WorldWideScience

Sample records for chandra observations cavities

  1. A Deep Chandra Observation of A2052

    Science.gov (United States)

    Blanton, E. L.; Douglass, E. M.; Sarazin, C. L.; Clarke, T. E.; McNamara, B. R.

    We present initial results from a long (125 ksec) Chandra observation of Abell 2052. A2052 is a bright, nearby, cooling core cluster at a redshift of z=0.0348. It was previously observed for 36 ksec with Chandra [3,4]. The longer observation reveals ripples in the surface brightness, similar to what has been seen in e.g., the Perseus cluster [5] and M87/Virgo [6]. The southern cavity now appears to be split into two cavities with the southernmost cavity likely representing a ghost bubble from earlier radio activity. There also appears to be a ghost bubble present to the NW of the cluster center. Bright emission in the X-ray corresponds very well with optical line emission, and the correlated X-ray emission is seen to continue from the N bubble edge closer to the AGN in this longer exposure, tracking the H-α emission. The energy deposited by the radio source, as determined by measuring the pressure in the bright, X-ray shells, averaged over the repetition rate of the radio source (determined from either the ripple separation or the ghost cavity distances) can easily offset the cooling in the core of the cluster.

  2. Chandra Observations of Starburst Galaxies

    Science.gov (United States)

    Prestwich, Andrea; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present early X-ray results from Chandra for two starburst galaxies, M82 and NGC3256, obtained using AXAF CCD Imaging Spectrometer (ACIS-I) and the HRC. For M82 the arcsecond spatial resolution enables us to separate the point source component from the extended emission for the first time. Astrometry reveals that most of the X-ray sources are not coincident with the family of compact radio sources believed to be Super Nova Remnants (SNRs). In addition, based on three epoch Chandra observations, several of the X-ray sources are clearly variable indicating that they are binaries. When we deconvolve the extended and point source components detected in the hard X-ray band, we find that 50 percent arises from the extended component. This fact, together with its morphology, constrains the various models proposed to explain the hard X-ray emission. For NGC3256 we resolve two closely separated nuclei. These new data support a pure starburst origin for the total X-ray emission rather than a composite AGN/starburst, thereby making NGC3256 one of the most X-ray luminous starburst galaxies known.

  3. 15 Years of Chandra Observations of Capella

    Science.gov (United States)

    Kashyap, Vinay

    2014-11-01

    Capella is the strongest coronal line source accessible to Chandra. It has been cumulatively observed with gratings for over 1.2 Ms. The accumulated spectrum represents astrophysical ground truth for atomic physics calculations that is unprecedented in quality. We analyze co-added spectra to generate a comprehensive list of detectable lines and their locations, spanning two orders of magnitude in photon energy. We compare the locations of identifiable lines with locations from atomic databases ATOMDB and Chianti and characterize the uncertainties in the databases. The full line lists and comparisons will be made available at the Dataverse at http://dx.doi.org/10.7910/DVN/27084 This work is supported by Chandra grant AR0-11001X and NASA Contract NAS8-03060 to the Chandra X-Ray Center.

  4. The unusual X-ray morphology of NGC4636 revealed by deep Chandra observations: cavities and shocks created by past AGN outbursts

    CERN Document Server

    Baldi, A; Jones, C; Kraft, R; Nulsen, P; Churazov, E; David, L; Giacintucci, S

    2009-01-01

    We present Chandra ACIS-I and ACIS-S observations ($\\sim$200 ks in total) of the X-ray luminous elliptical galaxy NGC 4636, located in the outskirts of the Virgo cluster. A soft band (0.5-2 keV) image shows the presence of a bright core in the center surrounded by an extended X-ray corona and two pronounced quasi-symmetric, 8 kpc long, arm-like features. Each of this features defines the rimof an ellipsoidal bubble. An additional bubble-like feature, whose northern rim is located $\\sim2$ kpc south of the north-eastern arm, is detected as well. We present surface brightness and temperature profiles across the rims of the bubbles, showing that their edges are sharp and characterized by temperature jumps of about 20-25%. Through a comparison of the observed profiles with theoretical shock models, we demonstrate that a scenario where the bubbles were produced by shocks, probably driven by energy deposited off-center by jets, is the most viable explanation to the X-ray morphology observed in the central part of NG...

  5. Chandra Observations of Embedded Young Stellar Objects

    CERN Document Server

    Koyama, K

    2001-01-01

    This paper reviews the Chandra deep exposure observations of star forming regions, rho-Ophiuchi, Orion Molecular Clouds 2 and 3, Sagittarius B2 and Monoceros R2. The results are; (1) class I protostars are found to exhibit higher temperature plasma than those of T Tauri stars, (2) heavily absorbed X-rays are discovered from the candidates of class 0 protostars, (3) hard and highly variable X-rays are observed from high-mass young stars, and (4) young brown dwarfs emit X-rays similar to those of low-mass young stars.

  6. Chandra Observations of SNR RCW 103

    CERN Document Server

    Frank, Kari A; Park, Sangwook

    2015-01-01

    We analyze three Chandra observations, with a combined exposure time of 99 ks, of the Galactic supernova remnant RCW 103, a young supernova remnant, previously with no clear detection of metal-rich ejecta. Based on our imaging and spectral analyses of these deep Chandra data, we find evidence for metal-rich ejecta emission scattered throughout the remnant. X-ray emission from the shocked ejecta is generally weak, and the shocked circumstellar medium (CSM) is a largely dominant component across the entire remnant. The CSM component shows abundances of ~0.5 solar, while Ne, Mg, Si, S, and Fe abundances of the ejecta are up to a few times solar. Comparison of these ejecta abundances with yields from supernova nucleosynthesis models suggests, together with the existence of a central neutron star, a progenitor mass of ~18-20 M$_\\odot$, though the Fe/Si ratios are larger than predicted. The shocked CSM emission suggests a progenitor with high mass-loss rate and subsolar metallicity.

  7. Deep Chandra observations of Pictor A

    CERN Document Server

    Hardcastle, M J; Birkinshaw, M; Croston, J H; Goodger, J L; Marshall, H L; Perlman, E S; Siemiginowska, A; Stawarz, L; Worrall, D M

    2015-01-01

    We report on deep Chandra observations of the nearby broad-line radio galaxy Pictor A, which we combine with new Australia Telescope Compact Array (ATCA) observations. The new X-ray data have a factor 4 more exposure than observations previously presented and span a 15-year time baseline, allowing a detailed study of the spatial, temporal and spectral properties of the AGN, jet, hotspot and lobes. We present evidence for further time variation of the jet, though the flare that we reported in previous work remains the most significantly detected time-varying feature. We also confirm previous tentative evidence for a faint counterjet. Based on the radio through X-ray spectrum of the jet and its detailed spatial structure, and on the properties of the counterjet, we argue that inverse-Compton models can be conclusively rejected, and propose that the X-ray emission from the jet is synchrotron emission from particles accelerated in the boundary layer of a relativistic jet. For the first time, we find evidence that...

  8. Chandra observations of Cygnus OB2

    CERN Document Server

    Wright, Nicholas J; Drew, Janet E; Vink, Jorick S

    2011-01-01

    Cygnus OB2 is the nearest example of a massive star forming region, containing over 50 O-type stars and hundreds of B-type stars. We have analyzed two Chandra pointings in Cyg OB2, detecting ~1700 X-ray sources, of which ~1450 are thought to be members of the association. Optical and near-IR photometry has been obtained for ~90% of these sources from recent deep Galactic plane surveys. We have performed isochrone fits to the near-IR color-magnitude diagram, deriving ages of 3.5(+0.75,-1.0) and 5.25(+1.5,-1.0) Myrs for sources in the two fields, both with considerable spreads around the pre-MS isochrones. The presence of a second population in the region, somewhat older than the present-day O-type stars, has been suggested by other authors and fits with the ages derived here. The fraction of sources with inner circumstellar disks (as traced by the K-band excess) is found to be very low, but appropriate for a population of age ~5 Myrs. We measure the stellar mass functions and find a power-law slope of Gamma = ...

  9. Chandra Observations of Eight Sources Discovered by INTEGRAL

    Science.gov (United States)

    Tomsick, John A.; Krivonos, Roman; Wang, Qinan; Bodaghee, Arash; Chaty, Sylvain; Rahoui, Farid; Rodriguez, Jerome; Fornasini, Francesca M.

    2016-01-01

    We report on 0.3-10 keV observations with the Chandra X-ray Observatory of eight hard X-ray sources discovered within 8° of the Galactic plane by the International Gamma-ray Astrophysics Laboratory satellite. The short (˜5 ks) Chandra observations of the IGR source fields have yielded very likely identifications of X-ray counterparts for three of the IGR sources: IGR J14091-6108, IGR J18088-2741, and IGR J18381-0924. The first two have very hard spectra in the Chandra band that can be described by a power law with photon indices of Γ = 0.6 ± 0.4 and -{0.7}-0.3+0.4, respectively (90% confidence errors are given), and both have a unique near-IR counterpart consistent with the Chandra position. IGR J14091-6108 also displays a strong iron line and a relatively low X-ray luminosity, and we argue that the most likely source type is a cataclysmic variable (CV), although we do not completely rule out the possibility of a high mass X-ray binary. IGR J18088-2741 has an optical counterpart with a previously measured 6.84 hr periodicity, which may be the binary orbital period. We also detect five cycles of a possible 800-950 s period in the Chandra light curve, which may be the compact object spin period. We suggest that IGR J18088-2741 is also most likely a CV. For IGR J18381-0924, the spectrum is intrinsically softer with {{Γ }}={1.5}-0.4+0.5, and it is moderately absorbed, NH = (4 ± 1) × 1022 cm-2. There are two near-IR sources consistent with the Chandra position, and they are both classified as galaxies, making it likely that IGR J18381-0924 is an active galactic nucleus. For the other five IGR sources, we provide lists of nearby Chandra sources, which may be used along with further observations to identify the correct counterparts, and we discuss the implications of the low inferred Chandra count rates for these five sources.

  10. Cosmological constraints from Chandra observations of galaxy clusters.

    Science.gov (United States)

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  11. A CHANDRA-VLA INVESTIGATION OF THE X-RAY CAVITY SYSTEM AND RADIO MINI-HALO IN THE GALAXY CLUSTER RBS 797

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Alberto [Argelander-Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany); Gitti, Myriam; Brighenti, Fabrizio [Dipartimento di Astronomia, Universita di Bologna, via Ranzani 1, Bologna 40127 (Italy); Ettori, Stefano [Astronomical Observatory of Bologna-INAF, via Ranzani 1, I-40127 Bologna (Italy); Nulsen, Paul E. J.; McNamara, Brian R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-07-01

    We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and Very Large Array (VLA) data. RBS 797 (z = 0.35) is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate a higher metallicity along the cavity directions. This is likely due to the active galactic nucleus outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than the surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally, we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow, as it nicely follows the trend P{sub radio} versus P{sub CF} predicted by the reacceleration model.

  12. A Chandra - VLA Investigation of the X-ray Cavity System and Radio Mini-Halo in the Galaxy Cluster RBS 797

    CERN Document Server

    Doria, Alberto; Ettori, Stefano; Brighenti, Fabrizio; Nulsen, Paul E J; McNamara, Brian R

    2012-01-01

    We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and VLA data. RBS 797 (z = 0.35), is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate an higher metallicity along the cavity directions. This is likely due to the AGN outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than the surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow (CF), as it nicely follows the trend P_radio vs. P_CF predicted by the...

  13. Chandra and Swift Observations of Unidentified Fermi-LAT Objects

    Science.gov (United States)

    Donato, Davide; Cheung, T.; Gehrels, N.

    2010-03-01

    In the last year we targeted some of the unidentified Fermi-LAT objects (UFOs) at high Galactic latitude with Chandra and Swift in order to determine the basic properties (positions, fluxes, hardness ratios) of all X-ray sources within the Fermi-LAT localization circles. These satellites enable us to detect the X-ray conterparts with a flux limit that is at least an order of magnitude lower than achieved in extant RASS data and to further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources. Here we present the results obtained with 5 Chandra pointings of high Galactic latitude UFOs in the Fermi-LAT 3-months bright source list. The association of detected X-ray sources within the improved 11-months Fermi-LAT localization circles with available optical and radio observations is discussed.

  14. Chandra Observations of 12 Luminous Red Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Urrutia, T; Lacy, M; Gregg, M D; Becker, R H

    2005-03-11

    The authors present results of a study of 12 dust-reddened quasars with 0.4 < z < 2.65 and reddenings in the range 0.15 < E(B-V) < 1.7. They obtained ACIS-S X-ray spectra of these quasars, estimated the column densities towards them, and hence obtained the gas:dust ratios in the material obscuring the quasar. They detect all but one of the red quasars in the X-rays. Even though there is no obvious correlation between the X-ray determined column densities of the sources and their optical color or reddening, all of the sources show absorbed X-ray spectra. When they correct the luminosity for absorption, they can be placed among luminous quasars; therefore their objects belong to the group of high luminosity analogues of the sources contributing to the X-ray background seen in deep X-ray observations. Such sources are also found in serendipitous shallow X-ray surveys. There is a hint that the mean spectral slope of the red quasar is higher than that of normal, unobscured quasars, which could be an indication for higher accretion rates and/or an evolutionary effect. They investigate the number density of these sources compared to type 2 AGN based on the X-ray background and estimate how many moderate luminosity red quasars may be found in deep X-ray fields.

  15. Chandra Observations of Tycho’s Supernova Remnant

    Indian Academy of Sciences (India)

    U. Hwang; R. Petre; A. E. Szymkowiak; S. S. Holt

    2002-03-01

    We present a new Chandra observation of Tycho’s supernova remnant with the Advanced CCD Imaging Spectrometer. Multicolor X-ray imaging reveals new details of the outer shock and ejecta. At energies between 4 and 6 keV, the outline of the outer shock is clearly revealed in X-rays for the first time. The distribution of the emission from lines of Si and Fe are confirmed to have a different morphology from each other, and the Si ejecta are shown to extend to the blast shock at several locations. Characteristic spectra of the outer shock and ejecta are also presented.

  16. Chandra ACIS Observations of the Nearby Spiral Galaxy NGC 300

    Science.gov (United States)

    Bobar, Dale; Turner, Kevin; Schlegel, Eric M.

    2017-01-01

    The ACIS detector (Advanced CCD Imaging Spectrometer) onboard the Chandra X-ray Observatory has imaged the nearby spiral NGC 300 over three epochs for a total exposure of 1.885x102 ksec. We describe each observation as well as the merged data set. Each exposure contains 132 individual sources. We focus on the time variability and luminosity distributions of the sources. Initial results show no diffuse emissions in the galaxy. Finally, we compare the merged data set and the detected sources with other wavebands.

  17. Chandra Observation of the Starburst Galaxy NGC 2146

    CERN Document Server

    Inui, T; Tsuru, T G; Koyama, K; Matsushita, S; Peck, A B; Tarchi, A; Inui, Tatsuya; Matsumoto, Hironori; Tsuru, Takeshi Go; Koyama, Katsuji; Matsushita, Satoki; Peck, Alison B.; Tarchi, Andrea

    2004-01-01

    We present six monitoring observations of the starburst galaxy NGC 2146 using the Chandra X-ray Observatory. We have detected 67 point sources in the 8'.7 x 8'.7 field of view of the ACIS-S detector. Six of these sources were Ultra-Luminous X-ray Sources, the brightest of which has a luminosity of 5 x 10^{39} ergs s^{-1}. One of the source, with a luminosity of ~1 x 10^{39} ergs s^{-1}, is coincident with the dynamical center location, as derived from the ^{12}CO rotation curve. We suggest that this source may be a low-luminosity active galactic nucleus. We have produced a table where the positions and main characteristics of the Chandra-detected sources are reported. The comparison between the positions of the X-ray sources and those of compact sources detected in NIR or radio does not indicate any definite counterpart. Taking profit of the relatively large number of sources detected, we have derived a logN-logS relation and a luminosity function. The former shows a break at \\~10^{-15} ergs cm^{-2} s^{-1}, t...

  18. Chandra Observes the End of an Era SN 1987A

    CERN Document Server

    Frank, Kari A; Park, Sangwook; McCray, Richard; Dwek, Eli; Burrows, David N

    2016-01-01

    Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at ~8x10^-12 erg s^-1 cm^-2 since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies <2 keV. Images show a reversal of the east-west asymmetry between 7000 and 8000 days after the explosion. The latest images suggest the southeastern side of the equatorial ring is beginning to fade. Consistent with the latest optical and infrared results, our Chandra analysis indicates the blast wave is now leaving the dense equatorial ring, which marks the beginning of a major change in the evolutionary phase of the supernova remnant 1987A.

  19. Chandra Observations of Shock Kinematics in Supernova Remnant 1987A

    CERN Document Server

    Zhekov, S A; Borkowski, K J; Burrows, D N; Park, S

    2005-01-01

    We report the first results from deep X-ray observations of the SNR 1987A with the Chandra LETG. Temperatures inferred from line ratios range from 0.1 - 2 keV and increase with ionization potential. Expansion velocities inferred from X-ray line profiles range from 300 - 1700 km/s, much less than the velocities inferred from the radial expansion of the radio and X-ray images. We can account for these observations with a scenario in which the X-rays are emitted by shocks produced where the supernova blast wave strikes dense protrusions of the inner circumstellar ring, which are also responsible for the optical hot spots.

  20. Chandra LETG Observations of Supernova Remnant 1987A

    CERN Document Server

    Zhekov, S A; Burrows, D N; McCray, R; Park, S; Borkowski, Kazimierz J.; Burrows, David N.; Cray, Richard Mc; Park, Sangwook; Zhekov, Svetozar A.

    2006-01-01

    We discuss the results from deep Chandra LETG observations of the supernova remnant 1987A (SNR 1987A). We find that a distribution of shocks, spanning the same range of velocities (from 300 to 1700 km/s) as deduced in the first part of our analysis (Zhekov et al. 2005, ApJL, 628, L127), can account for the entire X-ray spectrum of this object. The post-shock temperature distribution is bimodal, peaking at kT 0.5 and 3 keV. Abundances inferred from the X-ray spectrum have values similar to those for the inner circumstellar ring, except that the abundances of nitrogen and oxygen are approximately a factor of two lower than those inferred from the optical/UV spectrum. The velocity of the X-ray emitting plasma has decreased since 1999, apparently because the blast wave has entered the main body of the inner circumstellar ring.

  1. Chandra LETGS and XMM-Newton observations of NGC 4593

    CERN Document Server

    Steenbrugge, K C; Blustin, A J; Branduardi-Raymont, G; Sako, M; Behar, E; Kahn, S M; Paerels, F B S; Walter, R

    2003-01-01

    In this paper, we analyze spectra of the Seyfert 1 galaxy NGC 4593 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS), the Reflection Grating Spectrometer (RGS) and the European Photon Imaging Camera's (EPIC) onboard of XMM-Newton. The two observations were separated by ~7 months. In the LETGS spectrum we detect a highly ionized warm absorber corresponding to an ionization state of 400x10^{-9} W m, visible as a depression at 10-18 AA. This depression is formed by multiple weak Fe and Ne lines. A much smaller column density was found for the lowly ionized warm absorber, corresponding to xi = 3x10^{-9} W m. However, an intermediate ionization warm absorber is not detected. For the RGS data the ionization state is hard to constrain. The EPIC results show a narrow Fe Kalpha line.

  2. LOFAR, VLA, and Chandra observations of the Toothbrush galaxy cluster

    CERN Document Server

    van Weeren, R J; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Williams, W L; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Hardcastle, M J; Jones, C; Miley, G K; Rafferty, D A; Rudnick, L; Sabater, J; Sarazin, C L; Shimwell, T W; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Dijkema, T J; Ensslin, T; Ferrari, C; Heald, G; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Sridhar, S S; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    We present deep LOFAR observations between 120-181 MHz of the "Toothbrush" (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $\\alpha = -0.8 \\pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $\\alpha \\approx - 2$. The spectral index of the radio halo is remarkably uniform ($\\alpha = -1.16$, with an intrinsic scatter of $\\leq 0.04$). The observed radio relic spectral index gives a Mach number of $\\mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio r...

  3. Chandra Observations of Outflows from PSR J1509-5850

    CERN Document Server

    Klingler, Noel; Rangelov, Blagoy; Pavlov, George G; Posselt, Bettina; Ng, C -Y

    2016-01-01

    PSR J1509-5850 is a middle-aged pulsar with the period P ~ 89 ms, spin-down power Edot = 5.1 x 10^35 erg/s, at a distance of about 3.8 kpc. We report on deep Chandra X-ray Observatory observations of this pulsar and its pulsar wind nebula (PWN). In addition to the previously detected tail extending up to 7' southwest from the pulsar (the southern outflow), the deep images reveal a similarly long, faint diffuse emission stretched toward the north (the northern outflow) and the fine structure of the compact nebula (CN) in the pulsar vicinity. The CN is resolved into two lateral tails and one axial tail pointing southwest (a morphology remarkably similar to that of the Geminga PWN), which supports the assumption that the pulsar moves towards the northeast. The luminosities of the southern and northern outflows are about 1 x 10^33 and 4 x 10^32 erg/s, respectively. The spectra extracted from four regions of the southern outflow do not show any softening with increasing distance from the pulsar. The lack of synchr...

  4. AEGIS: Chandra Observation of DEEP2 Galaxy Groups and Clusters

    CERN Document Server

    Fang, T; Davis, D; Newman, J; Davis, M; Nandra, K; Laird, E; Koo, D; Coil, A; Cooper, M; Croton, D; Yan, R

    2006-01-01

    We present a 200 ksec Chandra observation of seven spectroscopically selected, high redshift (0.75 < z < 1.03) galaxy groups and clusters discovered by the DEEP2 Galaxy Redshift Survey in the Extended Groth Strip (EGS). X-ray emission at the locations of these systems is consistent with background. The 3-sigma upper limits on the bolometric X-ray luminosities (L_X) of these systems put a strong constraint on the relation between L_X and the velocity dispersion of member galaxies sigma_gal at z~1; the DEEP2 systems have lower luminosity than would be predicted by the local relation. Our result is consistent with recent findings that at high redshift, optically selected clusters tend to be X-ray underluminous. A comparison with mock catalogs indicates that it is unlikely that this effect is entirely caused by a measurement bias between sigma_gal and the dark matter velocity dispersion. Physically, the DEEP2 systems may still be in the process of forming and hence not fully virialized, or they may be defic...

  5. LOFAR, VLA, and Chandra Observations of the Toothbrush Galaxy Cluster

    Science.gov (United States)

    van Weeren, R. J.; Brunetti, G.; Brüggen, M.; Andrade-Santos, F.; Ogrean, G. A.; Williams, W. L.; Röttgering, H. J. A.; Dawson, W. A.; Forman, W. R.; de Gasperin, F.; Hardcastle, M. J.; Jones, C.; Miley, G. K.; Rafferty, D. A.; Rudnick, L.; Sabater, J.; Sarazin, C. L.; Shimwell, T. W.; Bonafede, A.; Best, P. N.; Bîrzan, L.; Cassano, R.; Chyży, K. T.; Croston, J. H.; Dijkema, T. J.; Enßlin, T.; Ferrari, C.; Heald, G.; Hoeft, M.; Horellou, C.; Jarvis, M. J.; Kraft, R. P.; Mevius, M.; Intema, H. T.; Murray, S. S.; Orrú, E.; Pizzo, R.; Sridhar, S. S.; Simionescu, A.; Stroe, A.; van der Tol, S.; White, G. J.

    2016-02-01

    We present deep LOFAR observations between 120 and 181 MHz of the “Toothbrush” (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of α =-0.8+/- 0.1 at the northern edge of the main radio relic, steepening toward the south to α ≈ -2. The spectral index of the radio halo is remarkably uniform (α =-1.16, with an intrinsic scatter of ≤slant 0.04). The observed radio relic spectral index gives a Mach number of { M }={2.8}-0.3+0.5, assuming diffusive shock acceleration. However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock ({ M }≈ 1.2, with an upper limit of { M }≈ 1.5). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.

  6. A Very Deep Chandra Observation of the Galaxy Group NGC 5813: AGN Shocks, Feedback, and Outburst History

    CERN Document Server

    Randall, S W; Jones, C; Forman, W R; Bulbul, E; Clarke, T E; Kraft, R; Blanton, E L; David, L; Werner, N; Sun, M; Donahue, M; Giacintucci, S; Simionescu, A

    2015-01-01

    We present results from a very deep (650 ks) Chandra X-ray observation of the galaxy group NGC~5813, the deepest Chandra observation of a galaxy group to date. Earlier observations showed two pairs of cavities distributed roughly collinearly, with each pair associated with an elliptical shock front. The new observations confirm a third pair of outer cavities, collinear with the other pairs, and reveal an associated outer outburst shock at ~30 kpc. This system is therefore unique in exhibiting three cavity pairs, each associated with an unambiguous AGN outburst shock front. The implied mean kinetic power is roughly the same for each outburst, demonstrating that the average AGN kinetic luminosity can remain stable over long timescales (~50 Myr). The two older outbursts have larger, roughly equal total energies as compared with the youngest outburst, implying that the youngest outburst is ongoing. We find that the radiative cooling rate and the mean shock heating rate of the gas are well balanced at each shock f...

  7. Chandra Observations of Dying Radio Sources in Galaxy Clusters

    Science.gov (United States)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-01-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions. We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from

  8. A Deep Chandra Observation of the AGN Outburst and Merger in Hickson Compact Group 62

    CERN Document Server

    Rafferty, D A; Nulsen, P E J; McNamara, B R; Brandt, W N; Wise, M W; Röttgering, H J A

    2012-01-01

    We report on an analysis of new Chandra data of the galaxy group HCG 62, well known for possessing cavities in its intragroup medium (IGM) that were inflated by the radio lobes of its central active galactic nucleus (AGN). With the new data, a factor of three deeper than previous Chandra data, we re-examine the energetics of the cavities and determine new constraints on their contents. We confirm that the ratio of radiative to mechanical power of the AGN outburst that created the cavities is less than 10^-4, among the lowest of any known cavity system, implying that the relativistic electrons in the lobes can supply only a tiny fraction of the pressure required to support the cavities. This finding implies additional pressure support in the lobes from heavy particles (e.g., protons) or thermal gas. Using spectral fits to emission in the cavities, we constrain any such volume-filling thermal gas to have a temperature kT > 4.3 keV. For the first time, we detect X-ray emission from the central AGN, with a lumino...

  9. Chandra Observations of the Components of Clusters, Groups, and Galaxies and their Interactions

    CERN Document Server

    Forman, W; Markevitch, M L; Vikhlinin, A A; Churazov, E

    2001-01-01

    We discuss two themes from Chandra observations of galaxies, groups, and clusters. First, we review the merging process as seen through the high angular resolution of Chandra. We present examples of sharp, edge-like surface brightness structures ``cold fronts'', the boundaries of the remaining cores of merger components and the Chandra observations of CL0657, the first clear example of a strong cluster merger shock. In addition to reviewing already published work, we present observations of the cold front around the elliptical galaxy NGC1404 which is infalling into the Fornax cluster and we discuss multiple ``edges'' in ZW3146. Second, we review the effects of relativistic, radio-emitting plasmas or ``bubbles'', inflated by active galactic nuclei, on the hot X-ray emitting gaseous atmospheres in galaxies and clusters. We review published work and also discuss the unusual X-ray structures surrounding the galaxies NGC4636 and NGC507.

  10. Intrinsic Absorption in the Spectrum of Mrk 279: Simultaneous Chandra, FUSE, and STIS Observations

    OpenAIRE

    Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C; Arav, Nahum; Ogle, Patrick; Roraback, Kenneth; Weaver, Kimberly; Alexander, Tal; Brotherton, Michael; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Zheng, Wei

    2004-01-01

    We present a study of the intrinsic X-ray and far-ultraviolet absorption in the Seyfert 1.5 galaxy Markarian 279 using simultaneous observations from the Chandra X-ray Observatory, the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope, and the Far Ultraviolet Spectroscopic Explorer (FUSE). We also present FUSE observations made at three additional epochs. We detect the Fe K-alpha emission line in the Chandra spectrum, and its flux is consistent with the low X-ray continuu...

  11. Chandra observation of the supernova remnant N11L

    Science.gov (United States)

    Sun, Wei; Chen, Yang; Chu, You-Hua; Williams, Rosa M.

    2016-06-01

    We performed a Chandra X-ray study of the supernova remnant (SNR) N11L in the Large Magellanic Cloud (LMC). The X-ray emission is predominantly distributed within the main shell and the northern loop-like filaments traced by the optical narrow band images, with an indistinct extension along the north area. The brightest emission comes from a northeast-southwest ridge, and peaks at two patches at center and southwest. Spectral analysis indicates that the blast wave is propagating in a inhomogenous environment, and the X-ray emission overall is dominated by thermal gas whose composition is consistent with the LMC average abundance. The ionization time of the hot plasma implied by the X-ray spectral analysis is consistent with the Sedov age of the SNR derived from the best-fit parameters and the apparent radius of the SNR based on the optical images, however, the consequent explosion energy is no only at least one order of magnitude less than the canonical value of 10^{51} ergs, but also takes a small portion of the thermal energy of the hot gas. That discrepancy supports the blown-out scenario.

  12. Chandra observations of comet 9P/Tempel 1 during the Deep Impact campaign

    NARCIS (Netherlands)

    Lisse, C. M.; Dennerl, K.; Christian, D. J.; Wolk, S. J.; Bodewits, D.; Zurbuchen, T. H.; Hansen, K. C.; Hoekstra, R.; Combi, M.; Fry, C. D.; Dryer, M.; Maekinen, T.; Sun, W.; Jansen, K.C.; Mäkinen, T.

    2007-01-01

    We present results from the Chandra X-ray Observatory's extensive campaign studying Comet 9P/Tempel 1 (T1) in support of NASA's Deep Impact (DI) mission. T1 was observed for similar to 295 ks between 30th June and 24th July 2005, and continuously for similar to 64 ks on July 4th during the impact ev

  13. Intrinsic Absorption in the Spectrum of Mrk 279: Simultaneous Chandra, FUSE, and STIS Observations

    CERN Document Server

    Scott, J E; Lee, J C; Arav, N; Ogle, P M; Roraback, K; Weaver, K; Alexander, T; Brotherton, M; Green, R F; Hutchings, J B; Kaiser, M E; Marshall, H; Oegerle, W; Zheng, W; Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C.; Arav, Nahum; Ogle, Patrick; Roraback, Kenneth; Weaver, Kimberly; Alexander, Tal; Brotherton, Michael; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Zheng, Wei

    2004-01-01

    We present a study of the intrinsic X-ray and far-ultraviolet absorption in the Seyfert 1.5 galaxy Markarian 279 using simultaneous observations from the Chandra X-ray Observatory, the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope, and the Far Ultraviolet Spectroscopic Explorer (FUSE). We also present FUSE observations made at three additional epochs. We detect the Fe K-alpha emission line in the Chandra spectrum, and its flux is consistent with the low X-ray continuum flux level of Mrk 279 at the time of the observation. Due to low signal-to-noise ratios in the Chandra spectrum, no O VII or O VIII absorption features are observable in the Chandra data, but the UV spectra reveal strong and complex absorption from HI and high-ionization species such as O VI, N V, and C IV, as well as from low-ionization species such as C III, N III, C II, and N II in some velocity components. The far-UV spectral coverage of the FUSE data provides information on high-order Lyman series absorption, which...

  14. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  15. X-ray observations of dust obscured galaxies in the Chandra Deep Field South

    CERN Document Server

    Corral, A; Comastri, A; Ranalli, P; Akylas, A; Salvato, M; Lanzuisi, G; Vignali, C; Koutoulidis, L

    2016-01-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra Deep Field South. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields. In that work, we only found a moderate percentage ($<$ 50%) of CT AGN among the DOGs sample, but we were limited by poor photon statistics. In this paper, we use not only a deeper 6 Ms Chandra survey of the Chandra Deep Field South (CDF-S), but combine these data with the 3 Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (but only 3 could be CT AGN), wherea...

  16. Unravelling ICM Physics and AGN Feedback with Deep Chandra Observations of NGC 5813

    Science.gov (United States)

    Randall, Scott; Nulsen, Paul; Jones, Christine; Forman, William; Clarke, Tracy

    2015-09-01

    We present results based on very deep (650 ks) Chandra observations of the galaxy group NGC 5813. This system shows three pairs of collinear cavities, with each pair associated with an elliptical AGN outburstshock. Due to the relatively regular morphology of this system, and the unique unambiguous detection of three distinct AGN outburstshocks, it is particularly well-suited for the study of AGN feedbackand the AGN outburst history. The implied mean kinetic power is roughly the same for each outburst, demonstrating that the average AGN kinetic luminosity can remain stable over long timescales (roughly 50Myr). The two older outbursts have larger, roughly equal total energies as compared with the youngest outburst, implying that the youngest outburst is ongoing. We find that the radiative cooling rate and the mean shock heating rate of the gas are well balanced at each shock front, suggesting that AGN outburst shock heating alone is sufficient to offset cooling and establish AGN/ICM feedback within at least the central 30 kpc. This heating takes place roughly isotropically and most strongly at small radii, as is required for feedback to operate. We suggest that shock heating may play a significant role in AGN feedback at smaller radii in other systems, where weak shocks are more difficult to detect. We find non-zero shockfront widths that are too large to be explained by particle diffusion. Instead, all measured widths are consistent with shock broadening due to propagation through a turbulent ICM with a mean turbulent speed of roughly 70 km/s. Significant contributions to our understanding of AGN feedback and ICM physics, partially via studies similar to the one described here, will be one of the major achievements of the Athena mission.

  17. CHANDRA Observations of V407 Vul: Confirmation of the Spin-up

    CERN Document Server

    Strohmayer, T E

    2004-01-01

    V407 Vul is a candidate double-degenerate binary with a putative 1.756 mHz (9.5 min) orbital frequency. In a previous timing study using archival ROSAT and ASCA data we reported evidence for an increase of this frequency at a rate consistent with expectations for gravitational radiation from a detached ultracompact binary system. Here we report the results of new CHANDRA timing observations which confirm the previous indications of spin-up of the X-ray frequency, and provide much tighter constraints on the frequency derivative. We obtained with CHANDRA a total of 90 ksec of exposure in two epochs separated in time by 11.5 months. The total time span of the archival ROSAT, ASCA and new CHANDRA data is now 10.5 years. This more than doubles the interval spanned by the ROSAT and ASCA data alone, providing much greater sensitivity to a frequency derivative. With the addition of the CHANDRA data an increasing frequency is unavoidable, with a value df/dt = 7.0 x 10-18 Hz/s. Although a long-term spin-up trend is con...

  18. Deep Chandra observations of TeV binaries I : LS I+61 303

    NARCIS (Netherlands)

    Rea, N.; Torres, D.F.; Klis, M. van der; Mendez, M.; Sierpowska-Bartosik, A.; Jonker, P.G.

    2010-01-01

    We report on a 95 ks Chandra observation of the TeV emitting High Mass X– ray Binary LS I+61303, using the ACIS-S camera in Continuos Clocking mode to search for a possible X-ray pulsar in this system. The observation was performed while the compact object was passing from phase 0.94 to 0.98 in its

  19. Deep Chandra observations of TeV binaries - I. LS I +61°303

    NARCIS (Netherlands)

    Rea, N.; Torres, D.F.; van der Klis, M.; Jonker, P.G.; Méndez, M.; Sierpowska-Bartosik, A.

    2010-01-01

    We report on a 95 ks Chandra observation of the TeV emitting high-mass X-ray binary LS I +61°303, using the ACIS-S camera in continuous clocking mode to search for a possible X-ray pulsar in this system. The observation was performed while the compact object was passing from phase 0.94 to 0.98 in it

  20. Deep Chandra observations of TeV binaries : I. LSI+61°303

    NARCIS (Netherlands)

    Rea, N.; Torres, D. F.; van der Klis, M.; Jonker, P.G.; Mendez, M.; Sierpowska-Bartosik, A.

    2010-01-01

    We report on a 95 ks Chandra observation of the TeV emitting high-mass X-ray binary LS I +61 degrees 303, using the ACIS-S camera in continuous clocking mode to search for a possible X-ray pulsar in this system. The observation was performed while the compact object was passing from phase 0.94 to 0.

  1. Joint XMM-Newton, Chandra, and RXTE Observations of Cyg X-1 at Phase Zero

    Science.gov (United States)

    Pottschmidt, Katja

    2008-01-01

    We present first results of simultaneous observations of the high mass X-ray binary Cyg X-1 for 50 ks with XMM-Newton, Chandra-HETGS and RXTE in 2008 April. The observations are centered on phase 0 of the 5.6 d orbit when pronounced dips in the X-ray emission from the black hole are known to occur. The dips are due to highly variable absorption in the accretion stream from the O-star companion to the black hole. Compared to previous high resolution spectroscopy studies of the dip and non-dip emission with Chandra, the addition of XMM-Newton data allows for a better determination of the continuum, especially through the broad iron line region (with RXTE constraining the greater than 10 keV continuum).

  2. Supernova Remnant 1987A: High Resolution Images and Spectrum from Chandra Observations

    CERN Document Server

    Park, S; Burrows, D N; Racusin, J L; McCray, R; Borkowski, K J; Park, Sangwook; Zhekov, Svetozar A.; Burrows, David N.; Racusin, Judith L.; Cray, Richard Mc; Borkowski, Kazimierz J.

    2005-01-01

    We report on the morphological and spectral evolution of SNR 1987A from the monitoring observations with the Chandra/ACIS. As of 2005, the X-ray-bright lobes are continuously brightening and expanding all around the ring. The softening of the overall X-ray spectrum also continues. The X-ray lightcurve is particularly remarkable: i.e., the recent soft X-ray flux increase rate is significantly deviating from the model which successfully fits the earlier data, indicating even faster flux increase rate since early 2004 (day ~6200). We also report results from high resolution spectral analysis with deep Chandra/LETG observations. The high resolution X-ray line emission features unambiguously reveal that the X-ray emission of SNR 1987A is originating primarily from a "disk" along the inner ring rather than from a spherical shell. We present the ionization structures, elemental abundances, and the shock velocities of the X-ray emitting plasma.

  3. A Chandra Observation of the Face-on Spiral Galaxy NGC 3938

    Science.gov (United States)

    Buhidar, Kelsey; Schlegel, Eric M.

    2017-01-01

    The ACIS detector (Advanced CCD Imaging Spectrometer) onboard the Chandra X-ray Observatory has imaged the face-on spiral NGC 3938 for 50 ksec. We will detect ~50 sources within the D25 radius. We will describe the luminosity distribution in comparison with distributions from other nearby spiral galaxies. We do not detect any diffuse emission. We will compare the X-ray data to observations at other wavebands.

  4. Chandra Observes the End of an Era in SN 1987A

    Science.gov (United States)

    Frank, Kari A.; Zhekov, Svetozar A.; Park, Sangwook; McCray, Richard; Dwek, Eli; Burrows, David N.

    2016-09-01

    Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at ˜8 × 10-12 erg s-1 cm-2 since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10,000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies fade. Consistent with the latest optical and infrared results, our Chandra analysis indicates the blast wave is now leaving the dense ER, which marks the beginning of a major change in the evolutionary phase of the supernova remnant 1987A.

  5. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  6. Simultaneous Chandra and RXTE Observations of the nearby bright Seyfert 2 galaxy NGC 4945

    Energy Technology Data Exchange (ETDEWEB)

    Madejski, Grzegorz

    2003-01-30

    We analyze recent simultaneous Chandra/RXTE observations of the Seyfert 2 galaxy NGC 4945. The unprecedented spatial resolution of Chandra means we are able to separate the spectra of the nucleus, starburst and superwind regions, while the RXTE data extend the spectrum to higher energies. The extreme absorbing column of N{sub H} {approx} 4 x 10{sup 24} cm{sup -2} means that the nucleus is only seen directly above 8-10 keV, while the lower energy spectrum from the nuclear region in Chandra is dominated by reflection. By contrast, the superwind is dominated by emission from hot plasma, but the starburst region contains both hot plasma and reaction signatures. To form a reflected spectrum requires that the starburst region contains clumps of cool, optically thick material, perhaps star forming cores, which are irradiated by 7-10 keV photons from the nucleus. Since photons of this energy are obscured along the line sight then this confirms the result of Madejski et al. (2000) that the extreme absorption material is disk-like rather than a torus. However, the IR/optical limits on the lack of high excitation emission lines show that by contrast the lower energy photons from the nucleus are obscured in all directions. We discuss the complex absorption structure revealed by these observations, and propose an overall source geometry in which the nucleus is completely embedded in material with N{sub H} {approx} 10{sup 23} cm{sup -2}.

  7. Intrinsic Absorption in the Spectrum of NGC 7469: Simultaneous Chandra, FUSE, and STIS Observations

    CERN Document Server

    Scott, J E; Lee, J C; Quijano, J K; Brotherton, M; Canizares, C R; Green, R F; Hutchings, J B; Kaiser, M E; Marshall, H; Oegerle, W; Ogle, P; Zheng, W; Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C.; Quijano, Jessica Kim; Brotherton, Michael; Canizares, Claude R.; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Ogle, Patrick; Zheng, Wei

    2005-01-01

    We present simultaneous X-ray, far-ultraviolet, and near-ultraviolet spectra of the Seyfert 1 galaxy NGC 7469 obtained with the Chandra X-Ray Observatory, the Far Ultraviolet Spectroscopic Explorer, and the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Previous non-simultaneous observations of this galaxy found two distinct UV absorption components, at -560 and -1900 km/s, with the former as the likely counterpart of the X-ray absorber. We confirm these two absorption components in our new UV observations, in which we detect prominent O VI, Ly alpha, N V, and C IV absorption. In our Chandra spectrum we detect O VIII emission, but no significant O VIII or O VII absorption. We also detect a prominent Fe K alpha emission line in the Chandra spectrum, as well as absorption due to hydrogen-like and helium-like neon, magnesium, and silicon at velocities consistent with the -560 km/s UV absorber. The FUSE data reveal that the H I and C IV column densities in this UV- and X-ray- absorbing compon...

  8. Chandra and XMM Observations of the Composite Supernova Remnant G327.1-1.1

    CERN Document Server

    Temim, Tea; Gaensler, B M; Hughes, John P; van der Swaluw, Eric

    2008-01-01

    We present new X-ray imaging and spectroscopy of a composite supernova remnant G327.1-1.1 using the Chandra and XMM-Newton X-ray observatories. G327.1-1.1 has an unusual morphology consisting of a symmetric radio shell and an off center nonthermal component that indicates the presence of a pulsar wind nebula (PWN). Radio observations show a narrow finger of emission extending from the PWN structure towards the northwest. X-ray studies with ASCA, ROSAT, and BeppoSAX revealed elongated extended emission and a compact source at the tip of the finger that may be coincident with the actual pulsar. The high resolution Chandra observations provide new insight into the structure of the inner region of the remnant. The images show a compact source embedded in a cometary structure, from which a trail of X-ray emission extends in the southeast direction. The Chandra images also reveal two prong-like structures that appear to originate from the vicinity of the compact source and extend into a large bubble that is oriente...

  9. Chandra observations of the H2O megamaser galaxy Mrk1210

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We present the first Chandra X-ray observations of the H2O megamaser galaxy Mrk1210 (UGC4203), a Seyfert 2 galaxy at an approximate distance of D~57.6 Mpc. The Chandra X-ray image, with by far the highest angular resolution (~1"), displays an unresolved compact core toward the nuclear region of Mrk1210. Comparisons with the previous X-ray observations in the nuclear emission and the spectral shape indicate a fairly stable phase between 2001 (BeppoSAX and XMM-Newton) and 2004 (Chandra) after a dramatic variation since 1995 (ASCA). The best-fit model of Chandra X-ray spectrum consists of two components. The soft scattered component can be best fitted by a moderately absorbed power-law model adding a spectral line at ~0.9 keV (possibly a Ne-Kα fluorescent line), while the hard nuclear component can be well reproduced by a heavily absorbed power-law model (NH~2×1023 cm-2) with an additional line at ~6.19 keV (close to the Fe-Kα fluorescent line). The derived absorption-corrected X-ray luminosity implies that the dramatic variation of spectral properties is caused by significant changes of the absorbing column density along the line-of-sight, while the intrinsic nuclear X-ray lu-minosity remains stable. In this case, the absorbers should be anisotropic and its size can be constrained to be less than 0.0013 pc. In addition, we also estimate the mass of central engine, the disk radius and the accretion rate of the accretion disk to be 107.12±0.31M⊙, ~1 pc and 0.006, respectively.

  10. Chandra observations of the H2O megamaser galaxy Mrk1210

    Institute of Scientific and Technical Information of China (English)

    ZHANG JiangShui; FAN JunHui

    2009-01-01

    We present the first Chandra X-ray observations of the H2O megamaser galaxy Mrk1210 (UGC4203), a Seyfert 2 galaxy at an approximate distance of D~57.6 Mpc. The Chandra X-ray image, with by far the highest angular resolution (~1"), displays an unresolved compact core toward the nuclear region of Mrk1210. Comparisons with the previous X-ray observations in the nuclear emission and the spectral shape indicate a fairly stable phase between 2001 (BeppoSAX and XMM-Newton) and 2004 (Chandra) after a dramatic variation since 1995 (ASCA). The best-fit model of Chandra X-ray spectrum consists of two components. The soft scattered component can be best fitted by a moderately absorbed power-law model adding a spectral line at ~0.9 keV (possibly a Ne-Kα fluorescent line), while the hard nuclear component can be well reproduced by a heavily absorbed power-law model (NH~2×1023cm-2) with an additional line at~6.19 keV (close to the Fe-Kα fluorescent line). The derived absorption-corrected X-ray luminosity implies that the dramatic variation of spectral properties is caused by significant changes of the absorbing column density along the line-of-sight, while the intrinsic nuclear X-ray luminosity remains stable. In this case, the absorbers should be anisotropic and its size can be constrained to be less than 0.0013 pc. In addition, we also estimate the mass of central engine, the disk radius and the accretion rate of the accretion disk to be 107.12±0.31M⊙, ~1 pc and 0.006, respectively.

  11. CHANDRA Observations of RX J1914.4+ 2456: Spin-up of a White Dwarf?

    Science.gov (United States)

    Strohmayer, Tod E.

    2004-01-01

    RX 51914.4+2456 is a candidate double-degenerate binary with a putative 1.756 mHz orbital frequency. In a previous timing study using archival ROSAT and ASCA data we reported evidence for an increase of the putative orbital frequency at a rate consistent with expectations for gravitational radiation from the system. Here we report the results of new Chandra timing observations which confirm the previous indications of spin-up of the X-ray frequency, and provide much tighter constraints on the frequency derivative, u. We obtained with Chandra a total of 75 ksec of exposure in two epochs separated in time by 10.3 months. The total time span of the archival ROSAT, ASCA and new Chandra data is now 10.2 years. This more than doubles the interval spanned by the ROSAT and ASCA data alone, providing much greater sensitivity to a frequency derivative. With the addition of the Chandra data an increasing frequency is unavoidable, and the mean i/ is 5.9f0.9 x 10-l' Hz s-'. Interestingly, power spectra of the longest Chandra pointing show evidence for a sideband structure to the 1.756 mHz frequency. The fundamental and first harmonic show evidence for upper sidebands with a frequency separation of E 0.5 mHz from their parent peaks. Additionally, the first and second harmonics show evidence for lower sidebands with approximately half the frequency separation of the upper sidebands. Similar sideband structure is a common feature of Intermediate Polars (Ips)-although it is usually observed in the optical-and suggests the presence of a longer period in the system, perhaps the previously unseen orbital period. If this is correct the sideband structure indicates an orbital period close to 1 hr, and the observed u likely represents the accretion-induced spin-up of a white dwarf. We discuss the implications of these findings for the nature of RX J1914.4+2456.

  12. Chandra Observations and Models of the Mixed Morphology Supernova Remnant W44: Global Trends

    Science.gov (United States)

    Shelton, R. L.; Kuntz, K. D.; Petre, R.

    2004-01-01

    We report on the Chandra observations of the archetypical mixed morphology (or thermal composite) supernova remnant, W44. As with other mixed morphology remnants, W44's projected center is bright in thermal X-rays. It has an obvious radio shell, but no discernable X-ray shell. In addition, X-ray bright knots dot W44's image. The spectral analysis of the Chandra data show that the remnant s hot, bright projected center is metal-rich and that the bright knots are regions of comparatively elevated elemental abundances. Neon is among the affected elements, suggesting that ejecta contributes to the abundance trends. Furthermore, some of the emitting iron atoms appear to be underionized with respect to the other ions, providing the first potential X-ray evidence for dust destruction in a supernova remnant. We use the Chandra data to test the following explanations for W44's X-ray bright center: 1.) entropy mixing due to bulk mixing or thermal conduction, 2.) evaporation of swept up clouds, and 3.) a metallicity gradient, possibly due to dust destruction and ejecta enrichment. In these tests, we assume that the remnant has evolved beyond the adiabatic evolutionary stage, which explains the X-ray dimness of the shell. The entropy mixed model spectrum was tested against the Chandra spectrum for the remnant's projected center and found to be a good match. The evaporating clouds model was constrained by the finding that the ionization parameters of the bright knots are similar to those of the surrounding regions. While both the entropy mixed and the evaporating clouds models are known to predict centrally bright X-ray morphologies, their predictions fall short of the observed brightness gradient. The resulting brightness gap can be largely filled in by emission from the extra metals in and near the remnant's projected center. The preponderance of evidence (including that drawn from other studies) suggests that W44's remarkable morphology can be attributed to dust destruction

  13. CHANDRA Observations of V407 Vul: Confirmation of the Spin-up

    Science.gov (United States)

    Strohmayer, T.

    2004-01-01

    V407 Vu1 (RX J1914.4+2456) is a candidate double-degenerate binary with a putative 1.756 mHz (9.5 min) orbital frequency. In a previous timing study using archival ROSAT and ASCA data we reported evidence for an increase of this frequency at a rate consistent with expectations for gravitational radiation from a detached ultracompact binary system. Here we report the results of new Chandra timing observations which confirm the previous indications of spin-up of the X-ray frequency, and provide much tighter constraints on the frequency derivative, nu (raised dot). We obtained with Chandra a total of 90 ksec of exposure in two epochs separated in time by 11.5 months. The total time span of the archival ROSAT, ASCA and new Chandra data is now approximately equal to 10.5 years. This more than doubles the interval spanned by the ROSAT and ASCA data alone, providing much greater sensitivity to a frequency derivative. With the addition of the Chandra data an increasing frequency is unavoidable, and the mean nu (raised dot) is 7.0 plus or minus 0.8 x l0(exp -18) Hz per second. Although a long-term spin-up trend is confirmed, there is excess variance in the phase timing residuals, perhaps indicative of shorter timescale torque fluctuations or phase instability associated with the source of the X-ray flux. Power spectral searches for periods longward of the 9.5 minute period do not find any significant modulations, however, the sensitivity of searches in this frequency range are somewhat compromised by the dithering of the Chandra attitude. The observed spin-up is of a magnitude consistent with that expected from gravitational radiation decay, however, the factor of approximately equal to 3 variations in flux combined with the timing noise could conceivably result from accretion-induced spin-up of a white dwarf. Continued monitoring to explore correlations of torque with X-ray flux could provide a further test of this hypothesis.

  14. The Chandra Survey of Extragalactic Sources in the 3CR Catalog: X-ray Emission from Nuclei, Jets, and Hotspots in the Chandra Archival Observations

    CERN Document Server

    Massaro, F; Liuzzo, E; Orienti, M; Paladino, R; Paggi, A; Tremblay, G R; Wilkes, B J; Kuraszkiewicz, J; Baum, S A; O'Dea, C P

    2016-01-01

    As part of our program to build a complete radio and X-ray database of all the 3CR extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have been already published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the VLA archive. For about 1/3 of the sources in the selected sample a comparison between the Chandra and the radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium of 15 galaxy clusters, two of which were most likely unknown previously.

  15. THE CHANDRA SURVEY OF EXTRAGALACTIC SOURCES IN THE 3CR CATALOG: X-RAY EMISSION FROM NUCLEI, JETS, AND HOTSPOTS IN THE CHANDRA ARCHIVAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Harris, D. E.; Paggi, A.; Wilkes, B. J.; Kuraszkiewicz, J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Liuzzo, E.; Orienti, M.; Paladino, R. [Istituto di Radioastronomia, INAF, via Gobetti 101, I-40129, Bologna (Italy); Tremblay, G. R. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Baum, S. A.; O’Dea, C. P. [University of Manitoba, Dept of Physics and Astronomy, Winnipeg, MB R3T 2N2 (Canada)

    2015-09-15

    As part of our program to build a complete radio and X-ray database of all Third Cambridge catalog extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have already been published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the Very Large Array archive. For about 1/3 of the sources in the selected sample, a comparison between the Chandra and radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium for 15 galaxy clusters.

  16. Luminosity Functions and Point Source Properties from Multiple Chandra Observations of M81

    CERN Document Server

    Sell, P H; Zezas, A; Heinz, S; Homan, J; Lewin, W H G

    2011-01-01

    We present an analysis of 15 Chandra observations of the nearby spiral galaxy M81 taken over the course of six weeks in May--July 2005. Each observation reaches a sensitivity of ~10^37 erg/s. With these observations and one previous deeper Chandra observation, we compile a master source list of 265 point sources, extract and fit their spectra, and differentiate basic populations of sources through their colors. We also carry out variability analyses of individual point sources and of X-ray luminosity functions in multiple regions of M81 on timescales of days, months, and years. We find that, despite measuring significant variability in a considerable fraction of sources, snapshot observations provide a consistent determination of the X-ray luminosity function of M81. We also fit the X-ray luminosity functions for multiple regions of M81 and, using common parametrizations, compare these luminosity functions to those of two other spiral galaxies, M31 and the Milky Way.

  17. Intrinsic Absorption in the Spectrum of NGC 7469: Simultaneous Chandra, FUSE, and STIS Observations

    OpenAIRE

    Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C; Quijano, Jessica Kim; Brotherton, Michael; Canizares, Claude R.; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Ogle, Patrick; Zheng, Wei

    2005-01-01

    We present simultaneous X-ray, far-ultraviolet, and near-ultraviolet spectra of the Seyfert 1 galaxy NGC 7469 obtained with the Chandra X-Ray Observatory, the Far Ultraviolet Spectroscopic Explorer, and the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Previous non-simultaneous observations of this galaxy found two distinct UV absorption components, at -560 and -1900 km/s, with the former as the likely counterpart of the X-ray absorber. We confirm these two absorption co...

  18. Results of a Deep Chandra Observation of the Crab Nebula and Pulsar

    Science.gov (United States)

    Weisskopf, M. C.; Becker, W.; Elsner, R. F.; Juda, M.; Kolodziejczak, J.; Murray, S. S.; ODell, S.; Paerels, F.; Shibazaki, N.; Swartz, D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The Crab Nebula and pulsar were observed for a total of 150 ksec with the LETG/HRC-S combination aboard the Chandra X-Ray Observatory in 2000, January and February. One of the principal aims of the experiment was to study the emission from the pulsar as a function of pulse phase. Neutron stars are believed to be formed with core temperatures of 10(exp 11) K. As the pulsar is the best studied of the young known neutron stars with an age of only 940 yrs, it should be possible to observe thermal emission from the hot stellar surface which in turn constrains equations of state. The pulsar, on the other hand, is a powerful non-thermal emitter, powering an X-ray bright synchrotron nebula which, in Einstein and ROSAT observations, overshadowed the fainter thermal surface emission. Making use of the high angular resolution provided by Chandra we were able to detect X-rays from the Crab-pulsar at all pulse phases. We discuss whether this detection is indeed of thermal emission or of a faint synchrotron component of the pulsed emission from the magnetosphere. We further comment on dynamical effects observed in the pulsar-wind outflow and the analysis of the LETG spectral data, especially near the oxygen edge.

  19. Chandra Observations of the Highest Redshift Quasars from the Sloan Digital Sky Survey

    CERN Document Server

    Shemmer, O; Brandt, W N; Brinkmann, J; Diamond-Stanic, A M; Fan, X; Gunn, J E; Richards, G T; Schneider, D P; Strauss, M A; Anderson, Scott F.; Brinkmann, Jon; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Gunn, James E.; Richards, Gordon T.; Schneider, Donald P.; Shemmer, Ohad; Strauss, Michael A.

    2006-01-01

    We present new Chandra observations of 21 z>4 quasars, including 11 sources at z>5. These observations double the number of X-ray detected quasars at z>5, allowing investigation of the X-ray spectral properties of a substantial sample of quasars at the dawn of the modern Universe. By jointly fitting the spectra of 15 z>5 radio-quiet quasars (RQQs), including sources from the Chandra archive, with a total of 185 photons, we find a mean X-ray power-law photon index of Gamma=1.95^{+0.30}_{-0.26}, and a mean neutral intrinsic absorption column density of N_H5 RQQs, excluding broad absorption line quasars, is alpha_ox=-1.69+/-0.03, which is consistent with the value predicted from the observed relationship between alpha_ox and ultraviolet luminosity. Four of the sources in our sample are members of the rare class of weak emission-line quasars, and we detect two of them in X-rays. We discuss the implications our X-ray observations have for the nature of these mysterious sources and, in particular, whether their wea...

  20. A bright thermonuclear X-ray burst simultaneously observed with Chandra and RXTE

    CERN Document Server

    Zand, J J M in t; Marshall, H L; Ballantyne, D R; Jonker, P G; Paerels, F B S; Palmer, D M; Patruno, A; Weinberg, N N

    2013-01-01

    The prototypical accretion-powered millisecond pulsar SAX J1808.4-3658 was observed simultaneously with Chandra-LETGS and RXTE-PCA near the peak of a transient outburst in November 2011. A single thermonuclear (type-I) burst was detected, the brightest yet observed by Chandra from any source, and the second-brightest observed by RXTE. We found no evidence for discrete spectral features during the burst; absorption edges have been predicted to be present in such bursts, but may require a greater degree of photospheric expansion than the rather moderate expansion seen in this event (a factor of a few). These observations provide a unique data set to study an X-ray burst over a broad bandpass and at high spectral resolution (lambda/delta-lambda=200-400). We find a significant excess of photons at high and low energies compared to the standard black body spectrum. This excess is well described by a 20-fold increase of the persistent flux during the burst. We speculate that this results from burst photons being sc...

