WorldWideScience

Sample records for chandra observations cavities

  1. Chandra Observations of Neutron Stars: An Overview

    Science.gov (United States)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  2. When Worlds Collide: Chandra Observes Titanic Merger

    Science.gov (United States)

    2002-04-01

    NASA's Chandra X-ray Observatory has provided the best X-ray image yet of two Milky Way-like galaxies in the midst of a head-on collision. Since all galaxies - including our own - may have undergone mergers, this provides insight into how the universe came to look as it does today. Astronomers believe the mega-merger in the galaxy known as Arp 220 triggered the formation of huge numbers of new stars, sent shock waves rumbling through intergalactic space, and could possibly lead to the formation of a supermassive black hole in the center of the new conglomerate galaxy. The Chandra data also suggest that merger of these two galaxies began only 10 million years ago, a short time in astronomical terms. "The Chandra observations show that things really get messed up when two galaxies run into each other at full speed," said David Clements of the Imperial College, London, one of the team members involved in the study. "The event affects everything from the formation of massive black holes to the dispersal of heavy elements into the universe." Arp 220 is considered to be a prototype for understanding what conditions were like in the early universe, when massive galaxies and supermassive black holes were presumably formed by numerous galaxy collisions. At a relatively nearby distance of about 250 million light years, Arp 220 is the closest example of an "ultra-luminous" galaxy, one that gives off a trillion times as much radiation as our Sun. The Chandra image shows a bright central region at the waist of a glowing, hour-glass-shaped cloud of multimillion-degree gas. Rushing out of the galaxy at hundreds of thousands of miles per hour, the super-heated as forms a "superwind," thought to be due to explosive activity generated by the formation of hundreds of millions of new stars. Farther out, spanning a distance of 75,000 light years, are giant lobes of hot gas that could be galactic remnants flung into intergalactic space by the early impact of the collision. Whether the

  3. A CHANDRA OBSERVATION OF SNR 0540 - 697

    International Nuclear Information System (INIS)

    Seward, F. D.; Williams, R. M.; Chu, Y.-H.; Gruendl, R. A.; Dickel, J. R.

    2010-01-01

    This paper describes a Chandra observation of SNR 0540 - 697 within the H II complex N159 in the Large Magellanic Cloud (LMC). Scattering from the nearby bright source LMC X-1, which obscures the western edge of the remnant, has been removed. Larger than previously believed, the 2.'0 x 2.'8 remnant is defined by optical filaments and two lobes of X-ray emission. A band of intervening material absorbs X-rays from the central part of the remnant. The N Lobe of the remnant is relatively bright and well defined, while emission from the S Lobe is much weaker. There is structure within the N Lobe but no clear X-ray emission from an outer shell indicating a shock in the interstellar medium. The X-ray spectrum is thermal with emission lines from Fe, Mg, and Si. The observed temperature and luminosity of the hot gas are 0.6 keV and 6 x 10 35 erg s -1 , respectively. These are consistent with characteristics expected for older remnants. There is also diffuse thermal X-ray emission north of N159 extending into N160, evidence for a larger remnant or bubble.

  4. Cosmological constraints from Chandra observations of galaxy clusters.

    Science.gov (United States)

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  5. INNOVATIONS IN THE ANALYSIS OF CHANDRA-ACIS OBSERVATIONS

    International Nuclear Information System (INIS)

    Broos, Patrick S.; Townsley, Leisa K.; Feigelson, Eric D.; Getman, Konstantin V.; Garmire, Gordon P.; Bauer, Franz E.

    2010-01-01

    As members of the instrument team for the Advanced CCD Imaging Spectrometer (ACIS) on NASA's Chandra X-ray Observatory and as Chandra General Observers, we have developed a wide variety of data analysis methods that we believe are useful to the Chandra community, and have constructed a significant body of publicly available software (the ACIS Extract package) addressing important ACIS data and science analysis tasks. This paper seeks to describe these data analysis methods for two purposes: to document the data analysis work performed in our own science projects and to help other ACIS observers judge whether these methods may be useful in their own projects (regardless of what tools and procedures they choose to implement those methods). The ACIS data analysis recommendations we offer here address much of the workflow in a typical ACIS project, including data preparation, point source detection via both wavelet decomposition and image reconstruction, masking point sources, identification of diffuse structures, event extraction for both point and diffuse sources, merging extractions from multiple observations, nonparametric broadband photometry, analysis of low-count spectra, and automation of these tasks. Many of the innovations presented here arise from several, often interwoven, complications that are found in many Chandra projects: large numbers of point sources (hundreds to several thousand), faint point sources, misaligned multiple observations of an astronomical field, point source crowding, and scientifically relevant diffuse emission.

  6. Chandra Observations of Tycho's Supernova Remnant U. Hwang , R ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    runaway thermal instabilities in a white dwarf. It was observed for 50 ks with the superb 0.5 resolution mirror on the Chandra X-ray .... emission that comes from ejecta that have propagated to the forward shock. Such a spectrum, taken from a portion of the west rim of the remnant, is shown in the right panel of Fig. 2. The fitted ...

  7. Monitoring of CH Cyg requested for Chandra and HST observations

    Science.gov (United States)

    Waagen, Elizabeth O.

    2012-03-01

    Dr. Margarita Karovska, Harvard-Smithsonian Center for Astrophysics, has requested visual and photometric observations of the symbiotic variable CH Cyg in preparation for and support of Chandra and HST observations scheduled for later in March 2012. Dr. Karovska's observations will be a followup investigation of the central region of CH Cyg and its jet that was discovered a couple of years ago. AAVSO observations are requested in order to monitor the state of the system and correlate with the satellite observations. Visual observations and CCD/PEP observations in all bands - U through J and H - are requested. Daily observations now through April 2012 and high-speed photometry through March would be appreciated. CH Cyg is currently at visual magnitude 7.7. Halpha, OIII region, and optical spectroscopy are also requested. More details on the exact dates and times of the satellite observations will be announced when they become available, but daily monitoring should begin now. [HST observations scheduled for 2012 March 18; Chandra delayed some days due to X-class solar flare of 2012 March 7.] Coordinates: RA 19 24 33.07 Dec. +50 14 29.1 (J2000.0). Finder charts may be created and data from the AAVSO International Database may be viewed, plotted, or downloaded (www.aavso.org).

  8. Early Chandra X-ray Observations of Eta Carinae

    OpenAIRE

    Seward, F. D.; Butt, Y. M.; Karovska, M.; Schlegel, A. Prestwich. E. M.; Corcoran, M.

    2001-01-01

    Sub-arcsecond resolution Chandra observations of Eta Carinae reveal a 40 arcsec X 70 arcsec ring or partial shell of X-ray emission surrounding an unresolved, bright, central source. The spectrum of the central source is strongly absorbed and can be fit with a high-temperature thermal continuum and emission lines. The surrounding shell is well outside the optical/IR bipolar nebula and is coincident with the Outer Shell of Eta Carinae. The X-ray spectrum of the Shell is much softer than that o...

  9. Chandra Observation of Polaris: Census of Low-mass Companions

    Science.gov (United States)

    Evans, Nancy Remage; Guinan, Edward; Engle, Scott; Wolk, Scott J.; Schlegel, Eric; Mason, Brian D.; Karovska, Margarita; Spitzbart, Bradley

    2010-05-01

    We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log LX = 28.89 erg s-1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, "C" and "D," are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag. Based on observations made with the NASA Chandra Satellite.

  10. CHANDRA OBSERVATIONS OF SN 1987A: THE SOFT X-RAY LIGHT CURVE REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Helder, E. A.; Broos, P. S.; Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Dewey, D. [MIT Kavli Institute, Cambridge, MA 02139 (United States); Dwek, E. [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McCray, R. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Park, S. [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States); Racusin, J. L. [NASA, Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Zhekov, S. A. [Space Research and Technology Institute, Akad. G. Bonchev str., bl.1, Sofia 1113 (Bulgaria)

    2013-02-10

    We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by {approx}6 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2} per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.

  11. CHANDRA OBSERVATION OF POLARIS: CENSUS OF LOW-MASS COMPANIONS

    International Nuclear Information System (INIS)

    Remage Evans, Nancy; Wolk, Scott J.; Karovska, Margarita; Spitzbart, Bradley; Guinan, Edward; Engle, Scott; Schlegel, Eric; Mason, Brian D.

    2010-01-01

    We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log L X = 28.89 erg s -1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, 'C' and 'D', are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag.

  12. CHANDRA OBSERVATION OF THE RELATIVISTIC BINARY J1906+0746

    International Nuclear Information System (INIS)

    Kargaltsev, O.; Pavlov, G. G.

    2009-01-01

    PSR J1906+0746 is a young radio pulsar (τ = 112 kyr, P = 144 ms) in a tight binary (P orb = 3.98 hr) with a compact high-mass companion (M comp ≅ 1.36 M sun ), at the distance of about 5 kpc. We observed this unique relativistic binary with the Chandra Advanced CCD Imaging Spectrometer detector for 31.6 ks. Surprisingly, not a single photon was detected within the 3'' radius from the J1906+0746 radio position. For a plausible range of hydrogen column densities, n H = (0.5-1) x 10 22 cm -2 , the nondetection corresponds to the 90% upper limit of (3-5) x 10 30 erg s -1 on the unabsorbed 0.5-8 keV luminosity for the power-law model with Γ = 1.0-2.0, and ∼10 32 erg s -1 on the bolometric luminosity of the thermal emission from the neutrons star surface. The inferred limits are the lowest known for pulsars with spin-down properties similar to those of PSR J1906+0746. We have also tentatively detected a puzzling extended structure which looks like a tilted ring with a radius of 1.'6 centered on the pulsar. The measured 0.5-8 keV flux of the feature, ∼3.1 x 10 -14 erg cm -2 s -1 , implies an unabsorbed luminosity of 1.2 x 10 32 erg s -1 (4.5 x 10 -4 of the pulsar's E-dot) for n H = 0.7 x 10 22 cm -2 . If the ring is not a peculiar noise artifact, the pulsar wind nebula around an unusually underluminous pulsar would be the most plausible interpretation.

  13. Simultaneous Chandra/Swift Observations of the RT Cru Symbiotic System

    Science.gov (United States)

    Kashyap, Vinay; Kennea, J. A.; Karovska, M.; Calibration, Chandra

    2013-04-01

    The symbiotic star RT Cru was observed simultaneously by the Chandra/HRC-I and Swift/XRT in Dec 2012. The observations were carried out as part of a program to calibrate the Chandra PSF. The Chandra light curve shows a number of brightenings by factors of 2, with strong indications of a softening of the spectrum at these times. Swift observations cover a brief part of the Chandra light curve, and the intensities over this duration are tightly correlated. The Swift spectral data confirm the anticorrelation between intensity and spectral hardness. However, there are differences in the correlations at different periods that are not understood. We report on our analysis of the data, with emphasis on the spectral modeling at different times and intensity levels, and discuss the implications of the results on the emission mechanisms on symbiotic stars. We also report our inferences on the structure and energy dependence of the Chandra PSF anomaly, and on the high-energy cross-calibration between the HRC-I and XRT. This work is supported by the NASA contract NAS8-03060 to the Chandra X-ray Center.

  14. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  15. Action at the Horizon: Chandra/EHT Observations of Sgr A*

    Science.gov (United States)

    Neilsen, Joseph

    2017-09-01

    In April 2017, the Event Horizon Telescope will observe Sgr A* with imaging quality sufficient to resolve the shadow of the black hole, while providing a close-up view of accretion at the horizon. As Sgr A* is a well-known source of X-ray flares, coordinated Chandra/EHT observations offer an incredible opportunity: a chance to observe structures (e.g., hotspots) near the event horizon while tracking their high-energy variability. In anticipation of a follow-up campaign in 2018, we are requesting 4x33 ks Chandra observations of Sgr A* to be coordinated with EHT. This campaign will double our chances of simultaneous flares. We will search for flares and hotspots, provide priors for EHT image reconstruction, and track any activity associated with the closest approach of the massive star S0-2.

  16. A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625

    Science.gov (United States)

    Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.

    2004-06-01

    We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.

  17. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  18. Simultaneous Chandra and NuSTAR Observations of the Highly Obscured AGN Candidate in NGC660.

    Science.gov (United States)

    Annuar, Ady

    2014-09-01

    We are using NuSTAR to undertake a detailed investigation of the obscured AGN population at D<15Mpc. Our latest target is NGC660 where the presence of an AGN has been ambiguous. However, recently it was observed to undergo a radio outburst which reveals a bright continuum source (Argo et al. 2015), coincident with Chandra 2-8 keV emission from one of the three point sources near the nucleus (<5"). This confirms and pinpoints the X-ray position of the AGN. Comparisons of the Chandra flux with the radio emission and other multiwavelength luminosity indicators indicate that the X-ray flux is suppressed, suggesting that it is absorbed by a high column of gas. A NuSTAR observation for this object has been scheduled as part of our program. The requested Chandra observation is essential to unambiguously constrain the AGN and isolate it from other sources at <8 keV. When combined with NuSTAR, we will then be able to accurately characterise the 0.5-30 keV spectrum of the AGN for the first time.

  19. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  20. THE CHANDRA SURVEY OF EXTRAGALACTIC SOURCES IN THE 3CR CATALOG: X-RAY EMISSION FROM NUCLEI, JETS, AND HOTSPOTS IN THE CHANDRA ARCHIVAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Harris, D. E.; Paggi, A.; Wilkes, B. J.; Kuraszkiewicz, J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Liuzzo, E.; Orienti, M.; Paladino, R. [Istituto di Radioastronomia, INAF, via Gobetti 101, I-40129, Bologna (Italy); Tremblay, G. R. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Baum, S. A.; O’Dea, C. P. [University of Manitoba, Dept of Physics and Astronomy, Winnipeg, MB R3T 2N2 (Canada)

    2015-09-15

    As part of our program to build a complete radio and X-ray database of all Third Cambridge catalog extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have already been published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the Very Large Array archive. For about 1/3 of the sources in the selected sample, a comparison between the Chandra and radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium for 15 galaxy clusters.

  1. CHEERS Results on Mrk 573: A Study of Deep Chandra Observations

    Science.gov (United States)

    Paggi, Alessandro; Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita

    2012-09-01

    We present results on Mrk 573 obtained as part of the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS). Previous studies showed that this source features a biconical emission in the soft X-ray band closely related to the narrow-line region as mapped by the [O III] emission line and the radio emission, though on a smaller scale; we investigate the properties of soft X-ray emission from this source with new deep Chandra observations. Making use of the subpixel resolution of the Chandra/ACIS image and point-spread function deconvolution, we resolve and study substructures in each ionizing cone. The two cone spectra are fitted with a photoionization model, showing a mildly photoionized phase diffused over the bicone. Thermal collisional gas at about ~1.1 keV and ~0.8 keV appears to be located between the nucleus and the "knots" resolved in radio observations, and between the "arcs" resolved in the optical images, respectively; this can be interpreted in terms of shock interaction with the host galactic plane. The nucleus shows a significant flux decrease across the observations indicating variability of the active galactic nucleus (AGN), with the nuclear region featuring a higher ionization parameter with respect to the bicone region. The long exposure allows us to find extended emission up to ~7 kpc from the nucleus along the bicone axis. Significant emission is also detected in the direction perpendicular to the ionizing cones, disagreeing with the fully obscuring torus prescribed in the AGN unified model and suggesting instead the presence of a clumpy structure.

  2. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, Univ. of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space Research and Technology Institute, Akad. G. Bonchev Str., Sofia, 1113 (Bulgaria); Güdel, Manuel [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner, E-mail: stephen.skinner@colorado.edu, E-mail: szhekov@space.bas.bg, E-mail: manuel.guedel@univie.ac.at, E-mail: werner.schmutz@pmodwrc.ch [Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland)

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  3. Chandra's Observations of Jupiter's X-Ray Aurora During Juno Upstream and Apojove Intervals

    Science.gov (United States)

    Jackman, C.M.; Dunn, W.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.

    2017-01-01

    The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove (expected close to the magnetopause). We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 kiloseconds for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.

  4. A Chandra grating observation of the dusty Wolf-Rayet star WR 48a

    Energy Technology Data Exchange (ETDEWEB)

    Zhekov, Svetozar A. [Space Research and Technology Institute, Akad. G. Bonchev Str., bl.1, Sofia 1113 (Bulgaria); Gagné, Marc [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Skinner, Stephen L., E-mail: szhekov@space.bas.bg, E-mail: mgagne@wcupa.edu, E-mail: stephen.skinner@colorado.edu [CASA, University of Colorado, Boulder, CO 80309 (United States)

    2014-04-10

    We present results of a Chandra High-Energy Transmission Grating (HETG) observation of the carbon-rich Wolf-Rayet (WR) star WR 48a. These are the first high-resolution spectra of this object in X-ray. Blueshifted centroids of the spectral lines of ∼ – 360 km s{sup –1} and line widths of 1000-1500 km s{sup –1} (FWHM) were deduced from the analysis of the line profiles of strong emission lines. The forbidden line of Si XIII is strong and not suppressed, indicating that the rarified 10-30 MK plasma forms far from strong sources of far-ultraviolet emission, most likely in a wind collision zone. Global spectral modeling showed that the X-ray spectrum of WR 48a suffered higher absorption in the 2012 October Chandra observation compared with a previous 2008 January XMM-Newton observation. The emission measure of the hot plasma in WR 48a decreased by a factor ∼3 over the same period of time. The most likely physical picture that emerges from the analysis of the available X-ray data is that of colliding stellar winds in a wide binary system with an elliptical orbit. We propose that the unseen secondary star in the system is another WR star or perhaps a luminous blue variable.

  5. CHANDRA OBSERVATIONS OF THE HIGH-MAGNETIC-FIELD RADIO PULSAR J1718-3718

    International Nuclear Information System (INIS)

    Zhu, W. W.; Kaspi, V. M.; Ng, C.-Y.; McLaughlin, M. A.; Pavlov, G. G.; Manchester, R. N.; Gaensler, B. M.; Woods, P. M.

    2011-01-01

    High-magnetic-field pulsars represent an important class of objects for studying the relationship between magnetars and radio pulsars. Here we report on four Chandra observations of the high-magnetic-field pulsar J1718-3718 (B = 7.4 x 10 13 G) taken in 2009 as well as a reanalysis of 2002 Chandra observations of the region. We also report an improved radio position for this pulsar based on ATCA observations. We detect X-ray pulsations at the pulsar's period in the 2009 data, with a pulsed fraction of 52% ± 13% in the 0.8-2.0 keV band. We find that the X-ray pulse is aligned with the radio pulse. The data from 2002 and 2009 show consistent spectra and fluxes: a merged overall spectrum is well fit by a blackbody of temperature 186 +19 -18 eV, slightly higher than predicted by standard cooling models; however, the best-fit neutron star atmosphere model is consistent with standard cooling. We find the bolometric luminosity L ∞ bb = 4 +5 -2 x 10 32 erg s -1 ∼0.3 E-dot for a distance of 4.5 kpc. We compile measurements of the temperatures of all X-ray-detected high-B pulsars as well as those of low-B radio pulsars and find evidence for the former being hotter on average than the latter.

  6. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    International Nuclear Information System (INIS)

    Van Weeren, R. J.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Pearce, Connor J. J.; David, L.; Kraft, R. P.; Nulsen, P. E. J.; Ogrean, G. A.; Bonafede, A.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Churazov, E.; Dawson, W. A.; Donahue, M.; Goulding, A.; Mason, B.; Merten, J.; Mroczkowski, T.

    2017-01-01

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ∼0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.

  7. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    Energy Technology Data Exchange (ETDEWEB)

    Van Weeren, R. J.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Pearce, Connor J. J.; David, L.; Kraft, R. P.; Nulsen, P. E. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ogrean, G. A. [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Bonafede, A.; Brüggen, M. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Bulbul, E. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Clarke, T. E. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375 (United States); Churazov, E. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); Dawson, W. A. [Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA 94550 (United States); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Goulding, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Mason, B. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Merten, J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Mroczkowski, T., E-mail: rvanweeren@cfa.harvard.edu [ESO—European Organization for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); and others

    2017-02-01

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ∼0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.

  8. TEM observations of crack tip: cavity interactions

    International Nuclear Information System (INIS)

    Horton, J.A.; Ohr, S.M.; Jesser, W.A.

    1981-01-01

    Crack tip-cavity interactions have been studied by performing room temperature deformation experiments in a transmission electron microscope on ion-irradiated type 316 stainless steel with small helium containing cavities. Slip dislocations emitted from a crack tip cut, sheared, and thereby elongated cavities without a volume enlargement. As the crack tip approached, a cavity volume enlargement occurred. Instead of the cavities continuing to enlarge until they touch, the walls between the cavities fractured. Fracture surface dimples do not correlate in size or density with these enlarged cavities

  9. Chandra Observations of the Deep Impact Encounter with Comet 9P/Tempel 1

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Hoekstra, R.; Makinen, T.; Schultz, P. H.; Weaver, H. A.

    2005-08-01

    On July 4, 2005 NASA's discovery mission Deep Impact (hereafter DI) will send a 375 kg impactor into the nucleus of comet 9P/Tempel 1 at 10.2 km/s relative velocity. In the x-ray, the DI experiment allows for a controlled test of the charge exchange (CXE) emission mechanism that drives cometary x-ray emission (Lisse et al. 2001, Kharchenko and Dalgarno 2001, Krasnopolsky et al.2002). Previous ROSAT and Chandra observations studied cometary x-ray emission as the solar wind changed but the cometary emission remained constant. Here, at a precise time, a fresh amount of neutral material will be injected into a finite volume of the extended atmosphere, or coma, of the comet. This new material will directly increase the emission measure for the comet, passing from the collisionally thick to the collisionally thin regions of emission over the course of days. The DI experiment also allows for a direct search for prompt x-rays created by hyper-velocity impact processes, such as was seen by ROSAT during the impact of the K-fragment of comet D/Shoemaker-Levy 9 on Jupiter (Waite et al. 1995). We report here on the first results of of the Chandra observations of the Deep Impact encounter.

  10. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    International Nuclear Information System (INIS)

    Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.

