determined on the ground and the effects of gravity release can be calculated to sufficient accuracy, so that all adjustments are applied only once on-orbit, without the need of any on-orbit determination of the required corrections. The mission concept is based on the Chandra Observatory, and takes advantage of the technology studies which have taken place over the past fifteen years developing large area, light weight mirrors.

  8. The Tarantula -- Revealed by X-rays (T-ReX): A Definitive Chandra Investigation of 30 Doradus

    Science.gov (United States)

    Townsley, Leisa

    2013-09-01

    30 Doradus is the most important star-forming complex in the Local Group, offering a microscope on starburst astrophysics. At its heart is R136, the most massive resolved stellar cluster, containing the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. So far, Chandra has devoted only 114 ks to this iconic target, limiting our studies just to the most massive stars and large-scale diffuse phenomena. This deep observation will finally exploit Chandra's fine spatial resolution to study ISM interfaces on 1--10 pc scales, the full complement of massive stars, and the brightest pre-main sequence stars that trace 25 Myrs of star formation in this incomparable nearby starburst.

  9. The Discovery of Lensed Radio and X-Ray Sources behind the Frontier Fields Cluster MACS J0717.5+3745 with the JVLA and Chandra

    Science.gov (United States)

    van Weeren, R. J.; Ogrean, G. A.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Bonafede, A.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Churazov, E.; David, L.; Dawson, W. A.; Donahue, M.; Goulding, A.; Kraft, R. P.; Mason, B.; Merten, J.; Mroczkowski, T.; Murray, S. S.; Nulsen, P. E. J.; Rosati, P.; Roediger, E.; Randall, S. W.; Sayers, J.; Umetsu, K.; Vikhlinin, A.; Zitrin, A.

    2016-02-01

    We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0-6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities, the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10-50 {M}⊙ yr-1 located at 1≲ z≲ 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2-10 keV X-ray luminosities of ˜1043-44 erg s-1. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6\\lt z\\lt 2.0, compared to a z\\lt 0.3 sample. Our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as ˜10 M⊙ yr-1, at the peak of cosmic star formation history.

  10. Auroral X ray emission at Jupiter: Depth effects

    International Nuclear Information System (INIS)

    Auroral X-ray emissions from Jupiter with a total power of about 1 GW have been observed by the Einstein Observatory, Roentgen satellite, Chandra X-ray Observatory, and XMM-Newton. Previous theoretical studies have shown that precipitating energetic sulfur and oxygen ions can produce the observed X-rays. This study presents the results of a hybrid Monte Carlo (MC) model for sulfur and oxygen ion precipitation at high latitudes, looks at differences with the continuous slow-down model, and compares the results to synthetic spectra fitted to observations. We concentrate on the effects of altitude on the observed spectrum. The opacity of the atmosphere to the outgoing X-ray photons is found to be important for incident ion energies greater than about 1.2 MeV per nucleon for both sulfur and oxygen. Model spectra are calculated for intensities with and without any opacity effects. These synthetic spectra were compared with the results shown by Hui et al. (2010) which fit Chandra X-ray Observatory observations for the north and south Jovian auroral emissions. Quenching of long-lived excited states of the oxygen ions is found to be important. Opacity considerably diminishes the outgoing X-ray intensity calculated, particularly when the viewing geometry is not favorable.

  11. Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system I. The non-dip spectrum in the low/hard state

    CERN Document Server

    Hanke, Manfred; Nowak, Michael A; Pottschmidt, Katja; Schulz, Norbert S; Lee, Julia C

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1/HDE 226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for Cyg X-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe Kalpha line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect t...

  12. Joint Analysis of Cluster Observations: II. Chandra/XMM-Newton X-ray and Weak Lensing Scaling Relations for a Sample of 50 Rich Clusters of Galaxies

    CERN Document Server

    Mahdavi, A; Babul, A; Bildfell, C; Jeltema, T; Henry, J P

    2012-01-01

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15 +/- 6% intrinsic scatter at r500. The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small BCG to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller <10% deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure YX does not discrimi...

  13. An X-ray look at the Seyfert 1 Galaxy Mrk 590: XMM-Newton and Chandra reveal complexity in circumnuclear gas

    CERN Document Server

    Longinotti, A L; Santos-Lleó, M; Rodriguez-Pascual, P; Guainazzi, M; Cardaci, M; Pollock, A M T

    2007-01-01

    This paper reports on a partially simultaneous observation of the bright Seyfert 1 Galaxy Mrk590, performed by XMM-Newton and Chandra. The long exposure (~100 ks) allows to investigate with great detail the Fe K complex at 6-7 keV and the presence of soft X-ray spectral features. We have analysed XMM-Newton data from the European Photon Imaging Camera (EPIC) in the 0.5-12 keV band and from the Reflection Grating Spectrometer (RGS) in the 0.35-2.5 keV band, and data from the High Energy Transmission Gratings (HETGs) onboard Chandra. UV and optical data from the Optical Monitor (OM) onboard XMM-Newton are also included in the analysis. The broad band spectrum is well described by an unabsorbed power law and three unresolved Fe~K lines in the 6-7 keV range. The presence of a Compton reflection component and a narrow Fe K line at 6.4 keV is consistent with an origin via torus reflection. The ionised Fe lines at ~6.7 and 7 keV are instead most likely originated by scattering on a warm and ionised gas. The soft X-r...

  14. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    CERN Document Server

    Hofmann, F; Nandra, K; Clerc, N; Gaspari, M

    2016-01-01

    Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter candidate. We aim at putting constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing-angle in a 7.1 keV sterile neutrino dark matter scenario. For a sample of 33 high-mass clusters of galaxies we merge all observations from the Chandra data archive. Each cluster has more than 100 ks of combined exposure. The resulting high signal-to-noise spectra are used to constrain the flux of an unidentified line emission at 3.55 keV in the individual spectra and a merged spectrum of all clusters. We obtained very detailed spectra around the 3.55 keV range and limits on an unidentified emission line. Assuming all dark matter were made of 7.1 keV sterile neutrinos the upper limits on the mixing angle are $\\rm{sin^2(2\\Theta...

  15. The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    OpenAIRE

    Wevers, T.; Hodgkin, S. T.; Jonker, P. G.; Bassa, C.; Nelemans, G.; van Grunsven, T.; Gonzalez-Solares, E. A.; Torres, M. A. P.; Heinke, C.; Steeghs, D.; Maccarone, T.J.; Britt, C.; Hynes, R.I.; Johnson, C; Wu, Jianfeng

    2016-01-01

    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r', i' and H{\\alpha} filters. It is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5{\\sigma} depth is r' = 22.5 and i' = 21.1 mag. The mean ro...

  16. A Chandra X-ray study of the mixed-morphology supernova remnant 3C 400.2

    OpenAIRE

    Broersen, S.; Vink, J.

    2015-01-01

    We present an analysis of archival Chandra observations of the mixed-morphology remnant 3C400.2. We analysed spectra of different parts of the remnant to observe if the plasma properties provide hints on the origin of the mixed-morphology class. These remnants often show overionization, which is a sign of rapid cooling of the thermal plasma, and super-solar abundances of elements which is a sign of ejecta emission. Our analysis shows that the thermal emission of 3C400.2 can be well explained ...

  17. The X-Ray Surveyor Mission: A Concept Study

    Science.gov (United States)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; Heinz, Sebastian; Hopkins, Randall C.; Kilbourne, Caroline A.; Kouveliotou, Chryssa; Kraft, Ralph P.; Kravtsov, Andrey V.; McEntaffer, Randall L.; Natarajan, Priyamvada; O'Dell, Stephen L.; Petre, Robert; Prieskorn, Zachary R.; Ptak, Andrew F.; Ramsey, Brian D.; Reid, Paul B.; Schnell, Andrew R.; Schwartz, Daniel A.; Townsley, Leisa K.

    2015-01-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  18. The X-ray Surveyor Mission: a concept study

    Science.gov (United States)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; Heinz, Sebastian; Hopkins, Randall C.; Kilbourne, Caroline A.; Kouveliotou, Chryssa; Kraft, Ralph P.; Kravtsov, Andrey V.; McEntaffer, Randall L.; Natarajan, Priyamvada; O'Dell, Stephen L.; Petre, Robert; Prieskorn, Zachary R.; Ptak, Andrew F.; Ramsey, Brian D.; Reid, Paul B.; Schnell, Andrew R.; Schwartz, Daniel A.; Townsley, Leisa K.

    2015-08-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions—such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  19. X-ray optics developments at ESA

    DEFF Research Database (Denmark)

    Bavdaz, M.; Wille, E.; Wallace, K.;

    2013-01-01

    Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA......) in collaboration with research institutions and industry, enabling leading-edge future science missions. Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in...... multilayer reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36]. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  20. The X-ray Zurich environmental study (X-zens). I. Chandra and XMM-Newton observations of active galactic nuclei in galaxies in nearby groups

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo (Kavli IPMU, WPI), Kashiwa 277-8583 (Japan); Miniati, F.; Carollo, C. M.; Cibinel, A.; Lilly, S. J.; Schawinski, K. [Institute for Astronomy, ETH Zürich, CH-8093, Zürich (Switzerland); Finoguenov, A., E-mail: john.silverman@ipmu.jp [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland)

    2014-01-01

    We describe X-ray observations with Chandra and XMM-Newton of 18 M {sub group} ∼ 1-6 × 10{sup 13} M {sub ☉}, z ∼ 0.05 galaxy groups from the Zurich ENvironmental Study. The X-ray data aim at establishing the frequency and properties, unaffected by host galaxy dilution and obscuration, of active galactic nuclei (AGNs) in central and satellite galaxies, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of the 177 galaxies, down to a sensitivity level of f {sub 0.5} {sub –} {sub 8} {sub keV} ∼ 5 × 10{sup –15} erg cm{sup –2} s{sup –1}, corresponding to a limiting luminosity of L {sub 0.5} {sub –} {sub 8} {sub keV} ∼ 3 × 10{sup 40} erg s{sup –1}. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L {sub Edd} ≳ 10{sup –4}), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift and compare the structural and morphological properties between AGN-active and non-active galaxies. At galaxy mass scales <10{sup 11} M {sub ☉}, central galaxies appear to be a factor of ∼4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to be hosted by massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner parts of group halos, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data indicate that the rate of decline with redshift of AGN activity in galaxy groups matches that of the global AGN population, indicating that either AGN activity occurs preferentially in group halos or that the evolution rate is independent of halo mass.

  1. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  2. Composition of the Chandra ACIS contaminant

    OpenAIRE

    Marshall, Herman L.; Tennant, Allyn; Grant, Catherine E.; Hitchcock, Adam P.; O'Dell, Steve; Plucinsky, Paul P.

    2003-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also dete...

  3. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% ± 6% intrinsic scatter at r500WL (the pseudo-pressure YX yields a consistent scatter of 22% ± 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (X does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r500WL; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r2500WL and r500WL, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  4. Chandra X-ray Spectroscopy of the Focused Wind In the Cygnus X-1 System I. The Non-Dip Spectrum in the Low/Hard State

    Science.gov (United States)

    Hanke, Manfred; Wilms, Jorn; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert S.; Lee, Julia C.

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system CygnusX-1/HDE226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). CygX-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for CygX-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe K line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.

  5. Lost and Found: X-ray Telescope Locates Missing Matter

    Science.gov (United States)

    2005-02-01

    NASA's Chandra X-ray Observatory has discovered two huge intergalactic clouds of diffuse hot gas. These clouds are the best evidence yet that a vast cosmic web of hot gas contains the long-sought missing matter - about half of the atoms and ions in the Universe. Various measurements give a good estimate of the mass-density of the baryons - the neutrons and protons that make up the nuclei of atoms and ions - in the Universe 10 billion years ago. However, sometime during the last 10 billion years a large fraction of the baryons, commonly referred to as "ordinary matter" to distinguish them from dark matter and dark energy, have gone missing. Chandra X-ray Spectrum of Mkn 421 Chandra X-ray Spectrum of Mkn 421 "An inventory of all the baryons in stars and gas inside and outside of galaxies accounts for just over half the baryons that existed shortly after the Big Bang," explained Fabrizio Nicastro of the Harvard-Smithsonian Center for Astrophysics, and lead author of a paper in the 3 February 2005 issue of Nature describing the recent research. "Now we have found the likely hiding place of the missing baryons." Nicastro and colleagues did not just stumble upon the missing baryons - they went looking for them. Computer simulations of the formation of galaxies and galaxy clusters indicated that the missing baryons might be contained in an extremely diffuse web-like system of gas clouds from which galaxies and clusters of galaxies formed. These clouds have defied detection because of their predicted temperature range of a few hundred thousand to a million degrees Celsius, and their extremely low density. Evidence for this warm-hot intergalactic matter (WHIM) had been detected around our Galaxy, or in the Local Group of galaxies, but the lack of definitive evidence for WHIM outside our immediate cosmic neighborhood made any estimates of the universal mass-density of baryons unreliable. Chandra X-ray Image of Mkn 421 Chandra X-ray Image of Mkn 421 The discovery of much more

  6. Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: The Luminosity-Mass Relation

    CERN Document Server

    Giles, P A; Dahle, H; Bonamente, M; Landry, D; Jones, C; Joy, M; Murray, S S; van der Pyl, N

    2015-01-01

    We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15$\\le$z$\\le$0.3 observed with Chandra. We present the calibration of the Mass-Temperature (MT) relation using hydrostatic mass estimates for the most dynamically relaxed clusters, and use this relation as a mass proxy for the full cluster sample. We find that the slope of the MT relation follows the self-similar expectation, and is consistent with previously published relations. We investigate the luminosity-Mass (LM) relation for the cluster sample, utilising a method to fully account for selection biases. We find that the difference in normalisation of the LM relation with and without accounting for selection effects is $\\approx$2. For a cluster of luminosity 10$^{45}$ erg s$^{-1}$, we find that the mass estimated from the LM relation when we account for selection effects is $\\approx$40% higher compared to the sample LM relation (not accounting for selection effects).

  7. Chandra Detection of the First X-ray Forest along the Line of Sight To Mkn 421

    CERN Document Server

    Nicastro, F; Elvis, M; Drake, J; Fiore, F; Fang, T; Fruscione, A; Krongold, Y; Marshall, H; Williams, R; Nicastro, Fabrizio; Mathur, Smita; Elvis, Martin; Drake, Jeremy; Fiore, Fabrizio; Fang, Taotao; Fruscione, Antonella; Krongold, Yair; Marshall, Herman; Williams, Rik

    2005-01-01

    We present the first >=3.5 sigma (conservative) or >=5.8 sigma (sum of lines significance) detection of two Warm-Hot Intergalactic Medium (WHIM) filaments at z>0, which we find along the line of sight to the blazar Mkn 421. These systems are detected through highly ionized resonant metal absorption in high quality Chandra-ACIS and -HRC Low Energy Transmission Grating (LETG) spectra of Mkn 421, obtained following our two Target of Opportunity requests during two outburst phases. The two intervening WHIM systems that we detect, have OVII and NVII columns of N(OVII)=(1.0 +/- 0.3) x 1e15 cm-2} N(NVII)=(0.8 +/- 0.4) x 1e15 cm-2, and N(OVII)=(0.7 +/- 0.3) x 1e15 cm-2, N(NVII)=(1.4 +/- 0.5) x 1e15 cm-2 respectively. From the detected number of WHIM filaments along this line of sight we can estimate the number of OVII filaments per unit redshift with columns larger than 7e14 cm-2, dP(OVII)/dz(N(OVII)>=7e14) = 67^{+88}_{-43}, consistent, within the large 1-sigma errors, with the hydrodynamical simulation predictions o...

  8. Soft X-ray irradiance measured by the Solar Aspect Monitor on the Solar Dynamic Observatory Extreme ultraviolet Variability Experiment

    CERN Document Server

    Lin, C Y; Jones, A; Woodraska, D; Caspi, A; Woods, T N; Eparvier, F G; Wieman, S R; Didkovsky, L V

    2016-01-01

    The Solar Aspect Monitor (SAM) is a pinhole camera on the Extreme-ultraviolet Variability Experiment (EVE) aboard the Solar Dynamics Observatory (SDO). SAM projects the solar disk onto the CCD through a metallic filter designed to allow only solar photons shortward of 7 nm to pass. Contamination from energetic particles and out-of-band irradiance is, however, significant in the SAM observations. We present a technique for isolating the 0.01--7 nm integrated irradiance from the SAM signal to produce the first results of broadband irradiance for the time period from May 2010 to May 2014. The results of this analysis agree with a similar data product from EVE's EUV SpectroPhotometer (ESP) to within 25%. We compare our results with measurements from the Student Nitric Oxide Explorer (SNOE) Solar X-ray Photometer (SXP) and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Solar EUV Experiment (SEE) at similar levels of solar activity. We show that the full-disk SAM broadband results compare we...