  1. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, Univ. of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space Research and Technology Institute, Akad. G. Bonchev Str., Sofia, 1113 (Bulgaria); Güdel, Manuel [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner, E-mail: stephen.skinner@colorado.edu, E-mail: szhekov@space.bas.bg, E-mail: manuel.guedel@univie.ac.at, E-mail: werner.schmutz@pmodwrc.ch [Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland)

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  2. Diagnosing the Black Hole Accretion Physics of Sgr A*: Spitzer/Chandra Observations

    Science.gov (United States)

    Hora, Joseph L.; Fazio, Giovanni G.; Willner, Steven P.; Gurwell, Mark A.; Smith, Howard Alan; Ashby, Matthew; Baganoff, Frederick K.; Witzel, Gunther; Morris, Mark; Ghez, Andrea M.; Meyer, Leo; Becklin, Eric E.; Ingalls, James G.; Glaccum, William J.; Carey, Sean J.; Haggard, Daryl; Marrone, Daniel P.; Gammie, Charles F.

    2017-01-01

    The Galactic center offers the closest opportunity for studying accretion onto a supermassive black hole. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and its flux may originate in either the accretion flow or a jet, or both. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Following our successful Spitzer observations of the variability of Sgr A* in 2013 and 2014, we have undertaken a program of simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. In addition, several ground-based observatories participated in the campaigns, at wavelengths including radio, sub-mm, and the near-infrared. We will present initial Spitzer/Chandra results from the two 24-hour epochs in 2016 July. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon.

  3. A Deep Chandra Legacy Observation of the Nearby Grand Design Spiral M83

    Science.gov (United States)

    Long, Knox S.; Bianchi, L.; Blair, W. P.; Ghavamian, P.; Kuntz, K. D.; Plucinsky, P. P.; Soria, R.; Winkler, P. F.

    2011-05-01

    With a high supernova rate, a starburst nucleus, and large numbers of high mass star clusters in the disk of the galaxy, M83 is a superb laboratory for understanding how the life cycle of stars and the interstellar medium interact to produce X-ray emission in normal galaxies. Here we report initial results of a set of ongoing deep Chandra ACIS observations of M83 that will ultimately have a total exposure of 750 ks. Our preliminary catalog, based on the first 160 ks of data, includes more than 180 sources, a number that will likely grow by a factor of 2 when the observations are complete. New sources include a new ultraluminous X-ray source that has appeared in an interarm region since the earlier Chandra observations in 2001, as well as the X-ray counterpart to the SN 1957D. Many of the sources are coincident with supernova remnant candidates identified from new interference filter images of M83 from Magellan/IMACS. We will discuss how we intend to relate the X-ray properties of the supernova remnants, X-ray binaries, and diffuse X-ray emission to the local environment, using the underlying stellar populations and/or distance from features like the spiral arms to constrain the progenitors of the sources. We gratefully acknowledge support for this project by NASA through grant GO1-12115A.

  4. Chandra Observes Cosmic Traffic Pile-Up In Energetic Quasar Jet

    Science.gov (United States)

    2000-11-01

    Using the unrivaled high resolution of NASA's Chandra X-ray Observatory, astronomers have seen important new details in the powerful jet shooting from the quasar 3C273. This research, coupled with optical and radio data, may reveal how these very high velocity jets are driven from the supermassive black holes that scientists believe lurk in the center of quasars. "For the first time, Chandra has given us an X-ray view into the area between 3C273's core and the beginning of the jet," says MIT's Herman Marshall, lead author on the paper submitted to Astrophysical Journal Letters. "Instead of being void of X-ray emission, Chandra has enabled us to detect a faint, but definite, stream of energy." The high-powered jets driven from quasars, often at velocities very close to the speed of light, have long been perplexing for scientists. Instead of seeing a smooth stream of material driven from the core of the quasar, most optical, radio, and earlier X-ray observations have revealed inconsistent, "lumpy" clouds of gas. This newly discovered continuous X-ray flow in 3C273 from the core to the jet may reveal insight on the physical processes that power these jets. Scientists would like to learn why matter is violently ejected from the quasar's core, then appears to suddenly slow down. "If there is a slower car in front on a highway, a faster one from behind will eventually catch up and maybe cause a wreck," says Marshall. "If the jet flow velocity changes, then gas shocks may result, which are akin to car collisions. These gigantic clouds of high-energy electrons, now seen in X rays with Chandra, may indeed be the result of some sort of cosmic traffic pile-up." The X-ray power produced in one of these pile-ups is tremendous. For example, the X-ray output of the first knot in the jet is greater than that of most Seyfert galaxies, which are thought to be powered by supermassive black holes. The abundance of X-ray emission suggests that large amounts of energy may also be

  5. Chandra observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    CERN Document Server

    Hlavacek-Larrondo, J; Hogan, M T; Gendron-Marsolais, M -L; Edge, A C; Fabian, A C; Russell, H R; Iwasawa, K; Mezcua, M

    2016-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with L_IR>10^13L_sun. They are thought to be closer counterparts of the more distant sub-mm galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z=0.93, hosting a radio-loud AGN (L_1.4GHz=3.5*10^25 W/Hz). The Chandra X-ray images reveal extended, asymmetric X-ray emission in the soft 0.3-2.0 keV band, extending to 160 kpc in the southern direction. VLA observations at 1.4 GHz and 8.4 GHz reveal no radio counterpart to this extended X-ray emission. The emission is therefore most likely of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. The temperature (2 keV) and bolometric X-ray luminosity (3*10^43 erg/s) of the gas follow the expected L_X-ray-T correlation for groups and clusters of galaxies. We also find that th...

  6. The Northern Rims of SNR RCW 86 - Chandra's Recent Observations and their Implications for Particle Acceleration

    Science.gov (United States)

    Castro, D.

    2016-06-01

    The Chandra observations towards the northwest (NW) and northeast (NE) rims of supernova remnant (SNR) RCW 86 reveal great detail about the characteristics of the shocks, particle acceleration and the local environments in these 2 distinct regions. Both the NW and NE of RCW 86 show clear evidence of non-thermal X-ray emission, identified as synchrotron radiation from shock-accelerated electrons with TeV energies, interacting with the compressed, and probably amplified, local magnetic field. Magnetic field amplification (MFA) is broadly believed to result from, and contribute to, cosmic ray acceleration at the shocks of SNRs. However, we still lack a detailed understanding of the particle acceleration mechanism, and with this study we address the connection between the shock properties and ambient medium with MFA. The Chandra observations of RCW 86 allowed us to constrain the magnitude of the post-shock magnetic field in the NE and NW rims by deriving synchrotron filament widths, and also the densities in these regions, using thermal emission co-located with the non-thermal rims. I will discuss our analysis in detail and comment on how MFA appears to be related to certain characteristics of the SNR shock.

  7. A Chandra Observation of Abell 13: Investigating the Origin of the Radio Relic

    CERN Document Server

    Juett, Adrienne M; Clarke, Tracy E; Andernach, Heinz; Ehle, Matthias; Fujita, Yutaka; Kempner, Joshua C; Roy, Alan L; Rudnick, Lawrence; Slee, O Bruce

    2007-01-01

    We present results from the Chandra X-ray observation of Abell 13, a galaxy cluster that contains an unusual noncentral radio source, also known as a radio relic. This is the first pointed X-ray observation of Abell 13, providing a more sensitive study of the properties of the X-ray gas. The X-ray emission from Abell 13 is extended to the northwest of the X-ray peak and shows substructure indicative of a recent merger event. The cluster X-ray emission is centered on the bright galaxy H of Slee et al. 2001. We find no evidence for a cooling flow in the cluster. A knot of excess X-ray emission is coincident with the other bright elliptical galaxy F. This knot of emission has properties similar to the enhanced emission associated with the large galaxies in the Coma cluster. With these Chandra data we are able to compare the properties of the hot X-ray gas with those of the radio relic from VLA data, to study the interaction of the X-ray gas with the radio emitting electrons. Our results suggest that the radio re...

  8. Chandra Observations of MRK 273 Unveiling the Central AGN and the Extended Hot Gas Halo

    CERN Document Server

    Xia, X Y; Mao, S; Boller, T; Deng, Z G; Wu, H; Boller, Th.

    2001-01-01

    We report X-ray observations of the field containing the ultraluminous IRAS galaxy Mrk~273 Using the ACIS-S3 instrument on board Chandra. The high resolution X-ray image, for the first time, reveals a compact hard X-ray nucleus in Mrk~273. Its X-ray energy distribution is well described by a heavily obscured power-law spectrum plus a narrow $\\Feka$ emission line at 6.4 keV. The neutral hydrogen column density is about $4\\times10^{23}\\cm^{-2}$, implying an absorption -corrected X-ray luminosity (0.1--10 keV) for the nucleus of $\\Lx\\approx 6.5\\times 10^{43} \\ergs$. There are also bright soft X-ray clumps and diffuse soft X-ray emissions surrounding the central hard X-ray nucleus within the $10\\arcsec$ of the nuclear region. Its spectrum can be fitted by a MEKAL thermal model with temperature of about 0.8 keV and high metallicity ($Z\\sim 1.5Z_\\odot$) plus emission lines from $\\alpha$ elements and ions. Further outside the central region, the Chandra observations reveal a very extended hot gas halo with a project...

  9. A Chandra HETGS observation of the Narrow-line Seyfert 1 galaxy Ark 564

    CERN Document Server

    Matsumoto, C; Marshall, H L; Matsumoto, Chiho; Leighly, Karen M.; Marshall, Herman L.

    2004-01-01

    We present results from a 50 ks observation of the narrow-line Seyfert 1 galaxy Ark 564 with the Chandra HETGS. The spectra above 2 keV are modeled by a power-law with a photon-index of 2.56+/-0.06. We confirm the presence of the soft excess below about 1.5 keV. If we fit the excess with blackbody model, the best-fit temperature is 0.124 keV. Ark 564 has been reported to show a peculiar emission line-like feature at 1 keV in various observations using lower resolution detectors, and the Chandra grating spectroscopy rules out an origin of blends of several narrow emission lines. We detect an edge-like feature at 0.712 keV in the source rest frame. The preferred interpretation of this feature is combination of the O VII K-edge and a number of L-absorption lines from slightly ionized iron, which suggests a warm absorber with ionization parameter xi~1 and N_H ~ 10^21 cm^-2. These properties are roughly consistent with those of the UV absorber. We also detect narrow absorption lines of O VII, O VIII, Ne IX, Ne X, ...

  10. Chandra observations of the pulsar PSR B1929+10 and its environment

    CERN Document Server

    Misanovic, Zdenka; Garmire, Gordon

    2007-01-01

    We report on two Chandra observations of the 3-Myr pulsar B1929+10, which reveal a faint compact (~9"x4") nebula elongated in the direction perpendicular to the pulsar's proper motion, two patchy wings, and a possible short (~3") jet emerging from the pulsar. In addition, we detect a tail extending up to at least 4' in the direction opposite to the pulsar's proper motion, aligned with the 15'-long tail detected in ROSAT and XMM-Newton observations. The overall morphology of the nebula suggests that the shocked pulsar wind is confined by the ram pressure due to the pulsar's supersonic speed. The shape of the compact nebula in the immediate vicinity of the pulsar seems to be consistent with the current MHD models. However, since these models do not account yet for the change of the flow velocity at larger distances from the pulsar, they are not able to constrain the extent of the long pulsar tail. The luminosity of the whole nebula as seen by Chandra is ~10^30 ergs/s in the 0.3-8 keV band, for the distance of 3...

  11. Anatomy of a Merger: A Deep Chandra Observation of Abell 115

    Science.gov (United States)

    Forman, William R.

    2017-08-01

    A deep Chandra observation of Abell 115 provides a unique probe of the anatomy of cluster mergers. The X-ray image shows two prominent subclusters, A115N (north) and A115S (south) with a projected separation of almost 1 Mpc. The X-ray subclusters each have ram-pressure stripped tails that unambiguously indicate the directions of motion. The central BCG of A115N hosts the radio source 3C28 which shows a pair of jets, almost perpendicular to the direction of the sucluster's motion. The jets terminate in lobes each of which has a "tail" pointing IN the direction of motion of the subcluster. The Chandra analysis provides details of the merger including the velocities of the subclusters both through analysis of the cold front and a weak shock. The motion of A115N through the cluster generates counter-rotating vortices in the subcluster gas that form the two radio tails. Hydrodynamic modeling yields circulation velocities within the A115N sub cluster. Thus, the radio emitting plasma acts as a dye tracing the motions of the X-ray emitting plasma. A115S shows two "cores", one coincident with the BCG and a second appears as a ram pressure stripped tail.

  12. Pre-outburst $Chandra$ Observations of the Recurrent Nova T Pyxidis

    CERN Document Server

    Balman, Solen

    2014-01-01

    I present a total of 98.8 ksec ($\\sim$ 3$\\times$30 ksec) observation of T Pyx with the ACIS-S3 detector on-board the $Chandra$ Observatory obtained during the quiescent phase, about 2-3 months before its outburst in April 2011. The total $Chandra$ spectrum of the source T Pyx gives a maximum temperature kT$_{max}$$>$ 37.0 keV with (0.9-1.5)$\\times 10^{-13}$ erg s$^{-1}$ cm$^{-2}$ and (1.3-2.2)$\\times$10$^{32}$ erg s$^{-1}$ (at 3.5 kpc) in the 0.1-50 keV range using a multi-temperature plasma emission model (i.e., CEVMKL in XSPEC). I find a ratio of (L$_{x}$/L$_{disk}$)$\\simeq$(2-7)$\\times$10$^{-4}$ indicating considerable inefficiency of emission in the boundary layer. There is no blackbody emission with 2$\\sigma$ upper limits kT$_{BB}$$<$ 25 eV and L$_{soft}$$<$ 2.0$\\times$10$^{33}$ erg s$^{-1}$ in the 0.1-10.0 keV band. All fits yield only interstellar N${\\rm _H}$ during quiescence. I suggest that T Pyx has an optically thin boundary layer (BL) merged with an ADAF-like flow (Advection-Dominated Flow) ...

  13. Deep Chandra observations of the stripped galaxy group falling into Abell 2142

    Science.gov (United States)

    Eckert, D.; Gaspari, M.; Owers, M. S.; Roediger, E.; Molendi, S.; Gastaldello, F.; Paltani, S.; Ettori, S.; Venturi, T.; Rossetti, M.; Rudnick, L.

    2017-09-01

    In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k-2.3), which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D 0.1 - 0.25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient.

  14. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Kharb, P.; O' Dea, C. P. [Department of Physics, Rochester Institute of Technology (RIT), 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Tilak, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Baum, S. A. [Center for Imaging Science, Rochester Institute of Technology (RIT), 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K. [Radcliffe Institute for Advanced Study, 10 Garden Street, Cambridge, MA 02138 (United States)

    2012-07-20

    We present here the results from new Very Long Baseline Array (VLBA) observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 Uppasala General Catalog (UGC) Fanaroff-Riley type I (FRI) radio galaxies. New Chandra data of two sources, viz., UGC 00408 and UGC 08433, are combined with the Chandra archival data of 13 sources. The 5 GHz observations of 10 'core-jet' sources are polarization-sensitive, while the 1.6 GHz observations constitute second-epoch total intensity observations of nine 'core-only' sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field 'shearing' due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity I{sub {nu}} falls with distance d from the core, following the relation, I{sub {nu}}{proportional_to}d{sup a} , where a is typically {approx} - 1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity 'dimming,' two limiting cases are considered: (1) the jet has a constant speed on parsec scales and is expanding gradually such that the jet radius r{proportional_to}d 0{sup .4}; this expansion is, however, unobservable in the laterally unresolved jets at 5 GHz, and (2) the jet is cylindrical and is accelerating on parsec scales. Accelerating parsec-scale jets are consistent with the phenomenon of 'magnetic driving' in Poynting-flux-dominated jets. While slow jet expansion as predicted by case (1) is indeed observed in a few sources from the literature that are resolved laterally, on scales of tens or hundreds of parsecs, case (2) cannot be ruled out in the present data, provided the jets become conical on scales larger than those probed by VLBA. Chandra

  15. Chandra Observations of MBM 12 and Models of the Local Bubble

    Science.gov (United States)

    Smith, R. K.; Edgar, R. J.; Plucinsky, P. P.; Wargelin, B. J.; Freeman, P. E.; Biller, B. A.

    2005-04-01

    Chandra observations toward the nearby molecular cloud MBM 12 show unexpectedly strong and nearly equal foreground O VIII and O VII emission. As the observed portion of MBM 12 is optically thick at these energies, the emission lines must be formed nearby, coming from either the Local Bubble (LB) or charge exchange with ions from the Sun. Equilibrium models for the LB predict stronger O VII than O VIII, so these results suggest that the LB is far from equilibrium or that a substantial portion of O VIII is from another source, such as charge exchange within the solar system. Despite the likely contamination, we can combine our results with other EUV and X-ray observations to reject LB models that posit a cool recombining plasma as the source of LB X-rays.

  16. Deep Chandra Observations of the Composite Supernova Remnant G327.1-1.1

    Science.gov (United States)

    Temim, Tea

    2014-11-01

    G327.1-1.1 is a composite SNR containing a symmetric radio shell and a PWN that has likely been disrupted by the reverse shock. Previous X-ray studies reveled a complex morphology; a compact core embedded in bow-shock-like structure, prong-like features extending into large arcs, and thermal emission from the SNR shell. We present deep, 350 ks Chandra observations of G327.1-1.1 that provide new information about the properties of the system, such as the spatial variations in the spectral index across the observed PWN structures, and the thermal temperature across the SNR shell. We also present preliminary HD simulations of an asymmetric PWN/SNR interaction in a system with a moving pulsar, expanding into a non-uniform ISM density, which offer new insight into the nature of the remnant.

  17. A Very Deep Chandra Observation of Abell 2052: Bubbles, Shocks, and Sloshing

    CERN Document Server

    Blanton, E L; Clarke, T E; Sarazin, C L; McNamara, B R; Douglass, E M; McDonald, M

    2011-01-01

    We present first results from a very deep (~650 ksec) Chandra X-ray observation of Abell 2052, as well as archival VLA radio observations. The data reveal detailed structure in the inner parts of the cluster, including bubbles evacuated by the AGN's radio lobes, compressed bubble rims, filaments, and loops. Two concentric shocks are seen, and a temperature rise is measured for the innermost one. On larger scales, we report the first detection of an excess surface brightness spiral feature. The spiral has cooler temperatures, lower entropies, and higher abundances than its surroundings, and is likely the result of sloshing gas initiated by a previous cluster-cluster or sub-cluster merger. Initial evidence for previously unseen bubbles at larger radii related to earlier outbursts from the AGN is presented.

  18. Two Years of Chandra Observations: Neutron Stars and Pulsars with Emphasis on the Pulsar in the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory is entering its third year of operation. The Observatory, the premiere x-ray telescope for high-resolution imaging, has exceeded all expectations. The sub-arc second angular resolution together with other instrumental capabilities has allowed for new insights into the understanding of compact x-ray emitting objects including neutron stars and pulsars. We briefly review the Chandra Program and the first two years of observation with emphasis on these interesting objects. We detail the results of our observations of the pulsar in the Crab Nebula including the first continuum spectrum that is virtually uncontaminated by any dust-scattered radiation.

  19. Chandra Observations of the Sextuply Imaged Quasar SDSS J2222+2745

    Science.gov (United States)

    Pooley, David A.; Rappaport, Saul A.

    2017-01-01

    While there are ˜100 examples of background quasars strongly lensed by galaxies, there are only a few examples of background quasars strongly lensed by clusters. These systems are both rare and important because they can provide unique constraints on the internal structure of clusters through measurements of the frequency of occurrence and modeling the mass distributions. These constraints, along with statistics of image multiplicity can provide a strong test of the ΛCDM paradigm.SDSS J2222+2745 was discovered by Dahle et al. (2013), and three images (A-C) of the quasar are immediately obvious in the SDSS image, with a fourth image (D) also evident. Through follow-up imaging and spectroscopy, Dahle et al. found evidence for two additional images (E and F), which are not evident in the SDSS image since they are overwhelmed by the light from the red elliptical galaxies in the center of the system. While there are no direct predictions of the occurrence of six-imaged cluster-lensed quasars in the literature, the predicted occurrence of any type of cluster-lensed quasar is very rare and depends sensitively on cosmological parameters such as the matter density ΩM and the matter power spectrum σ8. We report on our Chandra observation of SDSS J2222+2745, which clearly shows all six images of the quasar. We present the lensing model based on our Chandra observation and discuss the effects of stellar microlensing on the observed flux ratios in the X-ray and optical bands.

  20. Deep Chandra Observations of the Cool Core Clusters A2052 and A262

    Science.gov (United States)

    Blanton, Elizabeth L.; Randall, S. W.; Douglass, E. M.; Clarke, T. E.; Anderson, L. A.; Sarazin, C. L.; McNamara, B. R.

    2008-03-01

    We present deep Chandra observations of the cool core clusters Abell 2052 and Abell 262. New features, including ghost bubbles, ripples, edges, and a tunnel are revealed. Correlations of features seen in the X-ray and radio give evidence for multiple outbursts of the AGN. Comparison of the radio source energy input rates with the ICM cooling rates shows that the radio source can easily offset the cooling in A2052 and is much closer to offsetting the cooling in A262 than was estimated previously. Maps of pressure and temperature will be presented, as well as correlations between surface brightness features and optical-line emission. We constrain the temperature of diffuse, hot gas that may be filling the bubbles and providing pressure support to uphold the cool, dense shells surrounding the bubbles.

  1. Himalayan Chandra Telescope Observations of Type-Ia Supernova SN 2010at

    Science.gov (United States)

    Patel, Brandon; Anupama, G.; Sahu, D. K.

    2012-01-01

    We present BVRI photometry and spectroscopy of Type Ia Supernova SN 2010at. SN 2010at is located in the MCG+13-09-010 galaxy (z =0.04) and was discovered on 03-19-2010. Our analysis focuses on the follow up observations taken with the 2-meter Himalayan Chandra Telescope from 2010-03-21 to 2010-05-24. We present the light curve and color evolution of SN 2010at, along with MLCS2k2 and SALT-II light curve fits. We find that SN 2010at's color and photometric evolution are similar to SN 1999ac, but SN 2010at is brighter at maximum. Spectroscopically, SN 2010at appears to be normal at early times. This work was funded by the National Science Foundation's Office of International Science and Education, Grant Number 0854436: International Research Experience for Students, and managed by the National Solar Observatory's Global Oscillation Network.

  2. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk 348

    Indian Academy of Sciences (India)

    J. Wang; J. S. Zhang; Q. Guo

    2014-09-01

    For H2O megamaser galaxy Mrk 348, Chandra and XMM–Newton data are analysed. The nuclear fitting results of XMM–Newton data suggest the possible existence of a heavily obscured AGN. But the nuclear spectrum extracted from Chandra cannot be well-fitted by the best fitting model for XMM–Newton. Further optimal fitting and discussions are needed.

  3. Observations of the recurrent M31 transient XMMU~J004215.8+411924 with Swift, Chandra, HST and Einstein

    CERN Document Server

    Barnard, R; Murray, S; Nooraee, N; Pietsch, W

    2010-01-01

    The transient X-ray source XMMU J004215.8+411924 within M31 was found to be in outburst again in the 2010 May 27 Chandra observation. We present results from our four Chandra and seven Swift observations that covered this outburst. X-ray transient behaviour is generally caused by one of two things: mass accretion from a high mass companion during some restricted phase range in the orbital cycle, or disc instability in a low mass system. We aim to exploit Einstein, HST, Chandra and Swift observations to determine the nature of XMMU J004215.8+411924. We model the 2010 May spectrum, and use the results to convert from intensity to counts in the fainter Chandra observations, as well as the Swift observations; these data are used to create a lightcurve. We also estimate the flux in the 1979 January 13 Einstein observation. Additionally, we search for an optical counterpart in HST data. Our best X-ray positions from the 2006 and 2010 outbursts are 0.3" apart, and 1.6" from the Einstein source; these outbursts are l...

  4. CHANDRA HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Civano, F.; Elvis, M.; Lanzuisi, G.; Aldcroft, T.; Trichas, M.; Fruscione, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bongiorno, A.; Brusa, M. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Blecha, L.; Loeb, A. [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Comastri, A.; Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, Bologna 40127 (Italy); Salvato, M.; Komossa, S. [Max-Planck-Institute for Plasma Physics, Excellence Cluster, Boltzmannstrass 2, 85748 Garching (Germany); Koekemoer, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mainieri, V. [ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching (Germany); Piconcelli, E. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, Monteporzio-Catone 00040 (Italy); Vignali, C. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, Bologna 40127 (Italy)

    2012-06-10

    We present Chandra High Resolution Camera observations of CID-42, a candidate recoiling supermassive black hole (SMBH) at z = 0.359 in the COSMOS survey. CID-42 shows two optical compact sources resolved in the HST/ACS image embedded in the same galaxy structure and a velocity offset of {approx}1300 km s{sup -1} between the H{beta} broad and narrow emission line, as presented by Civano et al. Two scenarios have been proposed to explain the properties of CID-42: a gravitational wave (GW) recoiling SMBH and a double Type 1/Type 2 active galactic nucleus (AGN) system, where one of the two is recoiling because of slingshot effect. In both scenarios, one of the optical nuclei hosts an unobscured AGN, while the other one, either an obscured AGN or a star-forming compact region. The X-ray Chandra data allow us to unambiguously resolve the X-ray emission and unveil the nature of the two optical sources in CID-42. We find that only one of the optical nuclei is responsible for the whole X-ray unobscured emission observed and a 3{sigma} upper limit on the flux of the second optical nucleus is measured. The upper limit on the X-ray luminosity plus the analysis of the multiwavelength spectral energy distribution indicate the presence of a star-forming region in the second source rather than an obscured SMBH, thus favoring the GW recoil scenario. However, the presence of a very obscured SMBH cannot be fully ruled out. A new X-ray feature, in a SW direction with respect to the main source, is discovered and discussed.

  5. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, E.; Zezas, A.; Vrtilek, J. M.; David, L. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Trevisan, M. [Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, 12227-010, São José dos Campos (Brazil); Ponman, T. J.; Raychaudhury, S. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Mamon, G. A., E-mail: eosullivan@cfa.harvard.edu [Institut d' Astrophysique de Paris (UMR 7095 CNRS and UMPC), 98 bis Bd Arago, F-75014 Paris (France)

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  6. Deep Chandra Observations of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds

    Science.gov (United States)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; Giacintucci, S.; Trevisan, M.; David, L. P.; Ponman, T. J.; Mamon, G. A.; Raychaudhury, S.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  7. The X-Ray Environment During the Epoch of Terrestrial Planet Formation: Chandra Observations of h Persei

    CERN Document Server

    Currie, Thayne; Spitzbart, Brad; Irwin, Jonathan; Wolk, Scott J; Hernandez, Jesus; Kenyon, Scott J; Pasachoff, Jay

    2008-01-01

    We describe Chandra/ACIS-I observations of the massive ~ 13--14 Myr-old cluster, h Persei, part of the famous Double Cluster (h and chi Persei) in Perseus. Combining the list of Chandra-detected sources with new optical/IR photometry and optical spectroscopy reveals ~ 165 X-ray bright stars with V 1.5 Msun) fall out of X-ray saturation by ~ 10--15 Myr. Changes in stellar structure for > 1.5 Msun stars likely play an important role in this decline of X-ray emission.

  8. Simultaneous NuSTAR/Chandra Observations of The Bursting Pulsar GRO J1744-28 During Its Third Reactivation

    DEFF Research Database (Denmark)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.;

    2015-01-01

    keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains......We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60...

  9. Chandra observations of the peculiar X-ray transient IGR J16358-4726

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.K.; Kouveliotou, C.; Tennant, A.; Woods, P.M.; Finger, M.; King, A.; Ubertini, P.; Winkler, C.; Courvoisier, T.J.-L.; Klis, M. van der; Wachter, S

    2004-06-01

    The new transient IGR J16358-4726 was discovered on 2003 March 19 with INTEGRAL. We detected the source serendipitously during our 2003 March 24 observation of SGR 1627 - 41 with the CHANDRA X-ray Observatory at the 1.7 x 10{sup -10} ergs s{sup -1} cm{sup -2} flux level (2-10 keV) with a very high absorption column (N{sub H}=3.3x10{sup 23} cm{sup -2}) and a hard power law spectrum of photon index 0.5(1). We discovered a very strong flux modulation with a period of 5880(50) s and peak-to-peak pulse fraction of 70(6) % (2-10 keV), clearly visible in the x-ray data. The nature, however, of IGR 16357-4726 remains unresolved. Most likely, we are looking at a galactic binary neutron star system as evidenced by the detection of rest frame fluorescence line emission from neutral Fe K (6.4 keV) in the Chandra spectrum. If the detected modulation is a spin period, this transient is a new kind of object, belonging to a class of very hard transients recently revealed with the unique INTEGRAL capabilities. The only neutron star systems known with similar spin periods are low luminosity persistent wind-fed pulsars, which exhibit very soft X-ray spectra. If this is an orbital period, then the system could be a compact Low Mass X-ray Binary.

  10. Simultaneous NuSTAR/Chandra Observations of The Bursting Pulsar GRO J1744-28 During Its Third Reactivation

    DEFF Research Database (Denmark)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to ...

  11. Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748−676 back to quiescence

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands; M.T. Wolff; P.S. Ray; K.S. Wood; J. Homan; W.H.G. Lewin; P.G. Jonker; E.M. Cackett; J.M. Miller; E.F. Brown

    2009-01-01

    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently started the transition to quiescence following an accretion outburst that lasted more than 24 years. We report on two Chandra and 12 Swift observations performed within five months after the end of the outbu

  12. Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748-676 in quiescence

    CERN Document Server

    Degenaar, N; Wolff, M T; Ray, P S; Wood, K S; Homan, J; Lewin, W H G; Jonker, P G; Cackett, E M; Miller, J M; Brown, E F

    2008-01-01

    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently returned to quiescence following an accretion outburst that lasted more than 24 years. We report on 2 Chandra and 5 Swift observations performed approximately one to two months after the transition from outburst to quiescence. The Chandra observations detect the source at a bolometric thermal luminosity of ~9.8E33 (d/7.4 kpc) erg/s. The spectrum is composed of a soft, thermal component that fits to a neutron star atmosphere model with kT^inf~0.11 keV, combined with a hard powerlaw tail that contributes ~20% of the total 0.5-10 keV quiescent flux. Several Swift observations were obtained 1-2 weeks before the Chandra observations and another series was taken approximately 2 weeks thereafter. The combined Chandra/Swift data set reveals a relatively hot and luminous quiescent system with a temperature of kT^inf~0.11-0.13 keV and a bolometric thermal luminosity that slightly decreased from ~1.6E34 to ~8.3E33 (d/7.4 kpc) er...

  13. The nature of a broad line radio galaxy: Simultaneous RXTE and Chandra HETG observations of 3C 382

    CERN Document Server

    Gliozzi, M; Eracleous, M; Yaqoob, T

    2007-01-01

    We present the results from simultaneous chandra and rxte observations of the X-ray bright Broad-Line Radio Galaxy (BLRG) 3C 382. The long (120 ks) exposure with chandra HETG allows a detailed study of the soft X-ray continuum and of the narrow component of the Fe Kalpha line. The rxte PCA data are used to put an upper limit on the broad line component and constrain the hard X-ray continuum. A strong soft excess below 1 keV is observed in the time-averaged HETG spectrum, which can be parameterized with a steep power law or a thermal model. The flux variability at low energies indicates that the origin of the soft excess cannot be entirely ascribed to the circumnuclear diffuse emission, detected by chandra on scales of 20-30 arcsec (22-33 kpc). A narrow (sigma<90 eV) Fe Kalpha line (with EW< 100 eV) is observed by the chandra HEG. Similar values for the line parameters are measured by the rxte PCA, suggesting that the contribution from a broad line component is negligible. The fact that the exposure is s...

  14. Chandra X-ray Observations of NGC 4258: Iron Absorption Lines from the Nucleus

    CERN Document Server

    Young, A J

    2004-01-01

    We report sub-arcsecond resolution X-ray imaging spectroscopy of the low luminosity active galactic nucleus of NGC 4258 and its immediate surroundings with the Chandra X-ray Observatory. NGC 4258 was observed four times, with the first two observations separated by one month, followed over a year later by two consecutive observations. The spectrum of the nucleus is well described by a heavily absorbed, hard X-ray power law of variable luminosity, plus a constant, thermal soft X-ray component. We do not detect an iron K alpha emission line with the upper limit to the equivalent width of a narrow, neutral iron line ranging between 94 and 887 eV (90% confidence) for the different observations. During the second observation on 2000-04-17, two narrow absorption features are seen with >99.5% confidence at ~6.4 keV and ~6.9 keV, which we identify as resonant absorption lines of Fe XVIII - Fe XIX K alpha and Fe XXVI K alpha, respectively. In addition, the 6.9 keV absorption line is probably variable on a timescale of...

  15. The First Chandra Field

    OpenAIRE

    Weisskopf, Martin C.; Aldcroft, Thomas L.; Cameron, Robert A.; Gandhi, Poshak; Foellmi, Cédric; Elsner, Ronald F.; Patel, Sandeep K.; Wu, Kinwah; O'Dell, Stephen L.

    2005-01-01

    Before the official first-light images, the Chandra X-Ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ``Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Sou...

  16. A CHANDRA OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511-3057

    Energy Technology Data Exchange (ETDEWEB)

    Paizis, A. [Istituto Nazionale di Astrofisica, INAF-IASF, Via Bassini 15, 20133 Milano (Italy); Nowak, M. A. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Rodriguez, J.; Chaty, S. [Astrophysique, Instrumentation et Modelisation (AIM, UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Wilms, J. [Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universitaet Erlangen-Nuernberg, Sternwartstr. 7, 96049 Bamberg (Germany); Del Santo, M.; Ubertini, P., E-mail: ada@iasf-milano.inaf.it, E-mail: mnowak@space.mit.edu [IAPS, INAF, Via Fosso del Cavaliere 100, 00133 Rome (Italy)

    2012-08-10

    IGR J17511-3057 is a low-mass X-ray binary hosting a neutron star and is one of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on a 20 ks Chandra grating observation of IGR J17511-3057, performed on 2009 September 22. We determine the most accurate X-ray position of IGR J17511-3057, {alpha}{sub J2000} = 17{sup h}51{sup m}08.{sup s}66, {delta}{sub J2000} = -30 Degree-Sign 57'41.''0 (90% uncertainty of 0.''6). During the observation, a {approx}54 s long type-I X-ray burst is detected. The persistent (non-burst) emission has an absorbed 0.5-8 keV luminosity of 1.7 Multiplication-Sign 10{sup 36} erg s{sup -1} (at 6.9 kpc) and can be well described by a thermal Comptonization model of soft, {approx}0.6 keV, seed photons upscattered by a hot corona. The type-I X-ray burst spectrum, with average luminosity over the 54 s duration L{sub 0.5-8{sub keV}} = 1.6 Multiplication-Sign 10{sup 37} erg s{sup -1}, can be well described by a blackbody with kT{sub bb} {approx} 1.6 keV and R{sub bb} {approx} 5 km. While an evolution in temperature of the blackbody can be appreciated throughout the burst (average peak kT{sub bb} = 2.5{sup +0.8}{sub -0.4} keV to tail kT{sub bb} = 1.3{sup +0.2}{sub -0.1} keV), the relative emitting surface shows no evolution. The overall persistent and type-I burst properties observed during the Chandra observation are consistent with what was previously reported during the 2009 outburst of IGR J17511-3057.

  17. Deep Chandra Observations of the Extended Gas Sloshing Spiral in A2029

    CERN Document Server

    Paterno-Mahler, Rachel; Randall, Scott W; Clarke, Tracy E

    2013-01-01

    Recent X-ray observations of galaxy clusters have shown that there is substructure present in the intracluster medium (ICM), even in clusters that are seemingly relaxed. This substructure is sometimes a result of sloshing of the ICM, which occurs in cool core clusters that have been disturbed by an off-axis merger with a sub-cluster or group. We present deep Chandra observations of the cool core cluster Abell 2029, which has a sloshing spiral extending radially outward from the center of the cluster to approximately 400 kpc at its fullest extent---the largest continuous spiral observed to date. We find a surface brightness excess, a temperature decrement, a density enhancement, an elemental abundance enhancement, and a smooth pressure profile in the area of the spiral. The sloshing gas seems to be interacting with the southern lobe of the central radio galaxy, causing it to bend and giving the radio source a wide-angle tail (WAT) morphology. This shows that WATs can be produced in clusters that are relatively...

  18. Deep Chandra Observations of the Pulsar Wind Nebula Created by PSR B0355+54

    Science.gov (United States)

    Klingler, Noel; Rangelov, Blagoy; Kargaltsev, Oleg; Pavlov, George G.; Romani, Roger W.; Posselt, Bettina; Slane, Patrick; Temim, Tea; Ng, C.-Y.; Bucciantini, Niccolò; Bykov, Andrei; Swartz, Douglas A.; Buehler, Rolf

    2016-12-01

    We report on Chandra X-ray Observatory (CXO) observations of the pulsar wind nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks total exposure, performed over an eight month period). We investigated the spatial and spectral properties of the emission coincident with the pulsar, compact nebula (CN), and extended tail. We find that the CN morphology can be interpreted in a way that suggests a small angle between the pulsar spin axis and our line of sight, as inferred from the radio data. On larger scales, emission from the 7\\prime (≈ 2 pc) tail is clearly seen. We also found hints of two faint extensions nearly orthogonal to the direction of the pulsar’s proper motion. The spectrum extracted at the pulsar position can be described with an absorbed power-law + blackbody model. The nonthermal component can be attributed to magnetospheric emission, while the thermal component can be attributed to emission from either a hot spot (e.g., a polar cap) or the entire neutron star surface. Surprisingly, the spectrum of the tail shows only a slight hint of cooling with increasing distance from the pulsar. This implies either a low magnetic field with fast flow speed, or particle reacceleration within the tail. We estimate physical properties of the PWN and compare the morphologies of the CN and the extended tail with those of other bow shock PWNe observed with long CXO exposures.

  19. Simulating the sensitivity to stellar point sources of Chandra X-ray observations

    CERN Document Server

    Wright, Nicholas J; Guarcello, Mario G; Kashyap, Vinay L; Zezas, Andreas

    2015-01-01

    The Chandra Cygnus OB2 Legacy Survey is a wide and deep X-ray survey of the nearby and massive Cygnus OB2 association. The survey has detected ~8,000 X-ray sources, the majority of which are pre-main sequence X-ray emitting young stars in the association itself. To facilitate quantitative scientific studies of these sources as well as the underlying OB association it is important to understand the sensitivity of the observations and the level of completeness the observations have obtained. Here we describe the use of a hierarchical Monte Carlo simulation to achieve this goal by combining the empirical properties of the observations, analytic estimates of the source verification process, and an extensive set of source detection simulations. We find that our survey reaches a 90% completeness level for a pre-main-sequence population at the distance of Cyg OB2 at an X-ray luminosity of 4 x 10^30 ergs/s and a stellar mass of 1.3 Msun for a randomly distributed population. For a spatially clustered population such ...

  20. Chandra Observations of the Faintest Low-Mass X-ray Binaries

    CERN Document Server

    Wilson, C A; Kouveliotou, C; Jonker, P G; Van der Klis, M; Lewin, W H G; Belloni, T; Méndez, M; Wilson, Colleen. A.; Patel, Sandeep K.; Kouveliotou, Chryssa; Jonker, Peter G.; Klis, Michiel van der; Lewin, Walter H.G; Belloni, Tomaso; Mendez, Mariano

    2003-01-01

    There exists a group of persistently faint galactic X-ray sources that, based on their location in the galaxy, high L_x/L_opt, association with X-ray bursts, and absence of low frequency X-ray pulsations, are thought to be low-mass X-ray binaries (LMXBs). We present results from Chandra observations for eight of these systems: 4U 1708-408, 2S 1711-339, KS 1739-304, SLX 1735-269, GRS 1736-297, SLX 1746-331, 1E 1746.7-3224, and 4U 1812-12. Locations for all sources, excluding GRS 1736-297, SLX 1746-331, and KS 1739-304 (which were not detected) were improved to 0.6" error circles (90% confidence). Our observations support earlier findings of transient behavior of GRS 1736-297, KS 1739-304, SLX 1746-331, and 2S 1711-339 (which we detect in one of two observations). Energy spectra for 4U 1708-408, 2S 1711-339, SLX 1735-269, 1E 1746.7-3224, and 4U 1812-12 are hard, with power law indices typically 1.4-2.1, which are consistent with typical faint LMXB spectra.

  1. Chandra Observations of the Gamma-ray Binary LSI+61303: Extended X-ray Structure?

    CERN Document Server

    Paredes, J M; Bosch-Ramon, V; West, J R; Butt, Y M; Torres, D F; Martí, J

    2007-01-01

    We present a 50 ks observation of the gamma-ray binary LSI+61303 carried out with the ACIS-I array aboard the Chandra X-ray Observatory. This is the highest resolution X-ray observation of the source conducted so far. Possible evidence of an extended structure at a distance between 5 and 12 arcsec towards the North of LSI+61303 have been found at a significance level of 3.2 sigma. The asymmetry of the extended emission excludes an interpretation in the context of a dust-scattered halo, suggesting an intrinsic nature. On the other hand, while the obtained source flux, of F_{0.3-10 keV}=7.1^{+1.8}_{-1.4} x 10^{-12} ergs/cm^2/s, and hydrogen column density, N_{H}=0.70+/-0.06 x 10^{22} cm^{-2}, are compatible with previous results, the photon index Gamma=1.25+/-0.09 is the hardest ever found. In light of these new results, we briefly discuss the physics behind the X-ray emission, the location of the emitter, and the possible origin of the extended emission ~0.1 pc away from LSI+61303.

  2. Chandra Observations of the X-ray Point Source Population in NGC 4636

    CERN Document Server

    Posson-Brown, J; Forman, W; Donnelly, R H; Jones, C; Posson-Brown, Jennifer; Raychaudhury, Somak; Forman, William; Jones, Christine

    2006-01-01

    We present an analysis of the X-ray point source population in the nearby Virgo elliptical galaxy NGC 4636 from four Chandra X-ray observations. These ACIS observations, totaling ~210 ks, were taken over a three year period. Using a wavelet decomposition detection algorithm, we detect 336 individual point sources. For our analysis, we use a subset of the 245 detections with >10 cts (a limiting luminosity of approximately 1E37 erg/s in the 0.5-2 keV band, outside the 1.5' bright galaxy core). Of these sources, ~120 are likely members of the galaxy. We examine, for the first time, variability over a period of years for X-ray point sources in an elliptical galaxy. We present a luminosity function for the point sources in NGC 4636, fit by a power-law with gamma= -1.24 +/- 0.04, as well as a radial source density profile, hardness ratios for the sources, and lightcurves for bright sources which display short-term variability. We find an upper limit to the current X-ray luminosity of the historical supernova SN1939...

  3. Chandra Observations of the Interacting Galaxies NGC 3395/3396 (Arp 270)

    CERN Document Server

    Brassington, N J; Ponman, T J

    2005-01-01

    In this paper we present the results of a 20 ks high resolution Chandra X-ray observation of the peculiar galaxy pair NGC 3395/3396, a system at a very early stage of merging, and less evolved than the famous Antennae and Mice merging systems. Previously unpublished ROSAT HRI data are also presented. The point source population and the hot diffuse gas in this system are investigated, and compared with other merging galaxy pairs. 16 X-ray point sources are detected in Arp 270, 7 of which are classified as ULXs (Lx > 10^39 erg/s). From spectral fits and the age of the system it seems likely that these are predominantly high mass X-ray binaries. The diffuse gas emits at a global temperature of ~0.5 keV, consistent with temperatures observed in other interacting systems, and we see no evidence of the starburst-driven hot gaseous outflows seen in more evolved systems such as The Mice and The Antennae. It is likely that these features are absent from Arp 270 as the gas has had insufficient time to break out of the ...

  4. Deep Chandra Observations of the Pulsar Wind Nebula Created by PSR B0355+54

    CERN Document Server

    Klingler, Noel; Kargaltsev, Oleg; Pavlov, George G; Romani, Roger W; Posselt, Bettina; Slane, Patrick; Temim, Tea; Ng, C -Y; Bucciantini, Niccolò; Bykov, Andrei; Swartz, Douglas A; Buehler, Rolf

    2016-01-01

    We report on Chandra X-ray Observatory (CXO) observations of the pulsar wind nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks total exposure, performed over an 8 month period). We investigated the spatial and spectral properties of the emission coincident with the pulsar, compact nebula (CN), and extended tail. We find that the CN morphology can be interpreted in a way that suggests a small angle between the pulsar spin axis and our line-of-sight, as inferred from the radio data. On larger scales, emission from the 7' (2 pc) tail is clearly seen. We also found hints of two faint extensions nearly orthogonal to the direction of the pulsar's proper motion. The spectrum extracted at the pulsar position can be described with an absorbed power-law + blackbody model. The nonthermal component can be attributed to magnetospheric emission, while the thermal component can be attributed to emission from either a hot spot (e.g., a polar cap) or the entire neutron star surface. Surprisingly, the...

  5. The nuclear accretion in the FR I radio galaxy IC4296 from CHANDRA and VLBA observations

    CERN Document Server

    Pellegrini, S; Comastri, A; Fabbiano, G; Fiore, F; Vignali, C; Morganti, R; Trinchieri, G

    2003-01-01

    A high angular resolution study of the nucleus of the FR I galaxy IC4296 using Chandra ACIS-S and VLBA observations is presented, with the aim of studying the nature of the accretion process. Pointlike and hard X-ray emission is found, well described by a moderately absorbed power law of Gamma=1.48^{+0.42}_{-0.34}; no iron fluorescence line from cold material is detected. The 0.3-10 keV luminosity is 2.4\\times 10^{41} erg/s, that is \\sim 400 times lower than the accretion luminosity resulting from the estimated Bondi mass accretion rate and a radiative efficiency of 10%. On the parsec scale a jet and a counter-jet extend out from a central unresolved ``core'' in the 8.4 GHz image. Their orientation is in good agreement with that of the large scale jets and their bulk speed is relativistic. The parsec scale spectrum is convex over 2-22 GHz. The observed nuclear luminosity is not likely to be reconciled with the accretion luminosity by assuming that Compton thick material surrounds the nucleus. Low radiative ef...

  6. A dedicated Chandra ACIS observation of the central compact object in the Cassiopeia A supernova remnant

    CERN Document Server

    Pavlov, G G

    2009-01-01

    We present results of a recent Chandra X-ray Observatory observation of the central compact object (CCO) in the supernova remnant Cassiopeia A. This observation was obtained in an instrumental configuration that combines a high spatial resolution with a minimum spectral distortion, and it allowed us to search for pulsations with periods longer than 0.68 s. We found no evidence of extended emission associated with the CCO, nor statistically significant pulsations (an upper limit on pulsed fraction is about 10%). The fits of the CCO spectrum with the power-law model yield a large photon index, Gamma\\approx 5, and a hydrogen column density larger than that obtained from the SNR spectra. The fits with the blackbody model are statistically unacceptable. Better fits are provided by hydrogen or helium neutron star atmosphere models, with the best-fit effective temperature kT_{eff}^\\infty \\approx 0.2 keV, but they require a small star's radius, R = 4 - 5.5 km, and a low mass, M < 0.8 M_sol. A neutron star cannot h...

  7. Contemporaneous Chandra HETG and Suzaku X-ray Observations of NGC 4051

    CERN Document Server

    Lobban, A P; Miller, L; Turner, T J; Braito, V; Kraemer, S B; Crenshaw, D M

    2011-01-01

    We present the results of a deep 300 ks Chandra HETG observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionised lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from O VII and Ne IX) plus high ionisation L-shell transitions from Fe XVII to Fe XXII and lower ionisation inner-shell lines (e.g. O VI). Modelling the data with XSTAR requires four distinct ionisation zones for the gas, all outflowing with velocities < 1000 km/s. A selection of the strongest emission/absorption lines appear to be resolved with FWHM of ~600 km/s. We also present the results from a quasi-simultaneous 350 ks Suzaku observation of NGC 4051 where the XIS spectrum reveals strong evidence for blueshifted absorption lines at ~6.8 and ~7.1 keV, consistent with previous findings. Modelling with XSTAR suggests that this i...

  8. Linking Stellar Coronal Activity and Rotation at 500 Myr: A Deep Chandra Observation of M37

    CERN Document Server

    Núñez, Alejandro; Covey, Kevin R; Hartman, Joel D; Kraus, Adam L; Bowsher, Emily C; Douglas, Stephanie T; López-Morales, Mercedes; Pooley, David A; Posselt, Bettina; Saar, Steven H; West, Andrew A

    2015-01-01

    Empirical calibrations of the stellar age-rotation-activity relation (ARAR) rely on observations of the co-eval populations of stars in open clusters. We used the Chandra X-ray Observatory to study M37, a 500-Myr-old open cluster that has been extensively surveyed for rotation periods ($P_{\\rm rot}$). M37 was observed almost continuously for five days, for a total of 440.5 ksec, to measure stellar X-ray luminosities ($L_{\\mathrm{X}}$), a proxy for coronal activity, across a wide range of masses. The cluster's membership catalog was revisited to calculate updated membership probabilities from photometric data and each star's distance to the cluster center. The result is a comprehensive sample of 1699 M37 members: 426 with $P_{\\rm rot}$, 278 with X-ray detections, and 76 with both. We calculate Rossby numbers, $R_o = P_{\\rm rot}/\\tau$, where $\\tau$ is the convective turnover time, and ratios of the X-ray-to-bolometric luminosity, $L_{\\rm X}/L_{\\rm bol}$, to minimize mass dependencies in our characterization of ...

  9. Frontier Fields Clusters: Deep Chandra Observations of the Complex Merger MACS J1149.6+2223

    CERN Document Server

    Ogrean, G A; Jones, C; Forman, W; Dawson, W A; Golovich, N; Andrade-Santos, F; Murray, S S; Nulsen, P; Roediger, E; Zitrin, A; Bulbul, E; Kraft, R; Goulding, A; Umetsu, K; Mroczkowski, T; Bonafede, A; Randall, S; Sayers, J; Churazov, E; David, L; Merten, J; Donahue, M; Mason, B; Rosati, P; Vikhlinin, A; Ebeling, H

    2016-01-01

    The HST Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z=0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.

  10. Deep Chandra observation and numerical studies of the nearest cluster cold front in the sky

    CERN Document Server

    Werner, N; Zhuravleva, I; Ichinohe, Y; Simionescu, A; Allen, S W; Markevitch, M; Fabian, A C; Keshet, U; Roediger, E; Ruszkowski, M; Sanders, J S

    2015-01-01

    We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the northwest of M 87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. However, the northwestern part of the cold front is observed to have a nonzero width. The broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intra-cluster medi...

  11. A Chandra X-ray observation of the globular cluster Terzan 1

    CERN Document Server

    Cackett, E M; Heinke, C O; Pooley, D; Lewin, W H G; Grindlay, J E; Edmonds, P D; Jonker, P G; Miller, J M

    2005-01-01

    We present a 19 ks Chandra ACIS-S observation of the globular cluster Terzan 1. Fourteen sources are detected within 1.4 arcmin of the cluster center with 2 of these sources predicted to be not associated with the cluster (background AGN or foreground objects). The neutron star X-ray transient, X1732-304, has previously been observed in outburst within this globular cluster with the outburst seen to last for at least 12 years. Here we find 4 sources that are consistent with the ROSAT position for this transient, but none of the sources are fully consistent with the position of a radio source detected with the VLA that is likely associated with the transient. The most likely candidate for the quiescent counterpart of the transient has a relatively soft spectrum and an unabsorbed 0.5-10 keV luminosity of 2.6E32 ergs/s, quite typical of other quiescent neutron stars. Assuming standard core cooling, from the quiescent flux of this source we predict long (>400 yr) quiescent episodes to allow the neutron star to co...

  12. Chandra observation of two shock fronts in the merging galaxy cluster Abell 2146

    CERN Document Server

    Russell, H R; Fabian, A C; Baum, S A; Donahue, M; Edge, A C; McNamara, B R; O'Dea, C P

    2010-01-01

    We present a new Chandra observation of the galaxy cluster Abell 2146 which has revealed a complex merging system with a gas structure that is remarkably similar to the Bullet cluster (eg. Markevitch et al. 2002). The X-ray image and temperature map show a cool 2-3 keV subcluster with a ram pressure stripped tail of gas just exiting the disrupted 6-7 keV primary cluster. From the sharp jump in the temperature and density of the gas, we determine that the subcluster is preceded by a bow shock with a Mach number M=2.2+/-0.8, corresponding to a velocity v=2200^{+1000}_{-900} km/s relative to the main cluster. We estimate that the subcluster passed through the primary core only 0.1-0.3 Gyr ago. In addition, we observe a slower upstream shock propagating through the outer region of the primary cluster and calculate a Mach number M=1.7+/-0.3. Based on the measured shock Mach numbers M~2 and the strength of the upstream shock, we argue that the mass ratio between the two merging clusters is between 3 and 4 to one. B...

  13. Deep Chandra Observation and Numerical Studies of the Nearest Cluster Cold Front in the Sky

    Science.gov (United States)

    Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.; Ruszkowski, M.; Sanders, J. S.

    2015-01-01

    We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are approximately 10 per cent brighter than the surrounding gas and are separated by approximately 15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches approximately 5-10 per cent of the thermal pressure, reducing the gas density between the bright features.

  14. Exploratory Chandra observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30

    CERN Document Server

    Ai, Yanli; Fan, Xiaohui; Wang, Feige; Wu, Xue-Bing; Bian, Fuyan

    2016-01-01

    We report exploratory \\chandra\\ observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30. The quasar is clearly detected by \\chandra\\ with a possible component of extended emission. The rest-frame 2-10 keV luminosity is 9.0$^{+9.1}_{-4.5}$ $\\times$ 10$^{45}$ erg s$^{-1}$ with inferred photon index of $\\Gamma$ = 3.03$^{+0.78}_{-0.70}$. This quasar is X-ray bright, with inferred X-ray-to-optical flux ratio \\aox\\ $=-1.22^{+0.07}_{-0.05}$, higher than the values found in other quasars of comparable ultraviolet luminosity. The properties inferred from this exploratory observation indicate that this ultraluminous quasar might be growing with super-Eddington accretion and probably viewed with small inclination angle. Deep X-ray observation will help to probe the plausible extended emission and better constraint the spectral features for this ultraluminous quasar.

  15. The X-ray spectrum of delta Orionis observed by LETGS aboard Chandra

    CERN Document Server

    Raassen, A J J

    2013-01-01

    We analyze the high-resolution X-ray spectrum of the supergiant O-star delta Orionis (O9.5II) with line ratios of He-like ions and a thermal plasma model, and we examine its variability. The O-supergiant delta Ori was observed in the wavelength range 5-175 Angstrom by the X-ray detector HRC-S in combination with the grating LETG aboard Chandra. We studied the He-like ions in combination with the UV-radiation field to determine local plasma temperatures and to establish the distance of the X-ray emitting ions to the stellar surface. We measured individual lines by means of Gaussian profiles, folded through the response matrix, to obtain wavelengths, line fluxes, half widths at half maximum (HWHM) and line shifts to characterize the plasma. We consider multitemperature models in collisional ionization equilibrium (CIE) to determine temperatures, emission measures, and abundances. Analysis of the He-like triplets extended to N VI and C V implies ionization stratification with the hottest plasma to be found withi...

  16. Chandra X-Ray Observations of Nineteen Millisecond Pulsars in the Globular Cluster 47 Tucanae

    CERN Document Server

    Bogdanov, S; Heinke, C O; Camilo, F; Freire, P C C; Becker, W; Bogdanov, Slavko; Grindlay, Jonathan E.; Heinke, Craig O.; Camilo, Fernando; Freire, Paulo C. C.; Becker, Werner

    2006-01-01

    We present spectral and long-timescale variability analyses of \\textit{Chandra} ACIS-S observations of the 19 millisecond pulsars (MSPs) with precisely known positions in the globular cluster 47 Tucanae. The X-ray emission of the majority of these MSPs is well described by a thermal (blackbody or neutron star hydrogen atmosphere) spectrum with a temperature $T_{\\rm eff}\\sim(1-3)\\times10^6$ K, emission radius $R_{\\rm eff}\\sim0.1-3$ km, and luminosity $L_{X}\\sim10^{30-31}$ ergs s$^{-1}$. For several MSPs, there is indication that a second thermal component is required, similar to what is seen in some nearby field MSPs. The radio-eclipsing binary MSPs 47 Tuc J, O, and W show a significant non-thermal component, with photon index $\\Gamma\\sim 1-1.5$, which may originate in an shock formed due to interaction between the relativistic pulsar wind and matter from the stellar companion. We re-examine the X-ray--spindown luminosity relation ($L_{X}-\\dot{E}$) and find that due to the large uncertainties in both parameter...

  17. Chandra X-ray Observations of 12 Millisecond Pulsars in the Globular Cluster M28

    CERN Document Server

    Bogdanov, Slavko; Servillat, Mathieu; Heinke, Craig O; Grindlay, Jonathan E; Stairs, Ingrid H; Ransom, Scott M; Freire, Paulo C C; Bégin, Steve; Becker, Werner

    2011-01-01

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars (MSPs) in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the twelve known M28 pulsars. With the exception of PSRs B1821-24 and J1824-2452H, the detected pulsars have relatively soft spectra, with X-ray luminosities 10^30-31 ergs s^-1 (0.3-8 keV),similar to most "recycled" pulsars in 47 Tucanae and the field of the Galaxy, implying thermal emission from the pulsar magnetic polar caps. We present the most detailed X-ray spectrum to date of the energetic PSR B1821-24. It is well described by a purely non-thermal spectrum with spectral photon index 1.23 and luminosity 1.4x10^33Theta(D/5.5 kpc)^2 ergs s^-1 (0.3-8 keV), where Theta is the fraction of the sky covered by the X-ray emission beam(s). We find no evidence for the previously reported line emission feature around 3.3 keV, most likely as a consequence of improvements i...