    2012-01-01

    We present here the results from new Very Long Baseline Array (VLBA) observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 Uppasala General Catalog (UGC) Fanaroff-Riley type I (FRI) radio galaxies. New Chandra data of two sources, viz., UGC 00408 and UGC 08433, are combined with the Chandra archival data of 13 sources. The 5 GHz observations of 10 'core-jet' sources are polarization-sensitive, while the 1.6 GHz observations constitute second-epoch total intensity observations of nine 'core-only' sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field 'shearing' due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity I ν falls with distance d from the core, following the relation, I ν ∝d a , where a is typically ∼ – 1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity 'dimming,' two limiting cases are considered: (1) the jet has a constant speed on parsec scales and is expanding gradually such that the jet radius r∝d 0 .4 ; this expansion is, however, unobservable in the laterally unresolved jets at 5 GHz, and (2) the jet is cylindrical and is accelerating on parsec scales. Accelerating parsec-scale jets are consistent with the phenomenon of 'magnetic driving' in Poynting-flux-dominated jets. While slow jet expansion as predicted by case (1) is indeed observed in a few sources from the literature that are resolved laterally, on scales of tens or hundreds of parsecs, case (2) cannot be ruled out in the present data, provided the jets become conical on scales larger than those probed by VLBA. Chandra observations of 15 UGC FRIs detect X-ray jets in 9 of them. The high frequency of occurrence of X

  11. A VERY DEEP CHANDRA OBSERVATION OF A2052: BUBBLES, SHOCKS, AND SLOSHING

    International Nuclear Information System (INIS)

    Blanton, E. L.; Douglass, E. M.; Randall, S. W.; McNamara, B. R.; Clarke, T. E.; Sarazin, C. L.; McDonald, M.

    2011-01-01

    We present the first results from a very deep (∼650 ks) Chandra X-ray observation of A2052, as well as archival Very Large Array radio observations. The data reveal detailed structure in the inner parts of the cluster, including bubbles evacuated by radio lobes of the active galactic nucleus (AGN), compressed bubble rims, filaments, and loops. Two concentric shocks are seen, and a temperature rise is measured for the innermost one. On larger scales, we report the first detection of an excess surface brightness spiral feature. The spiral has cooler temperatures, lower entropies, and higher abundances than its surroundings, and is likely the result of sloshing gas initiated by a previous cluster-cluster or sub-cluster merger. Initial evidence for previously unseen bubbles at larger radii related to earlier outbursts from the AGN is presented.

  12. A Search for New Galactic Magnetars in Archival Chandra and XMM-Newton Observations

    Science.gov (United States)

    Muno, M. P.; Gaensler, B. M.; Nechita, A.; Miller, J. M.; Slane, P. O.

    2008-06-01

    We present constraints on the number of Galactic magnetars, which we have established by searching for sources with periodic variability in 506 archival Chandra observations and 441 archival XMM-Newton observations of the Galactic plane (| b| fall within our survey, then there are 59+ 92-32 in the Galaxy. Barely detectable magnetars (LX = 3 × 1033 ergs s-1 and Arms = 15% ) could have been identified throughout ≈0.4% of the spiral arms. The lack of new examples implies that birth rate of magnetars is between 0.003 and 0.06 yr-1. Therefore, the birth rate of magnetars is at least 10% of that for normal radio pulsars, and could exceed that value, unless transient magnetars are active for gtrsim105 yr.

  13. The mystery of the "Kite" radio source in Abell 2626: Insights from new Chandra observations

    Science.gov (United States)

    Ignesti, A.; Gitti, M.; Brunetti, G.; O'Sullivan, E.; Sarazin, C.; Wong, K.

    2018-03-01

    Context. We present the results of a new Chandra study of the galaxy cluster Abell 2626. The radio emission of the cluster shows a complex system of four symmetric arcs without known correlations with the thermal X-ray emission. The mirror symmetry of the radio arcs toward the center and the presence of two optical cores in the central galaxy suggested that they may be created by pairs of precessing radio jets powered by dual active galactic nuclei (AGNs) inside the core dominant galaxy. However, previous observations failed to observe the second jetted AGN and the spectral trend due to radiative age along the radio arcs, thus challenging this interpretation. Aim. The new Chandra observation had several scientific objectives, including the search for the second AGN that would support the jet precession model. We focus here on the detailed study of the local properties of the thermal and non-thermal emission in the proximity of the radio arcs, in order to obtain further insights into their origin. Methods: We performed a standard data reduction of the Chandra dataset deriving the radial profiles of temperature, density, pressure and cooling time of the intra-cluster medium. We further analyzed the two-dimensional (2D) distribution of the gas temperature, discovering that the south-western junction of the radio arcs surrounds the cool core of the cluster. Results: We studied the X-ray surface brightness and spectral profiles across the junction, finding a cold front spatially coincident with the radio arcs. This may suggest a connection between the sloshing of the thermal gas and the nature of the radio filaments, raising new scenarios for their origin. A tantalizing possibility is that the radio arcs trace the projection of a complex surface connecting the sites where electrons are most efficiently reaccelerated by the turbulence that is generated by the gas sloshing. In this case, diffuse emission embedded by the arcs and with extremely steep spectrum should be

  14. Chandra observations of Jupiter's X-ray Aurora during Juno upstream and apojove intervals

    Science.gov (United States)

    Dunn, W.; Jackman, C. M.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.; Kammer, J.

    2017-12-01

    The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove. These campaigns were planned following the Juno orbit correction to capitalise on the opportunity to image the X-ray emission while Juno was orbiting close to the expected position of the magnetopause. Previous work has suggested that the auroral X-ray emissions map close to the magnetopause boundary [e.g. Vogt et al., 2015; Kimura et al., 2016; Dunn et al., 2016] and thus in situ spacecraft coverage in this region combined with remote observation of the X-rays afford the chance to constrain the drivers of these energetic emissions and determine if they originate on open or closed field lines. We aim to examine possible drivers of X-ray emission including reconnection and the Kelvin-Helmholtz instability and to explore the role of the solar wind in controlling the emissions. We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 ks for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.

  15. Chandra, NuSTAR and NICER Observations of MAXI J1535-571

    Science.gov (United States)

    Neilsen, Joseph; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Miller, Jon M.; Pasham, Dheeraj; Remillard, Ron; Steiner, Jack; Uttley, Phil

    2018-01-01

    In September 2017, MAXI detected an outburst of a previously-unknown transient, MAXI J1535-571. Subsequent radio and X-ray monitoring indicated that the source is a strong black hole candidate. We began a series of monitoring observations with Chandra HETGS, NuSTAR, and NICER to track the evolution of the outburst. Together, these three observatories represent an incredible opportunity to study the geometry of the accretion flow (via continuum spectroscopy), its variation with accretion state (via spectral variability), and any associated outflows or mass ejections (via line spectroscopy). We will present our analysis of this bright outburst and discuss the physics of accretion and ejection in this new black hole candidate.

  16. Chandra Observations of M31 and their Implications for its ISM

    Science.gov (United States)

    Primini, F.; Garcia, M.; Murray, S.; Forman, W.; Jones, C.; McClintock, J.

    2000-01-01

    As part of the Chandra X-ray Observatory's Survey/Monitoring Program of M31, we have been regularly observing the bulge amd inner disk of M31 for nearly 1 year, using both the HRC and ACIS Instruments. We present results from our program th it are of interest to the study of the ISM in M31. In particular, spectral analysis of bright, unresolved x-ray sources in the bulge reveals the presence of significant local x-ray extinction (N(sub H) is about 2 x 10(exp 21)/square cm), and we will attempt to map out this extinction, Further, we find that diffuse emission accounts for a significant fraction of the overall x-ray flux from the bulge. Finally, our search for x-ray counterparts to supernova remnants in M31 yields surprisingly few candidates.

  17. A Deep Chandra Observation of the Centaurus Cluster:Bubbles, Filaments and Edges

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, A.C.

    2005-03-14

    X-ray images and gas temperatures taken from a deep {approx}200 ks Chandra observation of the Centaurus cluster are presented. Multiple inner bubbles and outer semicircular edges are revealed, together with wispy filaments of soft X-ray emitting gas. The frothy central structure and eastern edge are likely due to the central radio source blowing bubbles in the intracluster gas. The semicircular edges to the surface brightness maps 32 kpc to the east and 17.5 kpc to the west are marked by sharp temperature increases and abundance drops. The edges could be due to sloshing motions of the central potential, or are possibly enhanced by earlier radio activity. The high abundance of the innermost gas (about 2.5 times Solar) limits the amount of diffusion and mixing taking place.

  18. CHANDRA OBSERVATION OF THE TeV SOURCE HESS J1834-087

    International Nuclear Information System (INIS)

    Misanovic, Zdenka; Kargaltsev, Oleg; Pavlov, George G.

    2011-01-01

    Chandra ACIS observed the field of the extended TeV source HESS J1834-087 for 47 ks. A previous XMM-Newton EPIC observation of the same field revealed a point-like source (XMMU J183435.3-084443) and an offset region of faint extended emission. In the low-resolution, binned EPIC images the two appear to be connected. However, the high-resolution Chandra ACIS images do not support the alleged connection. In these images, XMMU J183435.3-084443 is resolved into a point source, CXOU J183434.9-084443 (L 0.5-8keV ≅ 2.3 x 10 33 erg s -1 , for a distance of 4 kpc; photon index Γ ≅ 1.1), and a compact (∼ 0.5-8keV ≅ 4.1 x 10 33 erg s -1 , Γ ≅ 2.7). The nature of the nebula is uncertain. We discuss a dust scattering halo and a pulsar-wind nebula as possible interpretations. Based on our analysis of the X-ray data, we re-evaluate the previously suggested interpretations of HESS J1834-087 and discuss a possible connection to the Fermi Large Area Telescope source 1FGL J1834.3-0842c. We also obtained an upper limit of 3 x 10 -14 erg cm -2 s -1 on the unabsorbed flux of the SGR J1833-0832 (in quiescence), which happened to be in the ACIS field of view.

  19. CHANDRA AND SUZAKU OBSERVATIONS OF THE Be/X-RAY STAR HD110432

    International Nuclear Information System (INIS)

    Torrejón, J. M.; Schulz, N. S.; Nowak, M. A.

    2012-01-01

    We present an analysis of a pointed 141 ks Chandra high-resolution transmission gratings observation of the Be X-ray emitting star HD110432, a prominent member of the γ Cas analogs. This observation represents the first high-resolution spectrum taken for this source as well as the longest uninterrupted observation of any γ Cas analog. The Chandra light curve shows a high variability but its analysis fails to detect any coherent periodicity up to a frequency of 0.05 Hz. Hardness ratio versus intensity analyses demonstrate that the relative contributions of the [1.5-3] Å, [3-6] Å, and [6-16] Å energy bands to the total flux change rapidly in the short term. The analysis of the Chandra High Energy Transmission Grating (HETG) spectrum shows that, to correctly describe the spectrum, three model components are needed. Two of those components are optically thin thermal plasmas of different temperatures (kT ≈ 8-9 and 0.2-0.3 keV, respectively) described by the models vmekal or bvapec. The Fe abundance in each of these two components appears equal within the errors and is slightly subsolar with Z ≈ 0.75 Z ☉ . The bvapec model better describes the Fe L transitions, although it cannot fit well the Na XI Lyα line at 10.02 Å, which appears to be overabundant. Two different models seem to describe well the third component. One possibility is a third hot optically thin thermal plasma at kT = 16-21 keV with an Fe abundance Z ≈ 0.3 Z ☉ , definitely smaller than for the other two thermal components. Furthermore, the bvapec model describes well the Fe K shell transitions because it accounts for the turbulence broadening of the Fe XXV and Fe XXVI lines with a v turb ≈ 1200 km s –1 . These two lines, contributed mainly by the hot thermal plasma, are significantly wider than the Fe Kα line whose FWHM ☉ , and a very hot second plasma with kT ≈ 33 keV or, alternatively, a power law with photon index of Γ = 1.58. In either case, each one of the two components

  20. Simultaneous NuSTAR/Chandra Observations of The Bursting Pulsar GRO J1744-28 During Its Third Reactivation

    DEFF Research Database (Denmark)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60...

  1. Cometary X-ray Emission: the View After the First Chandra Observations

    Science.gov (United States)

    Lisse, C. M.

    2002-01-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et al. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998, Lisse et al. 1999) have shown that the very soft (best fit thermal bremsstrahlung model kT ~ 0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission, including new results from Chandra and XMM. As-observed morphologies, spectra, and light curves will be discussed. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma, the structure of the solar wind in the heliosphere, and the source of the local soft x-ray background. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  2. STAR FORMATION IN THE CHANDRA DEEP FIELD SOUTH: OBSERVATIONS CONFRONT SIMULATIONS

    International Nuclear Information System (INIS)

    Damen, Maaike; Franx, Marijn; Foerster Schreiber, Natascha M.; Labbe, Ivo; Toft, Sune; Van Dokkum, Pieter G.; Wuyts, Stijn

    2009-01-01

    We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the Chandra Deep Field South. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z ∼ 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z>0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semianalytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance, conversions to SFR, and shape of the initial mass function. We find that none of these can solve the discrepancy completely. We conclude that the models need to be adapted to produce the steep increase in growth rate between redshift z = 0 and z = 1.

  3. Deep Chandra Observation and Numerical Studies of the Nearest Cluster Cold Front in the Sky

    Science.gov (United States)

    Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.; hide

    2015-01-01

    We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are approximately 10 per cent brighter than the surrounding gas and are separated by approximately 15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches approximately 5-10 per cent of the thermal pressure, reducing the gas density between the bright features.

  4. Chandra and XMM-Newton Observations of the Abell 3395/Abell 3391 Intercluster Filament

    Science.gov (United States)

    Alvarez, Gabriella E.; Randall, Scott W.; Bourdin, Hervé; Jones, Christine; Holley-Bockelmann, Kelly

    2018-05-01

    We present Chandra and XMM-Newton X-ray observations of the Abell 3391/Abell 3395 intercluster filament. It has been suggested that the galaxy clusters Abell 3395, Abell 3391, and the galaxy group ESO-161 -IG 006 located between the two clusters, are in alignment along a large-scale intercluster filament. We find that the filament is aligned close to the plane of the sky, in contrast to previous results. We find a global projected filament temperature kT = {4.45}-0.55+0.89 keV, electron density {n}e={1.08}-0.05+0.06× {10}-4 cm‑3, and {M}gas}={2.7}-0.1+0.2 × {10}13 M ⊙. The thermodynamic properties of the filament are consistent with that of the intracluster medium (ICM) of Abell 3395 and Abell 3391, suggesting that the filament emission is dominated by ICM gas that has been tidally disrupted during an early stage merger between these two clusters. We present temperature, density, entropy, and abundance profiles across the filament. We find that the galaxy group ESO-161 may be undergoing ram-pressure-stripping in the low-density environment at or near the virial radius of both clusters, due to its rapid motion through the filament.

  5. Radiologic and clinical observation of tuberculous cavity in initial treatment

    International Nuclear Information System (INIS)

    Huh, Jin Do

    1986-01-01

    Tuberculous cavity is important in diagnosis and observation in the course of pulmonary tuberculosis. Author analyzed the radiologic findings of cavity and average months of negative conversion in AFB culture in 89 cases of initial treatment. The results were as follows: 1. The more number of cavities, the longer period in negative conversion of AFB culture. 2. No relation between sums of diameter and thickness of cavity and average months of negative conversion in AFB culture. 3. In the cases of cavity with air-fluid level took longer period in negative conversion og AFB culture than those of cavity without air-fluid level, significantly. 4. No relation between radiologic findings of cavity and results of chemotherapy for pulmonary tuberculosis.

  6. Observing mode propagation inside a laser cavity

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2012-05-01

    Full Text Available components, to study the forward and backward propagating waves everywhere inside a laser cavity. We verify the previous theoretical-only prediction that the two fields may differ substantially in their amplitude profile, even for stable resonator systems, a...

  7. Role of the Chandra X-Ray Observatory Observations for the Study of Ionized Plasmas

    Science.gov (United States)

    Weisskopf, Martin C.

    2010-01-01

    The Chandra X-Ray Observatory, launched in 1999, is now beginning its 12-th year of operation. Chandra, the X-ray component of NASA s Great Observatory program, continues to operate efficiently, somewhat remarkable considering that the Observatory was designed for three years of operation with a goal of five. The Observatory features X-ray optics with sub-arcsecond angular resolution and a small suite of instruments, including transmission gratings, which allow for high-resolution spectroscopy of point sources. We will detail the capabilities of the Observatory for making such spectroscopic measurements and discuss a number of examples of what has been learned about the astrophysical plasmas capable of producing bright X-ray emission.

  8. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk ...

    Indian Academy of Sciences (India)

    component, another power-law ( = 2.45 ± 0.07) for the soft component and a narrow Gaussian fitted to the Fe Kα line (EW∼48 eV) (see Fig. 2). The common model for Seyfert 2 and the above models cannot be well-fitted with the Chandra spectra. Residuals in terms of sigma show significant excess in 2–4 KeV and over 8 ...

  9. CHANDRA OBSERVATIONS OF 3C RADIO SOURCES WITH z < 0.3. II. COMPLETING THE SNAPSHOT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Tremblay, G. R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Muenchen (Germany); Harris, D. E.; O' Dea, C. P. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kharb, P.; Axon, D. [Department of Physics, Rochester Institute of Technology, Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Balmaverde, B.; Capetti, A. [INAF-Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Baum, S. A. [Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Chiaberge, M.; Macchetto, F. D.; Sparks, W. [Space Telescope Science Institute, 3700 San Martine Drive, Baltimore, MD 21218 (United States); Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Giovannini, G. [INAF-Istituto di Radioastronomia di Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Grandi, P.; Torresi, E. [INAF-IASF-Istituto di Astrofisica Spaziale e fisica Cosmica di Bologna, Via P. Gobetti 101, I-40129 Bologna (Italy); Risaliti, G. [INAF-Osservatorio Astronomico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-15

    We report on the second round of Chandra observations of the 3C snapshot survey developed to observe the complete sample of 3C radio sources with z < 0.3 for 8 ks each. In the first paper, we illustrated the basic data reduction and analysis procedures performed for the 30 sources of the 3C sample observed during Chandra Cycle 9, while here we present the data for the remaining 27 sources observed during Cycle 12. We measured the X-ray intensity of the nuclei and of any radio hot spots and jet features with associated X-ray emission. X-ray fluxes in three energy bands, i.e., soft, medium, and hard, for all the sources analyzed are also reported. For the stronger nuclei, we also applied the standard spectral analysis, which provides the best-fit values of the X-ray spectral index and absorbing column density. In addition, a detailed analysis of bright X-ray nuclei that could be affected by pile-up has been performed. X-ray emission was detected for all the nuclei of the radio sources in our sample except for 3C 319. Among the current sample, there are two compact steep spectrum radio sources, two broad-line radio galaxies, and one wide angle tail radio galaxy, 3C 89, hosted in a cluster of galaxies clearly visible in our Chandra snapshot observation. In addition, we also detected soft X-ray emission arising from the galaxy cluster surrounding 3C 196.1. Finally, X-ray emission from hot spots has been found in three FR II radio sources and, in the case of 3C 459, we also report the detection of X-ray emission associated with the eastern radio lobe as well as X-ray emission cospatial with radio jets in 3C 29 and 3C 402.

  10. Where Are the r-modes? Chandra Observations of Millisecond Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodifar, Simin; Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-05-10

    We present the results of Chandra observations of two non-accreting millisecond pulsars, PSRs J1640+2224 (J1640) and J1709+2313 (J1709), with low inferred magnetic fields and spin-down rates in order to constrain their surface temperatures, obtain limits on the amplitude of unstable r -modes in them, and make comparisons with similar limits obtained for a sample of accreting low-mass X-ray binary (LMXB) neutron stars. We detect both pulsars in the X-ray band for the first time. They are faint, with inferred soft X-ray fluxes (0.3–3 keV) of ≈6 × 10{sup −15} and 3 × 10{sup −15} erg cm{sup −2} s{sup −1} for J1640 and J1709, respectively. Spectral analysis assuming hydrogen atmosphere emission gives global effective temperature upper limits (90% confidence) of 3.3–4.3 × 10{sup 5} K for J1640 and 3.6–4.7 × 10{sup 5} K for J1709, where the low end of the range corresponds to canonical neutron stars ( M = 1.4 M {sub ⊙}), and the upper end corresponds to higher-mass stars ( M = 2.21 M {sub ⊙}). Under the assumption that r -mode heating provides the thermal support, we obtain dimensionless r -mode amplitude upper limits of 3.2–4.8 × 10{sup −8} and 1.8–2.8 × 10{sup −7} for J1640 and J1709, respectively, where again the low end of the range corresponds to lower-mass, canonical neutron stars ( M = 1.4 M {sub ⊙}). These limits are about an order of magnitude lower than those we derived previously for a sample of LMXBs, except for the accreting millisecond X-ray pulsar SAX J1808.4–3658, which has a comparable amplitude limit to J1640 and J1709.

  11. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    Science.gov (United States)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high

  12. Searching for the 3.5 keV Line in the Deep Fields with Chandra: The 10 Ms Observations

    Science.gov (United States)

    Cappelluti, Nico; Bulbul, Esra; Foster, Adam; Natarajan, Priyamvada; Urry, Megan C.; Bautz, Mark W.; Civano, Francesca; Miller, Eric; Smith, Randall K.

    2018-02-01

    We report a systematic search for an emission line around 3.5 keV in the spectrum of the cosmic X-ray background using a total of ∼10 Ms Chandra observations toward the COSMOS Legacy and Extended Chandra Deep Field South survey fields. We find marginal evidence of a feature at an energy of ∼3.51 keV with a significance of 2.5–3σ, depending on the choice of statistical treatment. The line intensity is best fit at (8.8 ± 2.9) × 10‑7 ph cm‑2 s‑1 when using a simple Δχ 2 or {10.2}-0.4+0.2× {10}-7 ph cm‑2 s‑1 when Markov chain Monte Carlo is used. Based on our knowledge of Chandra and the reported detection of the line by other instruments, an instrumental origin for the line remains unlikely. We cannot, however, rule out a statistical fluctuation, and in that case our results provide a 3σ upper limit at 1.85 × 10‑6 ph cm‑2 s‑1. We discuss the interpretation of this observed line in terms of the iron line background, S XVI charge exchange, as well as potentially being from sterile neutrino decay. We note that our detection is consistent with previous measurements of this line toward the Galactic center and can be modeled as the result of sterile neutrino decay from the Milky Way for the dark matter distribution modeled as a Navarro–Frenk–White profile. For this case, we estimate a mass m ν ∼ 7.01 keV and a mixing angle sin2(2θ) = (0.83–2.75) × 10‑10. These derived values are in agreement with independent estimates from galaxy clusters, the Galactic center, and M31.

  13. DEEP CHANDRA OBSERVATIONS OF NGC 1404: CLUSTER PLASMA PHYSICS REVEALED BY AN INFALLING EARLY-TYPE GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Randall, Scott W.; Jones, Christine; Machacek, Marie E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Roediger, Elke [E.A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom); Churazov, Eugene, E-mail: yuanyuan.su@cfa.harvard.edu [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany)

    2017-01-01

    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.