  9. A broadband X-ray spectral study of the intermediate-mass black hole candidate M82 X-1 with NuSTAR, Chandra and Swift

    CERN Document Server

    Brightman, Murray; Barret, Didier; Davis, Shane W; Fürst, Felix; Madsen, Kristin K; Middleton, Matthew; Miller, Jon M; Stern, Daniel; Tao, Lian; Walton, Dominic J

    2016-01-01

    M82 X-1 is one of the brightest ultraluminous X-ray sources (ULXs) known, which, assuming Eddington-limited accretion and other considerations, makes it one of the best intermediate-mass black hole (IMBH) candidates. However, the ULX may still be explained by super-Eddington accretion onto a stellar-remnant black hole. We present simultaneous NuSTAR, Chandra and Swift/XRT observations during the peak of a flaring episode with the aim of modeling the emission of M82 X-1 and yielding insights into its nature. We find that thin-accretion disk models all require accretion rates at or above the Eddington limit in order to reproduce the spectral shape, given a range of black hole masses and spins. Since at these high Eddington ratios the thin-disk model breaks down due to radial advection in the disk, we discard the results of the thin-disk models as unphysical. We find that the temperature profile as a function of disk radius ($T(r)\\propto r^{-p}$) is significantly flatter ($p=0.55^{+ 0.07}_{- 0.04}$) than expecte...

  10. High-resolution spectroscopy and high-density monitoring in X-rays of Novae

    CERN Document Server

    Ness, Jan-Uwe

    2012-01-01

    The 21st century X-ray observatories XMM-Newton, Chandra, and Swift gave us completely new insights into the X-ray behaviour of nova outbursts. These new-generation X-ray observatories provide particularly high spectral resolution and high density in monitoring campaigns, simultaneously in X-rays and UV/optical. The entire evolution of several nova outbursts has been observed with the Swift XRT and UVOT instruments, allowing studies of the gradual shift of the peak of the SED from UV to X-rays, time scales to the onset and duration of the X-ray brightest supersoft source (SSS) phase, and pre- and post-SSS X-ray emission. In addition, XMM-Newton and Chandra observations can efficiently be scheduled, allowing deeper studies of strategically chosen evolutionary stages. Before Swift joined in 2005, Chandra and XMM-Newton blind shots in search of SSS emission unavoidably led to some underexposed observations taken before and/or after the SSS phase. More systematic Swift studies reduced this number while increasing...

  11. Comparison of 3.6 - 8.0 Micron Spitzer/IRAC Galactic Center Survey Point Sources with Chandra X-Ray Point Sources in the Central 40x40 Parsecs

    CERN Document Server

    Arendt, R G; Stolovy, S R; Sellgren, K; Smith, R; Ramírez, S V; Yusef-Zadeh, F; Law, C J; Smith, H A; Cotera, A S; Moseley, S H

    2008-01-01

    We have studied the correlation between 2357 Chandra X-ray point sources in a 40 x 40 parsec field and ~20,000 infrared sources we observed in the corresponding subset of our 2 x 1.4 degree Spitzer/IRAC Galactic Center Survey at 3.6-8.0 um, using various spatial and X-ray hardness thresholds. The correlation was determined for source separations of less than 0.5", 1" or 2". Only the soft X-ray sources show any correlation with infrared point sources on these scales, and that correlation is very weak. The upper limit on hard X-ray sources that have infrared counterparts is <1.7% (3 sigma). However, because of the confusion limit of the IR catalog, we only detect IR sources with absolute magnitudes < ~1. As a result, a stronger correlation with fainter sources cannot be ruled out. Only one compact infrared source, IRS 13, coincides with any of the dozen prominent X-ray emission features in the 3 x 3 parsec region centered on Sgr A*, and the diffuse X-ray and infrared emission around Sgr A* seems to be ant...

  12. Magnetically confined wind shocks in X-rays - A review

    Science.gov (United States)

    ud-Doula, Asif; Nazé, Yaël

    2016-09-01

    A subset (∼ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow speeds that are some fraction of the wind terminal speed. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using XMM and Chandra, as well as fully self-consistent MHD modeling and the identification of shock retreat effects in weak winds. Despite a few exceptions, the combination of magnetic confinement, shock retreat and rotation effects seems to be able to account for X-ray emission in massive OB stars. Here we review these new observational and theoretical aspects of this X-ray emission and envisage some perspectives for the next generation of X-ray observatories.

  13. Magnetically Confined Wind Shocks in X-rays - a Review

    CERN Document Server

    ud-Doula, Asif

    2015-01-01

    A subset (~ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow speeds that are some fraction of the wind terminal speed. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using XMM-Newton and Chandra, as well as fully self-consistent MHD modelling and the identification of shock retreat effects in weak winds. Despite a few exceptions, the combination of magnetic confinement, shock retreat and rotation effects seems to be able to account for X-ray emission in massive OB stars. Here we review these new observational and theoretical aspects of this X-ray emission and envisage some perspectives for the next generation of X-ray observatories.

  14. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94131 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Babul, Arif; Bildfell, Chris [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Jeltema, Tesla [Santa Cruz Institute for Particle Physics, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Henry, J. Patrick [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-04-20

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  15. X-Ray Surveyor Mission Concept

    Science.gov (United States)

    Gaskin, Jessica

    2015-10-01

    An initial concept study for the X-ray Surveyor mission was carried-out by the Advanced Concept Office at Marshall Space Flight Center (MSFC), with a strawman payload and related requirements that were provided by an Informal Mission Concept Team, comprised of MSFC and Smithsonian Astrophysics Observatory (SAO) scientists plus a diverse cross-section of the X-ray community. The study included a detailed assessment of the requirements, a preliminary design, a mission analysis, and a preliminary cost estimate. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades, such as Con-X, AXSIO and IXO, and in most areas, points to mission requirements no more stringent than those of Chandra.

  16. BeppoSAX and Chandra Observations of SAXJ0103.2-7209 = 2E0101.5-7225 a new Persistent 345s X-ray Pulsar in the SMC

    CERN Document Server

    Israel, G L; Covino, S; Dal Fiume, D; Gaetz, T J; Mereghetti, S; Oosterbroek, T; Orlandini, M; Parmar, A N; Ricci, D; Stella, L

    2000-01-01

    We report the results of a 1998 July BeppoSAX observation of a field in the SMC which led to the discovery of 345s pulsations in the X-ray flux of SAXJ0103.2-7209. The BeppoSAX X-ray spectrum is well fit by an absorbed power-law with photon index 1.0 plus a black body component with kT=0.1keV. The unabsorbed luminosity in the 2-10 keV energy range is 1.2x10^{36} erg/s. In a very recent Chandra observation the 345s pulsations are also detected. The available period measurements provide a constant period derivative of -1.7s/yr over the last three years making SAXJ0103.2-7209 one of the most rapidly spinning-up X-ray pulsars known. The BeppoSAX position is consistent with that of the Einstein source 2E0101.5-7225 and the ROSAT source RXJ0103.2-7209. This source was detected at a luminosity level of few 10^{35}-10^{36} erg/s in all datasets of past X-ray missions since 1979. The ROSAT HRI and Chandra positions are consistent with that of a m_V=14.8 Be spectral type star already proposed as the likely optical coun...

  17. THREE NEW GALACTIC CENTER X-RAY SOURCES IDENTIFIED WITH NEAR-INFRARED SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, Curtis [Department of Physics, University of California, Davis, CA 95616 (United States); Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Sarajedini, Ata [Department of Astronomy, University of Florida, 211 Bryant Space Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Sellgren, Kris [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Blum, Robert; Olsen, Knut [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bauer, Franz E., E-mail: curtis.n.dewitt@nasa.gov [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile)

    2013-11-01

    We have conducted a near-infrared spectroscopic survey of 47 candidate counterparts to X-ray sources discovered by the Chandra X-Ray Observatory near the Galactic center (GC). Though a significant number of these astrometric matches are likely to be spurious, we sought out spectral characteristics of active stars and interacting binaries, such as hot, massive spectral types or emission lines, in order to corroborate the X-ray activity and certify the authenticity of the match. We present three new spectroscopic identifications, including a Be high-mass X-ray binary (HMXB) or a γ Cassiopeiae (Cas) system, a symbiotic X-ray binary, and an O-type star of unknown luminosity class. The Be HMXB/γ Cas system and the symbiotic X-ray binary are the first of their classes to be spectroscopically identified in the GC region.

  18. The Identification of the X-ray Counterpart to PSR J2021+4026

    CERN Document Server

    Weisskopf, Martin C; Razzano, Massimiliano; Belfiore, Andrea; Parkinson, Pablo Saz; Ray, Paul S; Kerr, Matthew; Harding, Alice; Swartz, Douglas A; Carraminana, Alberto; Ziegler, Marcus; Becker, Werner; De Luca, Andrea; Dormody, Michael; Thompson, David J; Kanbach, Gottfried; Elsner, Ronald F; O'Dell, Stephen L; Tennant, Allyn F

    2011-01-01

    We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30.733s, Decl. +40 deg 26 min 46.04sec (J2000) with an estimated uncertainty of 1.3 arsec combined statistical and systematic error. Moreover, both the X-ray to gamma-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' >23.0 mag and r' > 25.2mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.

  19. Detection of X-ray Emission from the Arches Cluster Near the Galactic Center

    OpenAIRE

    Yusef-Zadeh, F.; Law, C.; Wardle, M.; Wang, Q.D.; Fruscione, A.; Lang, C C; Cotera, A.

    2001-01-01

    The Arches cluster is an extraordinarily compact massive star cluster with a core radius of about 10$''$ ($\\sim$0.4 pc) and consisting of more than 150 O star candidates with initial stellar masses greater than 20~M$_\\odot$ near G0.12-0.02. X-ray observations of the radio Arc near the Galactic center at l$\\sim0.2^0$ which contains the Arches cluster have been carried out with the Advanced CCD Imaging Spectrometer (ACIS) on board Chandra X-ray Observatory. We report the detection of two X-ray ...

  20. Low-Mass X-ray Binaries and Globular Clusters in Centaurus A

    OpenAIRE

    Jordan, Andres; Sivakoff, Gregory R.; McLaughlin, Dean E.; Blakeslee, John P; Evans, Daniel A.; Kraft, Ralph P.; Hardcastle, Martin J.; Peng, Eric W.; Cote, Patrick; Croston, Judith H.; Juett, Adrienne M.; Minniti, Dante; Raychaudhury, Somak; Sarazin, Craig L.; Worrall, Diana M.

    2007-01-01

    We present results of Hubble Space Telescope and Chandra X-ray Observatory observations of globular clusters (GCs) and low-mass X-ray binaries (LMXBs) in the central regions of Centaurus A. Out of 440 GC candidates we find that 41 host X-ray point sources that are most likely LMXBs. We fit King models to our GC candidates in order to measure their structural parameters. We find that GCs that host LMXBs are denser and more compact, and have higher encounter rates and concentrations than the GC...

  1. GGD 27: X-rays from a Massive Protostar with an Outflow

    OpenAIRE

    Pravdo, Steven H.; Tsuboi, Yohko; Suzuki, Yuchiro; Thompson, Timothy J.; Rebull, Luisa

    2009-01-01

    We report the discovery of a cluster of Class I protostars in GGD 27. One of these protostars is the previously known, centrally located, GGD 27-ILL, which powers a massive bipolar outflow. We show that GGD 27-ILL, which is known to be the bright infrared (IR) source, IRAS 18162-2048, and a compact radio continuum source, is also the newly discovered hard X-ray source, GGD 27-X. The observations were made with the ACIS instrument on the Chandra X-ray Observatory. The X-rays from GGD 27-X are ...

  2. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-01

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory. PMID:12791989

  3. Discovery of four X-ray quasars behind the Large Magellanic Cloud

    OpenAIRE

    Dobrzycki, A.; Groot, P.J.; Macri, L. M.; Stanek, K. Z.

    2002-01-01

    We present the discovery of four X-ray quasars (z_em = 0.26, 0.53, 0.61, 1.63) located behind the Large Magellanic Cloud; three of them are located behind the bar of the LMC. The quasars were identified via spectroscopy of optical counterparts to X-ray sources found serendipitously by the Chandra X-ray Observatory satellite. All four quasars have archival VI photometry from the OGLE-II project; one of them was found by OGLE to be variable. We present the properties of the quasars and discuss ...

  4. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    CERN Document Server

    Gottardi, Luciano; Bruijn, Marcel P; Hartog, Roland den; Herder, Jan-Willem den; Jackson, Brian; Kiviranta, Mikko; van der Kuur, Jan; van Weers, Henk

    2016-01-01

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3 -12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum e?ciency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-...

  5. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    Science.gov (United States)

    Gottardi, L.; Akamatsu, H.; Bruijn, M. P.; den Hartog, R.; den Herder, J.-W.; Jackson, B.; Kiviranta, M.; van der Kuur, J.; van Weers, H.

    2016-07-01

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3-12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum efficiency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-of-the art of the FDM read-out.

  6. X-ray Properties of the GigaHertz-Peaked and Compact Steep Spectrum Sources

    CERN Document Server

    Siemiginowska, Aneta; Aldcroft, Thomas L; Bechtold, Jill; Elvis, Martin

    2008-01-01

    We present {\\it Chandra} X-ray Observatory observations of Giga-Hertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources. The {\\it Chandra} sample contains 13 quasars and 3 galaxies with measured 2-10 keV X-ray luminosity within $10^{42} - 10^{46}$ erg s$^{-1}$. We detect all of the sources, five of which are observed in X-ray for the first time. We study the X-ray spectral properties of the sample. The measured absorption columns in the quasars are different than those in the galaxies in the sense that the quasars show no absorption (with limits $\\sim 10^{21} \\rm cm^{-2}$) while the galaxies have large absorption columns ($> 10^{22} \\rm cm^{-2}$) consistent with previous findings. The median photon index of the sources with high S/N is $\\Gamma=1.84 \\pm0.24$ and it is larger than the typical index of radio loud quasars. The arcsec resolution of {\\it Chandra} telescope allows us to investigate X-ray extended emission, and look for diffuse components and X-ray jets. We found X-ray jets in two ...

  7. The Magnetic Properties of an L Dwarf Derived from Simultaneous Radio, X-ray, and H-alpha Observations

    OpenAIRE

    Berger, E.; Rutledge, R. E.; Reid, I N; Bildsten, L.; Gizis, J. E.; Liebert, J.; martin, E.; Basri, G.; Jayawardhana, R.; Brandeker, A.; Fleming, T.A.; Johns-Krull, C. M.; Giampapa, M. S.; Hawley, S. L.; Schmitt, J.H.M.M.

    2005-01-01

    We present the first simultaneous, multi-wavelength observations of an L dwarf, the L3.5 candidate brown dwarf 2MASS J00361617+1821104, conducted with the Very Large Array, the Chandra X-ray Observatory, and the Kitt Peak 4-m telescope. We detect strongly variable and periodic radio emission (P=3 hr) with a fraction of about 60% circular polarization. No X-ray emission is detected to a limit of L_X/L_{bol}

  8. Chandra Observations of Supernova 1987A

    CERN Document Server

    Park, Sangwook; Garmire, Gordon P; McCray, Richard; Racusin, Judith L; Zhekov, Svetozar A

    2007-01-01

    We have been monitoring Supernova (SN) 1987A with {\\it Chandra X-Ray Observatory} since 1999. We present a review of previous results from our {\\it Chandra} observations, and some preliminary results from new {\\it Chandra} data obtained in 2006 and 2007. High resolution imaging and spectroscopic studies of SN 1987A with {\\it Chandra} reveal that X-ray emission of SN 1987A originates from the hot gas heated by interaction of the blast wave with the ring-like dense circumstellar medium (CSM) that was produced by the massive progenitor's equatorial stellar winds before the SN explosion. The blast wave is now sweeping through dense CSM all around the inner ring, and thus SN 1987A is rapidly brightening in soft X-rays. At the age of 20 yr (as of 2007 January), X-ray luminosity of SN 1987A is $L_{\\rm X}$ $\\sim$ 2.4 $\\times$ 10$^{36}$ ergs s$^{-1}$ in the 0.5$-$10 keV band. X-ray emission is described by two-component plane shock model with electron temperatures of $kT$ $\\sim$ 0.3 and 2 keV. As the shock front inter...

  9. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies. [Solid State Spectrometer and Monitor Proportional Counter

    Science.gov (United States)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-01-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  10. Six Years of Chandra Observations of Supernova Remnants

    OpenAIRE

    Weisskopf, Martin C.; Hughes, John P.

    2005-01-01

    We present a review of the first six years of Chandra X-ray Observatory observations of supernova remnants. From the official "first-light" observation of Cassiopeia A that revealed for the first time the compact remnant of the explosion, to the recent million-second spectrally-resolved observation that revealed new details of the stellar composition and dynamics of the original explosion, Chandra observations have provided new insights into the supernova phenomenon. We present an admittedly ...

  11. Low-temperature detectors in X-ray astronomy

    International Nuclear Information System (INIS)

    The most compelling nature of X-ray astronomy is its richness and scale. Almost every observable object in the sky either naturally emits X-ray radiation or can be observed through X-ray absorption. Current X-ray observatories such as Chandra and XMM-Newton have considerably advanced our understanding of many of these systems by using imaging X-ray cameras and dispersed X-ray spectrometers. However, it is the combination of these two techniques to provide a true broadband, high spectral-resolution, imaging spectrometer that will drive the next revolution in X-ray astronomy. This is where Low-temperature detectors (LTDs) can play a key role but also where the science will continuously challenge the technology. In this brief overview we will explore the constraints that both the science goals and the space environment place on the implementation of LTDs, how current missions such as XQC and Astro-E2 have met these challenges, and where future missions such as Constellation-X, XEUS, and NeXT will drive LTD instruments to a much larger scale. Finally, we will address scaling issues in current LTD detectors and where the LTD community needs to proceed to address both the science goals and expectations of the astrophysics community

  12. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    Science.gov (United States)

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  13. An Introduction to the Chandra Carina Complex Project

    CERN Document Server

    Townsley, Leisa K; Corcoran, Michael F; Feigelson, Eric D; Gagné, Marc; Montmerle, Thierry; Oey, M S; Smith, Nathan; Garmire, Gordon P; Getman, Konstantin V; Povich, Matthew S; Evans, Nancy Remage; Nazé, Yaël; Parkin, E R; Preibisch, Thomas; Wang, Junfeng; Wolk, Scott J; Chu, You-Hua; Cohen, David H; Gruendl, Robert A; Hamaguchi, Kenji; King, Robert R; Mac Low, Mordecai-Mark; McCaughrean, Mark J; Moffat, Anthony F J; Oskinova, L M; Pittard, Julian M; Stassun, Keivan G; ud-Doula, Asif; Walborn, Nolan R; Waldron, Wayne L; Churchwell, Ed; Nichols, J S; Owocki, Stanley P; Schulz, N S

    2011-01-01

    The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant HII regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60ks pointings using the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of >14,000 X-ray point sources; >9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. In this introductory paper, we motivate the survey design, describe the Chandra observations, and present some simple results, pr...