  18. A Chandra Observation of the TW Hydrae Association Brown Dwarf 2MASSW J1139511-315921

    CERN Document Server

    Castro, Philip J; Gagné, Marc

    2011-01-01

    We report on a sequence of Chandra X-ray Observatory observations of the TW Hydrae brown dwarf (BD) 2MASSW J1139511-315921 (2M1139). In the combined 31 ks ACIS-S exposure, 2M1139 is detected at the 3-sigma confidence level. We find an X-ray luminosity of L_X = 1.4^(+2.7)_(-1.0) x 10^26 ergs s^-1 or log(L_X/L_bol) = -4.8 +/- 0.3. This object is similar to another TW Hydrae BD member, CD-33 7795B (TWA 5B): both have H-alpha emission, both show no signatures of accretion, and both have comparable ages and spectral types. TWA 5B was previously detected in X-rays with a luminosity of L_X = 4 x 10^27 ergs s^-1 or log(L_X/L_bol) = -3.4, an order of magnitude more luminous in X-rays than 2M1139. We find that the discrepancy between the X-ray luminosity of 2M1139 and TWA 5B is consistent with the spread in X-ray luminosity in the Orion Nebula Cluster (ONC) for BDs of similar spectral types. Though rotation may play a role in the X-ray activity of ultracool dwarfs like 2M1139 and TWA 5B, the discrepancy cannot be expla...

  19. Chandra X-Ray Observations of Young Clusters. III. NGC 2264 and the Orion Flanking Fields

    CERN Document Server

    Rebull, L M; Micela, G; Ramírez, S V; Sciortino, S; Stauffer, J R; Strom, S E; Wolff, S C

    2006-01-01

    Chandra observations of solar-like pre-main sequence (PMS) stars in the Orion Flanking Fields (age ~1 Myr) and NGC 2264 (~3 Myr) are compared with the results of the COUP survey of similar objects in the ONC (~0.5 Myr). The correlations between log Lx and mass found for PMS stars on convective tracks in these clusters are consistent with the relationships found for the ONC, indicating little change in the median values of either log Lx or log Lx/Lbol during the first ~3-5 Myr of evolution down convective tracks. The fraction of stars with extreme values of Lx, more than 10 times higher than the average for a given Lbol or with log Lx/Lbol greater than the canonical saturation value of -2.9, is however larger by a factor of two in the younger ONC when compared with the Orion FF and NGC 2264. PMS stars in NGC 2264 on radiative tracks have Lx/Lbol values that are systematically lower by a factor of ~10 times than those found for stars of similar mass on convective tracks. The dramatic decrease in flux from conve...

  20. Where Are the R-modes? Chandra Observations of Millisecond Pulsars

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    We present the results of Chandra observations of two non-accreting millisecond pulsars PSRs J1640+2224 (J1640) and J1709+2313(J1709), with low inferred magnetic fields in order to constrain their surface temperatures, obtain limits on the amplitude of unstable r-modes in them and make comparisons with similar limits obtained for a sample of accreting LMXB neutron stars (NSs). We detect both pulsars in the X-ray band for the first time. We found upper limits on the global surface temperature of these pulsars that are ~ 3.3 - 4.7 × 105 K. These sources are several Gyr old. In all standard cooling models NSs cool to surface temperatures less than 104 K in less than 107 yr. While we derived upper limits on the surface temperatures of these sources, they appear to be consistent with the values measured for PSR J0437-4715 and J2124-3358. Taken together these results suggest that the surface temperatures of at least some MSPs are significantly higher, given their ages, than standard cooling models would suggest. For pulsars that are inside the r-mode instability window, r-mode dissipation can provide a potential source of reheating.

  1. A Chandra Observation of the Diffuse Emission in the Face-on Spiral NGC 6946

    CERN Document Server

    Schlegel, E M; Petre, R

    2003-01-01

    This paper describes the {\\it Chandra} observation of the diffuse emission in the face-on spiral NGC 6946. Overlaid on optical and H${\\alpha}$ images, the diffuse emission follows the spiral structure of the galaxy. An overlay on a 6 cm polarized radio intensity map confirms the phase offset of the polarized emission. We then extract and fit the spectrum of the unresolved emission with several spectral models. All model fits show a consistent continuum thermal temperature with a mean value of 0.25$\\pm$0.03 keV. Additional degrees of freedom are required to obtain a good fit and any of several models satisfy that need; one model uses a second continuum component with a temperature of 0.70$\\pm$0.10 keV. An abundance measure of 3$^{+1.95}_{-1.90}$ for Si differs from the solar value at the 90% confidence level; the net diffuse spectrum shows the line lies above the instrumental Si feature. For Fe, the abundance measure of 0.67$\\pm$0.13 is significant at 99%. Multiple gaussians also provide a good fit. Two of the...

  2. Chandra Observation of the X-Ray Source Population of NGC 6946

    CERN Document Server

    Holt, S S; Hwang, U; Petre, R

    2003-01-01

    We present the results of a study of discrete X-ray sources in NGC 6946 using a deep Chandra ACIS observation. Based on the slope of the log N-log S distribution and the general correlation of sources with the spiral arms, we infer that the overall discrete source sample in NGC 6946 is dominated by high mass X-ray binaries, in contrast to the source distributions in M31 and the Milky Way. This is consistent with the higher star formation rate in NGC 6946 than in those galaxies. We find that the strong X-ray sources in the region of the galactic center do not correlate in detail with images of the region in the near-IR, although one of them may be coincident with the galactic center. The non-central ultra-luminous X-ray source in NGC 6946, previously identified with a supernova remnant, has an X-ray spectrum and luminosity that is inconsistent with either a traditional pulsar wind nebula or a blast wave remnant.

  3. The reflection of two past outbursts of Sagittarius A* observed by Chandra during the last decade

    CERN Document Server

    Clavel, Maïca; Goldwurm, A; Morris, M R; Ponti, G; Soldi, S; Trap, G

    2014-01-01

    The supermassive black hole at the Galactic center, Sagittarius A*, has experienced periods of higher activity in the past. The reflection of these past outbursts is observed in the molecular material surrounding the black hole but reconstructing its precise lightcurve is difficult since the distribution of the clouds along the line of sight is poorly constrained. Using Chandra high-resolution data collected from 1999 to 2011 we studied both the 6.4 keV and the 4-8 keV emission of the region located between Sgr A* and the Radio Arc, characterizing its variations down to 15" angular scale and 1-year time scale. The emission from the molecular clouds in the region varies significantly, showing either a 2-year peaked emission or 10-year linear variations. This is the first time that such fast variations are measured. Based on the cloud parameters, we conclude that these two behaviors are likely due to two distinct past outbursts of Sgr A* during which its luminosity rose to at least 10^39 erg/s.

  4. Nuclear Accretion in Galaxies of the Local Universe: Clues from Chandra Observations

    CERN Document Server

    Pellegrini, S

    2005-01-01

    In order to find an explanation for the radiative quiescence of supermassive black holes in the local Universe, for a sample of nearby galaxies the most accurate estimates are collected for the mass of a central black hole M_BH, the nuclear X-ray luminosity L_X,nuc and the circumnuclear hot gas density and temperature, by using Chandra data. L_X,nuc varies by \\sim 3 orders of magnitude and does not show a relationship with M_BH or with the Bondi mass accretion rate \\dotM_B. L_X,nuc is always much lower than expected if \\dotM_B ends in a standard accretion disc with high radiative efficiency (this instead can be the case of the active nucleus of Cen A). Radiatively inefficient accretion as in the standard ADAF modeling may explain the low luminosities of a few cases; for others, the predicted luminosity is still too high and, in terms of Eddington-scaled quantities, it is increasingly higher than observed, for increasing \\dotM_B. Variants of the simple radiatively inefficient scenario including outflow and con...

  5. A Deep Chandra Observation of Kepler's Supernova Remnant: A Type Ia Event with Circumstellar Interaction

    CERN Document Server

    Reynolds, S P; Hwang, U; Hughes, J P; Badenes, C; Laming, J M; Blondin, J M

    2007-01-01

    We present initial results of a 750 ks Chandra observation of the remnant of Kepler's supernova of AD 1604. The strength and prominence of iron emission, together with the absence of O-rich ejecta, demonstrate that Kepler resulted from a thermonuclear supernova, even though evidence for circumstellar interaction is also strong. We have analyzed spectra of over 100 small regions, and find that they fall into three classes. (1) The vast majority show Fe L emission between 0.7 and 1 keV and Si and S K alpha emission; we associate these with shocked ejecta. A few of these are found at or beyond the mean blast wave radius. (2) A very few regions show solar O/Fe abundance rations; these we associate with shocked circumstellar medium (CSM). Otherwise O is scarce. (3) A few regions are dominated by continuum, probably synchrotron radiation. Finally, we find no central point source, with a limit about 100 times fainter than the central object in Cas A. The evidence that the blast wave is interacting with CSM may indic...

  6. A Chandra HETG Observation of the Quasar H 1821+643 and Its Surrounding Cluster

    CERN Document Server

    Fang, T; Lee, J C; Marshall, H L; Bryan, G L; Canizares, C R

    2001-01-01

    We present the high-resolution X-ray spectrum of the low-redshift quasar H 1821+643 and its surrounding hot cluster observed with the Chandra High Energy Transmission Grating Spectrometer (HETGS). An iron emission line attributed to the quasar at ~6.43 keV (rest frame) is clearly resolved, with an equivalent width of ~100 eV. Although we cannot rule out contributions to the line from a putative torus, the diskline model provides an acceptable fit to this iron line. We also detect a weak emission feature at ~6.9 keV (rest frame). We suggest that both lines could originate in an accretion disk comprised of a highly ionized optically thin atmosphere sitting atop a mostly neutral disk. We search for absorption features from a warm/hot component of the intergalactic medium along the ~1.5Gpc/h line of sight to the quasar. No absorption features are detected at or above the 3 sigma level while a total of six OVI intervening absorption systems have been detected with HST and FUSE. Based on the lack of OVII and OVIII ...

  7. Observing mode propagation inside a laser cavity

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2012-05-01

    Full Text Available The mode inside a laser cavity may be understood as the interference of two counter-propagating waves, referred to as the forward and backward waves, respectively. We outline a simple experimental procedure, which does not require any additional...

  8. Studies of Pulsar Wind Nebula in the Supernova Remnant IC443: Preliminary Observations from the Chandra Data

    Science.gov (United States)

    Ariyibi, E. A.

    2009-10-01

    Preliminary observations of the Chandra data were made in order to study the Pulsar Wind Nebula in the Supernova Remnant IC443. The Chandra X-ray observatory short observation on IC443 was centred on 13 chip ACIS. The CIAO analytical programme was used for the data analysis. The data were separated into point source, with an energy range of 2.1 to 10.0 keV, and diffuse source with energy less than 2.1 Kev. The resulting spectra were fitted to a power law. The observed density numbers and the normalised counts of both the point source and the diffuse source were used to describe the X-ray source. Afin d'étudier la "Pulsar wind Nebula" dans le reste de la Supernova IC 443, nous avons mené une exploitation préliminaire des observations provenant du satellite spatiale Chandra. L'observation brêve de IC 443, par Chandra fut centrée sur les composantes du spectromètre identifiées par la séquence 13. Le programme informatique CIAO fut utilisé pour l'analyse des données. Les données furent groupées en sources ponctuelles, chacune ayant des énergies allant de 2.1 a 10.0 kev ; et en sources diffuses chacune avec des énergies de moins de 2.1 kev. Les spectres obtenus furent interpolés à l'aide de fonction puissance. La densité de flux ainsi que le décompte des particules induites au détecteur par le rayonnement provenant des sources ponctuelles et diffuses furent utilisés pour décrire la source de rayon-X.

  9. Chandra X-Ray Observations of the Redshift 1.53 Radio-loud Quasar 3C 270.1.

    NARCIS (Netherlands)

    Wilkes, Belinda J.; Lal, Dharam V.; Worrall, D. M.; Birkinshaw, Mark; Haas, Martin; Willner, S. P.; Antonucci, Robert; Ashby, M. L. N.; Avara, Mark; Barthel, Peter; Chini, Rolf; Fazio, G. G.; Hardcastle, Martin; Lawrence, Charles; Leipski, Christian; Ogle, Patrick; Schulz, Bernhard

    Chandra X-ray observations of the high redshift (z = 1.532) radio-loud quasar 3C 270.1 in 2008 February show the nucleus to have a power-law spectrum, Γ = 1.66 ± 0.08, typical of a radio-loud quasar, and a marginally detected Fe Kα emission line. The data also reveal extended X-ray emission, about

  10. Chandra X-Ray Observations of the Redshift 1.53 Radio-loud Quasar 3C 270.1.

    NARCIS (Netherlands)

    Wilkes, Belinda J.; Lal, Dharam V.; Worrall, D. M.; Birkinshaw, Mark; Haas, Martin; Willner, S. P.; Antonucci, Robert; Ashby, M. L. N.; Avara, Mark; Barthel, Peter; Chini, Rolf; Fazio, G. G.; Hardcastle, Martin; Lawrence, Charles; Leipski, Christian; Ogle, Patrick; Schulz, Bernhard

    2012-01-01

    Chandra X-ray observations of the high redshift (z = 1.532) radio-loud quasar 3C 270.1 in 2008 February show the nucleus to have a power-law spectrum, Γ = 1.66 ± 0.08, typical of a radio-loud quasar, and a marginally detected Fe Kα emission line. The data also reveal extended X-ray emission, about

  11. Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS

    CERN Document Server

    Hofmann, F; Nandra, K; Clerc, N; Gaspari, M

    2016-01-01

    In high-resolution X-ray observations of the hot plasma in clusters of galaxies significant structures caused by AGN feedback, mergers, and turbulence can be detected. Many clusters have been observed by Chandra in great depth and at high resolution. Using archival data taken with the Chandra ACIS instrument the aim was to study thermodynamic perturbations of the X-ray emitting plasma and to apply this to better understand the thermodynamic and dynamic state of the intra cluster medium (ICM). We analysed deep observations for a sample of 33 clusters with more than 100 ks of Chandra exposure each at distances between redshift 0.025 and 0.45. The combined exposure of the sample is 8 Ms. Fitting emission models to different regions of the extended X-ray emission we searched for perturbations in density, temperature, pressure, and entropy of the hot plasma. For individual clusters we mapped the thermodynamic properties of the ICM and measured their spread in circular concentric annuli. Comparing the spread of dif...

  12. Contemporaneous Chandra HETG and Suzaku X-ray observations of NGC 4051

    Science.gov (United States)

    Lobban, A. P.; Reeves, J. N.; Miller, L.; Turner, T. J.; Braito, V.; Kraemer, S. B.; Crenshaw, D. M.

    2011-07-01

    We present the results of a deep 300 ks Chandra High Energy Transmission Grating (HETG) observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionized lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from O VII and Ne IX) plus high-ionization L-shell transitions from Fe XVII to Fe XXII and lower ionization inner-shell lines (e.g. O VI). Modelling the data with XSTAR requires four distinct ionization zones for the gas, all outflowing with velocities log ξ= 4.1+0.2-0.1; vout˜-0.02c) which potentially may have a significant effect on the host galaxy environment via feedback. Finally, we also simultaneously model the broad-band 2008 XIS+HXD (Hard X-ray Detector) Suzaku data with archival Suzaku data from 2005 when the source was observed to have entered an extended period of low flux in an attempt to analyse the cause of the long-term spectral variability. We find that we can account for this by allowing for large variations in the normalization of the intrinsic power-law component which may be interpreted as being due to significant changes in the covering fraction of a Compton-thick partial-coverer obscuring the central continuum emission.

  13. Deep Chandra observations of TeV binaries - I. LSI+61°303

    Science.gov (United States)

    Rea, N.; Torres, D. F.; van der Klis, M.; Jonker, P. G.; Méndez, M.; Sierpowska-Bartosik, A.

    2010-07-01

    We report on a 95ks Chandra observation of the TeV emitting high-mass X-ray binary LSI+61°303, using the ACIS-S camera in continuous clocking mode to search for a possible X-ray pulsar in this system. The observation was performed while the compact object was passing from phase 0.94 to 0.98 in its orbit around the Be companion star (hence close to the apastron passage). We did not find any periodic or quasi-periodic signal (at this orbital phase) in a frequency range of 0.005-175Hz. We derived an average pulsed fraction (PF) 3σ upper limit for the presence of a periodic signal of flux and spectrum even in this very small orbital phase range, in particular we detect two flares, lasting thousands of seconds, with a very hard X-ray spectrum with respect to the average source spectral distribution. The X-ray PF limits we derived are lower than the PF of any isolated rotational-powered pulsar, in particular having a TeV counterpart. In this scenario, most of the X-ray emission of LSI+61°303 should necessarily come from the interwind or innerpulsar wind zone shock rather than from the magnetosphere of the putative pulsar. On the other hand, very low X-ray PFs are not unseen in accreting neutron star systems, although we cannot at all exclude the black hole nature of the hosted compact object, a pulsar with a beam pointing away from our line of sight or spinning faster than ~5.6ms, nor that pulsations might have a transient appearance in only a small fraction of the orbit. Furthermore, we did not find evidence for the previously suggested extended X-ray emission.

  14. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk 266

    Indian Academy of Sciences (India)

    J. Wang; J. S. Zhang; J. H. Fan

    2011-03-01

    For H2O megamaser galaxy Mrk 266, its Chandra and XMM–Newton data are analyzed here. It shows existence of two obscured nuclei (separation is ∼ 5''). Our preferred model, the high energy reflected model can fit the hard component of both nuclei spectra well.

  15. A Chandra X-Ray observation of the binary millisecond pulsar PSR J1023+0038

    NARCIS (Netherlands)

    Bogdanov, S.; Archibald, A.M.; Hessels, J.W.T.; Kaspi, V.M.; Lorimer, D.; McLaughlin, M.A.; Ransom, S.M.; Stairs, I.H.

    2011-01-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5σ) large-amplitude (factor of two to three) orbital variability over the

  16. Chandra observation of the fast X-ray transient IGR J17544-2619: evidence for a neutron star?

    CERN Document Server

    in 't Zand, J J M

    2005-01-01

    IGR J17544-2619 belongs to a distinct group of at least seven fast X-ray transients that cannot readily be associated with nearby flare stars or pre-main sequence stars and most probably are X-ray binaries with wind accretion. Sofar, the nature of the accretor has been determined in only one case (SAX J1819.3-2525/V4641 Sgr). We carried out a 20 ks Chandra ACIS-S observation of IGR J17544-2619 which shows the source in quiescence going into outburst. The Chandra position confirms the previous tentative identification of the optical counterpart, a blue O9Ib supergiant at 3 to 4 kpc (Pellizza, Chaty & Negueruela, in prep.). This is the first detection of a fast X-ray transient in quiescence. The quiescent spectrum is very soft. The photon index of 5.9+/-1.2 (90% confidence error margin) is much softer than 6 quiescent black hole candidates that were observed with Chandra ACIS-S (Kong et al. 2002; Tomsick et al. 2003). Assuming that a significant fraction of the quiescent photons comes from the accretor and ...

  17. Simultaneous NuSTAR/Chandra observations of the Bursting Pulsar GRO J1744-28 during its third reactivation

    CERN Document Server

    Younes, G; Grefenstette, B W; Tomsick, J A; Tennant, A; Finger, M H; Furst, F; Pottschmidt, K; Bhalerao, V; Boggs, S E; Boirin, L; Chakrabarty, D; Christensen, F E; Craig, W W; Degenaar, N; Fabian, A C; Gandhi, P; Gogus, E; Hailey, C J; Harrison, F A; Kennea, J A; Miller, J M; Stern, D; Zhang, W W

    2015-01-01

    We report on a 10 ks simultaneous Chandra/HETG-NuSTAR observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 years of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors, and well described by a blackbody (BB), a power-law with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disc, we estimate its inner (magnetospheric) radius to be about 4x10^7 cm, which translates to a surface dipole field B~9x10^10 G. The Chandra/HETG spectrum resolves the 6.7 keV ...

  18. Chandra Observations of Comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS)

    OpenAIRE

    Snios, Bradford; Kharchenko, Vasili; Lisse, Carey M.; Wolk, Scott J.; Dennerl, Konrad; Combi, Michael R.

    2016-01-01

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31-November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17-23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emi...

  19. Escape of Pluto's Atmosphere: In Situ Measurements from New Horizons and Remote Observations from Chandra

    Science.gov (United States)

    McNutt, R. L., Jr.; Hill, M. E.; Kollmann, P.; Krimigis, S. M.; Brown, L. E.; Kusterer, M. B.; Lisse, C. M.; Mitchell, D. G.; Vandegriff, J. D.; McComas, D. J.; Bagenal, F.; Elliott, H. A.; Ennico Smith, K.; Horanyi, M.; Olkin, C.; Piquette, M. R.; Stern, A.; Strobel, D. F.; Szalay, J.; Valek, P. W.; Weaver, H. A., Jr.; Weidner, S.; Young, L. A.; Zirnstein, E.; Wolk, S. J.

    2015-12-01

    of the Earth's geocorona and Mars's extended atmosphere. The award of almost 40 hours of Director's Discretionary Time (DDT) for observing Pluto with the Chandra X-ray observatory coinciding with the period of closest approach of New Horizons potentially enables a remote determination of Pluto's global outgassing rate using a known local solar wind flux as measured by SWAP.

  20. Observation of light emissions in superconducting cavities; Observation d`emissions lumineuses dans une cavite supraconductrice

    Energy Technology Data Exchange (ETDEWEB)

    Caruette, A.; Fouaidy, M.; Hammoudi, N.; Junquera, T.; Le Goff, A.; Lesrel, J.; Maissa, S. [Services Techniques, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    In order to investigate the light emissions associated to the electron emission in a superconducting RF cavity, an optical observation system is mounted on the `mushroom` cavity. After an intentional contamination of the cavity with alumina particles, stable luminous spots are observed around the contaminated area. (authors) 3 refs., 2 figs.

  1. Linking Stellar Coronal Activity and Rotation at 500 Myr: A Deep Chandra Observation of M37

    Science.gov (United States)

    Núñez, Alejandro; Agüeros, Marcel A.; Covey, Kevin R.; Hartman, Joel D.; Kraus, Adam L.; Bowsher, Emily C.; Douglas, Stephanie T.; López-Morales, Mercedes; Pooley, David A.; Posselt, Bettina; Saar, Steven H.; West, Andrew A.

    2015-08-01

    Empirical calibrations of the stellar age-rotation-activity relation (ARAR) rely on observations of the co-eval populations of stars in open clusters. We used the Chandra X-ray Observatory to study M37, a 500-Myr-old open cluster that has been extensively surveyed for rotation periods ({P}{rot}). M37 was observed almost continuously for five days, for a total of 440.5 ks, to measure stellar X-ray luminosities ({L}{{X}}), a proxy for coronal activity, across a wide range of masses. The cluster’s membership catalog was revisited to calculate updated membership probabilities from photometric data and each star’s distance to the cluster center. The result is a comprehensive sample of 1699 M37 members: 426 with {P}{rot}, 278 with X-ray detections, and 76 with both. We calculate Rossby numbers, {R}o= {P}{rot}/τ , where τ is the convective turnover time, and ratios of the X-ray-to-bolometric luminosity, {L}{{X}}/{L}{bol}, to minimize mass dependencies in our characterization of the rotation-coronal activity relation at 500 Myr. We find that fast rotators, for which {R}o\\lt 0.09+/- 0.01, show saturated levels of activity, with log({L}{{X}}/{L}{bol})=\\-3.06+/- 0.04. For {R}o≥slant 0.09+/- 0.01, activity is unsaturated and follows a power law of the form {R}oβ , where β = -{2.03}-0.14+0.17. This is the largest sample available for analyzing the dependence of coronal emission on rotation for a single-aged population, covering stellar masses in the range 0.4-1.3 {M}⊙ , {P}{rot} in the range 0.4-12.8 days, and {L}{{X}} in the range {10}28.4-30.5 {erg} {{{s}}}-1. Our results make M37 a new benchmark open cluster for calibrating the ARAR at ages of ≈ 500 Myr.

  2. The Thermal Composite Supernova Remnant Kes 27 as Viewed by CHANDRA: Shock Reflection from a Cavity Wall

    CERN Document Server

    Chen, Yang; Sun, Ming; Li, Jiang-tao

    2007-01-01

    We present a spatially resolved spectroscopic study of the thermal composite supernova remnant Kes 27 with Chandra. The X-ray spectrum of Kes 27 is characterized by K lines from Mg, Si, S, Ar, and Ca. The X-ray emitting gas is found to be enriched in sulphur and calcium. The broadband and tri-color images show two incomplete shell-like features in the northeastern half and brightness fading with increasing radius in the southwest. There are over 30 unresolved sources within the remnant. None show characteristics typical of young neutron stars. The maximum diffuse X-ray intensity coincides with a radio bright region along the eastern border. In general, gas in the inner region is at higher temperature and emission is brighter than from the outer region. The gas in the remnant appears to approach ionization equilibrium. The overall morphology can be explained by the evolution of the remnant in an ambient medium with a density enhancement from west to east. We suggest that the remnant was born in a pre-existing ...

  3. Finding Rare AGN: XMM-Newton and Chandra Observations of SDSS Stripe 82

    CERN Document Server

    LaMassa, Stephanie M; Cappelluti, Nico; Civano, Francesca; Ranalli, Piero; Glikman, Eilat; Treister, Ezequiel; Richards, Gordon; Ballantyne, David; Stern, Daniel; Comastri, Andrea; Cardamone, Carie; Schawinski, Kevin; Boehringer, Hans; Chon, Gayoung; Murray, Stephen S; Green, Paul; Nandra, Kirpal

    2013-01-01

    We have analyzed the {\\it XMM-Newton} and {\\it Chandra} data overlapping $\\sim$16.5 deg$^2$ of Sloan Digital Sky Survey Stripe 82, including $\\sim$4.6 deg$^2$ of proprietary {\\it XMM-Newton} data that we present here. In total, 3362 unique X-ray sources are detected at high significance. We derive the {\\it XMM-Newton} number counts and compare them with our previously reported {\\it Chandra} Log$N$-Log$S$ relations and other X-ray surveys. The Stripe 82 X-ray source lists have been matched to multi-wavelength catalogs using a maximum likelihood estimator algorithm. We discovered the highest redshift ($z=5.86$) quasar yet identified in an X-ray survey. We find 2.5 times more high luminosity (L$_x \\geq 10^{45}$ erg s$^{-1}$) AGN than the smaller area {\\it Chandra} and {\\it XMM-Newton} survey of COSMOS and 1.3 times as many identified by XBo\\"otes. Comparing the high luminosity AGN we have identified with those predicted by population synthesis models, our results suggest that this AGN population is a more import...

  4. CHANDRA OBSERVATIONS OF 3C RADIO SOURCES WITH z < 0.3. II. COMPLETING THE SNAPSHOT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Tremblay, G. R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Muenchen (Germany); Harris, D. E.; O' Dea, C. P. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kharb, P.; Axon, D. [Department of Physics, Rochester Institute of Technology, Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Balmaverde, B.; Capetti, A. [INAF-Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Baum, S. A. [Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Chiaberge, M.; Macchetto, F. D.; Sparks, W. [Space Telescope Science Institute, 3700 San Martine Drive, Baltimore, MD 21218 (United States); Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Giovannini, G. [INAF-Istituto di Radioastronomia di Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Grandi, P.; Torresi, E. [INAF-IASF-Istituto di Astrofisica Spaziale e fisica Cosmica di Bologna, Via P. Gobetti 101, I-40129 Bologna (Italy); Risaliti, G. [INAF-Osservatorio Astronomico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-15

    We report on the second round of Chandra observations of the 3C snapshot survey developed to observe the complete sample of 3C radio sources with z < 0.3 for 8 ks each. In the first paper, we illustrated the basic data reduction and analysis procedures performed for the 30 sources of the 3C sample observed during Chandra Cycle 9, while here we present the data for the remaining 27 sources observed during Cycle 12. We measured the X-ray intensity of the nuclei and of any radio hot spots and jet features with associated X-ray emission. X-ray fluxes in three energy bands, i.e., soft, medium, and hard, for all the sources analyzed are also reported. For the stronger nuclei, we also applied the standard spectral analysis, which provides the best-fit values of the X-ray spectral index and absorbing column density. In addition, a detailed analysis of bright X-ray nuclei that could be affected by pile-up has been performed. X-ray emission was detected for all the nuclei of the radio sources in our sample except for 3C 319. Among the current sample, there are two compact steep spectrum radio sources, two broad-line radio galaxies, and one wide angle tail radio galaxy, 3C 89, hosted in a cluster of galaxies clearly visible in our Chandra snapshot observation. In addition, we also detected soft X-ray emission arising from the galaxy cluster surrounding 3C 196.1. Finally, X-ray emission from hot spots has been found in three FR II radio sources and, in the case of 3C 459, we also report the detection of X-ray emission associated with the eastern radio lobe as well as X-ray emission cospatial with radio jets in 3C 29 and 3C 402.

  5. Observation of Three Mode Parametric Interactions in Long Optical Cavities

    CERN Document Server

    Zhao, C; Fan, Y; Slagmolen, S Gras B J J; Miao, H; Blair, P Barriga D G; Hosken, D J; Brooks, A F; Veitch, P J; Mudge, D; Munch, J

    2008-01-01

    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.

  6. Deep Chandra Observations of the Compact Starburst Galaxy Henize 2-10: X-rays from the Massive Black Hole

    CERN Document Server

    Reines, Amy; Miller, Jon; Sivakoff, Gregory; Greene, Jenny; Hickox, Ryan; Johnson, Kelsey

    2016-01-01

    We present follow-up X-ray observations of the candidate massive black hole (BH) in the nucleus of the low-mass, compact starburst galaxy Henize 2-10. Using new high-resolution observations from the Chandra X-ray Observatory totaling 200 ks in duration, as well as archival Chandra observations from 2001, we demonstrate the presence of a previously unidentified X-ray point source that is spatially coincident with the known nuclear radio source in Henize 2-10 (i.e., the massive BH). We show that the hard X-ray emission previously identified in the 2001 observation is dominated by a source that is distinct from the nucleus, with the properties expected for a high-mass X-ray binary. The X-ray luminosity of the nuclear source suggests the massive BH is radiating significantly below its Eddington limit (~10^-6 L_Edd), and the soft spectrum resembles other weakly accreting massive BHs including Sagittarius A*. Analysis of the X-ray light curve of the nucleus reveals the tentative detection of a ~9-hour periodicity, ...

  7. Deep Chandra Observations of NGC 1404: Cluster Plasma Physics Revealed by an Infalling Early-type Galaxy

    Science.gov (United States)

    Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-01-01

    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.

  8. Chandra and ASCA X-ray Observations of the Radio Supernova SN1979C IN NGC 4321

    CERN Document Server

    Ray, A; Schlegel, E M

    2001-01-01

    We report on the X-ray observation of the radio selected supernova SN1979C carried out with ASCA in 1997 December and serendipitously available from a Chandra Guaranteed Time Observation in 1999 November. The supernova, of type SN II-Linear (SN IIL), was first observed in the optical and occurred in the weakly barred, almost face on spiral galaxy NGC 4321 (M100). The galaxy, a member of the Virgo S cluster, is at a distance of 17.1 Mpc, and contains at least three other supernovae discovered in this century. The useful exposure time was ~25 ks for the Solid-State Imaging Spectrometer (SIS), ~28 ks for the Gas Scintillation Imaging Spectrometer (GIS), and ~2.5 ks for Chandra's Advanced CCD Imaging Spectrometer (ACIS). No point source was detected at the radio position of SN1979C in a 3' diameter half power response circle in the ASCA data. The background and galaxy subtracted SN signal had a 3sigma upper limit to the flux of 6.3x10^-14 ergs/s/cm^-2 in the full ASCA SIS band (0.4-10.0 keV) and a 3sigma upper li...

  9. X-ray Sources in the Magellanic Clouds: analysis of 15 Years of XMM-Newton and Chandra Observations

    Science.gov (United States)

    Yang, J.; Laycock, S.; Christodoulou, D.; Drake, J.; Fingerman, S.; Hong, J.; Zezas, A.; Antoniou, V.; Coe, M.; Ho, W.

    2016-06-01

    Using ˜160 XMM-Newton, ˜180 Chandra, and all weekly RXTE observations, we have generated a comprehensive library of the known pulsars in the Small and Large Magellanic Clouds (SMC, LMC). We classify various pulsar properties in the range of log L_{X}=32-38 erg s^{-1} and incorporate related parameters in theoretical models. With the high time-resolution data of the EPIC and Chandra cameras and the latest calibration files and software, our 15 year pipeline generates a suite of useful products for each pulsar detection: event lists, high time-resolution light curves, periodograms, spectra, and complete histories of the dot{P}, the pulse fraction, etc., in the broad, soft (0.2-2 keV), and hard (2-12 keV) energy bands. After combining the observations from these telescopes, we found that 15 pulsars are clearly spinning up and another 15 pulsars are distinctly spinning down. We also used the faintest and brightest sources to map out the propeller line and the Eddington line, respectively. We compared the observed pulse profiles to geometric models of X-ray emission in order to constrain the physical parameters of the pulsars. We are preparing a public release of this library so that it can be used by other groups as well.

  10. The Jet/Disk Connection in AGN: Chandra and XMM-Newton Observations of Three Powerful Radio-Loud Quasars

    Science.gov (United States)

    Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi

    2007-01-01

    The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.

  11. Simultaneous NuSTAR/Chandra Observations of the Bursting Pulsar GRO J1744-28 during Its Third Reactivation

    Science.gov (United States)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.; Tomsick, J. A.; Tennant, A.; Finger, M. H.; Fürst, F.; Pottschmidt, K.; Bhalerao, V.; Boggs, S. E.; Boirin, L.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Degenaar, N.; Fabian, A. C.; Gandhi, P.; Göğüş, E.; Hailey, C. J.; Harrison, F. A.; Kennea, J. A.; Miller, J. M.; Stern, D.; Zhang, W. W.

    2015-05-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 × 107 cm, which translates to a surface dipole field B ≈ 9 × 1010 G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe xxv and Fe xxvi emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  12. SIMULTANEOUS NuSTAR/CHANDRA OBSERVATIONS OF THE BURSTING PULSAR GRO J1744-28 DURING ITS THIRD REACTIVATION

    Energy Technology Data Exchange (ETDEWEB)

    Younes, G.; Finger, M. H. [Universities Space Research Association, 6767 Old Madison Pike, Suite 450, Huntsville, AL 35806 (United States); Kouveliotou, C.; Tennant, A. [Astrophysics Office, ZP 12, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Grefenstette, B. W.; Fürst, F. [Cahill Center for Astrophysics, 1216 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Tomsick, J. A.; Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Pottschmidt, K. [Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Bhalerao, V. [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boirin, L. [Observatoire Astronomique de Strasbourg, 11 Rue de l' Université, F-67000 Strasbourg (France); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Degenaar, N. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gandhi, P. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); and others

    2015-05-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)–Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5–70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 × 10{sup 7} cm, which translates to a surface dipole field B ≈ 9 × 10{sup 10} G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe xxv and Fe xxvi emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  13. A Spatial and Spectral Study of Nonthermal Filaments in Historical Supernova Remnants: Observational Results with Chandra

    CERN Document Server

    Bamba, A; Yoshida, T; Terasawa, T; Koyama, K; Bamba, Aya; Yamazaki, Ryo; Yoshida, Tatsuo; Terasawa, Toshio; Koyama, Katsuji

    2004-01-01

    The outer shells of young supernova remnants (SNRs) are the most plausible acceleration sites of high-energy electrons with the diffusive shock acceleration (DSA) mechanism. We studied spatial and spectral properties close to the shock fronts in four historical SNRs (Cas A, Kepler's remnant, Tycho's remnant, and RCW 86) with excellent spatial resolution of {\\it Chandra}. In all of the SNRs, hard X-ray emissions were found on the rims of the SNRs, which concentrate in very narrow regions (so-called "filaments"); apparent scale widths on the upstream side are below or in the order of the point spread function of {\\it Chandra}, while 0.5--40 arcsec (0.01--0.4 pc) on the downstream side with most reliable distances. The spectra of these filaments can be fitted with both thermal and nonthermal (power-law and {\\tt SRCUT}) models. The former requires unrealistic high temperature ($\\ga$2 keV) and low abundances ($\\la$1 solar) for emission from young SNRs and may be thus unlikely. The latter reproduces the spectra wit...

  14. Chandra Observation of the Globular Cluster NGC 6440 and a Comparison with Other Recent Results

    CERN Document Server

    Pooley, D; Verbunt, F; Homer, L; Margon, B; Gaensler, B M; Kaspi, V M; Miller, J M; Fox, D W; Van der Klis, M; Pooley, David; Lewin, Walter H. G.; Verbunt, Frank; Homer, Lee; Margon, Bruce; Gaensler, Bryan M.; Kaspi, Victoria M.; Miller, Jon M.; Fox, Derek W.; Klis, Michiel van der

    2001-01-01

    As part of our campaign to determine the nature of the various source populations of the low-luminosity globular cluster X-ray sources, we have obtained a Chandra X-ray Observatory ACIS-S3 image of the globular cluster NGC 6440. We detect 24 sources to a limiting luminosity of ~2 times 10^31 erg/s (0.5-2.5keV) inside the cluster's half-mass radius, all of which lie within ~2 core radii of the cluster center. We also find excess emission in and around the core which could be due to unresolved point sources. Based upon X-ray luminosities and colors, we conclude that there are 4-5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. We compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters.

  15. Tools for Dissecting Supernova Remnants Observed with Chandra: Methods and Application to the Galactic Remnant W49B

    CERN Document Server

    Lopez, Laura A; Pooley, David A; Jeltema, Tesla E

    2008-01-01

    We introduce methods to quantify the X-ray morphologies of supernova remnants observed with the Chandra X-ray Telescope. These include a power-ratio technique to measure morphological asymmetries, correlation-length analysis to probe chemical segregation and distribution, and wavelet-transform analysis to quantify X-ray substructure. We demonstrate the utility and accuracy of these techniques on relevant synthetic data. Additionally, we show the methods' capabilities by applying them to the 55-ks Chandra ACIS observation of the galactic supernova remnant W49B. We analyze the images of prominent emission lines in W49B and use the results to discern physical properties. We find that the iron morphology is very distinct from the other elements: it is statistically more asymmetric, more segregated, and has 25% larger emitting substructures than the lighter ions. Comparatively, the silicon, sulfur, argon, and calcium are well-mixed, more isotropic, and have smaller, equally-sized emitting substructures. Based on f...

  16. Chandra deep observation of XDCP J0044.0-2033, a massive galaxy cluster at z>1.5

    CERN Document Server

    Tozzi, P; Jee, M J; Fassbender, R; Rosati, P; Nastasi, A; Forman, W; Sartoris, B; Borgani, S; Boehringer, H; Altieri, B; Pratt, G W; Nonino, M; Jones, C

    2014-01-01

    We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z=1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high redshift cluster. Extended emission from the Intra Cluster Medium (ICM) is detected at a very high significance level (S/N~20) on a circular region with a 44" radius, corresponding to $R_{ext}=375$ kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature $kT=6.7^{+1.3}_{-0.9}$ keV, and a iron abundance $Z_{Fe} = 0.41_{-0.26}^{+0.29}Z_{Fe_\\odot}$ (error bars correspond to 1 $\\sigma$). We fit the background-subtracted surface brightness profile with a single $\\beta$-model out to 44", finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute...

  17. Suzaku and Chandra Observations of CIZA J1700.8$-$3144, a Cluster of Galaxies in the Zone of Avoidance

    CERN Document Server

    Mori, Hideyuki; Ueda, Yoshihiro; Nakazawa, Kazuhiro; Tawara, Yuzuru

    2016-01-01

    We present the Chandra and Suzaku observations of 1RXS J170047.8$-$314442, located towards the Galactic bulge, to reveal a wide-band ($0.3$-$10$ keV) X-ray morphology and spectrum of this source. With the Chandra observation, no point source was found at the position of 1RXS J170047.8$-$314442. Alternatively, we revealed the presence of diffuse X-ray emission by the wide-band X-ray image obtained from the Suzaku XIS. Although the X-ray emission had a nearly circular shape with a spatial extent of $\\sim 3.5'$, the surface brightness profile was not axisymmetric; a bright spot-like emission was found at $\\sim 1'$ away in the north-western direction from the center. The radial profile of the surface brightness, except for this spot-like emission, was reproduced with a single $\\beta$-model; $\\beta$ and the core radius were found to be $1.02$ and $1.51'$, respectively. The X-ray spectrum of the diffuse emission showed an emission line at $\\sim 6$ keV, indicating an origin of a thermal plasma. The spectrum was well...

  18. Chandra & XMM-Newton Observations of NGC5253. Analysis of the X-ray Emission from a Dwarf Starburst Galaxy

    CERN Document Server

    Summers, L K; Strickland, D K; Heckman, T M; Summers, Lesley K.; Stevens, Ian R.; Strickland, David K.; Heckman, Timothy M.

    2004-01-01

    We present Chandra and XMM-Newton X-ray data of NGC5253, a local starbursting dwarf elliptical galaxy, in the early stages of a starburst episode. Contributions to the X-ray emission come from discrete point sources and extended diffuse emission, in the form of what appear to be multiple superbubbles, and smaller bubbles probably associated with individual star clusters. Chandra detects 17 sources within the optical extent of NGC5253 down to a completeness level corresponding to a luminosity of 1.5E37 erg/s.The slope of the point source X-ray luminosity function is -0.54, similar to that of other nearby dwarf starburst galaxies. Several different types of source are detected within the galaxy, including X-ray binaries and the emission associated with star-clusters. Comparison of the diffuse X-ray emission with the observed Halpha emission shows similarities in their extent. The best spectral fit to the diffuse emission is obtained with an absorbed, two temperature model giving temperatures for the two gas com...

  19. Chandra and Swift Follow-up Observations of the Intermediate Mass Black Hole in ESO243-49

    CERN Document Server

    Webb, N A; Godet, O; Servillat, M; Farrell, S A; Oates, S R

    2010-01-01

    The brightest Ultra-Luminous X-ray source HLX-1 in the galaxy ESO 243-49 provides strong evidence for the existence of intermediate mass black holes. As the luminosity and thus the mass estimate depend on the association of HLX-1 with ESO 243-49, it is essential to confirm its affiliation. This requires follow-up investigations at wavelengths other than X-rays, which in-turn needs an improved source position. To further reinforce the intermediate mass black hole identification, it is necessary to determine HLX-1's environment to establish whether it could potentially form and nourish a black hole at the luminosities observed. Using the High Resolution Camera onboard Chandra, we determine a source position of RA=01h10m28.3s and Dec=-46d04'22.3". A conservative 95% error of 0.3" was found following a boresight correction by cross-matching the positions of 3 X-ray sources in the field with the 2MASS catalog. Combining all Swift UV/Optical Telescope uvw2 images, we failed to detect a UV source at the Chandra posi...

  20. Chandra Observations of Pluto's Escaping Atmosphere in Support of the New Horizons Mission

    Science.gov (United States)

    McNutt, Ralph, Jr.

    2013-09-01

    Current models of Pluto's extended N2+CH4 atmosphere are still very uncertain, causing numerous difficulties in optimizing the New Horizons fast flyby operations plan for the dwarf planet. Applying knowledge gained from studying cometary X-ray emission, Chandra ACIS-S photometric imaging of X-rays produced by CXE between the solar wind and Pluto's atmosphere will address both the run of atmospheric density and the interaction of the solar wind with the extended Plutonian atmosphere. Determining the atmosphere's extent and amount of free molecular escape will aid the atmospheric sounding measurements of the NH ALICE instrument, while determining the x-ray luminosity will help the NH PEPSI instrument characterize the solar wind particle environment.

  1. Hinode and IRIS Observations of a Prominence-Cavity System

    Science.gov (United States)

    Jibben, Patricia R.; Reeves, Kathy; Su, Yingna

    2016-05-01

    Long-lived solar prominences often have a coronal cavity enclosing the prominence. Within the cavity, hot X-ray emission can persist above the prominence and in the central regions of the cavity. We present the results of an Interface Region Imaging Spectrograph (IRIS) and Hinode coordinated Observation Program (IHOP 264) study of a prominence-cavity system. The X-ray Telescope (XRT) observes an inflow of bright X-ray emission that strikes and envelops the prominence-cavity system causing an eruption of chromospheric plasma near the base of the prominence. During and after the eruption, an increase in X-ray emission forms within the cavity and above the prominence. IRIS and the EUV Imaging Spectrometer (EIS) observe strong blue shifts in both chromosphere and coronal lines during the eruption. The Solar Optical Telescope (SOT) Ca II H-line data show bright emission along the eruption path with complex turbulent plasma motions. The IRIS Si IV 1394 Angstrom spectra along the on-disk portion of the prominence show a region of decreased emission near the base of the prominence, suggesting a magnetic field bald-patch topology along the Polarity Inversion Line (PIL). Combined, these observations imply a cylindrical flux rope best represents the prominence-cavity system. A model of the magnetic structure of the prominence-cavity system comprised of a weakly twisted flux rope can explain the observed loops in the X-ray and EUV data. Observations from the Coronal Multichannel Polarimeter (CoMP) are compared to predicted models and are inconclusive. We find that more sensitive measurements of the magnetic field strength along the line-of-sight are needed to verify this configuration.Patricia Jibben and Kathy Reeves are supported by under contract 80111112705 from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO, grant number NNX12AI30G from NASA to SAO, and contract Z15-12504 from HAO to SAO under a grant from AFOSR. Yingna Su is supported by the Youth Fund of

  2. CHANDRA OBSERVATIONS OF COMETS C/2012 S1 (ISON) AND C/2011 L4 (PanSTARRS)

    Energy Technology Data Exchange (ETDEWEB)

    Snios, Bradford; Kharchenko, Vasili [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Wolk, Scott J. [Chandra X-Ray Observatory Center, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dennerl, Konrad [Max-Planck-Institut für extraterrestrische Physik, D-85748 Garching (Germany); Combi, Michael R. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-02-20

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31–November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17–23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comet's emission spectrum from first principles accordingly. Our model agrees with the observational spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophysical plasma interaction and SW composition. In addition, we observe potential soft X-ray emissions via ACIS around 0.2 keV from both comets that are correlated in intensity to the hard X-ray emissions between 0.4–1.0 keV. We fit our CX model to these emissions, but our lack of a unique solution at low energies makes it impossible to conclude if they are cometary CX in origin. Finally, we discuss probable emission mechanism sources for the soft X-rays and explore new opportunities these findings present in understanding cometary emission processes via Chandra.

  3. Chandra Observations of Comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS)

    Science.gov (United States)

    Snios, Bradford; Kharchenko, Vasili; Lisse, Carey M.; Wolk, Scott J.; Dennerl, Konrad; Combi, Michael R.

    2016-02-01

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31-November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17-23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comet's emission spectrum from first principles accordingly. Our model agrees with the observational spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophysical plasma interaction and SW composition. In addition, we observe potential soft X-ray emissions via ACIS around 0.2 keV from both comets that are correlated in intensity to the hard X-ray emissions between 0.4-1.0 keV. We fit our CX model to these emissions, but our lack of a unique solution at low energies makes it impossible to conclude if they are cometary CX in origin. Finally, we discuss probable emission mechanism sources for the soft X-rays and explore new opportunities these findings present in understanding cometary emission processes via Chandra.

  4. CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE 2011-APRIL GAMMA-RAY FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; Tennant, Allyn F.; O' Dell, Stephen L. [NASA Marshall Space Flight Center, Astrophysics Office (ZP12), Huntsville, AL 35812 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Blandford, Roger; Funk, Stefan; Romani, Roger W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Buehler, Rolf [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Caraveo, Patrizia; De Luca, Andrea [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Cheung, Chi C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Costa, Enrico [INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Ferrigno, Carlo [ISDC, Data Center for Astrophysics of the University of Geneva, chemin d' cogia 16, CH-1290 Versoix (Switzerland); Fu, Hai [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Habermehl, Moritz; Horns, Dieter [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Linford, Justin D. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131-0001 (United States); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Max, Claire [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mignani, Roberto [Mullard Space Science Laboratory, University College London, Holmbury St. Mary Dorking, Surrey RH5 6NT (United Kingdom); and others

    2013-03-01

    We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the {gamma}-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the 'inner knot', i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the {gamma}-ray flares and suggest that the most dramatic {gamma}-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.

  5. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Schawinski, Kevin; Urry, C. Megan; Bonning, Erin W. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Oh, Kyuseok [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Cardamone, Carolin N. [Harriet W. Sheridan Center for Teaching and Learning, Brown University, P.O. Box 1912, Providence, RI 02912 (United States); Keel, William C. [Department of Physics and Astronomy, 206 Gallalee Hall, 514 University Boulevard, University of Alabama, Tuscaloosa, AL 35487-034 (United States); Simmons, Brooke D. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Treister, Ezequiel, E-mail: stacy.h.teng@nasa.gov [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  6. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Science.gov (United States)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  7. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan; Weeren, Reinout van [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buote, David A. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gastaldello, Fabio, E-mail: yuanyuan.su@cfa.harvard.edu [INAF-IASF-Milano, Via E. Bassini 15, I-20133 Milano (Italy)

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  8. Chandra Observation of Abell 1142: A Cool-Core Cluster Lacking a Central Brightest Cluster Galaxy?

    CERN Document Server

    Su, Yuanyuan; Gastaldello, Fabio; van Weeren, Reinout

    2016-01-01

    Abell~1142 is a low-mass galaxy cluster at low redshift containing two comparable Brightest Cluster Galaxies (BCG) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters with each containing one BCG. The BCGs are merging at a relative velocity of ~1200 km/s. This ongoing merger may have shock-heated the ICM from ~ 2 keV to above 3 keV, which would explain the anomalous L_X--T_X scaling relation for this system. This merger may have displaced the metal-enriched "cool core" of eith...

  9. Chandra observations of the elusive pulsar wind nebula around PSR B0656+14

    CERN Document Server

    Bîrzan, L; Kargaltsev, O

    2015-01-01

    PSR B0656+14 is a middle-aged pulsar with a characteristic age $\\tau_c=110$ kyr and spin-down power $\\dot{E}= 3.8\\times 10^{34}$ erg s$^{-1}$. Using Chandra data, we searched for a pulsar wind nebula (PWN) and found evidence of extended emission in a 3.5-15 arcsec annulus around the pulsar, with a luminosity $L_{\\rm 0.5-8\\,keV}^{\\rm ext} \\sim 8\\times 10^{28}$ erg s$^{-1}$ (at the distance of 288 pc), which is a fraction of $\\sim 0.05$ of the non-thermal pulsar luminosity. If the extended emission is mostly due to a PWN, its X-ray efficiency, $\\eta_{\\rm pwn} = L_{\\rm 0.5-8\\,keV}^{\\rm ext}/\\dot{E} \\sim 2\\times 10^{-6}$, is lower than those of most other known PWNe but similar to that of the middle-aged Geminga pulsar. The small radial extent and nearly round shape of the putative PWN can be explained if the pulsar is receding (or approaching) in the direction close to the line of sight. The very soft spectrum of the extended emission ($\\Gamma\\sim 8$), much softer than those of typical PWNe, could be explained b...

  10. Chandra View of Magnetically Confined Wind in HD191612: Theory versus Observations

    CERN Document Server

    Naze, Yael; Zhekov, Svetozar A

    2016-01-01

    High-resolution spectra of the magnetic star HD191612 were acquired using the Chandra X-ray observatory at both maximum and minimum emission phases. We confirm the flux and hardness variations previously reported with XMM-Newton, demonstrating the great repeatability of the behavior of HD191612 over a decade. The line profiles appear typical for magnetic massive stars: no significant line shift, relatively narrow lines for high-Z elements, and formation radius at about 2R*. Line ratios confirm the softening of the X-ray spectrum at the minimum emission phase. Shift or width variations appear of limited amplitude at most (slightly lower velocity and slightly increased broadening at minimum emission phase, but within 1--2 sigma of values at maximum). In addition, a fully self-consistent 3D magnetohydrodynamic (MHD) simulation of the confined wind in HD191612 was performed. The simulation results were directly fitted to the data leading to a remarkable agreement overall between them.

  11. Chandra Observations of the Lensing Cluster EMSS 1358+6245: Implications for Self-interacting Dark Matter

    Science.gov (United States)

    Arabadjis, J. S.; Bautz, M. W.; Garmire, G. P.

    2002-06-01

    We present Chandra observations of EMSS 1358+6245, a relaxed cooling flow cluster of galaxies at z=0.328. We employ a new deprojection technique to construct temperature, gas, and dark matter profiles. We confirm the presence of cool gas in the cluster core, and our deprojected temperature profile for the hot component is isothermal over 30kpcconfidence limit) on the size of any constant-density core. We compare this result to recent simulations and place a conservative upper limit on the dark matter particle-scattering cross section of 0.1 cm2 g-1. This limit implies that the cross section must be velocity-dependent if the relatively shallow core mass profiles of dwarf galaxies are a direct result of dark matter self-interaction.

  12. CHANDRA X-RAY OBSERVATIONS OF THE REDSHIFT 1.53 RADIO-LOUD QUASAR 3C 270.1

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, Belinda J.; Lal, Dharam V.; Willner, S. P.; Ashby, M. L. N.; Fazio, G. G. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Worrall, D. M.; Birkinshaw, Mark [HH Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Haas, Martin; Chini, Rolf [Astronomisches Institut, Ruhr-University, Bochum (Germany); Antonucci, Robert [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Avara, Mark [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Hardcastle, Martin [School of Physics and Astronomy, University of Hertfordshire, Hatfield (United Kingdom); Lawrence, Charles [JPL, Pasadena, CA 91109 (United States); Leipski, Christian [MPIA, Heidelberg (Germany); Ogle, Patrick [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Schulz, Bernhard [IPAC, Caltech, Pasadena, CA 91125 (United States)

    2012-01-20

    Chandra X-ray observations of the high redshift (z = 1.532) radio-loud quasar 3C 270.1 in 2008 February show the nucleus to have a power-law spectrum, {Gamma} = 1.66 {+-} 0.08, typical of a radio-loud quasar, and a marginally detected Fe K{alpha} emission line. The data also reveal extended X-ray emission, about half of which is associated with the radio emission from this source. The southern emission is co-spatial with the radio lobe and peaks at the position of the double radio hot spot. Modeling this hot spot, including Spitzer upper limits, rules out synchrotron emission from a single power-law population of electrons, favoring inverse Compton emission with a field of {approx}11 nT, roughly a third of the equipartition value. The northern emission is concentrated close to the location of a 40 Degree-Sign bend where the radio jet is presumed to encounter an external medium. It can be explained by inverse Compton emission involving cosmic microwave background photons with a field of {approx}3 nT, a factor of 7-10 below the equipartition value. The remaining, more diffuse X-ray emission is harder (HR = -0.09 {+-} 0.22). With only 22.8 {+-} 5.6 counts, the spectral form cannot be constrained. Assuming thermal emission with a temperature of 4 keV yields an estimate for the luminosity of 1.8 Multiplication-Sign 10{sup 44} erg s{sup -1}, consistent with the luminosity-temperature relation of lower-redshift clusters. However, deeper Chandra X-ray observations are required to delineate the spatial distribution and better constrain the spectrum of the diffuse emission to verify that we have detected X-ray emission from a high-redshift cluster.

  13. Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    Science.gov (United States)

    Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.

    2017-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.

  14. Suzaku and Chandra observations of CIZA J1700.8-3144, a cluster of galaxies in the Zone of Avoidance

    Science.gov (United States)

    Mori, Hideyuki; Maeda, Yoshitomo; Ueda, Yoshihiro; Nakazawa, Kazuhiro; Tawara, Yuzuru

    2017-02-01

    We present the Chandra and Suzaku observations of 1RXS J170047.8-314442, located towards the Galactic bulge, to reveal a wide-band (0.3-10 keV) X-ray morphology and spectrum of this source. With the Chandra observation, no point source was found at the position of 1RXS J170047.8-314442. Instead, we revealed the presence of diffuse X-ray emission, via the wide-band X-ray image obtained from the Suzaku XIS. Although the X-ray emission had a nearly circular shape with a spatial extent of ˜3{^'.}5, the surface brightness profile was not axisymmetric; a bright spot-like emission was found at ˜ 1' away in the northwestern direction from the center. The radial profile of the surface brightness, except for this spot-like emission, was reproduced with a single β-model; β and the core radius were found to be 1.02 and 1{^'.}51, respectively. The X-ray spectrum of the diffuse emission showed an emission line at ˜6 keV, indicating an origin of a thermal plasma. The spectrum was well explained with an absorbed, optically-thin thermal plasma model with a temperature of 6.2 keV and a redshift parameter of z = 0.14 ± 0.01. Hence, the X-ray emission was considered to arise from the hot gas associated with a cluster of galaxies. Our spectroscopic result confirmed the optical identification of 1RXS J170047.8-314442 by Kocevski et al. (2007, ApJ, 662, 224): CIZA J1700.8-3144, a member of the cluster catalogue in the Zone of Avoidance. The estimated bolometric X-ray luminosity of 5.9 × 1044 erg s-1 was among the lowest with this temperature, suggesting that this cluster is far from relaxed.

  15. XMM-Newton and Chandra Observations of the Galaxy Group NGC 5044. 1; Evidence for Limited Multiphase Hot Gas

    Science.gov (United States)

    Buote, David A.; Lewis, Aaron D.; Brighenti, Fabrizio; Mathews, William G.