  14. Observation of the exceptional point in cavity magnon-polaritons.

    Science.gov (United States)

    Zhang, Dengke; Luo, Xiao-Qing; Wang, Yi-Pu; Li, Tie-Fu; You, J Q

    2017-11-08

    Magnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited lifetimes. However, stationary magnon-polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsically nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon-polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon-photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon-polaritons.

  15. Simultaneous NuSTAR/Chandra Observations of the Bursting Pulsar GRO J1744-28 During its Third Reactivation

    Science.gov (United States)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.; Tomsick, J. A.; Tennant, A.; Finger, M. H.; Furst, F.; Pottschmidt, K.; Bhalerao, V.; Boggs, S. E.; hide

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 x 10(exp 7) cm, which translates to a surface dipole field B approximately 9 x 10(exp 10) G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  16. SIMULTANEOUS NuSTAR/CHANDRA OBSERVATIONS OF THE BURSTING PULSAR GRO J1744-28 DURING ITS THIRD REACTIVATION

    Energy Technology Data Exchange (ETDEWEB)

    Younes, G.; Finger, M. H. [Universities Space Research Association, 6767 Old Madison Pike, Suite 450, Huntsville, AL 35806 (United States); Kouveliotou, C.; Tennant, A. [Astrophysics Office, ZP 12, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Grefenstette, B. W.; Fürst, F. [Cahill Center for Astrophysics, 1216 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Tomsick, J. A.; Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Pottschmidt, K. [Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Bhalerao, V. [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boirin, L. [Observatoire Astronomique de Strasbourg, 11 Rue de l' Université, F-67000 Strasbourg (France); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Degenaar, N. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gandhi, P. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); and others

    2015-05-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)–Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5–70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 × 10{sup 7} cm, which translates to a surface dipole field B ≈ 9 × 10{sup 10} G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe xxv and Fe xxvi emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  17. A cluster in a crowded environment: XMM-Newton and Chandra observations of A3558

    Science.gov (United States)

    Rossetti, M.; Ghizzardi, S.; Molendi, S.; Finoguenov, A.

    2007-03-01

    Combining XMM-Newton and Chandra data, we have performed a detailed study of Abell 3558. Our analysis shows that its dynamical history is more complicated than previously thought. We have found some traits typical of cool core clusters (surface brightness peaked at the center, peaked metal abundance profile) and others that are more common in merging clusters, like deviations from spherical symmetry in the thermodynamic quantities of the ICM. This last result has been achieved with a new technique for deriving temperature maps from images. We have also detected a cold front and, with the combined use of XMM-Newton and Chandra, we have characterized its properties, such as the speed and the metal abundance profile across the edge. This cold front is probably due to the sloshing of the core, induced by the perturbation of the gravitational potential associated with a past merger. The hydrodynamic processes related to this perturbation have presumably produced a tail of lower entropy, higher pressure and metal rich ICM, which extends behind the cold front for~500 kpc. The unique characteristics of A3558 are probably due to the very peculiar environment in which it is located: the core of the Shapley supercluster. Appendices A and B are only available in electronic form at http://www.aanda.org

  18. Chandra Observations of Pluto's Escaping Atmosphere in Support of the New Horizons Mission

    Science.gov (United States)

    McNutt, Ralph, Jr.

    2013-09-01

    Current models of Pluto's extended N2+CH4 atmosphere are still very uncertain, causing numerous difficulties in optimizing the New Horizons fast flyby operations plan for the dwarf planet. Applying knowledge gained from studying cometary X-ray emission, Chandra ACIS-S photometric imaging of X-rays produced by CXE between the solar wind and Pluto's atmosphere will address both the run of atmospheric density and the interaction of the solar wind with the extended Plutonian atmosphere. Determining the atmosphere's extent and amount of free molecular escape will aid the atmospheric sounding measurements of the NH ALICE instrument, while determining the x-ray luminosity will help the NH PEPSI instrument characterize the solar wind particle environment.

  19. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Science.gov (United States)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  20. Chandra Observations of a Collisionally and Optically Thin Charge Exchange System - Comet 2P/Encke 2003

    Science.gov (United States)

    Christian, D. J.; Lisse, C. M.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Hoekstra, R.; Makinen, J. T. T.; Weaver, H. A.

    2004-11-01

    The highly favorable perigee passage of the x-ray bright comet 2P/Encke in late 2003 provided an excellent opportunity to use Chandra's high spatial, spectral, and temporal resolution to study cometary x-ray emission in the low neutral target density, low x-ray flux regime. The 1997 ROSAT/EUVE observations of Encke (Lisse et al. 1999) and the nucleus rotation studies of Luu and Jewitt (1990, most likely rotation period = 15 hours) suggested a simple Chandra experiment - continuous ACIS-S observations of Encke over 15 hours during the time of its closest approach to Earth. Here we report initial results from our X-ray observations. X-ray emission from comet Encke was found only in a small, asymmetric region between 1500 km - 40,000 km from the nucleus. The Encke ACIS-S3 200 -- 1000 eV spectrum shows many of the same x-ray emission lines previously observed from comets (C+5, O+6,O+7), including confirmation of several emission lines in the 800 to 1000 eV range. However, the Encke spectrum shows very different line ratios in the 200 - 700 eV range than any previous comet. A lightcurve with peak-to-peak amplitude of 20% and period 11.7 hours was found over the 15 hour observing period. Comparing the observations to contemporaneous measurements of the coma and solar wind made by other means, we find the combination of a low density, collisionally thin (to charge exchange) coma and a post-massive X-flare, high temperature, moderate density solar wind can explain our unusual Encke x-ray observations.

  1. Campaign of AAVSO Monitoring of the CH Cyg Symbiotic System in Support of Chandra and HST Observations

    Science.gov (United States)

    Karovska, M.

    2013-06-01

    (Abstract only) CH Cyg is one of the most interesting interacting binaries in which a compact object, a white dwarf or a neutron star, accretes from the wind of an evolved giant or supergiant. CH Cyg is a member of the symbiotic systems group, and at about 250pc it is one of the closest systems. Symbiotic systems are accreting binaries, which are likely progenitors of a fraction of Pre-Planetary and Planetary Nebulae, and of a fraction of SN type Ia (the cosmic distance scale indicators). We carried out Chandra and HST observations of CH Cyg in March 2012 as part of a follow-up investigation of the central region of CH Cyg and its precessing jet, including the multi-structures that were discovered in 2008. I will describe here the campaign of multi-wavelength observations, including photometry and spectroscopy, that were carried out by AAVSO members in support of the space-based observations.

  2. X-ray/ultraviolet observing campaign of the Markarian 279 active galactic nucleus outflow: a close look at the absorbing/emitting gas with Chandra-LETGS

    NARCIS (Netherlands)

    Costantini, E.; Kaastra, J.S.; Arav, N.; Kriss, G.A.; Steenbrugge, K.C.; Gabel, J.R.; Verbunt, F.W.M.; Behar, E.; Gaskell, C. Martin; Korista, K.T.; Proga, D.; Kim Quijano, J.; Scott, J.E.; Klimek, E.S.; Hedrick, C.H.

    2007-01-01

    We present a Chandra-LETGS observation of the Seyfert 1 galaxy Mrk 279. This observation was simultaneous with HST-STIS and FUSE observations, in the context of a multiwavelength study of this source. The data also allow for the presence of intermediate ionization components. The distribution of the

  3. CHANDRA OBSERVATIONS OF COMETS C/2012 S1 (ISON) AND C/2011 L4 (PanSTARRS)

    Energy Technology Data Exchange (ETDEWEB)

    Snios, Bradford; Kharchenko, Vasili [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Wolk, Scott J. [Chandra X-Ray Observatory Center, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dennerl, Konrad [Max-Planck-Institut für extraterrestrische Physik, D-85748 Garching (Germany); Combi, Michael R. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-02-20

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31–November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17–23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comet's emission spectrum from first principles accordingly. Our model agrees with the observational spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophysical plasma interaction and SW composition. In addition, we observe potential soft X-ray emissions via ACIS around 0.2 keV from both comets that are correlated in intensity to the hard X-ray emissions between 0.4–1.0 keV. We fit our CX model to these emissions, but our lack of a unique solution at low energies makes it impossible to conclude if they are cometary CX in origin. Finally, we discuss probable emission mechanism sources for the soft X-rays and explore new opportunities these findings present in understanding cometary emission processes via Chandra.

  4. CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE 2011-APRIL GAMMA-RAY FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; Tennant, Allyn F.; O' Dell, Stephen L. [NASA Marshall Space Flight Center, Astrophysics Office (ZP12), Huntsville, AL 35812 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Blandford, Roger; Funk, Stefan; Romani, Roger W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Buehler, Rolf [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Caraveo, Patrizia; De Luca, Andrea [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Cheung, Chi C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Costa, Enrico [INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Ferrigno, Carlo [ISDC, Data Center for Astrophysics of the University of Geneva, chemin d' cogia 16, CH-1290 Versoix (Switzerland); Fu, Hai [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Habermehl, Moritz; Horns, Dieter [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Linford, Justin D. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131-0001 (United States); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Max, Claire [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mignani, Roberto [Mullard Space Science Laboratory, University College London, Holmbury St. Mary Dorking, Surrey RH5 6NT (United Kingdom); and others

    2013-03-01

    We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the {gamma}-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the 'inner knot', i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the {gamma}-ray flares and suggest that the most dramatic {gamma}-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.

  5. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan; Weeren, Reinout van [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buote, David A. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gastaldello, Fabio, E-mail: yuanyuan.su@cfa.harvard.edu [INAF-IASF-Milano, Via E. Bassini 15, I-20133 Milano (Italy)

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  6. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Schawinski, Kevin; Urry, C. Megan; Bonning, Erin W. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Oh, Kyuseok [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Cardamone, Carolin N. [Harriet W. Sheridan Center for Teaching and Learning, Brown University, P.O. Box 1912, Providence, RI 02912 (United States); Keel, William C. [Department of Physics and Astronomy, 206 Gallalee Hall, 514 University Boulevard, University of Alabama, Tuscaloosa, AL 35487-034 (United States); Simmons, Brooke D. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Treister, Ezequiel, E-mail: stacy.h.teng@nasa.gov [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  7. Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    Science.gov (United States)

    Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.

    2017-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.

  8. Experimental observations of anomalous potential drops over ion density cavities

    International Nuclear Information System (INIS)

    Bohm, M.

    1991-08-01

    Experiments are reported showing the plasma potential response when a step voltage is applied over the plasma column between the two plasma sources in a triple plasma machine. The time resolution is sufficient to resolve potential variations caused essentially by the electron motion, and two independent probe methods are used to obtain this time resolution. Depending on the initial conditions two different responses were observed on the time scale of the electron motion. When the initial ion density varies along the plasma column and has a local minimum (that is, forms an ion density cavity), the applied potential drop becomes distributed over the cavity after a few electron transit times. Later the profile steepens to a double layer on the time scale of the ion motion. The width of the cavity is comparable to the length of the plasma column. When the initial density is axially uniform, most of the potential drop instead concentrates to a narrow region at the low potential end of the plasma column after a few electron transit times. On the time scale of the ion motion this potential drop begins to propagate into the plasma as a double layer. The results obtained are consistent with those from numerical simulations with similar boundary conditions. Further experiments are necessary to get conclusive insight into the voltage supporting capability of an ion density cavity. (au) (34 refs.)

  9. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    Science.gov (United States)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  10. CHANDRA DEEP OBSERVATION OF XDCP J0044.0-2033, A MASSIVE GALAXY CLUSTER AT z > 1.5

    Energy Technology Data Exchange (ETDEWEB)

    Tozzi, P.; Santos, J. S.; Rosati, P. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Jee, M. J. [Department of Physics, University of California, Davis One Shields Avenue, Davis, CA 95616-8677 (United States); Fassbender, R. [INAF-Osservatorio Astronomico di Roma (OAR), via Frascati 33, I-00040 Monte Porzio Catone (Italy); Nastasi, A. [Istitut d' Astrophysique Spatiale, CNRS, Bat. 121, Université Paris-Sud, F-91405 Orsay (France); Forman, W.; Jones, C. [Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138 (United States); Sartoris, B.; Borgani, S. [Università degli Studi di Trieste, Dipartimento di Fisica, Via A.Valerio, 2 I-34127 Trieste (Italy); Boehringer, H. [Max-Planck-Institut fr extraterrestrische Physik Giessenbachstr.1, D-85748 Garching (Germany); Altieri, B. [European Space Astronomy Centre (ESAC), European Space Agency, Apartado de Correos 78, E-28691 Villanueva de la Canada, Madrid (Spain); Pratt, G. W. [CEA Saclay, Service d' Astrophysique, LOrme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette Cedex (France); Nonino, M. [INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste (Italy)

    2015-01-20

    We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z = 1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high-redshift cluster. Extended emission from the intra cluster medium (ICM) is detected at a very high significance level (S/N ∼ 20) on a circular region with a 44'' radius, corresponding to R {sub ext} = 375 kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature kT=6.7{sub −0.9}{sup +1.3} keV, and a iron abundance Z{sub Fe}=0.41{sub −0.26}{sup +0.29}Z{sub Fe{sub ⊙}} (error bars correspond to 1σ). We fit the background-subtracted surface brightness profile with a single β-model out to 44'', finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius R {sub ext} = 375 kpc to be M {sub ICM}(r < R {sub ext}) = (1.48 ± 0.20) × 10{sup 13} M {sub ☉}. Under the assumption of hydrostatic equilibrium and assuming isothermality within R {sub ext}, the total mass is M{sub 2500}=1.23{sub −0.27}{sup +0.46}×10{sup 14} M{sub ⊙} for R{sub 2500}=240{sub −20}{sup +30} kpc. Extrapolating the profile at radii larger than the extraction radius R {sub ext} we find M{sub 500}=3.2{sub −0.6}{sup +0.9}×10{sup 14} M{sub ⊙} for R{sub 500}=562{sub −37}{sup +50} kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift z ∼ 1.6, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 ΛCDM cosmology.

  11. Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow

    Science.gov (United States)

    Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.

    2018-01-01

    Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.

  12. FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACS J1149.6+2223

    Energy Technology Data Exchange (ETDEWEB)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; Forman, W.; Andrade-Santos, F.; Murray, S. S.; Nulsen, P.; Bulbul, E.; Kraft, R.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dawson, W. A. [Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA 94550 (United States); Golovich, N. [University of California, One Shields Avenue, Davis, CA 95616 (United States); Roediger, E. [Astronomy and Astrophysics Section, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Zitrin, A.; Sayers, J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Goulding, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Mroczkowski, T. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Bonafede, A. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Churazov, E., E-mail: gogrean@cfa.harvard.edu [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); and others

    2016-03-10

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.

  13. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    Science.gov (United States)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  14. The First Chandra Field

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; /NASA, Marshall; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Cameron, Robert A.; /Harvard-Smithsonian Ctr. Astrophys. /SLAC; Gandhi,; Foellmi, Cedric; /European Southern Obs., Chile; Elsner, Ronald F.; /NASA, Marshall; Patel, Sandeep K.; /USRA, Huntsville; Wu, Kinwah; /Mullard Space Sci. Lab.; O' Dell, Stephen; /NASA, Marshall

    2005-09-09

    Before the official first-light images, the Chandra X-ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ''Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a Type-1 (unobscured) active galactic nucleus (AGN) at a redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the Eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive ({ge} 10{sup 9} M{sub {circle_dot}}) black hole, accreting at a rate approaching its Eddington limit.

  15. ON THE X-RAY BALDWIN EFFECT IN ACTIVE GALACTIC NUCLEI OBSERVED BY THE CHANDRA HIGH-ENERGY GRATING

    International Nuclear Information System (INIS)

    Shu, X. W.; Wang, J. X.; Jiang, P.; Zhou, Y. Y.; Yaqoob, T.

    2012-01-01

    Using Chandra high-energy grating (HEG) observations of 32 active galactic nuclei (AGNs), we present a systematic study of the X-ray Baldwin effect (XBE; i.e., the anti-correlation between the narrow Fe Kα line equivalent width (EW) and X-ray continuum luminosity for AGN samples) with the highest spectral resolution currently available. We have previously reported an anti-correlation with EW∝L –0.22 2-10keV in an HEG sample, and the correlation is much weaker after averaging multiple observations of individual AGNs (EW∝L –0.13 2-10keV ). This indicates that rapid variation in the X-ray continuum plays an important role in producing the XBE, and such an effect should also be visible in individual AGNs. In this Letter, by normalizing the line EWs and continuum luminosities to the time-averaged values for each AGN in our sample with multiple HEG observations, we find a strong anti-correlation between EW and L X (EW/(EW)∝(L/(L)) –0.82±0.10 ), consistent with the XBE expected in an individual AGN if the narrow line flux remains constant while the continuum varies. This is first observational evidence that the Fe Kα line flux in a large sample of AGNs lacks a corresponding response to the continuum variation, supporting the fact that the narrow Fe-K line emission originates from a region far from the nucleus. We then performed Monte Carlo simulations to address whether the global XBE can be produced by X-ray continuum variation solely, and found that such an interpretation of the XBE cannot be ruled out statistically. One should thus be very cautious before drawing any scientific conclusion based on an observed XBE.

  16. CHANDRA AND XMM-NEWTON X-RAY OBSERVATIONS OF THE HYPERACTIVE T TAURI STAR RY TAU

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [Center for Astrophysics and Space Astronomy (CASA), Univ. of Colorado, Boulder, CO 80309-0389 (United States); Audard, Marc [Dept. of Astronomy, University of Geneva, Ch. d’Ecogia 16, CH-1290 Versoix (Switzerland); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: marc.audard@unige.ch, E-mail: manuel.guedel@univie.ac.at [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2016-07-20

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton . We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau’s bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T {sub hot} ∼ 50 MK, but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O viii. X-ray light curves show complex variability consisting of short-duration (∼hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly varying (∼one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g., coronal) origin. Soft- and hard-band light curves undergo similar slow variability implying that at least some of the cool plasma shares a common magnetic origin with the hot plasma. Any contribution to the X-ray emission from cool shocked plasma is small compared to the dominant hot component but production of individual low-temperature lines such as O viii in an accretion shock is not ruled out.

  17. Chandra Observations of Extended X-Ray Emission in ARP 220

    Science.gov (United States)

    McDowell, J. C.; Clements, D. L.; Lamb, S. A.; Shaked, S.; Hearn, N. C.; Colina, L.; Mundell, C.; Borne, K.; Baker, A. C.; Arribas, S.

    2003-01-01

    We resolve the extended X-ray emission from the prototypical ultraluminous infrared galaxy Arp 220. Extended, faint, edge-brightened, soft X-ray lobes outside the optical galaxy are observed to a distance of 1CL 15 kpc on each side of the nuclear region. Bright plumes inside the optical isophotes coincide with the optical line emission and extend 1 1 kpc from end to end across the nucleus. The data for the plumes cannot be fitted by a single-temperature plasma and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from bright, diffuse circumnuclear emission in the inner 3 kpc centered on the Ha peak, which is displaced from the radio nuclei. There is a close morphological correspondence between the Ha and soft X-ray emission on all spatial scales. We interpret the plumes as a starburst-driven superwind and discuss two interpretations of the emission from the lobes in the context of simulations of the merger dynamics of Arp 220.

  18. CORONA, JET, AND RELATIVISTIC LINE MODELS FOR SUZAKU/RXTE/CHANDRA-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE

    International Nuclear Information System (INIS)

    Nowak, Michael A.; Trowbridge, Sarah N.; Davis, John E.; Hanke, Manfred; Wilms, Joern; Markoff, Sera B.; Maitra, Dipankar; Tramper, Frank; Pottschmidt, Katja; Coppi, Paolo

    2011-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard 'low states'. Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the 'focused wind' from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2 . All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2 .

  19. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  20. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  1. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    International Nuclear Information System (INIS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  2. Observation of Fano-Type Interference in a Coupled Cavity-Atom System

    International Nuclear Information System (INIS)

    Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu

    2016-01-01

    We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)

  3. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  4. S-Nitrosothiols Observed Using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rad, Mary Lynn; Gaston, Benjamin M.; Lehmann, Kevin

    2017-06-01

    The biological importance of nitric oxide has been known for nearly forty years due to its role in cardiovascular and nervous signaling. The main carrier molecules, s-nitrosothiols (RSNOs), are of additional interest due to their role in signaling reactions. Additionally, these compounds are related to several diseases including muscular dystrophy, stroke, myocardial infarction, Alzheimer's disease, Parkinson's disease, cystic fibrosis, asthma, and pulmonary arterial hypertension. One of the main barriers to elucidating the role of these RSNOs is the low (nanomolar) concentration present in samples of low volume (typically ˜100 μL). To this end we have set up a cavity ring-down spectrometer tuned to observe ^{14}NO and ^{15}NO released from cell growth samples. To decrease the limit of detection we have implemented a laser locking scheme employing Zeeman modulation of NO in a reference cell and have tuned the polarization of the laser using a half wave plate to optimize the polarization for the inherent birefringence of the CRDS mirrors. Progress toward measuring RSNO concentration in biological samples will be presented.

  5. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Randall, S.; Su, Y. [Harvard/Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Churazov, E. [MPI für Astrophysik, Karl-Schwarzschild-Str. 1, Garching D-85741 (Germany); Sheardown, A., E-mail: rkraft@cfa.harvard.edu [E. A. Milne Center for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom)

    2017-10-10

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  6. CHANDRA OBSERVATIONS OF A 1.9 kpc SEPARATION DOUBLE X-RAY SOURCE IN A CANDIDATE DUAL ACTIVE GALACTIC NUCLEUS GALAXY AT z = 0.16

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Pooley, David; Gerke, Brian F.; Madejski, Greg M.

    2011-01-01

    We report Chandra observations of a double X-ray source in the z = 0.1569 galaxy SDSS J171544.05+600835.7. The galaxy was initially identified as a dual active galactic nucleus (AGN) candidate based on the double-peaked [O III] λ5007 emission lines, with a line-of-sight velocity separation of 350 km s -1 , in its Sloan Digital Sky Survey spectrum. We used the Kast Spectrograph at Lick Observatory to obtain two long-slit spectra of the galaxy at two different position angles, which reveal that the two Type 2 AGN emission components have not only a velocity offset, but also a projected spatial offset of 1.9 h -1 70 kpc on the sky. Chandra/ACIS observations of two X-ray sources with the same spatial offset and orientation as the optical emission suggest that the galaxy most likely contains Compton-thick dual AGNs, although the observations could also be explained by AGN jets. Deeper X-ray observations that reveal Fe K lines, if present, would distinguish between the two scenarios. The observations of a double X-ray source in SDSS J171544.05+600835.7 are a proof of concept for a new, systematic detection method that selects promising dual AGN candidates from ground-based spectroscopy that exhibits both velocity and spatial offsets in the AGN emission features.