  14. Variability of Optical Counterparts to X-ray Selected Sources in the Galactic Bulge Survey

    Science.gov (United States)

    Johnson, Christopher; Hynes, Robert I.; Jonker, Peter; Torres, Manuel; Maccarone, Thomas J.; Britt, Christopher; Steeghs, Danny; Galactic Bulge Survey Collaboration

    2016-01-01

    The Galactic Bulge Survey (GBS) is a wide-field, multi-wavelength survey of new X-ray sources in the Galactic Bulge detected with the Chandra X-ray Observatory. The goals of the GBS are to test binary population models by uncovering quiescent Low-Mass X-Ray Binaries (LMXB), and to identify suitable systems for follow-up mass determination using multi-wavelength observations. This follow-up is essential to better determine black hole and neutron star mass distributions. We present preliminary results from the southernmost portion of the GBS positioned 1.5-2.0 degrees below the Galactic Center which contains 424 unique X-ray sources. The optical photometry presented here were acquired using the DECam imager and the previous Mosaic-II imager on the 4m Blanco telescope at Cerro-Tololo Inter-American Observatory (CTIO). We combine photometry with optical spectroscopy from several different telescopes to help characterize the detected X-ray sources. To accomplish this goal, we analyze the light curve morphology and the spectroscopic features of the optical counterparts to classify these binary systems. I will describe the technique for determining the correct optical counterpart within the error circle using image subtraction and report on the statistics of the sample. I will then summarize the candidate LMXBs we have identified so far and highlight other interesting sources. This work was supported by the National Science Foundation under Grant No. AST-0908789 and by NASA through Chandra Award Number AR3-14002X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. We also acknowledge support from a Graduate Student Research Award administered by the Louisiana Space Grant Consortium (LaSPACE).

  15. High-Resolution X-Ray Spectroscopy of the Accretion Disk Corona Source 4U 1822-37

    CERN Document Server

    Cottam, J; Kahn, S M; Paerels, F B S; Liedahl, D A; Cottam, Jean; Sako, Masao; Kahn, Steven M.; Paerels, Frits; Liedahl, Duane A.

    2001-01-01

    We present a preliminary analysis of the X-ray spectrum of the accretion disk corona source, 4U 1822-37, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. We detect discrete emission lines from photoionized iron, silicon, magnesium, neon, and oxygen, as well as a bright iron fluorescence line. Phase-resolved spectroscopy suggests that the recombination emission comes from an X-ray illuminated bulge located at the predicted point of impact between the disk and the accretion stream. The fluorescence emission originates in an extended region on the disk that is illuminated by light scattered from the corona.

  16. Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

    CERN Document Server

    Britt, Christopher T; Johnson, C B; Baldwin, A; Jonker, P G; Nelemans, G; Torres, M A P; Maccarone, T; Steeghs, D; Greiss, S; Heinke, C; Bassa, C G; Collazzi, A; Villar, A; Gabb, M; Gossen, L

    2014-01-01

    We present optical lightcurves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey. Using data from the Mosaic-II instrument on the Blanco 4m Telescope at CTIO, we gathered time-resolved photometric data on timescales from $\\sim2$ hr to 8 days over the $\\frac{3}{4}$ of the X-ray survey containing sources from the initial GBS catalog. Among the lightcurve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. $87\\%$ of X-ray sources have at least one potential optical counterpart. $24\\%$ of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and di...

  17. Swift J1644+57: Chandra observations

    Science.gov (United States)

    Levan, A. J.; Tanvir, N. R.

    2012-11-01

    We observed the X-ray counterpart to the candidate relativistic tidal disruption event Swift J1644+57 (Levan et al. 2011 Science, 333 199; Bloom et al. 2011 Science 333 202; Burrows et al. 2011 Nature 476 421; Zauderer et al. 2011 Nature 476 425) with the Chandra X-ray Observatory, beginning on 26 November 2012 at 10:25 UT. A total integration of 24.7 ks was obtained, and the object was placed at the default position on the ACIS S3 chip.

  18. Large Observatory for X-ray Timing (LOFT-P): A Probe-Class Mission Concept Study

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Chakrabarty, D.; Feroci, M.; Jenke, Peter; Griffith, C.; Zane, S.; Winter, B.; Brandt, S.; Hernamdez, M.; Hickman, R.; Hopkins, R.; Garcia, J.; Chapman, J.; Schnell, A.; Becker, C.; Dominguez, A.; Ingram, L.; Gangl, B.; Carson, B.

    2016-01-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (less than $1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESA's M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broadband spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. Many of LOFTP's targets are bright, rapidly varying sources, so these measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P was presented as an example mission to the head of NASA's Astrophysics Division, to demonstrate the strong community support for creation of a probe-class, for missions costing between $500M and $1B. We submitted a white paper4 in response to NASA PhysPAG's call for white papers: Probe-class Mission Concepts, describing LOFT-P science and a simple extrapolation from the ESA study costs. The next step for probe-class missions will be input into the NASA Astrophysics Decadal Survey to encourage the creation of a probe-class opportunity. We report on a 2016 study by MSFC's Advanced Concepts Office of LOFT-P, a US-led probe-class LOFT concept.

  19. SERENDIPITOUS DETECTION OF X-RAY EMISSION FROM THE HOT BORN-AGAIN CENTRAL STAR OF THE PLANETARY NEBULA K 1-16

    International Nuclear Information System (INIS)

    We report the serendipitous detection of point-like X-ray emission from the hot, PG1159-type central star of the planetary nebula (CSPN) K 1-16 by the XMM-Newton and Chandra X-Ray Observatories. The CSPN lies superimposed on a galaxy cluster that includes an X-ray-bright quasar, but we have successfully isolated the CSPN X-ray emission from the strong diffuse background contributed by the quasar and intracluster gas. We have modeled the XMM-Newton and Chandra X-ray data, taking advantage of the contrasting detection efficiencies of the two observatories to better constrain the low-energy spectral response of Chandra's Advanced CCD Imaging Spectrometer. We find that the CSPN X-ray spectrum is well characterized by the combination of a non-local thermodynamic equilibrium model atmosphere with T* ∼ 135 kK and a carbon-rich, optically thin thermal plasma with TX ∼ 1 MK. These results for X-ray emission from the K 1-16 CSPN, combined with those obtained for other PG1159-type objects, lend support to the 'born-again' scenario for Wolf-Rayet and PG1159 CSPNe, wherein a late helium shell flash dredges up carbon-rich intershell material and ejects this material into the circumstellar environment.

  20. The Einstein Observatory catalog of IPC x ray sources. Volume 5E: Right ascension range 12h 00m to 15h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics, which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  1. The Einstein Observatory catalog of IPC x ray sources. Volume 3E: Right ascension range 04h 00m to 07h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers and data useful for calculating upper limits and fluxes.

  2. The Einstein Observatory catalog of IPC x ray sources. Volume 2E: Right ascension range 00h 00m to 03h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers and data useful for calculating upper limits and fluxes.

  3. The Einstein Observatory catalog of IPC x ray sources. Volume 7E: Right ascension range 20h 00m to 23h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  4. The Einstein Observatory catalog of IPC x ray sources. Volume 4E: Right ascension range 08h 00m to 11h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images, The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentaion describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  5. The Einstein Observatory catalog of IPC x ray sources. Volume 6E: Right ascension range 16h 00m to 19h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2 launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics, which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  6. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  7. X-Ray Structure of Lensing Clusters Abell 2219 and Abell 2104

    Science.gov (United States)

    Houck, John C.; Davis, David S.; Wise, Michael W.

    2001-09-01

    We present results from Chandra/ACIS-S imaging observations of two distant clusters, A2219 (z = 0.228) and A2104 (z = 0.155), both of which show evidence for gravitational lensing. A2219 is a massive, X-ray luminous cluster, with a high mean X-ray temperature of about kT ≈ 12 keV. Despite having a smooth, elliptical X-ray surface brightness distribution, evidence from gravitational lensing and from the X-ray temperature map are consistent with the interpretation that A2219 is an ongoing merger. A2104 is a much cooler (kT ≈ 8 keV) and somewhat less luminous cluster which appears to be more dynamically relaxed. Using these data, we estimate cluster masses and provide constraints on the matter distribution in the cluster cores which will be compared with published gravitational lensing models. Support for this work was provided by NASA through Chandra Award Number GO0-1122X issued by the Chandra X-Ray Observatory Center, which is operated by SAO on behalf of NASA under contract NAS8-39073.

  8. Large Observatory for x-ray Timing (LOFT-P): A Probe-classs Mission Concept Study

    CERN Document Server

    Wilson-Hodge, Colleen A; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia; SWG, the US-LOFT

    2016-01-01

    LOFT-P is a concept for a NASA Astrophysics Probe-Class (6 m^2, >10x RXTE), high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty...

  9. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    Science.gov (United States)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  10. THE LONG-TERM X-RAY VARIABILITY OF BROAD ABSORPTION LINE QUASARS

    International Nuclear Information System (INIS)

    We analyze the long-term (rest-frame 3-30 yr) X-ray variability of 11 broad absorption line (BAL) quasars, mainly to constrain the variation properties of the X-ray absorbing shielding gas that is thought to play a critical role in BAL wind launching. Our BAL quasar sample has coverage with multiple X-ray observatories including Chandra, XMM-Newton, BeppoSAX, ASCA, ROSAT, and Einstein; 3-11 observations are available for each source. For seven of the eleven sources we have obtained and analyzed new Chandra observations suitable for searching for any strong X-ray variability. We find highly significant X-ray variability in three sources (PG 1001+054, PG 1004+130, and PG 2112+059). The maximum observed amplitude of the 2-8 keV variability is a factor of 3.8 ± 1.3, 1.5 ± 0.2, and 9.9 ± 2.3 for PG 1001+054, PG 1004+130, and PG 2112+059, respectively, and these sources show detectable variability on rest-frame timescales down to 5.8, 1.4, and 0.5 yr. For PG 1004+130 and PG 2112+059 we also find significant X-ray spectral variability associated with the flux variability. Considering our sample as a whole, we do not find that BAL quasars exhibit exceptional long-term X-ray variability when compared to the quasar population in general. We do not find evidence for common strong changes in the shielding gas owing to physical rearrangement or accretion-disk rotation, although some changes are found; this has implications for modeling observed ultraviolet BAL variability. Finally, we report for the first time an X-ray detection of the highly polarized and well-studied BAL quasar IRAS 14026+4341 in its new Chandra observation.

  11. X-ray Line Emission from the Hot Stellar Wind of theta 1 Ori C

    OpenAIRE

    Schulz, N. S.; Canizares, C. R.; Huenemoerder, D.; Lee, J. C.

    2000-01-01

    We present a first emission line analysis of a high resolution X-ray spectrum of the stellar wind of theta 1 Ori C obtained with the High Energy Transmission grating Spectrometer onboard the Chandra X-ray Observatory. The spectra are resolved into a large number of emission lines from H- and He-like O, Ne, Mg, Si, S, Ar and Fe ions. The He-like Fe XXV and Li-like Fe XXIV appear quite strong indicating very hot emitting regions. From H/He flux ratios, as well as from Fe He/Li emission measure ...

  12. Summarizing X-ray Stellar Spectra

    Science.gov (United States)

    Lee, Hyunsook; Kashyap, V.; XAtlas Collaboration

    2008-05-01

    XAtlas is a spectrum database made with the High Resolution Transmission Grating on the Chandra X-ray Observatory, after painstaking detailed emission measure analysis to extract quantified information. Here, we explore the possibility of summarizing this spectral information into relatively convenient measurable quantities via dimension reduction methods. Principal component analysis, simple component analysis, projection pursuit, independent component analysis, and parallel coordinates are employed to enhance any patterned structures embedded in the high dimensional space. We discuss pros and cons of each dimension reduction method as a part of developing clustering algorithms for XAtlas. The biggest challenge from analyzing XAtlas was handling missing values that pertain astrophysical importance. This research was supported by NASA/AISRP grant NNG06GF17G and NASA contract NAS8-39073.

  13. X-ray astronomy

    International Nuclear Information System (INIS)

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  14. Chandra Observations of Eight Sources Discovered by INTEGRAL

    CERN Document Server

    Tomsick, John A; Wang, Qinan; Bodaghee, Arash; Chaty, Sylvain; Rahoui, Farid; Rodriguez, Jerome; Fornasini, Francesca M

    2015-01-01

    We report on 0.3-10 keV observations with the Chandra X-ray Observatory of eight hard X-ray sources discovered within 8 degrees of the Galactic plane by the INTEGRAL satellite. The short (5 ks) Chandra observations of the IGR source fields have yielded very likely identifications of X-ray counterparts for three of the IGR sources: IGR J14091-6108, IGR J18088-2741, and IGR J18381-0924. The first two have very hard spectra in the Chandra band that can be described by a power-law with photon indices of Gamma = 0.6+/-0.4 and -0.7(+0.4)(-0.3), respectively (90% confidence errors are given), and both have a unique near-IR counterpart consistent with the Chandra position. IGR J14091-6108 also displays a strong iron line and a relatively low X-ray luminosity, and we argue that the most likely source type is a Cataclysmic Variable (CV), although we do not completely rule out the possibility of a High Mass X-ray Binary. IGR J18088-2741 has an optical counterpart with a previously measured 6.84 hr periodicity, which may...

  15. Technology Requirements For a Square-Meter, Arcsecond-Resolution Telescope for X-Rays: The SMART-X Mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay; Cotroneo, Vincenzo; Forman, William; Freeman, Mark; McMuldroch, Stuart; Reid, Paul; Tananbaum, Harvey; Vikhlinin, Alexey; Johnson-Wilke, Raegan; Trolier-McKinstry, Susan; Wilke, Rudeger; Gubarev, Mikhail; Kolodziejczak, Jeffrey; O'Dell, Steve; Ramsey, Brian

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first supermassive black holes. We have envisioned a mission based on adjustable x-ray optics technology, in order to achieve the required reduction of mass to collecting area for the mirrors. We are pursuing technology which effects this adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMARTX will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no more stringent requirements than those which are well understood and proven on the current Chandra X-ray Observatory.

  16. The First High Resolution X-ray Spectrum of Cyg X-1: Soft X-Ray Ionization and Absorption

    OpenAIRE

    Schulz, N. S.; Cui, W.; Canizares, C. R.; Marshall, H. L.; Lee, J. C.; Miller, J.M.; Lewin, W. H. G.

    2001-01-01

    We observed the black hole candidate Cyg X-1 for 15 ks with the High-Energy Transmission Grating Spectrometer aboard the CHANDRA X-ray Observatory. The source was observed during a period of intense flaring activity, so it was about a factor of 2.5 brighter than usual, with a 0.5-10 keV (1-24 A) luminosity of 1.6x10^37 erg/s (at a distance of 2.5 kpc). The spectrum of the source shows prominent absorption edges, some of which have complicated substructure. We use the most recent results from ...

  17. 10+ more years of Chandra-XMM-Newton Synergy

    Science.gov (United States)

    Wilkes, B.

    2016-06-01

    In this current golden age of X-ray astronomy, the frontiers of the X-ray Universe are continually expanding in multiple, often unexpected, directions, due to the extraordinary success and longevity of both ESA's XMM-Newton and NASA's Chandra X-ray Observatory. These two ground-breaking, major observatories are supported by a number of smaller, more focused missions which feed into and expand the discovery space of X-ray astronomy even further. With the prospect of another decade of observing, now is an excellent time to take stock of how far we have come, and to look forward to the future with a view to maximizing the scientific legacy of both XMM-Newton and Chandra. This not only involves optimizing the contents of the archives and the impact of the science results, but also laying the ground-work for the next generation of X-ray telescopes, led by ESA's Athena mission in the late 2020s. I will summarize the synergy between XMM-Newton and Chandra, including complementary capabilities which facilitate coordinated observations and science programs, and overlapping capabilities which often provide the necessary confirmation (or not) of new, marginal and/or controversial results.