    2003-01-01

    Using new XMM and Chandra observations, we present an analysis of the temperature structure of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. A spectral deprojection analysis of data extracted from circular annuli reveals that a two-temperature model (2T) of the hot gas is favored over single-phase or cooling flow (M = 4.5 +/- 0.2 solar mass/yr) models within the central approx.30 kpc. Alternatively, the data can be fitted equally well if the temperature within each spherical shell varies continuously from approx.T(sub h) to T(sub c) approx. T(sub h)/2, but no lower. The high spatial resolution of the Chandra data allows us to determine that the temperature excursion T(sub h) approaches T(sub c) required in each shell exceeds the temperature range between the boundaries of the same shell in the best-fitting single-phase model. This is strong evidence for a multiphase gas having a limited temperature range. We do not find any evidence that azimuthal temperature variations within each annulus on the sky can account for the range in temperatures within each shell. We provide a detailed investigation of the systematic errors on the derived spectral models considering the effects of calibration, plasma codes, bandwidth, variable NH, and background rate. We find that the RGS gratings and the EPIC and ACIS CCDs give fully consistent results when the same models are fitted over the same energy ranges for each instrument. The cooler component of the 2T model has a temperature (T(sub c) approx. 0.7 keV) similar to the kinetic temperature of the stars. The hot phase has a temperature (T(sub h) approx. 1.4 keV) characteristic of the virial temperature of the solar mass halo expected in the NGC 5044 group. However, in view of the morphological disturbances and X-ray holes visible in the Chandra image within R approx. equals 10 kpc, bubbles of gas heated to approx.T(sub h) in this region may be formed by intermittent AGN feedback. Some

  16. X-ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminous z>4 Quasars with Chandra

    CERN Document Server

    Vignali, C; Schneider, D P; Kaspi, S

    2005-01-01

    We report on Chandra observations of a sample of 11 optically luminous (Mb4 quasars known and hence represent ideal witnesses of the end of the "dark age ''. Nine quasars are detected by Chandra, with ~2-57 counts in the observed 0.5-8 keV band. These detections increase the number of X-ray detected AGN at z>4 to ~90; overall, Chandra has detected ~85% of the high-redshift quasars observed with snapshot (few kilosecond) observations. PSS 1506+5220, one of the two X-ray undetected quasars, displays a number of notable features in its rest-frame ultraviolet spectrum, the most prominent being broad, deep SiIV and CIV absorption lines. The average optical-to-X-ray spectral index for the present sample (=-1.88+/-0.05) is steeper than that typically found for z>4 quasars but consistent with the expected value from the known dependence of this spectral index on quasar luminosity. We present joint X-ray spectral fitting for a sample of 48 radio-quiet quasars in the redshift range 3.99-6.28 for which Chandra observati...

  17. Revealing the Heavily Obscured Active Galactic Nucleus Population of High-redshift 3CRR Sources with Chandra X-Ray Observations

    NARCIS (Netherlands)

    Wilkes, Belinda J.; Kuraszkiewicz, Joanna; Haas, Martin; Barthel, Peter; Leipski, Christian; Willner, S. P.; Worrall, D. M.; Birkinshaw, Mark; Antonucci, Robert; Ashby, M. L. N.; Chini, Rolf; Fazio, G. G.; Lawrence, Charles; Ogle, Patrick; Schulz, Bernhard

    2013-01-01

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (1

  18. Chandra observations of comet 2P/Encke 2003 : First detection of a collisionally thin, fast solar wind charge exchange system

    NARCIS (Netherlands)

    Lisse, CM; Christian, DJ; Dennerl, K; Wolk, SJ; Bodewits, D; Hoekstra, R; Combi, MR; Makinen, T; Dryer, M; Fry, CD; Weaver, H

    2005-01-01

    We report the results of 15 hr of Chandra observations of comet 2P/Encke 2003 on November 24. X-ray emission from comet Encke was resolved on scales of 500-40,000 km, with unusual morphology due to the presence of a low-density, collisionally thin (to charge exchange) coma. A light curve with peak-t

  19. Chandra Observations of Comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS)

    CERN Document Server

    Snios, Bradford; Lisse, Carey M; Wolk, Scott J; Dennerl, Konrad; Combi, Michael R

    2016-01-01

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31-November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17-23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comet's emission spectrum from first principles accordingly. Our model agrees with the observational spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophys...

  20. Chandra and XMM-Newton Observations of the First Quasars: X-Rays from the Age of Cosmic Enlightenment

    Science.gov (United States)

    Vignali, C.; Brandt, W. N.; Schneider, D. P.; Anderson, S. F.; Fan, X.; Gunn, J. E.; Kaspi, S.; Richards, G. T.; Strauss, Michael A.

    2003-06-01

    We report on Chandra and XMM-Newton observations of a sample of 13 quasars at z~4.7-5.4 mostly taken from the Sloan Digital Sky Survey (SDSS). The present sample complements previous X-ray studies of z>=4 quasars, in which the majority of the objects are optically more luminous and at lower redshifts. All but two of our quasars have been detected in the X-ray band, thus doubling the number of z>=4.8 X-ray-detected quasars. The two nondetections are likely to be due to a short exposure time (SDSSp J033829.31+002156.3) and to the presence of intrinsic absorption (SDSSp J173744.87+582829.5). We confirm and extend to the highest redshifts the presence of a correlation between AB1450(1+z) magnitude and soft X-ray flux for z>=4 quasars and the presence of a steeper optical-to-X-ray spectral energy distribution (parameterized by αox) for high-luminosity, high-redshift quasars than for lower luminosity, lower redshift quasars. The second effect is likely due to the known anticorrelation between αox and rest-frame 2500 Å luminosity, whose significance is confirmed via partial correlation analysis. The joint ~2.5-36 keV rest-frame spectrum of the z>4.8 SDSS quasars observed thus far by Chandra is well parameterized by a power law with photon index Γ=1.84+0.31-0.30; this photon index is consistent with those of z~0-3 quasars and that obtained from joint spectral fitting of z~4.1-4.5 optically luminous Palomar Digital Sky Survey quasars. No evidence for widespread intrinsic X-ray absorption has been found (NH<~4.0×1022 cm-2 on average at 90% confidence). We also obtained Hobby-Eberly Telescope (HET) photometric observations for eight of our target quasars. None of these shows significant (greater than 30%) optical variability over the time interval of a few years (in the observed frame) between the SDSS and HET observations.

  1. A Chandra observation of the neutron star X-ray transient and eclipsing binary MXB 1659-29 in quiescence

    CERN Document Server

    Wijnands, R; Miller, J M; Homan, J; Wachter, S; Lewin, W H G; Wijnands, Rudy; Nowak, Mike; Miller, Jon M.; Homan, Jeroen; Wachter, Stefanie; Lewin, Walter H. G.

    2003-01-01

    After almost 2.5 years of actively accreting, the neutron star X-ray transient and eclipsing binary MXB 1659-29 returned to quiescence in 2001 September. We report on a Chandra observation of this source taken a little over a month after this transition. The source was detected at an unabsorbed 0.5-10 keV flux of only (2.7 - 3.6) x 10^{-13} erg cm^-2 s^-1, which implies a 0.5-10 keV X-ray luminosity of approximately (3.2 - 4.3) x 10^{33} (d/10 kpc)^2 erg s^-1, with d is the distance to the source in kpc. Its spectrum had a thermal shape and could be well fitted by either a blackbody with a temperature kT of ~0.3 keV or with a neutron star atmosphere model with a kT of ~0.1 keV. The luminosity and spectral shape of MXB 1659-29 are very similar to those observed of the other neutron star X-ray transients when they are in their quiescent state. The source was variable during our observation, exhibiting a complete eclipse of the inner part of the system by the companion star. Dipping behavior was observed before ...

  2. CHANDRA DEEP OBSERVATION OF XDCP J0044.0-2033, A MASSIVE GALAXY CLUSTER AT z > 1.5

    Energy Technology Data Exchange (ETDEWEB)

    Tozzi, P.; Santos, J. S.; Rosati, P. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Jee, M. J. [Department of Physics, University of California, Davis One Shields Avenue, Davis, CA 95616-8677 (United States); Fassbender, R. [INAF-Osservatorio Astronomico di Roma (OAR), via Frascati 33, I-00040 Monte Porzio Catone (Italy); Nastasi, A. [Istitut d' Astrophysique Spatiale, CNRS, Bat. 121, Université Paris-Sud, F-91405 Orsay (France); Forman, W.; Jones, C. [Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138 (United States); Sartoris, B.; Borgani, S. [Università degli Studi di Trieste, Dipartimento di Fisica, Via A.Valerio, 2 I-34127 Trieste (Italy); Boehringer, H. [Max-Planck-Institut fr extraterrestrische Physik Giessenbachstr.1, D-85748 Garching (Germany); Altieri, B. [European Space Astronomy Centre (ESAC), European Space Agency, Apartado de Correos 78, E-28691 Villanueva de la Canada, Madrid (Spain); Pratt, G. W. [CEA Saclay, Service d' Astrophysique, LOrme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette Cedex (France); Nonino, M. [INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste (Italy)

    2015-01-20

    We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z = 1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high-redshift cluster. Extended emission from the intra cluster medium (ICM) is detected at a very high significance level (S/N ∼ 20) on a circular region with a 44'' radius, corresponding to R {sub ext} = 375 kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature kT=6.7{sub −0.9}{sup +1.3} keV, and a iron abundance Z{sub Fe}=0.41{sub −0.26}{sup +0.29}Z{sub Fe{sub ⊙}} (error bars correspond to 1σ). We fit the background-subtracted surface brightness profile with a single β-model out to 44'', finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius R {sub ext} = 375 kpc to be M {sub ICM}(r < R {sub ext}) = (1.48 ± 0.20) × 10{sup 13} M {sub ☉}. Under the assumption of hydrostatic equilibrium and assuming isothermality within R {sub ext}, the total mass is M{sub 2500}=1.23{sub −0.27}{sup +0.46}×10{sup 14} M{sub ⊙} for R{sub 2500}=240{sub −20}{sup +30} kpc. Extrapolating the profile at radii larger than the extraction radius R {sub ext} we find M{sub 500}=3.2{sub −0.6}{sup +0.9}×10{sup 14} M{sub ⊙} for R{sub 500}=562{sub −37}{sup +50} kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift z ∼ 1.6, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 ΛCDM cosmology.

  3. The SSS phase of RS Ophiuchi observed with Chandra and XMM-Newton I.: Data and preliminary Modeling

    CERN Document Server

    Ness, J -U; Bode, M F; Drake, J J; Evans, A; Gehrz, R D; Goad, M R; González-Riestra, R; Hauschildt, P H; Krautter, J; O'Brien, T J; Osborne, J P; Page, K L; Schoenrich, R A; Starrfield, S

    2007-01-01

    The phase of Super-Soft-Source (SSS) emission of the sixth recorded outburst of the recurrent nova RS Oph was observed twice with Chandra and once with XMM-Newton. The observations were taken on days 39.7, 54.0, and 66.9 after outburst. We confirm a 35-sec period on day 54.0 and found that it originates from the SSS emission and not from the shock. We discus the bound-free absorption by neutral elements in the line of sight, resonance absorption lines plus self-absorbed emission line components, collisionally excited emission lines from the shock, He-like intersystem lines, and spectral changes during an episode of high-amplitude variability. We find a decrease of the oxygen K-shell absorption edge that can be explained by photoionization of oxygen. The absorption component has average velocities of -1286+-267 km/s on day 39.7 and of -771+-65 km/s on day 66.9. The wavelengths of the emission line components are consistent with their rest wavelengths as confirmed by measurements of non-self absorbed He-like in...

  4. Deep near-IR observations of the Chandra Deep Field and of the HDF-South - Color and Number Counts

    CERN Document Server

    Saracco, P; Cristiani, S; D'Odorico, S; Fontana, A; Iovino, A; Poli, F; Vanzella, E

    2001-01-01

    We present near-IR (J and Ks) number counts and colors of galaxies detected in deep VLT-ISAAC images centered on the Chandra Deep Field and Hubble Deep Field-South for a total area of 13.6 arcmin$^2$. The limiting surface brightness obtained is Ks$\\simeq$22.8 mag/arcsec$^2$ and J$\\simeq$24.5 (1$\\sigma$) on both fields. A d$log$N/dm relation with a slope of $\\sim0.34$ in J and $\\sim0.28$ in Ks is found in both fields with no evidence of decline near the magnitude limit. The median J-Ks color of galaxies becomes bluer at magnitudes fainter than Ks$\\sim18$, in agreement with the different number counts slope observed in the two bands. We find a fraction ($\\le5%$ of the total sample) of sources with color redder than J-Ks=2.3 at magnitudes Ks$>20$. Most of them appear as isolated sources, possibly elliptical or dusty starburst galaxies at redshift $z>2$. The comparison of the observed number counts with models shows that our J-band and Ks-band counts are consistent with the prediction of a model based on a small ...

  5. Chandra X-ray Observations of the 0.6 < z < 1.1 Red-Sequence Cluster Survey Sample

    CERN Document Server

    Hicks, Amalia K; Bautz, Mark; Cain, Benjamin; Gilbank, David; Gladders, M D; Hoekstra, Henk; Yee, Howard; Garmire, Gordon

    2007-01-01

    We present the results of Chandra observations of 13 optically-selected clusters with 0.63; though 3 were not observed long enough to support detailed analysis. Surface brightness profiles are fit to beta-models. Integrated spectra are extracted within R(2500), and Tx and Lx information is obtained. We derive gas and total masses within R(2500) and R(500). Cosmologically corrected scaling relations are investigated, and we find the RCS clusters to be consistent with self-similar scaling expectations. However discrepancies exist between the RCS sample and lower-z X-ray selected samples for relationships involving Lx, with the higher-z RCS clusters having lower Lx for a given Tx. In addition, we find that gas mass fractions within R(2500) for the high-z RCS sample are lower than expected by a factor of ~2. This suggests that the central entropy of these high-z objects has been elevated by processes such as pre-heating, mergers, and/or AGN outbursts, that their gas is still infalling, or that they contain compar...

  6. The Effect of Variability on X-Ray Binary Luminosity Functions: Multiple Epoch Observations of NGC 300 with Chandra

    CERN Document Server

    Binder, Breanna; Williams, Benjamin F; Eracleous, Michael; Gaetz, Terrance J; Plucinsky, Paul P; Skillman, Evan D

    2016-01-01

    We have obtained three epochs of Chandra ACIS-I observations (totaling $\\sim$184 ks) of the nearby spiral galaxy NGC~300 to study the logN-logS distributions of its X-ray point source population down to $\\sim$2$\\times$10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ in the 0.35-8 keV band (equivalent to $\\sim$10$^{36}$ erg s$^{-1}$). The individual epoch logN-logS distributions are best described as the sum of a background AGN component, a simple power law, and a broken power law, with the shape of the logN-logS distributions sometimes varying between observations. The simple power law and AGN components produce a good fit for "persistent" sources (i.e., with fluxes that remain constant within a factor of $\\sim$2). The differential power law index of $\\sim$1.2 and high fluxes suggest that the persistent sources intrinsic to NGC~300 are dominated by Roche lobe overflowing low mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power law index of $\\sim$1.7, a bright-end index ...

  7. Around 200 new X-ray binary IDs from 13 years of Chandra observations of the M31 center

    CERN Document Server

    Barnard, R; Primini, F; Li, Z; Baganoff, F; Murray, S S

    2013-01-01

    We have created 0.3--10 keV, 13 year, unabsorbed luminosity lightcurves for 528 X-ray sources in the central 20' of M31. We have 174 Chandra observations spaced at ~1 month intervals thanks to our transient monitoring program, deeper observations of the M31 nucleus, and some public data from other surveys. We created 0.5--4.5 keV structure functions (SFs) for each source, for comparison with the ensemble structure function of AGN. We find 220 X-ray sources with luminosities > ~1E+35 erg/s that have SFs with significantly more variability than the ensemble AGN SF, and are likely X-ray binaries (XBs). A further 30 X-ray sources were identified as XBs using other methods. We therefore have 250 probable XBs in total, including ~200 new identifications. This result represents great progress over the ~50 XBs and ~40 XB candidates previously identified out of the ~2000 X-ray sources within the D_25 region of M31; it also demonstrates the power of SF analysis for identifying XBs in external galaxies. We also identify...

  8. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    CERN Document Server

    Yuan, W; Dou, L; Dong, X -B; Fan, X; Wang, T -G

    2014-01-01

    We report on Chandra X-ray observations of four candidate low-mass black hole (<10^6Msun) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (~10^(-2)) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad H_alpha line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of 10^3s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10^(41) ergs/s or even lower, on the order of 10^(40) ergs/s for non-detections, which are among the lowest regimes ever probed ...

  9. A Chandra observation of the accretion-driven millisecond X-ray pulsar XTE J0929-314 in quiescence

    CERN Document Server

    Wijnands, R; Heinke, C O; Miller, J M; Lewin, W H G; Wijnands, Rudy; Homan, Jeroen; Heinke, Craig O.; Miller, Jon M.; Lewin, Walter H. G.

    2004-01-01

    We observed the accretion-driven millisecond X-ray pulsar XTE J0929-314 in its quiescent state using Chandra. XTE J0929-314 is the second such source to be observed in quiescence, after SAX J1808.4-3658. We detected 22 source photons (in the energy range 0.3-8 keV) in ~24.4 ksec, resulting in a background-corrected count rate of 9+/-2 x 10^{-4} counts s^{-1}. This small number of photons detected did not allow for a detailed spectral analysis of the quiescent spectrum, but we can demonstrate that the spectrum is harder than simple thermal emission which is usually presumed to arise from a cooling neutron star that has been heated during the outbursts. Assuming a power-law model for the X-ray spectrum, we obtain a power-law index of 2.2+/-0.6 and an unabsorbed X-ray flux of 6.5^{+2.8}_{-2.1} x 10^{-15} ergs s^{-1} cm^{-2} (for the energy range 0.5-10 keV), resulting in a 0.5-10 keV X-ray luminosity of 8+/-3 x 10^{31} (d/10 kpc)^2 ergs s^{-1}, with d the distance toward the source in kpc. No thermal component c...

  10. Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex

    Science.gov (United States)

    Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.

    2017-09-01

    Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only

  11. Chandra Catches Cannibal Galaxy in the Act

    Science.gov (United States)

    2000-07-01

    quantities of energy as it falls into a giant black hole in the center of the galaxy. Closer in, the effects of a more recent explosion show up as dark twin cavities, each large enough to contain a galaxy half the diameter of our Milky Way galaxy. These cavities, which have been detected at lower resolution by previous X-ray satellites, appear to be buoyant, magnetized bubbles of energetic particles. The Chandra image shows that the gas that has piled up in the brilliant rims has "cooled" to a temperature of 30 million degrees. A long spiral of hot gas appears to be winding inward around the cavities toward the center of the galaxy. Fabian and his colleagues propose that the cooling of gas in this spiral can lead to the formation of a spiral structure of stars that has been detected in optical images of the galaxy. The observation was made on January 29, 2000 for 6.8 hours using the Advanced CCD Imaging Spectrometer (ACIS). The Advanced CCD X-ray Spectrometer (ACIS) X-ray camera was developed for NASA by Penn State University, University Park, and the Massachusetts Institute of Technology, Cambridge. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Massachusetts. Images associated with this release are available on the World Wide Web at http://chandra.harvard.edu AND http://chandra.nasa.gov

  12. The First Chandra Field

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; /NASA, Marshall; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Cameron, Robert A.; /Harvard-Smithsonian Ctr. Astrophys. /SLAC; Gandhi,; Foellmi, Cedric; /European Southern Obs., Chile; Elsner, Ronald F.; /NASA, Marshall; Patel, Sandeep K.; /USRA, Huntsville; Wu, Kinwah; /Mullard Space Sci. Lab.; O' Dell, Stephen; /NASA, Marshall

    2005-09-09

    Before the official first-light images, the Chandra X-ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ''Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a Type-1 (unobscured) active galactic nucleus (AGN) at a redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the Eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive ({ge} 10{sup 9} M{sub {circle_dot}}) black hole, accreting at a rate approaching its Eddington limit.

  13. A Chandra Observation of the Luminous Northeastern Rim of the Galactic Supernova Remnant W28 (G6.4-0.1)

    Science.gov (United States)

    Pannuti, Thomas

    2016-06-01

    We present an analysis of a pointed observation made of the luminous northeastern rim of the Galactic supernova remnant (SNR) W28 (G6.4-0.1) with the Chandra X-ray Observatory. W28 is the archetype for the class of SNRs known as the mixed-morphology SNRs: sources in this class of objects feature a shell-like morphology with a contrasting center-filled X-ray morphology. Almost unique amongst mixed-morphology SNRs, W28 exhibits a luminous northeastern rim which is detected in the X-ray, optical and radio: this rim is also the site of a vigorous interaction between W28 and adjacent molecular clouds, as evidenced by the high concentration of hydroxyl (OH) masers seen at this rim. Our pointed Chandra observation of this rim is the highest angular X-ray observation made of this feature: initial analysis and results will be presented and discussed.

  14. Revealing the heavily obscured AGN population of High Redshift 3CRR Sources with Chandra X-ray Observations

    CERN Document Server

    Wilkes, Belinda J; Haas, Martin; Barthel, Peter; Leipski, Christian; Willner, S P; Worrall, D M; Birkinshaw, Mark; Antonucci, Robert; Ashby, M L N; Chini, Rolf; Fazio, G G; Lawrence, Charles; Ogle, Patrick; Schulz, Bernhard

    2013-01-01

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (10) indicating obscuration (log N_H ~ 22-24 cm^-2). These properties and the correlation between obscuration and radio core-fraction are consistent with orientation-dependent obscuration as in Unification models. About half the NLRGs have soft X-ray hardness ratios and/or high [OIII] emission line to X-ray luminosity ratio suggesting obscuration by Compton thick (CT) material so that scattered nuclear or extended X-ray emission dominates (as in NGC1068). The ratios of unobscured to Compton-thin (10^{22} 1.5 x 10^{24} cm^-2) is 2.5:1.4:1 in this high luminosity, radio-selected sample. The obscured fraction is 0.5, higher than is typically reported for AGN at comparable luminosities from multi-wavelength surveys (0.1-0.3). Assuming random nuclear orientation, the unobscured half-opening angle of the disk/wind/torus structure is ~ 60deg and the obscuring material covers 30deg of which ~ 12deg is Compton thick. The multi-wavelength prope...

  15. Chandra and XMM-Newton observations of the first quasars X-rays from the age of cosmic enlightenment

    CERN Document Server

    Vignali, C; Schneider, D P; Anderson, S F; Fan, X; Gunn, J E; Kaspi, S; Richards, G T; Strauss, M A; Strauss, Michael A.

    2003-01-01

    We report on Chandra and XMM-Newton observations of a sample of 13 quasars at z~4.7-5.4 mostly taken from the Sloan Digital Sky Survey (SDSS). The present sample complements previous X-ray studies of z>4 quasars, in which the majority of the objects are optically more luminous and at lower redshifts. All but two of our quasars have been detected in the X-ray band, thus doubling the number of z>4.8 X-ray detected quasars. The two non-detections are likely to be due to a short exposure time and to the presence of intrinsic absorption. We confirm and extend to the highest redshifts the presence of a correlation between AB1450(1+z) magnitude and soft X-ray flux for z>4 quasars, and the presence of a steeper optical-to-X-ray spectral energy distribution (parameterized by aox) for high-luminosity, high-redshift quasars than for lower-luminosity, lower-redshift quasars. The second effect is likely due to the known anti-correlation between aox and rest-frame 2500 Angstrom luminosity, whose significance is confirmed v...

  16. Chandra and XMM-Newton X-ray Observations of the Hyperactive T Tauri Star RY Tau

    CERN Document Server

    Skinner, Stephen L; Guedel, Manuel

    2016-01-01

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton. We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau's bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T_hot ~ 50 MK but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O VIII. X-ray light curves show complex variability consisting of short-duration (~hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly-varying (~one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g. coronal) origin. Soft and hard-band light ...

  17. Chandra Observations of the Lensing Cluster EMSS 1358+6245 Implications for Self-Interacting Dark Matter

    CERN Document Server

    Arabadjis, J S; Garmire, G P

    2001-01-01

    We present Chandra observations of EMSS 1358+6245, a relaxed cooling flow cluster of galaxies at z = 0.328. We employ a new deprojection technique to construct temperature, gas, and dark matter profiles. We confirm the presence of cool gas in the cluster core, and our deprojected temperature profile for the hot component is isothermal over 30 kpc < r < 0.8 Mpc. Fitting the mass profile to an NFW model yields r_s = 153 [+161,-83] kpc and c = 8.4 [+3.4,-2.3]. We find good agreement between our dark matter profile and weak gravitational lensing measurements. We place an upper limit of 42 kpc (90% confidence limit) on the size of any constant density core. We compare this result to recent simulations and place a conservative upper limit on the dark matter particle scattering cross section of 0.1 cm^2/g. This limit implies that the cross-section must be velocity dependent if the relatively shallow core mass profiles of dwarf galaxies are a direct result of dark matter self-interaction.

  18. High-Resolution X-ray Spectroscopy of SNR 1987A: Chandra LETG and HETG Observations in 2007

    CERN Document Server

    Zhekov, Svetozar A; Dewey, Daniel; Canizares, Claude R; Borkowski, Kazimierz J; Burrows, David N; Park, Sangwook

    2008-01-01

    We present an extended analysis of the deep Chandra LETG and HETG observations of the supernova remnant 1987A (SNR 1987A) carried out in 2007. The global fits to the grating spectra show that the temperature of the X-ray emitting plasma in the slower shocks in this system has remained stable for the last three years, while that in the faster shocks has decreased. This temperature evolution is confirmed by the first light curves of strong X-ray emission lines and their ratios. On the other hand, bulk gas velocities inferred from the X-ray line profiles are too low to account for the post-shock plasma temperatures inferred from spectral fits. This suggests that the X-ray emission comes from gas that has been shocked twice, first by the blast wave and again by shocks reflected from the inner ring of SNR 1987A. A new model that takes these considerations into account gives support to this physical picture.

  19. Chandra X-ray Observations of the Young Stellar Cluster NGC 6193 in the Ara OB1 Association

    CERN Document Server

    Skinner, S L; Palla, F; Barbosa, C L D R

    2005-01-01

    A 90 ks Chandra HETG observation of the young stellar cluster NGC 6193 in the southern Ara OB1 association detected 43 X-ray sources in a 2' x 2' core region centered on the young O stars HD 150135 (O6.5V) and HD 150136 (O3+O6V). The cluster is dominated by exceptionally bright X-ray emission from the two O stars, which are separated by only 10 arcsecs. The X-ray luminosity of HD 150136 is log Lx = 33.39 (ergs/s), making it one of the most luminous O-star X-ray sources known. All of the fainter X-ray sources in the core region have near-IR counterparts, but JHK photometry provides little evidence for near-IR excesses. These core sources have typical mean photon energies of 2 keV and about one-third are variable. It is likely that some are young low-mass stars in the cluster, but cluster membership remains to be determined. Grating spectra show that the X-ray properties of HD 150135 and HD 150136 are similar, but not identical. Both have moderately broadened unshifted emission lines and their emission is domin...

  20. Cosmic Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence from Chandra X-ray Observations

    CERN Document Server

    Warren, J S; Badenes, C; Ghavamian, P; McKee, C F; Moffett, D; Plucinsky, P P; Rakowski, C; Reynoso, E; Slane, P O

    2005-01-01

    We present evidence for cosmic ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamical models of SNR evolution. The CD:BW ratio can be explained if cosmic ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Ka emission from the T...

  1. Detailed study of SNR G306.3-0.9 using XMM-Newton and Chandra observations

    CERN Document Server

    Combi, J A; Suárez, A E; Luque-Escamilla, P L; Paron, S; Miceli, M

    2016-01-01

    We used combined data from XMM-Newton and Chandra observatories to study the X-ray morphology of SNR G306.3-0.9. A spatially-resolved spectral analysis was used to obtain physical and geometrical parameters of different regions of the remnant. Spitzer infrared observations were also used to constrain the progenitor supernova and study the environment in which the SNR evolved. The X-ray morphology of the remnant displays a non-uniform structure of semi-circular appearance, with a bright southwest region and very weak or almost negligible X-ray emission in its northern part. These results indicate that the remnant is propagating in a non-uniform environment as the shock fronts are encountering a high-density medium, where enhanced infrared emission is detected. The X-ray spectral analysis of the selected regions shows distinct emission-line features of several metal elements, confirming the thermal origin of the emission. The X-ray spectra are well represented by a combination of two absorbed thermal plasma mod...

  2. Chandra Publication Statistics

    CERN Document Server

    Rots, Arnold H; Becker, Glenn

    2011-01-01

    In this study we develop and propose publication metrics, based on an analysis of data from the Chandra bibliographic database, that are more meaningful and less sensitive to observatory-specific characteristics than the traditional metrics. They fall in three main categories: speed of publication; fraction of observing time published; and archival usage. Citation of results is a fourth category, but lends itself less well to definite statements. For Chandra, the median time from observation to publication is 2.36 years; after about 7 years 90% of the observing time is published; and the total annual publication output of the mission is 60-70% of the cumulative observing time available, assuming a two year lag between data retrieval and publication.

  3. Chandra and Swift X-ray Observations of the X-ray Pulsar SMC X-2 During the Outburst of 2015

    CERN Document Server

    Li, K L; Lin, L C C; Kong, Albert K H

    2016-01-01

    We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals (TOAs) analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipses or an ionized high-density shadow wind near the companion's surface. Finally, we propose that an outflow driven by the radiation pressure from day ~10 played an important role in the X-ray/optical evolution of the outburst.

  4. Cosmic-Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence from Chandra X-Ray Observations

    Science.gov (United States)

    Warren, Jessica S.; Hughes, John P.; Badenes, Carles; Ghavamian, Parviz; McKee, Christopher F.; Moffett, David; Plucinsky, Paul P.; Rakowski, Cara; Reynoso, Estela; Slane, Patrick

    2005-11-01

    We present evidence for cosmic-ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamic models of SNR evolution. The CD:BW ratio can be explained if cosmic-ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Kα emission from the Tycho ejecta, imply that the RS is not accelerating cosmic rays. We also extract radial profiles from ~34% of the rim of Tycho and compare them to models of surface brightness profiles behind the BW for a purely thermal plasma with an adiabatic shock. The observed morphology of the rim is much more strongly peaked than predicted by the model, indicating that such thermal emission is implausible here. Spectral analysis also implies that the rim emission is nonthermal in nature, lending further support to the idea that Tycho's forward shock is accelerating cosmic rays.

  5. Simultaneous Chandra, CSO and VLA Observations of Sgr A*: The Nature of Flaring Activity

    CERN Document Server

    Yusef-Zadeh, F; Heinke, C; Dowell, C D; Roberts, D; Baganoff, F K; Bower, G C

    2007-01-01

    Sgr A*, the massive black hole at the center of the Galaxy, varies in radio through X-ray emission on hourly time scales. The flare activity is thought to arise from the innermost region of an accretion flow onto Sgr A*. We present simultaneous light curves of Sgr A* in radio, sub-mm and X-rays that show a possible time delay of 110$\\pm17$ minutes between X-ray and 850 $\\mu$m suggesting that the sub-mm flare emission is optically thick. At radio wavelengths, we detect time lags of of $20.4\\pm6.8, 30\\pm12$ and 20$\\pm6$ minutes between the flare peaks observed at 13 and 7 mm in three different epochs using the VLA. Linear polarization of 1$\\pm0.2$% and 0.7$\\pm0.1$% is detected at 7 and 13 mm, respectively, when averaged over the entire observation on 2006 July 17. A simple picture of an expanding bubble of synchrotron emitting hot plasma can explain the time delay between various wavelengths, the asymmetric shape of the light curves, and the observed polarization of the flare emission at 43 and 22 GHz. The deri...

  6. Cavities

    Science.gov (United States)

    ... may pass these bacteria to a child through kissing, sampling the child's food, or sharing eating utensils. ... pass decay-causing bacteria to their children through kissing or sharing eating utensils. Symptoms of Cavities Whether ...

  7. The Outer Limits of Galaxy Clusters: Observations to the Virial Radius with Suzaku, XMM,and Chandra

    Science.gov (United States)

    Miller, Eric D.; Bautz, Marshall; George, Jithin; Mushotzky, Richard; Davis, David; Henry, J. Patrick

    2012-01-01

    The outskirts of galaxy clusters, near the virial radius, remain relatively unexplored territory and yet are vital to our understanding of cluster growth, structure, and mass. In this presentation, we show the first results from a program to constrain the sate of the outer intra-cluster medium (ICM) in a large sample of galaxy clusters, exploiting the strengths of three complementary X-ray observatories: Suzaku (low, stable background), XMM-Newton (high sensitivity),and Chandra (good spatial resolution). By carefully combining observations from the cluster core to beyond r200, we are able to identify and reduce systematic uncertainties that would impede our spatial and spectral analysis using a single telescope. Our sample comprises nine clusters at z is approximately 0.1-0.2 fully covered in azimuth to beyond r200, and our analysis indicates that the ICM is not in hydrostatic equilibrium in the cluster outskirts, where we see clear azimuthal variations in temperature and surface brightness. In one of the clusters, we are able to measure the diffuse X-ray emission well beyond r200, and we find that the entropy profile and the gas fraction are consistent with expectations from theory and numerical simulations. These results stand in contrast to recent studies which point to gas clumping in the outskirts; the extent to which differences of cluster environment or instrumental effects factor in this difference remains unclear. From a broader perspective, this project will produce a sizeable fiducial data set for detailed comparison with high-resolution numerical simulations.

  8. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    Science.gov (United States)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank

    2009-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).

  9. Electron Heating and Cosmic Rays at a Supernova Shock from Chandra X-ray Observations of E0102.2-7219

    CERN Document Server

    Hughes, J P; Decourchelle, A; Hughes, John P.; Rakowski, Cara E.; Decourchelle, Anne

    2000-01-01

    In this Letter we use the unprecedented spatial resolution of the Chandra X-ray Observatory to carry out, for the first time, a measurement of the post-shock electron temperature and proper motion of a young SNR, specifically to address questions about the post-shock partition of energy among electrons, ions, and cosmic rays. The expansion rate, 0.100 +/- 0.025 percent per yr, and inferred age, ~1000 yr, of E0102.2-7219, from a comparison of X-ray observations spanning 20 years, are fully consistent with previous estimates based on studies of high velocity oxygen-rich optical filaments in the remnant. With a radius of 6.4 pc for the blast wave estimated from the Chandra image, our expansion rate implies a blast wave velocity of ~6000 km/s and a range of electron temperatures 2.5 - 45 keV, dependent on the degree of collisionless electron heating. Analysis of the Chandra ACIS spectrum of the immediate post-shock region reveals a thermal plasma with abundances and column density typical of the Small Magellanic ...

  10. The Effect of Variability on X-Ray Binary Luminosity Functions: Multiple-epoch Observations of NGC 300 with Chandra

    Science.gov (United States)

    Binder, B.; Gross, J.; Williams, B. F.; Eracleous, M.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.

    2017-01-01

    We have obtained three epochs of Chandra ACIS-I observations (totaling ∼184 ks) of the nearby spiral galaxy NGC 300 to study the logN–logS distributions of its X-ray point-source population down to ∼2 × 10‑15 erg s‑1 cm‑2 in the 0.35–8 keV band (equivalent to ∼1036 erg s‑1). The individual epoch logN–logS distributions are best described as the sum of a background active galactic nucleus (AGN) component, a simple power law, and a broken power law, with the shape of the logN–logS distributions sometimes varying between observations. The simple power law and AGN components produce a good fit for “persistent” sources (i.e., with fluxes that remain constant within a factor of ∼2). The differential power-law index of ∼1.2 and high fluxes suggest that the persistent sources intrinsic to NGC 300 are dominated by Roche-lobe-overflowing low-mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power-law index of ∼1.7, a bright-end index of ∼2.8–4.9, and a break flux of ∼ 8× {10}-15 erg s‑1 cm‑2 (∼4 × 1036 erg s‑1), suggesting that they are mostly outbursting, wind-fed high-mass X-ray binaries, although the logN–logS distribution of variable sources likely also contains low-mass X-ray binaries. We generate model logN–logS distributions for synthetic X-ray binaries and constrain the distribution of maximum X-ray fluxes attained during outburst. Our observations suggest that the majority of outbursting X-ray binaries occur at sub-Eddington luminosities, where mass transfer likely occurs through direct wind accretion at ∼1%–3% of the Eddington rate.

  11. EXAMINING THE RADIO-LOUD/RADIO-QUIET DICHOTOMY WITH NEW CHANDRA AND VLA OBSERVATIONS OF 13 UGC GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Kharb, P.; Axon, D. J.; Robinson, A. [Physics Department, Rochester Institute of Technology, Rochester, NY 14623 (United States); Capetti, A.; Balmaverde, B. [INAF, Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (Italy); Chiaberge, M.; Macchetto, D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Grandi, P. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna (Italy); Giovannini, G. [INAF, Istituto di Radioastronomia di Bologna, via Gobetti 101, 40129 Bologna (Italy); Montez, R., E-mail: kharb@cis.rit.edu [Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2012-04-15

    We present the results from new {approx}15 ks Chandra-ACIS and 4.9 GHz Very Large Array (VLA) observations of 13 galaxies hosting low-luminosity active galactic nuclei (AGNs). This completes the multiwavelength study of a sample of 51 nearby early-type galaxies described in Capetti and Balmaverde and Balmaverde and Capetti. The aim of the three previous papers was to explore the connection between the host galaxies and AGN activity in a radio-selected sample. We detect nuclear X-ray emission in eight sources and radio emission in all but one (viz., UGC 6985). The new VLA observations improve the spatial resolution by a factor of 10: the presence of nuclear radio sources in 12 of the 13 galaxies confirms their AGN nature. As previously indicated, the behavior of the X-ray and radio emission in these sources depends strongly on the form of their optical surface brightness profiles derived from Hubble Space Telescope imaging, i.e., on their classification as 'core', 'power-law', or 'intermediate' galaxies. With more than twice the number of 'power-law' and 'intermediate' galaxies compared to previous work, we confirm with a much higher statistical significance that these galaxies lie well above the radio-X-ray correlation established in Fanaroff-Riley type I radio galaxies and the low-luminosity 'core' galaxies. This result highlights the fact that the 'radio-loud/radio-quiet' dichotomy is a function of the host galaxy's optical surface brightness profile. We present radio-optical-X-ray spectral indices for all 51 sample galaxies. Survival statistics point to significant differences in the radio-to-optical and radio-to-X-ray spectral indices between the 'core' and 'power-law galaxies (Gehan's Generalized Wilcoxon test probability p for the two classes being statistically similar is <10{sup -5}), but not in the optical-to-X-ray spectral indices (p = 0.25). Therefore, the

  12. The Chandra Bibliography Database

    Science.gov (United States)

    Rots, A. H.; Winkelman, S. L.; Paltani, S.; Blecksmith, S. E.; Bright, J. D.

    2004-07-01

    Early in the mission, the Chandra Data Archive started the development of a bibliography database, tracking publications in refereed journals and on-line conference proceedings that are based on Chandra observations, allowing our users to link directly to articles in the ADS from our archive, and to link to the relevant data in the archive from the ADS entries. Subsequently, we have been working closely with the ADS and other data centers, in the context of the ADEC-ITWG, on standardizing the literature-data linking. We have also extended our bibliography database to include all Chandra-related articles and we are also keeping track of the number of citations of each paper. Obviously, in addition to providing valuable services to our users, this database allows us to extract a wide variety of statistical information. The project comprises five components: the bibliography database-proper, a maintenance database, an interactive maintenance tool, a user browsing interface, and a web services component for exchanging information with the ADS. All of these elements are nearly mission-independent and we intend make the package as a whole available for use by other data centers. The capabilities thus provided represent support for an essential component of the Virtual Observatory.

  13. Full observation of single-atom dynamics in cavity QED

    CERN Document Server

    Mabuchi, H; Kimble, H J; Mabuchi, Hideo; Ye, Jun

    1998-01-01

    We report the use of broadband heterodyne spectroscopy to perform continuous measurement of the interaction energy between one atom and a high-finesse optical cavity, during individual transit events of $\\sim 250$ $\\mu$s duration. Measurements over a wide range of atom-cavity detunings reveal the transition from resonant to dispersive coupling, via the transfer of atom-induced signals from the amplitude to the phase of light transmitted through the cavity. By suppressing all sources of excess technical noise, we approach a measurement regime in which the broadband photocurrent may be interpreted as a classical record of conditional quantum evolution in the sense of recently developed quantum trajectory theories.

  14. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  15. S-Nitrosothiols Observed Using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rad, Mary Lynn; Gaston, Benjamin M.; Lehmann, Kevin

    2017-06-01

    The biological importance of nitric oxide has been known for nearly forty years due to its role in cardiovascular and nervous signaling. The main carrier molecules, s-nitrosothiols (RSNOs), are of additional interest due to their role in signaling reactions. Additionally, these compounds are related to several diseases including muscular dystrophy, stroke, myocardial infarction, Alzheimer's disease, Parkinson's disease, cystic fibrosis, asthma, and pulmonary arterial hypertension. One of the main barriers to elucidating the role of these RSNOs is the low (nanomolar) concentration present in samples of low volume (typically ˜100 μL). To this end we have set up a cavity ring-down spectrometer tuned to observe ^{14}NO and ^{15}NO released from cell growth samples. To decrease the limit of detection we have implemented a laser locking scheme employing Zeeman modulation of NO in a reference cell and have tuned the polarization of the laser using a half wave plate to optimize the polarization for the inherent birefringence of the CRDS mirrors. Progress toward measuring RSNO concentration in biological samples will be presented.

  16. Chandra Observations of a 1.9 kpc Separation Double X-ray Source in a Candidate Dual AGN Galaxy at z=0.16

    CERN Document Server

    Comerford, Julia M; Gerke, Brian F; Madejski, Greg M

    2011-01-01

    We report Chandra observations of a double X-ray source in the z=0.1569 galaxy SDSS J171544.05+600835.7. The galaxy was initially identified as a dual AGN candidate based on the double-peaked [O III] emission lines, with a line-of-sight velocity separation of 350 km/s, in its Sloan Digital Sky Survey spectrum. We used the Kast Spectrograph at Lick Observatory to obtain two longslit spectra of the galaxy at two different position angles, which reveal that the two AGN emission components have not only a velocity offset, but also a projected spatial offset of 1.9 kpc/h70 on the sky. Chandra/ACIS observations of two X-ray sources with the same spatial offset and orientation as the optical emission suggest the galaxy most likely contains Compton-thick dual AGN, although the observations could also be explained by AGN jets. Deeper X-ray observations that reveal Fe K lines, if present, would distinguish between the two scenarios. The observations of a double X-ray source in SDSS J171544.05+600835.7 are a proof of co...

  17. Hinode, SDO AIA, and CoMP Observations of a Coronal Cavity with a Hot Core

    Science.gov (United States)

    Reeves, K.; Jibben, P.

    2014-12-01

    Coronal cavities are low emission regions often situated around quiescent prominences. Prominences may exist for days or months prior to eruption and the magnetic structure of the cavity during the quiescent period is important to understanding the pre-eruption phase. We describe observations of a coronal cavity with a hot core situated above a polar crown prominence. The cavity, visible on the southwest limb, was observed for a period of three hours as a Hinode Coordinated Observation (HOP 114). Using Hinode's X-ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) we present the thermal emission properties and coronal velocity structures of the cavity. We find the core has hotter temperatures than the surrounding plasma and there is evidence of turbulent velocities within the cavity. We also investigate the interaction of the cavity with the prominence material using Solar Dynamic Observatory (SDO) Atmospheric Imaging Assembly (AIA) data and H-alpha data from Hinode's Solar Optical Telescope (SOT). We find evidence of hot plasma at the spine of the prominence reaching into the cavity. These observations suggest a cylindrical flux tube best represents the cavity structure. The magnetic structure of the cavity is further discussed using data from the Coronal Multichannel Polarimeter (CoMP). This work is supported by under contract SP02H1701R from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO and grant number NNX12AI30G from NASA to SAO.

  18. Observations of a Coronal Cavity and Prominence with Hinode, IRIS, and AIA

    Science.gov (United States)

    Jibben, Patricia R.; Reeves, Katharine

    2015-04-01

    Coronal cavities are low emission regions above quiescent prominences. The interaction of the prominence material and coronal cavity is still poorly understood. We present observations of a coronal cavity and prominence system observed on 9 October 2014. The observations are part of a joint observation program (HOP264) including Hinode and the Interface Region Imaging Spectrograph (IRIS). A small cavity is seen just above the prominence in the Hinode X-ray Telescope (XRT) images. Using data from the Solar Dynamic Observatory (SDO) Atmospheric Imaging Assembly (AIA), Hinode Solar Optical Telescope (SOT) and IRIS, multi-thermal plasma can be seen traveling along the cavity loops. During this time, a brightening is seen near the center of the cavity in the XRT images suggesting hot material has been trapped inside the cavity. In addition to presenting the cavity dynamics, we characterize the cavity velocity structures using the Hinode EUV Imaging Spectrometer (EIS) and discuss the magnetic structure of the cavity using data from the Coronal Multichannel Polarimeter (CoMP). This work is supported by under contract SP02H1701R from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO and grant number NNX12AI30G from NASA to SAO.

  19. Chandra observation of an unusually long and intense X-ray flare from a young solar-like star in M78

    CERN Document Server

    Grosso, N; Feigelson, E D; Forbes, T G

    2004-01-01

    LkHA312 has been observed serendipitously with the ACIS-I detector on board Chandra with 26h continuous exposure. This H_alpha emission line star belongs to the star-forming region M78 (NGC2068). From the optical and NIR data, we show that it is a pre-main sequence (PMS) low-mass star with a weak NIR excess. This genuine T Tauri star displayed an X-ray flare with an unusual long rise phase (~8h). The X-ray emission was nearly constant during the first 18h of the observation, and then increased by a factor of 13 during a fast rise phase (~2h), and reached a factor of 16 above the quiescent X-ray level at the end of a gradual phase (~6h) showing a slower rise. To our knowledge this flare, with \\~0.4-~0.5 cts/s, has the highest count rate observed so far with Chandra from a PMS low-mass star. By chance, the source position, 8.2' off-axis, protected this observation from pile-up. We make a spectral analysis of the X-ray emission versus time, showing that the plasma temperature of the quiescent phase and the flare...

  20. Measurements of Variability of Low Mass X-ray Binary Candidates in the Early-Type Galaxy NGC 4697 from Multi-Epoch Chandra X-ray Observations

    CERN Document Server

    Sivakoff, Gregory R; Juett, Adrienne M; Sarazin, Craig L; Irwin, Jimmy A

    2008-01-01

    Multi-epoch Chandra X-ray observations of nearby massive early-type galaxies open up the study of an important regime of low-mass X-ray binary (LMXB) behavior -- long term variability. In a companion paper, we report on the detection of 158 X-ray sources down to a detection/completeness limit of 0.6/1.4 x 10^{37} ergs/s using five Chandra observations of NGC 4697, one of the nearest (11.3 Mpc), optically luminous (M_B < -20), elliptical (E6) galaxy. In this paper, we report on the variability of LMXB candidates measured on timescales from seconds to years. At timescales of seconds to hours, we detect five sources with significant variability. Approximately 7% of sources show variability between any two observations, and 16+/-4% of sources do not have a constant luminosity over all five observations. Among variable sources, we identify eleven transient candidates, with which we estimate that if all LMXBs in NGC 4697 are long-term transients then they are on for ~ 100 yr and have a 7% duty cycle. These numbe...

  1. Direct observation of hydrides formation in cavity-grade niobium

    Directory of Open Access Journals (Sweden)

    F. Barkov

    2012-12-01

    Full Text Available Niobium is an important technological superconductor used to make radio frequency cavities for particle accelerators. Using laser confocal microscopy we have directly investigated hydride precipitates formation in cavity-grade niobium at 77 and 140 K. We have found that large hydrides were usually formed after chemical or mechanical treatments, which are known to lead to a strong degradation of the quality factor known as Q disease. From our experiments we can conclude that hydrides causing Q disease are islands with a characteristic thickness of ≳100  nm and in-plane dimensions 1–10  μm. Our results show that mechanical polishing uploads a lot of hydrogen into bulk niobium while electropolishing leads to a mild contamination. Vacuum treatments at 600–800°C are demonstrated to preclude large hydride formation in line with the absence of Q disease in similarly treated cavities.

  2. Observation of generalized optomechanical coupling and cooling on cavity resonance.

    Science.gov (United States)

    Sawadsky, Andreas; Kaufer, Henning; Nia, Ramon Moghadas; Tarabrin, Sergey P; Khalili, Farid Ya; Hammerer, Klemens; Schnabel, Roman

    2015-01-30

    Optomechanical coupling between a light field and the motion of a cavity mirror via radiation pressure plays an important role for the exploration of macroscopic quantum physics and for the detection of gravitational waves (GWs). It has been used to cool mechanical oscillators into their quantum ground states and has been considered to boost the sensitivity of GW detectors, e.g., via the optical spring effect. Here, we present the experimental characterization of generalized, that is, dispersive and dissipative, optomechanical coupling, with a macroscopic (1.5  mm)2-size silicon nitride membrane in a cavity-enhanced Michelson-type interferometer. We report for the first time strong optomechanical cooling based on dissipative coupling, even on cavity resonance, in excellent agreement with theory. Our result will allow for new experimental regimes in macroscopic quantum physics and GW detection.

  3. Observation of generalized optomechanical coupling and cooling on cavity resonance

    CERN Document Server

    Sawadsky, Andreas; Nia, Ramon Moghadas; Tarabrin, Sergey P; Khalili, Farid Ya; Hammerer, Klemens; Schnabel, Roman

    2014-01-01

    Optomechanical coupling between a light field and the motion of a cavity mirror via radiation pressure plays an important role for the exploration of macroscopic quantum physics and for the detection of gravitational waves (GWs). It has been used to cool mechanical oscillators into their quantum ground states and has been considered to boost the sensitivity of GW detectors, e.g. via the optical spring effect. Here, we present the experimental characterization of generalized, that is, dispersive and dissipative optomechanical coupling, with a macroscopic (1.5mm)^2-sized silicon nitride (SiN) membrane in a cavity-enhanced Michelson-type interferometer. We report for the first time strong optomechanical cooling based on dissipative coupling, even on cavity resonance, in excellent agreement with theory. Our result will allow for new experimental regimes in macroscopic quantum physics and GW detection.

  4. Chandra Early Type Galaxy Atals

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer; McCollough, Michael; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa Dil; Trinchieri, Ginevra

    2017-08-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion, stripping and star formation and its quenching. We have systematically analyzed the archival Chandra data of ~100 ETGs to study the hot ISM. We produce the uniformly derived data products with spatially resolved spectral information and will make them accessible via a public web site. With 2D spectral infomation, we further discuss gas morphology, scaling relations, X-ray based mass profiles and their implications related to various physical mechanisms (e.g., stellar and AGN feedback).

  5. Deep Chandra X-ray Observations of Low Mass X-ray Binary Candidates in the Early-Type Galaxy NGC 4697

    CERN Document Server

    Sivakoff, Gregory R; Juett, Adrienne M; Sarazin, Craig L; Irwin, Jimmy A

    2008-01-01

    Chandra X-ray observations routinely resolve tens to hundreds of low-mass X-ray binaries (LMXBs) per galaxy in nearby massive early-type galaxies. These studies have raised important issues regarding the behavior of this population of remnants of the once massive stars in early-type galaxies, namely the connection between LMXBs and globular clusters (GCs) and the nature of the LMXB luminosity function (LF). In this paper, we combine five epochs of Chandra observations and one central field Hubble Space Telescope Advance Camera for Surveys observation of NGC 4697, one of the nearest, optically luminous elliptical (E6) galaxies, to probe the GC-LMXB connection and LMXB-LF down to a detection/completeness limit of (0.6/1.4) x 10^{37} ergs/s. We detect 158 sources, present their luminosities and hardness ratios, and associate 34 LMXBs with GCs. We confirm that GCs with higher encounter rates (\\Gamma_h) and redder colors (higher metallicity Z) are more likely to contain GCs, and find that the expected number of LM...

  6. Disk Dominated States of 4U 1957+11: Chandra, XMM, and RXTE Observations of Ostensibly the Most Rapidly Spinning Galactic Black Hole

    CERN Document Server

    Nowak, Michael A; Homan, Jeroen; Yao, Yangsen; Wilms, Joern; Schulz, Norbert S; Canizares, Claude R

    2008-01-01

    We present simultaneous Chandra-HETG and RXTE observations of a moderate flux `soft state' of the black hole candidate 4U1957+11. These spectra, having a minimally discernible hard X-ray excess, are an excellent test of modern disk atmosphere models that include the effects of black hole spin. The HETG data show that the soft disk spectrum is only very mildly absorbed with N_H =1-2 X 10^{21} cm^-2. These data additionally reveal 13.449 A NeIX absorption consistent with the warm/hot phase of the interstellar medium. The fitted disk model implies a highly inclined disk around a low mass black hole rapidly rotating with normalized spin a*~1. We show, however, that pure Schwarzschild black hole models describe the data extremely well, albeit with large disk atmosphere ``color-correction'' factors. Standard color-correction factors can be attained if one additionally incorporates mild Comptonization. We find that the Chandra observations do not uniquely determine spin. Similarly, XMM/RXTE observations, taken only ...

  7. Updated phase coherent timing solution of the isolated neutron star RX J0720.4-3125 using recent XMM-Newton and Chandra observations

    CERN Document Server

    Hohle, M M; Vink, J; Turolla, R; Zane, S; de Vries, C P; Méndez, M

    2010-01-01

    Since the last phase coherent timing solution of the nearby radio-quiet isolated neutron star RX J0720.4-3125 six new XMM-Newton and three Chandra observations were carried out. The phase coherent timing solutions from previous authors were performed without restricting to a fixed energy band. However, we recently showed that the phase residuals are energy dependent, and thus phase coherent solutions must be computed referring always to the same energy band. We updated the phase coherent timing solution for RX J0720.4-3125 by including the recent XMM-Newton EPIC-pn, MOS1, MOS2 and Chandra ACIS data in the energy range 400-1000~eV. Altogether these observations cover a time span of almost 10~yrs. A further timing solution was obtained including the ROSAT pointed data. In this case, observations cover a time span of $\\approx$16~yrs. To illustrate the timing differences between the soft band (120-400~eV) and the hard band (400-1000~eV) a timing solution for the soft band is also presented and the results are ver...

  8. X-ray calibration of SZ scaling relations with the ACCEPT catalogue of galaxy clusters observed by Chandra

    CERN Document Server

    Comis, B; Conte, A; Lamagna, L; De Gregori, S

    2011-01-01

    We explore the scaling relation between the flux of the Sunyaev-Zel'dovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue. The analysis is conducted over a sample of 226 objects, examining the relatively small scale corresponding to a cluster overdensity equal to 2500 times the critical density of the background universe, at which the total masses have been calculated exploiting the hydrostatic equilibrium hypothesis. Core entropy (K0) is strongly correlated with the central cooling time, and is therefore used to identify cooling-core (CC) objects in our sample. Our results confirm the self-similarity of the scaling relation between the integrated Comptonization parameter (Y) and the cluster mass, for both CC and NCC (non-cooling-core) clusters. The consistency of our calibration with recent ones has been checked, with further support for Y as a good mass proxy. We also investigate t...

  9. Morphology Of A Hot Prominence Cavity Observed with Hinode/XRT and SDO/AIA

    Science.gov (United States)

    Weber, Mark A.; Reeves, K. K.; Gibson, S. E.; Kucera, T. A.

    2012-01-01

    Prominence cavities appear as circularly shaped voids in coronal emission over polarity inversion lines where a prominence channel is straddling the solar limb. The presence of chromospheric material suspended at coronal altitudes is a common but not necessary feature within these cavities. These voids are observed to change shape as a prominence feature rotates around the limb. We use a morphological model projected in cross-sections to fit the cavity emission in Hinode/XRT passbands, and then apply temperature diagnostics to XRT and SDO/AIA data to investigate the thermal structure. We find significant evidence that the prominence cavity is hotter than the corona immediately outside the cavity boundary. This investigation follows upon "Thermal Properties of A Solar Coronal Cavity Observed with the X-ray Telescope on Hinode" by Reeves et al., 2012, ApJ, in press.

  10. A Million-Second Chandra View of Cassiopeia A

    CERN Document Server

    Hwang, U; Badenes, C; Berends, F A; Blondin, J M; Cioffi, D; Delaney, T A; Dewey, D; Fesen, R A; Flanagan, K A; Fryer, C L; Ghavamian, P; Hughes, J P; Morse, J A; Plucinsky, P P; Petre, R; Pohl, M; Rudnick, L; Sankrit, R; Slane, P O; Smith, R K; Vink, J; Warren, J S; Hwang, Una; Badenes, Carles; Berendse, Fred; Blondin, John; Cioffi, Denis; Laney, Tracey De; Dewey, Daniel; Fesen, Robert; Flanagan, Kathryn A.; Fryer, Christopher L.; Ghavamian, Parviz; Hughes, John P.; Morse, Jon A.; Plucinsky, Paul P.; Petre, Robert; Pohl, Martin; Rudnick, Lawrence; Sankrit, Ravi; Slane, Patrick O.; Smith, Randall K.; Vink, Jacco; Warren, Jessica S.

    2004-01-01

    We introduce a million-second observation of the supernova remnant Cassiopeia A with the Chandra X-ray Observatory. The bipolar structure of the Si-rich ejecta (NE jet and SW counterpart) is clearly evident in the new images, and their chemical similarity is confirmed by their spectra. These are most likely due to jets of ejecta as opposed to cavities in the circumstellar medium, since we can reject simple models for the latter. The properties of these jets and the Fe-rich ejecta will provide clues to the explosion of Cas A.

  11. Chandra and optical/IR observations of CXOJ1415.2+3610, a massive, newly discovered galaxy cluster at z~1.5

    CERN Document Server

    Tozzi, P; Nonino, M; Rosati, P; Borgani, S; Sartoris, B; Altieri, B; Sanchez-Portal, M

    2012-01-01

    (Abridged) We report the discovery of CXO J1415.2+3610, a distant (z~1.5) galaxy cluster serendipitously detected in a deep, high-resolution Chandra observation targeted to study the cluster WARP J1415.1+3612 at z=1.03. This is the highest-z cluster discovered with Chandra so far. Moreover, the total exposure time of 280 ks with ACIS-S provides the deepest X-ray observation currently achieved on a cluster at z>1.5. We perform an X-ray spectral fit of the extended emission of the Intra Cluster Medium (ICM) with XSPEC, and we detect at a 99.5% confidence level the rest frame 6.7-6.9 keV Iron K_\\alpha line complex, from which we obtain z_X=1.46\\pm0.025. The analysis of the z-3.6\\mu m color-magnitude diagram shows a well defined sequence of red galaxies within 1' from the cluster X-ray emission peak with a color range [5 < z-3.6 \\mu m < 6]. The photometric redshift obtained by SED fitting is z_phot=1.47\\pm 0.25. After fixing the redshift to z=1.46, we perform the final spectral analysis and measure the aver...