  7. Chandra Early Type Galaxy Atals

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer; McCollough, Michael; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa Dil; Trinchieri, Ginevra

    2017-08-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion, stripping and star formation and its quenching. We have systematically analyzed the archival Chandra data of ~100 ETGs to study the hot ISM. We produce the uniformly derived data products with spatially resolved spectral information and will make them accessible via a public web site. With 2D spectral infomation, we further discuss gas morphology, scaling relations, X-ray based mass profiles and their implications related to various physical mechanisms (e.g., stellar and AGN feedback).

  8. Morphology Of A Hot Prominence Cavity Observed with Hinode/XRT and SDO/AIA

    Science.gov (United States)

    Weber, Mark A.; Reeves, K. K.; Gibson, S. E.; Kucera, T. A.

    2012-01-01

    Prominence cavities appear as circularly shaped voids in coronal emission over polarity inversion lines where a prominence channel is straddling the solar limb. The presence of chromospheric material suspended at coronal altitudes is a common but not necessary feature within these cavities. These voids are observed to change shape as a prominence feature rotates around the limb. We use a morphological model projected in cross-sections to fit the cavity emission in Hinode/XRT passbands, and then apply temperature diagnostics to XRT and SDO/AIA data to investigate the thermal structure. We find significant evidence that the prominence cavity is hotter than the corona immediately outside the cavity boundary. This investigation follows upon "Thermal Properties of A Solar Coronal Cavity Observed with the X-ray Telescope on Hinode" by Reeves et al., 2012, ApJ, in press.

  9. THERMAL PROPERTIES OF A SOLAR CORONAL CAVITY OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 58, Cambridge, MA 02138 (United States); Gibson, Sarah E. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Kucera, Therese A. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hudson, Hugh S. [Space Sciences Laboratories, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kano, Ryouhei, E-mail: kreeves@cfa.harvard.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-02-20

    Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during 2008 July that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity 'cores' with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK, and 2.0 MK (for July 19, July 21, and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

  10. Virtual CT endoscopy of the tympanic cavity - early observation

    International Nuclear Information System (INIS)

    Spryszynski, P.

    2002-01-01

    In recent times the invention of the bionic ear' and other numerous technological advances have seen many patients have their hearing either restored or instated for the first time New challenges and pathologies are being met and overcome all the time One of the challenges has been to verify the structural soundness of the ossicular chain and the structures of the tympanic cavity Congenital deafness can be caused by a congenital malformation of a bone in the ossicular chain or a deformity of any of the ligaments or membranes forming the tympanic cavity. The advent of rapid resolution computerised tomography (CT) scanning has allowed clinicians to view minute structures, otherwise thought impossible to image. This paper discusses a recently developed application and its limitations in the imaging of the structure of the middle ear and the ossicular chain. Copyright (2002) Australian Institute of Radiography

  11. Chandra Discovers Cosmic Cannonball

    Science.gov (United States)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  12. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Observations of the bright side of the Moon with NASA's Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed. "We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., at a press conference at the "Four Years with Chandra" symposium in Huntsville, Alabama. "We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area," continued Drake. "It's the next best thing to being there, and it's very fast and cost-effective." The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra. According to the currently popular "giant impact" theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth's mantle, Drake and his colleagues plan to help test the giant impact hypothesis. "One early result," quipped Drake, "is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon." Illustration of Earth's Geocorona Illustration of Earth's Geocorona The same

  13. Monitoring Chandra Observations of the Quasi-persistent Neutron Star X-Ray Transient MXB 1659-29 in Quiescence: The Cooling Curve of the Heated Neutron Star Crust

    NARCIS (Netherlands)

    Wijnands, R.A.D.; Homan, J.; Miller, J.M.; Lewin, W.H.G.

    2004-01-01

    We have observed the quasi-persistent neutron star X-ray transient and eclipsing binary MXB 1659-29 in quiescence on three occasions with Chandra. The purpose of our observations was to monitor the quiescent behavior of the source after its last prolonged (~2.5 yr) outburst that ended in 2001

  14. THE CHANDRA SOURCE CATALOG

    International Nuclear Information System (INIS)

    Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Harbo, Peter N.; He Xiangqun; Karovska, Margarita; Kashyap, Vinay L.; Davis, John E.; Houck, John C.; Hall, Diane M.

    2010-01-01

    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public Advanced CCD Imaging Spectrometer imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents ∼<30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of ∼<1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a

  15. The Chandra Source Catalog

    Science.gov (United States)

    Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger M.; Hall, Diane M.; Harbo, Peter N.; He, Xiangqun Helen; Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael S.; Van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2010-07-01

    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public Advanced CCD Imaging Spectrometer imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents lsim30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of lsim1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a

  16. PROBING X-RAY ABSORPTION AND OPTICAL EXTINCTION IN THE INTERSTELLAR MEDIUM USING CHANDRA OBSERVATIONS OF SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Foight, Dillon R.; Slane, Patrick O. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Güver, Tolga [Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, Istanbul (Turkey); Özel, Feryal [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-07-20

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) the model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.

  17. Chandra Independently Determines Hubble Constant

    Science.gov (United States)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  18. Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM

    International Nuclear Information System (INIS)

    Arai, Masayuki; Ogata, Takashi; Nitta, Akito

    1995-01-01

    Structural components operating at high temperatures in power plants are subjected to interaction of thermal fatigue and creep which results in creep-fatigue damage. In evaluating the life of those components, it is important to understand microscopic damage evolution under creep-fatigue conditions. In this study, static creep and creep-fatigue tests with tensile holdtime were conducted on SUS304 stainless steel by using a high-temperature fatigue machine combined with a scanning electron microscope (SEM), and cavity growth and coalescence behaviors on surface grain boundaries were observed continuously by the SEM. Quantitative analysis of creep cavity growth based on the observation was made for comparison with theoretical growth models. As a result, it was found that grain boundary cavities nucleate at random and grow preferentially on grain boundaries in a direction almost normal to the stress axis. Under the creep condition, the cavities grow monotonously on grain boundaries while they remain the elliptical shape. On the other hand, under the creep-fatigue condition the cavities grow with an effect of local strain distribution around the grain boundary due to cyclic loading and the micro cracks of one grain-boundary length were formed by coalescence of the cavities. Also, cavity nucleation and growth rates for creep-fatigue were more rapid than those for static creep and the constrained cavity growth model coincided well with the experimental data for creep. (author)

  19. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, Shichun [Institute of Modern Physics (IMP)/Chinese Academy of Sciences (CAS), Lanzhou (China)

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  20. Chandra Finds Ghosts Of Eruption In Galaxy Cluster

    Science.gov (United States)

    2002-01-01

    gas. "Ghost cavities may be the vessels that transport magnetic fields generated in a disk surrounding a giant black hole to the cluster gas that is spread over a region a billion times larger," said McNamara. If dozens of these cavities were created over the life of the cluster, they could explain the surprisingly strong magnetic field of the multimillion-degree gas that pervades the cluster. Galaxy clusters are the largest known gravitationally bound structures in the universe. Hundreds of galaxies swarm in giant reservoirs of multimillion-degree gas that radiates most of its energy in X-rays. Over the course of billions of years some of the gas should cool and sink toward a galaxy in the center of the cluster where it could trigger an outburst in the vicinity of the central massive black hole. Chandra observed Abell 2597 on July 28, 2000,for 40,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS) instrument. Pennsylvania State University, University Park, and MIT developed the instrument for NASA. In addition to a group of astronomers from the Space Telescope Science Institute, Baltimore, and the University of Virginia, Charlottesville, the team included: Paul Nulsen, University of Wollagong, Australia; Larry David, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Chris Carilli, National Radio Astronomy Observatory, Socorro, N.M.; and Craig Sarazin, University of Virginia. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  1. Analysis of the 3C 445 soft X-ray spectrum as observed by Chandra high-energy gratings

    Science.gov (United States)

    Dong, Fu-Tong; Shao, Shu-Hua; Cheng, Yan; Zeng, Jiao-Long

    2018-05-01

    We present a detailed analysis of the soft X-ray emission of 3C 445 using an archival Chandra High Energy Transmission Grating (HETG) spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X radiative recombination continua (RRC) feature in the spectrum seems to prefer a photoionized environment. The spectrum is subsequently modeled with a photoionization model, and the results are compared with those of a collisional model. Through a detailed analysis of the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are {log} ξ ={3.3}-0.3+0.4 erg cm s‑1, {n}{{H}}={5}-4.5+15× {10}10 cm‑3 and {N}{{H}}={2.5}-1.7+3.8× {10}20 cm‑2. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred radial distance (6 × 1014 – 8 × 1015 cm), we suggest the emission lines originating from matter are located in the broad line region (BLR).

  2. Chandra and XMM-Newton observations of the low-luminosity X-ray pulsators SAX J1324.4−6200 and SAX J1452.8−5949

    NARCIS (Netherlands)

    Kaur, R.; Wijnands, R.; Patruno, A.; Testa, V.; Israel, G.; Degenaar, N.; Paul, B.; Kumar, B.

    2009-01-01

    We present results from our Chandra and XMM-Newton observations of two low-luminosity X-ray pulsators SAX J1324.4-6200 and SAX J1452.8-5949 which have spin periods of 172 and 437 s, respectively. The XMM-Newton spectra for both sources can be fitted well with a simple power-law model of photon

  3. XMM-Newton and Chandra Observations of the Remarkable Dynamics of the Intracluster Medium and Radio Sources in the Clusters Abell 2061 and 3667

    Science.gov (United States)

    Sarazin, C.; Hogge, T.; Chatzikos, M.; Wik, D.; Giacintucci, S.; Clarke, T.; Wong, K.; Gitti, M.; Finoguenov, A.

    2014-07-01

    XMM-Newton and Chandra observations of remarkable dynamic structures in the X-ray gas and connected radio sources in three clusters are presented. Abell 2061 is a highly irregular, merging cluster in the Corona Borealis supercluster. X-ray observations show that there is a plume of very cool gas (˜1 keV) to the NE of the cluster, and a hot (7.6 keV) shock region just NE of the center. There is a very bright radio relic to the far SW of the cluster, and a central radio halo/relic with an extension to the NE. Comparison to SLAM simulations show that this is an offset merger of a ˜5 × 10^{13} M⊙ subcluster with a ˜2.5 × 10^{14} M⊙ cluster seen after first core passage. The plume is the cool-core gas from the subcluster, which has been ``slingshot'' to the NE of the cluster. The plume gas is now falling back into the cluster center, and shocks when it hits the central gas. The model predicts a strong shock to the SW at the location of the bright radio relic, and another shock at the NE radio extension. Time permitting, the observations of Abell 2626 and Abell 3667 will also be presented.

  4. Revival of the Magnetar PSR J1622–4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Science.gov (United States)

    Camilo, F.; Scholz, P.; Serylak, M.; Buchner, S.; Merryfield, M.; Kaspi, V. M.; Archibald, R. F.; Bailes, M.; Jameson, A.; van Straten, W.; Sarkissian, J.; Reynolds, J. E.; Johnston, S.; Hobbs, G.; Abbott, T. D.; Adam, R. M.; Adams, G. B.; Alberts, T.; Andreas, R.; Asad, K. M. B.; Baker, D. E.; Baloyi, T.; Bauermeister, E. F.; Baxana, T.; Bennett, T. G. H.; Bernardi, G.; Booisen, D.; Booth, R. S.; Botha, D. H.; Boyana, L.; Brederode, L. R. S.; Burger, J. P.; Cheetham, T.; Conradie, J.; Conradie, J. P.; Davidson, D. B.; De Bruin, G.; de Swardt, B.; de Villiers, C.; de Villiers, D. I. L.; de Villiers, M. S.; de Villiers, W.; De Waal, C.; Dikgale, M. A.; du Toit, G.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fataar, S.; Foley, A. R.; Foster, G.; Fourie, D.; Gamatham, R.; Gatsi, T.; Geschke, R.; Goedhart, S.; Grobler, T. L.; Gumede, S. C.; Hlakola, M. J.; Hokwana, A.; Hoorn, D. H.; Horn, D.; Horrell, J.; Hugo, B.; Isaacson, A.; Jacobs, O.; Jansen van Rensburg, J. P.; Jonas, J. L.; Jordaan, B.; Joubert, A.; Joubert, F.; Józsa, G. I. G.; Julie, R.; Julius, C. C.; Kapp, F.; Karastergiou, A.; Karels, F.; Kariseb, M.; Karuppusamy, R.; Kasper, V.; Knox-Davies, E. C.; Koch, D.; Kotzé, P. P. A.; Krebs, A.; Kriek, N.; Kriel, H.; Kusel, T.; Lamoor, S.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I.; Lord, R. T.; Lunsky, B.; Mabombo, N.; Macdonald, T.; Macfarlane, P.; Madisa, K.; Mafhungo, L.; Magnus, L. G.; Magozore, C.; Mahgoub, O.; Main, J. P. L.; Makhathini, S.; Malan, J. A.; Malgas, P.; Manley, J. R.; Manzini, M.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Matshawule, S. D.; Matthysen, N.; Mauch, T.; McNally, L. D.; Merry, B.; Millenaar, R. P.; Mjikelo, C.; Mkhabela, N.; Mnyandu, N.; Moeng, I. T.; Mokone, O. J.; Monama, T. E.; Montshiwa, K.; Moss, V.; Mphego, M.; New, W.; Ngcebetsha, B.; Ngoasheng, K.; Niehaus, H.; Ntuli, P.; Nzama, A.; Obies, F.; Obrocka, M.; Ockards, M. T.; Olyn, C.; Oozeer, N.; Otto, A. J.; Padayachee, Y.; Passmoor, S.; Patel, A. A.; Paula, S.; Peens-Hough, A.; Pholoholo, B.; Prozesky, P.; Rakoma, S.; Ramaila, A. J. T.; Rammala, I.; Ramudzuli, Z. R.; Rasivhaga, M.; Ratcliffe, S.; Reader, H. C.; Renil, R.; Richter, L.; Robyntjies, A.; Rosekrans, D.; Rust, A.; Salie, S.; Sambu, N.; Schollar, C. T. G.; Schwardt, L.; Seranyane, S.; Sethosa, G.; Sharpe, C.; Siebrits, R.; Sirothia, S. K.; Slabber, M. J.; Smirnov, O.; Smith, S.; Sofeya, L.; Songqumase, N.; Spann, R.; Stappers, B.; Steyn, D.; Steyn, T. J.; Strong, R.; Struthers, A.; Stuart, C.; Sunnylall, P.; Swart, P. S.; Taljaard, B.; Tasse, C.; Taylor, G.; Theron, I. P.; Thondikulam, V.; Thorat, K.; Tiplady, A.; Toruvanda, O.; van Aardt, J.; van Balla, T.; van den Heever, L.; van der Byl, A.; van der Merwe, C.; van der Merwe, P.; van Niekerk, P. C.; van Rooyen, R.; van Staden, J. P.; van Tonder, V.; van Wyk, R.; Wait, I.; Walker, A. L.; Wallace, B.; Welz, M.; Williams, L. P.; Xaia, B.; Young, N.; Zitha, S.

    2018-04-01

    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622–4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100× larger than during its dormant state. The X-ray flux one month after reactivation was at least 800× larger than during quiescence, and has been decaying exponentially on a 111 ± 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3–6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6–8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.

  5. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  6. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  7. CTIO, ROSAT HRI, and Chandra ACIS Observations of the Archetypical Mixed-morphology Supernova Remnant W28 (G6.4–0.1)

    International Nuclear Information System (INIS)

    Pannuti, Thomas G.; Kosakowski, Alekzander R.; Ernst, Sonny; Rho, Jeonghee; Kargaltsev, Oleg; Rangelov, Blagoy; Hare, Jeremy; Winkler, P. Frank; Keohane, Jonathan W.

    2017-01-01

    We present a joint analysis of optical emission-line and X-ray observations of the archetypical Galactic mixed-morphology supernova remnant (MMSNR) W28 (G6.4–0.1). MMSNRs comprise a class of sources whose shell-like radio morphology contrasts with a filled center in X-rays; the origin of these contrasting morphologies remains uncertain. Our CTIO images reveal enhanced [S ii] emission relative to H α along the northern and eastern rims of W28. Hydroxyl (OH) masers are detected along these same rims, supporting prior studies suggesting that W28 is interacting with molecular clouds at these locations, as observed for several other MMSNRs. Our ROSAT HRI mosaic of W28 provides almost complete coverage of the supernova remnant (SNR). The X-ray and radio emission is generally anti-correlated, except for the luminous northeastern rim, which is prominent in both bands. Our Chandra observation sampled the X-ray-luminous central diffuse emission. Spectra extracted from the bright central peak and from nearby annular regions are best fit with two overionized recombining plasma models. We also find that while the X-ray emission from the central peak is dominated by swept-up material, that from the surrounding regions shows evidence for oxygen-rich ejecta, suggesting that W28 was produced by a massive progenitor. We also analyze the X-ray properties of two X-ray sources (CXOU J175857.55−233400.3 and 3XMM J180058.5–232735) projected into the interior of W28 and conclude that neither is a neutron star associated with the SNR. The former is likely to be a foreground cataclysmic variable or a quiescent low-mass X-ray-binary, while the latter is likely to be a coronally active main-sequence star.

  8. CTIO, ROSAT HRI, and Chandra ACIS Observations of the Archetypical Mixed-morphology Supernova Remnant W28 (G6.4–0.1)

    Energy Technology Data Exchange (ETDEWEB)

    Pannuti, Thomas G.; Kosakowski, Alekzander R.; Ernst, Sonny [Space Science Center, Department of Earth and Space Sciences, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Kargaltsev, Oleg; Rangelov, Blagoy; Hare, Jeremy [Department of Physics, 214 Samson Hall, George Washington University, Washington, D.C. 20052 (United States); Winkler, P. Frank [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Keohane, Jonathan W., E-mail: t.pannuti@moreheadstate.edu, E-mail: jrho@seti.org, E-mail: jrho@sofia.usra.edu, E-mail: kargaltsev@gwu.edu, E-mail: alekzanderkos@ou.edu, E-mail: winkler@middlebury.edu, E-mail: jkeohane@hsc.edu [Department of Physics and Astronomy, Hampden-Sydney College, Hampden-Sydney, VA 23943 (United States)

    2017-04-10

    We present a joint analysis of optical emission-line and X-ray observations of the archetypical Galactic mixed-morphology supernova remnant (MMSNR) W28 (G6.4–0.1). MMSNRs comprise a class of sources whose shell-like radio morphology contrasts with a filled center in X-rays; the origin of these contrasting morphologies remains uncertain. Our CTIO images reveal enhanced [S ii] emission relative to H α along the northern and eastern rims of W28. Hydroxyl (OH) masers are detected along these same rims, supporting prior studies suggesting that W28 is interacting with molecular clouds at these locations, as observed for several other MMSNRs. Our ROSAT HRI mosaic of W28 provides almost complete coverage of the supernova remnant (SNR). The X-ray and radio emission is generally anti-correlated, except for the luminous northeastern rim, which is prominent in both bands. Our Chandra observation sampled the X-ray-luminous central diffuse emission. Spectra extracted from the bright central peak and from nearby annular regions are best fit with two overionized recombining plasma models. We also find that while the X-ray emission from the central peak is dominated by swept-up material, that from the surrounding regions shows evidence for oxygen-rich ejecta, suggesting that W28 was produced by a massive progenitor. We also analyze the X-ray properties of two X-ray sources (CXOU J175857.55−233400.3 and 3XMM J180058.5–232735) projected into the interior of W28 and conclude that neither is a neutron star associated with the SNR. The former is likely to be a foreground cataclysmic variable or a quiescent low-mass X-ray-binary, while the latter is likely to be a coronally active main-sequence star.

  9. Observation of single quantum dots in GaAs/AlAs micropillar cavities

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Philipp; Karl, Matthias; Hu, Dongzhi; Schaadt, Daniel M.; Kalt, Heinz; Hetterich, Michael [Institut fuer Angewandte Physik, Universitaet Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), Karlsruhe (Germany)

    2009-07-01

    In our contribution we present the fabrication steps of micropillar cavities and their optical properties. The layer structure consisting of a GaAs-based lambda-cavity sandwiched between two GaAs/AlAs distributed Bragg reflectors is grown by molecular-beam epitaxy. In(Ga)As quantum dots, emitting at around 950 nm, are embedded as optically active medium in the middle of the cavity. The pillars are milled out of this structure with a focused ion-beam. A confocal micro-photoluminescence set-up allows to measure optical cavity modes as well as single quantum dots in the pillars when using low excitation intensity. This enables us to observe a (thermal) shift of the single quantum dot peaks relative to the cavity mode. In addition, we increased the numerical aperture of the set-up (originally 0.4) with a solid immersion lens up to 0.8. Thus we are able to detect the fundamental mode of pillars with very small diameters. Furthermore, the collection efficiency increases substantially.

  10. Simultaneous Chandra and VLA Observations of the Transitional Millisecond Pulsar PSR J1023+0038: Anti-correlated X-Ray and Radio Variability

    Science.gov (United States)

    Bogdanov, Slavko; Deller, Adam T.; Miller-Jones, James C. A.; Archibald, Anne M.; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D’Angelo, Caroline

    2018-03-01

    We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.