  18. The Flare Activity of SgrA*; New Coordinated mm to X-Ray Observations

    CERN Document Server

    Eckart, A; Bautz, M W; Bower, G C; Brandt, W N; Garmire, G P; Genzel, R; Marrone, D; Moran, J M; Morris, M; Ott, T; Rao, R; Ricker, G R; Roberts, D A; Schödel, R; Straubmeier, C; Trippe, S; Viehmann, T; Yusef-Zadeh, F; Zhao, J H

    2005-01-01

    We report new simultaneous near-infrared/sub-millimeter/X-ray observations of the SgrA* counterpart associated with the massive 3-4x10**6 solar mass black hole at the Galactic Center. The main aim is to investigate the physical processes responsible for the variable emission from SgrA*. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope and the ACIS-I instrument aboard the Chandra X-ray Observatory as well as the Submillimeter Array SMA on Mauna Kea, Hawaii, and the Very Large Array in New Mexico. We detected one moderately bright flare event in the X-ray domain and 5 events at infrared wavelengths.

  19. Spectral and temporal properties of the ultra-luminous X-ray pulsar in M82 from 15 years of Chandra observations and analysis of the pulsed emission using NuSTAR

    CERN Document Server

    Brightman, Murray; Walton, Dominic J; Fuerst, Felix; Hornschemeier, Ann; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2015-01-01

    The recent discovery by Bachetti et al. (2014) of a pulsar in M82 that can reach luminosities of up to 10^40 ergs s^-1, a factor of ~100 the Eddington luminosity for a 1.4 Msol compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in the light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.5-8 keV X-ray emission from this source from 15 years of Chandra observations. We fit the Chandra spectra of the pulsar with a power-law model and a disk black body model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where 4/19 observations have a pile-up fraction >10%, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (L_X>10^39 ergs s^-1) is Gamma=1.33+/-0.15. For the disk black body m...

  20. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    Science.gov (United States)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful

  1. X-ray tracing using Geant4

    International Nuclear Information System (INIS)

    We describe an extension to the Geant4 software package that allows it to be used as a general purpose X-ray tracing package. We demonstrate the use of our extension by building a model of the X-ray optics of the X-ray observatory XMM-Newton, calculating its effective area, and comparing the results with the published calibration curves.

  2. The Future of X-Ray Optics

    Science.gov (United States)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  3. The Roadmap for Unification in Galaxy Group Selection. I. A Search for Extended X-ray Emission in the CNOC2 Survey

    Science.gov (United States)

    Finoguenov, A.; Connelly, J. L.; Parker, L. C.; Wilman, D. J.; Mulchaey, J. S.; Saglia, R. P.; Balogh, M. L.; Bower, R. G.; McGee, S. L.

    2009-10-01

    X-ray properties of galaxy groups can unlock some of the most challenging research topics in modern extragalactic astronomy: the growth of structure and its influence on galaxy formation. Only with the advent of the Chandra and XMM-Newton facilities have X-ray observations reached the depths required to address these questions in a satisfactory manner. Here we present an X-ray imaging study of two patches from the CNOC2 spectroscopic galaxy survey using combined Chandra and XMM-Newton data. A state of the art extended source finding algorithm has been applied, and the resultant source catalog, including redshifts from a spectroscopic follow-up program, is presented. The total number of spectroscopically identified groups is 25 spanning a redshift range 0.04-0.79. Approximately 50% of CNOC2 spectroscopically selected groups in the deeper X-ray (RA14h) field are likely X-ray detections, compared to 20% in the shallower (RA21h) field. Statistical modeling shows that this is consistent with expectations, assuming an expected evolution of the LX -M relation. A significant detection of a stacked shear signal for both spectroscopic and X-ray groups indicates that both samples contain real groups of about the expected mass. We conclude that the current area and depth of X-ray and spectroscopic facilities provide a unique window of opportunity at z ~ 0.4 to test the X-ray appearance of galaxy groups selected in various ways. There is at present no evidence that the correlation between X-ray luminosity and velocity dispersion evolves significantly with redshift, which implies that catalogs based on either method can be fairly compared and modeled. Based on observations with the ESA/NASA XMM-Newton science mission; the European Southern Observatory, Chile; NASA/ESA Chandra X-ray Observatory.

  4. X-ray Modeling of Very Young Early Type Stars in the Orion Trapezium: Signatures of Magnetically Confined Plasmas and Evolutionary Implications

    OpenAIRE

    Schulz, Norbert S.; Canizares, Claude R.; Huenemoerder, Dave P.; Tibbetts, Kevin J.

    2003-01-01

    We analyzed high resolution X-ray spectra in the wavelength range of 1.5 -- 25 A of three of its X-ray brightest members obtained with the High Energy Transmission Grating Spectrometer (HETGS) on-board the Chandra X-ray Observatory. The DEM derived from over 80 emission lines in the spectrum of Theta Ori C indicates three peaks located at 7.9 MK, 25 MK, and 66 MK. The emission measure varies over the 15.4 day wind period of the star. For the two phases observed, the low temperature emission r...

  5. The Chandra COSMOS Legacy Survey: Clustering of X-ray selected AGN at 2.9

    CERN Document Server

    Allevato, V; Finoguenov, A; Marchesi, S; Zamorani, G; Hasinger, G; Salvato, M; Miyaji, T; Gilli, R; Cappelluti, N; Brusa, M; Suh, H; Lanzuisi, G; Trakhtenbrot, B; Griffiths, R; Vignali, C; Schawinski, K; Karim, A

    2016-01-01

    We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$\\leq$z$\\leq$5.5 ($\\langle L_{bol} \\rangle \\sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $\\pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$\\sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{\\odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $\\sigma_z$ = 0.052 of our sample at z$\\geq$2.9. Once we integrate the projected 2pcf up to $\\pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and \\textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only...

  6. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    Science.gov (United States)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U ‑ Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  7. X-ray emission line spectroscopy of cataclysmic variables. II. Temperatures and densities from line ratios in the Chandra HETG band

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, E. M.; Shipley, H. V. [Department of Physics and Astronomy, University of Texas-San Antonio, San Antonio, TX 78249 (United States); Rana, V. R. [Space Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Barrett, P. E. [US Naval Observatory, Washington, DC 20392-5420 (United States); Singh, K. P., E-mail: eric.schlegel@utsa.edu, E-mail: vrana@srl.caltech.edu, E-mail: barrett.paul@usno.navy.mil, E-mail: singh@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India)

    2014-12-10

    We summarize the results of a line-by-line fitting analysis of the available spectra obtained using the Chandra High-Energy Transmission Grating. We confirm the existence of broad ionization and electron temperature ranges and high number densities in cataclysmic variables (CVs) of all subtypes. Temperatures range from ∼0.4 keV to ∼5-10 keV or more with a broad range detected in any given CV. In other words, single-temperature models do not describe the line emission. Number densities also cover a broad range, from 10{sup 12} to >10{sup 16} cm{sup –3}. We demonstrate that much of the plasma is in a nonequilibrium state; the Fe emission, however, may arise from plasma in the ionization equilibrium.

  8. X-ray emission line spectroscopy of cataclysmic variables. II. Temperatures and densities from line ratios in the Chandra HETG band

    International Nuclear Information System (INIS)

    We summarize the results of a line-by-line fitting analysis of the available spectra obtained using the Chandra High-Energy Transmission Grating. We confirm the existence of broad ionization and electron temperature ranges and high number densities in cataclysmic variables (CVs) of all subtypes. Temperatures range from ∼0.4 keV to ∼5-10 keV or more with a broad range detected in any given CV. In other words, single-temperature models do not describe the line emission. Number densities also cover a broad range, from 1012 to >1016 cm–3. We demonstrate that much of the plasma is in a nonequilibrium state; the Fe emission, however, may arise from plasma in the ionization equilibrium.

  9. Probing the emission physics and weak/soft population of Gamma-Ray Bursts with LOFT. White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing

    OpenAIRE

    Amati, L.; Stratta, G.; Atteia, J. L.; De Pasquale, M.; Del Monte, E.; Gendre, B.; D. Götz(g); Guidorzi, C.; Izzo, L.; Kouveliotou, C.; Brandt, Søren

    2015-01-01

    The Large Observatory for X-ray Timing, LOFT , is designed to perform fast X-ray timing and spectroscopy with uniquely large throughput (Feroci et al., 2014a). LOFT focuses on two fundamental questions of ESA’s Cosmic Vision Theme “Matter under extreme conditions”: what is the equation of state of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of general relativity? These goals are elaborated in the mission Yellow Book ( http://sci...

  10. X-ray Observations of Planetary Nebulae

    OpenAIRE

    Guerrero, M. A.; Chu, Y.-H.; Gruendl, R A

    2003-01-01

    Planetary nebulae (PNe) are an exciting addition to the zoo of X-ray sources. Recent Chandra and XMM-Newton observations have detected diffuse X-ray emission from shocked fast winds in PN interiors as well as bow-shocks of fast collimated outflows impinging on the nebular envelope. Point X-ray sources associated with PN central stars are also detected, with the soft X-ray (>0.5 keV) emission from instability shocks in the fast stellar wind itself or from a low-mass companion's coronal activit...

  11. Methods for Estimating Fluxes and Absorptions of Faint X-ray Sources

    CERN Document Server

    Getman, Konstantin V; Broos, Patrick S; Townsley, Leisa K; Garmire, Gordon P

    2009-01-01

    X-ray sources with very few counts can be identified with low-noise X-ray detectors such as ACIS onboard the Chandra X-ray Observatory. These sources are often too faint for parametric spectral modeling using well-established methods such as fitting with XSPEC. We discuss the estimation of apparent and intrinsic broad-band X-ray fluxes and soft X-ray absorption from gas along the line of sight to these sources, using nonparametric methods. Apparent flux is estimated from the ratio of the source count rate to the instrumental effective area averaged over the chosen band. Absorption, intrinsic flux, and errors on these quantities are estimated from comparison of source photometric quantities with those of high S/N spectra that were simulated using spectral models characteristic of the class of astrophysical sources under study. The concept of this method is similar to the long-standing use of color-magnitude diagrams in optical and infrared astronomy, with X-ray median energy replacing color index and X-ray sou...

  12. Stacking Star Clusters in M51: Searching for Faint X-Ray Binaries

    CERN Document Server

    Vulic, N; Gallagher, S C

    2012-01-01

    The population of low-luminosity (< 10^35 erg/s) X-Ray Binaries (XRBs) has been investigated in our Galaxy and M31 but not further. To address this problem, we have used data from the Chandra X-Ray Observatory and the Hubble Space Telescope to investigate the faint population of XRBs in the grand-design spiral galaxy M51. A matching analysis found 25 star clusters coincident with 20 X-ray point sources within 1.5" (60 pc). From X-ray and optical color-color plots we determine that this population is dominated by high-mass XRBs. A stacking analysis of the X-ray data at the positions of optically-identified star clusters was completed to probe low-luminosity X-ray sources. No cluster type had a significant detection in any X-ray energy band. An average globular cluster had the largest upper limit, 9.23 x 10^34 erg/s, in the full-band (0.3 - 8 keV) while on average the complete sample of clusters had the lowest upper limit, 6.46 x 10^33 erg/s in the hard-band (2 - 8 keV). We determined average luminosities of...

  13. X-ray properties of the Youngest Radio Sources and their Environments

    CERN Document Server

    Siemiginowska, Aneta; Migliori, Giulia; Guainazzi, Matteo; Hardcastle, Martin; Ostorero, Luisa; Stawarz, Lukasz

    2016-01-01

    We present the first results from our X-ray study of young radio sources classified as Compact Symmetric Objects (CSOs). Using the Chandra X-ray Observatory we observed six CSOs for the first time in X-rays, and re-observed four CSOs with previous XMM-Newton or Beppo-SAX data. We also included six other CSOs with the archival data to built a pilot sample of the 16 CSO sources observed in X-rays to date. All the sources are nearby, $z<1$, and the age of their radio structures, $<3000$ years, has been derived from the hotspots advance velocity. Our results show heterogeneous nature of the CSOs X-ray emission indicating a complex environment associated with young radio sources. The sample covers a range in X-ray luminosity, $L_{2-10 \\rm keV} \\sim 10^{41}$-$10^{45}$ erg s$^{-1}$, and intrinsic absorbing column density of $N_H \\simeq 10^{21}$-10$^{22}$ cm$^{-2}$. In particular, we detected extended X-ray emission in 1718$-$649, a hard photon index of $\\Gamma = 0.8^{+0.3}_{-0.2}$ in 2021$+$614 consistent with...

  14. Hard X-ray view of microlensing events in RX J1131-1231

    CERN Document Server

    Neronov, A; Walter, R

    2016-01-01

    RX J1131-1231 is a gravitationally lensed system which includes four images of a quasar lensed by an elliptical galaxy. The flux in the individual images is known to be affected by microlensing effect in the visible and X-ray bands. We study the multi-wavelength properties of RX J1131-1231 over a broad energy range, from optical to hard X-ray, during the periods of the microlensing caustic crossings. We aim to constrain the spatial extent of the X-ray emission region at different energies. We combine the data of the source monitoring in the visible band with the X-ray data of the Burst Alert Telescope (BAT) on board of SWIFT satellite and Chandra X-ray observatory. Inspecting the broad band spectrum and lightcurves of the source we identify several microlensing caustic crossing events, and study the details of variability of the source during these events. The caustic crossings of image A on MJD 55150 and 55500 produce strong variations of the overall X-ray flux from the source. In the soft X-ray band, the ca...

  15. Recurring X-ray Outbursts in the Supernova Impostor SN~2010da in NGC~300

    CERN Document Server

    Binder, B; Kong, A K H; Gaetz, T J; Plucinsky, P P; Skillman, E D; Dolphin, A

    2016-01-01

    We present new observations of the "supernova impostor" SN 2010da using the Chandra X-ray Observatory and the Hubble Space Telescope. During the initial 2010 outburst, the 0.3-10 keV luminosity was observed by Swift to be $\\sim5\\times10^{38}$ erg s$^{-1}$ and faded by a factor of $\\sim$25 in a four month period. Our two new Chandra observations show a factor of $\\sim$10 increase in the 0.35-8 keV X-ray flux, from $\\sim$4$\\times10^{36}$ erg s$^{-1}$ to $4\\times10^{37}$ erg s$^{-1}$ in $\\sim$6 months, and the X-ray spectrum is consistent in both observations with a power law photon index of $\\Gamma\\sim0$. We find evidence of X-ray spectral state changes: when SN 2010da is in a high-luminosity state, the X-ray spectrum is harder ($\\Gamma\\sim0$) compared to the low-luminosity state ($\\Gamma\\sim1.2\\pm0.8$). Using our Hubble observations, we fit the color magnitude diagram of the coeval stellar population to estimate a time since formation of the SN 2010da progenitor system of $\\lesssim$5 Myr. Our observations are ...

  16. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    Science.gov (United States)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI

  17. Recurring X-ray outbursts in the supernova impostor SN 2010da in NGC 300

    Science.gov (United States)

    Binder, B.; Williams, B. F.; Kong, A. K. H.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.; Dolphin, A.

    2016-04-01

    We present new observations of the `supernova impostor' SN 2010da using the Chandra X-ray Observatory and the Hubble Space Telescope. During the initial 2010 outburst, the 0.3-10 keV luminosity was observed by Swift to be ˜5 × 1038 erg s-1 and faded by a factor of ˜25 in a four month period. Our two new Chandra observations show a factor of ˜10 increase in the 0.35-8 keV X-ray luminosity, from ˜4 × 1036 to 4 × 1037 erg s-1 in ˜6 months, and the X-ray spectrum is consistent in both observations with a power-law with a photon index of Γ ˜ 0. We find evidence of X-ray spectral state changes: when SN 2010da is in a high-luminosity state, the X-ray spectrum is harder (Γ ˜0) compared to the low-luminosity state (Γ ˜ 1.2 ± 0.8). Using our Hubble observations, we fit the colour-magnitude diagram of the coeval stellar population to estimate a time since formation of the SN 2010da progenitor system of ≲5 Myr. Our observations are consistent with SN 2010da being a high-mass X-ray binary (HMXB) composed of a neutron star and a luminous blue variable-like companion, although we cannot rule out the possibility that SN 2010da is an unusually X-ray bright massive star. The ≲5 Myr age is consistent with the theoretically predicted delay time between the formation of a massive binary and the onset of the HMXB phase. It is possible that the initial 2010 outburst marked the beginning of X-ray production in the system, making SN 2010da possibly the first massive progenitor binary ever observed to evolve into an HMXB.

  18. X-Ray Observations of Black Widow Pulsars

    CERN Document Server

    Gentile, P; McLaughlin, M; Camilo, F; Hessels, J; Kerr, M; Ransom, S; Ray, P; Stairs, I

    2013-01-01

    We describe the first X-ray observations of five short orbital period ($P_B < 1$ day), $\\gamma$-ray emitting, binary millisecond pulsars. Four of these, PSRs J0023+0923, J1124$-$3653, J1810+1744, and J2256$-$1024 are `black-widow' pulsars, with degenerate companions of mass $\\ll0.1 M_{\\odot}$, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing `redback' with a near Roche-lobe filling $\\sim$0.2 solar mass non-degenerate companion. Data were taken using the \\textit{Chandra X-Ray Observatory} and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256$-$1024, show significant orbital variability while PSR J1124$-$3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstra...