  12. X-Ray/Ultraviolet Observing Campaign of the Markarian 279 Active Galactic Nucleus Outflow: a close look at the absorbing/emitting gas with Chandra-LETGS

    CERN Document Server

    Costantini, E; Arav, N; Kriss, G A; Steenbrugge, K C; Gabel, J R; Verbunt, F; Behar, E; Gaskell, C M; Korista, K T; Proga, D; Quijano, J K; Scott, J E; Klimek, E S; Hedrick, C H

    2006-01-01

    We present a Chandra-LETGS observation of the Seyfert 1 galaxy Mrk 279. This observation was carried out simultaneously with HST-STIS and FUSE, in the context of a multiwavelength study of this source. The Chandra pointings were spread over ten days for a total exposure time of ~360 ks. The spectrum of Mrk279 shows evidence of broad emission features, especially at the wavelength of the OVII triplet. We quantitatively explore the possibility that this emission is produced in the broad line region (BLR). We modeled the broad UV emission lines seen in the FUSE and HST-STIS spectra following the ``locally optimally emitting cloud" approach. We find that the X-ray lines luminosity derived from the best fit BLR model can match the X-ray features, suggesting that the gas producing the UV lines is sufficient to account also for the X-ray emission. The spectrum is absorbed by ionized gas whose total column density is ~5x10^{20} cm^{-2}. The absorption spectrum can be modeled by two distinct gas components (log xi ~ 0...

  13. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    CERN Document Server

    Hofmann, F; Nandra, K; Clerc, N; Gaspari, M

    2016-01-01

    Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter candidate. We aim at putting constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing-angle in a 7.1 keV sterile neutrino dark matter scenario. For a sample of 33 high-mass clusters of galaxies we merge all observations from the Chandra data archive. Each cluster has more than 100 ks of combined exposure. The resulting high signal-to-noise spectra are used to constrain the flux of an unidentified line emission at 3.55 keV in the individual spectra and a merged spectrum of all clusters. We obtained very detailed spectra around the 3.55 keV range and limits on an unidentified emission line. Assuming all dark matter were made of 7.1 keV sterile neutrinos the upper limits on the mixing angle are $\\rm{sin^2(2\\Theta...

  14. New Results from Chandra

    CERN Document Server

    Forman, W; Jones, C; Vikhlinin, A A; Churazov, E

    2001-01-01

    We discuss two themes from Chandra observations of galaxies and clusters. First, we describe the effects of radio-emitting plasmas or ``bubbles'', inflated by active galactic nuclei, on the hot X-ray emitting gaseous atmospheres in galaxies and clusters. We describe the interaction of the ``bubbles'' and the X-ray emitting gas as the buoyant bubbles rise through the hot gas. Second, we describe sharp, edge-like surface brightness structures in clusters. Chandra observations show that these features are not shock fronts as was originally thought, but ``cold fronts'', most likely the boundaries of the remaining cores of merger components. Finally, we present recent observations of M86 and NGC507 which show similar sharp features around galaxies. For M86, the sharp edge is the boundary between the galaxy's X-ray corona and the Virgo cluster gas. The structures around NGC507, the central galaxy in a group, could be relics of galaxy formation or may reflect the motion of NGC507 in the larger potential of the group...

  15. Chandra Discovers Cosmic Cannonball

    Science.gov (United States)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  16. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Observations of the bright side of the Moon with NASA's Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed. "We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., at a press conference at the "Four Years with Chandra" symposium in Huntsville, Alabama. "We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area," continued Drake. "It's the next best thing to being there, and it's very fast and cost-effective." The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra. According to the currently popular "giant impact" theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth's mantle, Drake and his colleagues plan to help test the giant impact hypothesis. "One early result," quipped Drake, "is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon." Illustration of Earth's Geocorona Illustration of Earth's Geocorona The same

  17. Unveiling the Nature of the 321 s Modulation in RX J0806.3+1527: Near-Simultaneous Chandra and VLT Observations

    CERN Document Server

    Israel, G L; Stella, L; Mauche, C W; Campana, S; Marconi, G; Hummel, W; Mereghetti, S; Munari, U; Negueruela, I

    2003-01-01

    We report on the first near-simultaneous X-ray and optical observations of RX J0806.3+1527. The source is believed to be a 321s orbital period ultra-compact binary system hosting an X-ray emitting white dwarf. Data were obtained with Chandra and the ESO Very Large Telescope (VLT) in November 2001. We found an optical/X-ray phase-shift in the periodic modulation of about 0.5, strongly favoring the existance of two distinct emission regions in the two bands (for the pulsed fluxes). The Chandra data allow us to study, for the first time, the spectral continuum of RX J0806.3+1527 in soft X-rays. This was well fitted by a blackbody spectrum with kT about 65eV and hydrogen column density of N_H about 5 x 10^20 cm^-2. The average (unabsorbed) source 0.1-2.5 keV luminosity during the modulation-on is L_X about 5 x 10^32 erg s^-1 (assuming a distance of 500pc). Such a value is lower than the luminosity expected if stable mass transfer between two white dwarfs were driven by gravitational radiation. Evidence for absorp...

  18. The 0.3-30 Kev Spectra Of Powerful Starburst Galaxies: Nustar And Chandra Observations Of Ngc 3256 And Ngc 3310

    DEFF Research Database (Denmark)

    Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.;

    2015-01-01

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are significantly detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3-30 ke...... with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the star formation rate (SFR) normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes at energies above 3-6 keV primarily due to ULX populations. Our......-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that NGC 3310 exhibits a factor of ≈3-10 elevation of X-ray emission over the other star-forming galaxies due to a corresponding overabundance of ULXs. We argue that the excess of ULXs in NGC 3310 is most...

  19. Morphology of a Hot Coronal Cavity Core as Observed by Hinode/XRT

    Science.gov (United States)

    Reeves, K. K.; Gibson, S. E.; Kucera, T. A.; Hudson, H. S.

    2010-01-01

    We follow a coronal cavity that was observed by Hinode/XRT during the summer of 2008. This cavity has a persistent area of relatively bright X-ray emission in its center. We use multifilter data from XRT to study the thermal emission from this cavity, and find that the bright center is hotter than the surrounding cavity plasma with temperatures of about 1.6 MK. We follow the morphology of this hot feature as the cavity structure rotates over the limb during the several days between July 19 - 23 2008. We find that the hot structure at first looks fairly circular, then appears to expand and elongate, and then shrinks again to a compact circular shape. We interpret this apparent change in shape as being due to the morphology of the filament channel associated with the cavity, and the change in viewing angle as the structure rotates over the limb of the Sun.

  20. The Chandra Source Catalog

    CERN Document Server

    Evans, Ian N; Glotfelty, Kenny J; Anderson, Craig S; Bonaventura, Nina R; Chen, Judy C; Davis, John E; Doe, Stephen M; Evans, Janet D; Fabbiano, Giuseppina; Galle, Elizabeth C; Gibbs, Danny G; Grier, John D; Hain, Roger M; Hall, Diane M; Harbo, Peter N; Xiangqun,; He,; Houck, John C; Karovska, Margarita; Kashyap, Vinay L; Lauer, Jennifer; McCollough, Michael L; McDowell, Jonathan C; Miller, Joseph B; Mitschang, Arik W; Morgan, Douglas L; Mossman, Amy E; Nichols, Joy S; Nowak, Michael A; Plummer, David A; Refsdal, Brian L; Rots, Arnold H; Siemiginowska, Aneta; Sundheim, Beth A; Tibbetts, Michael S; Van Stone, David W; Winkelman, Sherry L; Zografou, Panagoula

    2010-01-01

    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <~ 30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to ...

  1. Chandra Observation of a 300 kpc Hydrodynamic Instability in the Intergalactic Medium of the Merging Cluster of Galaxies A3667

    CERN Document Server

    Mazzotta, P; Vikhlinin, A A; Mazzotta, Pasquale; Fusco-Femiano, Roberto; Vikhlinin, Alexey

    2002-01-01

    We present results from the combination of two Chandra pointings of the central region of the cluster of galaxies A3667. From the data analysis of the first pointing Vikhlinin et al. (2001a,b) reported the discovery of a prominent cold front which is interpreted as the boundary of a cool gas cloud moving through the hotter ambient gas. Vikhlinin et al. (2001b) discussed the role of the magnetic fields in maintaining the apparent dynamical stability of the cold front over a wide sector at the forward edge of the moving cloud and suppressing transport processes across the front. In this Letter, we identify two new features in the X-ray image of A3667: i) a 300 kpc arc-like filamentary X-ray excess extending from the cold gas cloud border into the hotter ambient gas; ii) a similar arc-like filamentary X-ray depression that develops inside the gas cloud. Both features are located beyond the sector identified by the cold front and are oriented in a direction perpendicular to the direction of motion. The temperatur...

  2. Observation of Multiple Thresholds in the Many-Atom Cavity QED Microlaser

    CERN Document Server

    Fang-Yen, C; Ha, S; Choi, W; An, K; Dasari, R R; Feld, M S

    2004-01-01

    We report the observation of multiple laser thresholds in the many-atom cavity QED microlaser. Traveling-wave coupling and a supersonic atom beam are used to create a well-defined atom-cavity interaction. Multiple thresholds are observed as jumps in photon number due to oscillatory gain. Although the number of intra-cavity atoms is large, up to N~1000, the dynamics of the microlaser agree with a single atom theory. This agreement is supported by quantum trajectory simulations of a many-atom microlaser and a semiclassical microlaser theory. We discuss the relation of the microlaser with the micromaser and conventional lasers.

  3. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, Shichun [Institute of Modern Physics (IMP)/Chinese Academy of Sciences (CAS), Lanzhou (China)

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  4. New Constraints on Dark Energy from Chandra X-rayObservations of the Largest Relaxed Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Allen, S.W.; Rapetti, D.A.; /KIPAC, Menlo Park; Schmidt, R.W.; /Heidelberg, Astron. Rechen Inst.; Ebeling, H.; /Inst. Astron., Honolulu; Morris, G.; /KIPAC, Menlo Park; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2007-06-06

    We present constraints on the mean matter density, {Omega}{sub m}, dark energy density, {Omega}{sub DE}, and the dark energy equation of state parameter, w, using Chandra measurements of the X-ray gas mass fraction (fgas) in 42 hot (kT > 5keV), X-ray luminous, dynamically relaxed galaxy clusters spanning the redshift range 0.05 < z < 1.1. Using only the fgas data for the 6 lowest redshift clusters at z < 0.15, for which dark energy has a negligible effect on the measurements, we measure {Omega}{sub m}=0.28{+-}0.06 (68% confidence, using standard priors on the Hubble Constant, H{sub 0}, and mean baryon density, {Omega}{sub b}h{sup 2}). Analyzing the data for all 42 clusters, employing only weak priors on H{sub 0} and {Omega}{sub b}h{sup 2}, we obtain a similar result on {Omega}{sub m} and detect the effects of dark energy on the distances to the clusters at {approx}99.99% confidence, with {Omega}{sub DE}=0.86{+-}0.21 for a non-flat LCDM model. The detection of dark energy is comparable in significance to recent SNIa studies and represents strong, independent evidence for cosmic acceleration. Systematic scatter remains undetected in the f{sub gas} data, despite a weighted mean statistical scatter in the distance measurements of only {approx}5%. For a flat cosmology with constant w, we measure {Omega}{sub m}=0.28{+-}0.06 and w=-1.14{+-}0.31. Combining the fgas data with independent constraints from CMB and SNIa studies removes the need for priors on {Omega}{sub b}h{sup 2} and H{sub 0} and leads to tighter constraints: {Omega}{sub m}=0.253{+-}0.021 and w=-0.98{+-}0.07 for the same constant-w model. More general analyses in which we relax the assumption of flatness and/or allow evolution in w remain consistent with the cosmological constant paradigm. Our analysis includes conservative allowances for systematic uncertainties. The small systematic scatter and tight constraints bode well for future dark energy studies using the f{sub gas} method.

  5. A Solar Coronal Cavity with a Hot Core Observed by Hinode

    Science.gov (United States)

    Jibben, Patricia R.; Reeves, Kathy; Su, Yingna

    2014-06-01

    Coronal cavities are large low density regions often observed above high latitude filament channels. These cavities will sometimes have areas of bright X-ray emission near their centers. Using Hinode satellite data from the X-ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS) we examine the thermal emission properties and coronal velocity structures of a cavity, containing a central bright X-ray emission, observed on 23 February 2012. We investigate the interaction between the coronal cavity and the prominence material using data from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory (SDO) and H-α data from the Hinode Solar Optical Telescope (SOT). We use a non-linear force-free field model to understand the magnetic field structure that gives rise to the coronal emission in this cavity. A comparison of AIA and XRT data reveal emission in 171 that outlines the hot core of the cavity; consistent with the modeled magnetic field structure.This work is supported by under contract SP02H1701R from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO and grant number NNX12AI30G from NASA to SAO.

  6. Deep Chandra observations of NGC 7457, the X-ray point source populations of a low mass early-type galaxy

    Science.gov (United States)

    Peacock, Mark B.; Zepf, Stephen E.; Kundu, Arunav; Maccarone, Thomas J.; Lehmer, Bret D.; Gonzalez, Anthony H.; Maraston, Claudia

    2017-01-01

    We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive galaxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of 1.7× 10^{10} {L_{K⊙}}, allowing us to investigate the populations in a relatively low mass galaxy. We classify the detected X-ray sources into field LMXBs, globular cluster LMXBs, and background AGN based on identifying optical counterparts in new HST/ACS images. We detect 10 field LMXBs within the rext ellipse of NGC 7457 (with semi-major axis ˜ 9.1 kpc, ellipticity = 0.55). The corresponding number of LMXBs with {Lx} > 2 × 10^{37} {{erg s^{-1}}} per stellar luminosity is consistent with that observed in more massive galaxies, ˜7 per 10^{10} {L_{K⊙}}. We detect a small globular cluster population in these HST data and show that its colour distribution is likely bimodal and that its specific frequency is similar to that of other early type galaxies. However, no X-ray emission is detected from any of these clusters. Using published data for other galaxies, we show that this non-detection is consistent with the small stellar mass of these clusters. We estimate that 0.11 (and 0.03) LMXBs are expected per 106 {M_{⊙}} in metal-rich (and metal-poor) globular clusters. This corresponds to 1100 (and 330) LMXBs per 10^{10} {L_{K⊙}}, highlighting the enhanced formation efficiency of LMXBs in globular clusters. A nuclear X-ray source is detected with Lx varying from 2.8-6.8× 10^{38} {{erg s^{-1}}}. Combining this Lx with a published dynamical mass estimate for the central SMBH in NGC 7457, we find that {Lx}/L_{Edd} varies from 0.5 - 1.3 × 10-6.

  7. Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B

    CERN Document Server

    Hampton, E J; Hofmann, W; Horns, D; Uchiyama, Y; Wagner, S

    2016-01-01

    We present the results of our investigation, using a Chandra X-ray observation, into the stellar population of the massive star formation region G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray point sources in our observation using the source detection algorithm \\texttt{wavdetect}. 35 X-ray sources are associated with the HII complex G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity (0.3-10\\,keV) of $\\sim10^{30.5}$\\,erg/s, typical of B7-B5 type stars. The potential ionising source of G5.89-0.39B known as Feldt's star is possibly identified in our observation with an unabsorbed X-ray luminosity suggestive of a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a single thermal plasma APEC model with kT$\\sim$5\\,keV, and column density N$_{\\rm H}=2.6\\times10^{22}$\\,cm$^{-2}$ (A...

  8. XMM-Newton and Chandra observations of the M31 globular cluster black hole candidate XB135: a heavyweight contender cut down to size

    CERN Document Server

    Barnard, R; Garcia, M R; Kolb, U C; Murray, S S

    2015-01-01

    CXOM31 J004252.030+413107.87 is one of the brightest X-ray sources within the D_25 region of M31, and associated with a globular cluster (GC) known as B135; we therefore call this X-ray source XB135. XB135 is a low mass X-ray binary (LMXB) that apparently exhibited hard state characteristics at 0.3--10 keV luminosities 4--6 E+38 erg/s, and the hard state is only observed below ~10% Eddington. If true, the accretor would be a high mass black hole (BH) (> ~50 M_Sun); such a BH may be formed from direct collapse of a metal-poor, high mass star, and the very low metalicity of B135 (0.015 Z_Sun) makes such a scenario plausible. We have obtained new XMM-Newton and Chandra HRC observations to shed light on the nature of this object. We find from the HRC observation that XB135 is a single point source located close to the center of B135. The new XMM-Newton spectrum is consistent with a rapidly spinning ~10--20 M_Sun BH in the steep power law or thermal dominant state, but inconsistent with the hard state that we prev...

  9. Deep Chandra observations of HCG 16. II. The development of the intra-group medium in a spiral-rich group

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, E.; Vrtilek, J. M.; David, L. P.; Zezas, A.; Nulsen, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ponman, T. J.; Raychaudhury, S. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Mamon, G. A. [Institut d' Astrophysique de Paris (UMR 7095 CNRS and UMPC), 98 bis Bd Arago, F-75014 Paris (France)

    2014-10-01

    We use a combination of deep Chandra X-ray observations and radio continuum imaging to investigate the origin and current state of the intra-group medium (IGM) in the spiral-rich compact group HCG 16. We confirm the presence of a faint (L {sub X,} {sub bolo} = 1.87{sub −0.66}{sup +1.03}×10{sup 41} erg s{sup –1}), low-temperature (0.30{sub −0.05}{sup +0.07} keV) IGM extending throughout the ACIS-S3 field of view, with a ridge linking the four original group members and extending to the southeast, as suggested by previous ROSAT and XMM-Newton observations. This ridge contains 6.6{sub −3.3}{sup +3.9}× 10{sup 9} M {sub ☉} of hot gas and is at least partly coincident with a large-scale H I tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We present evidence that the group is not yet virialized, and show that gas has probably been transported from the starburst winds of NGC 838 and NGC 839 into the surrounding IGM. Considering the possible origin of the IGM, we argue that material ejected by galactic winds may have played a significant role, contributing 20%-40% of the observed hot gas in the system.

  10. Deep Chandra Observations of HCG 16. II. The Development of the Intra-group Medium in a Spiral-rich Group

    Science.gov (United States)

    O'Sullivan, E.; Vrtilek, J. M.; David, L. P.; Giacintucci, S.; Zezas, A.; Ponman, T. J.; Mamon, G. A.; Nulsen, P.; Raychaudhury, S.

    2014-10-01

    We use a combination of deep Chandra X-ray observations and radio continuum imaging to investigate the origin and current state of the intra-group medium (IGM) in the spiral-rich compact group HCG 16. We confirm the presence of a faint (L X, bolo = 1.87+1.03-0.66×1041 erg s-1), low-temperature (0.30+0.07-0.05 keV) IGM extending throughout the ACIS-S3 field of view, with a ridge linking the four original group members and extending to the southeast, as suggested by previous ROSAT and XMM-Newton observations. This ridge contains 6.6+3.9-3.3× 109 M ⊙ of hot gas and is at least partly coincident with a large-scale {H} {I} tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We present evidence that the group is not yet virialized, and show that gas has probably been transported from the starburst winds of NGC 838 and NGC 839 into the surrounding IGM. Considering the possible origin of the IGM, we argue that material ejected by galactic winds may have played a significant role, contributing 20%-40% of the observed hot gas in the system.

  11. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  12. A joint analysis of BLAST 250--500um and LABOCA 870um observations in the Extended Chandra Deep Field South

    CERN Document Server

    Chapin, Edward L; Coppin, Kristen E; Devlin, Mark J; Dunlop, James S; Greve, Thomas R; Halpern, Mark; Hasselfied, Matthew F; Hughes, David H; Ivison, Rob J; Marsden, Gaelen; Moncelsi, Lorenzo; Netterfield, Calvin B; Pascale, Enzo; Scott, Douglas; Smail, Ian; Viero, Marco; Walter, Fabian; Weiss, Axel; van der Werf, Paul

    2010-01-01

    We present a joint analysis of the overlapping BLAST 250, 350, 500um, and LABOCA 870um observations (from the LESS survey) of the Extended Chandra Deep Field South. Out to z ~ 3, the BLAST filters sample near the peak wavelength of thermal far-infrared (FIR) emission from galaxies (rest-frame wavelengths ~ 60--200um), primarily produced by dust heated through absorption in star-forming clouds. However, identifying counterparts to individual BLAST sources is very challenging, given the large beams (FWHM 36--60 arcsec). In contrast, the ground-based 870um observations have a significantly smaller 19 arcsec FWHM beam, and are sensitive to higher-redshifts (z ~ 1--5, and potentially beyond) due to the more favourable negative K-correction. In this study we use the LESS data, as well as deep Spitzer and VLA imaging, to identify 125 individual sources that produce significant emission in the BLAST bands. We characterize the temperatures and FIR luminosities for a subset of 73 sources with well-measured submm SEDs a...

  13. Merger-driven Fueling of Active Galactic Nuclei: Six Dual and Offset Active Galactic Nuclei Discovered with Chandra and Hubble Space Telescope Observations

    CERN Document Server

    Comerford, Julia M; Barrows, R Scott; Greene, Jenny E; Zakamska, Nadia L; Madejski, Greg M; Cooper, Michael C

    2015-01-01

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically-selected dual AGN candidates at z < 0.34, where we use the X-rays to identify AGNs. We also present HST/WFC3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation of 2.2 kpc, where the two stellar bulges have coincident [O III] and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations < 10 kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, a...

  14. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    CERN Document Server

    Bhardwaj, A; Elsner, R F; Ford, P G; Gladstone, G R; Bhardwaj, Anil; Cravens, Thomas E.; Elsner, Ronald F.; Ford, Peter G.

    2005-01-01

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn's disk X-ray emissions are found to be variable on time scales of hours to weeks to months, and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's polar (auroral) region have characteristics similar to those from its disk. This report, combined with earlier studies, establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  15. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  16. Experimental observation of coherent cavity soliton frequency combs in silica microspheres

    CERN Document Server

    Webb, Karen E; Coen, Stéphane; Murdoch, Stuart G

    2016-01-01

    We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of higher-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.

  17. XMM-Newton and Chandra X-ray follow-up observations of the VHE gamma-ray source HESS J1507-622

    CERN Document Server

    Tibolla, O; Kosack, K

    2014-01-01

    Context. The discovery of the unique source HESS J1507-622 in the very high energy (VHE) range (100 GeV-100 TeV) opened new possibilities to study the parent population of ultra-relativistic particles found in astrophysical sources and underlined the possibility of new scenarios/mechanisms crucial for understanding the underlying astrophysical processes in nonthermal sources. Aims. The follow-up X-ray (0.2 - 10 keV) observations on HESS J1507-622 are reported, and possibilities regarding the nature of the VHE source and that of the newly discovered X-ray sources are investigated. Methods.We obtained bservations with the X-ray satellites XMM-Newton and Chandra. Background corrections were applied to the data to search for extended diffuse emission. Since HESS J1507-622 covers a large part of the field of view of these instruments, blank-sky background fields were used. Results. The discovery of several new X-ray sources and a new, faint, extended X-ray source with a flux of ~6e-14 erg cm^-2 s^-1 is reported. I...

  18. Chandra observations of the hybrid morphology radio sources 3C 433 and 4C 65.15: FR IIs with asymmetric environments

    CERN Document Server

    Miller, B P

    2009-01-01

    We present Chandra observations of the hybrid morphology radio sources 3C 433 and 4C 65.15, two members of the rare class of objects possessing an FR I jet on one side of the core and an FR II lobe on the other. The X-ray spectrum of 3C 433 shows intrinsic absorption (with a column density of N_H=8e22 cm-2), such as is typical of FR II narrow-line radio galaxies. There is excess X-ray emission below 2 keV containing contributions from diffuse soft X-ray emission (likely hot gas with kT~1.2 keV) as well as from the nucleus. The core of 3C 433 is extended in hard X-rays, presumably due to X-ray emission from the inner-jet knot on the FR I side that is apparent in the radio map. It is possible that the X-ray emission from this inner-jet knot is absorbed by the dust known to be present in the host galaxy. The spectrum of 4C 65.15 can be modeled with a simple power law with perhaps mild intrinsic absorption (N_H=1.3e21 cm-2). X-ray emission is detected at the bend in the FR I jet. This X-ray jet emission lies abov...

  19. The Megasecond Chandra X-Ray Visionary Project Observation of NGC 3115 (III): luminosity functions of LMXBs and dependence on stellar environments

    CERN Document Server

    Lin, Dacheng; Wong, Ka-wah; Jennings, Zachary G; Homan, Jeroen; Romanowsky, Aaron J; Strader, Jay; Brodie, Jean P; Sivakoff, Gregory R; Remillard, Ronald A

    2015-01-01

    We have studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project Observation. With a total exposure time of ~1.1 Ms, we constructed the XLF down to a limiting luminosity of ~10^36 erg/s, much deeper than typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL \\propto L^{-2.2\\pm0.4} above 5.5x10^37 erg/s to dN/dL \\propto L^{-1.0\\pm0.1} below it, though we could not rule out a fit with a higher break at ~1.6x10^38 erg/s. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrup...

  20. Late-time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    CERN Document Server

    Temim, Tea; Kolb, Christopher; Blondin, John; Hughes, John P; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock (RS) that can occur as a result of a density gradient in the ambient medium and/or a moving pulsar that displaces the PWN from the center ...

  1. A Chandra observation of the long-duration X-ray transient KS 1731-260 in quiescence too cold a neutron star?

    CERN Document Server

    Wijnands, R; Markwardt, C B; Lewin, W H G; Van der Klis, M; Wijnands, Rudy; Miller, Jon M.; Markwardt, Craig; Lewin, Walter H. G.; Klis, Michiel van der

    2001-01-01

    After more than a decade of actively accreting at about a tenth of the Eddington critical mass accretion rate, the neutron-star X-ray transient KS 1731-260 returned to quiescence in early 2001. We present a Chandra/ACIS-S observation taken several months after this transition. We detected the source at an unabsorbed flux of ~2 x 10^{-13} erg/s/cm^2 (0.5-10 keV). For a distance of 7 kpc, this results in a 0.5-10 keV luminosity of ~1 x 10^{33} erg/s and a bolometric luminosity approximately twice that. The quiescent luminosity of KS 1731-260 is very similar to that of the other quiescent neutron star systems. However, if this quiescent X-ray luminosity is due to the cooling of the neutron star, this low luminosity may indicate that the source spends several hundreds of years in quiescence in between outbursts for the neutron star to cool. If true, then it might be the first such X-ray transient to be identified and a class of several hundred similar systems might be present in the Galaxy. Alternatively, enhance...

  2. Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow

    Science.gov (United States)

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-01-01

    Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.

  3. Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow

    Science.gov (United States)

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-02-01

    Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.

  4. CIAO: Chandra's data analysis system

    Science.gov (United States)

    Fruscione, Antonella; McDowell, Jonathan C.; Allen, Glenn E.; Brickhouse, Nancy S.; Burke, Douglas J.; Davis, John E.; Durham, Nick; Elvis, Martin; Galle, Elizabeth C.; Harris, Daniel E.; Huenemoerder, David P.; Houck, John C.; Ishibashi, Bish; Karovska, Margarita; Nicastro, Fabrizio; Noble, Michael S.; Nowak, Michael A.; Primini, Frank A.; Siemiginowska, Aneta; Smith, Randall K.; Wise, Michael

    2006-06-01

    The CIAO (Chandra Interactive Analysis of Observations) software package was first released in 1999 following the launch of the Chandra X-ray Observatory and is used by astronomers across the world to analyze Chandra data as well as data from other telescopes. From the earliest design discussions, CIAO was planned as a general-purpose scientific data analysis system optimized for X-ray astronomy, and consists mainly of command line tools (allowing easy pipelining and scripting) with a parameter-based interface layered on a flexible data manipulation I/O library. The same code is used for the standard Chandra archive pipeline, allowing users to recalibrate their data in a consistent way. We will discuss the lessons learned from the first six years of the software's evolution. Our initial approach to documentation evolved to concentrate on recipe-based "threads" which have proved very successful. A multi-dimensional abstract approach to data analysis has allowed new capabilities to be added while retaining existing interfaces. A key requirement for our community was interoperability with other data analysis systems, leading us to adopt standard file formats and an architecture which was as robust as possible to the input of foreign data files, as well as re-using a number of external libraries. We support users who are comfortable with coding themselves via a flexible user scripting paradigm, while the availability of tightly constrained pipeline programs are of benefit to less computationally-advanced users. As with other analysis systems, we have found that infrastructure maintenance and re-engineering is a necessary and significant ongoing effort and needs to be planned in to any long-lived astronomy software.

  5. Observation of Non-Markovian Dynamics of a Single Quantum Dot in a Micropillar Cavity

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke;

    2011-01-01

    We measure the detuning-dependent dynamics of a quasiresonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics...

  6. X-ray Cavities in Galaxy Groups and Clusters: Central Gas Entropy Excess as Direct Evidence for AGN Feedback

    Indian Academy of Sciences (India)

    Yu Wang

    2011-03-01

    Observations of X-ray jets and cavities in clusters of galaxies observed by Chandra are briefly reviewed. A recent study on the excess of central gas entropy, which can be considered as direct evidence for AGN feedback in galaxy groups and clusters is presented. An expanded account of this study has been presented in RAA (Wang et al. 2010).

  7. Observation of Motion Dependent Nonlinear Dispersion with Narrow Linewidth Atoms in an Optical Cavity

    CERN Document Server

    Westergaard, Philip G; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W

    2014-01-01

    As an alternative to state-of-the-art laser frequency stabilisation using ultra-stable cavities, it has been proposed to exploit the non-linear effects from coupling of atoms with a narrow atomic transition to an optical cavity. Here we have constructed such a system and observed non-linear phase shifts of a narrow optical line by strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multi-photon scattering events (Dopplerons) that affect the cavity transmission significantly while leaving the phase signature relatively unaffected. By varying the number of atoms and the intra-cavity power we systematically study this non-linear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple sys...

  8. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.

    Science.gov (United States)

    Fink, J M; Göppl, M; Baur, M; Bianchetti, R; Leek, P J; Blais, A; Wallraff, A

    2008-07-17

    The field of cavity quantum electrodynamics (QED), traditionally studied in atomic systems, has gained new momentum by recent reports of quantum optical experiments with solid-state semiconducting and superconducting systems. In cavity QED, the observation of the vacuum Rabi mode splitting is used to investigate the nature of matter-light interaction at a quantum-mechanical level. However, this effect can, at least in principle, be explained classically as the normal mode splitting of two coupled linear oscillators. It has been suggested that an observation of the scaling of the resonant atom-photon coupling strength in the Jaynes-Cummings energy ladder with the square root of photon number n is sufficient to prove that the system is quantum mechanical in nature. Here we report a direct spectroscopic observation of this characteristic quantum nonlinearity. Measuring the photonic degree of freedom of the coupled system, our measurements provide unambiguous spectroscopic evidence for the quantum nature of the resonant atom-field interaction in cavity QED. We explore atom-photon superposition states involving up to two photons, using a spectroscopic pump and probe technique. The experiments have been performed in a circuit QED set-up, in which very strong coupling is realized by the large dipole coupling strength and the long coherence time of a superconducting qubit embedded in a high-quality on-chip microwave cavity. Circuit QED systems also provide a natural quantum interface between flying qubits (photons) and stationary qubits for applications in quantum information processing and communication.

  9. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    Science.gov (United States)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  10. LATE-TIME EVOLUTION OF COMPOSITE SUPERNOVA REMNANTS: DEEP CHANDRA OBSERVATIONS AND HYDRODYNAMICAL MODELING OF A CRUSHED PULSAR WIND NEBULA IN SNR G327.1-1.1

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kolb, Christopher; Blondin, John [North Carolina State University, 421 Riddick Hall, Raleigh, NC 27695 (United States); Hughes, John P. [Rutgers University, 57 US Highway 1, New Brunswick, NJ 08901 (United States); Bucciantini, Niccoló [INAF Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze Italy (Italy)

    2015-07-20

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology: a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for a mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock (RS), whichcan occur as a result of a density gradient in the ambient medium and/or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a ∼17,000-year-old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar’s motion. We also show that the RS/PWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to γ-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  11. Observational evidence of cavity modes in the earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, G. (National Center for Atmospheric Research, Boulder, CO (United States)); Hughes, W.J. (Boston Univ., MA (United States)); Jones, T.B. (Univ. of Leicester (England))

    1987-11-01

    On November 30, 1982, two large-amplitude Pc 5 pulsations were observed at Tromso, Norway, by both the European Incoherent Scatter (EISCAT) radar and ground-based magnetometers. The pulsations were excited by a sudden impulse. Their amplitude subsequently decreased, allowing a damping rate to be determined. Estimates of the height-integrated Pedersen conductivity obtained from the EISCAT data permit theoretical pulsation damping rates to be predicted. However, the theoretical damping rates are much greater than those actually measured, which indicates that energy was continuously fed into the field line resonance after its onset. The most likely source of this energy is coupling from a hydromagnetic cavity mode. If this is the case, the measured pulsation damping rate is controlled by the damping of the cavity mode rather than energy dissipation from the field lines resonance. An upper limit of {gamma}/{omega} = 0.08 is obtained from the coupling efficiency between the two modes. The energy dissipated in the ionosphere by these pulsations was {approximately}4 {times} 10{sup 12} J. To store this energy in the cavity mode requires an initial cavity mode amplitude of only {approximately}0.4 nT. Long-period magnetic perturbations of this amplitude would be difficult to detect in existing spaceborne magnetometer data sets.

  12. CHEERS Results from NGC 3393, II: Investigating the Extended Narrow Line Region using Deep Chandra Observations and Hubble Narrow Line Imaging

    CERN Document Server

    Maksym, W Peter; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2016-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGN) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble narrow line images of [O III], [S II] and H$\\alpha$, as well as previously-unpublished mid-ultraviolet (MUV) images. We find evidence for a complex multi-phase structure in the circumnuclear ISM, with no single simple correlation between X-rays and high-ionization ([O III]/H$\\alpha$-dominated) and low-ionization ([S II]-dominated) features. We also find X-ray structures ~50-pc in extent, H$\\alpha$ evidence for gas compression, and extended MUV emission associated with the S-shaped arms that envelope the radio jets. In conjunction with existing STIS kinematics, these findings support a role for shock contributions to the feedback, driven by...

  13. Space Based Observations of Coronal Cavities in Conjunction with the Total Solar Eclipse of July 2010

    Science.gov (United States)

    Kucera, T. A.; Berger, T. E.; Druckmuller, M.; Dietzel, M.; Gibson, S. E.; Habbal, S. R.; Morgan, H.; Reeves, K. K.; Schmit, D. J.; Seaton, D. B.

    2010-01-01

    In conjunction with the total solar eclipse on July 11, 2010 we coordinated a campaign between ground and space based observations. Our specific goal was to augment the ground based measurement of corona) prominence cavity temperatures made using iron lines in the IR (Habbal et al. 2010 ApJ 719 1362) with measurements performed by space based instruments. Included in the campaign were Hinode/EIS, XRT and SOT, PROBA2/SWAP, SDO/AIA, SOHO/CDS and STEREO/SECCHI/EUVI, in addition to the ground based IR measurements. We plan to use a combination of line ratio and forward modeling techniques to investigate the density and temperature structure of the cavities at that time.

  14. REVEALING THE HEAVILY OBSCURED ACTIVE GALACTIC NUCLEUS POPULATION OF HIGH-REDSHIFT 3CRR SOURCES WITH CHANDRA X-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, Belinda J.; Kuraszkiewicz, Joanna; Willner, S. P.; Ashby, M. L. N.; Fazio, G. G. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Haas, Martin; Chini, Rolf [Astronomisches Institut, Ruhr-University, D-44801 Bochum (Germany); Barthel, Peter [Kapteyn Institute, University of Groningen, 9747 AD Groningen (Netherlands); Leipski, Christian [MPIA, D-69117 Heidelberg (Germany); Worrall, D. M.; Birkinshaw, Mark [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Antonucci, Robert [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Lawrence, Charles [JPL, Pasadena, CA 91109 (United States); Ogle, Patrick [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Schulz, Bernhard [IPAC, Caltech, Pasadena, CA 91125 (United States)

    2013-08-10

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (1 < z < 2), low-frequency-selected (and so unbiased in orientation) 3CRR radio sources are reported. The sample includes 21 quasars (=broad-line radio galaxies) and 17 narrow-line radio galaxies (NLRGs) with matched 178 MHz radio luminosity (log L{sub R}(5 GHz) {approx}44-45). The quasars have high radio core fraction, high X-ray luminosities (log L{sub X} {approx}45-46), and soft X-ray hardness ratios (HR {approx}-0.5) indicating low obscuration. The NLRGs have lower core fraction, lower apparent X-ray luminosities (log L{sub X} {approx}43-45), and mostly hard X-ray hardness ratios (HR >0) indicating obscuration (N{sub H} {approx}10{sup 22}-10{sup 24} cm{sup -2}). These properties and the correlation between obscuration and radio core fraction are consistent with orientation-dependent obscuration as in unification models. About half the NLRGs have soft X-ray hardness ratios and/or a high [O III] emission line to X-ray luminosity ratio suggesting obscuration by Compton thick (CT) material so that scattered nuclear or extended X-ray emission dominates (as in NGC 1068). The ratios of unobscured to Compton-thin (10{sup 22} cm{sup -2} < N{sub H}(int) <1.5 Multiplication-Sign 10{sup 24} cm{sup -2}) to CT (N{sub H}(int) >1.5 Multiplication-Sign 10{sup 24} cm{sup -2}) is 2.5:1.4:1 in this high-luminosity, radio-selected sample. The obscured fraction is 0.5, higher than is typically reported for active galactic nuclei at comparable luminosities from multi-wavelength surveys (0.1-0.3). Assuming random nuclear orientation, the unobscured half-opening angle of the disk/wind/torus structure is {approx}60 Degree-Sign and the obscuring material covers 30 Degree-Sign , {approx}12 Degree-Sign of which is CT. The multi-wavelength properties reveal that many NLRGs have intrinsic absorption 10-1000 Multiplication-Sign higher than indicated by their X-ray hardness ratios, and their true L{sub X} values are

  15. Chandra Looks Back At The Earth

    Science.gov (United States)

    2005-12-01

    In an unusual observation, a team of scientists has scanned the northern polar region of Earth with NASA's Chandra X-ray Observatory. The results show that the aurora borealis, or "northern lights," also dance in X-ray light, creating changing bright arcs of X-ray energy above the Earth's surface. While other satellite observations had previously detected high-energy X-rays from the Earth auroras, the latest Chandra observations reveal low-energy X-rays generated during auroral activity for the first time. The researchers, led by Dr. Ron Elsner of NASA's Marshall Space Flight Center in Huntsville, Ala., used Chandra to observe the Earth 10 times over a four-month period in 2004. The images were created from approximately 20-minute scans during which Chandra was aimed at a fixed point in the sky and the Earth's motion carried the auroral regions through Chandra's field of view. From the ground, the aurora are well known to change dramatically over time and this is the case in X-ray light as well. The X-rays in this sample of the Chandra observations, which have been superimposed on a simulated image of the Earth, are seen here at four different epochs. Illlustration of Earth's Magnetosphere and Auroras Illlustration of Earth's Magnetosphere and Auroras Auroras are produced by solar storms that eject clouds of energetic charged particles. These particles are deflected when they encounter the Earth�s magnetic field, but in the process large electric voltages are created. Electrons trapped in the Earth�s magnetic field are accelerated by these voltages and spiral along the magnetic field into the polar regions. There they collide with atoms high in the atmosphere and emit X-rays. Chandra has also observed dramatic auroral activity on Jupiter. Dr. Anil Bhardwaj of Vikram Sarabhai Space Center in Trivandrum, India, is the lead author on a paper describing these results in the Journal of Atmospheric and Solar-Terrestrial Physics. Dr. Bhardwaj was a co

  16. Spectral analysis of the Chandra comet survey

    NARCIS (Netherlands)

    Bodewits, D.; Christian, D. J.; Torney, M.; Dryer, M.; Lisse, C. M.; Dennerl, K.; Zurbuchen, T. H.; Wolk, S. J.; Tielens, A. G. G. M.; Hoekstra, R.

    2007-01-01

    Aims. We present results of the analysis of cometary X-ray spectra with an extended version of our charge exchange emission model (Bodewits et al. 2006). We have applied this model to the sample of 8 comets thus far observed with the Chandra X-ray observatory and acis spectrometer in the 300 - 1000

  17. Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples).

    Science.gov (United States)

    Saracino, G; Amato, L; Ambrosino, F; Antonucci, G; Bonechi, L; Cimmino, L; Consiglio, L; Alessandro, R D '; Luzio, E De; Minin, G; Noli, P; Scognamiglio, L; Strolin, P; Varriale, A

    2017-04-26

    Muography is an imaging technique based on the measurement of absorption profiles for muons as they pass through rocks and earth. Muons are produced in the interactions of high-energy cosmic rays in the Earth's atmosphere. The technique is conceptually similar to usual X-ray radiography, but with extended capabilities of investigating over much larger thicknesses of matter thanks to the penetrating power of high-energy muons. Over the centuries a complex system of cavities has been excavated in the yellow tuff of Mt. Echia, the site of the earliest settlement of the city of Naples in the 8th century BC. A new generation muon detector designed by us, was installed under a total rock overburden of about 40 metres. A 26 days pilot run provided about 14 millions of muon events. A comparison of the measured and expected muon fluxes improved the knowledge of the average rock density. The observation of known cavities proved the validity of the muographic technique. Hints on the existence of a so far unknown cavity was obtained. The success of the investigation reported here demonstrates the substantial progress of muography in underground imaging and is likely to open new avenues for its widespread utilisation.

  18. Ten Years of Chandra

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We celebrated the 10-th anniversary of the Launch of the Chandra X-ray Observatory on July 13, 2009. During these 10 years data from this Great Observatory have had a profound impact on 21st century astrophysics. With its unrivaled capability to produce sub-arcsecond images, the Observatory has enabled astronomers to make new discoveries in topics as diverse as comets and cosmology. We shall review some of the highlights, discuss the current status, and future plans.

  19. Experimental observation of stochastic, periodic, and localized light structures in a brillouin cavity system

    Science.gov (United States)

    Ding, Yingchun; Feng, Qi; Zhang, Bin; Liu, Zhongxuan; Tang, Xin; Lin, Chengyou; Chen, Zhaoyang

    2017-06-01

    It has been an important research subject to find new nonlinear optical phenomena. In this paper, we report the experimental observation of stochastic, periodic, and localized light structures in a super long single-mode standard fiber with external optical feedback provided by the fiber end. The end facet reflection provides an analogous Fabry-Perot stimulated Brillouin resonator cavity. By increasing the pump power to exceed stimulated Brillouin scattering threshold, we observed light structures exhibiting extremely rich temporal-pulse characteristics that had never been reported in literature before, including supercontinuum background generation, the localization of periodic optical structure formation, fission, and compression. These optical structures are of period-doubling distribution and have different recurrence rates. What is more interesting is that we have observed sets of low frequency bipolar cycle-pulse trains that is often seen in the electrical field and hardly seen in pure optical system. Real-time specification of dynamical temporal regimes of laser operation may bring new insight into rich underlying nonlinear physics of practical fiber cavity systems. Therefore, some new nonlinear optical phenomena have been observed.

  20. Monitoring Chandra observations of the quasi-persistent neutron-star X-ray transient MXB 1659-29 in quiescence: the cooling curve of the heated neutron-star crust

    CERN Document Server

    Wijnands, R; Miller, J M; Lewin, W H G; Wijnands, Rudy; Homan, Jeroen; Miller, Jon M.; Lewin, Walter H. G.

    2004-01-01

    We have observed the quasi-persistent neutron-star X-ray transient and eclipsing binary MXB 1659-29 in quiescence on three occasions with Chandra. The purpose of our observations was to monitor the quiescent behavior of the source after its last prolonged (~2.5 years) outburst which ended in September 2001. The X-ray spectra of the source are consistent with thermal radiation from the neutron-star surface. We found that the bolometric flux of the source decreased by a factor of 7-9 over the time-span of 1.5 years between our first and last Chandra observations. The effective temperature also decreased, but by a factor of 1.6-1.7. The decrease in time of the bolometric flux and effective temperature can be described using exponential decay functions, with e-folding times of ~0.7 and ~3 years, respectively. Our results are consistent with the hypothesis that we observed a cooling neutron-star crust which was heated considerably during the prolonged accretion event and which is still out of thermal equilibrium w...

  1. The Chandra Source Catalog: Processing and Infrastructure

    Science.gov (United States)

    Evans, Janet; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Hall, Diane M.; Miller, Joseph B.; Plummer, David A.; Zografou, Panagoula; Primini, Francis A.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    Chandra Source Catalog processing recalibrates each observation using the latest available calibration data, and employs a wavelet-based source detection algorithm to identify all the X-ray sources in the field of view. Source properties are then extracted from each detected source that is a candidate for inclusion in the catalog. Catalog processing is completed by matching sources across multiple observations, merging common detections, and applying quality assurance checks. The Chandra Source Catalog processing system shares a common processing infrastructure and utilizes much of the functionality that is built into the Standard Data Processing (SDP) pipeline system that provides calibrated Chandra data to end-users. Other key components of the catalog processing system have been assembled from the portable CIAO data analysis package. Minimal new software tool development has been required to support the science algorithms needed for catalog production. Since processing pipelines must be instantiated for each detected source, the number of pipelines that are run during catalog construction is a factor of order 100 times larger than for SDP. The increased computational load, and inherent parallel nature of the processing, is handled by distributing the workload across a multi-node Beowulf cluster. Modifications to the SDP automated processing application to support catalog processing, and extensions to Chandra Data Archive software to ingest and retrieve catalog products, complete the upgrades to the infrastructure to support catalog processing.

  2. The statistical uncertainties on X-ray flux and spectral parameters from Chandra ACIS-I observations of faint sources: Application to the Cygnus OB2 Association

    CERN Document Server

    Albacete-Colombo, J F; Drake, J J; Wright, N J; Guarcello, M; Kashyap, V

    2016-01-01

    We investigate the uncertainties of fitted X-ray model parameters and fluxes for relatively faint Chandra ACIS-I source spectra. Monte-Carlo (MC) simulations are employed to construct a large set of 150,000 fake X-ray spectra in the low photon count statistics regime (from 20 to 350 net counts) using the XSPEC spectral model fitting package. The simulations employed both absorbed thermal (APEC) and non-thermal (power-law) models, in concert with the Chandra ACIS-I instrument response and interstellar absorption. Simulated X-ray spectra were fit assuming a wide set of different input parameters and C-statistic minimization criteria to avoid numerical artifacts in the accepted solutions. Results provide an error estimate for each parameter (absorption, NH, plasma temperature, kT, or power-law slope, Gamma, and flux, and for different background contamination levels. The distributions of these errors are studied as a function of the 1 sigma quantiles and we show how these correlate with different model parameter...

  3. Galaxy Clusters with Chandra

    CERN Document Server

    Forman, W; Markevitch, M L; Vikhlinin, A A; Churazov, E

    2002-01-01

    We discuss Chandra results related to 1) cluster mergers and cold fronts and 2) interactions between relativistic plasma and hot cluster atmospheres. We describe the properties of cold fronts using NGC1404 in the Fornax cluster and A3667 as examples. We discuss multiple surface brightness discontinuities in the cooling flow cluster ZW3146. We review the supersonic merger underway in CL0657. Finally, we summarize the interaction between plasma bubbles produced by AGN and hot gas using M87 and NGC507 as examples.

  4. Chandra Catches Early Phase of Cosmic Assembly

    Science.gov (United States)

    2004-08-01

    iron atoms produced by supernovas in the embedded galaxies must still be contained in and around the galaxies, perhaps in grains of dust not well mixed with the observed X-ray-emitting gas. Over time, as the cluster merges with the other clusters and the hot gas pressure increases, the dust grains will be driven from the galaxies, mixed with the hot gas, and destroyed, liberating the iron atoms. Building a massive galaxy cluster is a step-by-step enterprise that takes billions of years. Exactly how long it takes for such a cluster to form depends on many factors, such as the density of subclusters in the vicinity, the rate of the expansion of the universe, and the relative amounts of dark energy and dark matter. Chandra X-ray Image of Abell 2125, Low Energy Chandra X-ray Image of Abell 2125, Low Energy Cluster formation also involves complex interactions between the galaxies and the hot gas that may determine how large the galaxies in the cluster can ultimately become. These interactions determine how the galaxies maintain their gas content, the fuel for star formation. The observations of Abell 2125 provide a rare glimpse into the early steps in this process. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  5. Chandra Examines a Quadrillion-Volt Pulsar

    Science.gov (United States)

    2001-09-01

    The high-voltage environment of one of the most energetic and strongly magnetized pulsars known has been surveyed by NASA's Chandra X-ray Observatory. A team of astronomers found a powerful jet of high-energy particles extending over a distance of 20 light years and bright arcs believed to be due to particles of matter and anti-matter generated by the pulsar. The team of US, Canadian, and Japanese scientists pointed Chandra at the rapidly spinning neutron star B1509-58, located 19,000 light years away in the constellation of Circinus, for over five hours. These results were announced at the "Two Years of Science with Chandra" symposium in Washington, DC. "Jets and arcs on this vast scale have never been seen in any other pulsar," said Bryan Gaensler of the Smithsonian Astrophysical Observatory. "The spectacular images we have obtained of this source are letting us test theories as to how pulsars unleash so much energy." The features seen with Chandra give the scientists insight into the process by which voltages of more than 7000 trillion volts are created around rotating neutron stars (the dense remnants of supernova explosions) and how these extreme voltages affect their environment. B1509-58 is of particular interest because it has a much stronger magnetic field than the Crab Nebula pulsar, which exhibits similar features on a much smaller scale. The general picture emerging from these results is that high-energy particles of matter and antimatter are streaming away from the neutron star along its poles and near its equator. The particles leaving the poles produce the jets; astronomers speculate that only one side of the jet is apparent in B1509-58, indicating that this one side is beamed in our direction, while the other is rushing away. "Until this observation, no one knew for sure whether such tremendous voltages and energy outputs were a trademark of all pulsars, or if the Crab was an oddball," said Vicky Kaspi of McGill University in Montreal. "Now thanks

  6. The Chandra Galactic Bulge Survey

    Science.gov (United States)

    Britt, C. T.; Hynes, R. I.; Jonker, P. G.; Maccarone, T.; Torres, M. A. P.; Steeghs, D.; Nelemans, G.; Johnson, C.; Greiss, S.

    2015-05-01

    The Chandra Galactic Bulge Survey (GBS) is a multi-wavelength survey of two 6×1 degree strips above and below the Galactic plane, including deep r' and i' imaging and time domain photometry from CTIO and shallow, wide-field X-ray imaging with Chandra. Targeting fields above |b|=1 avoids most of the copious extinction along the Galactic plane while maintaining high source density. This results in targets that are accessible to follow up in optical and NIR wavelengths. The X-ray observations are shallow to maximize the number of quiescent Low Mass X-ray Binaries (LMXBs) relative to Cataclysmic Variables (CVs). The goals of the GBS are to conduct a census of Low Mass X-ray Binaries in the Milky Way in order to constrain models of binary evolution, the common envelope phase in particular, and to expand the number of known LMXBs for optical follow up. Mass measurements in particular will help constrain the black hole (BH) mass distribution and the equation of state for neutron stars (NS). Constraining the BH mass distribution will constrain models of their formation in supernovae. The current population of Galactic BHs suffers from selection effects, which the GBS avoids by finding new objects while still in quiescence. We expect to find qLMXBs, magnetic CVs, RS CVn stars, and smaller numbers of other types of sources. After removing duplicates, there are 1640 unique X-ray sources in the 12 square degree survey area, which closely matches the predicted number of 1648. We are currently matching X-ray sources to counterparts in other wavelengths using new photometric and spectroscopic observations as well as in archival data where it exists, and searching for variability and periodicity in the counterparts in photometric data. So far, we have spectroscopically identified 27 interacting binaries including promising candidates for quiescent black holes.

  7. CHANDRA observations of the NGC 1550 galaxy group: Implication for the temperature and entropy profiles of 1 keV galaxy groups

    DEFF Research Database (Denmark)

    Sun, M.; Forman, W.; Vikhlinin, A.

    2003-01-01

    We present a detailed Chandra study of the galaxy group NGC 1550. For its temperature (1.37 +/- 0.01 keV) and velocity dispersion (similar to300 km s(-1)), the NGC 1550 group is one of the most luminous known galaxy groups (L-bol = 1.65 x 10(43) ergs s(-1) within 200 kpc, or 0.2r(vir)). We find...... that within similar to 60 kpc, where the gas cooling time is less than a Hubble time, the gas temperature decreases continuously toward the center, implying the existence of a cooling core. The temperature also declines beyond similar to 100 kpc (or 0.1r(vir)). The temperature pro. le of NGC 1550...

  8. Observation of Transparency of Erbium-doped Silicon nitride in photonic crystal nanobeam cavities

    CERN Document Server

    Gong, Yiyang; Yerci, Selcuk; Li, Rui; Stevens, Martin J; Baek, Burm; Nam, Sae Woo; Negro, Luca Dal; Vuckovic, Jelena

    2010-01-01

    One-dimensional nanobeam photonic crystal cavities are fabricated in an Er-doped amorphous silicon nitride layer. Photoluminescence from the cavities around 1.54 um is studied at cryogenic and room temperatures at different optical pump powers. The resonators demonstrate Purcell enhanced absorption and emission rates, also confirmed by time-resolved measurements. Resonances exhibit linewidth narrowing with pump power, signifying absorption bleaching and the onset of stimulated emission in the material at both 5.5 K and room temperature. We estimate from the cavity linewidths that Er has been pumped to transparency at the cavity resonance wavelength.

  9. Observations of lower hybrid cavities in the inner magnetosphere by the Cluster and Viking satellites

    Directory of Open Access Journals (Sweden)

    A. Tjulin

    2004-09-01

    Full Text Available Observations by the Viking and Cluster satellites at altitudes up to 35000km show that Lower Hybrid Cavities (LHCs are common in the inner magnetosphere. LHCs are density depletions filled with waves in the lower hybrid frequency range. The LHCs have, until recently, only been found at altitudes up to 2000km. Statistics of the locations and general shape of the LHCs is performed to obtain an overview of some of their properties. In total, we have observed 166 LHCs on Viking during 27h of data, and 535 LHCs on Cluster during 87h of data. These LHCs are found at invariant latitudes from the auroral region to the plasmapause. A comparison with lower altitude observations shows that the LHC occurrence frequency does not scale with the flux tube radius, so that the LHCs are moderately rarer at high altitudes. This indicates that the individual LHCs do not reach from the ionosphere to 35000km altitude, which gives an upper bound for their length. The width of the LHCs perpendicular to the geomagnetic field at high altitudes is a few times the ion gyroradius, consistent with observations at low altitudes. The estimated depth of the density depletions vary with altitude, being larger at altitudes of 20000-35000km (Cluster, 10-20%, smaller around 1500-13000km (Viking and previous Freja results, a few percent and again larger around 1000km (previous sounding rocket observations, 10-20%. The LHCs in the inner magnetosphere are situated in regions with background electrostatic hiss in the lower hybrid frequency range, consistent with investigations at low altitudes. Individual LHCs observed at high altitudes are stable at least on time scales of 0.2s (about the ion gyro period, which is consistent with previous results at lower altitudes, and observations by the four Cluster satellites show that the occurrence of LHCs in a region in space is a stable phenomenon, at least on time scales of an hour.

  10. The era of synoptic galactic archeology: using HST and Chandra observations to constrain the evolution of elliptical galaxies through the spatial distribution of globular clusters and X-ray binaries.

    Science.gov (United States)

    D'Abrusco, Raffaele; Fabbiano, Giuseppina; Zezas, Andreas

    2017-01-01

    Most of the stellar mass observed today in early-type galaxies is thought to be due to merging and accretion of smaller companions, but the details of these processes are still poorly constrained. Globular clusters, visible from the center to the halo of galaxies, reflect the evolution of their host galaxy in their kinematic, photometric and spatial distributions. By characterizing the spatial distribution of the population of globular clusters extracted from archival HST data of some of the most massive elliptical galaxies in the local Universe with a novel statistical approach, we recently discovered that two-dimensional spatial structures at small radii are common (D’Abrusco et al. 2014a; 2014b; 2015). Such structures, not detectable from ground-based data, can be linked to events in the evolution of the host galaxy. Moreover, we devised an interpretative framework that, based on the form, area and number of globular clusters of such structures, infers the frequency of major mergers and the mass spectrum of the accreted companions.For some of the galaxies investigated, X-ray data from Chandra joint observing programs were also available. Our method, applied to the distribution of X-ray binaries, has revealed, at least in the case of two galaxies (D’Abrusco et al. 2014a; D’Abrusco et al.23014c) the existence of overdensities that are not associated to globular cluster structures. These findings provide complementary hints about the evolution of the stellar component of these galaxies that can be used to further refine the sequence of events that determined their growth.In this contribution, we will summarize our main results and highlight the novelty of our approach. Furthermore, we will advocate the fundamental importance of joint observations of galaxies by HST and Chandra as a way to provide unique, complementary views of such systems and unlock the mysteries of their evolution.

  11. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  12. [Measurement of the wound cavity area by means of PC based planimetry. The method and observer variations].

    Science.gov (United States)

    Andersen, J; Dahlin, J

    1993-03-01

    A method for wound area measurement is presented. A wound cavity was cut in a chine of pork. A thin PVC plastic film was applied closely to the entire wound cavity surface and a line was drawn close to the cutaneous border with a marker pen. The film was then placed on a system of coordinates and coordinates were determined and entered into a PC-programme which calculated the area. No significant intra-or inter-observer variation appeared on analyses of variance between five observers each of whom performed three consecutive measurements (p > 0.2). Thus, employment of the method for clinical purposes seems feasible.

  13. The Chandra HelpDesk

    Science.gov (United States)

    Galle, Elizabeth C.

    2008-03-01

    The Chandra X-ray Center (CXC) HelpDesk has answered hundreds of user questions over the course of the Chandra mission, ranging from basic syntax errors to advanced analysis questions. This talk gives an introduction to the HelpDesk system and staff, presents a sample of recent HelpDesk requests, and discusses how user-submitted questions improve the software and documentation.

  14. Observation of nonlinear thermal optical dynamics in a chalcogenide nanobeam cavity

    CERN Document Server

    Sun, Yue; Choi, Duk-Yong; Sukhorukov, Andrey A

    2016-01-01

    We present a theoretical and experimental analysis of nonlinear thermo-optic effects in suspended chalcogenide glass nanobeam cavities. We measure the power dependent resonance peaks and characterise the dynamic nonlinear thermo-optic response of the cavity under modulated light input. Several distinct nonlinear characteristics are identified, including a modified spectral response containing periodic fringes, a critical wavelength jump and saturated time delay for modulation frequency faster than the thermal characteristic time. We reveal that the coupling to a parasitic Fabry-Perot cavity enables isolated thermal equilibrium states resulting in the discontinuous thermo-optic critical point.