  11. LATE-TIME EVOLUTION OF COMPOSITE SUPERNOVA REMNANTS: DEEP CHANDRA OBSERVATIONS AND HYDRODYNAMICAL MODELING OF A CRUSHED PULSAR WIND NEBULA IN SNR G327.1-1.1

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kolb, Christopher; Blondin, John [North Carolina State University, 421 Riddick Hall, Raleigh, NC 27695 (United States); Hughes, John P. [Rutgers University, 57 US Highway 1, New Brunswick, NJ 08901 (United States); Bucciantini, Niccoló [INAF Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze Italy (Italy)

    2015-07-20

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology: a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for a mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock (RS), whichcan occur as a result of a density gradient in the ambient medium and/or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a ∼17,000-year-old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar’s motion. We also show that the RS/PWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to γ-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  12. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    Science.gov (United States)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  13. Chandra "Hears" A Black Hole For The First Time

    Science.gov (United States)

    2003-09-01

    stars along the way. Scant evidence has been found for such a flow of cool gas or star formation. This forced astronomers to invent several different ways to explain why the gas contained in clusters remained hot, and, until now, none of them was satisfactory. perseus animation Animation of Sound Waves Generated in Perseus Cluster of Ripples in Perseus Heating caused by a central black hole has long been considered a good way to prevent cluster gas from cooling. Although jets have been observed at radio wavelengths, their effect on cluster gas was unclear since this gas is only detectable in X-rays, and early X-ray observations did not have Chandra's ability to find detailed structure. Previous Chandra observations of the Perseus cluster showed two vast, bubble-shaped cavities in the cluster gas extending away from the central black hole. Jets of material pushing back the cluster gas have formed these X-ray cavities, which are bright sources of radio waves. They have long been suspected of heating the surrounding gas, but the mechanism was unknown. The sound waves, seen spreading out from the cavities in the recent Chandra observation, could provide this heating mechanism. A tremendous amount of energy is needed to generate the cavities, as much as the combined energy from 100 million supernovae. Much of this energy is carried by the sound waves and should dissipate in the cluster gas, keeping the gas warm and possibly preventing a cooling flow. If so, the B-flat pitch of the sound wave, 57 octaves below middle-C, would have remained roughly constant for about 2.5 billion years. Perseus is the brightest cluster of galaxies in X-rays, and therefore was a perfect Chandra target for finding sound waves rippling through the hot cluster gas. Other clusters show X-ray cavities, and future Chandra observations may yet detect sound waves in these objects.

  14. THE CHANDRA VARIABLE GUIDE STAR CATALOG

    International Nuclear Information System (INIS)

    Nichols, Joy S.; Lauer, Jennifer L.; Morgan, Douglas L.; Sundheim, Beth A.; Henden, Arne A.; Huenemoerder, David P.; Martin, Eric

    2010-01-01

    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 A range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are

  15. Lakhotia, Prof. Subhash Chandra

    Indian Academy of Sciences (India)

    Elected: 1994 Section: Animal Sciences. Lakhotia, Prof. Subhash Chandra Ph.D. (Calcutta), FNA, FNASc. Date of birth: 4 October 1945. Specialization: Ayurvedic Biology, Cytogenetics, Gene Expression, Stress Biology and Molecular Biology Address: INSA Senior Scientist, Department of Zoology, Banaras Hindu University ...

  16. Nirab Chandra Adhikary

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nirab Chandra Adhikary. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1613-1624. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process · Bhabesh Kumar Nath Aziz Khan ...

  17. Budhani, Dr Ramesh Chandra

    Indian Academy of Sciences (India)

    Budhani, Dr Ramesh Chandra Ph.D. (IIT, Delhi), FNASc, FNA. Date of birth: 3 February 1955. Specialization: Renewable Energy, Nanoscale Systems, Experimental Condensed Matter Physics, Superconductivity and Magnetism Address: Department of Physics, Lasers & Photonics, Indian Institute of Technology, Kanpur 208 ...

  18. Chance and Chandra

    Indian Academy of Sciences (India)

    with inverse-square interparticle forces. The roles of ... ness fluctuations in the star fields of the Milky Way [1] and one on the inference of the distribution ... Chandra, however, argued for a cut-off at the mean interparticle distance, D ... the root of the difficulty with large impact parameters lies in the insistence upon Markovian.

  19. Thakur, Dr Vikram Chandra

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1991 Section: Earth & Planetary Sciences. Thakur, Dr Vikram Chandra Ph.D. (London). Date of birth: 15 January 1940. Specialization: Structural Geology, Tectonics of Himalayan Geology and Active Tectonics Address: 9/12 (Lane 9), Ashirwad Eclave, Dehra Dun 248 001, ...

  20. Venkataraman, Prof. Chandra

    Indian Academy of Sciences (India)

    Elected: 2018 Section: Earth & Planetary Sciences. Venkataraman, Prof. Chandra Ph.D. (Univ. Calif., Los Angeles), FNAE, FNASc. Date of birth: 3 June 1963. Specialization: Aerosol Science & Engineering, Environmental & Climate Science, Atmospheric Science Address: Department of Chemical Engineering, Indian ...

  1. subhas chandra saha

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. SUBHAS CHANDRA SAHA. Articles written in Sadhana. Volume 41 Issue 5 May 2016 pp 549-559. A comparative study of multiple regression analysis and back propagation neural network approaches on plain carbon steel in submerged-arc welding · ABHIJIT SARKAR PRASENJIT DEY R N ...

  2. Chaturvedi, Prof. Umesh Chandra

    Indian Academy of Sciences (India)

    Chaturvedi, Prof. Umesh Chandra M.D. (Lucknow), FRC Path. (London), FAMS, FNA, FNASc, FAAM(USA). Date of birth: 2 March 1939. Specialization: Medical Microbiology, Virology and Immunology Address: 201, Annapurna Apartments, No. 1, Bishop Rocky Street, Faizabad Road, Lucknow 226 007, U.P.. Contact:

  3. Chandra Source Catalog: User Interface

    Science.gov (United States)

    Bonaventura, Nina; Evans, Ian N.; Rots, Arnold H.; Tibbetts, Michael S.; van Stone, David W.; Zografou, Panagoula; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Helen; Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Winkelman, Sherry L.

    2009-09-01

    The Chandra Source Catalog (CSC) is intended to be the definitive catalog of all X-ray sources detected by Chandra. For each source, the CSC provides positions and multi-band fluxes, as well as derived spatial, spectral, and temporal source properties. Full-field and source region data products are also available, including images, photon event lists, light curves, and spectra. The Chandra X-ray Center CSC website (http://cxc.harvard.edu/csc/) is the place to visit for high-level descriptions of each source property and data product included in the catalog, along with other useful information, such as step-by-step catalog tutorials, answers to FAQs, and a thorough summary of the catalog statistical characterization. Eight categories of detailed catalog documents may be accessed from the navigation bar on most of the 50+ CSC pages; these categories are: About the Catalog, Creating the Catalog, Using the Catalog, Catalog Columns, Column Descriptions, Documents, Conferences, and Useful Links. There are also prominent links to CSCview, the CSC data access GUI, and related help documentation, as well as a tutorial for using the new CSC/Google Earth interface. Catalog source properties are presented in seven scientific categories, within two table views: the Master Source and Source Observations tables. Each X-ray source has one ``master source'' entry and one or more ``source observation'' entries, the details of which are documented on the CSC ``Catalog Columns'' pages. The master source properties represent the best estimates of the properties of a source; these are extensively described on the following pages of the website: Position and Position Errors, Source Flags, Source Extent and Errors, Source Fluxes, Source Significance, Spectral Properties, and Source Variability. The eight tutorials (``threads'') available on the website serve as a collective guide for accessing, understanding, and manipulating the source properties and data products provided by the catalog.

  4. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    Science.gov (United States)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  5. Chandra Source Catalog: User Interfaces

    Science.gov (United States)

    Bonaventura, Nina; Evans, I. N.; Harbo, P. N.; Rots, A. H.; Tibbetts, M. S.; Van Stone, D. W.; Zografou, P.; Anderson, C. S.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Glotfelty, K. J.; Grier, J. D.; Hain, R.; Hall, D. M.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Winkelman, S. L.

    2010-03-01

    The CSCview data mining interface is available for browsing the Chandra Source Catalog (CSC) and downloading tables of quality-assured source properties and data products. Once the desired source properties and search criteria are entered into the CSCview query form, the resulting source matches are returned in a table along with the values of the requested source properties for each source. (The catalog can be searched on any source property, not just position.) At this point, the table of search results may be saved to a text file, and the available data products for each source may be downloaded. CSCview save files are output in RDB-like and VOTable format. The available CSC data products include event files, spectra, lightcurves, and images, all of which are processed with the CIAO software. CSC data may also be accessed non-interactively with Unix command-line tools such as cURL and Wget, using ADQL 2.0 query syntax. In fact, CSCview features a separate ADQL query form for those who wish to specify this type of query within the GUI. Several interfaces are available for learning if a source is included in the catalog (in addition to CSCview): 1) the CSC interface to Sky in Google Earth shows the footprint of each Chandra observation on the sky, along with the CSC footprint for comparison (CSC source properties are also accessible when a source within a Chandra field-of-view is clicked); 2) the CSC Limiting Sensitivity online tool indicates if a source at an input celestial location was too faint for detection; 3) an IVOA Simple Cone Search interface locates all CSC sources within a specified radius of an R.A. and Dec.; and 4) the CSC-SDSS cross-match service returns the list of sources common to the CSC and SDSS, either all such sources or a subset based on search criteria.

  6. THE MEGASECOND CHANDRA X-RAY VISIONARY PROJECT OBSERVATION OF NGC 3115. III. LUMINOSITY FUNCTIONS OF LMXBS AND DEPENDENCE ON STELLAR ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng; Irwin, Jimmy A. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Wong, Ka-Wah [Eureka Scientific, Inc., 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Jennings, Zachary G.; Romanowsky, Aaron J.; Brodie, Jean P. [University of California Observatories, Santa Cruz, CA 95064 (United States); Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139-4307 (United States); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, MI 48824 (United States); Sivakoff, Gregory R., E-mail: dacheng.lin@unh.edu [Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1 (Canada)

    2015-07-20

    We studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-ray Visionary Project Observation. With a total exposure time of ∼1.1 Ms, we constructed the XLF down to a limiting luminosity of ∼10{sup 36} erg s{sup −1}, which is much deeper than that typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL ∝ L{sup −2.2±0.4} above 5.5 × 10{sup 37} erg s{sup −1} to dN/dL ∝ L{sup −1.0±0.1} below it, although we could not rule out a fit with a higher break at ∼1.6 × 10{sup 38} erg s{sup −1}. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus, our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrupted GCs in the inner region. The XLF in the outer region is probably the XLF of primordial field LMXBs, exhibiting dN/dL ∝ L{sup −1.2±0.1} up to a break close to the Eddington limit of neutron star LMXBs (∼1.7 × 10{sup 38} erg s{sup −1}). The break of the GC LMXB XLF is lower, at ∼1.1 × 10{sup 37} erg s{sup −1}. We also confirm previous findings that the metal-rich/red GCs are more likely to host LMXBs than the metal-poor/blue GCs, which is more significant for more luminous LMXBs, and that more massive GCs are more likely to host LMXBs.

  7. Ten Years of Chandra

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We celebrated the 10-th anniversary of the Launch of the Chandra X-ray Observatory on July 13, 2009. During these 10 years data from this Great Observatory have had a profound impact on 21st century astrophysics. With its unrivaled capability to produce sub-arcsecond images, the Observatory has enabled astronomers to make new discoveries in topics as diverse as comets and cosmology. We shall review some of the highlights, discuss the current status, and future plans.

  8. Second Chandra Instrument Activated August 28

    Science.gov (United States)

    1999-08-01

    Cambridge, MA--NASA's Chandra X-ray Observatory opened a new era in astronomy Saturday, August 28, by making the most precise measurements ever recorded of the energy output from the 10 million degree corona of a star. Last weekend's observations came after the successful activation of an instrument developed by MIT that will allow a one-thousand-fold improvement in the capability to measure X-ray spectra from space. The new measurements, made with the High Energy Transmission Grating Spectrometer, join spectacular images taken last week by Chandra of the aftermath of a gigantic stellar explosion. The spectrometer is one of four key instruments aboard Chandra, and the second to be activated. The others will be turned on over the next two weeks. The spectrometer activated yesterday spreads the X-rays from Chandra's mirrors into a spectrum, much as a prism spreads light into its colors. The spectrum then can be read by Chandra's imaging detectors like a kind of cosmic bar code from which scientists can deduce the chemical composition and temperature of the corona. A corona is a region of hot gas and magnetic loops that extend hundreds of thousands of miles above the star's visible surface and is best studied with X-rays. "The success of the new spectrometer is definitely a major milestone for modern astronomy," said MIT Professor Claude R. Canizares, principal investigator for the instrument and associate director of the Chandra X-ray Observatory Center (CXC). "Within the first hour we had obtained the best X-ray spectrum ever recorded for a celestial source. We can already see unexpected features that will teach us new things about stars and about matter at high temperatures." The spectrometer measured X-rays from the star Capella, which is 40 light years away in the constellation Auriga. Capella is actually two stars orbiting one another and possibly interacting in ways that pump extra heat into the corona, which appears more active than that of the Sun. How a star

  9. The Chandra Source Catalog: Processing and Infrastructure

    Science.gov (United States)

    Evans, Janet; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Hall, Diane M.; Miller, Joseph B.; Plummer, David A.; Zografou, Panagoula; Primini, Francis A.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    Chandra Source Catalog processing recalibrates each observation using the latest available calibration data, and employs a wavelet-based source detection algorithm to identify all the X-ray sources in the field of view. Source properties are then extracted from each detected source that is a candidate for inclusion in the catalog. Catalog processing is completed by matching sources across multiple observations, merging common detections, and applying quality assurance checks. The Chandra Source Catalog processing system shares a common processing infrastructure and utilizes much of the functionality that is built into the Standard Data Processing (SDP) pipeline system that provides calibrated Chandra data to end-users. Other key components of the catalog processing system have been assembled from the portable CIAO data analysis package. Minimal new software tool development has been required to support the science algorithms needed for catalog production. Since processing pipelines must be instantiated for each detected source, the number of pipelines that are run during catalog construction is a factor of order 100 times larger than for SDP. The increased computational load, and inherent parallel nature of the processing, is handled by distributing the workload across a multi-node Beowulf cluster. Modifications to the SDP automated processing application to support catalog processing, and extensions to Chandra Data Archive software to ingest and retrieve catalog products, complete the upgrades to the infrastructure to support catalog processing.

  10. Chandra Sees Remarkable Eclipse of Black Hole

    Science.gov (United States)

    2007-04-01

    A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365

  11. The observation of eqrthquake in the neighborhood of a large underground cavity

    International Nuclear Information System (INIS)

    Komada, Hiroya; Hayashi, Masao

    1980-01-01

    Studies on the earthquake resistance design of underground site for such large important structures as nuclear power plants, high-level radioactive waste repositories, LNG tanks, petroleum tanks, big power transmission installations and compressed air energy storage installations have been examined at our research institute. The observations of earthquake have been examined at Shiroyama underground hydroelectric power station since July 1976 as one of the demonstration of the earthquake resistance, and the first report was already published. After the time accelerometers and dynamic strain meters were additionally installed. Good acceleration waves and dynamic strain waves of the Izu-Hanto-Toho-Oki Earthquake, June 29, 1980 were observed at Shiroyama site, at which the hypocentral distance is 77 km and the intensity scale is about 4. In this report, the characteristic of the oscillation wave in the neighborhood of underground cavity and the relationships among accelerations, velocities, deformations and dynamic strains are studied in detail on the above earthquake data. (author)

  12. Spatially resolving a starburst galaxy at hard X-ray energies: NuSTAR, CHANDRA, AND VLBA observations of NGC 253

    DEFF Research Database (Denmark)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.

    2014-01-01

    for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within...... is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the γ-ray emission detected with Fermi and H.E.S.S. If NGC...

  13. Observations on the release of air from the rear end of ventilated cavities

    International Nuclear Information System (INIS)

    Verron, J.; Michel, J.M.

    1976-01-01

    In ventilated cavity flows, produced by air injection at the base of bi or tri-dimensional foils, the relation between the air flow rate and the relative cavity underpressure depends particularly on the way in which the air is released from the rear end of the cavity. The experiments show flow configurations of various kinds, revealing the influence of many parameters which interact to determine the closure region of the cavity. Examples are given in the cases of pulsating and non-pulsating cavities. The hydrodynamical tunnel is also briefly described with emphasis on the special units which allow to inject a large amount of air into the water and to produce large cavities without modifying the other characteristics: velocity, ambient pressure and air content in water [fr

  14. The Chandra Source Catalog: Spectral Properties

    Science.gov (United States)

    Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).

  15. Observations of lower hybrid cavities in the inner magnetosphere by the Cluster and Viking satellites

    Directory of Open Access Journals (Sweden)

    A. Tjulin

    2004-09-01

    Full Text Available Observations by the Viking and Cluster satellites at altitudes up to 35000km show that Lower Hybrid Cavities (LHCs are common in the inner magnetosphere. LHCs are density depletions filled with waves in the lower hybrid frequency range. The LHCs have, until recently, only been found at altitudes up to 2000km. Statistics of the locations and general shape of the LHCs is performed to obtain an overview of some of their properties. In total, we have observed 166 LHCs on Viking during 27h of data, and 535 LHCs on Cluster during 87h of data. These LHCs are found at invariant latitudes from the auroral region to the plasmapause. A comparison with lower altitude observations shows that the LHC occurrence frequency does not scale with the flux tube radius, so that the LHCs are moderately rarer at high altitudes. This indicates that the individual LHCs do not reach from the ionosphere to 35000km altitude, which gives an upper bound for their length. The width of the LHCs perpendicular to the geomagnetic field at high altitudes is a few times the ion gyroradius, consistent with observations at low altitudes. The estimated depth of the density depletions vary with altitude, being larger at altitudes of 20000-35000km (Cluster, 10-20%, smaller around 1500-13000km (Viking and previous Freja results, a few percent and again larger around 1000km (previous sounding rocket observations, 10-20%. The LHCs in the inner magnetosphere are situated in regions with background electrostatic hiss in the lower hybrid frequency range, consistent with investigations at low altitudes. Individual LHCs observed at high altitudes are stable at least on time scales of 0.2s (about the ion gyro period, which is consistent with previous results at lower altitudes, and observations by the four Cluster satellites show that the occurrence of LHCs in a region in space is a stable phenomenon, at least on time scales of an hour.

  16. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  17. BeppoSAX and Chandra Observations of SAX J0103.2-7209 = 2E 0101.5-7225: A New Persistent 345 Second X-Ray Pulsar in the Small Magellanic Cloud.

    Science.gov (United States)

    Israel; Campana; Covino; Dal Fiume D; Gaetz; Mereghetti; Oosterbroek; Orlandini; Parmar; Ricci; Stella

    2000-03-10

    We report the results of a 1998 July BeppoSAX observation of a field in the Small Magellanic Cloud which led to the discovery of approximately 345 s pulsations in the X-ray flux of SAX J0103.2-7209. The BeppoSAX X-ray spectrum is well fitted by an absorbed power law with a photon index of approximately 1.0 plus a blackbody component with kT=0.11 keV. The unabsorbed luminosity in the 2-10 keV energy range is approximately 1.2x1036 ergs s-1. In a very recent Chandra observation, the 345 s pulsations are also detected. The available period measurements provide a constant period derivative of -1.7 s yr-1 over the last 3 years, making SAX J0103.2-7209 one of the most rapidly spinning up X-ray pulsars known. The BeppoSAX position (30&arcsec; uncertainty radius) is consistent with that of the Einstein source 2E 0101.5-7225 and the ROSAT source RX J0103.2-7209. This source was detected at a luminosity level of a few times 1035-1036 ergs s-1 in all data sets of past X-ray missions since 1979. The ROSAT HRI and Chandra positions are consistent with that of a mV=14.8 Be spectral-type star already proposed as the likely optical counterpart of 2E 0101.5-7225. We briefly report and discuss photometric and spectroscopic data carried out at the ESO telescopes 2 days before the BeppoSAX observation. We conclude that SAX J0103.2-7209 and 2E 0101.5-7225 are the same source: a relatively young and persistent X-ray pulsar in the SMC.

  18. Experimental observations of effects of inert gas on cavity formation during irradiation

    International Nuclear Information System (INIS)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present

  19. Experimental observations of effects of inert gas on cavity formation during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present.

  20. Deep Chandra Observations of ESO 428-G014. II. Spectral Properties and Morphology of the Large-scale Extended X-Ray Emission

    Science.gov (United States)

    Fabbiano, G.; Paggi, A.; Karovska, M.; Elvis, M.; Maksym, W. P.; Risaliti, G.; Wang, Junfeng

    2018-03-01

    We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton-thick (CT) active galactic nucleus (AGN) ESO 428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more extended at lower energies (<3 keV). The smaller extent of the hard continuum and Fe Kα profiles implies that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii, there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ∼10% of that in the cone direction. In the 0.3–1.5 keV band, the ratio of cross-cone to cone photons increases to ∼84%, suggesting an additional soft diffuse emission component disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component, ∼5 × 1038 erg s‑1, is roughly consistent with the thermal component suggested by the spectral fits in the 170–900 pc annulus.

  1. STATISTICAL CHARACTERIZATION OF THE CHANDRA SOURCE CATALOG

    International Nuclear Information System (INIS)

    Primini, Francis A.; Evans, Ian N.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Harbo, Peter N.; He Xiangqun; Karovska, Margarita; Houck, John C.; Davis, John E.; Nowak, Michael A.; Hall, Diane M.

    2011-01-01

    The first release of the Chandra Source Catalog (CSC) contains ∼95,000 X-ray sources in a total area of 0.75% of the entire sky, using data from ∼3900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other large Chandra catalogs, such as the ChaMP Point Source Catalog or the 2 Mega-second Deep Field Surveys, while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point-source populations.

  2. Statistical Characterization of the Chandra Source Catalog

    Science.gov (United States)

    Primini, Francis A.; Houck, John C.; Davis, John E.; Nowak, Michael A.; Evans, Ian N.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Hall, Diane M.; Harbo, Peter N.; He, Xiangqun Helen; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael S.; Van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2011-06-01

    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of 0.75% of the entire sky, using data from ~3900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other large Chandra catalogs, such as the ChaMP Point Source Catalog or the 2 Mega-second Deep Field Surveys, while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point-source populations.

  3. Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ya-Wen; Gu, Pin-Gao; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Guilloteau, Stephane; Dutrey, Anne; Chapillon, Edwige; Folco, Emmanuel di [Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, alle Geoffroy Saint-Hilaire, F-33615 Pessac (France); Muto, Takayuki [Department of Physics, National Taiwan University, Taiwan (China); Shen, Bo-Ting [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Inutsuka, Shu-ichiro [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Pietu, Vincent [IRAM, 300 rue de la Piscine, Domaine Universitaire, F-38406 Saint-Martin-d’Hères (France); Fukagawa, Misato [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Corder, Stuartt [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ohashi, Nagayoshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States); Hashimoto, Jun, E-mail: ywtang@asiaa.sinica.edu.tw [Astrobiology Center of NINS 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2017-05-01

    We report the results of ALMA observations of a protoplanetary disk surrounding the Herbig Ae star AB Aurigae. We obtained high-resolution (0.″1; 14 au) images in {sup 12}CO J = 2 − 1 emission and in the dust continuum at the wavelength of 1.3 mm. The continuum emission is detected at the center and at the ring with a radius ( r ) of ∼120 au. The CO emission is dominated by two prominent spirals within the dust ring. These spirals are trailing and appear to be about 4 times brighter than their surrounding medium. Their kinematics is consistent with Keplerian rotation at an inclination of 23°. The apparent two-arm-spiral pattern is best explained by tidal disturbances created by an unseen companion located at r of 60–80 au, with dust confined in the pressure bumps created outside this companion orbit. An additional companion at r of 30 au, coinciding with the peak CO brightness and a large pitch angle of the spiral, would help to explain the overall emptiness of the cavity. Alternative mechanisms to excite the spirals are discussed. The origin of the large pitch angle detected here remains puzzling.