  19. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Arévalo, P.; Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Puccetti, S. [ASDC-ASI, Via del Politecnico, I-00133 Roma (Italy); Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Koss, M. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Brightman, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching bei München (Germany); Christensen, F. E. [Danish Technical University, Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Gandhi, P. [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory and Department of Physics, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Madejski, G. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); and others

    2014-08-20

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N {sub H} = (6-10) × 10{sup 24} cm{sup –2}, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10{sup 42} erg s{sup –1}. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L{sub X} versus L {sub IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  20. A CHANDRA OBSERVATION OF THE ULTRALUMINOUS INFRARED GALAXY IRAS 19254–7245 (THE SUPERANTENNAE): X-RAY EMISSION FROM THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND THE DIFFUSE STARBURST

    International Nuclear Information System (INIS)

    We present a Chandra observation of IRAS 19254–7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (Γ = 1.3) and an He-like Fe Kα line with equivalent width ∼1.5 keV, consistent with previous observations. The Fe Kα line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of ∼0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8'' south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is ∼6 × 1040 erg s–1 if the emission is isotropic and the source is associated with the Superantennae.

  1. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  2. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    International Nuclear Information System (INIS)

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 1024 cm–2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 1042 erg s–1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and LX versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  3. TW Hya: A Simultaneous Optical and X-Ray Campaign

    Science.gov (United States)

    Dupree, Andrea K.; Brickhouse, N. S.; Cranmer, S. R.; Irwin, J.; Bessell, M. S.; Crause, L. A.; Lawson, W. A.; Luna, J.; Mallik, S. V.; Pallavicini, R.; Schuler, S. C.

    2010-01-01

    A world-wide campaign of spectroscopy and photometry was carried out for 17 days in February- March 2007 (JD 2454147 - 2454164) in support of an extended CHANDRA HETG observation of the nearby accreting T Tauri star: TW Hya (CD -34 7151).This program included photometry from Super WASP-South and SAAO. Spectroscopy was obtained from TNG/SARG, Vainu Bappu Observatory, SAAO, MSSO, Magellan/MIKE, Pico do Dios, and Gemini-S. The photometric period of the star derived from the periodogram of WASP-S photometry during this time was 4.76+/-0.01 d. Hα fluxes do not appear to correlate well with the photometric period nor the total X-ray flux, perhaps influenced by flaring that occurred in both optical and X-ray sequences during this time. Hα profiles from TW Hya can change dramatically during a night, with substantial systematic changes in the wind opacity signaled both in Hα and the He I 10830 Å transition. Related posters by Schneider et al., and Wolk et al. address the optical veiling and X-ray spectrum of TW Hya from this program. Research supported in part by NASA and the Smithsonian Astrophysical Observatory.

  4. DISCOVERY OF X-RAY EMISSION FROM YOUNG SUNS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low- and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.

  5. X-RAY MICROLENSING IN RXJ1131-1231 AND HE1104-1805

    International Nuclear Information System (INIS)

    We present results from a monitoring campaign performed with the Chandra X-ray Observatory of the gravitationally lensed quasars RX J1131-1231 and HE 1104-1805. We detect significant X-ray variability in all images of both quasars. The flux variability detected in image A of RX J1131-1231 is of particular interest because of its high amplitude (a factor of ∼ 20). We interpret it as arising from microlensing since the variability is uncorrelated with that of the other images and the X-ray flux ratios show larger changes than the optical as we would expect for microlensing of the more compact X-ray emission regions. The differences between the X-ray and optical flux ratios of HE 1104-1805 are less dramatic, but there is no significant soft X-ray or dust absorption, implying the presence of X-ray microlensing in this system as well. Combining the X-ray data with the optical light curves we find that the X-ray emitting region of HE 1104-1805 is compact with a half-light radius ∼g , where the gravitational radius is r g = 3.6 x 1014 cm, thus placing significant constraints on AGN corona models. We also find that the microlensing in HE 1104-1805 favors mass models for the lens galaxy that are dominated by dark matter. Finally, we better characterize the massive foreground cluster near RX J1131-1231, set limits on other sources of extended X-ray emission, and limit the fluxes of any central odd images to be 30-50 (3σ) times fainter than the observed images.

  6. DISCOVERY OF X-RAY EMISSION FROM YOUNG SUNS IN THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hainich, R. [Institute for Physics and Astronomy, University Potsdam, D-14476 Potsdam (Germany); Sun, W.; Chen, Y. [Department of Astronomy, Nanjing University, Nanjing, 210093 Jiangsu (China); Evans, C. J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Henault-Brunet, V. [Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Chu, Y.-H.; Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Gallagher, J. S. III [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling, 475 North Charter Street, Madison, WI 53706 (United States); Guerrero, M. A. [Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Guedel, M. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Silich, S. [Instituto Nacional de Astrofisica Optica y Electronica, AP 51, 72000 Puebla (Mexico); Naze, Y. [GAPHE, Departement AGO, Universite de Liege, Allee du 6 Aout 17, Bat. B5C, B-4000 Liege (Belgium); Reyes-Iturbide, J. [LATO-DCET/Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-000 Ilheus, BA (Brazil)

    2013-03-01

    We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low- and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.

  7. X-ray Cryogenic Facility (XRCF) Handbook

    Science.gov (United States)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama

  8. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  9. An X-ray and Infrared Hunt for New Candidate Galactic OB Stars

    Science.gov (United States)

    Povich, Matthew S.; Alexander, Michael J.; Busk, Heather; Hanes, Richard J.; Feigelson, Eric; McSwain, M. Virginia; Townsley, Leisa K.

    2016-01-01

    Most young, massive OB stars produce X-ray emission through a variety of wind-driven shock processes, and individual massive stars are detectable out to several kpc distances in the Galactic plane using high-resolution imaging observations from the Chandra X-ray Observatory. We have developed a technique to identify known and new candidate OB stars by fitting model stellar atmospheres to the broadband infrared spectral energy distributions of X-ray-identified stars. Using this technique, we identified 94 candidate O- and early B-type stars in the Carina Nebula and an additional 98 candidates in 11 other Galactic Massive Star-Forming Regions. Visible-light and near-infrared follow-up spectroscopy of these candidates is ongoing, and initial results indicate that a majority of candidate massive stars will be spectroscopically confirmed as OB stars.

  10. Lessons We Learned Designing and Building the Chandra Telescope

    Science.gov (United States)

    Arenberg, Jonathan; Matthews, Gary; Atkinson, C.; Cohen, L.; Golisano, C.; Havey, K.; Hefner, K.; Jones, C.; Kegley, J.; Knollenberg, P.; Lavoie, T.; Oliver, J.; Plucinsky, P.; Tananbaun, H.; Texter, S.; Weisskopf, M.

    2014-01-01

    2014 marks the crystal (15th) anniversary of the launch of the Chandra X-ray Observatory. This paper offers some of the major lessons learned by some of the key members of the Chandra Telescope team. We offer some of the lessons gleaned from our experiences developing, designing, building and testing the telescope and its subsystems, with 15 years of hindsight. Among the topics to be discussed are the early developmental tests, known as VETA-I and VETA-II, requirements derivation, the impact of late requirements and reflection on the conservatism in the design process.

  11. Chandra X-Ray Spectroscopy of the Focused Wind in the Cygnus X-1 System. II. The Nondip Spectrum in the Low/Hard State - Modulations with Orbital Phase

    CERN Document Server

    Miškovičová, Ivica; Hanke, Manfred; Nowak, Michael A; Pottschmidt, Katja; Schulz, Norbert S; Grinberg, Victoria; Duro, Refiz; Madej, Oliwia K; Lohfink, Anne M; Rodriguez, Jérôme; Bel, Marion Cadolle; Bodaghee, Arash; Tomsick, John A; Lee, Julia C; Brown, Gregory V; Wilms, Jörn

    2016-01-01

    The accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1 as determined with data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This work concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al and highly ionized Fe (Fe xvii-Fe xxiv). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase dependence of these parameters. We show that the absorber is ...

  12. Soft x-ray polarimeter laboratory tests

    Science.gov (United States)

    Murphy, Kendrah D.; Marshall, Herman L.; Schulz, Norbert S.; Jenks, Kevin; Sommer, Sophie J. B.; Marshall, Eric A.

    2010-07-01

    Multilayer-coated optics can strongly polarize X-rays and are central to a new design of a broad-band, soft X-ray polarimeter. We have begun laboratory work to verify the performance of components that could be used in future soft X-ray polarimetric instrumentation. We have reconfigured a 17 meter beamline facility, originally developed for testing transmission gratings for Chandra, to include a polarized X-ray source, an X-ray-dispersing transmission grating, and a multilayer-coated optic that illuminates a CCD detector. The X-rays produced from a Manson Model 5, multi-anode source are polarized by a multilayer-coated flat mirror. The current configuration allows for a 180 degree rotation of the source in order to rotate the direction of polarization. We will present progress in source characterization and system modulation measurements as well as null and robustness tests.

  13. The X-ray -- radio alignment in the z = 2.2 radio galaxy PKS 1138--262

    CERN Document Server

    Carilli, C L; Pentericci, L; Röttgering, H J A; Miley, G K; Kurk, J D; Van Breugel, W; Breugel, Wil van

    2002-01-01

    We present high resolution X-ray observations of the narrow line radio galaxy PKS 1138-262 at z = 2.156 with the ACIS-S detector on the Chandra observatory. These observations show that the X-ray emission from 1138-262 is dominated by emission from the AGN with a (rest frame) 2 to 10 keV luminosity of 4x10^{45} erg/s. The relative X-ray and radio properties of the AGN in 1138-262 are similar to those seen for the AGN in the archetype powerful radio galaxy Cygnus A. Between 10% and 25% (depending on energy) of the X-ray emission from 1138--262 is spatially extended on scales of 10'' to 20''. The extended X-ray emission is elongated, with a major axis aligned with that of the radio source. While the X-ray and radio emissions are elongated on similar scales and position angles, there is no one-to-one correspondence between the radio and X-ray features in the source. The most likely origin for the extended X-ray emission in 1138-262 is thermal emission from shocked gas, although we cannot rule-out a contribution ...

  14. Chandra mission scheduling on-orbit experience

    Science.gov (United States)

    Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David

    2008-07-01

    Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.

  15. Laboratory measurements of the x-ray emission following dielectronic recombination onto highly charged argon ions

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bulbul, Esra; Hell, Natalie; Foster, Adam; Betancourt-Martinez, Gabriele; Porter, Frederick Scott; Smith, Randall K.

    2016-06-01

    We have used the LLNL EBIT-I electron beam ion trap to measure the X-ray emission following resonant dielectronic recombination (DR) onto helium-like and lithium-like argon as a function of electron energy. These measurements were completed by sweeping the energy of EBIT-I's near mono-energetic electron beam from below threshold for DR resonance to above threshold for direct excitation of K-shell transitions in helium-like argon. The X-ray emission was recorded as a function of electron beam energy using the EBIT Calorimeter Spectrometer, whose energy resolution is ~ 5 eV, and also a relatively low resolution, solid-state X-ray detector. These results will be useful when analyzing and interpreting high resolution spectra from celestial sources measured with the Soft X-ray Spectrometer (SXS) calorimeter instrument recently launched on the Hitomi X-ray Observatory (formerly known as Astro-H), as well as data measured using instruments on the Chandra and XMM-Newton X-ray Observatories. Specifically, these data will help determine if the feature detected at ~ 3.56 keV (Bulbul et al. 2014, Boyarsky et al. 2014) in clusters is the result of the decay of a sterile neutrino, a long sought after dark matter particle candidate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and Chandra Grant AR5-16012A.

  16. Spectral Analysis of the Chandra Comet Survey

    CERN Document Server

    Bodewits, D; Torney, M; Dryer, M; Lisse, C M; Dennerl, K; Zurbuchen, T H; Wolk, S J; Tielens, A G G M; Hoekstra, R

    2007-01-01

    We present results of the analysis of cometary X-ray spectra with an extended version of our charge exchange emission model (Bodewits et al. 2006). We have applied this model to the sample of 8 comets thus far observed with the Chandra X-ray observatory and ACIS spectrometer in the 300-1000 eV range. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), C/2000 WM1 (LINEAR), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), C/2001 Q4 (NEAT), 9P/2005 (Tempel 1) and 73P/2006-B (Schwassmann-Wachmann 3) and the observations include a broad variety of comets, solar wind environments and observational conditions. The interaction model is based on state selective, velocity dependent charge exchange cross sections and is used to explore how cometary X-ray emission depend on cometary, observational and solar wind characteristics. It is further demonstrated that cometary X-ray spectra mainly reflect the state of the local solar wind. The current sample of Chandra observations was fit using the constrains of ...

  17. Supermassive Black Holes, AGN Feedback, and Hot X-ray Coronae in Early Type Galaxies

    Science.gov (United States)

    Forman, William R.; Anderson, Michael E.; Churazov, Eugene; Nulsen, Paul; Jones, Christine; Kraft, Ralph P.

    2016-06-01

    We present the analysis of a sample of more than 200 nearby, early type galaxies observed with the Chandra X-ray Observatory. We exclude resolved point sources, and model the emission from both unresolved X-ray binaries and CVs and ABs to derive the residual thermal emission from the hot atmosphere around each galaxy. We compute the X-ray luminosity of the central supermassive black hole (SMBH). Using galaxy velocity dispersion (or stellar mass) as a proxy for SMBH mass, we derive the Eddington ratios for these low luminosity AGN. We present the X-ray luminosity and gas temperature of the hot coronae as a function of stellar mass (a proxy for dark matter halo mass) and central velocity dispersion to look for anomalously X-ray bright gaseous coronae and to determine the stellar (or halo) mass, below which galactic winds may be important. For hot coronae with X-ray cavities, we derive the "mechanical" power of SMBHs and compare these to their radiative luminosities.

  18. X-ray Emission from the Taffy (VV254) Galaxies and Bridge

    CERN Document Server

    Appleton, Philip; Bitsakis, Theodoros; Wang, Junfeng; Peterson, Bradley; Lisenfeld, Ute; Alatalo, Katherine; Guillard, Pierre; Boulanger, Francois; Cluver, Michelle; Gao, Yu; Helou, George; Ogle, Patrick; Struck, Curtis

    2015-01-01

    We present the first X-ray observations of the Taffy galaxies (UGC 12914/5) with the Chandra observatory, and detect soft X-ray emission in the region of the gas-rich, radio-continuum-emitting Taffy bridge. The results are compared to Herschel observations of dust and diffuse [CII] line-emitting gas. The diffuse component of the Taffy bridge has an X-ray luminosity of L(X) (0.5-8keV) =5.4 x 10^39 erg s^-1, which accounts for 19% of the luminosity of the sum for the two galaxies. The total mass in hot gas is (0.8--1.3) x 10^8 M_sun, which is approximately 1% of the total (HI~+~H2) gas mass in the bridge, and ~11% of the mass of warm molecular hydrogen discovered by Spitzer. The soft X-ray and dense CO-emitting gas in the bridge have offset distributions, with the X-rays peaking along the north-western side of the bridge in the region where stronger far-IR dust and diffuse [CII] gas is observed by Herschel. We detect nine Ultra Luminous X-ray sources (ULXs) in the system, the brightest of which is found in the ...

  19. Chapter Four - Atomic Data Needs for Understanding X-ray Astrophysical Plasmas

    Science.gov (United States)

    Smith, Randall K.; Brickhouse, Nancy S.

    2014-08-01

    Astrophysical X-ray spectroscopy promises huge potential scientific returns. The soft X-ray bandpass, 0.1-10 keV, contains transitions from the K-, L-, and M-shell of every cosmically abundant element and ion except H and He. With only moderate (R ~ 1000) resolution, these transitions can be separated into gas, molecular, and solid state phases. Line and continuum measurements at lower resolutions (R ~ 100) can determine the electron temperature, estimate the electron density or radiation field and reveal if the plasma is in equilibrium. Achieving these returns, however, requires accurate data for the underlying rates and transition wavelengths for ions, molecules and solid state materials. Uncertainties in the oscillator strengths of Fe XVII transitions already limit the conclusions that can be made about the non-thermal turbulence in two galaxy groups (de Plaa et al., 2012), while the paucity of accurate wavelengths and collisional rates in the 50-150 Å bandpass have affected analysis of data from the Chandra X-ray Observatory's Low-Energy Transmission Grating (LETG) (e.g., and ). We describe the atomic physics required for the X-ray diagnostics that are in use with existing X-ray missions and that will be required for future X-ray missions.

  20. Monitoring the Crab Nebula with Chandra:A Search for the Location of the gamma-ray Flares

    CERN Document Server

    Weisskopf, Martin C

    2012-01-01

    Subsequent to announcements by the AGILE and by the Fermi-LAT teams of the discovery of gamma-ray flares from the Crab Nebula in the fall of 2010, an international collaboration has been monitoring X-Ray emission from the Crab on a regular basis using the Chandra X-Ray Observatory. Observations occur typically once per month when viewing constraints allow. The aim of the program is to characterize in depth the X-Ray variations within the Nebula, and, if possible, to much more precisely locate the origin of the gamma-ray flares. In 2011 April we triggered a set of Chandra Target-of-Opportunity observations in conjunction with the brightest gamma-ray flare yet observed. We briefly summarize the April X-ray observations and the information we have gleaned to date.

  1. Chandra Observations of Comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS)

    OpenAIRE

    Snios, Bradford; Kharchenko, Vasili; Lisse, Carey M.; Wolk, Scott J.; Dennerl, Konrad; Combi, Michael R.

    2016-01-01

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31-November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17-23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emi...

  2. Dynamics of the Shocked Gas in the Eta Carinae System as Seen by Chandra

    Science.gov (United States)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D. B.; Ishibashi, K.; Gull, T.; Nielsen, K.; Pittard, J. M.