  15. Statistical Characterization of the Chandra Source Catalog

    CERN Document Server

    Primini, Francis A; Davis, John E; Nowak, Michael A; Evans, Ian N; Glotfelty, Kenny J; Anderson, Craig S; Bonaventura, Nina R; Chen, Judy C; Doe, Stephen M; Evans, Janet D; Fabbiano, Giuseppina; Galle, Elizabeth C; Gibbs, Danny G; Grier, John D; Hain, Roger M; Hall, Diane M; Harbo, Peter N; Xiangqun,; He,; Karovska, Margarita; Kashyap, Vinay L; Lauer, Jennifer; McCollough, Michael L; McDowell, Jonathan C; Miller, Joseph B; Mitschang, Arik W; Morgan, Douglas L; Mossman, Amy E; Nichols, Joy S; Plummer, David A; Refsdal, Brian L; Rots, Arnold H; Siemiginowska, Aneta; Sundheim, Beth A; Tibbetts, Michael S; Van Stone, David W; Winkelman, Sherry L; Zografou, Panagoula

    2011-01-01

    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of ~0.75% of the entire sky, using data from ~3,900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data-set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other, large Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and e...

  16. On the Field Dependent Surface Resistance Observed in Superconducting Niobium Cavities

    CERN Document Server

    Weingarten, W

    2009-01-01

    A quantitative description is presented of the non-linear current-voltage response in superconducting niobium cavities for accelerator application. It is based on a fit for a large sample of data from cavity tests of different kind. Trial functions for the surface resistance describing this non-linear relation are established by a least square data fit. Those trial functions yielding the best fit are quantitatively explained by basic physics.

  17. Deep Chandra, HST-COS, and Megacam Observations of the Phoenix Cluster: Extreme Star Formation and AGN Feedback on Hundred Kiloparsec Scales

    Science.gov (United States)

    McDonald, Michael; McNamara, Brian R.; van Weeren, Reinout J.; Applegate, Douglas E.; Bayliss, Matthew; Bautz, Marshall W.; Benson, Bradford A.; Carlstrom, John E.; Bleem, Lindsey E.; Chatzikos, Marios; Edge, Alastair C.; Fabian, Andrew C.; Garmire, Gordon P.; Hlavacek-Larrondo, Julie; Jones-Forman, Christine; Mantz, Adam B.; Miller, Eric D.; Stalder, Brian; Veilleux, Sylvain; ZuHone, John A.

    2015-10-01

    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ˜50-100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 × 109 M⊙), young (˜4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M⊙ yr-1. We report a strong detection of O vi λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 M⊙ yr-1) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ˜10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2-7 × 1045 erg s-1. We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from “quasar-mode” to “radio-mode,” and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ˜100 kpc, with extended “ghost” cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ˜200 kpc (0.15R500), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments.

  18. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94131 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Babul, Arif; Bildfell, Chris [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Jeltema, Tesla [Santa Cruz Institute for Particle Physics, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Henry, J. Patrick [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-04-20

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  19. Deep Chandra, HST-COS, and Megacam Observations of the Phoenix Cluster: Extreme Star Formation and AGN Feedback on Hundred Kiloparsec Scales

    CERN Document Server

    McDonald, M; van Weeren, R J; Applegate, D E; Bayliss, M; Bautz, M W; Benson, B A; Carlstrom, J E; Bleem, L E; Chatzikos, M; Edge, A C; Fabian, A C; Garmire, G P; Hlavacek-Larrondo, J; Jones-Forman, C; Mantz, A B; Miller, E D; Stalder, B; Veilleux, S; Zuhone, J A

    2015-01-01

    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously-undetected filaments of star formation, extending to radii of ~50-100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2x10^9 Msun)), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 +/- 50 Msun/yr. We report a strong detection of OVI(1032,1038) which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 Msun/yr) from the cooling intracluster medium. We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are amongst the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2-7 x10^45 erg/s. We provide evidence that the AGN inflating these cavities may have only recently transitioned from "quasar-mode" to "radio-mode", and may currently be insufficient to completely offset ...

  20. Breakdown study based on direct in situ observation of inner surfaces of an rf accelerating cavity during a high-gradient test

    Science.gov (United States)

    Abe, Tetsuo; Kageyama, Tatsuya; Sakai, Hiroshi; Takeuchi, Yasunao; Yoshino, Kazuo

    2016-10-01

    We have developed normal-conducting accelerating single-cell cavities with a complete higher-order-mode (HOM) heavily damped structure, into which we feed a 508.9-MHz continuous wave. During a high-gradient test of the second production version of the cavity, we performed a breakdown study based on direct in situ observation of the inner surfaces of the cavity. This paper presents our experimental findings obtained from this observation.

  1. Proposal for a Cavity Phase Observation System in the PS Machine

    CERN Document Server

    Angoletta, Maria Elena; Pedersen, F; Schokker, M; Vallet, J L; CERN. Geneva. AB Department

    2006-01-01

    In multi-cavity synchrotrons it is essential to be able to measure the phase difference between RF cavities. Errors in relative phase can have a particularly deleterious effect on the beam during RF gymnastics. Currently, two methods are available to measure the relative phase in the CERN Proton Synchrotron (PS), but neither attains the desired resolution nor covers the full arsenal of cavities. This note describes a system that will measure the relative phase between cavities with high resolution. The system makes use of the digital hardware deployed in the LEIR beam control and of the corresponding DSP and FPGA signal processing. The focus is on beams controlled by the Multi Harmonic Source (MHS) clock. The system described here is also a step towards the deployment of a new generation of digital beam control systems for the PS Complex machines, within the framework of the LHC injector consolidation and following the successful commissioning of the LEIR digital beam control system. Some expected benefits ar...

  2. The use of thermovision camera to observe physiological and pathological conditions of oral cavity mucous membrane

    Science.gov (United States)

    Dąbrowski, M.; Dulski, R.; Żmuda, S.; Zaborowski, P.; Pogorzelski, C.

    2002-06-01

    This article presents initial results of investigations of the temperature distribution changes in oral cavity mucous membrane. The investigations aimed to prepare a model of temperature changes existing within mucosal membrane in physiological conditions and to compare those changes with those under pathological conditions. Our investigations were carried out using an infrared imaging system. A representative group of patients was tested.

  3. Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature

    Science.gov (United States)

    Martín-Regalado, J.; Chilla, J. L. A.; Rocca, J. J.; Brusenbach, P.

    1997-06-01

    Polarization switching in gain-guided, vertical-cavity, surface-emitting lasers was studied as a function of the active region temperature. We show that polarization switching occurs even when the active region temperature is kept constant during fast pulse low duty cycle operation. This temperature independent polarization switching phenomenon is explained in terms of a recently developed model.

  4. Observations of a Pc5 global (cavity/waveguide) mode outside the plasmasphere by THEMIS

    DEFF Research Database (Denmark)

    Hartinger, Michael; Angelopoulos, Vassilis; Moldwin, Mark B.

    2012-01-01

    Standing fast mode waves known as global modes, or cavity/waveguide modes, have been extensively studied as a potential driver of monochromatic shear Alfven waves in the Earth's magnetosphere via the field line resonance (FLR) mechanism. However, their existence outside of the plasmasphere remain...

  5. Electromagnetic Wave-filled Cavities Observed by the GEODESIC Sounding Rocket: A Direct Encounter with VLF Saucer Source Regions

    Science.gov (United States)

    Kabirzadeh, Rasoul

    The GEODESIC sounding rocket encountered hundreds of localized, VLF-wave-filled density depletions in an auroral return current region at altitudes between 900--1000 km. While these are similar to well-studied lower-hybrid "spikelets", which are electrostatic, many of the GEODESIC events exhibited strong VLF magnetic field enhancements as well. In the present study we show that these magnetic field fluctuations can be interpreted as the result of geomagnetic field-aligned electron currents driven by fluctuating electric fields parallel to the geomagnetic field lines. This observation suggests that the electromagnetic wave-filled cavities are signatures of unstable filaments of return current fluctuating at VLF frequencies. We argue that the cavities' spatial dimensions, their location inside the return current region and their total radiated power are consistent with the properties of VLF saucer source regions inferred from earlier satellite observations taken at higher altitudes.

  6. Dark Energy, Black Holes and Exploding Stars: NASA's Chandra Observatory Marks Five Years of Scientific Achievement

    Science.gov (United States)

    2004-08-01

    detected by Chandra, may be the long-sought X-ray emission from a known supermassive black hole at the center of our galaxy. (January 14, 2000) * Chandra finds the most distant X-ray cluster. Using the Chandra Observatory, astronomers find the most distant X-ray cluster of galaxies yet. Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. (Feb. 20, 2001) * Chandra discovers X-rays from Jupiter. Using Chandra, astronomers discover a pulsating hot spot of X-rays in the polar regions of the planet's upper atmosphere and uncover evidence the X-ray source is not arising from the region of Jupiter where previously believed. (Aug. 29, 2002) * Chandra makes first I.D. of a binary black hole. By revealing two active black holes in the nucleus of the extraordinarily bright galaxy NGC 6240, a Chandra image proves for the first time that two supermassive black holes can co-exist in the same galaxy. (Nov. 11, 2002) * Chandra makes deepest X-ray exposure. A Chandra image, Deep Field North, captures for 23 days an area of the sky one-fifth the size of the full moon. Even though the faintest sources detected produced only one X-ray photon every four days, Chandra finds more than 600 X-ray sources, most of them supermassive black holes in galaxy centers. (June 19, 2003) * Chandra sheds new light on the Vela Pulsar. Chandra offers new insight into pulsars, small and extremely dense stars. Created from a series of Chandra observations, an X-ray movie of the Vela pulsar reveals a spectacularly erratic jet that varies in a way never before seen, whipping about like an untended fire hose at about half the speed of light. (June 30, 2003) * Chandra 'hears' a black hole. Using the Chandra Observatory, astronomers for the first time detect sound waves from a supermassive black hole. Coming from a black hole 250 million light years from Earth, the "note" is the deepest ever detected from an object in the Universe

  7. The Chandra Galactic Bulge Survey

    NARCIS (Netherlands)

    Hynes, Robert I.; Jonker, P.G.; Bassa, C. G.; Dieball, A.; Greiss, S.; Maccarone, T. J.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Britt, C. T.; Clem, J. L.; Gossen, L.; Grindlay, J. E.; Groot, P.J.; Kuiper, L.; Kuulkers, E.; Mendez, M.; Mikles, V. J.; Ratti, E. M.; Rea, N.; van Haaften, L.; Wijnands, R.; in't Zand, J. J. M.

    2011-01-01

    The Chandra Galactic Bulge Survey (CGBS) is a shallow but wide survey of two approximately 6x1 degree strips of the Galactic Bulge about a degree above and below the plane. The survey by design targets regions where extinction and crowding are manageable and optical counterparts are accessible to de

  8. The Chandra Galactic Bulge Survey

    NARCIS (Netherlands)

    Hynes, Robert I.; Jonker, P. G.; Bassa, C. G.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Maccarone, T. J.; Greiss, S.; Clem, J.; Dieball, A.; Mikles, V. J.; Britt, C. T.; Gossen, L.; Collazzi, A. C.; Wijnands, R.; In't Zand, J. J. M.; Mendez, M.; Rea, N.; Kuulkers, E.; Ratti, E. M.; van Haaften, L. M.; Heinke, C.; Ozel, F.; Groot, P. J.; Verbunt, F.

    2012-01-01

    The Chandra Galactic Bulge Survey (GBS) is a shallow but wide survey of two approximately 6x1 degree strips of the Galactic Bulge about a degree above and below the plane. The survey by design targets regions where extinction and crowding are manageable and optical counterparts are accessible to det

  9. The BMW-Chandra Serendipitous Source Catalog

    Science.gov (United States)

    Romano, P.; Campana, S.; Mignani, R. P.; Moretti, A.; Mottini, M.; Panzera, M. R.; Tagliaferri, G.

    2004-08-01

    We present the BMW-Chandra source catalog drawn from all Chandra ACIS-I pointed observations with an exposure time in excess of 10 ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterize point-like as well as extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings, and do not require a non-automated analysis. This makes our catalog the largest compilation of Chandra sources to date. The 0.5--10 keV absorption corrected fluxes of these sources range from ˜ 3× 10-16 to 9×10-12 erg cm-2 s-1 with a median of 7× 10-15 erg cm-2 s-1. The catalog consists of count rates and relative errors in three energy bands (total, 0.5--7 keV; soft, 0.5--2 keV; and hard band, 2--7 keV), and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate of the extension of the source which we refined with a σ -clipping method. We report on the main properties of the sources in our catalog, such as sky coverage ( ˜ 8 deg2 at a limiting flux of ˜ 10-13 erg cm-2 s-1) and cosmological log N--log S for a subset at high Galactic latitude (∣ b ∣ > 20o) for a flux as low as ˜ 1.5 × 10-15 erg cm-2 s-1. Support for this work was provided by the Italian MIUR.

  10. ASA's Chandra Neon Discovery Solves Solar Paradox

    Science.gov (United States)

    2005-07-01

    heated to millions of degrees, neon shines brightly in X-rays. Stars like the sun are covered in this super-heated gas that is betrayed by the white corona around them during solar eclipses. However, observations of the sun's corona are very difficult to analyze. Labeled Illustration of Convection in Sun-like Star Labeled Illustration of Convection in Sun-like Star To probe the neon content, Drake and his colleague Paola Testa of the Massachusetts Institute of Technology in Cambridge, Mass., observed 21 sun-like stars within a distance of 400 light years from Earth. These local stars and the sun should contain about the same amount of neon when compared to oxygen. However, these close stellar kin were found to contain on average almost three times more neon than is believed for the sun. "Either the sun is a freak in its stellar neighborhood, or it contains a lot more neon than we think," Testa said. These Chandra results reassured astronomers the detailed physical theory behind the solar model is secure. Scientists use the model of the sun as a basis for understanding the structure and evolution of other stars, as well as many other areas of astrophysics. "If the higher neon abundance measured by Drake and Testa is right, then it is a simultaneous triumph for Chandra and for the theory of how stars shine," said John Bahcall of the Institute for Advanced Study, Princeton, N.J. Bahcall is an expert in the field who was not involved in the Chandra study. Drake is lead author of the study published in this week's issue of the journal Nature. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  11. Chandra Associates Pulsar and Historic Supernova

    Science.gov (United States)

    2001-01-01

    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar

  12. Immunohistochemical observation of actin filaments in epithelial cells encircling the taste pore cavity of rat fungiform papillae

    Directory of Open Access Journals (Sweden)

    Y Shiba

    2009-12-01

    Full Text Available Epithelial cells are connected to each other around taste pores in rat fungiform papillae. Cytoskeletal components are responsible for the maintenance of intracellular adhesion, and we investigated the identification and localization of actin filaments around taste pores. On the basis of observations made by immunohistochemical transmission electron microscopy comparing with confocal laser scanning microscopy using actin-lectin double staining, actin filaments were found to be localized, encircling the squeezed taste pore cavity, in epithelial cells a few micrometers below the papilla surface. In addition, these observations suggest that the organization of actin filaments around taste pores might be involved in the constriction of taste pores.

  13. Historical Remembrances of the Chandra X-ray Observatory: How Partnerships Created Success

    Science.gov (United States)

    Burke, Robert

    2009-09-01

    As the astronomy community plans for new ventures in space, we're forced to find creative solutions to operate within the ever increasing fiscal constraints of the current economic environment. The Chandra X-ray Observatory program offers an example of how missions can be successfully developed within manageable budget constraints. The ten year anniversary offers us the chance to look back at the Chandra team's special partnership between scientists, managers, and industry that led to our success.Chandra experienced many of the challenges common to major observatories: state-of-the-art technical requirements, budget-induced slips, and restructurings. Yet the Chandra team achieved excellent performance for dramatically lower cost. In fact, Chandra completed its prime mission for billions of dollars less than originally planned. In 1992, NASA MSFC and Northrop Grumman (then TRW) together led a major restructure that saved approximately 3.4B in program cost, while we improved the imaging capability and observing efficiency of Chandra. This was accomplished by a combination of team-work, systems engineering, advanced technology insertion, and effective approaches for program implementation, combined with a high performance culture that aligned goals and focused on mission success. Northrop Grumman is proud of our role in supporting the NASA Marshall Space Flight Center and our academic partners in advancing the frontiers of x-ray astronomy and scientific discovery with Chandra. As Chandra continues its extended mission, the observatory continues to provide superb scientific performance.

  14. A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity

    CERN Document Server

    Li, Xing; Leonard, Drew; Jeska, Lauren

    2012-01-01

    During 2011/09/24, as observed by the Atmospheric Imaging Assembly (AIA) instrument of the Solar Dynamic Observatory (SDO) and ground-based \\Ha\\ telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011/09/25 8:00UT material flows upwards from the prominence core along a narrow loop-like structure, accompanied by a rise ($\\geq$50,000km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, with emission in both hot ($\\sim$1MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between...

  15. Spatially resolving a starburst galaxy at hard X-ray energies: NuSTAR, CHANDRA, AND VLBA observations of NGC 253

    DEFF Research Database (Denmark)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.;

    2014-01-01

    Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR data set, comprised of three ~165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253...... 100" of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting...... of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy-dominated by the off-nuclear ULX and nuclear sources, which are also likely ULXs-falls steeply (photon index ≳ 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background...

  16. X-raying Galaxies: A Chandra Legacy

    CERN Document Server

    Wang, Q Daniel

    2010-01-01

    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete X-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and AGN feedback -- the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our Galaxy. The gas is concentrated around the Galactic bulge and disk on scales of a few kpc. The column density of chemically-enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the Galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The X-ray emission from hot gas is well...

  17. Highlights and Discoveries from the Chandra X-ray Observatory

    CERN Document Server

    Tananbaum, H; Tucker, W; Wilkes, B; Edmonds, P

    2014-01-01

    Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding ...

  18. Highlights and discoveries from the Chandra X-ray Observatory

    Science.gov (United States)

    Tananbaum, H.; Weisskopf, M. C.; Tucker, W.; Wilkes, B.; Edmonds, P.

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over timescales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.

  19. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate.

    Science.gov (United States)

    Mlynek, J A; Abdumalikov, A A; Eichler, C; Wallraff, A

    2014-11-04

    An individual excited two-level system decays to its ground state in a process known as spontaneous emission. The probability of detecting the emitted photon decreases exponentially with the time passed since its excitation. In 1954, Dicke first considered the more subtle situation in which two emitters decay in close proximity to each other. He argued that the emission dynamics of a single two-level system is altered by the presence of a second one, even if it is in its ground state. Here, we present a close to ideal realization of Dicke's original two-spin Gedankenexperiment, using a system of two individually controllable superconducting qubits weakly coupled to a fast decaying microwave cavity. The two-emitter case of superradiance is explicitly demonstrated both in time-resolved measurements of the emitted power and by fully reconstructing the density matrix of the emitted field in the photon number basis.

  20. A Deep Chandra Observation of the X-shaped Radio Galaxy 4C +00.58: A Candidate for Merger-induced Reorientation?

    Science.gov (United States)

    2010-05-28

    Radio Galaxy 4C +00.58: A Candidate for Merger-induced Reorientation? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S... cosmology (H0 = 71 km s −1 Mpc−1, ΩΛ = 0.73, and Ωm = 0.27; Spergel et al. 2007). At a redshift of z = 0.059, 1 ′′ = 1.13 kpc. 2. Observations We...GHz map resolves the jet into a string of knots (§3.3). We detect no counterjet. The X-ray emission (Fig. 1) is made up of two components: bright

  1. Stellar Forensics with Striking Image from Chandra

    Science.gov (United States)

    2007-10-01

    A spectacular new image shows how complex a star's afterlife can be. By studying the details of this image made from a long observation by NASA's Chandra X-ray Observatory, astronomers can better understand how some stars die and disperse elements like oxygen into the next generation of stars and planets. At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen. The image shows a rapidly expanding, intricately structured, debris field that contains, along with oxygen, other elements such as neon and silicon that were forged in the star before it exploded. Hard X-ray Image of G292.0+1.8 Hard X-ray Image of G292.0+1.8 "We are finding that, just like snowflakes, each supernova remnant is complicated and beautiful in its own way," said Sangwook Park of Penn State who led the work, released in conjunction with the "8 Years of Chandra" symposium in Huntsville, Ala. The new, deep Chandra image - equaling nearly 6 days worth of observing time - shows an incredibly complex structure. Understanding the details of G292.0+1.8 is especially important because astronomers have considered it to be a "textbook" case of a supernova created by the death of a massive star. Chandra X-ray Image of G292.0+1.8 Chandra X-ray Image of G292.0+1.8 By mapping the distribution of X-rays in different energy bands, the Chandra image traces the distribution of chemical elements ejected in the supernova. The results imply that the explosion was not symmetrical. For example, blue (silicon and sulfur) and green (magnesium) are seen strongly in the upper right, while yellow and orange (oxygen) dominate the lower left. These elements light up at different temperatures, indicating that the temperature is higher in the upper right portion of G292.0+1.8. Slightly below and to the left of the center of G292.0+1.8 is a pulsar, a dense, rapidly rotating neutron star that remained behind after the original star

  2. Chandra Images Provide New Vision of Cosmic Explosions

    Science.gov (United States)

    1999-09-01

    waves from the nebula. This distribution, called non-thermal radiation is characteristic of radiation produced by high-energy electrons in a magnetic field. A previously known pulsar is observed directly in the Chandra image of PSR 0540-69. This pulsar, located in a satellite galaxy to the Milky Way that is 180,000 light years distant, emits pulses of radio, optical, and X radiation at a rate of 50 per sec. These pulses which come from a neutron star rotating at this incredible rate, comprise only a few percent of the total energy output of the neutron star powerhouse. "The Chandra image gives us a much better idea of how this energy source works," said Dr. Stephen Murray, principal investigator for the High Resolution Camera, the X-ray camera used to make PSR 0540-69 image. "You can see X-ray jets blasting out from the pulsar in both directions." The third Chandra supernova image is E0102-72. Located in the Small Magellanic Cloud, another satellite galaxy of the Milky Way, E0102-72 is 190,000 light years from Earth. This object, like G21.5-0.9 and PSR 0540-69, is believed to have resulted from the explosion of a massive star several thousand years ago. Stretching across 40 light years of space, the multi-million degree source resembles a flaming cosmic wheel. "Chandra's gallery of supernova remnants is giving us a lot to think about," said Dr. Fred Seward, of Harvard-Smithsonian, who with his colleagues discovered E0102-72 and PSR 0540-69 with the Einstein Observatory over a decade ago. "We're seeing many things we thought should be there, and many others that we never expected. It's great!" To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra X-ray Observatory for NASA's Office of Space Science, NASA Headquarters, Washington, D.C. The Smithsonian Astrophysical Observatory's Chandra X-ray Center in Cambridge, Mass., manages

  3. Deep Chandra Observations of the Crab-like Pulsar Wind Nebula G54.1+0.3 and Spitzer Spectroscopy of the Associated Infrared Shell

    CERN Document Server

    Temim, Tea; Reynolds, Stephen P; Raymond, John C; Borkowski, Kazimierz J

    2009-01-01

    G54.1+0.3 is a young pulsar wind nebula (PWN), closely resembling the Crab, for which no thermal shell emission has been detected in X-rays. Recent Spitzer observations revealed an infrared (IR) shell containing a dozen point sources arranged in a ring-like structure, previously proposed to be young stellar objects. An extended knot of emission located in the NW part of the shell appears to be aligned with the pulsar's X-ray jet, suggesting a possible interaction with the shell material. Surprisingly, the IRS spectrum of the knot resembles the spectrum of freshly formed dust in Cas A, and is dominated by an unidentified dust emission feature at 21 microns. The spectra of the shell also contain various emission lines and show that some are significantly broadened, suggesting that they originate in rapidly expanding supernova (SN) ejecta. We present the first evidence that the PWN is driving shocks into expanding SN ejecta and we propose an alternative explanation for the origin of the IR emission in which the ...

  4. NTT, Spitzer and Chandra spectroscopy of SDSSJ095209.56+214313.3: the most luminous coronal-line supernova ever observed, or a stellar tidal disruption event ?

    CERN Document Server

    Komossa, S; Rau, A; Dopita, M; Gal-Yam, A; Greiner, J; Zuther, J; Salvato, M; Xu, D; Lü, H; Saxton, R; Ajello, M

    2009-01-01

    The galaxy SDSSJ0952+2143 showed remarkable emission-line properties first reported in 2008 (paper I), which are the consequence of a powerful high-energy flare. Here we report follow-up observations of SDSSJ0952+2143, and discuss outburst scenarios in terms of stellar tidal disruption by a SMBH, peculiar variability of an AGN, and a supernova explosion. The optical spectrum of SDSSJ0952+2143 exhibits several peculiarities: an exceptional ratio of [FeVII] transitions over [OIII], a dramatic decrease by a factor of 10 of the highest-ionization lines, a very unusual and variable Balmer line profile including a triple-peaked narrow component with two unresolved horns, and a large Balmer decrement. The MIR emission measured with the Spitzer IRS in the narrow 10-20mu band is extraordinarily luminous (3.5 x 10^{43} erg\\s). The IRS spectrum shows a bump around ~11mu and an increase towards longer wavelengths, reminiscent of silicate emission. The strong MIR excess over the NIR implies the dominance of relatively col...

  5. An Introduction to the Chandra Carina Complex Project

    CERN Document Server

    Townsley, Leisa K; Corcoran, Michael F; Feigelson, Eric D; Gagné, Marc; Montmerle, Thierry; Oey, M S; Smith, Nathan; Garmire, Gordon P; Getman, Konstantin V; Povich, Matthew S; Evans, Nancy Remage; Nazé, Yaël; Parkin, E R; Preibisch, Thomas; Wang, Junfeng; Wolk, Scott J; Chu, You-Hua; Cohen, David H; Gruendl, Robert A; Hamaguchi, Kenji; King, Robert R; Mac Low, Mordecai-Mark; McCaughrean, Mark J; Moffat, Anthony F J; Oskinova, L M; Pittard, Julian M; Stassun, Keivan G; ud-Doula, Asif; Walborn, Nolan R; Waldron, Wayne L; Churchwell, Ed; Nichols, J S; Owocki, Stanley P; Schulz, N S

    2011-01-01

    The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant HII regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60ks pointings using the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of >14,000 X-ray point sources; >9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. In this introductory paper, we motivate the survey design, describe the Chandra observations, and present some simple results, pr...

  6. Chandra's View of Tycho's Supernova Remnant

    Science.gov (United States)

    2000-01-01

    This Chandra image reveals, in detail, the turbulent debris created by a supernova explosion that was observed by the Danish Astronomer Tycho Brahe in the year 1572. The colors show different x-ray energies, with red, green, and blue representing low, medium, and high energies, respectively. Most likely caused by the destruction of a white dwarf star, a shock wave produced by the expanding debris is outlined by the sharp blue circular arcs of 20 million degree Celsius gas seen on the outer rim. The stellar debris, visible only by x-ray, has a temperature of about 10 million degrees, and shows up as mottled yellow, green, and red fingers of gas.

  7. Maximising the mileage from the Chandra podcasts

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.

    2008-06-01

    NASA's Chandra X-ray Observatory captures X-ray images and measures spectra of many highenergy cosmic phenomena. There is a constant challenge to devise new and appropriate means to bring these potentially esoteric science results and concepts in a digestible way to the public. One of the ideas to address this challenge became the Chandra podcast.

  8. Joint XMM-Newton and Chandra observations of the NGC 1407/1400 complex: A tail of an early-type galaxy and a tale of a nearby merging group

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gu, Liyi [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); White III, Raymond E.; Irwin, Jimmy, E-mail: yuanyuas@uci.edu [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States)

    2014-05-10

    The nearby group centered on its bright central galaxy NGC 1407 has been suggested by previous kinematic studies to be an unusually dark system. It is also known for hosting a bright galaxy, NGC 1400, with a large radial velocity (1200 km s{sup –1}) with respect to the group center. Previous ROSAT X-ray observations revealed an extended region of enhanced surface brightness just eastward of NGC 1400. We investigate the NGC 1407/1400 complex with XMM-Newton and Chandra observations. We find that the temperature and metallicity of the enhanced region are different (cooler and more metal rich) than those of the surrounding group gas but are consistent with those of the interstellar medium (ISM) in NGC 1400. The relative velocity of NGC 1400 is large enough that much of its ISM could have been ram pressure stripped while plunging through the group atmosphere. We conclude that the enhanced region is likely to be hot gas stripped from the ISM of NGC 1400. We constrain the motion of NGC 1400 using the pressure jump at its associated stagnation front and the total mass profile of the NGC 1407 group. We conclude that NGC 1400 is moving within ∼30° of the line of sight with Mach number M≲3. We do not detect any obvious shock features in this complex, perhaps because of the high line-of-sight motion of NGC 1400. With an XMM-Newton pointing on the relatively relaxed eastern side of NGC 1407, we derive a hydrostatic mass for this group of ∼1 × 10{sup 13} M {sub ☉} within 100 kpc. The total mass extrapolated to the virial radius (681 kpc) is 3.8 × 10{sup 13} M {sub ☉}, which puts an upper limit of ∼300 M{sub ⊙}/L{sub B{sub ⊙}} on the mass-to-light ratio of this group. This suggests that the NGC 1407 group is not an unusually dark group.

  9. The BMW-Chandra Serendipitous Source Catalogue

    Science.gov (United States)

    Romano, P.; Campana, S.; Mignani, R. P.; Moretti, A.; Panzera, M. R.; Tagliaferri, G.

    We present the BMW-Chandra Source Catalogue drawn from all Chandra ACIS-I pointed observations with an exposure time in excess of 10 ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by \\citep{Lazzatiea99} and \\citep{Campanaea99}, which can characterize point-like as well as extended sources, we identified 21325 sources which were visually inspected and verified. Among them, 16758 are not associated with the targets of the pointings and are considered certain; they have a 0.5-10 keV absorption corrected flux distribution median of ˜ 7 × 10-15 erg cm-2 s-1. The catalogue consists of source positions, count rates, extensions and relative errors in three energy bands (total, 0.5-7 keV; soft, 0.5-2 keV; and hard band, 2-7 keV), as well as the additional information drawn from the headers of the original files. We also extracted source counts in four additional energy bands, (0.5-1.0 keV, 1.0-2.0 keV, 2.0-4.0 keV and 4.0-7.0 keV). We compute the sky coverage in the soft and hard bands. The complete catalogue provides a sky coverage in the soft band (0.5-2 keV, S/N =3) of ˜ 8 deg2 at a limiting flux of ˜ 10-13 erg cm-2 s-1, and ˜ 2 deg2 at a limiting flux of ˜ 10-15 erg cm-2 s-1. http://www.merate.mi.astro.it/~xanadu/BMC/bmc_home.html

  10. Observation of the Fundamental Nyquist Noise Limit in an Ultra-High $Q$-Factor Cryogenic Bulk Acoustic Wave Cavity

    CERN Document Server

    Goryachev, Maxim; van Kann, Frank; Galliou, Serge; Tobar, Michael E

    2014-01-01

    Thermal Nyquist noise fluctuations of high-$Q$ Bulk Acoustic Wave (BAW) cavities have been observed at cryogenic temperatures with a DC Superconducting Quantum Interference Device (SQUID) amplifier. High $Q$ modes with bandwidths of few tens of milliHz produce thermal fluctuations with a Signal-To-Noise ratio of up to 23dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high ($Q>10^8$ at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  11. Chandra Survey of Nearby Galaxies: The Catalog

    Science.gov (United States)

    She, Rui; Ho, Luis C.; Feng, Hua

    2017-02-01

    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 1037 erg s‑1 on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  12. Chandra Opens New Line of Investigation on Dark Energy

    Science.gov (United States)

    2004-05-01

    Astronomers have detected and probed dark energy by applying a powerful, new method that uses images of galaxy clusters made by NASA's Chandra X-ray Observatory. The results trace the transition of the expansion of the Universe from a decelerating to an accelerating phase several billion years ago, and give intriguing clues about the nature of dark energy and the fate of the Universe. "Dark energy is perhaps the biggest mystery in physics," said Steve Allen of the Institute of Astronomy (IoA) at the University of Cambridge in England, and leader of the study. "As such, it is extremely important to make an independent test of its existence and properties." Abell 2029 Chandra X-ray Image of Abell 2029 Allen and his colleagues used Chandra to study 26 clusters of galaxies at distances corresponding to light travel times of between one and eight billion years. These data span the time when the Universe slowed from its original expansion, before speeding up again because of the repulsive effect of dark energy. "We're directly seeing that the expansion of the Universe is accelerating by measuring the distances to these galaxy clusters," said Andy Fabian also of the IoA, a co-author on the study. The new Chandra results suggest that the dark energy density does not change quickly with time and may even be constant, consistent with the "cosmological constant" concept first introduced by Albert Einstein. If so, the Universe is expected to continue expanding forever, so that in many billions of years only a tiny fraction of the known galaxies will be observable. More Animations Animation of the "Big Rip" If the dark energy density is constant, more dramatic fates for the Universe would be avoided. These include the "Big Rip," where dark energy increases until galaxies, stars, planets and eventually atoms are eventually torn apart. The "Big Crunch," where the Universe eventually collapses on itself, would also be ruled out. Chandra's probe of dark energy relies on the unique

  13. Chandra position of IGR J17454-2919 and discovery of a possible NIR counterpart

    DEFF Research Database (Denmark)

    Paizis, A.; Nowak, M.; Chati, S.;

    2015-01-01

    On 2014 November 3, we observed the recently discovered INTEGRAL source IGR J17454-2919 (ATels #6530, #6574 and #6602) with Chandra HETGS for 20ks. The J2000.0 Chandra position we obtain is RA: 17 45 27.689 DEC: -29 19 53.83 (90% uncertainty of 0.6") This position (2.4" away from the Swift positi...

  14. Experimental observation of the steady - oscillatory transition in a cubic lid-driven cavity

    CERN Document Server

    Liberzon, A; Gelfgat, A Yu

    2011-01-01

    Particle image velocimetry is applied to the lid-driven flow in a cube to validate the numerical prediction of steady - oscillatory transition at lower than ever observed Reynolds number. Experimental results agree with the numerical simulation demonstrating large amplitude oscillatory motion overlaying the base quasi-two-dimensional flow in the mid-plane. A good agreement in the values of critical Reynolds number and frequency of the appearing oscillations, as well as similar spatial distributions of the oscillations amplitude are obtained.

  15. Modeling Contamination Migration on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  16. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.

    2009-01-01

    , and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos ∑m ν ...Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass...... function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...

  17. A Full Year's Chandra Exposure on SDSS Quasars from the Chandra Multiwavelength Project

    CERN Document Server

    Green, Paul J; Richards, G T; Barkhouse, W A; Constantin, A; Haggard, D; Karovska, M; Kim, D -W; Kim, M; Vikhlinin, A; Mossman, A; Silverman, J D; Anderson, S F; Kashyap, V; Wilkes, B J; Tananbaum, H

    2008-01-01

    We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey (SDSS) that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project (ChaMP). Our highest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.23 QSOs detected, we find no evidence for evolution out to z~5 for either the X-ray photon index Gamma or for the ratio of optical/UV to X-ray flux alpha_ox. About 10% of detected QSOs are obscured (Nh>1E22), but the fraction might reach ~1/3 if most non-detections are absorbed. We confirm a significant correlation between alpha_ox and optical luminosity, but it flattens or disappears for fainter AGN alone. Gamma hardens significantly both towards higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in non-thermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and ...

  18. Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity

    Science.gov (United States)

    Liberzon, A.; Feldman, Yu.; Gelfgat, A. Yu.

    2011-08-01

    Particle image velocimetry is applied to the lid-driven flow in a cube to validate the numerical prediction of steady-oscillatory transition at lower than ever observed Reynolds number. Experimental results agree with the numerical simulation demonstrating large amplitude oscillatory motion overlaying the base quasi-two-dimensional flow in the mid-plane. A good agreement in the values of critical Reynolds number and frequency of the appearing oscillations as well as similar spatial distributions of the oscillations amplitude are obtained.

  19. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Science.gov (United States)

    Sulaiman, S. A.; Dominguez-Ontiveros, E. E.; Alhashimi, T.; Budd, J. L.; Matos, M. D.; Hassan, Y. A.

    2015-04-01

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A&M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  20. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  1. Design and Simulation of a Fused Silica Space Cell Culture and Observation Cavity with Microfluidic and Temperature Controlling

    Directory of Open Access Journals (Sweden)

    Shangchun Fan

    2013-01-01

    Full Text Available We report a principle prototype of space animal cell perfusion culture and observation. Unlike previous work, our cell culture system cannot only realize microfluidic and temperature controlling, automatic observation, and recording but also meet an increasing cell culture at large scale operation and overcome shear force for animal cells. A key component in the system is ingenious structural fused silica cell culture cavity with the wedge-shaped connection. Finite volume method (FVM is applied to calculate its multipoint flow field, pressure field, axial velocity, tangential velocity, and radial velocity. In order to provide appropriate flow rate, temperature, and shear force for space animal cell culture, a closed-loop microfluidic circuit and proportional, integrating, and differentiation (PID algorithm are employed. This paper also illustrates system architecture and operating method of the principle prototype. The dynamic culture, autofocus observation, and recording of M763 cells are performed successfully within 72 h in the laboratory environment. This research can provide a reference for space flight mission that carries an apparatus with similar functions.

  2. AGN-Induced Cavities in NGC 1399 And NGC 4649

    Energy Technology Data Exchange (ETDEWEB)

    Shurkin, K.; /New Mexico U.; Dunn, R.J.H.; /Southampton U.; Gentile, G.; Taylor, G.B.; /New Mexico U.; Allen, S.W.; /KIPAC, Menlo Park

    2007-11-14

    We present an analysis of archival Chandra and VLA observations of the E0 galaxy NGC1399 and the E2 galaxy NGC4649 in which we investigate cavities in the surrounding X-ray emitting medium caused by the central AGN. We calculate the jet power required for the AGN to evacuate these cavities and find values of {approx} 8x10{sup 41} erg s-1 and {approx} 14x10{sup 41} erg s{sup -1} for the lobes of NGC1399 and {approx} 7x10{sup 41} erg s{sup -1} and {approx} 6x1041 erg s{sup -1} for those of NGC4649. We also calculate the k/f values for each cavity, where k is the ratio of the total particle energy to that of electrons radiating in the range of 10 MHz to 10 GHz, and f is the volume filling factor of the plasma in the cavity. We find that the values of k/f for the lobes of NGC1399 are {approx} 93 and {approx} 190, and those of the lobes of NGC4649 are {approx} 15000 and {approx} 12000. We conclude that the assumed spectrum describes the electron distribution in the lobes of NGC1399 reasonably well, and that there are few entrained particles. For NGC4649, either there are many entrained particles or the model spectrum does not accurately describe the population of electrons.

  3. Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory

    Science.gov (United States)

    2002-10-01

    New evidence from NASA's Chandra X-ray Observatory challenges an alternative theory of gravity that eliminates the need for dark matter. The observation also narrows the field for competing forms of dark matter, the elusive material thought to be the dominant form of matter in the universe. An observation of the galaxy NGC 720 shows it is enveloped in a slightly flattened, or ellipsoidal cloud of hot gas that has an orientation different from that of the optical image of the galaxy. The flattening is too large to be explained by theories in which stars and gas are assumed to contain most of the mass in the galaxy. "The shape and orientation of the hot gas cloud require it to be confined by an egg-shaped dark matter halo," said David Buote of the University of California, Irvine, and lead author of a report on this research in the 2002 September 20 issue of The Astrophysical Journal. "This means that dark matter is not just an illusion due to a shortcoming of the standard theory of gravity - it is real." According to the generally accepted standard theory of gravity, the hot X-ray cloud would need an additional source of gravity - a halo of dark matter - to keep the hot gas from expanding away. The mass of dark matter required would be about five to ten times the mass of the stars in the galaxy. If the dark matter tracked the optical light from the stars in the galaxy, the hot X-ray cloud would be more round than it is. The flattened shape of the hot gas cloud requires a flattened dark matter halo. An alternative theory of gravity called MOND, for Modified Newtonian Dynamics, was proposed in 1983 by Mordecai Milgrom of the Weizmann Institute in Israel, and has remained viable over the years. MOND does away with the need for dark matter by modifying the theory where the acceleration produced by gravity is very small, such as the outskirts of galaxies. However, MOND cannot explain the Chandra observation of NGC 720. This is apparently the first dynamical evidence that

  4. Large-field CO (1-0) observations toward the Galactic historical supernova remnants: a large cavity around Tycho's supernova remnant

    Science.gov (United States)

    Chen, X.; Xiong, F.; Yang, J.

    2017-07-01

    Context. The investigation of the interaction between the supernova remnants (SNRs) and interstellar gas is not only necessary to improve our knowledge of SNRs, but also to understand the nature of the progenitor systems. Aims: As a part of the Milky Way Imaging Scroll Painting CO line survey, the aim is to study the interstellar gas surrounding the Galactic historical SNRs. In this work, we present the CO results of Tycho's SNR. Methods: Using the 3 × 3 Superconducting Spectroscopic Array Receiver (SSAR) at the PMO 13.7-m telescope, we performed large-field (3° × 2°) and high-sensitivity CO (1-0) molecular line observations toward Tycho's SNR. Results: The CO observations reveal large molecular clouds, stream-like structures, and an inner rim around the remnant. We derived the basic properties (column density, mass, and kinematics) of these objects based on the CO observations. The large molecular clouds individually show an arc toward the remnant center, outlining a large cavity with radii of 0.3° × 0.6° (or 13 pc × 27 pc at a distance of 2.5 kpc) around the remnant. The CO line broadenings and asymmetries detected in the surrounding clouds, the observed expansion of the cavity, in concert with enhanced 12CO (2-1)/(1-0) intensity ratio detected in previous studies, suggest the interaction of the large cavity with a wind in the region. After excluding the scenario of a large bubble produced by bright massive stars, we suggest that the large cavity could be explained by accretion wind from the progenitor system of Tycho's supernova. Nevertheless, the possibility of the random distribution of a large cavity around Tycho's SNR cannot be ruled out thus far. Further observations are needed to confirm the physical association of the large cavity with Tycho's SNR.

  5. BibCat: The Chandra Data Archive Bibliography Cataloging System

    Science.gov (United States)

    Winkelman, S.; Rots, A.

    2010-12-01

    The Chandra Data Archive (CDA) has been tracking publications in refereed journals and on-line conference proceedings that are based on Chandra observations since early in the mission. Over the years this database and its associated tools have expanded dramatically. In this paper we describe our newly renovated bibliography architecture with an emphasis on new features which have been added including: auto-scan capabilities to reduce in an automated fashion the number of papers which need to be manually classified and to flag keywords (such as observatory names or surveys) used within papers; multi-user classification allowing quality assurance checks; multi-observatory capabilities allowing multiple facilities to use the same database independently; and plug-in support allowing access to associated observatory data to more fully describe data links in papers.

  6. Updates on Chandra Data Analysis and Calibration Database

    Science.gov (United States)

    McDowell, Jonathan C.; Nowak, M. A.; X-ray Center, Chandra

    2008-03-01

    We review recent issues and improvements in Chandra data analysis, highlighting changes to the instrument and telescope calibration, the availability of new tools and scripts, and the completion of the "Repro 3" reprocessing. In CALDB 3.4.2, released in December 2007, new time dependent ACIS gain files were released. CALDB 3.4.1 (Sep 2007) included new ACIS blank sky background files as well as a new HRC-I degap geometry file. Following reprocessing of the entire archive (except for some early postlaunch observations) retrieved data should be consistent with the latest processing system, which makes a number of earlier analysis steps obsolete. Finally, we will briefly describe the forthcoming Chandra Source Catalog.

  7. Highlights and discoveries from the Chandra X-ray Observatory.

    Science.gov (United States)

    Tananbaum, H; Weisskopf, M C; Tucker, W; Wilkes, B; Edmonds, P

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.

  8. Modeling Contamination Migration on the Chandra X-ray Observatory - II

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.

    2013-01-01

    During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.

  9. Resolving galaxy cluster gas properties at z~1 with XMM-Newton and Chandra

    CERN Document Server

    Bartalucci, I; Pratt, G W; Démoclès, J; van der Burg, R F J; Mazzotta, P

    2016-01-01

    We present a pilot X-ray study of the five most massive ($M_{500}>5 \\times 10^{14} M_{\\odot}$), distant (z~1), galaxy clusters detected via the Sunyaev-Zeldovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, constrained in the centre by Chandra and in the outskirts by XMM. We show that the Chandra-XMM combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM sensitivity allowing higher significance detection of faint substructures. The sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM density profiles and spatially-resolved temperature prof...

  10. The End of Days -- Chandra Catches X-ray Glow From Supernova

    Science.gov (United States)

    1999-12-01

    Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the

  11. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    Science.gov (United States)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  12. A two-fluid model description of the Q-slope and Q-drop as observed in niobium superconducting accelerating cavities

    CERN Document Server

    Weingarten, W

    2011-01-01

    Superconducting cavities made from niobium allow accelerating gradients of about 50 MV/m close to the theoretical limit. Quite often, however, the RF losses increase with the gradient faster than quadratic. This observation is equivalent with a decrease of the quality factor Q with the gradient, called “Q-slope” for intermediate gradients, and “Q-drop” for larger ones. The paper provides an explanation by an elementary model based on the London two fluid theory of RF superconductivity and compares the model with experimental data for a large variety of cavity tests.

  13. VizieR Online Data Catalog: X-ray cavities from isolated gal. to clusters (Shin+, 2016)

    Science.gov (United States)

    Shin, J.; Woo, J.-H.; Mulchaey, J. S.

    2017-01-01

    To search X-ray cavities, we used available Chandra X-ray images, which provide high spatial resolution (PSF FWHM ~0.5" at the aim point). We considered sources in the Chandra archive in one of three categories, namely, "normal galaxies", "cluster of galaxies", and "active galaxies and quasar". For our cavity study, we used a final sample of 133 targets based on a consistent analysis of X-ray photon counts. (2 data files).

  14. Shelter from the Storm: Protecting the Chandra X-ray Observatory from Radiation

    Science.gov (United States)

    Cameron, Robert A.; Morris, David C.; Virani, Shanil N.; Wolk, Scott J.; Blackwell, William C.; Minow, Joseph I.; O'dell, Stephen L.

    NASA's Chandra X-ray Observatory was launched in July 1999, and the first images were recorded by the ACIS x-ray detector in August 1999. Shortly after first light, degradation of the energy resolution and charge transfer efficiency in the ACIS CCD detectors was observed, and this was quickly attributed to cumulative particle radiation damage in the CCD's, in particular from 100 keV to 200 keV protons. Since the onset of this radiation damage to ACIS, several improvements have been made to autonomous Chandra operation and ground-based operations and mission planning, to limit the effects of radiation while preserving optimum observing efficiency for the Observatory. These changes include implementing an automatic science instrument radiation protection system on Chandra, implementing a real-time radiation monitoring and alert system by the Science Operations Team, and improving the radiation prediction models used in mission planning for the Observatory. These satellite- and ground-based systems provide protection for Chandra from passages through the Earth's trapped radiation belts and outer magnetosphere and from flares and coronal mass ejections from the Sun. We describe the design and performance of the automatic on-board radiation protection system on Chandra, and the ground-based software systems and data products for real-time radiation monitoring. We also describe the development and characterize the performance of the Chandra Radiation Model (CRM), which provides predictions of the solar wind and magnetospheric proton fluxes along Chandra's orbit, indexed by the geomagnetic activity index, Kp. We compare the observed and predicted damage rates to ACIS based on net mission proton fluence, and outline planned enhancements to the CRM.

  15. NASA's High Energy Vision: Chandra and the X-Ray Universe

    Science.gov (United States)

    Mais, D. E.; Stencel, R. E.; Richards, D.

    2004-05-01

    The Chandra X-Ray Observatory is the most sophisticated X-ray observatory launched by NASA. Chandra is designed to observe X-rays from high-energy regions of the universe, such as the remnants of supernovae explosions, col- liding galaxies, black holes, pulsars, neutron stars, quasars, and X-ray bi- nary stars. The spectacular results from the first five years of Chandra ob- servations are changing and redefining theories with each observation. Every exciting new image shows glimpses of such exotic phenomena as super-massive black holes, surprising black hole activity in old galaxies, rivers of grav- ity that define the cosmic landscape, unexpected x-ray activity in proto- stars and failed stars, puzzling distributions of elements in supernovae remnants, the sound waves from a super-massive black hole, and the even the tantalizing possibility of an entirely new form of matter - the strange quark star. On September 14, 2000, triggered by alerts from amateur astron- omers worldwide, Chandra observed the outburst of the brightest northern dwarf nova SS Cygni. The cooperation of hundreds of amateur variable star astronomers and the Chandra X-Ray scientists and spacecraft specialists pro- vided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.

  16. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  17. Cavity magnomechanics

    Science.gov (United States)

    Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong

    2016-05-01

    Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.

  18. Dental cavities

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...

  19. Meat consumption and risk of oral cavity and oropharynx cancer: a meta-analysis of observational studies.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available PURPOSE: High meat consumption, especially red and processed meat consumption is associated with an increased risk of several cancers, however, evidence for oral cavity and oropharynx cancer is limited. Thus, we performed this meta-analysis to determine the association between intakes of total meat, processed meat, red meat, and white meat, and the risk of oral cavity and oropharynx cancer. METHODS: Electronic search of Pubmed, Embase, and Cochrane Library Central database was conducted to select relevant studies. Fixed-effect and random-effect models were used to estimate summary relative risks (RR and the corresponding 95% confidence intervals (CIs. Potential sources of heterogeneity were detected by meta-regression. Subgroup analyses and sensitivity analysis were also performed. RESULTS: 12 case-control studies and one cohort study were included in the analyses, including 501,730 subjects and 4,104 oral cavity and oropharynx cancer cases. Pooled results indicated that high consumption of total meat, red meat, and white meat were not significantly associated with increased risk of oral cavity and oropharynx cancer (RR = 1.14, 95% CI[0.78-1.68]; RR = 1.05, 95% CI[0.66, 1.66] and RR = 0.81, 95% CI[0.54, 1.22], respectively, while the high consumption of processed meat was significantly associated with a 91% increased risk of oral cavity and oropharynx cancer (RR = 1.91, 95% CI [1.19-3.06]. Sensitivity analysis indicated that no significant variation in combined RR by excluding any of the study, confirming the stability of present results. CONCLUSIONS: The present meta-analysis suggested that high consumption of processed meat was significantly associated with an increased risk of oral cavity and oropharynx cancer, while there was no significantly association between total meat, red meat or white meat and the risk of oral cavity and oropharynx cancer. More prospective cohort studies are warranted to confirm these associations.

  20. CHANDRA'S CLOSE ENCOUNTER WITH THE DISINTEGRATING COMETS 73P/2006 (SCHWASSMANN-WACHMANN 3) FRAGMENT B AND C/1999 S4 (LINEAR)

    NARCIS (Netherlands)

    Wolk, S. J.; Lisse, C. M.; Bodewits, D.; Christian, D. J.; Dennerl, K.

    2009-01-01

    On 2006 May 23, we used the ACIS-S instrument on Chandra to study the X-ray emission from the B fragment of comet 73P/2006 (Schwassmann-Wachmann 3) (73P/B). We obtained a total of 20 ks of Chandra observation time of Fragment B, and also investigated contemporaneous Advanced Composition Explorer and

  1. Chandra Discovers Eruption and Pulsation in Nova Outburst

    Science.gov (United States)

    2001-09-01

    NASA's Chandra X-ray Observatory has discovered a giant outburst of X-rays and unusual cyclical pulsing from a white dwarf star that is closely orbiting another star -- the first time either of these phenomena has been seen in X-rays. The observations are helping scientists better understand the thermonuclear explosions that occur in certain binary star systems. The observations of Nova Aquilae were reported today at the "Two Years of Science with Chandra" symposium by an international team led by Sumner Starrfield of Arizona State University. "We found two important results in our Chandra observations. The first was an underlying pulsation every 40 minutes in the X-ray brightness, which we believe comes from the cyclical expansion and contraction of the outer layers of the white dwarf," said Starrfield. "The other result was an enormous flare of X-rays that lasted for 15 minutes. Nothing like this has been seen before from a nova, and we don't know how to explain it." Novas occur on a white dwarf (a star which used up all its nuclear fuel and shrank to roughly the size of the Earth) that is orbiting a normal size star. Strong gravity tides drag hydrogen gas off the normal star and onto the white dwarf, where it can take more than 100,000 years for enough hydrogen to accumulate to ignite nuclear fusion reactions. Gradually, these reactions intensify until a cosmic-sized hydrogen bomb blast results. The outer layers of the white dwarf are then blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space. "Chandra has allowed us to see deep into the gases ejected by this giant explosion and extract unparalleled information on the evolution of the white dwarf whose surface is exploding," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. The brightening of Nova Aquilae was first detected by optical astronomers in December 1999. "Although this star is at a distance of more than 6

  2. Chandra ACIS-S Observations of Three Quasars with Low-Redshift Damped Ly-alpha Absorption Constraints on the Cosmic Neutral-Gas-Phase Metallicity at Redshift z \\approx 0.4

    CERN Document Server

    Turnshek, D A; Ptak, A F; Griffiths, R E; Monier, E M; Turnshek, David A.; Rao, Sandhya M.; Ptak, Andrew F.; Griffiths, Richard E.; Monier, Eric M.

    2003-01-01

    Chandra X-Ray Observatory (CXO) ACIS-S spectra of three quasars which lie behind three foreground damped Lyman alpha (DLA) absorbers are analyzed in order to attempt to determine the amount of photoelectric absorption due to metals present in their x-ray spectra. These absorbers are the three largest neutral hydrogen column density absorption-line systems known at low redshift (0.313 \\le z_abs \\le 0.524). They have HI column densities which lie between 3E21 and 5E21 atoms/cm^2. At these redshifts the amount of photoelectric absorption at x-ray energies is primarily an indicator of the oxygen abundance. Since the column densities of these systems are so high, one would expect accurate metallicity measurements of them to yield a robust estimate of the column-density-weighted cosmic neutral-gas-phase metallicity at z \\approx 0.4. We consider cases where the DLA gas has solar element abundance ratios and ones with the alpha-group element abundance ratios enhanced. For the adopted assumptions, the column-density-w...

  3. Chandra High Resolution Spectroscopy of the Burst Spectrum of EXO 0748-67

    NARCIS (Netherlands)

    Telis, G.; Paerels, F.; Audard, M.; Lanz, T.; Cottam, J.; Méndez, R.M.; Bildsten, L.; Chang, P.; Marshall, H.

    2004-01-01

    We have observed EXO0748-67 for approximately 300 ksec with the High Energy Transmission Grating Spectrometer on Chandra. A total of 35 Type I X-ray bursts occurred during our observation, and from these we obtained a composite burst spectrum with high sensitivity in the Fe K band. Along with the sp

  4. Chandra Imaging of Gamma-Ray Binaries

    CERN Document Server

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G

    2013-01-01

    We review the multiwavelength properties of the few known gamma-ray binaries, focusing on extended emission recently resolved with Chandra. We discuss the implications of these findings for the nature of compact objects and for physical processes operating in these systems.

  5. A Deep Chandra ACIS Survey of M51

    Science.gov (United States)

    Kuntz, K. D.; Long, Knox S.; Kilgard, Roy E.

    2016-08-01

    We have obtained a deep X-ray image of the nearby galaxy M51 using Chandra. Here we present the catalog of X-ray sources detected in these observations and provide an overview of the properties of the point-source population. We find 298 sources within the D 25 radii of NGC 5194/5, of which 20% are variable, a dozen are classical transients, and another half dozen are transient-like sources. The typical number of active ultraluminous X-ray sources in any given observation is ˜5, and only two of those sources persist in an ultraluminous state over the 12 yr of observations. Given reasonable assumptions about the supernova remnant population, the luminosity function is well described by a power law with an index between 1.55 and 1.7, only slightly shallower than that found for populations dominated by high-mass X-ray binaries (HMXBs), which suggests that the binary population in NGC 5194 is also dominated by HMXBs. The luminosity function of NGC 5195 is more consistent with a low-mass X-ray binary dominated population. Based on observations made with NASA's Chandra X-ray Observatory, which is operated by the Smithsonian Astrophysical Observatory under contract #NAS83060, and the data were obtained through program GO1-12115.

  6. Chandra X-ray Observatory Optical Axis and Aimpoint

    Science.gov (United States)

    Zhao, Ping

    2016-01-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond resolution. Chandra comprises of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM). To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements stay rigid and stable for the entire life time of the Chandra operation. Tracking the Chandra optical axis and aimpoint with respect to detector positions is the most relevant measurement for understanding telescope stability. The study shows that both the optical axis and the aimpoint has been drifting since Chandra launch. I will discuss the telescope focal-point, optical axis, aimpoint, their positiondrifts during the mission, the impact to Chandra operations, and the permanent default aimpoint, to be implemented in Chandra cycle 18.

  7. Chandra X-Ray Sources in the LALA Cetus Field

    Science.gov (United States)

    Wang, J. X.; Zheng, Z. Y.; Malhotra, S.; Finkelstein, S. L.; Rhoads, J. E.; Norman, C. A.; Heckman, T. M.

    2007-11-01

    The 174 ks Chandra Advanced CCD Imaging Spectrometer exposure of the Large Area Lyman Alpha Survey (LALA) Cetus field is the second of the two deep Chandra images on LALA fields. In this paper we present the Chandra X-ray sources detected in the Cetus field, along with an analysis of X-ray source counts, stacked X-ray spectrum, and optical identifications. A total of 188 X-ray sources were detected: 174 in the 0.5-7.0 keV band, 154 in the 0.5-2.0 keV band, and 113 in the 2.0-7.0 keV band. The X-ray source counts were derived and compared with LALA field (172 ks exposure). Interestingly, we find consistent hard-band X-ray source density, but (36+/-12)% higher soft-band X-ray source density in Cetus field. The weighted stacked spectrum of the detected X-ray sources can be fitted by a power law with photon index Γ=1.55. Based on the weighted stacked spectrum, we find that the resolved fraction of the X-ray background drops from (72+/-1)% at 0.5-1.0 keV to (63+/-4)% at 6.0-8.0 keV. The unresolved spectrum can be fitted by a power law over the range 0.5-7 keV, with a photon index Γ=1.22. We also present optical counterparts for 154 of the X-ray sources, down to a limiting magnitude of r'=25.9 (Vega), using a deep r'-band image obtained with the MMT. Optical Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  8. Chandra's Cosmos: Dark Matter, Black Holes, and Other Wonders Revealed by NASA's Premier X-ray Observatory

    Science.gov (United States)

    Tucker, Wallace H.