  4. DEEP CHANDRA, HST-COS, AND MEGACAM OBSERVATIONS OF THE PHOENIX CLUSTER: EXTREME STAR FORMATION AND AGN FEEDBACK ON HUNDRED KILOPARSEC SCALES

    International Nuclear Information System (INIS)

    McDonald, Michael; Bautz, Marshall W.; Miller, Eric D.; ZuHone, John A.; McNamara, Brian R.; Weeren, Reinout J. van; Bayliss, Matthew; Jones-Forman, Christine; Applegate, Douglas E.; Benson, Bradford A.; Carlstrom, John E.; Mantz, Adam B.; Bleem, Lindsey E.; Chatzikos, Marios; Edge, Alastair C.; Fabian, Andrew C.; Garmire, Gordon P.; Hlavacek-Larrondo, Julie; Stalder, Brian; Veilleux, Sylvain

    2015-01-01

    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ∼50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 × 10 9 M ⊙ ), young (∼4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M ⊙ yr −1 . We report a strong detection of O vi λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 M ⊙ yr −1 ) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ∼10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2–7 × 10 45 erg s −1 . We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from “quasar-mode” to “radio-mode,” and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ∼100 kpc, with extended “ghost” cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ∼200 kpc (0.15R 500 ), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments

  5. Chandra Maps Vital Elements From Supernova

    Science.gov (United States)

    1999-12-01

    A team of astronomers led by Dr. John Hughes of Rutgers University in Piscataway, NJ has used observations from NASA's orbital Chandra X-ray Observatory to make an important new discovery that sheds light on how silicon, iron, and other elements were produced in supernova explosions. An X-ray image of Cassiopeia A (Cas A), the remnant of an exploded star, reveals gaseous clumps of silicon, sulfur, and iron expelled from deep in the interior of the star. The findings appear online in the Astrophysical Journal Letters at http://www.journals.uchicago.edu/ and are slated for print publication on Jan. 10, 2000. Authors of the paper, "Nucleosynthesis and Mixing in Cassiopeia A", are Hughes, Rutgers graduate student Cara Rakowski, Dr. David Burrows of the Pennsylvania State University, University Park, PA and Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA. According to Hughes, one of the most profound accomplishments of twentieth century astronomy is the realization that nearly all of the elements other than hydrogen and helium were created in the interiors of stars. "During their lives, stars are factories that take the simplest element, hydrogen, and convert it into heavier ones," he said. "After consuming all the hydrogen in their cores, stars begin to evolve rapidly, until they finally run out of fuel and begin to collapse. In stars ten times or so more massive than our Sun, the central parts of the collapsing star may form a neutron star or a black hole, while the rest of the star is blown apart in a tremendous supernova explosion." Supernovae are rare, occurring only once every 50 years or so in a galaxy like our own. "When I first looked at the Chandra image of Cas A, I was amazed by the clarity and definition," said Hughes. "The image was much sharper than any previous one and I could immediately see lots of new details." Equal in significance to the image clarity is the potential the Chandra data held for measuring the

  6. The Chandra Source Catalog: Algorithms

    Science.gov (United States)

    McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.

  7. Spectral and Temporal Properties of the Ultra-Luminous X-Ray Pulsar in M82 from 15 Years of Chandra Observations and Analysis of the Pulsed Emission Using NuSTAR

    Science.gov (United States)

    Brightman, Murray; Harrison, Fiona; Walton, Dominic J.; Fuerst, Felis; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2016-01-01

    The recent discovery by Bachetti et al. of a pulsar in M82 that can reach luminosities of up to 10(exp 40) erg s(exp -1), a factor of approximately 100 times the Eddington luminosity for a 1.4 solar mass compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.58 keV X-ray emission from this source from 15 years of Chandra observations. We analyze 19 ACIS observations where the point-spread function (PSF) of the pulsar is not contaminated by nearby sources. We fit the Chandra spectra of the pulsar with a power-law model and a disk blackbody model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where four observations have a pile-up fraction of 10, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (LX greater than 10(exp 39) erg s(exp -1) is equal to gamma 1.33 +/-.0.15. For the disk blackbody model, the average temperature is T(sub in) 3.24 +/- 0.65 keV, the spectral shape being consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cutoff, where gamma is equal to 0.6 +/- 0.3 and E(sub C) is equal to 14(exp +5) (sub -3)) keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9

  8. CIAO: CHANDRA/X-RAY DATA ANALYSIS FOR EVERYONE

    Science.gov (United States)

    McDowell, Jonathan; CIAO Team

    2018-01-01

    Eighteen years after the launch of Chandra, the archive is full of scientifically rich data and new observations continue. Improvements in recent years to the data analysis package CIAO (Chandra Interactive Analysis of Observations) and its extensive accompanying documentation make it easier for astronomers without a specialist background in high energy astrophysics to take advantage of this resource.The CXC supports hundreds of CIAO users around the world at all levels of training from high school and undergraduate students to the most experienced X-ray astronomers. In general, we strive to provide a software system which is easy for beginners, yet powerful for advanced users.Chandra data cover a range of instrument configurations and types of target (pointlike, extended and moving), requiring a flexible data analysis system. In addition to CIAO tools using the familiar FTOOLS/IRAF-style parameter interface, CIAO includes applications such as the Sherpa fitting engine which provide access to the data via Python scripting.In this poster we point prospective (and existing!) users to the high level Python scripts now provided to reprocess Chandra or other X-ray mission data, determine source fluxes and upper limits, and estimate backgrounds; and to the latest documentation including the CIAO Gallery, a new entry point featuring the system's different capabilities.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  9. The Chandra Source Catalog: Background Determination and Source Detection

    Science.gov (United States)

    McCollough, Michael; Rots, Arnold; Primini, Francis A.; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Danny G. Gibbs, II; Grier, John D.; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The Chandra Source Catalog (CSC) is a major project in which all of the pointed imaging observations taken by the Chandra X-Ray Observatory are used to generate one of the most extensive X-ray source catalog produced to date. Early in the development of the CSC it was recognized that the ability to estimate local background levels in an automated fashion would be critical for essential CSC tasks such as source detection, photometry, sensitivity estimates, and source characterization. We present a discussion of how such background maps are created directly from the Chandra data and how they are used in source detection. The general background for Chandra observations is rather smoothly varying, containing only low spatial frequency components. However, in the case of ACIS data, a high spatial frequency component is added that is due to the readout streaks of the CCD chips. We discuss how these components can be estimated reliably using the Chandra data and what limitations and caveats should be considered in their use. We will discuss the source detection algorithm used for the CSC and the effects of the background images on the detection results. We will also touch on some the Catalog Inclusion and Quality Assurance criteria applied to the source detection results. This work is supported by NASA contract NAS8-03060 (CXC).

  10. Chandra Source Catalog: Background Determination and Source Detection

    Science.gov (United States)

    McCollough, Michael L.; Rots, A. H.; Primini, F. A.; Evans, I. N.; Glotfelty, K. J.; Hain, R.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-01-01

    The Chandra Source Catalog (CSC) is a major project in which all of the pointed imaging observations taken by the Chandra X-Ray Observatory will used to generate the most extensive X-ray source catalog produced to date. Early in the development of the CSC it was recognized that the ability to estimate local background levels in an automated fashion would be critical for essential CSC tasks such as source detection, photometry, sensitivity estimates, and source characterization. We present a discussion of how such background maps are created directly from the Chandra data and how they are used in source detection. The general background for Chandra observations is rather smoothly varying, containing only low spatial frequency components. However, in the case of ACIS data, a high spatial frequency component is added that is due to the readout streaks of the CCD chips. We discuss how these components can be estimated reliably using the Chandra data and what limitations and caveats should be considered in their use. We will discuss the source detection algorithm used for the CSC and the effects of the background images on the detection results. We will also touch on some the Catalog Inclusion and Quality Assurance criteria applied to the source detection results. This work is supported by NASA contract NAS8-03060 (CXC).

  11. The Chandra Source Catalog : Automated Source Correlation

    Science.gov (United States)

    Hain, Roger; Evans, I. N.; Evans, J. D.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-01-01

    Chandra Source Catalog (CSC) master source pipeline processing seeks to automatically detect sources and compute their properties. Since Chandra is a pointed mission and not a sky survey, different sky regions are observed for a different number of times at varying orientations, resolutions, and other heterogeneous conditions. While this provides an opportunity to collect data from a potentially large number of observing passes, it also creates challenges in determining the best way to combine different detection results for the most accurate characterization of the detected sources. The CSC master source pipeline correlates data from multiple observations by updating existing cataloged source information with new data from the same sky region as they become available. This process sometimes leads to relatively straightforward conclusions, such as when single sources from two observations are similar in size and position. Other observation results require more logic to combine, such as one observation finding a single, large source and another identifying multiple, smaller sources at the same position. We present examples of different overlapping source detections processed in the current version of the CSC master source pipeline. We explain how they are resolved into entries in the master source database, and examine the challenges of computing source properties for the same source detected multiple times. Future enhancements are also discussed. This work is supported by NASA contract NAS8-03060 (CXC).

  12. The use of thermovision camera to observe physiological and pathological conditions of oral cavity mucous membrane

    Science.gov (United States)

    Dąbrowski, M.; Dulski, R.; Żmuda, S.; Zaborowski, P.; Pogorzelski, C.

    2002-06-01

    This article presents initial results of investigations of the temperature distribution changes in oral cavity mucous membrane. The investigations aimed to prepare a model of temperature changes existing within mucosal membrane in physiological conditions and to compare those changes with those under pathological conditions. Our investigations were carried out using an infrared imaging system. A representative group of patients was tested.

  13. A SOLAR TORNADO OBSERVED BY AIA/SDO: ROTATIONAL FLOW AND EVOLUTION OF MAGNETIC HELICITY IN A PROMINENCE AND CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xing; Morgan, Huw; Leonard, Drew; Jeska, Lauren, E-mail: xxl@aber.ac.uk [Sefydliad Mathemateg a Ffiseg, Prifysgol Aberystwyth, Ceredigion, Cymru SY23 3BZ (United Kingdom)

    2012-06-20

    During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, with emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.

  14. Patel, Prof. Chandra Kumar Naranbhai

    Indian Academy of Sciences (India)

    Elected: 1995 Honorary. Patel, Prof. Chandra Kumar Naranbhai. Date of birth: 2 July 1938. Address: President & CEO, Pranalytica Inc., 1101, Colorado Avenue, Santa Monica, CA 90401, U.S.A.. Contact: Office: (+1-310) 458 0808. Residence: (+1-310) 471 6505. Fax: (+1-310) 458 0171. Email: patel@pranalytica.com.

  15. Patel, Prof. Chandra Kumar Naranbhai

    Indian Academy of Sciences (India)

    Patel, Prof. Chandra Kumar Naranbhai. Date of birth: 2 July 1938. Address: President & CEO, Pranalytica Inc., 1101, Colorado Avenue, Santa Monica, CA 90401, U.S.A.. Contact: Office: (+1-310) 458 0808. Residence: (+1-310) 471 6505. Fax: (+1-310) 458 0171. Email: patel@pranalytica.com. YouTube · Twitter · Facebook ...

  16. ASA's Chandra Neon Discovery Solves Solar Paradox

    Science.gov (United States)

    2005-07-01

    heated to millions of degrees, neon shines brightly in X-rays. Stars like the sun are covered in this super-heated gas that is betrayed by the white corona around them during solar eclipses. However, observations of the sun's corona are very difficult to analyze. Labeled Illustration of Convection in Sun-like Star Labeled Illustration of Convection in Sun-like Star To probe the neon content, Drake and his colleague Paola Testa of the Massachusetts Institute of Technology in Cambridge, Mass., observed 21 sun-like stars within a distance of 400 light years from Earth. These local stars and the sun should contain about the same amount of neon when compared to oxygen. However, these close stellar kin were found to contain on average almost three times more neon than is believed for the sun. "Either the sun is a freak in its stellar neighborhood, or it contains a lot more neon than we think," Testa said. These Chandra results reassured astronomers the detailed physical theory behind the solar model is secure. Scientists use the model of the sun as a basis for understanding the structure and evolution of other stars, as well as many other areas of astrophysics. "If the higher neon abundance measured by Drake and Testa is right, then it is a simultaneous triumph for Chandra and for the theory of how stars shine," said John Bahcall of the Institute for Advanced Study, Princeton, N.J. Bahcall is an expert in the field who was not involved in the Chandra study. Drake is lead author of the study published in this week's issue of the journal Nature. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  17. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.

    2009-01-01

    function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...

  18. The 0.3-30 Kev Spectra Of Powerful Starburst Galaxies: Nustar And Chandra Observations Of Ngc 3256 And Ngc 3310

    DEFF Research Database (Denmark)

    Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.

    2015-01-01

    observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super...

  19. Homogeneous Analysis of the Dust Morphology of Transition Disks Observed with ALMA: Investigating Dust Trapping and the Origin of the Cavities

    Science.gov (United States)

    Pinilla, P.; Tazzari, M.; Pascucci, I.; Youdin, A. N.; Garufi, A.; Manara, C. F.; Testi, L.; van der Plas, G.; Barenfeld, S. A.; Canovas, H.; Cox, E. G.; Hendler, N. P.; Pérez, L. M.; van der Marel, N.

    2018-05-01

    We analyze the dust morphology of 29 transition disks (TDs) observed with Atacama Large (sub-)Millimeter Array (ALMA) at (sub-)millimeter emission. We perform the analysis in the visibility plane to characterize the total flux, cavity size, and shape of the ring-like structure. First, we found that the M dust–M ⋆ relation is much flatter for TDs than the observed trends from samples of class II sources in different star-forming regions. This relation demonstrates that cavities open in high (dust) mass disks, independent of the stellar mass. The flatness of this relation contradicts the idea that TDs are a more evolved set of disks. Two potential reasons (not mutually exclusive) may explain this flat relation: the emission is optically thick or/and millimeter-sized particles are trapped in a pressure bump. Second, we discuss our results of the cavity size and ring width in the context of different physical processes for cavity formation. Photoevaporation is an unlikely leading mechanism for the origin of the cavity of any of the targets in the sample. Embedded giant planets or dead zones remain as potential explanations. Although both models predict correlations between the cavity size and the ring shape for different stellar and disk properties, we demonstrate that with the current resolution of the observations, it is difficult to obtain these correlations. Future observations with higher angular resolution observations of TDs with ALMA will help discern between different potential origins of cavities in TDs.

  20. SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiajia; Zhou Zhenjun; Wang Yuming; Liu Rui; Liao Chijian; Shen Chenglong; Zheng Huinan; Miao Bin; Su Zhenpeng; Wang, S. [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang Bin, E-mail: ymwang@ustc.edu.cn, E-mail: ymwang@ustc.edu.cn [Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094 (China)

    2012-10-20

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed, compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).

  1. DEEP CHANDRA OBSERVATIONS OF THE CRAB-LIKE PULSAR WIND NEBULA G54.1+0.3 AND SPITZER SPECTROSCOPY OF THE ASSOCIATED INFRARED SHELL

    International Nuclear Information System (INIS)

    Temim, Tea; Slane, Patrick; Raymond, John C.; Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2010-01-01

    G54.1+0.3 is a young pulsar wind nebula (PWN), closely resembling the Crab, for which no thermal shell emission has been detected in X-rays. Recent Spitzer observations revealed an infrared (IR) shell containing a dozen point sources arranged in a ring-like structure, previously proposed to be young stellar objects. An extended knot of emission located in the NW part of the shell appears to be aligned with the pulsar's X-ray jet, suggesting a possible interaction with the shell material. Surprisingly, the IR spectrum of the knot resembles the spectrum of freshly formed dust in Cas A, and is dominated by an unidentified dust emission feature at 21 μm. The spectra of the shell also contain various emission lines and show that some are significantly broadened, suggesting that they originate in rapidly expanding supernova (SN) ejecta. We present the first evidence that the PWN is driving shocks into expanding SN ejecta and we propose an alternative explanation for the origin of the IR emission in which the shell is composed entirely of SN ejecta. In this scenario, the freshly formed SN dust is being heated by early-type stars belonging to a cluster in which the SN exploded. Simple dust models show that this interpretation can give rise to the observed shell emission and the IR point sources.

  2. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  3. Black Hole Paradox Solved By NASA's Chandra

    Science.gov (United States)

    2006-06-01

    Black holes are lighting up the Universe, and now astronomers may finally know how. New data from NASA's Chandra X-ray Observatory show for the first time that powerful magnetic fields are the key to these brilliant and startling light shows. It is estimated that up to a quarter of the total radiation in the Universe emitted since the Big Bang comes from material falling towards supermassive black holes, including those powering quasars, the brightest known objects. For decades, scientists have struggled to understand how black holes, the darkest objects in the Universe, can be responsible for such prodigious amounts of radiation. Animation of a Black Hole Pulling Matter from Companion Star Animation of a Black Hole Pulling Matter from Companion Star New X-ray data from Chandra give the first clear explanation for what drives this process: magnetic fields. Chandra observed a black hole system in our galaxy, known as GRO J1655-40 (J1655, for short), where a black hole was pulling material from a companion star into a disk. "By intergalactic standards J1655 is in our backyard, so we can use it as a scale model to understand how all black holes work, including the monsters found in quasars," said Jon M. Miller of the University of Michigan, Ann Arbor, whose paper on these results appears in this week's issue of Nature. Gravity alone is not enough to cause gas in a disk around a black hole to lose energy and fall onto the black hole at the rates required by observations. The gas must lose some of its orbital angular momentum, either through friction or a wind, before it can spiral inward. Without such effects, matter could remain in orbit around a black hole for a very long time. Illustration of Magnetic Fields in GRO J1655-40 Illustration of Magnetic Fields in GRO J1655-40 Scientists have long thought that magnetic turbulence could generate friction in a gaseous disk and drive a wind from the disk that carries angular momentum outward allowing the gas to fall inward

  4. Stellar Forensics with Striking Image from Chandra

    Science.gov (United States)

    2007-10-01

    A spectacular new image shows how complex a star's afterlife can be. By studying the details of this image made from a long observation by NASA's Chandra X-ray Observatory, astronomers can better understand how some stars die and disperse elements like oxygen into the next generation of stars and planets. At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen. The image shows a rapidly expanding, intricately structured, debris field that contains, along with oxygen, other elements such as neon and silicon that were forged in the star before it exploded. Hard X-ray Image of G292.0+1.8 Hard X-ray Image of G292.0+1.8 "We are finding that, just like snowflakes, each supernova remnant is complicated and beautiful in its own way," said Sangwook Park of Penn State who led the work, released in conjunction with the "8 Years of Chandra" symposium in Huntsville, Ala. The new, deep Chandra image - equaling nearly 6 days worth of observing time - shows an incredibly complex structure. Understanding the details of G292.0+1.8 is especially important because astronomers have considered it to be a "textbook" case of a supernova created by the death of a massive star. Chandra X-ray Image of G292.0+1.8 Chandra X-ray Image of G292.0+1.8 By mapping the distribution of X-rays in different energy bands, the Chandra image traces the distribution of chemical elements ejected in the supernova. The results imply that the explosion was not symmetrical. For example, blue (silicon and sulfur) and green (magnesium) are seen strongly in the upper right, while yellow and orange (oxygen) dominate the lower left. These elements light up at different temperatures, indicating that the temperature is higher in the upper right portion of G292.0+1.8. Slightly below and to the left of the center of G292.0+1.8 is a pulsar, a dense, rapidly rotating neutron star that remained behind after the original star

  5. Chandra Images Provide New Vision of Cosmic Explosions

    Science.gov (United States)

    1999-09-01

    waves from the nebula. This distribution, called non-thermal radiation is characteristic of radiation produced by high-energy electrons in a magnetic field. A previously known pulsar is observed directly in the Chandra image of PSR 0540-69. This pulsar, located in a satellite galaxy to the Milky Way that is 180,000 light years distant, emits pulses of radio, optical, and X radiation at a rate of 50 per sec. These pulses which come from a neutron star rotating at this incredible rate, comprise only a few percent of the total energy output of the neutron star powerhouse. "The Chandra image gives us a much better idea of how this energy source works," said Dr. Stephen Murray, principal investigator for the High Resolution Camera, the X-ray camera used to make PSR 0540-69 image. "You can see X-ray jets blasting out from the pulsar in both directions." The third Chandra supernova image is E0102-72. Located in the Small Magellanic Cloud, another satellite galaxy of the Milky Way, E0102-72 is 190,000 light years from Earth. This object, like G21.5-0.9 and PSR 0540-69, is believed to have resulted from the explosion of a massive star several thousand years ago. Stretching across 40 light years of space, the multi-million degree source resembles a flaming cosmic wheel. "Chandra's gallery of supernova remnants is giving us a lot to think about," said Dr. Fred Seward, of Harvard-Smithsonian, who with his colleagues discovered E0102-72 and PSR 0540-69 with the Einstein Observatory over a decade ago. "We're seeing many things we thought should be there, and many others that we never expected. It's great!" To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra X-ray Observatory for NASA's Office of Space Science, NASA Headquarters, Washington, D.C. The Smithsonian Astrophysical Observatory's Chandra X-ray Center in Cambridge, Mass., manages

  6. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    to precisely measure these X-rays tells how much of each element is present. With this information, astronomers can investigate how the elements necessary for life are created and spread throughout the galaxy by exploding stars. "Chandra will help to confirm one of the most fascinating theories of modern science -- that we came from the stars," said Professor Robert Kirshner of Harvard University. "Its ability to make X-ray images of comparable quality to optical images will have an impact on virtually every area of astronomy." Chandra also imaged a distant and very luminous quasar -- a single star-like object -- sporting a powerful X-ray jet blasting into space. The quasar radiates with the power of 10 trillion suns, energy which scientists believe comes from a supermassive black hole at its center. Chandra's image, combined with radio telescope observations, should provide insight into the process by which supermassive black holes can produce such cosmic jets. "Chandra has allowed NASA to seize the opportunity to put the U.S. back in the lead of observational X-ray astronomy," said Dr. Edward Weiler, Associate Administrator of Space Science, NASA Headquarters, Washington, DC. "History teaches us that whenever you develop a telescope 10 times better than what came before, you will revolutionize astronomy. Chandra is poised to do just that." The Chandra X-ray observatory was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar. NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Press: Fact Sheet The first Chandra images will be posted to the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the

  7. Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2

    Directory of Open Access Journals (Sweden)

    D. E. J. Worthy

    2013-02-01

    Full Text Available With the emergence of wide-spread application of new optical techniques to monitor δ13C in atmospheric CO2 there is a growing need to ensure well-calibrated measurements. We characterized one commonly available instrument, a cavity ring-down spectrometer (CRDS system used for continuous in situ monitoring of atmospheric 13CO2. We found no dependency of δ13C on the CO2 concentration in the range of 303–437 ppm. We designed a calibration scheme according to the diagnosed instrumental drifts and established a quality assurance protocol. We find that the repeatability (1-σ of measurements is 0.25‰ for 10 min and 0.15‰ for 20 min integrated averages, respectively. Due to a spectral overlap, our instrument displays a cross-sensitivity to CH4 of 0.42 ± 0.024‰ ppm−1. Our ongoing target measurements yield standard deviations of δ13C from 0.22‰ to 0.28‰ for 10 min averages. We furthermore estimate the reproducibility of our system for ambient air samples from weekly measurements of a long-term target gas to be 0.18‰. We find only a minuscule offset of 0.002 ± 0.025‰ between the CRDS and Environment Canada's isotope ratio mass spectrometer (IRMS results for four target gases used over the course of one year.