    2006-01-01

    We report on a series of X-ray spectra of the supermassive star Eta Carinae obtained by the High Energy Transmission Grating Spectrometer on the CHANDRA X-ray observatory before, during and after the star's X-ray minimum in the summer of 2003. The X-ray spectra show significant variations in emission measure and absorption, in the strength of the iron K edge and fluorescent iron emission, but show little change in the distribution of emission measure with temperature. The CHANDRA spectra also resolve emission from Si, S, Fe and other elements in H-like and He-like configurations. The HETGS spectra show that these lines change in centroid energy along with evidence of changes in the forbidden-to-intercombination ratios of the He-like triplets. These spectra offer strong support that the X-ray emission originates within a shock cone around an unseen, massive companion. The variations of the X-ray line spectrum provide a direct measure of the dynamics of the shocked gas in this cone and also evidence that the hottest region of the shock is not always in collisional ionization equilibrium. We discuss these results in light of the recent discovery of He II 4686 emission and the reported discovery of FUV emission from the companion star. This work was supported by SAO/Chandra grant GO3-4008A.

  3. X ray imaging microscope for cancer research

    Science.gov (United States)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  4. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  5. Predicting Chandra CCD Degradation with the Chandra Radiation Model

    Science.gov (United States)

    Minow, Joseph I.; Blackwell, William C.; DePasquale, Joseph M.; Grant, Catherine E.; O'Dell, Stephen L.; Plucinsky, Paul P.; Schwartz, Daniel A.; Spitzbart, Bradley D.; Wolk, Scott J.

    2008-01-01

    Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This

  6. Chandra Observes Cloud Powered by Black Hole in Distant Galaxy

    Science.gov (United States)

    2000-06-01

    NASA's Chandra X-ray Observatory has shown that a large gas cloud is being blasted by X rays from the vicinity of a giant black hole which lurks in its center. The observation is of special interest because it shows the disruptive effects that a massive black hole can have over thousands of light years. The results are being presented today by Drs. Patrick M. Ogle, Herman L. Marshall, Julia C. Lee, and Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 196th national meeting of the American Astronomical Society in Rochester, NY. The observation also demonstrates that the searchlight beam of X rays from the black hole can be used to probe the environment around a black hole. The galaxy NGC 4151 is located at a distance of 50 million light years in a direction just south of the Big Dipper. It is a prominent example of a class of galaxies that show unusual energetic activity in their nucleus. This activity is now known to be due to the presence of a giant black hole in the nucleus with an estimated mass 10 million times that of the Sun. As matter swirls toward the black hole, it releases a prodigious amount of energy, much of it in X rays. Previous observations showed that X rays are also coming from an enormous cloud 3000 light years across that surrounds the black hole. The precise mirrors of Chandra allowed astronomers to make an X-ray image showing unprecedented detail of the massive cloud in the center of NGC 4151. The brightest regions in the cloud correspond to wisps that were previously observed in visible light by the Hubble Space Telescope. The shape of the cloud confirms that X rays from the black hole are collimated into a narrow beam, and illuminate only certain quadrants of the galaxy. "The black hole is shining an X-ray searchlight which illuminates the clouds in the night sky of NGC 4151" said Ogle. By using the High Energy Transmission Grating (HETG), astronomers were able to resolve the X-ray spectrum from the

  7. Characterization of the optical and X-ray properties of the northwestern wisps in the Crab Nebula

    CERN Document Server

    Schweizer, Thomas; Idec, Wojciech; Nilsson, Kari; Tennant, Allyn; Weisskopf, Martin; Zanin, Roberta

    2013-01-01

    We have studied the wisps to the northwest of the Crab pulsar as part of a multiwavelength campaign in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-ray Observatory. The observing campaign took place from October 2010 until September 2012. About once per year we observe wisps forming and peeling off from (or near) the region commonly associated with the termination shock of the pulsar wind. We find that the exact locations of the northwestern wisps in the optical and in X-rays are similar but not coincident, with X-ray wisps preferentially located closer to the pulsar. This suggests that the optical and X-ray wisps are not produced by the same particle distribution. Our measurements and their implications are interpreted in terms of a Doppler-boosted ring model that has its origin in MHD modeling. While the Doppler boosting factors inferred from the X-ray wisps are consistent with current MHD sim...

  8. Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula

    Science.gov (United States)

    Weisskopf, M. C.; Bucciantini, N.; Idec, W.; Nillson, K.; Schweizer, T.; Tennant, A. F.; Zanin, R.

    2013-01-01

    We have studied the wisps to the northwest of the Crab pulsar as part of a multi-wavelength campaign in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-ray Observatory. The observing campaign took place from October 2010 until September 2012. About once per year we observe wisps forming and peeling off from (or near) the region commonly associated with the termination shock of the pulsar wind. We find that the exact locations of the northwestern wisps in the optical and in X-rays are similar but not coincident, with X-ray wisps preferentially located closer to the pulsar. This suggests that the optical and X-ray wisps are not produced by the same particle distribution. It is also interesting to note that the optical and radio wisps are also separated from each other (Bietenholz et al. 2004). Our measurements and their implications are interpreted in terms of a Doppler-boosted ring model that has its origin in MHD modeling. While the Doppler boosting factors inferred from the X-ray wisps are consistent with current MHD simulations of PWNe, the optical boosting factors are not, and typically exceed values from MHD simulations by about a factor of 4.

  9. X-ray Arcs Tell The Tale Of Giant Eruption

    Science.gov (United States)

    2002-08-01

    Long ago, a giant eruption occurred in a nearby galaxy and plunged it into turmoil. Now NASA's Chandra X-ray Observatory has revealed the remains of that explosion in the form of two enormous arcs of hot gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes in the centers of many so-called "active" galaxies. Scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) report that two arc-like structures of multimillion-degree gas in the galaxy Centaurus A appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been produced in a titanic explosion that occurred about ten million years ago. A composite image of the galaxy made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a stunning tableau of a tumultuous galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of X-ray emitting hot gas. "Putting all the images together was the key to understanding what Chandra showed," said Margarita Karovska, lead author on a paper in the September 20, 2002, issue of The Astrophysical Journal. "Suddenly it all clicked in, as with a giant puzzle, and the images fit together to make a complete picture of the galaxy geometry that was not at all apparent before." The team proposes that the orientation of the arcs of hot gas perpendicular to the jet and the symmetry of the projected ring with respect to the center of the galaxy could be evidence that the ring is the result of a giant eruption in the nucleus of the galaxy 10 million years ago. This explosion may have produced a galaxy-sized shock wave that has been moving outward at speeds of a million miles per hour. The age of 10 million years for the

  10. Jet Power and Black Hole Assortment Revealed in New Chandra Image

    Science.gov (United States)

    2008-01-01

    acceleration in this part of the jet is unknown. Hundreds of point-like sources are also seen in the Chandra image. Many of these are X-ray binaries that contain a stellar-mass black hole and a companion star in orbit around one another. Determining the population and properties of these black holes should help scientists better understand the evolution of massive stars and the formation of black holes. Another surprise was the detection of two particularly bright X-ray binaries. These sources may contain stellar mass black holes that are unusually massive, and this Chandra observation might have caught them gobbling up material at a high rate. In this image, low-energy X-rays are colored red, intermediate-energy X-rays are green, and the highest-energy X-rays detected by Chandra are blue. The dark green and blue bands running almost perpendicular to the jet are dust lanes that absorb X-rays. This dust lane was created when Centaurus A merged with another galaxy perhaps 100 million years ago. This research was presented at the American Astronomical Society meeting on January 9th by Gregory Sivakoff (The Ohio State University). Other team members include Ralph Kraft (Harvard-Smithsonian Center for Astrophysics), Martin Hardcastle (University of Hertfordshire), Diana Worrall (University of Bristol), and Andres Jordan (Smithsonian Astrophysical Observatory). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  11. TGCat : THE CHANDRA TRANSMISSION GRATING DATA CATALOG AND ARCHIVE

    International Nuclear Information System (INIS)

    The Chandra Transmission Grating Data Archive and Catalog (TGCat) provides easy access to analysis-ready products, specifically, high-resolution X-ray count spectra and their corresponding calibrations. The web interface makes it easy to find observations of a particular object, type of object, or type of observation; to quickly assess the quality and potential usefulness of the spectra from pre-computed summary plots; or to customize a view with an interactive plotter, optionally combining spectra over multiple orders or observations. Data and responses can be downloaded as a package or as individual files, and the query results themselves can be retrieved as ASCII or Virtual Observatory tables. Portable reprocessing scripts used to create the archive and which use the Chandra X-ray Center's (CXC's) software and other publicly available software are also available, facilitating standard or customized reprocessing from Level 1 CXC archival data to spectra and responses with minimal user interaction.

  12. X-Ray Snapshots Capture the First Cries of Baby Stars

    Science.gov (United States)

    2000-11-01

    CXC PR: 00-27 Stars, like babies, make quite a fuss in their first days after birth. Astronomers using the Chandra X-ray Observatory have discovered that protostars--stars in their youngest, "neonatal" stage--are marked by powerful X rays from plasma ten times hotter and 100 to 100,000 times brighter than the flares on our Sun. This is all long before their nuclear furnaces of hydrogen even ignite, the mark of stellar maturity. The X-ray flares have also provided the closest look yet at the youngest stars in the universe, never before detected because they are hidden within dust and molecular clouds that filter all other types of light. Yohko Tsuboi of the Pennsylvania State University (Penn State) presents these findings today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. "We peered at newborn stars deeply embedded in their cradle and found that their crying is much more tumultuous than we expected," said Tsuboi. "With Chandra, we now have a new tool to examine protostars, which have been impossible to gain access to in any other wavelength." Protostars located in the rho-Ophiuchi molecular cloud Protostars located in the rho-Ophiuchi molecular cloud 1 square light years field X-ray image around rho Ophiuchi molecular cloud core. Red colorrepresents less absorbed X rays, while blue represents absorbed X rays. Lightcurves for each sources are also shown. Tsuboi and her collaborators looked at the two youngest types of protostars: Class-0 (zero) protostars, about 10,000 years old; and Class-I protostars, about 100,000 years old. In human terms, these protostars are like one-hour-old and 10-hour-old babies, respectively. The transition from one class to another is marked by changes in the protostar's infrared spectrum as the gas and dust envelope diminishes. The envelope has been well studied by infrared and radio astronomers. Protostars themselves and their most extreme

  13. Chandra Catches Cannibal Galaxy in the Act

    Science.gov (United States)

    2000-07-01

    NASA's Chandra X-ray Observatory image of Perseus A provides new insight into how this supergiant galaxy has grown by cannibalizing other galaxies and gas in the vicinity. For the first time astronomers see an X-ray shadow cast by a smaller galaxy as its gas is being stripped away by the enormous galaxy. The research was reported by Professor Andrew Fabian of the Institute of Astronomy, Cambridge, England on June 7 at the 196th National Meeting of the American Astronomical Society, in Rochester, NY. Other members of the research team are Jeremy Sanders, Stefano Ettori, Steve Allen, Carolin Crawford, Kazushi Iwasawa, and Roderick Johnstone of the Institute of Astronomy, Gregory Taylor on the National Radio Astronomy Observatory, Socorro, NM, and Patrick Ogle of the Massachusetts Institute of Technology, Cambridge, MA. Perseus A, or NGC 1275, is in the center of a large galaxy cluster 320 million light years from Earth. The cluster, which contains thousands of galaxies and enough gas to make thousands more, is one of the largest gravitationally bound objects in the universe. Over the eons, Perseus A has accumulated hundreds of billions of stars to become one of the most massive known galaxies as gas and galaxies have been pulled inward by gravity. The Chandra observation shows a region of hot gas that extends over several hundred thousand light years. The gas in the outer portion of the cluster has a temperature of 70 million degrees. The cluster gas cools gradually and settles toward the center of the cluster. A galaxy with "only" about 20 billion stars is falling into Perseus A (located at two o'clock from the center of the image) and appears as a small dark patch due to absorption of X rays by cool gas in the infalling galaxy. Another larger hole seen further out is thought to be due to a bubble of high-energy particles ejected in an explosion from Perseus A hundreds of millions of years ago. These outbursts are presumably fueled by matter releasing tremendous

  14. X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum

    OpenAIRE

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore; Ishibashi, Kazunori; Pittard, Julian M.; Hillier, D. John; Damineli, Augusto; Davidson, Kris; Nielsen, Krister E.; Kober, Gladys Vieira

    2007-01-01

    We report the results of an X-ray observing campaign on the massive, evolved star Eta Carinae, concentrating on the 2003 X-ray minimum as seen by the XMM-Newton observatory. These are the first spatially-resolved X-ray monitoring observations of the stellar X-ray spectrum during the minimum. The hard X-ray emission, believed to be associated with the collision of Eta Carinae's wind with the wind from a massive companion star, varied strongly in flux on timescales of days, but not significantl...

  15. X-Ray IGM in the Local Group

    CERN Document Server

    Rasmussen, A; Paerels, F B S; Rasmussen, Andrew; Kahn, Steven M.; Paerels, Frits

    2003-01-01

    Recent observations with the dispersive X-ray spectrometers aboard Chandra and Newton Observatory have begun to probe the properties of the X-ray intergalactic medium (IGM) at small redshifts. Using large quantities (~950 ksec) of spectroscopic data acquired using the RGS aboard Newton Observatory, we investigated the intervening material toward three low redshift, high Galactic latitude AGNs with nominally featureless spectra: Mrk421, PKS2155-304 and 3C273. Each spectrum provides clear evidence for what appears to be a local (z~0), highly ionized absorbing medium betrayed by the OVII 1s-2p resonance transition feature seen at 21.6A (N[OVII] ~ 1E16 cm-2). Measurements are also made for the Lyman alpha transition of the adjacent ionization state, (OVIII; 18.97A), which potentially constrains the absorber's temperature. Finally, in a collisional equilibrium approximation, upper limits to diffuse emission intensities place upper limits on the electron density (ne 140 kpc) and lower limits on its mass (M > 5E10 ...

  16. Development Status of Adjustable X-ray Optics with 0.5 Arcsec Imaging for the X-ray Surveyor Mission Concept

    Science.gov (United States)

    Reid, Paul B.; Allured, Ryan; ben-Ami, Sagi; Cotroneo, Vincenzo; Schwartz, Daniel A.; Tananbaum, Harvey; Vikhlinin, Alexey; Trolier-McKinstry, Susan; Wallace, Margeaux L.; Jackson, Tom

    2016-04-01

    The X-ray Surveyor mission concept is designed as a successor to the Chandra X-ray Observatory. As currently envisioned, it will have as much as 30-50 times the collecting area of Chandra with the same 0.5 arcsec imaging resolution. This combination of telescope area and imaging resolution, along with a detector suite for imaging and dispersive and non-dispersive imaging spectroscopy, will enable a wide range of astrophysical observations. These observations will include studies of the growth of large scale structure, early black holes and the growth of SMBHs, and high resolution spectroscopy with arcsec resolution, among many others. We describe the development of adjustable grazing incidence X-ray optics, a potential technology for the high resolution, thin, lightweight mirrors. We discuss recent advancements including the demonstration of deterministic figure correction via the use of the adjusters, the successful demonstration of integrating control electronics directly on the actuator cells to enable row-column addressing, and discuss the feasibility of on-orbit piezoelectric performance and figure monitoring via integrated semiconductor strain gauges. We also present the telescope point design and progress in determining the telescope thermal sensitivities and achieving alignment and mounting requirements.

  17. Chest x-ray

    Science.gov (United States)

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  18. SNR 1E 0102.2-7219 as an X-ray Calibration Standard in the 0.5-1.0 keV Bandpass and Its Application to the CCD Instruments aboard Chandra, Suzaku, Swift and XMM-Newton

    CERN Document Server

    Plucinsky, Paul P; Foster, Adam; Haberl, Frank; Miller, Eric D; Pollock, A M T; Sembay, Steve

    2016-01-01

    We desire a simple comparison of the absolute effective areas of the current generation of CCD instruments onboard the following observatories: Chandra ACIS-S3, XMM-Newton (EPIC-MOS and EPIC-pn), Suzaku XIS, and Swift XRT and a straightforward comparison of the time-dependent response of these instruments across their respective mission lifetimes. We have been using 1E 0102.2-7219, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate and modify the response models of these instruments. 1E 0102.2-7219 has strong lines of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the spectrum. As part of the activities of the International Astronomical Consortium for High Energy Calibration (IACHEC), we have developed a standard spectral model for 1E 0102.2-7219. The model is empirical in that it includes Gaussians for the identified lines, an absorption component in the Galaxy, another absorption component in the SMC, and two thermal continuum components. In our fits, the mode...