    2017-03-01

    On July 23, 1999, the Chandra X-Ray Observatory, the most powerful X-ray telescope ever built, was launched aboard the space shuttle Columbia. Since then, Chandra has given us a view of the universe that is largely hidden from telescopes sensitive only to visible light. In Chandra's Cosmos, the Smithsonian Astrophysical Observatory's Chandra science spokesperson Wallace H. Tucker uses a series of short, connected stories to describe the telescope's exploration of the hot, high-energy face of the universe. The book is organized in three parts: "The Big," covering the cosmic web, dark energy, dark matter, and massive clusters of galaxies; "The Bad," exploring neutron stars, stellar black holes, and supermassive black holes; and "The Beautiful," discussing stars, exoplanets, and life. Chandra has imaged the spectacular, glowing remains of exploded stars and taken spectra showing the dispersal of their elements. Chandra has observed the region around the supermassive black hole in the center of our Milky Way and traced the separation of dark matter from normal matter in the collision of galaxies, contributing to both dark matter and dark energy studies. Tucker explores the implications of these observations in an entertaining, informative narrative aimed at space buffs and general readers alike.

  9. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    CERN Document Server

    Vikhlinin, A; Burenin, R A; Ebeling, H; Forman, W R; Hornstrup, A; Jones, C; Murray, S S; Nagai, D; Quintana, H; Voevodkin, A

    2008-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of structure based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 36 clusters with =0.55 derived from 400deg^2 ROSAT serendipitous survey and 49 brightest z=~0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Omega_Lambda>0 with a ~5sigma significance, and constrains the dark energy equation of state parameter to w0=-1.14+-0.21, assuming constant w and flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, WMAP, and baryonic aco...

  10. The Chandra COSMOS Legacy survey: optical/IR identifications

    CERN Document Server

    Marchesi, S; Elvis, M; Salvato, M; Brusa, M; Comastri, A; Gilli, R; Hasinger, G; Lanzuisi, G; Miyaji, T; Treister, E; Urry, C M; Vignali, C; Zamorani, G; Allevato, V; Cappelluti, N; Cardamone, C; Finoguenov, A; Griffiths, R E; Karim, A; Laigle, C; LaMassa, S M; Jahnke, K; Ranalli, P; Schawinski, K; Schinnerer, E; Silverman, J D; Smolcic, V; Suh, H; Trakhtenbrot, B

    2015-01-01

    We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 square degrees of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 micron identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 micron information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while 54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is availa...

  11. Modeling Contamination Migration on the Chandra X-Ray Observatory - III

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.

    2015-01-01

    During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations

  12. Cavity QED by the Numbers

    Science.gov (United States)

    Kimble, H. J.; Boca, A.; Boozer, A. D.; Bowen, W. P.; Buck, J. R.; Chou, C. W.; Duan, L.-M.; Kuzmich, A.; McKeever, J.

    2004-12-01

    Observations of cooling and trapping of N = 1,2,3,... atoms inside a small optical cavity are described. The atom-cavity system operates in a regime of strong coupling for which single photons are sufficient to saturate the atomic response. New theoretical protocols for the efficient engineering of multi-atom entanglement within the setting of cavity QED are described. By trapping a single atom within the cavity mode, a one-atom laser is experimentally realized in a regime of strong coupling. Beyond the setting of cavity QED, quantum correlations have been observed for photon pairs emitted from an atomic ensemble and with a programmable time offset.

  13. Chandra Data Analysis of H2O Megamaser Galaxy NGC 4258

    Indian Academy of Sciences (India)

    Baisheng Liu; Jiangshui Zhang; Jin Wang

    2011-03-01

    Chandra observations of NGC 4258 were analyzed to investigate the circumnuclear environment of the H2O megamaser galaxy. Its adaptively-smoothed image shows a bright nucleus and another weak source nearby. For the maser host nucleus, our preferred fitting of its spectra gives the absorption of ∼ 7 × 1022cm-2.

  14. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.;

    2009-01-01

    We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration of relati...

  15. APC implementation in Chandra Asri - ethylene plant

    Science.gov (United States)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  16. Chandra hardware and systems: keeping things running

    Science.gov (United States)

    Paton, Lisa

    2006-06-01

    System management for any organization can be a challenge, but satellite projects present their own issues. I will be presenting the network and system architecture chosen to support the scientists in the Chandra X-ray Center. My group provides the infrastructure for science data processing, mission planning, user support, archive support and software development. Our challenge is to create a stable environment with enough flexibility to roll with the changes during the mission. I'll discuss system and network choices, web service, backups, security and systems monitoring. Also, how to build infrastructure that's flexible, how to support a large group of scientists with a relatively small staff, what challenges we faced (anticipated and unanticipated) and what lessons we learned over the past 6 years since the launch of Chandra. Finally I'll outline our plans for the future including beowulf cluster support, an improved helpdesk system, methods for dealing with the explosive amount of data that needs to be managed.

  17. Deep Chandra study of the truncated cool core of the Ophiuchus cluster

    Science.gov (United States)

    Werner, N.; Zhuravleva, I.; Canning, R. E. A.; Allen, S. W.; King, A. L.; Sanders, J. S.; Simionescu, A.; Taylor, G. B.; Morris, R. G.; Fabian, A. C.

    2016-08-01

    We present the results of a deep Chandra observation of the Ophiuchus cluster, the second brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT ˜ 1 keV in the core to kT ˜ 9 keV at r ˜ 30 kpc. Beyond r ˜ 30 kpc, the intracluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing-induced cold fronts, with indications for both Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The residual image reveals a likely subcluster south of the core at the projected distance of r ˜ 280 kpc. The cluster also harbours a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuations outside of the cooling core is low, indicating velocities smaller than ˜100 km s-1. The density fluctuations might be damped by thermal conduction in the hot and remarkably isothermal ICM, resulting in our underestimate of gas velocities. We find a surprising, sharp surface brightness discontinuity, that is curved away from the core, at r ˜ 120 kpc to the south-east of the cluster centre. We conclude that this feature is most likely due to gas dynamics associated with a merger. The cooling core lacks any observable X-ray cavities and the active galactic nucleus (AGN) only displays weak, point-like radio emission, lacking lobes or jets. The lack of strong AGN activity may be due to the bulk of the cooling taking place offset from the central supermassive black hole.

  18. The Chandra Deep Field South the 1 Million Second

    CERN Document Server

    Rosati, P; Giacconi, R; Gilli, R; Hasinger, G; Kewley, L J; Mainieri, V; Nonino, M; Norman, C; Szokoly, G; Wang, J X; Zirm, A W; Bergeron, J; Borgani, S; Gilmozzi, R; Grogin, N A; Koekemoer, A M; Schreier, E J; Zheng, W

    2002-01-01

    We present the main results from our 940 ksec observation of the Chandra Deep Field South (CDFS), using the source catalog described in an accompanying paper (Giacconi et al. 2001). We extend the measurement of source number counts to 5.5e-17 erg/cm^2/s in the soft 0.5-2 keV band and 4.5e-16 erg/cm^2/s in the hard 2-10 keV band. The hard band LogN-LogS shows a significant flattening (slope~=0.6) below ~1e-14 erg/cm^2/s, leaving at most 10-15% of the X-ray background (XRB) to be resolved, the main uncertainty lying in the measurement of the total flux of the XRB. On the other hand, the analysis in the very hard 5-10 keV band reveals a relatively steep LogN-LogS (slope ~=1.3) down to 1e-15 erg/cm^2/s. Together with the evidence of a progressive flattening of the average X-ray spectrum near the flux limit, this indicates that there is still a non negligible population of faint hard sources to be discovered at energies not well probed by Chandra, which possibly contribute to the 30 keV bump in the spectrum of the...

  19. Chandra Multiwavelength Project X-ray Point Source Catalog

    CERN Document Server

    Kim, M; Wilkes, B J; Green, P J; Kim, E; Anderson, C S; Barkhouse, W A; Evans, N R; Ivezic, Z; Karovska, M; Kashyap, V L; Lee, M G; Maksym, P; Mossman, A E; Silverman, J D; Tananbaum, H D; Kim, Minsun; Kim, Dong-Woo; Wilkes, Belinda J.; Green, Paul J.; Kim, Eunhyeuk; Anderson, Craig S.; Barkhouse, Wayne A.; Evans, Nancy R.; Ivezic, Zeljko; Karovska, Margarita; Kashyap, Vinay L.; Lee, Myung Gyoon; Maksym, Peter; Mossman, Amy E.; Silverman, John D.; Tananbaum, Harvey D.

    2006-01-01

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6,800 X-ray sources detected in 149 Chandra observations covering \\~10 deg^2. The full ChaMP catalog sample is seven times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124 ksec, corresponding to a deepest X-ray flux limit of f_{0.5-8.0} = 9 x 10^{-16} erg/cm2/sec. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines, and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in 8 different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability and positional uncertainty. To quantitatively assess those parameters, we performed extensive simulations. In particular, we present a set of empirical equations: the flux limit as a function of effective exposure time, and the p...

  20. The BMW-Chandra survey. Serendipitous Source Catalogue

    CERN Document Server

    Romano, P; Campana, S; Moretti, A; Panzera, M R; Tagliaferri, G; Mottini, M

    2009-01-01

    We present the BMW-Chandra source catalogue derived from Chandra ACIS-I observations (exposure time >10ks) public as of March 2003 by using a wavelet detection algorithm (Lazzati et al. 1999; Campana et al. 1999). The catalogue contains a total of 21325 sources, 16758 of which are serendipitous. Our sky coverage in the soft band (0.5-2 keV, S/N =3) is ~8 deg^2 for F_X > 10^-13 erg cm^-2 s-1, and ~2 deg^2 for F_X >10^-15 erg cm^-2 s^-1. The catalogue contains information on positions, count rates (and errors) in three energy bands. (total, 0.5-7 keV; soft, 0.5-2 keV; and hard, 2-7keV), and in four additional energy bands, SB1 (0.5-1keV), SB2 (1-2 keV), HB1 (2-4 keV), and HB2 (4-7keV), as well as information on the source extension, and cross-matches with the FIRST, IRAS, 2MASS, and GSC-2 catalogues.

  1. The BMW-Chandra survey. Serendipitous Source Catalogue

    Science.gov (United States)

    Romano, P.; Mignani, R. P.; Campana, S.; Moretti, A.; Panzera, M. R.; Tagliaferri, G.; Mottini, M.

    2009-07-01

    We present the BMW-Chandra source catalogue derived from Chandra ACIS-I observations (exposure time > 10ks) public as of March 2003 by using a wavelet detection algorithm (Lazzati et al. 1999; Campana et al. 1999). The catalogue contains a total of 21325 sources, 16758 of which are serendipitous. Our sky coverage in the soft band (0.5-2keV, S/N=3) is ~ 8 deg2 for FX ≥ 10-13 erg cm-2 s-1, and ~ 2 deg2 for FX ≥ 10-15 erg cm-2 s-1. The catalogue contains information on positions, count rates (and errors) in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), and in four additional energy bands, SB1 (0.5-1keV), SB2 (1-2keV), HB1 (2-4keV), and HB2 (4-7keV), as well as information on the source extension, and cross-matches with the FIRST, IRAS, 2MASS, and GSC-2 catalogues.

  2. Resolving galaxy cluster gas properties at z ∼ 1 with XMM-Newton and Chandra

    Science.gov (United States)

    Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Démoclès, J.; van der Burg, R. F. J.; Mazzotta, P.

    2017-02-01

    Massive, high-redshift, galaxy clusters are useful laboratories to test cosmological models and to probe structure formation and evolution, but observations are challenging due to cosmological dimming and angular distance effects. Here we present a pilot X-ray study of the five most massive (M500 > 5 × 1014M⊙), distant (z 1), clusters detected via the Sunyaev-Zel'Dovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM-Newton to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, which are constrained in the centre by Chandra and in the outskirts by XMM-Newton. We show that the Chandra-XMM-Newton combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM-Newton sensitivity allowing higher significance detection of faint substructures. Measuring the morphology using images from both instruments, we found that the sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM-Newton density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7 R500. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than that observed in the local Universe. We make a comparison with the predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through

  3. Cardiac looping may be driven by compressive loads resulting from unequal growth of the heart and pericardial cavity. Observations on a physical simulation model

    Directory of Open Access Journals (Sweden)

    Jörg eMänner

    2014-04-01

    Full Text Available The transformation of the straight embryonic heart tube into a helically wound loop is named cardiac looping. Such looping is regarded as an essential process in cardiac morphogenesis since it brings the building blocks of the developing heart into an approximation of their definitive topographical relationships. During the past two decades, a large number of genes have been identified which play important roles in cardiac looping. However, how genetic information is physically translated into the dynamic form changes of the looping heart is still poorly understood. The oldest hypothesis of cardiac looping mechanics attributes the form changes of the heart loop (ventral bending → simple helical coiling → complex helical coiling to compressive loads resulting from growth differences between the heart and the pericardial cavity. In the present study, we have tested the physical plausibility of this hypothesis, which we call the growth-induced buckling hypothesis, for the first time. Using a physical simulation model, we show that growth-induced buckling of a straight elastic rod within the confined space of a hemispherical cavity can generate the same sequence of form changes as observed in the looping embryonic heart. Our simulation experiments have furthermore shown that, under bilaterally symmetric conditions, growth-induced buckling generates left- and right-handed helices (D-/L-loops in a 1:1 ratio, while even subtle left- or rightward displacements of the caudal end of the elastic rod at the pre-buckling state are sufficient to direct the buckling process towards the generation of only D-loops or L-loops, respectively. Our data are discussed with respect to observations made in biological ‘models’. We conclude that compressive loads resulting from unequal growth of the heart and pericardial cavity play important roles in cardiac looping. Asymmetric positioning of the venous heart pole may direct these forces towards a biased

  4. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  5. Sharp Chandra View of ROSAT All-Sky Survey Bright Sources: I. Improvement of Positional Accuracy

    CERN Document Server

    Gao, Shuang; Liu, Jifeng

    2016-01-01

    The ROSAT All-Sky Survey (RASS) represents one of the most complete and sensitive soft X-ray all-sky surveys to date. However, the deficient positional accuracy of the RASS Bright Source Catalog (BSC) and subsequent lack of firm optical identifications affect the multi-wavelength studies of X-ray sources. The widely used positional errors $\\sigma_{pos}$ based on the Tycho Stars Catalog (Tycho-1) have previously been applied for identifying objects in the optical band. The considerably sharper Chandra view covers a fraction of RASS sources, whose $\\sigma_{pos}$ could be improved by utilizing the sub-arcsec positional accuracy of Chandra observations. We cross-match X-ray objects between the BSC and \\emph{Chandra} sources extracted from the Advanced CCD Imaging Spectrometer (ACIS) archival observations. A combined counterparts list (BSCxACIS) with \\emph{Chandra} spatial positions weighted by the X-ray flux of multi-counterparts is employed to evaluate and improve the former identifications of BSC with the other...

  6. The Brera Multi-scale Wavelet Chandra Survey. The serendipitous source catalogue

    CERN Document Server

    Romano, P; Mignani, R P; Moretti, A; Panzera, M R; Tagliaferri, G; Mottini, M

    2009-01-01

    We present the Brera Multi-scale Wavelet Chandra (BMW-Chandra) source catalogue drawn from essentially all Chandra ACIS-I pointed observations with an exposure time in excess of 10ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterise both point-like and extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings. This makes our catalogue the largest compilation of Chandra sources to date. The 0.5-10keV absorption corrected fluxes of these sources range from 3E-16 to 9E-12 erg/cm2/s with a median of 7E-15 erg/cm2/s. The catalogue consists of count rates and relative errors in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), where the detection was performed, and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate...

  7. A 100-m Fabry–Pérot Cavity with Automatic Alignment Controls for Long-Term Observations of Earth’s Strain

    Directory of Open Access Journals (Sweden)

    Akiteru Takamori

    2014-08-01

    Full Text Available We have developed and built a highly accurate laser strainmeter for geophysical observations. It features the precise length measurement of a 100-m optical cavity with reference to a stable quantum standard. Unlike conventional laser strainmeters based on simple Michelson interferometers that require uninterrupted fringe counting to track the evolution of ground deformations, this instrument is able to determine the absolute length of a cavity at any given time. The instrument offers advantage in covering a variety of geophysical events, ranging from instantaneous earthquakes to crustal deformations associated with tectonic strain changes that persist over time. An automatic alignment control and an autonomous relocking system have been developed to realize stable performance and maximize observation times. It was installed in a deep underground site at the Kamioka mine in Japan, and an effective resolution of 2 × (10−8 − 10−7 m was achieved. The regular tidal deformations and co-seismic strain changes were in good agreement with those from a theoretical model and a co-located conventional laser strainmeter. Only the new instrument was able to record large strain steps caused by a nearby large earthquake because of its capability of absolute length determination.

  8. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  9. Chandra's Find of Lonely Halo Raises Questions About Dark Matter

    Science.gov (United States)

    2004-10-01

    Dark matter continues to confound astronomers, as NASA's Chandra X-ray Observatory demonstrated with the detection of an extensive envelope of dark matter around an isolated elliptical galaxy. This discovery conflicts with optical data that suggest a dearth of dark matter around similar galaxies, and raises questions about how galaxies acquire and keep such dark matter halos. The observed galaxy, known as NGC 4555, is unusual in that it is a fairly large, elliptical galaxy that is not part of a group or cluster of galaxies. In a paper to be published in the November 1, 2004 issue of the Monthly Notices of the Royal Astronomical Society, Ewan O'Sullivan of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA and Trevor Ponman of the University of Birmingham, United Kingdom, use the Chandra data to show that the galaxy is embedded in a cloud of 10-million-degree-Celsius gas. X-ray/Optical Composite of NGC 4555 X-ray/Optical Composite of NGC 4555 This hot gas cloud has a diameter of about 400,000 light years, about twice that of the visible galaxy. An enormous envelope, or halo, of dark matter is needed to confine the hot cloud to the galaxy. The total mass of the dark matter halo is about ten times the combined mass of the stars in the galaxy, and 300 times the mass of the hot gas cloud. A growing body of evidence indicates that dark matter - which interacts with itself and "normal" matter only through gravity - is the dominant form of matter in the universe. According to the popular "cold dark matter" theory, dark matter consists of mysterious particles left over from the dense early universe that were moving slowly when galaxies and galaxy clusters began to form. "The observed properties of NGC 4555 confirm that elliptical galaxies can posses dark matter halos of their own, regardless of their environment," said O'Sullivan. "This raises an important question: what determines whether elliptical galaxies have dark matter halos?" DSS Optical Image of NGC

  10. The STS-93 crew takes part in payload familiarization of the Chandra X-ray Observatory

    Science.gov (United States)

    1999-01-01

    A TRW technician joins STS-93 Commander Eileen Collins (center) and Pilot Jeffrey S. Ashby (right) as they observe the Chandra X- ray Observatory on its work stand inside the Vertical Processing Facility. Other members of the STS-93 crew who are at KSC for payload familiarization are Mission Specialists Catherine G. Coleman and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a shuttle mission commander. She was the first woman pilot of a Space Shuttle, on mission STS-63, and also served as pilot on mission STS-84. The fifth member of the crew is Mission Specialist Steven A. Hawley. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  11. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    CERN Document Server

    Israel, Gian Luca; Castillo, Guillermo Andres Rodriguez; Sidoli, Lara

    2016-01-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 years of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190,000 lightcurves out of about 430,000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS@BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above about 2,000s resembles that of...

  12. 中心静脉导管腹腔置入的应用观察%Application and observation of placing central venous catheter into abdominal cavity

    Institute of Scientific and Technical Information of China (English)

    张玉军; 于建昌; 徐光耀

    2012-01-01

    Objective To observe the feasibility and the clinical effect of placing central venous catheter into the abdominal cavity. Methods 46 patients with massive ascites were randomly divided into two groups: group A and group B, 23 cases in each group, The patients in group A were placed central venous catheter into abdominal cavity. Group B was the traditional abdominal puncture's group. Results The central venous catheter was inserted into the abdominal cavity of patients in group A, each patient's average abdominal puncture was (l.l±0.1) times, average accumulative total put liquid was (18 210+65) mL,average note medicine was (1.5±0.2) times the number, clinical symptoms improved 21 cases,the recovery was 91.3%. Group B give repeated technic of abdominal smoke fluid, each patient's average abdominal puncture was (3.3± 0.2) times, average accumulative total put liquid was (9 750±70) mL, the mean number of injcetion was (0.7±0.1) times, clinical symptoms of 16 cases improved, the recovery rate was 69.6%. There were significant differences between the two groups with puncture number, releasing ascites, injecting the drugs into abdominal cavity, improving clinical symptoms (P < 0.05). Group A was better than group B. Conclusion The techniques of placing central venous catheter into the abdominal cavity has simple operation, good effect in releasing ascites and injecting the drugs into abdominal cavity, few side effect and should be used in massive ascites.%目的 观察中心静脉导管腹腔置入的可行性及临床应用效果.方法 将大量腹水的46例患者随机分为A、B两组,每组23例,A组为中心静脉导管腹腔置入组,B组为传统的腹腔穿刺术组.结果 A组把中心静脉导管置入腹腔,每例患者平均腹腔穿刺(1.1±0.1)次,平均累计放液(18 210±65)mL,平均注药次数(1.5±0.2)次,临床症状好转21例,好转率为91.3%.B组给予反复腹腔穿刺术抽液,每例患者平均穿刺次数(3.3±0.2)

  13. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  14. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  15. Discovery of an X-ray cavity near the radio lobes of Cygnus A indicating previous AGN activity

    CERN Document Server

    Chon, Gayoung; Krause, Martin; Truemper, Joachim

    2012-01-01

    Cygnus A harbours the nearest powerful radio jet of an Fanaroff-Riley (FR) class II radio galaxy in a galaxy cluster where the interaction of the jet with the intracluster medium (ICM) can be studied in detail. We use a large set of Chandra archival data, VLA and new LOFAR observations to shed new light on the interaction of the jets with the ICM. We identify an X-ray cavity in the distribution of the X-ray emitting plasma in the region south of the Cyg A nucleus which has lower pressure than the surrounding medium. The LOFAR and VLA radio observations show that the cavity is filled with synchrotron emitting plasma. The spectral age and the buoyancy time of the cavity indicates an age at least as large as the current Cyg A jets and not much larger than twice this time. We suggest that this cavity was created in a previous active phase of Cyg A when the energy output of the Active Galactic Nucleus (AGN) was about two orders of magnitude less than today.

  16. Chandra Detects Halo Of Hot Gas Around Milky Way-Like Galaxy

    Science.gov (United States)

    2001-07-01

    The first unambiguous evidence for a giant halo of hot gas around a nearby, spiral galaxy much like our own Milky Way was found by astronomers using NASA's Chandra X-ray Observatory. This discovery may lead to a better understanding of our own Galaxy, as well the structure and evolution of galaxies in general. A team of astronomers, led by Professor Daniel Wang of the University of Massachusetts, Amherst, observed NGC 4631, a spiral galaxy approximately 25 million light years from Earth with both Chandra and NASA's Hubble Space Telescope. While previous X-ray satellites have detected extended X-ray emission from this and other spiral galaxies, because of Chandra's exceptional resolution this is the first time that astronomers were able to separate the individual X-ray sources from the diffuse halo. Chandra found the diffuse halo of X-ray gas to be radiating at a temperature of almost 3 million degrees and extending some 25,000 light years from the galactic plane. "Scientists have debated for over 40 years whether the Milky Way has an extended corona, or halo, of hot gas," said Wang, lead author of the paper which appeared this month in The Astrophysical Journal Letters. "Of course since we are within the Milky Way, we can't get outside and take a picture. However, by studying similar galaxies like NGC 4631, we can get an idea of what's going on within our own Galaxy." The Chandra image reveals a halo of hot gas that extends for approximately 25,000 light years above the disk of the galaxy. One important feature of the X-ray emission from NGC 4631 is that it closely resembles the overall size and shape seen in the radio emission from the galaxy. This indicates that there may be a close connection between the outflows of hot gas, seen in X-rays, and the galaxy's magnetic field, revealed by radio emission. The Hubble image of NGC 4631 shows filamentary, loop-like structures enclosing enhanced X-ray-emitting gas and emanating from regions of recent star formation in

  17. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Brusa, M.; Lanzuisi, G.; Vignali, C. [Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Allevato, V.; Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Cardamone, C. [Department of Science, Wheelock College, Boston, MA 02215 (United States); Griffiths, R. E. [Physics and Astronomy Dept., Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Karim, A. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2016-01-20

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.

  18. The Quality and Stability of Chandra Telescope Spacial Resolution

    Science.gov (United States)

    Zhao, Ping

    2017-08-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond spacial resolution. Chandra is comprised of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM), which is where the X-ray detectors mounted and is connected to the HRMA by a 10-meter long Optical Bench Assembly. To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements to stay rigid and stable for the entire life time of the Chandra operation. I will review the issues of telescope pointing stability, optical Axis, aimpoint and their impacts to the Chandra operation, and evaluate the integrity and stability of the telescope. I will show images taken from all four detectors since launch to demonstrate the quality and stability of the Chandra spacial resolution.

  19. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    Science.gov (United States)

    Israel, G. L.; Esposito, P.; Rodríguez Castillo, G. A.; Sidoli, L.

    2016-11-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 yr of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190 000 light curves out of about 430 000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS @ BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above ˜2000 s resembles that of cataclysmic variables, while there is a paucity of sources with shorter period and low fluxes. Since there is not an obvious bias against these detections, a possible interpretation is in terms of a magnetic gating mechanism in accreting neutron stars. Finally, we note that CATS @ BAR is a living project and the detection algorithm will continue to be routinely applied to the new Chandra data as they become public. Based on the results obtained so far, we expect to discover about three new pulsators every year.

  20. Chandra Locates Mother Lode of Planetary Ore in Colliding Galaxies

    Science.gov (United States)

    2004-01-01

    NASA's Chandra X-ray Observatory has discovered rich deposits of neon, magnesium, and silicon in a pair of colliding galaxies known as The Antennae. When the clouds in which these elements are present cool, an exceptionally high number of stars with planets should form. These results may foreshadow the fate of the Milky Way and its future collision with the Andromeda Galaxy. "The amount of enrichment of elements in The Antennae is phenomenal," said Giuseppina Fabbiano of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. at a press conference at a meeting of the American Astronomical Society in Atlanta, Ga. "This must be due to a very high rate of supernova explosions in these colliding galaxies." Fabbiano is lead author of a paper on this discovery by a team of U.S. and U.K. scientists that will appear in an upcoming issue of The Astrophysical Journal Letters. When galaxies collide, direct hits between stars are extremely rare, but collisions between huge gas clouds in the galaxies can trigger a stellar baby boom. The most massive of these stars race through their evolution in a few million years and explode as supernovas. Heavy elements manufactured inside these stars are blown away by the explosions and enrich the surrounding gas for thousands of light years. "The amount of heavy elements supports earlier studies that indicate there was a very high rate of relatively recent supernovas, 30 times that of the Milky Way," according to collaborator Andreas Zezas of the CfA. Animation of Colliding Galaxies Animation of Colliding Galaxies The supernova violence also heats the gas to millions of degrees Celsius. This makes much of the matter in the clouds invisible to optical telescopes, but it can be observed by an X-ray telescope. Chandra data revealed for the first time regions of varying enrichment in the galaxies – in one cloud magnesium and silicon are 16 and 24 times as abundant as in the Sun. "These are the kinds of elements that

  1. Chandra Looks Over a Cosmic Four-Leaf Clover

    Science.gov (United States)

    2004-07-01

    A careful analysis of observations by NASA's Chandra X-ray Observatory of a rare quadruple quasar has uncovered evidence that possibly a single star in a foreground galaxy magnified X-rays coming from the quasar. This discovery gives astronomers a new and extremely precise probe of the gas flow around the supermassive black hole that powers the quasar. "If our interpretation is correct, then we are seeing details around this black hole that are 50,000 times smaller than either the Hubble Space Telescope or Chandra could see under ordinary circumstances," said George Chartas of Penn State University in University Park, and lead author of a recent article on the Cloverleaf quasar in The Astrophysical Journal. The Cloverleaf quasar is a single object about 11 billion light years from Earth that appears as four images produced by a process known as gravitational lensing. If one or more galaxies lie along the line of sight to a more distant quasar, the gravitational field of the intervening galaxies can bend and magnify the light from the quasar and produce multiple images of it. The four images of the Cloverleaf quasar have been produced by one or more intervening galaxies. Cloverleaf Quasar Chandra X-ray Image of the Cloverleaf quasar One of the images (A), in the Cloverleaf is brighter than the others in both optical and X-ray light. Chartas and his colleagues found the relative brightness of this image was greater in X-ray than in optical light. The X-rays from iron atoms were also enhanced relative to X-rays at lower energies. Since the amount of brightening due to gravitational lensing does not vary with the wavelength, this means that an additional object has magnified the X-rays. The increased magnification of the X-ray light can be explained by gravitational microlensing, an effect which has been used to search for compact stars and planets in our galaxy. Microlensing occurs when a star or a multiple star system passes in front of light from a background object

  2. Nustar and Chandra insight into the nature of the 3-40 kev nuclear emission in NGC 253

    DEFF Research Database (Denmark)

    Lehmer, B. D.; Wik, D. R.; Hornschemeier, A. E.;

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array ( NuSTAR ) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 keV intensity of the inner ~ 20 arcsec ( ~ 400 pc) nuclear region......, as measured by NuSTAR , varied by a factor of ~ 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous ( L2-10 keV ~ few × 1039 erg s-1 ) point source located ~ 1 arcsec from the dynamical center of the galaxy...... nature for this source. Future NuSTAR and Chandra monitoring would be well equipped to break the degeneracy between the AGN and ULX nature of the 2003 source, if again caught in a high state....

  3. Chandra Finds Well-Established Black Holes In Distant Quasars

    Science.gov (United States)

    2002-03-01

    Pushing further back toward the first generation of objects to form in the universe, NASA's Chandra X-ray Observatory has observed the three most distant known quasars and found them to be prodigious producers of X-rays. This indicates that the supermassive black holes powering them were already in place when the Universe was only about one billion years old. "Chandra's superb sensitivity has allowed the detection of X-rays from the dawn of the modern universe, when the first massive black holes and galaxies were forming," said Niel Brandt of Penn State University, leader of one the teams involved. "These results indicate that future X-ray surveys should be able to detect the first black holes to form in the Universe." The three quasars were recently discovered at optical wavelengths by the Sloan Digital Sky Survey and are 13 billion light years from Earth, making them the most distant known quasars. The X-rays Chandra detected were emitted when the universe was only a billion years old, about 7 percent of the present age of the Universe. Since X-rays reveal conditions in the immediate vicinity of supermassive black holes, Brandt proposed that Chandra look at these objects in three snapshots of about two hours each to see if they were different from their older counterparts. The observations on January 29, 2002 were made public immediately and the four different teams quickly went to work on them. Brandt's team concluded that the quasars looked similar to ones that were at least twice as old, so the conditions around the central black hole had not changed much in that time, contrary to some theoretical expectations. A team led by Smita Mathur of Ohio State University reached a similar conclusion. "These young quasars do not appear to be any different from their older cousins, based upon our current understanding and assumptions," said Mathur. "Perhaps the most remarkable thing about them may be that they are so absolutely unremarkable." Jill Bechtold of the

  4. The Precise Location of the Soft Gamma Repeater SGR 1627-41 with Chandra

    Science.gov (United States)

    Wachter, S.; Kouveliotou, C.; Patel, S. K.; Tennant, A. F.; Woods, P. M.; Eichler, D.; Lyubarsky, Y.; Bouchet, P.

    2003-01-01

    We report the precise localization of the Soft Gamma Repeater SGR 1627-41 with the Chandra X-ray Observatory. The best position for SGR 1627-41 was determined to be RA=16:35:51.844, DEC=-47:35:23.31 (J2000) with an accuracy of 0.6 arcsec. We present the results of our search for an IR counterpart to SGR 1627-41 and compare our results to the existing detections and limits of other magnetar infrared and optical observations in the literature. We also present new observations of SGR 1806-20 obtained during the recent reactivation of the source. In addition, we have determined a precise location for archival Chandra observations and reanalyzed archival IR data in the search for a counterpart.

  5. X-ray Mass Profiles from Chandra Galaxy Atlas

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra

    2016-04-01

    We present preliminary results of a Chandra/XMM-Newton joint analysis on a sample of three Early Type Galaxies (ETGs, namely NGC4649, NGC4636 and NGC5846). X-ray observations of the hot ISM is used to measure the total enclosed mass assuming hydrostatic equilibrium, and compasion with mass distributions obtained through optical kinematics data of globular clusters and planetary nebulae yields informations about disturbances in the ISM distribution due to nuclear activity, merging history, etc. Our analysis makes use of the Chandra Galaxy Atlas (CGA) data products - exploiting the unmatched spatial resolution of the ACIS detectors to reveal fine ISM features and disturbances in the inner galactic regions - and XMM-Newton data - relying on the large field of view of EPIC detector to extend the mass profiles to larger radii. We then measured the mass profiles in various pie sectors to separate different gas features (e.g., discontinuity and extended tail) and compared them with GCs/PNe based mass profiles. The X-ray mass profiles of NGC4649 show a generally relaxed morphology and, in agreement with previous analysis, the comparison with the optical mass profiles shows a significant deviations on parsec scale likely due to non-thermal pressure linked to nuclear activity. In significantly disturbed cases (NGC4648 and NGC5846) where we found discontinuities and extended tails, we found that the mass profiles are over-estimated toward the compressed discontinuity and under-estimated toward the extended tails, similar to inflow and outflow cases. These preliminary results are promising toward an extended analysis of the whole CGA sample in order to study the distribution of gas temperature and metal abundances in the ISM, and to investigate scaling relations between ETG global quantities like ISM temperature, luminosity and total mass.

  6. Immunohistochemical observation of actin filaments in epithelial cells encircling the taste pore cavity of rat fungiform papillae

    OpenAIRE

    Y Shiba; Uchida, T.; K Wakida; Komiyama, S; Ohishi, Y.

    2009-01-01

    Epithelial cells are connected to each other around taste pores in rat fungiform papillae. Cytoskeletal components are responsible for the maintenance of intracellular adhesion, and we investigated the identification and localization of actin filaments around taste pores. On the basis of observations made by immunohistochemical transmission electron microscopy comparing with confocal laser scanning microscopy using actin-lectin double staining, actin filaments were found to be localized, enci...

  7. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  8. NASA'S Chandra Finds New Evidence on Origin of Supernovas

    Science.gov (United States)

    2011-04-01

    CAMBRIDGE, Ma. -- Astronomers may now know the cause of an historic supernova explosion that is an important type of object for investigating dark energy in the universe. The discovery, made using NASA's Chandra X-ray Observatory, also provides strong evidence that a star can survive the explosive impact generated when a companion star goes supernova. The new study examined the remnant of a supernova observed by the Danish astronomer Tycho Brahe in 1572. The object, dubbed Tycho for short, was formed by a Type Ia supernova, a category of stellar explosion useful in measuring astronomical distances because of their reliable brightness. Type Ia supernovas have been used to determine that the universe is expanding at an accelerating rate, an effect attributed to the prevalence of an invisible, repulsive force throughout space called dark energy. A team of researchers analyzed a deep Chandra observation of Tycho and found an arc of X-ray emission in the supernova remnant. Evidence supports the conclusion that a shock wave created the arc when a white dwarf exploded and blew material off the surface of a nearby companion star. "There has been a long-standing question about what causes Type Ia supernovas," said Fangjun Lu of the Institute of High Energy Physics, Chinese Academy of Sciences in Beijing. "Because they are used as steady beacons of light across vast distances, it is critical to understand what triggers them." One popular scenario for Type Ia supernovas involves the merger of two white dwarfs. In this case, no companion star or evidence for material blasted off a companion should exist. In the other main competing theory, a white dwarf pulls material from a "normal," or sun-like, companion star until a thermonuclear explosion occurs. Both scenarios may actually occur under different conditions, but the latest Chandra result from Tycho supports the latter one. n addition, the Tycho study seems to show the remarkable resiliency of stars, as the supernova

  9. Chandra data archive operations: lessons learned

    Science.gov (United States)

    McCollough, Michael L.; Rots, Arnold H.; Winkelman, Sherry L.

    2006-06-01

    We present a discussion of the lessons learned from establishing and operating the Chandra Data Archive (CDA). We offer an overview of the archive, what preparations were done before launch, the transition to operations, actual operations, and some of the unexpected developments that had to be addressed in running the archive. From this experience we highlight some of the important issues that need to be addressed in the creation and running of an archive for a major project. Among these are the importance of data format standards; the integration of the archive with the rest of the mission; requirements throughout all phases of the mission; operational requirements; what to expect at launch; the user interfaces; how to anticipate new tasks; and overall importance of team management and organization.

  10. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  11. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  12. Giant cavities, cooling and metallicity substructure in Abell 2204

    CERN Document Server

    Sanders, J S; Taylor, G B

    2008-01-01

    We present results from deep Chandra and XMM-Newton observations of the relaxed X-ray luminous galaxy cluster Abell 2204. We detect metallicity inhomogeneities in the intracluster medium on a variety of distance scales, from a ~12 kpc enhancement containing a few times 10^7 Msun of iron in the centre, to a region at 400 kpc radius with an excess of a few times 10^9 Msun. Subtracting an average surface brightness profile from the X-ray image yields two surface brightness depressions to the north and south of the cluster. Their morphology is similar to the cavities observed in cluster cores, but they have radii of 240 kpc and 160 kpc and have a total enthalpy of 2x10^62 erg. If they are fossil radio bubbles, their buoyancy timescales imply a total mechanical heating power of 5x10^46 erg/s, the largest such bubble heating power known. More likely, they result from the accumulation of many past bubbles. Energetically this is more feasible, as the enthalpy of these regions could combat X-ray cooling in this cluste...

  13. Deep Medium-Band Subaru Imaging of the MUSYC Extended Chandra Deep Field South

    Science.gov (United States)

    Urry, C. Megan; Cardamone, C.; van Dokkum, P.; Gawiser, E.; Brammer, G.; Taylor, N.; Treister, E.; Taniguchi, Y.; Sasaki, S.; Virani, S.; Kriek, M.

    2009-01-01

    We report on deep medium-band imaging with the Subaru telescope, in 18 filters from 427 nm to 856 nm, of the MUSYC survey field in the Extended Chandra Deep Field South. We detect 80,000 galaxies to equivalent magnitude R 27 mag, of which approximately 1,000 are X-ray-luminous AGN observed with Chandra and XMM. Combining the Subaru data with optical and IR data (in U,U38,B,V,R,I,z,J,K) we obtain photometric redshifts using EAZY, a fast public photometric redshift code, in the range 0outliers. We describe the colors of normal galaxies and AGN host galaxies at 0

  14. An Overview of the Performance of the Chandra X-Ray Observatory

    CERN Document Server

    Weisskopf, M C; Bautz, M; Cameron, R A; Dewey, D; Drake, J J; Grant, C E; Marshall, H L; Murray, S S

    2003-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA's Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST -- formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support a...

  15. SNR 1E0102.2-7219 after Six Years with Chandra

    Science.gov (United States)

    Rutkowski, M. J.; Schlegel, E. M.; Keohane, J.

    2005-12-01

    We present Chandra X-ray Observatory archived observations of the supernova remnant 1E0102.2-7219 in the Small Magellanic Cloud. Combining 22 ACIS-I observations for 230 ks of total exposure time, we present ACIS images with an unprecedented signal to noise ratio for this remnant. We present three upper limits on the X-ray flux for the remnant's elusive central compact object, which are consistent with current neutron star cooling models, based on a Cas A-like blackbody spectrum. Additionally, we discuss the elliptical structure of the remnant and the relative positions of the blast wave, the reverse shock, and the extent of 1E0102.2-7219's rim. This research was supported by the NSF REU Program at SAO under Eric Schlegel, whose research was supported by contract number NAS8-39073 from NASA to SAO for operation of the Chandra X-Ray Observatory. Jonathan Keohane's research was supported by Chandra award GO3-4070C.

  16. TGCat, The Chandra Transmission Grating Catalog and Archive: Systems, Design and Accessibility

    CERN Document Server

    Mitschang, Arik W; Nichols, Joy S

    2010-01-01

    The recently released Chandra Transmission Grating Catalog and Archive, TGCat, presents a fully dynamic on-line catalog allowing users to browse and categorize Chandra gratings observations quickly and easily, generate custom plots of resulting response corrected spectra on-line without the need for special software and to download analysis ready products from multiple observations in one convenient operation. TGCat has been registered as a VO resource with the NVO providing direct access to the catalogs interface. The catalog is supported by a back-end designed to automatically fetch newly public data, process, archive and catalog them, At the same time utilizing an advanced queue system integrated into the archive's MySQL database allowing large processing projects to take advantage of an unlimited number of CPUs across a network for rapid completion. A unique feature of the catalog is that all of the high level functions used to retrieve inputs from the Chandra archive and to generate the final data produc...

  17. The Brera Multi-scale Wavelet Chandra Survey. I. Serendipitous source catalogue

    CERN Document Server

    Romano, P; Mignani, R P; Moretti, A; Mottini, M; Panzera, M R; Tagliaferri, G

    2008-01-01

    We present the BMW-Chandra source catalogue drawn from essentially all Chandra ACIS-I pointed observations with an exposure time in excess of 10ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterise both point-like and extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings, and do not require a non-automated analysis. This makes our catalogue the largest compilation of Chandra sources to date. The 0.5--10 keV absorption corrected fluxes of these sources range from ~3E-16 to 9E-12 erg cm^-2 s^-1 with a median of 7E-15 erg cm^-2 s^-1. The catalogue consists of count rates and relative errors in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate of the exten...

  18. The Chandra Local Volume Survey: The X-ray Point Source Catalog of NGC 300

    CERN Document Server

    Binder, Breanna; Eracleous, Michael; Gaetz, Terrance J; Plucinsky, Paul P; Skillman, Evan D; Dalcanton, Julianne J; Anderson, Scott F; Weisz, Daniel R; Kong, Albert K H

    2012-01-01

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers ~88% of the D25 isophote (R~6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of ~10^36 erg s^-1. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 "X-ray transient candidate" sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7+/-0.2 kpc and a recent star formation rate of 0.12 Msun yr^-1, in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background AGN candidates. Finally, we present the X-ray luminos...

  19. X-Rays Beware: The Deepest Chandra Catalogue of Point Sources in M31

    CERN Document Server

    Vulic, N; Barmby, P

    2016-01-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ~1 Ms, we detected 795 X-ray sources in the bulge, northeast, and southwest fields of M31, covering an area of approximately 0.6 deg$^{2}$, to a limiting unabsorbed 0.5-8.0 keV luminosity of $10^{34}$ erg/s. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's $D_{25}$ isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49%) of our Chandra sources (352 or 44% unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to ...

  20. Geophysical observations at cavity collapse

    OpenAIRE

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-01-01

    International audience; In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to ...

  1. X-rays beware: the deepest Chandra catalogue of point sources in M31

    Science.gov (United States)

    Vulic, N.; Gallagher, S. C.; Barmby, P.

    2016-10-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ˜1 Ms, we detected 795 X-ray sources in the bulge, north-east, and south-west fields of M31, covering an area of ≈0.6 deg2, to a limiting unabsorbed 0.5-8.0 keV luminosity of ˜1034 erg s-1. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's D25 isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49 per cent) of our Chandra sources (352 or 44 per cent unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to previous Chandra X-ray sources we detected 259. new sources in our catalogue. We created X-ray luminosity functions (XLFs) in the soft (0.5-2.0 keV) and hard (2.0-8.0 keV) bands that are the most sensitive for any large galaxy based on our detection limits. Completeness-corrected XLFs show a break around ≈1.3 × 1037 erg s-1, consistent with previous work. As in past surveys, we find that the bulge XLFs are flatter than the disc, indicating a lack of bright high-mass X-ray binaries in the disc and an aging population of low-mass X-ray binaries in the bulge.

  2. The Chandra COSMOS Legacy survey: overview and point source catalog

    CERN Document Server

    Civano, F; Comastri, A; Urry, M C; Elvis, M; Cappelluti, N; Puccetti, S; Brusa, M; Zamorani, G; Hasinger, G; Aldcroft, T; Alexander, D M; Allevato, V; Brunner, H; Capak, P; Finoguenov, A; Fiore, F; Fruscione, A; Gilli, R; Glotfelty, K; Griffiths, R E; Hao, H; Harrison, F A; Jahnke, K; Kartaltepe, J; Karim, A; LaMassa, S M; Lanzuisi, G; Miyaji, T; Ranalli, P; Salvato, M; Sargent, M; Scoville, N J; Schawinski, K; Schinnerer, E; Silverman, J; Smolcic, V; Stern, D; Toft, S; Trakhenbrot, B; Treister, E; Vignali, C

    2016-01-01

    The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg$^2$ of the COSMOS field with an effective exposure of $\\simeq$160 ks over the central 1.5 deg$^2$ and of $\\simeq$80 ks in the remaining area. The survey is the combination of 56 new observations, obtained as an X-ray Visionary Project, with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2$\\times 10^{-5}$. We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft and hard band). The limiting depths are 2.2 $\\times$ 10$^{-16}$, 1.5 $\\times$ 10$^{-15}$ and 8.9$\\times$ 10$^{-16}$ ${\\rm erg~cm}^{-2}~{\\rm s}^{-1}$ in the 0.5-2, 2-10 and 0.5-10 keV bands, respectively. The observed fraction of obscured AGN with column density $> 10^{22}$ cm$^{-2}$ from the hardness ratio (HR) is $\\sim$50$^{+17}_{-16}$%...

  3. In Brief: Chandra Observatory marks 10 years in space

    Science.gov (United States)

    Showstack, Randy

    2009-08-01

    NASA's Chandra X-ray Observatory, originally envisioned as a 5-year mission, was deployed into an elliptical orbit around Earth 10 years ago, on 23 July 1999. The most powerful X-ray telescope yet, Chandra has provided a peak into the high-energy universe and has independently confirmed the existence of dark energy. Martin Weisskopf, Chandra project scientist at NASA's Marshall Space Flight Center, Huntsville, Ala., said discoveries made possible by the observatory “have made dramatic changes to our understanding of the universe and its constituents.” “The Great Observatories program—of which Chandra is a major part—shows how astronomers need as many tools as possible to tackle the big questions out there,” said Ed Weiler, associate administrator of NASA's Science Mission Directorate at NASA Headquarters in Washington. The Hubble Space Telescope, Compton Gamma Ray Observatory, and Spitzer Space Telescope are NASA's other Great Observatories. For more information, visit http://chandra.harvard.edu/ten/ and http://chandra.nasa.gov.

  4. Modeling Contamination Migration on the Chandra X-Ray Observatory - IV

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil William; Plucinsky, Paul P.; Marshall, Herman L.; Bogdan, Akos; Grant, Catherine E.; Tennant, Allyn F.; Dahmer, Matthew

    2017-01-01

    During its first 18 years of operation, the cold (about -60degC) optical blocking filters of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination, which attenuates low-energy x rays. Over the past several years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. This paper, the fourth on this topic, reports the results of recent contamination-migration simulations and their relevance to a decision whether to bake-out the ACIS instrument.

  5. VizieR Online Data Catalog: A deep Chandra ACIS survey of M51 (Kuntz+, 2016)

    Science.gov (United States)

    Kuntz, K. D.; Long, K. S.; Kilgard, R. E.

    2016-11-01

    This deep study of M51 is composed of 107ks of archival Chandra observations, to which we have added another 745ks of observations. All of the observations were made with the ACIS-S array. M51 has been observed extensively with HST. In particular, essentially all of M51 and its companion NGC 5195 was imaged with Advanced Camera for Surveys (ACS) in V, R, and I (F435W, F555W, F814W) and Hα (F658N) as a Hubble Legacy Project (Proposal ID 10452, PI: S. Beckwith). (4 data files).

  6. Invisible Giant: Chandra's Limits on X-rays from Betelgeuse

    CERN Document Server

    Posson-Brown, J; Pease, D O; Drake, J J; Posson-Brown, Jennifer; Kashyap, Vinay L.; Pease, Deron O.; Drake, Jeremy J.

    2006-01-01

    We have analyzed Chandra calibration observations of Betelgeuse ($\\alpha$ Ori, M2 Iab, $m_{V} = 0.58$, 131 pc) obtained at the aimpoint locations of the HRC-I (8 ks), HRC-S (8 ks), and ACIS-I (5 ks). Betelgeuse is undetected in all the individual observations as well as cumulatively. We derive $3\\sigma$ upper limits to its X-ray count rates and compute the corresponding X-ray flux upper limits for isothermal coronal plasma over a range of temperatures, $T=0.3-10$~MK. We place a flux limit at the telescope of $\\fx\\approx4\\times10^{-15}$~ergs~s$^{-1}$ cm$^{-2}$ at T=1~MK. The upper limit is lowered by a factor of $\\approx3$ at higher temperatures, roughly an order of magnitude lower than that obtained previously. Assuming that the entire stellar surface is active, these fluxes correspond to a surface flux limit that ranges from 30-7000~ergs~s$^{-1}$ cm$^{-2}$ at T=1~MK, to $\\approx 1$~ergs~s$^{-1}$ cm$^{-2}$ at higher temperatures, five orders of magnitude lower than the quiet Sun X-ray surface flux. We discuss...

  7. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    CERN Document Server

    Arzoumanian, Z; Landecker, T L; Kothes, R; Camilo, F

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nonthermal nebula 40'' in diameter exhibiting a power-law spectrum with photon index Gamma = 1.6+/-0.3, typical of a pulsar wind nebula. The implied spin-down luminosity of the neutron star, assuming a conversion efficiency to nebular flux appropriate to Vela-like pulsars, is ~10^{35} ergs/s, again typical of objects a few tens of kyr old. Morphologically, the nebular flux is slightly enhanced along a direction, in projection on the sky, independently demonstrated to be of significance in radio polarization observations; we argue that this represents the orientation o...

  8. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    Science.gov (United States)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T.L.; Kothes, R.; Camilo, F.

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nontherma1 nebula 40" in diameter exhibiting a power-law spectrum with photon index Gamma = 1.63, typical of a pulsar wind nebula. Morphologically, the nebula appears to be slightly extended along a direction, in projection on the sky, previously demonstrated to be of significance in radio and ASCA observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5" from the point source, but energetic arguments suggest that it is not the resolved termination shock of the pulsar wind against the ambient medium. Finally, we argue based on synchrotron lifetimes in the nebular magnetic field that DA 495 represents the first example of a pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind.

  9. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data sources that are used to protect

  10. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    Science.gov (United States)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  11. The Chandra X-Ray Observatory's Radiation Environment and the AP-8/AE-8 Model

    CERN Document Server

    Virani, S N; Plucinsky, P P; Butt, Y M; Virani, Shanil N.; Mueller-Mellin, Reinhold; Plucinsky, Paul P.; Butt, Yousaf M.

    2000-01-01

    The Chandra X-ray Observatory (CXO) was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (~ 2.65 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center (CXC) currently uses the National Space Science Data Center's ``near Earth'' AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. However, our scheduling software uses only a simple dipole model of the Earth's magnetic field. The resulting B, L magnetic coordinates, do not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. We show this by comparing to the data from Chandra's on-board radiation monitor, the EPHIN (Electron, Proton, Helium Instrument particle detector) instr...

  12. Chandra X-ray Detection of the Enigmatic Field Star BP Psc

    CERN Document Server

    Kastner, Joel H; Rodriguez, David; Grosso, Nicolas; Zuckerman, B; Perrin, Marshall D; Forveille, Thierry; Graham, James R

    2010-01-01

    BP Psc is a remarkable emission-line field star that is orbited by a dusty disk and drives a parsec-scale system of jets. We report the detection by the Chandra X-ray Observatory of a weak X-ray point source coincident with the centroids of optical/IR and submillimeter continuum emission at BP Psc. As the star's photosphere is obscured throughout the visible and near-infrared, the Chandra X-ray source likely represents the first detection of BP Psc itself. The X-rays most likely originate with magnetic activity at BP Psc and hence can be attributed either to a stellar corona or to star-disk interactions. The log of the ratio of X-ray to bolometric luminosity (log(L_X/L_{bol}) lies in the range -5.8 to -4.2. This is smaller than log(L_X/L_{bol}) ratios typical of low-mass, pre-main sequence stars, but is well within the log(L_X/L_{bol}) range observed for rapidly-rotating (FK Com-type) G giant stars. Hence, the Chandra results favor an exotic model wherein the disk/jet system of BP Psc is the result of its ver...

  13. An X-ray Tour of Massive Star-forming Regions with Chandra

    CERN Document Server

    Townsley, L K

    2006-01-01

    The Chandra X-ray Observatory is providing fascinating new views of massive star-forming regions, revealing all stages in the life cycles of massive stars and their effects on their surroundings. I present a Chandra tour of some of the most famous of these regions: M17, NGC 3576, W3, Tr14 in Carina, and 30 Doradus. Chandra highlights the physical processes that characterize the lives of these clusters, from the ionizing sources of ultracompact HII regions (W3) to superbubbles so large that they shape our views of galaxies (30 Dor). X-ray observations usually reveal hundreds of pre-main sequence (lower-mass) stars accompanying the OB stars that power these great HII region complexes, although in one case (W3 North) this population is mysteriously absent. The most massive stars themselves are often anomalously hard X-ray emitters; this may be a new indicator of close binarity. These complexes are sometimes suffused by soft diffuse X-rays (M17, NGC 3576), signatures of multi-million-degree plasmas created by fas...

  14. Finding Rare AGN: X-ray Number Counts of Chandra Sources in Stripe 82

    CERN Document Server

    LaMassa, Stephanie M; Glikman, Eilat; Cappelluti, Nico; Civano, Francesca; Comastri, Andrea; Treister, Ezequiel; Arifin,; Boehringer, Hans; Cardamone, Carie; Chon, Gayoung; Kephart, Miranda; Murray, Stephen S; Richards, Gordon; Ross, Nic; Rozner, Joshua S; Schawinski, Kevin

    2012-01-01

    We present the first results of a wide area X-ray survey within the Sloan Digital Sky Survey (SDSS) Stripe 82, a 300 deg$^2$ region of the sky with a substantial investment in multi-wavelength coverage. We analyzed archival {\\it Chandra} observations that cover 7.5 deg$^2$ within Stripe 82 ("Stripe 82 ACX"), reaching 4.5$\\sigma$ flux limits of 7.9$\\times10^{-16}$, 3.4$\\times10^{-15}$ and 1.8$\\times10^{-15}$ erg s$^{-1}$ cm$^{-2}$ in the soft (0.5-2 keV), hard (2-7 keV) and full (0.5-7 keV) bands, to find 774, 239 and 1118 X-ray sources, respectively. Three hundred twenty-one sources are detected only in the full band and 9 sources are detected solely in the soft band. Utilizing data products from the {\\it Chandra} Source Catalog, we construct independent Log$N$-Log$S$ relationships, detailing the number density of X-ray sources as a function of flux, which show general agreement with previous {\\it Chandra} surveys. We compare the luminosity distribution of Stripe 82 ACX with the smaller, deeper CDF-S + E-CDFS...

  15. The Chandra Cygnus OB2 Legacy Survey: Design and X-ray Point Source Catalog

    CERN Document Server

    Wright, Nicholas J; Guarcello, Mario G; Aldcroft, Tom L; Kashyap, Vinay L; Damiani, Francesco; DePasquale, Joe; Fruscione, Antonella

    2014-01-01

    The Cygnus OB2 association is the largest concentration of young and massive stars within 2 kpc of the Sun, including an estimated 65 O-type stars and hundreds of OB stars. The Chandra Cygnus OB2 Legacy Survey is a large imaging program undertaken with the Advanced CCD Imaging Spectrometer onboard the Chandra X-ray Observatory. The survey has imaged the central 0.5 deg^2 of the Cyg OB2 association with an effective exposure of 120ks and an outer 0.35 deg^2 area with an exposure of 60ks. Here we describe the survey design and observations, the data reduction and source detection, and present a catalog of 8,000 X-ray point sources. The survey design employs a grid of 36 heavily (~50%) overlapping pointings, a method that overcomes Chandra's low off-axis sensitivity and produces a highly uniform exposure over the inner 0.5 deg^2. The full X-ray catalog is described here and is made available online.

  16. Identifications of Four INTEGRAL Sources in the Galactic Plane via Chandra Localizations

    CERN Document Server

    Tomsick, J A; Foschini, L; Kaaret, Philip; Rodríguez, J; Walter, R; Chaty, Sylvain; Foschini, Luigi; Kaaret, Philip; Rodriguez, Jerome; Tomsick, John A.; Walter, Roland

    2006-01-01

    Hard X-ray imaging of the Galactic plane by the INTEGRAL satellite is uncovering many new 20-100 keV sources. A significant fraction of these sources are High-Mass X-Ray Binaries (HMXBs) containing neutron stars. In this work, we present results from INTEGRAL, Chandra, optical, and IR observations of 4 of the IGR sources: IGR J16195-4945, IGR J16207-5129, IGR J16167-4957, and IGR J17195-4100. In all four cases, one relatively bright Chandra source is seen in the INTEGRAL error circle, and these are all likely to be counterparts of the IGR sources. The sources have hard 0.3-10 keV spectra with power-law photon indices of 0.5-1.1. The Chandra positions along with optical and IR sky survey catalogs as well as our own photometry have allowed us to obtain optical and IR identifications for all 4 sources. The J-band magnitudes are in the range 14.9-10.4, and we have used the optical/IR spectral energy distributions to constrain the nature of the sources. Blackbody components with temperature lower limits of >9400 K...