  8. Chandra Adds to Story of the Way We Were

    Science.gov (United States)

    2003-05-01

    Data from NASA's Chandra X-ray Observatory have enabled astronomers to use a new way to determine if a young star is surrounded by a planet-forming disk like our early Sun. These results suggest that disks around young stars can evolve rapidly to form planets, or they can be disrupted by close encounters with other stars. Chandra observed two young star systems, TW Hydrae and HD 98800, both of which are in the TW Hydrae Association, a loose cluster of 10 million-year-old stars. Observations at infrared and other wavelengths have shown that several stars in the TW Hydrae Association are surrounded by disks of dust and gas. At a distance of about 180 light years from Earth, these systems are among the nearest analogs to the early solar nebula from which Earth formed. "X-rays give us an excellent new way to probe the disks around stars," said Joel Kastner of the Rochester Institute of Technology in Rochester, NY during a press conference today in Nashville, Tenn. at a meeting of the American Astronomical Society. "They can tell us whether a disk is very near to its parent star and dumping matter onto it, or whether such activity has ceased to be important. In the latter case, presumably the disk has been assimilated into larger bodies - perhaps planets--or disrupted." TW Hydrae and HD 98800A Chandra 0th Order Image of HD98800 Kastner and his colleagues found examples of each type of behavior in their study. One star, TW Hydrae, namesake of the TW Hydrae Association, exhibited features in its X-ray spectrum that provide strong, new evidence that matter is accreting onto the star from a circumstellar disk. They concluded that matter is guided by the star's magnetic field onto one or more hot spots on the surface of the star. In contrast, Chandra observations of the young multiple star system HD 98800 revealed that its brightest star, HD 98800A, is producing X-rays much as the Sun does, from a hot upper atmosphere or corona. HD 98800 is a complex multiple-star system

  9. Chandra Captures Flare From Brown Dwarf

    Science.gov (United States)

    2000-07-01

    The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars. Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'" Chandra LP 944-20 X-ray Image Press Image and Caption The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team. Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning." LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is

  10. TGCat, The Chandra Transmission Grating Catalog and Archive: Systems, Design and Accessibility

    OpenAIRE

    Mitschang, Arik W.; Huenemoerder, David P.; Nichols, Joy S.

    2009-01-01

    The recently released Chandra Transmission Grating Catalog and Archive, TGCat, presents a fully dynamic on-line catalog allowing users to browse and categorize Chandra gratings observations quickly and easily, generate custom plots of resulting response corrected spectra on-line without the need for special software and to download analysis ready products from multiple observations in one convenient operation. TGCat has been registered as a VO resource with the NVO providing direct access to ...

  11. Chandra X-ray Center Science Data Systems Regression Testing of CIAO

    Science.gov (United States)

    Lee, N. P.; Karovska, M.; Galle, E. C.; Bonaventura, N. R.

    2011-07-01

    The Chandra Interactive Analysis of Observations (CIAO) is a software system developed for the analysis of Chandra X-ray Observatory observations. An important component of a successful CIAO release is the repeated testing of the tools across various platforms to ensure consistent and scientifically valid results. We describe the procedures of the scientific regression testing of CIAO and the enhancements made to the testing system to increase the efficiency of run time and result validation.

  12. The Chandra Source Catalog: Statistical Characterization

    Science.gov (United States)

    Primini, Francis A.; Nowak, M. A.; Houck, J. C.; Davis, J. E.; Glotfelty, K. J.; Karovska, M.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Evans, I. N.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) will ultimately contain more than ˜250000 x-ray sources in a total area of ˜1% of the entire sky, using data from ˜10000 separate ACIS and HRC observations of a multitude of different types of x-ray sources (see Evans et al. this conference). In order to maximize the scientific benefit of such a large, heterogeneous dataset, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Our Characterization efforts include both extensive simulations of blank-sky and point source datasets, and detailed comparisons of CSC results with those of other x-ray and optical catalogs. We present here a summary of our characterization results for CSC Release 1 and preliminary plans for future releases. This work is supported by NASA contract NAS8-03060 (CXC).

  13. Joint XMM-Newton and Chandra observations of the NGC 1407/1400 complex: A tail of an early-type galaxy and a tale of a nearby merging group

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gu, Liyi [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); White III, Raymond E.; Irwin, Jimmy, E-mail: yuanyuas@uci.edu [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States)

    2014-05-10

    The nearby group centered on its bright central galaxy NGC 1407 has been suggested by previous kinematic studies to be an unusually dark system. It is also known for hosting a bright galaxy, NGC 1400, with a large radial velocity (1200 km s{sup –1}) with respect to the group center. Previous ROSAT X-ray observations revealed an extended region of enhanced surface brightness just eastward of NGC 1400. We investigate the NGC 1407/1400 complex with XMM-Newton and Chandra observations. We find that the temperature and metallicity of the enhanced region are different (cooler and more metal rich) than those of the surrounding group gas but are consistent with those of the interstellar medium (ISM) in NGC 1400. The relative velocity of NGC 1400 is large enough that much of its ISM could have been ram pressure stripped while plunging through the group atmosphere. We conclude that the enhanced region is likely to be hot gas stripped from the ISM of NGC 1400. We constrain the motion of NGC 1400 using the pressure jump at its associated stagnation front and the total mass profile of the NGC 1407 group. We conclude that NGC 1400 is moving within ∼30° of the line of sight with Mach number M≲3. We do not detect any obvious shock features in this complex, perhaps because of the high line-of-sight motion of NGC 1400. With an XMM-Newton pointing on the relatively relaxed eastern side of NGC 1407, we derive a hydrostatic mass for this group of ∼1 × 10{sup 13} M {sub ☉} within 100 kpc. The total mass extrapolated to the virial radius (681 kpc) is 3.8 × 10{sup 13} M {sub ☉}, which puts an upper limit of ∼300 M{sub ⊙}/L{sub B{sub ⊙}} on the mass-to-light ratio of this group. This suggests that the NGC 1407 group is not an unusually dark group.

  14. TGCat : THE CHANDRA TRANSMISSION GRATING DATA CATALOG AND ARCHIVE

    International Nuclear Information System (INIS)

    Huenemoerder, David P.; Dewey, Daniel; Nowak, Michael A.; Schulz, Norbert S.; Davis, John E.; Houck, John C.; Marshall, Herman L.; Noble, Michael S.; Canizares, Claude R.; Mitschang, Arik; Nichols, Joy S.; Morgan, Doug

    2011-01-01

    The Chandra Transmission Grating Data Archive and Catalog (TGCat) provides easy access to analysis-ready products, specifically, high-resolution X-ray count spectra and their corresponding calibrations. The web interface makes it easy to find observations of a particular object, type of object, or type of observation; to quickly assess the quality and potential usefulness of the spectra from pre-computed summary plots; or to customize a view with an interactive plotter, optionally combining spectra over multiple orders or observations. Data and responses can be downloaded as a package or as individual files, and the query results themselves can be retrieved as ASCII or Virtual Observatory tables. Portable reprocessing scripts used to create the archive and which use the Chandra X-ray Center's (CXC's) software and other publicly available software are also available, facilitating standard or customized reprocessing from Level 1 CXC archival data to spectra and responses with minimal user interaction.

  15. Observation of the fundamental Nyquist noise limit in an ultra-high Q-factor cryogenic bulk acoustic wave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Ivanov, Eugene N.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Kann, Frank van [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000 Besançon (France)

    2014-10-13

    Thermal Nyquist noise fluctuations of high-Q bulk acoustic wave cavities have been observed at cryogenic temperatures with a DC superconducting quantum interference device amplifier. High Q modes with bandwidths of few tens of milliHz produce thermal fluctuations with a signal-to-noise ratio of up to 23 dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high (Q > 10{sup 8} at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  16. Chandra Survey of Nearby Galaxies: The Catalog

    Energy Technology Data Exchange (ETDEWEB)

    She, Rui; Feng, Hua [Department of Engineering Physics and Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100087 (China)

    2017-02-01

    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 10{sup 37} erg s{sup −1} on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  17. Chandra position of IGR J17454-2919 and discovery of a possible NIR counterpart

    DEFF Research Database (Denmark)

    Paizis, A.; Nowak, M.; Chati, S.

    2015-01-01

    On 2014 November 3, we observed the recently discovered INTEGRAL source IGR J17454-2919 (ATels #6530, #6574 and #6602) with Chandra HETGS for 20ks. The J2000.0 Chandra position we obtain is RA: 17 45 27.689 DEC: -29 19 53.83 (90% uncertainty of 0.6") This position (2.4" away from the Swift positi...

  18. The Chandra Source Catalog: X-ray Aperture Photometry

    Science.gov (United States)

    Kashyap, Vinay; Primini, F. A.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, I. N.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) represents a reanalysis of the entire ACIS and HRC imaging observations over the 9-year Chandra mission. We describe here the method by which fluxes are measured for detected sources. Source detection is carried out on a uniform basis, using the CIAO tool wavdetect. Source fluxes are estimated post-facto using a Bayesian method that accounts for background, spatial resolution effects, and contamination from nearby sources. We use gamma-function prior distributions, which could be either non-informative, or in case there exist previous observations of the same source, strongly informative. The current implementation is however limited to non-informative priors. The resulting posterior probability density functions allow us to report the flux and a robust credible range on it.

  19. Modeling Contamination Migration on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  20. A Full Year's Chandra Exposure on Sloan Digital Sky Survey Quasars from the Chandra Multiwavelength Project

    Science.gov (United States)

    Green, Paul J.; Aldcroft, T. L.; Richards, G. T.; Barkhouse, W. A.; Constantin, A.; Haggard, D.; Karovska, M.; Kim, D.-W.; Kim, M.; Vikhlinin, A.; Anderson, S. F.; Mossman, A.; Kashyap, V.; Myers, A. D.; Silverman, J. D.; Wilkes, B. J.; Tananbaum, H.

    2009-01-01

    We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project. Our highest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.2 3, substantially expanding the known sample. We find no evidence for evolution out to z ~ 5 for either the X-ray photon index Γ or for the ratio of optical/UV to X-ray flux αox. About 10% of detected QSOs show best-fit intrinsic absorbing columns greater than 1022 cm-2, but the fraction might reach ~1/3 if most nondetections are absorbed. We confirm a significant correlation between αox and optical luminosity, but it flattens or disappears for fainter (MB gsim -23) active galactic nucleus (AGN) alone. We report significant hardening of Γ both toward higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in nonthermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and AGN. For uniformly selected subsamples of narrow-line Seyfert 1s and narrow absorption line QSOs, we find no evidence for unusual distributions of either αox or Γ.

  1. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  2. Chandra Discovers Light Echo from the Milky Way's Black Hole

    Science.gov (United States)

    2007-01-01

    Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center. A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra. Variability in Chandra Images of Light Echo Variability in Chandra Images of Light Echo "This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction." Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra. Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past. Illustrations of Light Echo Illustrations of Light Echo Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays. "This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick

  3. Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory

    Science.gov (United States)

    2002-10-01

    New evidence from NASA's Chandra X-ray Observatory challenges an alternative theory of gravity that eliminates the need for dark matter. The observation also narrows the field for competing forms of dark matter, the elusive material thought to be the dominant form of matter in the universe. An observation of the galaxy NGC 720 shows it is enveloped in a slightly flattened, or ellipsoidal cloud of hot gas that has an orientation different from that of the optical image of the galaxy. The flattening is too large to be explained by theories in which stars and gas are assumed to contain most of the mass in the galaxy. "The shape and orientation of the hot gas cloud require it to be confined by an egg-shaped dark matter halo," said David Buote of the University of California, Irvine, and lead author of a report on this research in the 2002 September 20 issue of The Astrophysical Journal. "This means that dark matter is not just an illusion due to a shortcoming of the standard theory of gravity - it is real." According to the generally accepted standard theory of gravity, the hot X-ray cloud would need an additional source of gravity - a halo of dark matter - to keep the hot gas from expanding away. The mass of dark matter required would be about five to ten times the mass of the stars in the galaxy. If the dark matter tracked the optical light from the stars in the galaxy, the hot X-ray cloud would be more round than it is. The flattened shape of the hot gas cloud requires a flattened dark matter halo. An alternative theory of gravity called MOND, for Modified Newtonian Dynamics, was proposed in 1983 by Mordecai Milgrom of the Weizmann Institute in Israel, and has remained viable over the years. MOND does away with the need for dark matter by modifying the theory where the acceleration produced by gravity is very small, such as the outskirts of galaxies. However, MOND cannot explain the Chandra observation of NGC 720. This is apparently the first dynamical evidence that

  4. Invited Review Article: The Chandra X-ray Observatory

    Science.gov (United States)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  5. The Chandra X-ray Observatory data processing system

    Science.gov (United States)

    Evans, Ian; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Janet; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Plummer, David; Zografou, Panagoula

    2006-06-01

    Raw data from the Chandra X-ray Observatory are processed by a set of standard data processing pipelines to create scientifically useful data products appropriate for further analysis by end users. Fully automated pipelines read the dumped raw telemetry byte stream from the spacecraft and perform the common reductions and calibrations necessary to remove spacecraft and instrumental signatures and convert the data into physically meaningful quantities that can be further analyzed by observers. The resulting data products are subject to automated validation to ensure correct pipeline processing and verify that the spacecraft configuration and scheduling matched the observers request and any constraints. In addition, pipeline processing monitors science and engineering data for anomalous indications and trending, and triggers alerts if appropriate. Data products are ingested and stored in the Chandra Data Archive, where they are made available for downloading by users. In this paper, we describe the architecture of the data processing system, including the scientific algorithms that are applied to the data, and interfaces to other subsystems. We place particular emphasis on the impacts of design choices on system integrity and maintainability. We review areas where algorithmic improvements or changes in instrument characteristics have required significant enhancements, and the mechanisms used to effect these changes while assuring continued scientific integrity and robustness. We discuss major enhancements to the data processing system that are currently being developed to automate production of the Chandra Source Catalog.

  6. Modeling Contamination Migration on the Chandra X-ray Observatory - II

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.

    2013-01-01

    During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.

  7. The role of Chandra in ten years from now and for the next few decades of astrophysical research

    Science.gov (United States)

    D'Abrusco, Raffaele; Becker, Glenn E.; McCollough, Michael L.; Rots, Arnold H.; Thong, Sinh A.; Van Stone, David; Winkelman, Sherry

    2018-06-01

    For almost twenty years, Chandra has advanced our understanding of the X-ray Universe by allowing astronomers to peer into a previously unexplored region of the high-energy observational parameters space. Thanks to its longevity,the mission has accumulated a large, unique body of observations whose legacy value, already tangible at this point, will only increase with time, and whose long-lasting influence extends well beyond the energy interval probed by Chandra. The Chandra archive, through the extensive characterization of the links between observations and literature, has measured the impact of Chandra on the astrophysical literature at a high level of granularity, providing striking evidence of how deeply and widely Chandra has impacted the advancement of both high-energy astrophysics and astronomical research from a multi-wavelength perspective. In this talk, based on the missions that have been submitted for recommendation at the next decadal survey and the possible outcomes of the evaluation process, I will discuss how Chandra archival data can be used to anticipate the projected scientific success and long-lasting effects of a X-ray mission like Lynx or, differently, how they will become instrumental to maximize the scientific output of a new generation of facilities that will observe in different energies. I will argue that, in either scenario, the centrality of Chandra will extend well after the final demise of the mission, and its data will continue serving the community in many different ways for the foreseeable future.

  8. The End of Days -- Chandra Catches X-ray Glow From Supernova

    Science.gov (United States)

    1999-12-01

    Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the

  9. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    Science.gov (United States)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  10. The Chandra Source Catalog 2.0: Calibrations

    Science.gov (United States)

    Graessle, Dale E.; Evans, Ian N.; Rots, Arnold H.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    Among the many enhancements implemented for the release of Chandra Source Catalog (CSC) 2.0 are improvements in the processing calibration database (CalDB). We have included a thorough overhaul of the CalDB software used in the processing. The software system upgrade, called "CalDB version 4," allows for a more rational and consistent specification of flight configurations and calibration boundary conditions. Numerous improvements in the specific calibrations applied have also been added. Chandra's radiometric and detector response calibrations vary considerably with time, detector operating temperature, and position on the detector. The CalDB has been enhanced to provide the best calibrations possible to each observation over the fifteen-year period included in CSC 2.0. Calibration updates include an improved ACIS contamination model, as well as updated time-varying gain (i.e., photon energy) and quantum efficiency maps for ACIS and HRC-I. Additionally, improved corrections for the ACIS quantum efficiency losses due to CCD charge transfer inefficiency (CTI) have been added for each of the ten ACIS detectors. These CTI corrections are now time and temperature-dependent, allowing ACIS to maintain a 0.3% energy calibration accuracy over the 0.5-7.0 keV range for any ACIS source in the catalog. Radiometric calibration (effective area) accuracy is estimated at ~4% over that range. We include a few examples where improvements in the Chandra CalDB allow for improved data reduction and modeling for the new CSC.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  11. The Chandra Source Catalog: Source Variability

    Science.gov (United States)

    Nowak, Michael; Rots, A. H.; McCollough, M. L.; Primini, F. A.; Glotfelty, K. J.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Evans, I.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) contains fields of view that have been studied with individual, uninterrupted observations that span integration times ranging from 1 ksec to 160 ksec, and a large number of which have received (multiple) repeat observations days to years later. The CSC thus offers an unprecedented look at the variability of the X-ray sky over a broad range of time scales, and across a wide diversity of variable X-ray sources: stars in the local galactic neighborhood, galactic and extragalactic X-ray binaries, Active Galactic Nuclei, etc. Here we describe the methods used to identify and quantify source variability within a single observation, and the methods used to assess the variability of a source when detected in multiple, individual observations. Three tests are used to detect source variability within a single observation: the Kolmogorov-Smirnov test and its variant, the Kuiper test, and a Bayesian approach originally suggested by Gregory and Loredo. The latter test not only provides an indicator of variability, but is also used to create a best estimate of the variable lightcurve shape. We assess the performance of these tests via simulation of statistically stationary, variable processes with arbitrary input power spectral densities (here we concentrate on results of red noise simulations) at variety of mean count rates and fractional root mean square variabilities relevant to CSC sources. We also assess the false positive rate via simulations of constant sources whose sole source of fluctuation is Poisson noise. We compare these simulations to an assessment of the variability found in real CSC sources, and estimate the variability sensitivities of the CSC.

  12. The Chandra Source Catalog : Google Earth Interface

    Science.gov (United States)

    Glotfelty, Kenny; McLaughlin, W.; Evans, I.; Evans, J.; Anderson, C. S.; Bonaventura, N. R.; Davis, J. E.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, H.; Houck, J. C.; Karovska, M.; Kashyap, V. L.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Mossman, A. E.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Rots, A. R.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) contains multi-resolution, exposure corrected, background subtracted, full-field images that are stored as individual FITS files and as three-color JPEG files. In this poster we discuss how we took these data and were able to, with relatively minimal effort, convert them for use with the Google Earth application in its ``Sky'' mode. We will highlight some of the challenges which include converting the data to the required Mercator projection, reworking the 3-color algorithm for pipeline processing, and ways to reduce the data volume through re-binning, using color-maps, and special Keyhole Markup Language (kml) tags to only load images on-demand. The result is a collection of some 11,000 3-color images that are available for all the individual observation in the CSC Release 1. We also have made available all ˜4000 Field-of-View outlines (with per-chip regions), which turns out are trivial to produce starting with a simple dmlist command. In the first week of release, approximately 40% of the images have been accessed at least once through some 50,000 individual web hits which have served over 4Gb of data to roughly 750 users in 60+ countries. We will also highlight some future directions we are exploring, including real-time catalog access to individual source properties and eventual access to file based products such as FITS images, spectra, and light-curves.

  13. NASA's Chandra Reveals Origin of Key Cosmic Explosions

    Science.gov (United States)

    2010-02-01

    brightness. Because these two scenarios would generate different amounts of X-ray emission, Gilfanov and Bogdan used Chandra to observe five nearby elliptical galaxies and the central region of the Andromeda galaxy. A Type 1a supernova caused by accreting material produces significant X- ray emission prior to the explosion. A supernova from a merger of two white dwarfs, on the other hand, would create significantly less X-ray emission than the accretion scenario. The scientists found the observed X-ray emission was a factor of 30 to 50 times smaller than expected from the accretion scenario, effectively ruling it out. This implies that white dwarf mergers dominate in these galaxies. An open question remains whether these white dwarf mergers are the primary catalyst for Type Ia supernovae in spiral galaxies. Further studies are required to know if supernovae in spiral galaxies are caused by mergers or a mixture of the two processes. Another intriguing consequence of this result is that a pair of white dwarfs is relatively hard to spot, even with the best telescopes. "To many astrophysicists, the merger scenario seemed to be less likely because too few double-white-dwarf systems appeared to exist," said Gilfanov. "Now this path to supernovae will have to be investigated in more detail." In addition to the X-rays observed with Chandra, other data critical for this result came from NASA's Spitzer Space Telescope and the ground-based, infrared Two Micron All Sky Survey. The infrared brightness of the galaxies allowed the team to estimate how many supernovae should occur. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  14. The Chandra Source Catalog 2.0: Spectral Properties

    Science.gov (United States)

    McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team

    2018-01-01

    The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  15. A High-definition View Of The Circum-nuclear Regions In Nearby Seyferts With Chandra And HST

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-09-01

    To improve our understanding of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS), which aims to examine feedback in action in much greater detail than at high redshift. Findings from Chandra studies of the circum-nuclear region in the archetypal Seyfert 1 galaxy NGC 4151 will be discussed in detail. Exploiting Chandra's highest possible resolution, we find evidence for X-ray emission from interaction between radio outflow and the optical narrow-line region clouds, in addition to the emission from photoionized gas.