  19. Chandra Captures Venus In A Whole New Light

    Science.gov (United States)

    2001-11-01

    Scientists have captured the first X-ray view of Venus using NASA's Chandra X-ray Observatory. The observations provide new information about the atmosphere of Venus and open a new window for examining Earth's sister planet. Venus in X-rays looks similar to Venus in visible light, but there are important differences. The optically visible Venus is due to the reflection of sunlight and, for the relative positions of Venus, Earth and Sun during these observations, shows a uniform half-crescent that is brightest toward the middle. The X-ray Venus is slightly less than a half-crescent and brighter on the limbs. The differences are due to the processes by which Venus shines in visible and X-ray light. The X-rays from Venus are produced by fluorescence, rather than reflection. Solar X-rays bombard the atmosphere of Venus, knock electrons out of the inner parts of the atoms, and excite the atoms to a higher energy level. The atoms almost immediately return to their lower energy state with the emission of a fluorescent X-ray. A similar process involving ultraviolet light produces the visible light from fluorescent lamps. For Venus, most of the fluorescent X-rays come from oxygen and carbon atoms between 120 and 140 kilometers (74 to 87 miles) above the planet's surface. In contrast, the optical light is reflected from clouds at a height of 50 to 70 kilometers (31 to 43 miles). As a result, Venus' Sun-lit hemisphere appears surrounded by an almost-transparent luminous shell in X-rays. Venus looks brightest at the limb since more luminous material is there. Venus X-ray/Optical Composite of Venus Credit: Xray: NASA/CXC/MPE/K.Dennerl et al., Optical: Konrad Dennerl "This opens up the exciting possibility of using X-ray observations to study regions of the atmosphere of Venus that are difficult to investigate by other means," said Konrad Dennerl of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, leader of an international team of scientists that

  20. Soft X-ray Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

    OpenAIRE

    Werner, K.; Drake, J. J.; Rauch, T.; Schuh, S.; Gautschy, A.

    2006-01-01

    We have performed soft X-ray spectroscopy of two hot white dwarfs with the Chandra observatory using the Low Energy Transmission Grating. The first target is the hot DA white dwarf LB1919 (Teff=69000 K). This star is representative of a small group of hot DAs whose metallicities lie well below predictions from radiative levitation theory. The Chandra spectrum shows a rich absorption line spectrum which may allow to find the origin of the low-metallicity nature of these DAs. The second target ...

  1. Composition of the Chandra ACIS contaminant

    CERN Document Server

    Marshall, H L; Grant, C E; Hitchcock, A P; O'Dell, S; Plucinsky, P P; Marshall, Herman L.; Tennant, Allyn; Grant, Catherine E.; Hitchcock, Adam P.; Dell, Steve O'; Plucinsky, Paul P.

    2003-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also detectable. Excluding H, we find that C, O, and F comprise >80%, 7%, and 7% of the contaminant by number, respectively. Nitrogen is less than 3% of the contaminant. We will assess various candidates for the contaminating material and investigate the growth of the layer with time. For example, the detailed structure of the C-K absorption edge provides information about the bonding structure of the compound, eliminating aromatic hydrocarbons as the contaminating material.

  2. Chandra Images Provide New Vision of Cosmic Explosions

    Science.gov (United States)

    1999-09-01

    Images from NASA's Chandra X-ray Observatory released today reveal previously unobserved features in the remnants of three different supernova explosions. Two of the remnants G21.5-0.9 and PSR 0540-69 show dramatic details of the prodigious production of energetic particles by a rapidly rotating, highly magnetized neutron star, as well as the enormous shell structures produced by the explosions. The image of the third remnant, E0102-72, reveals puzzling spoke-like structures in its interior. G21.5-0.9, in the constellation of Scutum, is about 16,000 light years (1 light year = 6 trillion miles) from Earth. Chandra's image shows a bright nebula surrounded by a much larger diffuse cloud. Inside the inner nebula is a bright central source that is thought to be a rapidly rotating highly magnetized neutron star. A rotating neutron star acts like a powerful generator, creating intense electric voltages that accelerate electrons to speeds close to the speed of light. The total output of this generator is greater than a thousand suns. The fluffy appearance of the central nebula is thought to be due to magnetic field lines which constrain the motions of the high-energy electrons. "It's a remarkable image," said Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics. "Neither the inner core nor the outer shell has ever been seen before." "It is as though we have a set of Russian dolls, with structures embedded within structures," said Professor Gordon Garmire of Penn State University, and principal investigator of the Advanced CCD Imaging Spectrometer, the X-ray camera that was used to make two of the images. NASA's project scientist, Dr. Martin Weisskopf of the Marshall Space Flight Center said, "Chandra's capability to provide surprises and insights continues." PSR 0540-69 PSR 0540-69 The existence of a rotating neutron star, or pulsar, in the center of G21.5-0.9 is inferred from the appearance of the nebula and the energy distribution of X-rays and radio

  3. Untwisting the Tornado: X-ray Imaging and Spectroscopy of G357.7-0.1

    CERN Document Server

    Gaensler, B M; Slane, P O; Miller, J M; Wijnands, R; Eikenberry, S S; Lewin, W H G

    2003-01-01

    We report on the detection of X-ray emission from the unusual Galactic radio source G357.7-0.1 (the "Tornado"). Observations made with the Chandra X-ray Observatory demonstrate the presence of three sources of X-ray emission from the Tornado: a relatively bright region of dimensions 2'x1' coincident with and interior to the brightest radio emission at the "head" of the Tornado, plus two fainter extended regions located in the Tornado's "tail". No X-ray point sources associated with the Tornado are seen down to a 3-sigma luminosity (0.5-10 keV) of 1e33 erg/s, for a distance to the system of 12 kpc. The spectrum of the brightest region of X-rays is consistent with a heavily absorbed (N_H ~ 1e23 cm^-2) thermal plasma of temperature kT ~ 0.6 keV; an absorbed power law can also fit the data, but implies an extremely steep photon index. From these data we tentatively conclude that the Tornado is a supernova remnant (SNR), although we are unable to rule out the possibility that the Tornado is powered either by outfl...

  4. X-ray Emission from Eta Carinae near Periastron in 2009 I: A Two State Solution

    CERN Document Server

    Hamaguchi, Kenji; Russell, Christopher; Pollock, Andrew M T; Gull, Theodore R; Teodoro, Mairan; Madura, Thomas I; Damineli, Augusto; Pittard, Julian M

    2014-01-01

    X-ray emission from the supermassive binary system Eta Carinae declines sharply around periastron. This X-ray minimum has two distinct phases - the lowest flux phase in the first ~3 weeks and a brighter phase thereafter. In 2009, the Chandra X-ray Observatory monitored the first phase five times and found the lowest observed flux at ~1.9e-12 ergs cm-2 s-1 (3-8 keV). The spectral shape changed such that the hard band above ~4 keV dropped quickly at the beginning and the soft band flux gradually decreased to its lowest observed value in ~2 weeks. The hard band spectrum had begun to recover by that time. This spectral variation suggests that the shocked gas producing the hottest X-ray gas near the apex of the wind-wind collision (WWC) is blocked behind the dense inner wind of the primary star, which later occults slightly cooler gas downstream. Shocked gas previously produced by the system at earlier orbital phases is suggested to produce the faint residual X-ray emission seen when the emission near the apex is ...

  5. A Large X-ray Sample of Fossil Groups

    CERN Document Server

    Miller, Eric D; Dupke, Renato de Alencar; de Oliveira, Claudia Mendes; McKay, Timothy; Koester, Benjamin

    2009-01-01

    We present Chandra snapshot observations of the first large X-ray sample of optically identified fossil groups. For 9 of 14 candidate groups, we are able to determine the X-ray luminosity and temperature, which span a range typical of large ellipticals to rich groups of galaxies. We discuss these initial results in the context of group IGM and central galaxy ISM evolution, and we also describe plans for a deep X-ray follow-up program.

  6. A Chandra Observation of the Luminous Northeastern Rim of the Galactic Supernova Remnant W28 (G6.4-0.1)

    Science.gov (United States)

    Pannuti, Thomas

    2016-06-01

    We present an analysis of a pointed observation made of the luminous northeastern rim of the Galactic supernova remnant (SNR) W28 (G6.4-0.1) with the Chandra X-ray Observatory. W28 is the archetype for the class of SNRs known as the mixed-morphology SNRs: sources in this class of objects feature a shell-like morphology with a contrasting center-filled X-ray morphology. Almost unique amongst mixed-morphology SNRs, W28 exhibits a luminous northeastern rim which is detected in the X-ray, optical and radio: this rim is also the site of a vigorous interaction between W28 and adjacent molecular clouds, as evidenced by the high concentration of hydroxyl (OH) masers seen at this rim. Our pointed Chandra observation of this rim is the highest angular X-ray observation made of this feature: initial analysis and results will be presented and discussed.

  7. Innovations in the Analysis of Chandra-ACIS Observations

    CERN Document Server

    Broos, Patrick S; Feigelson, Eric D; Getman, Konstantin V; Bauer, Franz E; Garmire, Gordon P

    2010-01-01

    As members of the instrument team for the Advanced CCD Imaging Spectrometer (ACIS) on NASA's Chandra X-ray Observatory and as Chandra General Observers, we have developed a wide variety of data analysis methods that we believe are useful to the Chandra community, and have constructed a significant body of publicly-available software (the ACIS Extract package) addressing important ACIS data and science analysis tasks. This paper seeks to describe these data analysis methods for two purposes: to document the data analysis work performed in our own science projects, and to help other ACIS observers judge whether these methods may be useful in their own projects (regardless of what tools and procedures they choose to implement those methods). The ACIS data analysis recommendations we offer here address much of the workflow in a typical ACIS project, including data preparation, point source detection via both wavelet decomposition and image reconstruction, masking point sources, identification of diffuse structure...

  8. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  9. A CHANDRA OBSERVATION OF THE TW HYDRAE ASSOCIATION BROWN DWARF 2MASSW J1139511-315921

    International Nuclear Information System (INIS)

    We report on a sequence of Chandra X-Ray Observatory observations of the TW Hydrae brown dwarf (BD) 2MASSW J1139511-315921 (2M1139). In the combined 31 ks ACIS-S exposure, 2M1139 is detected at the 3σ confidence level. We find an X-ray luminosity of LX = 1.4+2.7-1.0 x 1026 erg s-1 or log LX/Lbol = -4.8 ± 0.3. This object is similar to another TW Hydrae BD member, CD-33 7795B (TWA 5B): both have Hα emission, both show no signatures of accretion, and both have comparable ages and spectral types. TWA 5B was previously detected in X-rays with a luminosity of LX = 4 x 1027 erg s-1 or log LX/Lbol = -3.4, an order of magnitude more luminous in X-rays than 2M1139. We find that the discrepancy between the X-ray luminosity of 2M1139 and TWA 5B is consistent with the spread in X-ray luminosity in the Orion Nebula Cluster for BDs of similar spectral types. Though rotation may play a role in the X-ray activity of ultracool dwarfs like 2M1139 and TWA 5B, the discrepancy cannot be explained by rotation alone. We also examine two X-ray bright objects in the field of view of our Chandra observations and find one to be of spectral type K0IV and identify it as a possible RS Canum Venaticorum, and another X-ray bright object whose light curve clearly shows the decay phase of an X-ray flare.

  10. A 33 yr constancy of the X-ray coronae of AR Lac and eclipse diagnosis of scale height

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J.; Ratzlaff, Peter; Kashyap, Vinay; Wargelin, Bradford J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Huenemoerder, David P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Pease, Deron O. [Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States)

    2014-03-01

    Extensive X-ray and EUV photometric observations of the eclipsing RS CVn system AR Lac were obtained over the years 1997-2013 with the Chandra X-Ray Observatory Extreme-Ultraviolet Explorer (EUVE). During primary eclipse, High Resolution Camera count rates decrease by ∼40%. A similar minimum is seen during one primary eclipse observed by EUVE but not in others owing to intrinsic source variability. Little evidence for secondary eclipses is present in either the X-ray or EUV data, reminiscent of earlier X-ray and EUV observations. Primary eclipses allow us to estimate the extent of a spherically symmetric corona on the primary G star of about 1.3 R {sub ☉}, or 0.86 R {sub *}, and indicate that the G star is likely brighter than the K component by a factor of 2-5. Brightness changes not attributable to eclipses appear to be dominated by stochastic variability and are generally non-repeating. X-ray and EUV light curves cannot therefore be reliably used to reconstruct the spatial distribution of emission assuming that only eclipses and rotational modulation are at work. Moderate flaring is observed, where count rates increase by up to a factor of three above quiescence. Combined with older ASCA, Einstein, EXOSAT, ROSAT, and BeppoSAX observations, the data show that the level of quiescent coronal emission at X-ray wavelengths has remained remarkably constant over 33 yr, with no sign of variation due to magnetic cycles. Variations in base level X-ray emission seen by Chandra over 13 yr are only ∼10%, while variations back to pioneering Einstein observations in 1980 amount to a maximum of 45% and more typically about 15%.

  11. Detecting edges in the X-ray surface brightness of galaxy clusters

    CERN Document Server

    Sanders, J S; Russell, H R; Walker, S A; Blundell, K M

    2016-01-01

    The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with AGN feedback, the Perseus cluster and M87, and a merging system, A3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compar...

  12. The dynamic X-ray nebula powered by the pulsar B1259-63

    Energy Technology Data Exchange (ETDEWEB)

    Kargaltsev, Oleg; Volkov, Igor; Hare, Jeremy [George Washington University, Washington, DC 20052 (United States); Pavlov, George G. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16801 (United States); Durant, Martin, E-mail: kargaltsev@gwu.edu [Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 2J7 (Canada)

    2014-04-01

    We present observations of the eccentric γ-ray binary B1259-63/LS 2883 with the Chandra X-ray Observatory. The images reveal a variable, extended (about 4'', or ∼1000 times the binary orbit size) structure, which appears to be moving away from the binary with the velocity of 0.05 of the speed of light. The observed emission is interpreted as synchrotron radiation from relativistic particles supplied by the pulsar. However, the fast motion through the circumbinary medium would require the emitting cloud to be loaded with a large amount of baryonic matter. Alternatively, the extended emission can be interpreted as a variable extrabinary shock in the pulsar wind outflow launched near binary apastron. The resolved variable X-ray nebula provides an opportunity to probe pulsar winds and their interaction with stellar winds in a previously inaccessible way.

  13. 2S1553-542: a Be/X-ray binary pulsar on the far side of the Galaxy

    CERN Document Server

    Lutovinov, Alexander A; Townsend, Lee J; Tsygankov, Sergey S; Kennea, Jamie

    2016-01-01

    We report the results of a comprehensive analysis of X-ray (Chandra and Swift observatories), optical (Southern African Large Telescope, SALT) and near-infrared (the VVV survey) observations of the Be/X-ray binary pulsar 2S1553-542. Accurate coordinates for the X-ray source are determined and are used to identify the faint optical/infrared counterpart for the first time. Using VVV and SALTICAM photometry, we have constructed the spectral energy distribution (SED) for this star and found a moderate NIR excess that is typical for Be stars and arises due to the presence of circumstellar material (disk). A comparison of the SED with those of known Be/X-ray binaries has allowed us to estimate the spectral type of the companion star as B1-2V and the distance to the system as $>15$ kpc. This distance estimation is supported by the X-ray data and makes 2S1553-542 one of the most distant X-ray binaries within the Milky Way, residing on the far side in the Scutum-Centaurus arm or even further.

  14. Technology requirements for a square meter, arcsecond resolution telescope for x-rays: the SMART-X mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.; Johnson-Wilke, Raegan L.; Trolier-McKinstry, Susan E.; Wilke, Rudeger H. T.; Jackson, Thomas N.; Ramirez, J. Israel; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; O'Dell, Stephen L.; Ramsey, Brian D.

    2014-09-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.

  15. Herschel/HerMES: The X-ray - Infrared correlation for star-forming galaxies at z~1

    CERN Document Server

    Symeonidis, M; Seymour, N; Auld, R; Bock, J; Brisbin, D; Buat, V; Burgarella, D; Chanial, P; Clements, D L; Cooray, A; Eales, S; Farrah, D; Franceschini, A; Glenn, J; Griffin, M; Hatziminaoglou, E; Ibar, E; Ivison, R J; Mortier, A M J; Oliver, S J; Page, M J; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Raymond, G; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Scott, Douglas; Smith, A J; Tugwell, K E; Vaccari, M; Vieira, J D; Vigroux, L; Wang, L; Wright, G

    2011-01-01

    For the first time, we investigate the X-ray/infrared (IR) correlation for star-forming galaxies at z~1, using SPIRE submm data from the recently-launched Herschel Space Observatory and deep X-ray data from the 2Ms Chandra deep field north (CDFN) survey. We examine the X-ray/IR correlation in the soft X-ray (SX, 0.5-2 keV) and hard X-ray (HX, 2-10 keV) bands by comparing our z~1 SPIRE-detected star-forming galaxies (SFGs) to equivalently IR-luminous (L_IR >10^10 L_sun) samples in the local/low redshift Universe. Our results suggest that the X-ray/IR properties of the SPIRE SFGs are on average similar to those of their local counterparts, as we find no evidence for evolution in the L_SX/L_IR and L_HX/L_IR ratios with redshift. We note however, that at all redshifts, both L_SX/L_IR and L_HX/L_IR are strongly dependent on IR luminosity, with luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs,L_IR >10^11 L_sun) having up to an order of magnitude lower values than normal infrared galaxies (L_IR <10^...

  16. Technology Requirements for a Square Meter, Arcsecond Resolution Telescope for X-Rays: The SMART-X Mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.; Johnson-Wilke, Raegan L.; Trolier-McKinstry, Susan E.; Wilke, Rudeger H. T.; Jackson, Thomas N.; Ramirez, J. Israel; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; ODell, Stephen L.; Ramsey, Brian D.

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.

  17. Technology development of adjustable grazing incidence x-ray optics for sub-arc second imaging

    Science.gov (United States)

    Reid, P. B.; Aldcroft, T. L.; Cotroneo, V.; Davis, W.; Johnson-Wilke, R. L.; McMuldroch, S.; Ramsey, B. D.; Schwartz, D. A.; Trolier-McKinstry, S.; Vikhlinin, A.; Wilke, R. H. T.