  17. X-Ray cavities and temperature jumps in strong cool core cluster Abell 2390

    CERN Document Server

    Sonkamble, S S; Pawar, P K; Patil, M K

    2014-01-01

    We present results based on the systematic analysis of high resolution 95\\,ks \\textit{Chandra} observations of the strong cool core cluster Abell 2390 at the redshift of z = 0.228, which hosts an energetic radio AGN. This analysis has enabled us to investigate five X-ray deficient cavities in the hot atmosphere of Abell 2390 within central 30\\arcsec, three of which are newly detected. Presence of these cavities have been confirmed through a various image processing techniques like, the surface brightness profiles, unsharp masked image, as well as 2D elliptical model subtracted residual map. Temperature profile as well as 2D temperature map revealed structures in the distribution of ICM, in the sense that ICM in NW direction is relatively cooler than that on the SE direction. Two temperature jumps, one from 6\\,keV to 9.25\\,keV at 72 kpc on the north direction, and the other from 6\\,keV to 10.27\\,keV at 108 kpc in the east direction have been observed. These temperature jumps are associated with the shocks with...

  18. Flickering Quasar Helps Chandra Measure the Expansion Rate of the universe

    Science.gov (United States)

    2000-11-01

    Astronomers using the Chandra X-ray Observatory have identified a flickering, four-way mirage image of a distant quasar. A carefully planned observation of this mirage may be used to determine the expansion rate of the universe as well as to measure the distances to extragalactic objects, arguably two of the most important pursuits in modern astronomy. quasar RX J0911.4+0551 This figure is a composite of the X-ray image of the gravitational lens RX J0911.4+551 (top panel) and the light curves of the lensed images A2 (left panel) and A1 (right panel). Credit: NASA George Chartas, senior research associate at The Pennsylvania State University (Penn State) and Marshall W. Bautz, principal research scientist at the Massachusetts Institute of Technology (MIT) Center for Space Research, present their findings today at the meeting of the High Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. "With a carefully planned follow-up, the Chandra observation of quasar RX J0911.4+0551 may lead to a measurement of the Hubble constant, the expansion rate of the universe, in less than a day," said Chartas. The observation would be done not with mirrors but with mirages--four images of a single quasar that capture the quasar's light at different moments of time due to the speed of light and the location of the mirages. Quasars are extremely distant galaxies with cores that glow with the intensity of 10 trillion Suns, a phenomenon likely powered by a supermassive black hole in the heart of the galaxy. This single "point source" image of a quasar may appear as four or five sources when the quasar--from our vantage point on Earth--is behind a massive intervening deflector, such as a dim galaxy. A mirage of images form when the gravity of the intervening deflector forces light rays to bend and take different paths to reach us. The time it takes for light to reach us from the distant object will depend on which path a ray decides to take. "An

  19. The O VII X-ray forest toward Markarian 421: Consistency between XMM-Newton and Chandra

    CERN Document Server

    Kaastra, J S; Den Herder, J W A; Paerels, F B S; De Plaa, J; Rasmussen, A P; De Vries, C P

    2006-01-01

    Recently the first detections of highly ionised gas associated with two Warm-Hot Intergalactic Medium (WHIM) filaments have been reported. The evidence is based on X-ray absorption lines due to O VII and other ions observed by Chandra towards the bright blazar Mrk 421. We investigate the robustness of this detection by a re-analysis of the original Chandra LETGS spectra, the analysis of a large set of XMM-Newton RGS spectra of Mrk 421, and additional Chandra observations. We address the reliability of individual spectral features belonging to the absorption components, and assess the significance of the detection of these components. We also use Monte Carlo simulations of spectra. We confirm the apparent strength of several features in the Chandra spectra, but demonstrate that they are statistically not significant. This decreased significance is due to the number of redshift trials that are made and that are not taken into account in the original discovery paper. Therefore these features must be attributed t...

  20. The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    CERN Document Server

    Kastner, J H; Balick, B; Frew, D J; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Rapson, V; Zijlstra, A; Behar, E; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Ueta, T; Villaver, E

    2012-01-01

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 3 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of 68%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are...

  1. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    Science.gov (United States)

    Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.

    2006-01-01

    We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg(exp 2) and reach a depth of 3 x 10(exp -15) erg/square cm/s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in co-moving coordinates, averaged over the redshift range of 0.1 tau(sub 0 = 8.1(sup +1.2 sub -2.2) Mpc, and gamma = 2.1 +/- 0.5 for the CLASXS field, and tau(sub 0) = 5.8(sup +.1.0 sub -1.5) Mpc, gamma = 1.38(sup +0.12 sub -0.14 for the CDFN field. By comparing the real- and redshift-space correlation functions in the combined CLASXS and CDFN samples, we are able to estimate the redshift distortion parameter Beta = 0.4 +/- 0.2 at an effective redshift z = 0.94. We compare the correlation functions for hard and soft spectra sources in the CLASXS field and find no significant difference between the two groups. We have also found that the correlation between X-ray luminosity and clustering amplitude is weak, which, however, is fully consistent with the expectation using the simplest relations between X-ray luminosity, black hole mass, and dark halo mass. We study the evolution of the AGN clustering by dividing the samples into 4 redshift bins over 0.1 Mpcestimate the evolution of the bias, and find that the bias increases rapidly with redshift (b(z = 0.45) = 0.95 +/- 0.15 and b(z = 2.07) = 3.03 +/- 0.83): The typical mass of the dark matter halo derived from the bias estimates show little change with redshift. The average halo mass is found to be log (M(sub halo)/M(sun))approximates 12.1. Subject

  2. Finemet cavity impedance studies

    CERN Document Server

    Persichelli, S; Migliorati, M; Salvant, B

    2013-01-01

    The aim of the study is to evaluate the impedance of the Finemet kicker cavity to be installed in the PS straight section 02 during LS1, under realistic assumptions of bunch length. Time domain simulations with CST Particle Studio have been performed in order to get the impedance of the cavity and make a comparison with the longitudinal impedance measured for a single cell prototype. The study has been performed on simplified 3D geometries imported from a mechanical CATIA drawing, assuming that the simplications have small impact on the nal results. Simulations confirmed that the longitudinal impedance observed with measurements can be excited by bunches circulating in the PS. In the six-cells Finemet cavity, PS bunches circulating in the center can excite a longitudinal impedance, the real part of which has a maximum of 2 kOhm at 4 MHz. This mode does not seem to have any transverse component. All the eigenmodes of the cavity are strongly damped by the Finemet rings: we predict to have no issues regarding tr...

  3. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  4. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm(-1): new observations and exhaustive review.

    Science.gov (United States)

    Campargue, A; Barbe, A; De Backer-Barilly, M-R; Tyuterev, Vl G; Kassi, S

    2008-05-28

    Weak vibrational bands of (16)O(3) could be detected in the 5850-7030 cm(-1) spectral region by CW-cavity ring down spectroscopy using a set of fibered DFB diode lasers. As a result of the high sensitivity (noise equivalent absorption alpha(min) approximately 3 x 10(-10) cm(-1)), bands reaching a total of 16 upper vibrational states have been previously reported in selected spectral regions. In the present report, the analysis of the whole investigated region is completed by new recordings in three spectral regions which have allowed: (i) a refined analysis of the nu(1) + 3nu(2) + 3nu(3) band from new spectra in the 5850-5900 cm(-1) region; (ii) an important extension of the assignments of the 2nu(1)+5nu(3) and 4nu(1) + 2nu(2) + nu(3) bands in the 6500-6600 cm(-1) region, previously recorded by frequency modulation diode laser spectroscopy. The rovibrational assignments of the weak 4nu(1) + 2nu(2) + nu(3) band were fully confirmed by the new observation of the 4nu(1) + 2nu(2) + nu(3)- nu(2) hot band near 5866.9 cm(-1) reaching the same upper state; (iii) the observation and modelling of three A-type bands at 6895.51, 6981.87 and 6990.07 cm(-1) corresponding to the highest excited vibrational bands of ozone detected so far at high resolution. The upper vibrational states were assigned by comparison of their energy values with calculated values obtained from the ground state potential energy surface of (16)O(3). The vibrational mixing and consequently the ambiguities in the vibrational labelling are discussed. For each band or set of interacting bands, the spectroscopic parameters were determined from a fit of the corresponding line positions in the frame of the effective Hamiltonian (EH) model. A set of selected absolute line intensities was measured and used to derive the parameters of the effective transition moment operator. The exhaustive review of the previous observations gathered with the present results is presented and discussed. It leads to a total number

  5. FRONTIER FIELDS CLUSTERS: CHANDRA AND JVLA VIEW OF THE PRE-MERGING CLUSTER MACS J0416.1-2403

    Energy Technology Data Exchange (ETDEWEB)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; Nulsen, P. E. J.; Forman, W.; Murray, S. S.; Randall, S.; Kraft, R.; David, L.; Andrade-Santos, F.; Goulding, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Clarke, T. E.; Mroczkowski, T. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Sayers, J.; Zitrin, A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Pandey-Pommier, M. [Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, 9 av Charles André, F-69561 Saint Genis Laval Cedex (France); Churazov, E. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); Bonafede, A. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112 21029 Hamburg (Germany); Merten, J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Umetsu, K., E-mail: gogrean@cfa.harvard.edu [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); and others

    2015-10-20

    Merging galaxy clusters leave long-lasting signatures on the baryonic and non-baryonic cluster constituents, including shock fronts, cold fronts, X-ray substructure, radio halos, and offsets between the dark matter (DM) and the gas components. Using observations from Chandra, the Jansky Very Large Array, the Giant Metrewave Radio Telescope, and the Hubble Space Telescope, we present a multiwavelength analysis of the merging Frontier Fields cluster MACS J0416.1-2403 (z = 0.396), which consists of NE and SW subclusters whose cores are separated on the sky by ∼250 kpc. We find that the NE subcluster has a compact core and hosts an X-ray cavity, yet it is not a cool core. Approximately 450 kpc south–southwest of the SW subcluster, we detect a density discontinuity that corresponds to a compression factor of ∼1.5. The discontinuity was most likely caused by the interaction of the SW subcluster with a less massive structure detected in the lensing maps SW of the subcluster's center. For both the NE and the SW subclusters, the DM and the gas components are well-aligned, suggesting that MACS J0416.1-2403 is a pre-merging system. The cluster also hosts a radio halo, which is unusual for a pre-merging system. The halo has a 1.4 GHz power of (1.3 ± 0.3) × 10{sup 24} W Hz{sup −1}, which is somewhat lower than expected based on the X-ray luminosity of the cluster if the spectrum of the halo is not ultra-steep. We suggest that we are either witnessing the birth of a radio halo, or have discovered a rare ultra-steep spectrum halo.

  6. The O VII X-Ray Forest toward Markarian 421: Consistency between XMM-Newton and Chandra

    Science.gov (United States)

    Kaastra, J. S.; Werner, N.; Herder, J. W. A. den; Paerels, F. B. S.; de Plaa, J.; Rasmussen, A. P.; de Vries, C. P.

    2006-11-01

    Recently, the first detections of highly ionized gas associated with two warm-hot intergalactic medium (WHIM) filaments have been reported. The evidence is based on X-ray absorption lines due to O VII and other ions observed by Chandra toward the bright blazar Mrk 421. We investigate the robustness of this detection by a reanalysis of the original Chandra LETGS spectra, the analysis of a large set of XMM-Newton RGS spectra of Mrk 421, and additional Chandra observations. We address the reliability of individual spectral features belonging to the absorption components, and assess the significance of the detection of these components. We also use Monte Carlo simulations of spectra. We confirm the apparent strength of several features in the Chandra spectra, but demonstrate that they are statistically not significant. This decreased significance is due to the number of redshift trials that are made and that are not taken into account in the original discovery paper. Therefore, these features must be attributed to statistical fluctuations. This is confirmed by the RGS spectra, which have a higher signal-to-noise ratio than the Chandra spectra, but do not show features at the same wavelengths. Finally, we show that the possible association with a Lyα absorption system also lacks sufficient statistical evidence. We conclude that there is insufficient observational proof for the existence of the two proposed WHIM filaments toward Mrk 421, the brightest X-ray blazar in the sky. Therefore, the highly ionized component of the WHIM still remains to be discovered.

  7. Chandra X-Ray Observatory Image of Crab Nebula

    Science.gov (United States)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  8. Investigating the cores of fossil systems with Chandra

    CERN Document Server

    Bharadwaj, V; Sanders, J S; Schellenberger, G

    2016-01-01

    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with the BCG to detect the presence of potential thermal coronae. A deprojection analysis was performed for z < 0.05 fossils to obtain cooling time and entropy profiles, and to resolve subtle temperature structures. We investigated the Lx-T relation for fossils from the 400d catalogue to see if the scaling relation deviates from that of other groups. Most fossils are identified as cool-core objects via at least two cool-core diagnostics. All fossils have their dominant elliptical galaxy within 50 kpc of the X-ray peak, and mo...

  9. Imaging the Circumnuclear Region of NGC 1365 with Chandra

    CERN Document Server

    Wang, Junfeng; Elvis, M; Risaliti, G; Mazzarella, J M; Howell, J H; Lord, S

    2009-01-01

    We present the first Chandra/ACIS imaging study of the circumnuclear region of the nearby Seyfert galaxy NGC 1365. The X-ray emission is resolved into point-like sources and complex, extended emission. The X-ray morphology of the extended emission shows a biconical soft X-ray emission region extending ~5 kpc in projection from the nucleus, coincident with the high excitation outflow cones seen in optical emission lines particularly to the northwest. Harder X-ray emission is detected from a kpc-diameter circumnuclear ring, coincident with the star-forming ring prominent in the Spitzer mid-infrared images; this X-ray emission is partially obscured by the central dust lane of NGC 1365. Spectral fitting of spatially separated components indicates a thermal plasma origin for the soft extended X-ray emission (kT=0.57 keV). Only a small amount of this emission can be due to photoionization by the nuclear source. Detailed comparison with [OIII]5007 observations shows the hot interstellar medium (ISM) is spatially ant...

  10. Nustar and Chandra Insight into the Nature of the 3-40 Kev Nuclear Emission in Ngc 253

    Science.gov (United States)

    Lehmer, Bret D.; Wik, Daniel R.; Hornschemeier, Ann E.; Ptak, Andrew; Antoniu, V.; Argo, M.K.; Bechtol, K.; Boggs, S.; Christensen, F.E.; Craig, W.W.; Hailey, C.J.; Harrison, F.A.; Krivonos, R.; Leyder, Jean-Christophe Xavier Georges; Maccarone, T.J.; Stern, D.; Venters, T.; Zezas, A.; Zhang, W.W.

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 kiloelectron volt intensity of the inner approximately 20 arcsec (approximately 400 parsec) nuclear region, as measured by NuSTAR, varied by a factor of approximately 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L (sub 2-10 kiloelectron volt) approximately few × 10 (exp 39) erg per s) point source located approximately 1 arcsec from the dynamical center of the galaxy (within the sigma 3 positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or approximately equal to 3 kiloelectron volts. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (power-law model spectral fit value, N(sub H), approximately equal to 1.6 x 10 (exp 23) per square centimeter) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (Phi is approximately equal to 0.4 arcsec); however, this source was offset from the 2012 source position by approximately 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is much greater than 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 kiloelectron volts) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum

  11. Cavities/Tooth Decay

    Science.gov (United States)

    Cavities/tooth decay Overview By Mayo Clinic Staff Cavities are permanently damaged areas in the hard surface of your teeth ... into tiny openings or holes. Cavities, also called tooth decay or caries, are caused by a combination of ...

  12. High-Redshift AGNs and the Next Decade of Chandra and XMM-Newton

    CERN Document Server

    Brandt, W N

    2016-01-01

    We briefly review how X-ray observations of high-redshift active galactic nuclei (AGNs) at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., absorption by nuclear material and winds, accretion rates, and jet emission. We point out some key remaining areas of uncertainty, highlighting where further Chandra and XMM-Newton observations/analyses, combined with new multiwavelength survey data, can advance understanding over the next decade.

  13. Chandra and XMM Monitoring of the Black Hole X-ray Binary IC 10 X-1

    OpenAIRE

    Laycock, Silas G. T.; Cappallo, Rigel C.; Moro, Matthew J.

    2014-01-01

    The massive black hole + Wolf-Rayet binary IC10 X-1 was observed in a series of 10 Chandra and 2 XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 x10^37 erg/s, with a spectral hardening event in 2009. We phase-connected the entire light-curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1)d. The duration of minimum-flux in the X-ray eclipse is ...

  14. Observation of green lasing at 537 nm from Er-ions by coupled photon-atom modes in a random cavity

    Science.gov (United States)

    Pham, Van Hoi; Do, Thuy Chi; Bui, Huy; Nguyen, The Anh; Van Nguyen, Thuy

    2011-03-01

    We present new results of a laser phenomenon that gives rise to a narrow green emission mode in a random photonic-crystal cavity based on an Er-doped glass-air gap-polymer with a 976 nm diode laser pump. Lasing occurs at 537 nm, which does not respond to the resonant radiative transition 2H11/2→4I15/2 4S3/2→4I15/2 in Erbium ions. This effect can be seen as photon-atom coupling in the context of the interaction between a single atom and/or a few atoms and resonant optical media, such as cavities or photonic crystals. Experimental results show that the random lasing mode directly originates from the coupled photon-atom mode inside the random cavity. The measured Q-factor is of 2100-2800 for a random cavity with an air gap of 600-1700 nm between Er-doped glass fiber and a coated polymer layer.

  15. Observation on the quality of life before and after the injection of antiangiogenic drug in the vitreous cavity of patients with wet age-related macular degeneration

    Institute of Scientific and Technical Information of China (English)

    Dan-Dan Wang; Pei-Ying Xu; Tian-Yu Wang; Xiao-Xia Chen; Qing Peng

    2015-01-01

    Objective:To explore the vision-related quality of life(VRQL) before and after the injection of antiangiogenic drug into the vitreous cavity of patients with wet age-related macular degeneration(AMD).Methods:The 2000 edition of the Visual Functioning Questionnaire 25 that was issued by the National Eye Institute was applied,and the VRQL evaluation was conducted on the initially diagnosed patients with wet-AMD before and after the injection of ranibizumab into the vitreous cavity.Results:Among the wet-AMD patients,patients with better distance visual acuity before the intravitreal injection had a lower VFQ-25 score.After the vitreous cavity injection,the VFQ-25 questionnaire score was related to patient care and education from the doctors and nurses;specifically,the better the nursing,the higher the score.Conclusions:Before the vitreous cavity injection,the degree of distance visual acuity is an important factor affecting the VRQL of wet-AMD patients.In addition,patient care and education from the doctors and nurses toward patients during the pre-,intra-and post-operation of the intravitreal injection are also important factors affecting the VRQL.

  16. The 172 ks Chandra Exposure of the LALA Bootes Field: X-Ray Source Catalog

    Science.gov (United States)

    Wang, J. X.; Malhotra, S.; Rhoads, J. E.; Brown, M. J. I.; Dey, A.; Heckman, T. M.; Jannuzi, B. T.; Norman, C. A.; Tiede, G. P.; Tozzi, P.

    2004-01-01

    We present an analysis of a deep, 172 ks Chandra observation of the Large Area Lyman Alpha survey (LALA) Bootes field, obtained with the Advanced CCD Imaging Spectrometer (ACIS-I) on board the Chandra X-Ray Observatory. This is one of the deepest Chandra images of the extragalactic sky; only the 2 Ms Chandra Deep Field North (CDF-N) and 1 Ms Chandra Deep Field South (CDF-S) are substantially deeper. In this paper we present the X-ray source catalog obtained from this image, along with an analysis of source counts and optical identifications. The X-ray image is composed of two individual observations obtained in 2002 and reaches 0.5-2.0 and 2.0-10.0 keV flux limits of 1.5×10-16 and 1.0×10-15 ergs cm-2 s-1, respectively, for point sources near the aim point. A total of 168 X-ray sources were detected: 160 in the 0.5-7.0 keV band, 132 in the 0.5-2.0 keV band, and 111 in the 2.0-7.0 keV band. The X-ray source counts were derived and compared with those from other Chandra deep surveys; the hard X-ray source density of the LALA Bootes field is 33% higher than that of CDF-S at the flux level of 2.0×10-15 ergs cm-2 s-1, confirming the field-to-field variances of the hard-band source counts reported by previous studies. The deep exposure resolves >~72% of the 2.0-10.0 keV X-ray background. Our primary optical data are R-band imaging from the NOAO Deep Wide-Field Survey (NDWFS), with a limiting magnitude of R=25.7 (Vega, 3 σ, and 4" diameter aperture). We have found optical counterparts for 152 of the 168 Chandra sources (90%); 144 of these are detected in the R-band image, and eight have optical counterparts in other bands (either BW, V, I, or z'). Among the R-band nondetected sources, not more than 11 of them can possibly be at z>5, based on the hardness ratios of their X-ray emission and nondetections in bluer bands (BW, V). The majority (~76%) of the X-ray sources are found to have log(fX/fR) within 0.0+/-1 these are believed to be AGNs. Most of the X

  17. 75 FR 7471 - Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of...

    Science.gov (United States)

    2010-02-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company... January 8, 2010, Chandra Coffee and Rabun Boatworks (Complainants) filed with the Federal...

  18. A Chandra Study of Temperature Distributions of the Intracluster Medium in 50 Galaxy Clusters

    Science.gov (United States)

    Zhu, Zhenghao; Xu, Haiguang; Wang, Jingying; Gu, Junhua; Li, Weitian; Hu, Dan; Zhang, Chenhao; Gu, Liyi; An, Tao; Liu, Chengze; Zhang, Zhongli; Zhu, Jie; Wu, Xiang-Ping

    2016-01-01

    To investigate the spatial distribution of the intracluster medium temperature in galaxy clusters in a quantitative way and probe the physics behind it, we analyze the X-ray spectra from a sample of 50 clusters that were observed with the Chandra ACIS instrument over the past 15 years and measure the radial temperature profiles out to 0.45r500. We construct a physical model that takes into consideration the effects of gravitational heating, thermal history (such as radiative cooling, active galactic nucleus feedback, and thermal conduction), and work done via gas compression, and use it to fit the observed temperature profiles by running Bayesian regressions. The results show that in all cases our model provides an acceptable fit at the 68% confidence level. For further validation, we select nine clusters that have been observed with both Chandra (out to ≳0.3r500) and Suzaku (out to ≳1.5r500) and fit their Chandra spectra with our model. We then compare the extrapolation of the best fits with the Suzaku measurements and find that the model profiles agree with the Suzaku results very well in seven clusters. In the remaining two clusters the difference between the model and the observation is possibly caused by local thermal substructures. Our study also implies that for most of the clusters the assumption of hydrostatic equilibrium is safe out to at least 0.5r500 and the non-gravitational interactions between dark matter and its luminous counterparts is consistent with zero.

  19. Chandra x-ray results on v426 ophiuchi

    Directory of Open Access Journals (Sweden)

    Lee Homer

    2004-01-01

    Full Text Available De las observaciones de 45 ks de Chandra de V426 Oph hemos obtenido espectros de rayos X de alta resoluci on con relaci on se~nal-a-ruido moderada, y una curva de luz no interrumpida de buena calidad. Los espectros se adaptan razonablemente a un modelo de ujo de enfriamiento, similar a EX Hya y U Gem. Nuestro an alisis de las curvas de luz de Chandra y las adicionales de rayos X/ optico revela una modulaci on persistente a 4.2 hr desde 1988 hasta 2003, probablemente el per odo de giro de la enana blanca, indicando una naturaleza polar intermedia para V426 Oph.

  20. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.

    Science.gov (United States)

    Kocaman, Serdar; Sayan, Gönül Turhan

    2016-12-12

    Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

  1. Hunting for accretors towards the bulge with the Chandra and Hubble Space Telescopes

    Science.gov (United States)

    Howard, Brittany; Aufdemberge, Emily; Hong, JaeSub; Clarkson, William I.; Van Den Berg, Maureen; Sahu, Kailash C.; Grindlay, Jonanthan; Rich, Robert Michael; Calamida, Annalisa

    2017-01-01

    We are undertaking a deep X-ray/optical observational campaign of a well-studied low-extinction region towards the Galactic Bulge. Crucially, we have chosen a field for which very high-quality proper motions already exist from Hubble Space Telescope (HST) observations (or can be produced from a combination of archival and new observations covering much of the large Chandra ACIS-I field of view), allowing kinematic population membership constraints for X-ray point sources. While the ultimate scientific goal is to provide a new constraint on bulge formation models by tracing the accreting binary population that can be kinematically identified with the bulge, a large number of science investigations will ultimately be enabled by this initiative.Here we report on our search for accreting binaries within the Sagittarius Window. The deep Chandra observations provide a rich catalog of X-ray point sources, while the new HST observations allow a sensitive search for Hα emission-line objects including the accreting binaries we seek. We present the techniques used to uncover accretors, and outline progress towards a catalog of X-ray point sources with kinematic and Hα identifications.

  2. Chandra Image Gives First Look at Mars Emitted X-Rays

    Science.gov (United States)

    2001-01-01

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  3. Design and Numerical Simulation of Two Dimensional Ultra Compact Combustor Model Sections for Experimental Observation of Cavity-Vane Flow Interactions

    Science.gov (United States)

    2005-09-01

    component UHC Unburned hydrocarbons xviii Symbol V Cavity volume y* Wall unit yυ Viscous sub-layer thickness YM Term for contribution of...Emissions. Pollutant species of interest at the combustor exhaust plane include CO, CO2, NOx, and unburned hydrocarbons ( UHC ), while the exhaust level...fraction, and are reported in the form of part-per-million (ppm) for CO, NOx, UHC or percentage of total for CO2, O2. The combustion modeling in FLUENT

  4. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  5. Deeper Chandra Follow-up of Cygnus TeV Source Perpetuates Mystery

    CERN Document Server

    Butt, Y; Benaglia, P; Combi, J; Dame, T; Miniati, F; Romero, G; Butt, Yousaf; Drake, Jeremy; Benaglia, Paula; Combi, Jorge; Dame, Thomas; Miniati, Francesco; Romero, Gustavo

    2005-01-01

    A 50 ksec Chandra observation of the unidentified TeV source in Cygnus reported by the HEGRA collaboration reveals no obvious X-ray counterpart(s). 220 Point-like X-ray sources are detected within or nearby the extended TeV J2032+4130 source region, of which at least 30 are massive stars and 6 are known radio emitters. Based on the low X-ray and radio emissivity we favor a nucleonic rather than electronic origin of the very high energy gamma-ray flux and suspect it is related to the very massive and extremely powerful Cygnus OB2 stellar association.

  6. NASA's Chandra Finds That Saturn Reflects X-rays From Sun

    Science.gov (United States)

    2005-05-01

    When it comes to mysterious X-rays from Saturn, the ringed planet may act as a mirror, reflecting explosive activity from the sun, according to scientists using NASA's Chandra X-ray Observatory. The findings stem from the first observation of an X-ray flare reflected from Saturn's low-latitudes - the region that correlates to Earth's equator and tropics. Led by Dr. Anil Bhardwaj, a planetary scientist at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., the study revealed that Saturn acts as a diffuse mirror for solar X-rays. Counting photons - particles that carry electromagnetic energy including X-rays - was critical to this discovery. For every few thousand X-ray photons Saturn receives from the sun, it reflects a single X-ray photon back. Previous studies revealed that Jupiter, with a diameter 11 times that of Earth, behaves in a similar fashion. Saturn is about 9.5 times as big as Earth, but is twice as far from Earth as Jupiter. "The bigger the planet and nearer to the Sun, the more solar photons it will intercept - resulting in more reflected X-rays," said Bhardwaj. "These results imply we could use giant planets like Jupiter and Saturn as remote-sensing tools. By reflecting solar activity back to us, they could help us monitor X-ray flaring on portions of the sun facing away from Earth's space satellites." Massive solar explosions called flares often accompany coronal mass ejections, which emit solar material and magnetic field. When directed toward the Earth, these ejections can wreak havoc on communication systems from cell phones to satellites. Even as the research appears to have solved one mystery - the source of Saturn's X-rays, it fueled longstanding questions about magnetic fields. Earth's magnetic field is the reason compasses work, since the field acts like a huge bar magnet, causing the magnetic north pole of a compass to point to the magnetic south pole of the Earth. In addition, migratory birds seem to sense the magnetic field

  7. N132D: Chandra and XMM-Newton X-ray Imaging and Spectral Analysis

    Science.gov (United States)

    Plucinsky, Paul; Foster, Adam; Gaetz, Terrance; Jerius, Diab; Patnaude, Daniel; Edgar, Richard; Smith, Randall; Blair, William

    2015-09-01

    We present the results of an analysis of the archival XMM-Newton EPIC data (203ks for pn and 556/574ks for MOS1/MOS2) and the Chandra X-ray Observatory ACIS data (89ks) of the brightest X-ray supernova remnant (SNR) in the Large Magellanic Cloud (LMC) N132D. N132D has been classified as an ``O-rich'' remnant based on the UV and optical spectra which show emission from C, O, Ne, Mg, and Si.These spectra of the central optical knots do notshow any emission from elements with Z higher than Si, yet the nulceosynthesis models predict significant quantities of these higher Z elements. Our spectral analysis of the deep XMM data clearly shows emission lines from S, Ar, Ca, and Fe, with indications of other possible features between Ca and Fe. We use a combination of the high resolution images from Chandra and the sensitive spectra from XMM to disentangle the emission from swept-up interstellar material and a possiblehot ejecta component. We interpret these results in the context of a 3,000 year old remnant from a massive progenitor that has exploded into a cavity created by the progenitor. We also present simulations of the Athena X-ray Integral Field Unit (X-IFU) spectrum of N132D. We use themodel spectrum developed by the International Astronomical Consortium for High Energy Calibration (IACHEC) based on the high-resolution data acquired by the Reflection Gratings Spectrometer (RGS) on XMM as the input spectrumfor the X-IFU simulations.

  8. Crab Cavity Development

    CERN Document Server

    Calaga, R; Burt, G; Ratti, A

    2015-01-01

    The HL-LHC upgrade will use deflecting (or crab) cavities to compensate for geometric luminosity loss at low β* and non-zero crossing angle. A local scheme with crab cavity pairs across the IPs is used employing compact crab cavities at 400 MHz. Design of the cavities, the cryomodules and the RF system is well advanced. The LHC crab cavities will be validated initially with proton beam in the SPS.

  9. Romanticism or Reality? An Exploration of Frances Mary Hendry's "Chandra."

    Science.gov (United States)

    Johnson, Jilaine

    This paper singles out a novel written for children about India, "Chandra" (1995) by Frances Mary Hendry, as a powerful and useful novel to present to today's 11 to 14 year old students. The paper contends that the novel allows students to explore and consider different value systems, challenges them to become aware of prejudice and the…

  10. The Chandra X-Ray Observatory Radiation Environmental Model Update

    Science.gov (United States)

    Blackwell, William C.; Minow, Joseph I.; ODell, Stephen L.; Cameron, Robert A.; Virani, Shanil N.

    2003-01-01

    CRMFLX (Chandra Radiation Model of ion FLUX) is a radiation environment risk mitigation tool for use as a decision aid in planning the operation times for Chandra's Advanced CCD Imaging Spectrometer (ACIS) detector. The accurate prediction of the proton flux environment with energies of 100 - 200 keV is needed in order to protect the ACIS detector against proton degradation. Unfortunately, protons of this energy are abundant in the region of space where Chandra must operate. In addition, on-board particle detectors do not measure proton flux levels of the required energy range. CRMFLX is an engineering environment model developed to predict the proton flux in the solar wind, magnetosheath, and magnetosphere phenomenological regions of geospace. This paper describes the upgrades to the ion flux databases for the magnetosphere, magnetosheath, and solar wind regions. These data files were created by using Geotail and Polar spacecraft flux measurements only when the Advanced Composition Explorer (ACE) spacecraft's 0.14 MeV particle flux was below a threshold value. This new database allows for CRMFLX output to be correlated with both the geomagnetic activity level, as represented by the Kp index, as well as with solar proton events. Also, reported in this paper are results of analysis leading to a change in Chandra operations that successfully mitigates the false trigger rate for autonomous radiation events caused by relativistic electron flux contamination of proton channels.

  11. Chandra: Ten Years of Amazing Science with a Great Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We review briefly review the history of the development of the Chandra X-Ray Observatory, highlighting certain details that many attendees of this Conference might not be aware of. We then present a selection of scientific highlights of the first 10 years of this remarkable and unique mission.

  12. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST

    Science.gov (United States)

    Weisskopf, Martin C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.

  13. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE CATALOG OF NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Binder, B.; Williams, B. F.; Dalcanton, J. J.; Anderson, S. F.; Weisz, D. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gaetz, T. J.; Plucinsky, P. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Skillman, E. D. [Astronomy Department, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2012-10-10

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers {approx}88% of the D{sub 25} isophote (R Almost-Equal-To 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of {approx}10{sup 36} erg s{sup -1}. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 'X-ray transient candidate' sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7 {+-} 0.2 kpc and a recent star formation rate of 0.12 M{sub Sun} yr{sup -1} in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering {approx}32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. Finally, we present the X-ray luminosity functions (XLFs) at different X-ray energies, and we find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations ({approx}< 50 Myr). We find that XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions.

  14. Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star

    Science.gov (United States)

    2000-01-01

    studying these supernova remnants for decades, but now we're getting the kind of information we need to really test the theories," said Canizares. "Understanding supernovas helps us to learn about the processes that formed chemical elements like those which are found on Earth and are necessary for life," said Flanagan. Most of the oxygen in the universe, for example, is synthesized in the interiors of relatively few massive stars like the one being studied here. When they explode, they expel the newly manufactured elements which become part of the raw material for new stars and planets. The amount of oxygen in the E0102-72 ring is enough for thousands of solar systems. By measuring the expansion velocity of the ring, the team can estimate the amount of energy liberated in the explosion. The expansion energy would be enough to power the Sun for 3 billion years. The ring has more complex structure and motion than can be explained by current simplified theories, suggesting complexity in the explosion itself or in the surrounding interstellar matter. The supernova remnant also provides a laboratory for atomic physics. The observations show how the atoms in the expelled matter behave when heated to such high temperatures. The images reveal the progressive stripping of electrons from the atoms after the super-sonic shock wave has passed. The Chandra observation was taken using the HETG in conjunction with the Advanced CCD Imaging Spectrometer (ACIS) on September 28 and October 10, 1999. ACIS was built by Pennsylvania State University, University Park, and the Massachusetts Institute of Technology, Cambridge. To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0015/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science

  15. The 3 Ms Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    CERN Document Server

    Neilsen, J; Gammie, C; Dexter, J; Markoff, S; Haggard, D; Nayakshin, S; Wang, Q D; Grosso, N; Porquet, D; Tomsick, J A; Degenaar, N; Fragile, P C; Houck, J C; Wijnands, R; Miller, J M; Baganoff, F K

    2013-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic Center.

  16. The Chandra Local Volume Survey: The X-ray Point Source Population of NGC 404

    CERN Document Server

    Binder, B; Eracleous, M; Gaetz, T J; Kong, A K H; Skillman, E D; Weisz, D R

    2012-01-01

    We present a comprehensive X-ray point source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new, 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6x10^35 erg s^-1 in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping HST observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background AGN. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% comple...

  17. Chandra and Hubble Space Telescope Study of the Globular Cluster NGC 288

    CERN Document Server

    Kong, A K H; Pooley, D; Lewin, W H G; Homer, L; Verbunt, F; Anderson, S F; Margon, B

    2006-01-01

    We report on the Chandra X-ray Observatory observations of the globular cluster NGC 288. We detect four X-ray sources within the core radius and seven additional sources within the half-mass radius down to a limiting luminosity of Lx=7e30 erg/s (assuming cluster membership) in the 0.3-7 keV band. We also observed the cluster with the Hubble Space Telescope Advanced Camera for Surveys and identify optical counterparts to seven X-ray sources out of the nine sources within the HST field-of-view. Based on the X-ray and optical properties, we find 2-5 candidates of cataclysmic variables (CVs) or chromospherically active binaries, and 2-5 background galaxies inside the half-mass radius. Since the core density of NGC 288 is very low, the faint X-ray sources of NGC 288 found in the Chandra and HST observations is higher than the prediction on the basis of the collision frequency. We suggest that the CVs and chromospherically active binaries are primordial in origin, in agreement with theoretical expectation.

  18. Revealing the Focused Companion Wind in Cygnus X-1 with Chandra

    CERN Document Server

    Miller, J M; Schulz, N S; Marshall, H L; Fabian, A C; Remillard, R A; Wijnands, R; Lewin, W H G

    2002-01-01

    We have analyzed a Chandra HETGS spectrum of the Galactic black hole Cygnus X-1, obtained at a source flux which is approximately twice that commonly observed in its persistent low-intensity, spectrally-hard state. We find a myriad of absorption lines in the spectrum, including Ly-alpha lines and helium-like resonance lines from Ne, Na, Mg, and Si. We calculate a flux-weighted mean red-shift of ~100 km/s and a flux-weighted mean velocity width of 800 km/s (FWHM) for lines from these elements. We also detect a number of transitions from Fe XVIII-XXIV and Ni XIX-XX in absorption; however, the identification of these lines is less certain and a greater range of shifts and breadth is measured. Our observation occurred at a binary phase of phi = 0.76; the lines observed are consistent with absorption in an ionized region of the supergiant O9.7 Iab companion wind. The spectrum is extremely complicated in that a range of temperatures and densities are implied. Prior Chandra HETGS spectra of Cygnus X-1 were obtained ...

  19. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    Science.gov (United States)

    Walker, S. A.; Sanders, J. S.; Fabian, A. C.

    2016-09-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.

  20. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    Science.gov (United States)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Haberl, Frank; Sasaki, Manami; Drake, Jeremy J.; Plucinsky, Paul P.; Laycock, Silas

    2017-09-01

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg2 region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity (L X ) of the pulsars ranges from 1034 to 1037 erg s‑1 at 60 kpc. All of the Chandra sources with L X ≳ 4 × 1035 erg s‑1 exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).

  1. Tunable Cavity Optomechanics with Ultracold Atoms

    CERN Document Server

    Purdy, T P; Botter, T; Brahms, N; Ma, Z -Y; Stamper-Kurn, D M

    2010-01-01

    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.

  2. A Chandra Study of Radial Temperature Profiles of the Intra-Cluster Medium in 50 Galaxy Clusters

    CERN Document Server

    Zhu, Zhenghao; Wang, Jingying; Gu, Junhua; Li, Weitian; Hu, Dan; Zhang, Chenhao; Gu, Liyi; An, Tao; Liu, Chengze; Zhang, Zhongli; Zhu, Jie; Wu, Xiang-Ping

    2015-01-01

    In order to investigate the spatial distribution of the ICM temperature in galaxy clusters in a quantitative way and probe the physics behind, we analyze the X-ray spectra of a sample of 50 galaxy clusters, which were observed with the Chandra ACIS instrument in the past 15 years, and measure the radial temperature profiles out to $0.45r_{500}$. We construct a physical model that takes into account the effects of gravitational heating, thermal history (such as radiative cooling, AGN feedback, and thermal conduction) and work done via gas compression, and use it to fit the observed temperature profiles by running Bayesian regressions. The results show that in all cases our model provides an acceptable fit at the 68% confidence level. To further validate this model we select nine clusters that have been observed with both Chandra (out to $\\gtrsim 0.3r_{500}$) and Suzaku (out to $\\gtrsim 1.5r_{500}$), fit their Chandra spectra with our model, and compare the extrapolation of the best-fits with the Suzaku measure...

  3. Observation of Rayleigh phonon scattering through excitation of extremely high overtones in low-loss cryogenic acoustic cavities for hybrid quantum systems.

    Science.gov (United States)

    Goryachev, Maxim; Creedon, Daniel L; Galliou, Serge; Tobar, Michael E

    2013-08-23

    The confinement of high frequency phonons approaching 1 GHz is demonstrated in phonon-trapping acoustic cavities at cryogenic temperatures using a low-coupled network approach. The frequency range is extended by nearly an order of magnitude, with excitation at greater than the 200th overtone achieved for the first time. Such a high frequency operation reveals Rayleigh-type phonon scattering losses due to highly diluted lattice impurities and corresponding glasslike behavior, with a maximum Q(L)×f product of 8.6×10(17) at 3.8 K and 4×10(17) at 15 mK. This suggests a limit on the Q×f product due to unavoidable crystal disorder. Operation at 15 mK is high enough in frequency that the average phonon occupation number is less than unity, with a loaded quality factor above half a billion. This work represents significant progress towards the utilization of such acoustic cavities for hybrid quantum systems.

  4. The outer regions of galaxy clusters: Chandra constraints on the X-ray surface brightness

    CERN Document Server

    Ettori, S

    2008-01-01

    (Abridged version) We study the properties of the X-ray surface brightness profiles in a sample of galaxy clusters that are observed with Chandra and have emission detectable with a signal-to-noise ratio larger than 2 at a radius beyond R500 ~ 0.7 R200. Our study aims at measuring the slopes of the X-ray surface brightness and of the gas density profiles in the outskirts of massive clusters. These constraints are then compared to similar results obtained from observations and numerical simulations of the temperature and dark matter density profiles with the intention to present a consistent picture of the outer regions of galaxy clusters. We extract the surface brightness profiles S_b(r) from X-ray exposures obtained with Chandra of 52 X-ray luminous galaxy clusters at z>0.3. We estimate R200 both using a beta-model to reproduce the surface brightness profile and scaling relations from the literature, showing that the two methods converge to comparable values. We evaluate then the radius, R_S2N, at which the ...

  5. A Chandra and Spitzer census of the young star cluster in the reflection nebula NGC 7129

    CERN Document Server

    Stelzer, B

    2009-01-01

    The reflection nebula NGC 7129 has long been known to be a site of recent star formation as evidenced, e.g., by the presence of deeply embedded protostars and HH objects. However, studies of the stellar population produced in the star formation process have remained rudimentary. At a presumed age of ~3 Myr, NGC7129 is in the critical range where disks around young stars disappear. We make use of Chandra X-ray and Spitzer and 2MASS IR imaging observations to identify the pre-main sequence stars in NGC7129. We define a sample of Young Stellar Objects based on color-color diagrams composed from IR photometry between 1.6 and 8 mu, from 2MASS and Spitzer, and based on X-ray detected sources from a Chandra observation. This sample is composed of 26 Class II and 25 Class III candidates. The sample is estimated to be complete down to ~ 0.5 solar masses. The most restricted and least biased sub-sample of pre-main sequence stars is composed of lightly absorbed (A_V < 5 mag) stars in the cluster core. This sample com...

  6. Testing The Cas A Neutron Star Temperature Decline With Other Chandra Instruments

    Science.gov (United States)

    Elshamouty, Khaled; Heinke, C. O.; Ho, W. C. G.; Patnaude, D. J.; Shternin, P. S.; Yakovlev, D. G.

    2012-01-01

    The neutron star in the Cassiopeia A supernova remnant is 330 years old, making it the youngest neutron star in the Milky Way. Heinke & Ho (2010) reported a rapid cooling drop of 4% in its surface temperature (21% drop in observed flux) from Chandra ACIS-S archival data between 2000 and 2009. This opened the suggestion of enhanced neutrino emission due to a superfluid transition in the core to account for the observed rapid cooling (Page et al. 2011, Shternin et al. 2011). Here we present analysis of archival Chandra ACIS-I, HRC-I and HRC-S data over the same time period to test the rate. We used the best ACIS-S carbon atmosphere spectral fits to infer the countrates corresponding to various temperatures, along with current (CALDB 4.4.6) estimates of the effective area and its changes over time for these cameras, to calculate the temperature drops in each instrument. We find that the HRC-I data are consistent with the ACIS-S result, though tending to smaller declines. The ACIS-I data suggest a slightly larger drop. The HRC-S data (with the longest exposures) indicate a marginal temperature decline of 0.9+0.7-0.7 % (90% conf.) over 9 years.

  7. The spatial distribution of X-ray selected AGN in the Chandra deep fields: a theoretical perspective

    CERN Document Server

    Marulli, Federico; Branchini, Enzo; Gilli, Roberto; Moscardini, Lauro; Springel, Volker

    2009-01-01

    We study the spatial distribution of X-ray selected AGN in the framework of hierarchical co-evolution of supermassive black holes and their host galaxies and dark matter haloes. To this end, we have applied the model developed by Croton et al.(2006), De Lucia & Blaizot(2007) and Marulli et al.(2008) to the output of the Millennium Run and obtained hundreds of realizations of past light-cones from which we have extracted realistic mock AGN catalogues that mimic the Chandra deep fields. We find that the model AGN number counts are in fair agreement with observations, except at fluxes <1e-15 erg/cm^2/s. The spatial two-point correlation function predicted by the model is well described by a power-law relation out to 20 Mpc/h, in close agreement with observations. Our model matches the correlation length r_0 of AGN in the Chandra Deep Field North but underestimates it in the Chandra Deep Field South. When fixing the slope to gamma = 1.4, as in Gilli et al. (2005), the statistical significance of the mismat...

  8. The Chandra Delta Ori Large Project: Occultation Measurements of the Shocked Gas tn the Nearest Eclipsing O-Star Binary

    Science.gov (United States)

    Corcoran, Michael F.; Nichols, Joy; Naze, Yael; Rauw, Gregor; Pollock, Andrew; Moffat, Anthony; Richardson, Noel; Evans, Nancy; Hamaguchi, Kenji; Oskinova, Lida; Hamann, W. -R.; Gull, Ted; Ignace, Rico; Hole, Tabetha; Iping, Rosina; Walborn, Nolan; Hoffman, Jennifer; Lomax, Jamie; Waldron, Wayne; Owocki, Stan; Maiz-Apellaniz, Jesus; Leutenegger, Maurice; Hole, Tabetha; Gayley, Ken; Russell, Chris

    2013-01-01

    Delta Ori is the nearest massive, single-lined eclipsing binary (O9.5 II + B0.5III). As such it serves as a fundamental calibrator of the mass-radius-luminosity relation in the upper HR diagram. It is also the only eclipsing O-type binary system which is bright enough to be observable with the CHANDRA gratings in a reasonable exposure. Studies of resolved X-ray line complexes provide tracers of wind mass loss rate and clumpiness; occultation by the X-ray dark companion of the line emitting region can provide direct spatial information on the location of the X-ray emitting gas produced by shocks embedded in the wind of the primary star. We obtained phase-resolved spectra with Chandra in order to determine the level of phase-dependent vs. secular variability in the shocked wind. Along with the Chandra observations we obtained simultaneous photometry from space with the Canadian MOST satellite to help understand the relation between X-ray and photospheric variability.

  9. Nanobeam photonic crystal cavity quantum dot laser

    CERN Document Server

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  10. The Young Stellar Population in M17 Revealed by Chandra

    Science.gov (United States)

    Broos, Patrick S.; Feigelson, Eric D.; Townsley, Leisa K.; Getman, Konstantin V.; Wang, Junfeng; Garmire, Gordon P.; Jiang, Zhibo; Tsuboi, Yohko

    2007-04-01

    We report here results from a Chandra ACIS observation of the stellar populations in and around the M17 H II region. The field reveals 886 sources with observed X-ray luminosities (uncorrected for absorption) between ˜29.3 ergs s-1tables of X-ray source properties, several results are presented: 1. The X-ray luminosity function is calibrated to that of the Orion Nebula Cluster population to infer a total population of roughly 8000-10,000 stars in M17, one-third lying in the central NGC 6618 cluster. 2. About 40% of the ACIS sources are heavily obscured with AV>10 mag. Some are concentrated around well-studied star-forming regions -- IRS 5/UC1, the Kleinmann-Wright Object, and M17-North -- but most are distributed across the field. As previously shown, star formation appears to be widely distributed in the molecular clouds. X-ray emission is detected from 64 of the hundreds of Class I protostar candidates that can be identified by near- and mid-infrared colors. These constitute the most likely protostar candidates known in M17. 3. The spatial distribution of X-ray stars is complex: in addition to the central NGC 6618 cluster and well-known embedded groups, we find a new embedded cluster (designated M17-X), a 2 pc long arc of young stars along the southwest edge of the M17 H II region, and 0.1 pc substructure within various populations. These structures may indicate that the populations are dynamically young. 4. All (14/14) of the known O stars but only about half (19/34) of the known B0-B3 stars in the M17 field are detected. These stars exhibit the long-reported correlation between X-ray and bolometric luminosities of LX˜10-7Lbol. While many O and early-B stars show the soft X-ray emission expected from microshocks in their winds or moderately hard emission that could be caused by magnetically channeled wind shocks, six of these stars exhibit very hard thermal plasma components (kT>4 keV) that may be due to colliding wind binaries. More than 100 candidate new OB

  11. Dawn of Cavity Spintronics

    OpenAIRE

    Hu, Can-Ming

    2015-01-01

    Merging the progress of spintronics with the advancement in cavity quantum electrodynamics and cavity polaritons, a new field of Cavity Spintronics is forming, which connects some of the most exciting modern physics, such as quantum information and quantum optics, with one of the oldest science on the earth, the magnetism.

  12. Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

    CERN Document Server

    Britt, Christopher T; Johnson, C B; Baldwin, A; Jonker, P G; Nelemans, G; Torres, M A P; Maccarone, T; Steeghs, D; Greiss, S; Heinke, C; Bassa, C G; Collazzi, A; Villar, A; Gabb, M; Gossen, L

    2014-01-01

    We present optical lightcurves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey. Using data from the Mosaic-II instrument on the Blanco 4m Telescope at CTIO, we gathered time-resolved photometric data on timescales from $\\sim2$ hr to 8 days over the $\\frac{3}{4}$ of the X-ray survey containing sources from the initial GBS catalog. Among the lightcurve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. $87\\%$ of X-ray sources have at least one potential optical counterpart. $24\\%$ of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and di...

  13. Adapative software solutions: lessons learned from Chandra flight operations

    Science.gov (United States)

    Shropshire, Daniel P.; Bucher, Sabina; Rose, Joseph

    2006-06-01

    After over 6 highly successful years on orbit, the Chandra X-ray Observatory continues to deliver world class science to members of the X-ray community. Much of this success can be attributed to an excellent space vehicle, however; the creation of several unique software tools has allowed for extremely efficient and smooth running operations. The Chandra Flight Operations Team, staffed by members of Northrop Grumman Space Technology, has created a suite of software tools designed to help optimize on-console operations, mission planning and scheduling, and spacecraft engineering and trending. Many of these tools leverage COTS products and Web based technologies. We describe the original mission concepts, need for supplemental software tools, development and implementation, use of these tools in the current operations scenario, and efficiency improvements due to their use.

  14. Chandra Reveals The X-Ray Glint In The Cat's Eye

    Science.gov (United States)

    2001-01-01

    central star to create this "lukewarm" area. However, this theory apparently does not apply for NGC 6543. Chu and her colleagues found that the chemical abundances within the hot gas were like those in the wind from the star, and different from the cooler outer material. These results indicate that mixing is not occurring, and that the cooling between the inner and outer shells of material is due to some other process. The intensity of the X-rays from the central star was also unexpected. The star itself has a surface temperature of about 60,000 degrees, whereas the X-ray measurement indicates a temperature of a few million degrees. "We could be seeing shock waves in the fast stellar wind itself," said Martin Guerrero of the University of Illinois, lead author on a companion paper that describes the central star. "This is the first time we see such X-ray emission from the central star of a planetary nebula." A planetary nebula (so called because it looks like a planet when viewed with a small telescope) is formed when a dying red giant star puffs off its outer layer, leaving behind a hot core that will eventually collapse to form a dense star called a white dwarf. A fast wind emanating from the hot core rams into the ejected atmosphere, pushes it outward, and creates the graceful filamentary structures seen with optical telescopes. With Chandra, it is now possible to see the high-pressure hot bubble inside these filaments and study how the nebula is formed in more detail. The Cat's Eye Nebula, which is about 3,000 light years from Earth, was formed about a thousand years ago. Other members of the research team include Robert Gruendl, and James Kaler (University of Illinois), and Rosa Williams (National Research Council). NGC 6543 was observed with the Advanced CCD Imaging Spectrometer (ACIS) on May 10-11, 1999, for a total exposure time of 46,000 seconds. The ACIS X-ray camera was developed for NASA by Pennsylvania State University and MIT. NASA's Marshall Space Flight

  15. Cross-matching within the Chandra Source Catalog

    Science.gov (United States)

    Rots, Arnold H.; Burke, Douglas J.; Civano, Francesca; Hain, Roger; Nguyen, Dan

    2017-01-01

    Cross-matching among overlapping source detections in the development of the Chandra Source Catalog (CSC) presents considerable challenges, since the Point Spread Function (PSF) of the Chandra X-ray Observatory varies significantly over the field of view. For the production of the second release of the CSC we have developed a cross-match tool that is based on the Bayesian algorithms by Budavari, Heinis, and Szalay (ApJ 679, 301 and 705, 739), making use of the error ellipses for the derived positions of the detections.However, calculating match probabilities only on the basis of error ellipses breaks down when the PSFs are significantly different. This is an issue that is not commonly addressed in cross-match tools. We have applied a satisfactory modification to the algorithm that, although not perfect, ameliorates the issue for the vast majority of such cases.A separate issue is that as the number of overlapping detections increases, the number of matches to be considered increases at an alarming rate, requiring procedural adjustments to ensure that the cross-matching finishes within a Hubble time.We intend to make the tool available as a general purpose cross-match engine for calculating match probabilities between sources in multiple catalogs simultaneously.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  16. Unveiling obscured accretion in the Chandra Deep Field South

    CERN Document Server

    Fiore, F; Santini, P; Puccetti, S; Brusa, M; Feruglio, C; Fontana, A; Giallongo, E; Comastri, A; Gruppioni, C; Pozzi, F; Zamorani, G; Vignali, C

    2007-01-01

    A large population of heavily obscured, Compton Thick AGNs is predicted by models of galaxy formation, models of Cosmic X-ray Background and by the ``relic'' super-massive black-hole mass function measured from local bulges. However, so far only a handful of Compton thick AGNs have been possibly detected using even the deepest Chandra and XMM surveys. Compton-thick AGNs can be recovered thanks to the reprocessing of the AGN UV emission in the infrared by selecting sources with AGN luminosity's in the mid-infrared and faint near-infrared and optical emission. To this purpose, we make use of deep HST, VLT, Spitzer and Chandra data on the Chandra Deep Field South to constrain the number of Compton thick AGN in this field. We show that sources with high 24micron to optical flux ratios and red colors form a distinct source population, and that their infrared luminosity is dominated by AGN emission. Analysis of the X-ray properties of these extreme sources shows that most of them are indeed likely to be highly obsc...

  17. Studying the Evolving Universe with XMM-Newton and Chandra

    CERN Document Server

    Hasinger, G

    2003-01-01

    First indications of the warm/hot intergalactic medium, tracing out the large scale structure of the universe, have been obtained in sensitive Chandra and XMM-Newton high resolution absorption line spectroscopy of bright blazars. High resolution X-ray spectroscopy and imaging also provides important new constraints on the physical condition of the cooling matter in the centers of clusters, requiring major modifications to the standard cooling flow models. XMM-Newton and Chandra low resolution spectroscopy detected significant Fe K_alpha absorption features in the spectrum of the ultraluminous, high redshift lensed broad absorption line QSO APM 08279+5255, yielding new insights in the outflow geometry indicating a supersolar Fe/O ratio. Chandra high resolution imaging spectroscopy of the nearby ULIRG/obscured QSO NGC 6240 for the first time gave evidence of two active supermassive black holes in the same galaxy, likely bound to coalesce in the course of the ongoing major merger in this galaxy. Deep X-ray surve...

  18. Phase Coherent Timing of RX J0806.3+1527 with ROSAT and CHANDRA

    CERN Document Server

    Strohmayer, T E

    2003-01-01

    RX J0806.3+1527 is an ultra-compact, double degenerate binary with the shortest known orbital period (321.5 s). Hakala et al. (2003) have recently reported new optical measurements of the orbital frequency of the source which indicate that the frequency has increased over the ~9 years since the earliest ROSAT observations. They find two candidate solutions for the long term change in the frequency; df/dt = 3 or 6 x 10E-16 Hz/s. Here we present the results of a phase coherent timing study of the archival ROSAT and Chandra data for RX J0806.3+1527 in the light of these new constraints. We find that the ROSAT -- Chandra timing data are consistent with both of the solutions reported by Hakala et al., but that the higher df/dt = 6.1 x 10E-16 Hz/s solution is favored at the ~97 % level. Such a large df/dt can be accomodated by an ~1 Msun detached double degenerate system powered in the X-ray by electrical energy (Wu et al. 2002). With such a large df/dt the system provides a unique opportunity to explore the intera...

  19. 1WGAJ1226.9+3332 a high redshift cluster discovered by Chandra

    CERN Document Server

    Cagnoni, I; Kim, D W; Mazzotta, P; Huang, J S; Celotti, A

    2001-01-01

    We report the detection of 1WGAJ1226.9+3332 as an arcminute scale extended X-ray source with the Chandra X-ray Observatory. The Chandra observation and R and K band imaging strongly support the identification of 1WGAJ1226.9+3332 as a high redshift cluster of galaxies, most probably at z=0.85 +- 0.15, with an inferred temperature kT =10 (+4;-3) keV and an unabsorbed luminosity (in a r=120" aperture) of 1.3 (+0.16;-0.14) x 1e45 erg/s (0.5-10 keV). This indication of redshift is also supported by the K and R band imaging, and is in agreement with the spectroscopic redshift of 0.89 found by Ebeling et al. (2001). The surface brightness profile is consistent with a beta-model with beta=0.770 +- 0.025, rc=(18.1 +-0.9)" (corresponding to 101 +- 5 kpc at z=0.89), and S(0)=1.02 +- 0.08 counts/arcsec**2. 1WGAJ1226.9+3332 was selected as an extreme X-ray loud source with FX/FV>60; this selection method, thanks to the large area sampled, seems to be a highly efficient method for finding luminous high z clusters of galaxi...

  20. Chandra ACIS Survey of X-ray Point Sources: The Source Catalog

    CERN Document Server

    Wang, Song; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-01-01

    The $Chandra$ archival data is a valuable resource for various studies on different topics of X-ray astronomy. In this paper, we utilize this wealth and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 ACIS observations, which produces 363,530 source detections, belonging to 217,828 distinct X-ray sources. This number is twice the size of the $Chandra$ Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows 17,828 sources are located within the $D_{25}$ isophotes of 1110 galaxies, and 7504 sources are located between the $D_{25}$ and 2$D_{25}$ isophotes of 910 galaxies. Contamination analysis with the log$N$--log$S$ relation indicates that 51.3\\% of objects within 2$D_{25}$ isophotes are...