    2012-09-01

    We report on technical progress made over the past year developing thin film piezoelectric adjustable grazing incidence optics. We believe such mirror technology represents a solution to the problem of developing lightweight, sub-arc second imaging resolution X-ray optics. Such optics will be critical to the development next decade of astronomical X-ray observatories such as SMART-X, the Square Meter Arc Second Resolution X-ray Telescope. SMART-X is the logical heir to Chandra, with 30 times the collecting area and Chandra-like imaging resolution, and will greatly expand the discovery space opened by Chandra’s exquisite imaging resolution. In this paper we discuss deposition of thin film piezoelectric material on flat glass mirrors. For the first time, we measured the local figure change produced by energizing a piezo cell - the influence function, and showed it is in good agreement with finite element modeled predictions. We determined that at least one mirror substrate material is suitably resistant to piezoelectric deposition processing temperatures, meaning the amplitude of the deformations introduced is significantly smaller than the adjuster correction dynamic range. Also, using modeled influence functions and IXO-based mirror figure errors, the residual figure error was predicted post-correction. The impact of the residual figure error on imaging performance, including any mid-frequency ripple introduced by the corrections, was modeled. These, and other, results are discussed, as well as future technology development plans.

  18. Capabilities and Science Drivers for the X-ray Surveyor Mission

    Science.gov (United States)

    Vikhlinin, Alexey

    2015-10-01

    The X-ray Surveyor mission concept is designed to make dramatic increases in discovery space and science capabilities for X-ray astronomy. These would be accomplished through orders of magnitude improvements over Chandra in sensitivity, field of view for sub-arcsec imaging, effective area for grating spectroscopy, and by providing high spectral resolution capabilities for extended objects on 1-arcsec angular scales. An X-ray observatory with such capabilities, operating in concert with other major astronomical facilities of the 2020-2030s, is required to address and solve some of the greatest challenges in modern astrophysics. The X-ray Surveyor will shed light on the formation of supermassive black holes by being able to detect X-rays from these objects as they grow beyond their seed state in the first galaxies. Direct data on the nature and operating modes of feedback will be provided by characterizing hot gas in galaxies and groups on scales from the very near vicinity of the central black out to the virial radius. A new era in our understanding of the plasma physics effects on astrophysical scales will be opened, for example, by resolving the detailed structure of relativistic shocks in pulsar wind nebulae and the gas turbulence in galaxy clusters. The detailed structure of the Cosmic Web will be exposed for the first time by mapping X-ray emission from hot gas in its filaments. The outstanding capabilities of X-ray Surveyor will make it an indispensable research tool in nearly every area of astrophysics.

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  20. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  1. X-ray (image)

    Science.gov (United States)

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  2. X-ray apparatus

    International Nuclear Information System (INIS)

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  3. Chandra Observations of QSO 2237+0305

    CERN Document Server

    Dai, X; Agol, E; Bautz, M W; Garmire, G P

    2003-01-01

    We present the observations of the gravitationally lensed system QSO 2237+0305 performed with the Chandra X-ray Observatory on 2000 Sept. 6, and on 2001 Dec. 8 for 30.3 ks and 9.5 ks, respectively. Imaging analysis resolves the four X-ray images of the Einstein Cross. A possible fifth image is detected; however, this detection less certain. Fits to the combined spectrum of all images of the Einstein Cross assuming a simple power law with Galactic and intervening absorption at the lensing galaxy yield a photon index of 1.90(+0.05,-0.05). For the first observation, this spectral model yields a 0.4-8.0 keV X-ray flux of 4.6e-13 erg cm-2 s-1 and a 0.4-8.0 keV lensed luminosity of 1.0e46 erg s-1. The source exhibits variability both over long and short time scales. The X-ray flux has dropped by 20% between the two observations, and the K-S test showed that image A is variable at the 97% confidence level within the first observation. Furthermore, a possible time-delay of 2.7(+0.5,-0.9) hours between images A and B ...

  4. Chandra Observations of Black-Widow Pulsars

    CERN Document Server

    Gentile, Peter; Roberts, Mallory; Camilo, Fernando; Hessels, Jason; Kerr, Matthew; Ransom, Scott; Ray, Paul; Stairs, Ingrid

    2012-01-01

    We describe the first X-ray observations of binary millisecond pulsars PSRs J0023+0923, J1810+1744, J2215+5135, and J2256-1024. All four are Fermi gamma-ray sources and three are 'black-widow' pulsars, with companions of mass < 0.1 solar masses. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256-1024, show significant orbital variability and X-ray flux minima at the times of eclipses observed at radio wavelengths. This phenomenon is consistent with intrabinary shock emission characteristic of black-widow pulsars. The other two pulsars, PSRs J0023+0923 and J1810+1744, do not demonstrate significant variability, but are fainter than the other two sources. Spectral fits yield power-law indices that range from 1.4 to 2.3 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component (41% of counts are above 2 keV), which is additional evidence for the presence of ...

  5. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  7. X-Ray Imaging

    Science.gov (United States)

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  8. Some observational aspects of compact galactic X-ray sources

    International Nuclear Information System (INIS)

    This thesis contains the following observations of compact galactic X-ray sources: i) the X-ray experiments onboard the Astronomical Netherlands Satellite ANS, ii) a rocket-borne ultra soft X-ray experiment and iii) the Objective Grating Spectrometer onboard the EINSTEIN observatory. In Chapter I the various types of compact galactic X-ray sources are reviewed and put into the perspective of earlier and following observations. In Chapter II the author presents some of the observations of high luminosity X-ray sources, made with ANS, including the detection of soft X-rays from the compact X-ray binary Hercules X-1 and the ''return to the high state'' of the black hole candidate Cygnus X-1. Chapter III deals with transient X-ray phenomena. Results on low luminosity galactic X-ray sources are collected in Chapter IV. (Auth.)

  9. Stress manipulated coating for fabricating lightweight X-ray telescope mirrors.

    Science.gov (United States)

    Yao, Youwei; Wang, Xiaoli; Cao, Jian; Ulmer, Melville

    2015-11-01

    In this paper wepresent a method to correct the surface profile of an X-ray mirror by using a stress manipulated coating on the back side of mirror shells. The ability to fabricate a thin walled mirror by some replication process is required if future affordable X-ray space missions are to have ~30 times the effective area of the current best X-ray observatory, i.e., the Chandra X-ray Observatory (CXO). Thus, some process is necessary for using replicated X-ray optics to make the next generation X-ray observatory. However, although the surface roughness of sub-100 μm length scales can be replicated, no known replication technique can make 1 arc-second or better CXO-like optics. Yet, because the images produced by the CXO are so exquisite, many X-ray astronomers are not willing to settle for less in the future. Therefore, a post replication technique must be developed to make future major X-ray astronomy missions possible. In this paper, we describe a technique based on DC magnetron sputtering. For figure correction, we apply a controlled bias voltage on the surface during the sputtering. We show that we can produce, in 1-D, shape changes large enough (1 μm over 10 mm) to correct the typical figure errors in replicated optics. We demonstrate reproducibility on an order of 0.6%, and stability over weeks on a scale of less than 1 μm over 10 mm. For these tests, we used 200 μm thick pieces of D263 Schott glass, about 5 mm x 20 mm. In addition to the basic concept of controlling the stress with the coating, we describe a new optimization software design to calculate the stress distribution for a desired surface profile. We show that the combination of the stress optimization software coupled with the coating process, can reduce the slope error of a 5 mm x 20 mm glass sample by a factor of ten. PMID:26561130

  10. VizieR Online Data Catalog: Properties of ultraluminous X-ray candidates (Swartz+, 2004)

    Science.gov (United States)

    Swartz, D. A.; Ghosh, K. K.; Tennant, A. F.; Wu, K.

    2005-02-01

    One hundred fifty-four (actually 155) discrete non-nuclear ultraluminous X-ray (ULX) sources, with spectroscopically determined intrinsic X-ray luminosities greater than 1039erg/s, are identified in 82 galaxies observed with Chandra's Advanced CCD Imaging Spectrometer (ACIS). Source positions, X-ray luminosities, and spectral and timing characteristics are tabulated. (1 data file).

  11. Chandra Images the Seething Cauldron of Starburst Galaxy

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has imaged the core of the nearest starburst galaxy, Messier 82 (M82). The observatory has revealed a seething cauldron of exploding stars, neutron stars, black holes, 100 million degree gas, and a powerful galactic wind. The discovery will be presented by a team of scientists from Carnegie Mellon University, Pittsburgh, Penn., Pennsylvania State University, University Park, and the University of Michigan, Ann Arbor, on January 14 at the 195th national meeting of the American Astronomical Society. "In the disk of our Milky Way Galaxy, stars form and die in a relatively calm fashion like burning embers in a campfire," said Richard Griffiths, Professor of Astrophysics at Carnegie Mellon University. "But in a starburst galaxy, star birth and death are more like explosions in a fireworks factory." Short-lived massive stars in a starburst galaxy produce supernova explosions, which heat the interstellar gas to millions of degrees, and leave behind neutron stars and black holes. These explosions emit light in the X rays rather than in visible light. Because the superhot components inside starburst galaxies are complex and sometimes confusing, astronomers need an X-ray-detecting telescope with the highest focusing power (spatial resolution) to clearly discriminate the various structures. "NASA's Chandra X-ray Observatory is the perfect tool for studying starburst galaxies since it has the critical combination of high-resolution optics and good sensitivity to penetrating X rays," said Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Pennsylvania State University, and head of the team that conceived and built Chandra's Advanced CCD Imaging Spectrograph (ACIS) X-ray camera, which acquired the data. Many intricate structures missed by earlier satellite observatories are now visible in the ACIS image, including more than twenty powerful X-ray binary systems that contain a normal star in a close orbit around a neutron star

  12. Turbulent Heating in Galaxy Clusters Brightest in X-rays

    CERN Document Server

    Zhuravleva, I; Schekochihin, A A; Allen, S W; Arevalo, P; Fabian, A C; Forman, W R; Sanders, J S; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N

    2014-01-01

    The hot, X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales significantly shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM has remained open. Here we present a plausible solution to this question based on deep Chandra X-ray observatory data and a new data-analysis method that enables us to evaluate directly the ICM heating rate due to the dissipation of turbulence. We find that turbulent heating is sufficient to offset rad...

  13. X-ray measurement of electron and magnetic-field energy densities in the west lobe of the giant radio galaxy 3C 236

    CERN Document Server

    Isobe, Naoki

    2015-01-01

    X-ray emission associated with the west lobe of the giant radio galaxy, 3C 236, was investigated with the Suzaku observatory, to evaluate the energetics in the lobe. After removing contamination from X-ray sources detected with Chandra and subtracting the X-ray and non-X-ray backgrounds, the Suzaku spectrum from the lobe was reproduced by a power-low model with a photon index of $\\Gamma = 2.23_{-0.38-0.12}^{+0.44+0.14}$ where the first and second errors represent the statistical and systematic ones, respectively. Within the errors, the X-ray index was consistent with the radio synchrotron one, $\\Gamma_{\\rm R} = 1.74 \\pm 0.07$, estimated in the 326 -- 2695 MHz range. This agreement supports that the X-ray emission is attributed to the inverse-Compton (IC) radiation from the synchrotron electrons filling the lobe, where the cosmic microwave background photons are up-scattered. This result made 3C 236 the largest radio galaxy, of which the lobe has ever been probed through the IC X-ray photons. When the photon i...

  14. Large Area X-Ray Spectroscopy Mission

    Science.gov (United States)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  15. X-rays from jets and lobes

    Science.gov (United States)

    Feigelson, E. D.

    1983-01-01

    The current status of X-ray detections (and non-detections) of radio jets and lobes is presented. High resolution images obtained with the Einstein Observatory reveal X-ray emission associated with jet and lobe components of Virgo A, Centaurus A, 3C273, and possibly other radio structures. The Vir A and Cen A jet emission is probably s ynchrotron in origin, requiring in situ particle acceleration to extremely high energies. Inverse Compton emission is the likely cause of asymmetrical X-ray features in the halo of Vir A, supporting the assumption of equipartition.

  16. X-rays from jets and lobes

    International Nuclear Information System (INIS)

    The current status of X-ray detections (and non-detections) of radio jets and lobes is reviewed. The author summarizes the findings and interpretation of several detections of jet and lobe X-ray emission made with the EINSTEIN observatory in Virgo A, Centaurus A, 3C273, and possibly other radio structures. The Vir A (=M27) and Cen A jet emission is probably synchrotron in origin, requiring in situ particle acceleration to extremely high energies. Inverse Compton emission is the likely cause of asymmetrical X-ray features in the halo of Vir A, supporting the assumption of equipartition. (Auth.)

  17. The First High Resolution X-ray Spectrum of Cyg X-1 Soft X-Ray Ionization and Absorption

    CERN Document Server

    Schulz, N S; Canizares, C R; Marshall, H L; Lee, J C; Miller, J M; Lewin, W H G

    2002-01-01

    We observed the black hole candidate Cyg X-1 for 15 ks with the High-Energy Transmission Grating Spectrometer aboard the CHANDRA X-ray Observatory. The source was observed during a period of intense flaring activity, so it was about a factor of 2.5 brighter than usual, with a 0.5-10 keV (1-24 A) luminosity of 1.6x10^37 erg/s (at a distance of 2.5 kpc). The spectrum of the source shows prominent absorption edges, some of which have complicated substructure. We use the most recent results from laboratory measurements and and calculations to model the observed substructure of the edges. From the model, we derive a total absorption column of 6.21+/-0.22 10^21 cm^-2. Furthermore, the results indicate that there are ~ 10 - 25% abundance variations relative to solar values for neon, oxygen and iron. The X-ray continuuum is described well by a two-component model that is often adopted for black hole candidates: a soft multicolor disk component (with kT = 203 eV) and a hard power law component (with a photon index of ...

  18. The Refined Shock Velocity of the X-Ray Filaments in the RCW 86 Northeast Rim

    CERN Document Server

    Yamaguchi, Hiroya; Castro, Daniel; Williams, Brian J; Lopez, Laura A; Slane, Patrick O; Smith, Randall K; Petre, Robert

    2016-01-01

    A precise measurement of shock velocities is crucial for constraining the mechanism and efficiency of cosmic-ray (CR) acceleration at supernova remnant (SNR) shock fronts. The northeastern rim of the SNR RCW 86 is thought to be a particularly efficient CR acceleration site, owing to the recent result in which an extremely high shock velocity of ~6000 km/s was claimed (Helder et al. 2009). Here we revisit the same SNR rim with the Chandra X-ray Observatory, 11 years after the first observation. This longer baseline than previously available allows us to determine a more accurate proper motion of the nonthermal X-ray filament, revealing a much lower velocity of 3000 \\pm 340 km/s (and even slower at a brighter region). Although the value has dropped to a half of that from the previous X-ray measurement, it is still higher than the mean velocity of the H-alpha filaments in this region (~1200 km/s). This discrepancy implies that the filaments bright in nonthermal X-rays and H-alpha emission trace different velocit...

  19. Evolution of the X-ray Properties of the Transient Magnetar XTE J1810-197

    CERN Document Server

    Alford, Jason

    2016-01-01

    We report on X-ray observations of the 5.54 s transient magnetar XTE J1810-197 using the XMM-Newton and Chandra observatories, analyzing new data from 2008 through 2014, and re-analyzing data from 2003 through 2007 with the benefit of these six years of new data. From the discovery of XTE J1810-197 during its 2003 outburst to the most recent 2014 observations, its 0.3-10 keV X-ray flux has declined by a factor of about 50 from 4.1E-11 to 8.1E-13 erg/cm^2/s. Its X-ray spectrum has now reached a steady state. Pulsations continue to be detected from a 0.3 keV thermal hot-spot that remains on the neutron star surface. The luminosity of this hot-spot exceeds XTE J1810-197's spin down luminosity, indicating continuing magnetar activity. We find that XTE J1810-197's X-ray spectrum is best described by a multiple component blackbody model in which the coldest 0.14 keV component likely originates from the entire neutron star surface, and the thermal hot-spot is, at different epochs, well described by an either one or ...

  20. Detection of X-ray Emission from the Very Old Pulsar J0108-1431

    CERN Document Server

    Pavlov, G G; Wong, J A; Garmire, G P

    2008-01-01

    PSR J0108-1431 is a nearby, 170 Myr old, very faint radio pulsar near the ``pulsar death line'' in the P-Pdot diagram. We observed the pulsar with the Chandra X-ray Observatory and detected 53 counts in a 30 ks exposure, which corresponds to the source flux of 7\\times 10^{-15} ergs cm^{-2} s^{-1} in the 0.3-6 keV band. The pulsar spectrum can be described by a power-law model with photon index Gamma \\approx 2.2 and luminosity L_{0.3-8 keV} \\sim 2\\times 10^{28} d_{130}^2 ergs s^{-1}, or by a blackbody model with the temperature kT\\approx 0.28 keV and bolometric luminosity L_{bol} \\sim 1.3\\times 10^{28} d_{130}^2 ergs s^{-1}, for a plausible hydrogen column density NH = 7.3\\times 10^{19} cm^{-2} (d_{130}=d/130 pc). The pulsar converts \\sim 0.4% of its spin-down power into the X-ray luminosity, i.e., its X-ray efficiency is higher than for most younger pulsars. From the comparison of the X-ray position with the previously measured radio positions, we estimated the pulsar proper motion of 0.2 arcsec yr^{-1} (V_\\p...