  16. The Chandra Source Catalog: Storage and Interfaces

    Science.gov (United States)

    van Stone, David; Harbo, Peter N.; Tibbetts, Michael S.; Zografou, Panagoula; Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Winkelman, Sherry L.

    2009-09-01

    The Chandra Source Catalog (CSC) is part of the Chandra Data Archive (CDA) at the Chandra X-ray Center. The catalog contains source properties and associated data objects such as images, spectra, and lightcurves. The source properties are stored in relational databases and the data objects are stored in files with their metadata stored in databases. The CDA supports different versions of the catalog: multiple fixed release versions and a live database version. There are several interfaces to the catalog: CSCview, a graphical interface for building and submitting queries and for retrieving data objects; a command-line interface for property and source searches using ADQL; and VO-compliant services discoverable though the VO registry. This poster describes the structure of the catalog and provides an overview of the interfaces.

  17. The Chandra Source Catalog 2.0: Interfaces

    Science.gov (United States)

    D'Abrusco, Raffaele; Zografou, Panagoula; Tibbetts, Michael; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Van Stone, David W.

    2018-01-01

    Easy-to-use, powerful public interfaces to access the wealth of information contained in any modern, complex astronomical catalog are fundamental to encourage its usage. In this poster,I present the public interfaces of the second Chandra Source Catalog (CSC2). CSC2 is the most comprehensive catalog of X-ray sources detected by Chandra, thanks to the inclusion of Chandra observations public through the end of 2014 and to methodological advancements. CSC2 provides measured properties for a large number of sources that sample the X-ray sky at fainter levels than the previous versions of the CSC, thanks to the stacking of single overlapping observations within 1’ before source detection. Sources from stacks are then crossmatched, if multiple stacks cover the same area of the sky, to create a list of unique, optimal CSC2 sources. The properties of sources detected in each single stack and each single observation are also measured. The layered structure of the CSC2 catalog is mirrored in the organization of the CSC2 database, consisting of three tables containing all properties for the unique stacked sources (“Master Source”), single stack sources (“Stack Source”) and sources in any single observation (“Observation Source”). These tables contain estimates of the position, flags, extent, significances, fluxes, spectral properties and variability (and associated errors) for all classes of sources. The CSC2 also includes source region and full-field data products for all master sources, stack sources and observation sources: images, photon event lists, light curves and spectra.CSCview, the main interface to the CSC2 source properties and data products, is a GUI tool that allows to build queries based on the values of all properties contained in CSC2 tables, query the catalog, inspect the returned table of source properties, browse and download the associated data products. I will also introduce the suite of command-line interfaces to CSC2 that can be used in

  18. Dental cavities

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...

  19. Harish-Chandra Research Institute, Allahabad

    Indian Academy of Sciences (India)

    The Harish-Chandra Research Institute (known as the Mehta Research Institute of Math- ematics and Mathematical Physics until October 2000) came into existence in 1975, with a donation of some land and Rs. 40 lakhs from the B S Mehta Trust in Calcutta. With the aim of converting it into a top-class research Institute in ...

  20. The Chandra Source Catalog 2.0: Estimating Source Fluxes

    Science.gov (United States)

    Primini, Francis Anthony; Allen, Christopher E.; Miller, Joseph; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The Second Chandra Source Catalog (CSC2.0) will provide information on approximately 316,000 point or compact extended x-ray sources, derived from over 10,000 ACIS and HRC-I imaging observations available in the public archive at the end of 2014. As in the previous catalog release (CSC1.1), fluxes for these sources will be determined separately from source detection, using a Bayesian formalism that accounts for background, spatial resolution effects, and contamination from nearby sources. However, the CSC2.0 procedure differs from that used in CSC1.1 in three important aspects. First, for sources in crowded regions in which photometric apertures overlap, fluxes are determined jointly, using an extension of the CSC1.1 algorithm, as discussed in Primini & Kashyap (2014ApJ...796…24P). Second, an MCMC procedure is used to estimate marginalized posterior probability distributions for source fluxes. Finally, for sources observed in multiple observations, a Bayesian Blocks algorithm (Scargle, et al. 2013ApJ...764..167S) is used to group observations into blocks of constant source flux.In this poster we present details of the CSC2.0 photometry algorithms and illustrate their performance in actual CSC2.0 datasets.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  1. Chandra Sees Shape of Universe During Formative, Adolescent Years

    Science.gov (United States)

    2003-03-01

    Scientists using NASA's Chandra X-ray Observatory have taken a snapshot of the adolescent universe from about five billion years ago when the familiar web-like structure of galaxy chains and voids first emerged. The observation reveals distant and massive galaxies dotting the sky, clustered together under the gravitational attraction of deep, unseen pockets of dark matter. This provides important clues of how the universe matured from its chaotic beginnings to its elegant structure we see today. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. "Piece by piece, we are assembling a photo album of the universe through the ages," said Yuxuan Yang, a doctorate candidate at the University of Maryland, College Park, who conducted the analysis. "Last month we saw a picture of the infant universe taken with the Wilkinson Microwave Anisotropy Probe. Now we can add a snapshot of its adolescence." The Chandra observation traced a patch of sky known as the Lockman Hole in the constellation Ursa Major (containing the Big Dipper). Chandra saw a rich density of active galaxies, seven times denser than what has been detected in previous optical and radio surveys at similar distances. This provides the clearest picture yet at the large-scale structure of the universe at such distances (and age), according to Dr. Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who led the observation. Lockman Hole JPEG, TIFF, PS An image that has been "blurred" to allow better view of the structures outlined by the X-ray sources. The color represents the spectra of the AGN. The red color indicates the sources on average radiates at longer wavelength while green and blue colors indicates the sources radiates at shorter wavelength. The Green and blue regions appear to form a wall, or shows more lumpiness than the "red" sources. If one could capture the

  2. Distant Galaxies, Black Holes and Other Celestial Phenomena: NASA's Chandra X-ray Observatory Marks Four Years of Discovery Firsts

    Science.gov (United States)

    2003-09-01

    . Building on previous achievements, including catching a supermassive black hole devouring material in our own Milky Way galaxy, Chandra accomplished even more during its fourth year. The observatory revealed new details about X-ray jets produced by black holes and discovered two black holes flourishing in a single galaxy 400 million light years from Earth. By tracking, for the first time, the life cycle of large-scale X-ray jets produced by a black hole, Chandra revealed that as the jets evolved, the material in them traveled near the speed of light for several years before slowing and fading. These jets - from a stellar-sized black hole about 10 or so times the mass of the Sun - were the first ones caught in the act of slowing down. This enabled astronomers, in just four years, to observe a process that could take a million years to unfold. By revealing two active black holes in the nucleus of the extraordinarily bright galaxy NGC 6240, another Chandra image proved for the first time that two supermassive black holes can co-exist in the same galaxy. Currently orbiting each other, in several hundred million years these black holes will merge to create an even larger black hole, resulting in a catastrophic event that will unleash intense radiation and gravitational waves. Also in Chandra's fourth year, the observatory offered new insights into pulsars - small and extremely dense stars. Generated by a series of Chandra observations, an X-ray movie of the Vela pulsar. revealed a spectacularly erratic jet that varied in a way never before seen. Whipping about like an untended firehose at about half the speed of light, the jet of high-energy particles offered new insight into the nature of jets from pulsars and black holes. Previous Chandra highlights include revealing the most distant X-ray cluster of galaxies, identifying a pulsating hot spot of X-rays in Jupiter's upper atmosphere, uncovering a ''cool'' black hole at the heart of the Andromeda Galaxy, and finding an X

  3. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    Science.gov (United States)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  4. Cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas

    2006-01-01

    This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given

  5. Chandra Captures Venus In A Whole New Light

    Science.gov (United States)

    2001-11-01

    Scientists have captured the first X-ray view of Venus using NASA's Chandra X-ray Observatory. The observations provide new information about the atmosphere of Venus and open a new window for examining Earth's sister planet. Venus in X-rays looks similar to Venus in visible light, but there are important differences. The optically visible Venus is due to the reflection of sunlight and, for the relative positions of Venus, Earth and Sun during these observations, shows a uniform half-crescent that is brightest toward the middle. The X-ray Venus is slightly less than a half-crescent and brighter on the limbs. The differences are due to the processes by which Venus shines in visible and X-ray light. The X-rays from Venus are produced by fluorescence, rather than reflection. Solar X-rays bombard the atmosphere of Venus, knock electrons out of the inner parts of the atoms, and excite the atoms to a higher energy level. The atoms almost immediately return to their lower energy state with the emission of a fluorescent X-ray. A similar process involving ultraviolet light produces the visible light from fluorescent lamps. For Venus, most of the fluorescent X-rays come from oxygen and carbon atoms between 120 and 140 kilometers (74 to 87 miles) above the planet's surface. In contrast, the optical light is reflected from clouds at a height of 50 to 70 kilometers (31 to 43 miles). As a result, Venus' Sun-lit hemisphere appears surrounded by an almost-transparent luminous shell in X-rays. Venus looks brightest at the limb since more luminous material is there. Venus X-ray/Optical Composite of Venus Credit: Xray: NASA/CXC/MPE/K.Dennerl et al., Optical: Konrad Dennerl "This opens up the exciting possibility of using X-ray observations to study regions of the atmosphere of Venus that are difficult to investigate by other means," said Konrad Dennerl of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, leader of an international team of scientists that

  6. Modeling Contamination Migration on the Chandra X-Ray Observatory - III

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.

    2015-01-01

    During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations

  7. M31 in the Chandra Era: A High Definition Movie of a Nearby Galaxy

    Science.gov (United States)

    Kong, Albert; di Stefano, Rosanne

    2009-09-01

    M31 has been a prime targets for all X-ray missions since the first detection in 1974. With its superb spatial resolution, Chandra is unique in resolving dense source regions and detecting faint sources. Since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec. The X-ray skies of M31 not only consist of many transients and variables, globular cluster X-ray sources in M31 are also different from our Milky Way. They are in general more luminous and one of them may even host an intermediate-mass black hole. Supersoft and quasi-soft X-ray sources in M31 are the best kept secret to unlock the nature of the progenitor of Type Ia supernova. In this talk, I will review some of the important Chandra discoveries in M31 in the past 10 years.

  8. APC implementation in Chandra Asri - ethylene plant

    Science.gov (United States)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  9. In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids

    Science.gov (United States)

    Yasui, Minami; Arakawa, Masahiko; Hasegawa, Sunao; Fujita, Yukihiro; Kadono, Toshihiko

    2012-11-01

    Recent studies of impact craters formed on low-density asteroids led to the proposal of a new crater formation mechanism dominated by pore collapse and compaction. Thus, it is important to study the crater formation process associated with the projectile penetration on porous cohesive targets. Laboratory impact experiments were conducted for a porous gypsum target with porosity of 50%, and flash X-rays were used to visualize the interior of the target for in situ observation of crater formation and projectile penetration. Spherical projectiles made of three different materials, stainless steel, aluminum, and nylon were impacted at 1.9-2.4 km/s (low-velocity impact) and 5.6-6.4 km/s (high-velocity impact) by using a two-stage light-gas gun. Two imaging plates were used to take two X-ray images at a different delay time from the impact moment for one shot. Two types of crater cavity shape were found on the porous gypsum target, that is, penetration holes or hemispherical cavities, depending on the projectile size and density, and the impact velocity. The drag coefficient of a projectile was determined by measuring the penetration depth changing with time, and we found that it was closely related to the crater cavity shape: it was about 0.9 for a penetration hole, while it was 2.3-3.9 for a hemispherical cavity. This large value for a hemispherical cavity could have been caused by the deformation or the disruption of the projectile. The cratering efficiency, ρtVcr(t)/mp, was found to have a power law relationship to the scaling time for crater growth, πt = vit/rp, where vi is the impact velocity, rp is the projectile radius, and t is the time after the impact, and all data for stainless steel and aluminum projectiles merged completely and could be fitted by a power-law equation of ρtVcr(t)/mp=2.69×10-1πt1.10. Furthermore, the scaled crater volume, πV = Vcr_finalρt/mp, where Vcr_final is the final crater cavity volume, ρt is the target density, and mp is the

  10. The Chandra X-ray Observatory PSF Library

    Science.gov (United States)

    Karovska, M.; Beikman, S. J.; Elvis, M. S.; Flanagan, J. M.; Gaetz, T.; Glotfelty, K. J.; Jerius, D.; McDowell, J. C.; Rots, A. H.

    Pre-flight and on-orbit calibration of the Chandra X-Ray Observatory provided a unique base for developing detailed models of the optics and detectors. Using these models we have produced a set of simulations of the Chandra point spread function (PSF) which is available to the users via PSF library files. We describe here how the PSF models are generated and the design and content of the Chandra PSF library files.

  11. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  12. A 100-m Fabry–Pérot Cavity with Automatic Alignment Controls for Long-Term Observations of Earth’s Strain

    Directory of Open Access Journals (Sweden)

    Akiteru Takamori

    2014-08-01

    Full Text Available We have developed and built a highly accurate laser strainmeter for geophysical observations. It features the precise length measurement of a 100-m optical cavity with reference to a stable quantum standard. Unlike conventional laser strainmeters based on simple Michelson interferometers that require uninterrupted fringe counting to track the evolution of ground deformations, this instrument is able to determine the absolute length of a cavity at any given time. The instrument offers advantage in covering a variety of geophysical events, ranging from instantaneous earthquakes to crustal deformations associated with tectonic strain changes that persist over time. An automatic alignment control and an autonomous relocking system have been developed to realize stable performance and maximize observation times. It was installed in a deep underground site at the Kamioka mine in Japan, and an effective resolution of 2 × (10−8 − 10−7 m was achieved. The regular tidal deformations and co-seismic strain changes were in good agreement with those from a theoretical model and a co-located conventional laser strainmeter. Only the new instrument was able to record large strain steps caused by a nearby large earthquake because of its capability of absolute length determination.

  13. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  14. Observation of earthquake in the neighborhood of a large underground cavity. The Izu-Hanto-Toho-Oki earthquake, June 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Komada, H; Hayashi, M [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Civil Engineering Lab.

    1980-12-01

    Studies on the earthquake resistance design of underground site for such large important structures as nuclear power plants, high-level radioactive waste repositories, LNG tanks, petroleum tanks, big power transmission installations and compressed air energy storage installations have been examined at our research institute. The observations of earthquake have been examined at Shiroyama underground hydroelectric power station since July 1976 as one of the demonstration of the earthquake resistance, and the first report was already published. After the time accelerometers and dynamic strain meters were additionally installed. Good acceleration waves and dynamic strain waves of the Izu-Hanto-Toho-Oki Earthquake, June 29, 1980 were observed at Shiroyama site, at which the hypocentral distance is 77 km and the intensity scale is about 4. In this report, the characteristic of the oscillation wave in the neighborhood of underground cavity and the relationships among accelerations, velocities, deformations and dynamic strains are studied in detail on the above earthquake data.

  15. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  16. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  17. The Cosmic History of Black Hole Accretion from Chandra X-ray Stacking

    Science.gov (United States)

    Treister, Ezequiel; Urry, C.; Schawinski, K.; Lee, N.; Natarajan, P.; Volonteri, M.; Sanders, D. B.

    2012-05-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are black holes growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. We take advantage of the rich multi-wavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Msec Chandra observations (the deepest X-ray data to date), in order to measure the amount of black hole accretion as a function of cosmic history, from z 0 to z 6. We obtain stacked rest-frame X-ray spectra for samples of galaxies binned in terms of their IR luminosity, stellar mass and other galaxy properties. We find that the AGN fraction and their typical luminosities, and thus black hole accretion rates, increase with IR luminosity and stellar mass. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We find evidence for a strong connection between significant black hole growth events and major galaxy mergers from z 0 to z 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. E.T. and K.S. gratefully acknowledges the support provided by NASA through Chandra Postdoctoral Fellowship Award Numbers PF8-90055 and PF9-00069, respectively issued by the Chandra X-ray Observatory Center. E.T. also thanks support by NASA through Chandra Award SP1-12005X Center of Excellence in Astrophysics and Associated Technologies (PFB 06). C. M. Urry acknowledges support from NSF Grants AST-0407295, AST-0449678, AST-0807570, and Yale University.

  18. Macdonald difference operators and Harish-Chandra series

    NARCIS (Netherlands)

    Letzter, G.; Stokman, J.V.

    2008-01-01

    We analyse the centralizer of the Macdonald difference operator in an appropriate algebra of Weyl group invariant difference operators. We show that it coincides with Cherednik's commuting algebra of difference operators via an analog of the Harish-Chandra isomorphism. Analogs of Harish-Chandra

  19. CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS

    International Nuclear Information System (INIS)

    Vikhlinin, A.; Forman, W. R.; Jones, C.; Murray, S. S.; Kravtsov, A. V.; Burenin, R. A.; Voevodkin, A.; Ebeling, H.; Hornstrup, A.; Nagai, D.; Quintana, H.

    2009-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with (z) = 0.55 derived from 400 deg 2 ROSAT serendipitous survey and 49 brightest z ∼ 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Ω Λ > 0 with a ∼5σ significance, and constrains the dark energy equation-of-state parameter to w 0 = -1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = -0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos Σm ν M h and σ 8 from the low-redshift cluster mass function.

  20. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    International Nuclear Information System (INIS)

    Marchesi, S.; Civano, F.; Urry, C. M.; Elvis, M.; Salvato, M.; Brusa, M.; Lanzuisi, G.; Vignali, C.; Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N.; Hasinger, G.; Miyaji, T.; Treister, E.; Allevato, V.; Finoguenov, A.; Cardamone, C.; Griffiths, R. E.; Karim, A.

    2016-01-01

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg 2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction

  1. Chandra X-ray Data Analysis in Educational Environments

    Science.gov (United States)

    Matilsky, T.; Etkina, E.; Lestition, K.; Mandel, E.; Joye, W.

    2004-12-01

    Recent progress in both software and remote connectivity capabilities have made it possible for authentic data analysis tasks to be presented in a wide range of educational venues. No longer are precollege teachers and students, and interested members of the public limited by their lack of access to the scientific workstations and UNIX-based imaging and analytical software used by the research community. Through a suite of programs that couples a simplified graphical user interface using the "DS9" imaging software with a "virtual observatory" capability that processes the analytical algorithms used by X-ray astronomers, we can access archived Chandra observations and generate images, as well as light curves, energy spectra, power spectra and other common examples of science tasks. The system connects to a remote UNIX server, but the user may be sited on a PC or Mac platform. Furthermore, the use of VNC (a remote desktop display environment) allows a teacher to view, comment on and debug any analysis task in real time, from anywhere in the world, and across any computer platform. This makes these programs especially useful in distance learning settings. We have developed, tested and used these capabilities in a wide variety of educational arenas, from 4 week intensive courses in X-ray astronomy research techniques for precollege students and teachers, to one day teacher enrichment workshops, to modules of classroom activities suitable for precollege grade levels, using a variety of cosmic X-ray sources. Examples using archived Chandra observations will be presented demonstrating the flexibility and usefulness of these resources.

  2. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Brusa, M.; Lanzuisi, G.; Vignali, C. [Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Allevato, V.; Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Cardamone, C. [Department of Science, Wheelock College, Boston, MA 02215 (United States); Griffiths, R. E. [Physics and Astronomy Dept., Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Karim, A. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2016-01-20

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.

  3. Chandra Looks Over a Cosmic Four-Leaf Clover

    Science.gov (United States)

    2004-07-01

    A careful analysis of observations by NASA's Chandra X-ray Observatory of a rare quadruple quasar has uncovered evidence that possibly a single star in a foreground galaxy magnified X-rays coming from the quasar. This discovery gives astronomers a new and extremely precise probe of the gas flow around the supermassive black hole that powers the quasar. "If our interpretation is correct, then we are seeing details around this black hole that are 50,000 times smaller than either the Hubble Space Telescope or Chandra could see under ordinary circumstances," said George Chartas of Penn State University in University Park, and lead author of a recent article on the Cloverleaf quasar in The Astrophysical Journal. The Cloverleaf quasar is a single object about 11 billion light years from Earth that appears as four images produced by a process known as gravitational lensing. If one or more galaxies lie along the line of sight to a more distant quasar, the gravitational field of the intervening galaxies can bend and magnify the light from the quasar and produce multiple images of it. The four images of the Cloverleaf quasar have been produced by one or more intervening galaxies. Cloverleaf Quasar Chandra X-ray Image of the Cloverleaf quasar One of the images (A), in the Cloverleaf is brighter than the others in both optical and X-ray light. Chartas and his colleagues found the relative brightness of this image was greater in X-ray than in optical light. The X-rays from iron atoms were also enhanced relative to X-rays at lower energies. Since the amount of brightening due to gravitational lensing does not vary with the wavelength, this means that an additional object has magnified the X-rays. The increased magnification of the X-ray light can be explained by gravitational microlensing, an effect which has been used to search for compact stars and planets in our galaxy. Microlensing occurs when a star or a multiple star system passes in front of light from a background object

  4. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  5. Chandra resolves the T Tauri binary system RW Aur

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2014-06-20

    RW Aur is a multiple T Tauri system consisting of an early-K type primary (A) and a K5 companion (B) at a separation of 1.''4. RW Aur A drives a bipolar optical jet that is well characterized optically. We present results of a sensitive Chandra observation whose primary objective was to search for evidence of soft extended X-ray emission along the jet, as has been seen for a few other nearby T Tauri stars. The binary is clearly resolved by Chandra and both stars are detected as X-ray sources. The X-ray spectra of both stars reveal evidence for cool and hot plasma. Surprisingly, the X-ray luminosity of the less-massive secondary is at least twice that of the primary and is variable. The disparity is attributed to the primary whose X-ray luminosity is at the low end of the range for classical T Tauri stars of similar mass based on established correlations. Deconvolved soft-band images show evidence for slight outward elongation of the source structure of RW Aur A along the blueshifted jet axis inside the central arcsecond. In addition, a faint X-ray emission peak is present on the redshifted axis at an offset of 1.''2 ± 0.''2 from the star. Deprojected jet speeds determined from previous optical studies are too low to explain this faint emission peak as shock-heated jet plasma. Thus, unless flow speeds in the redshifted jet have been underestimated, other mechanisms such as magnetic jet heating may be involved.

  6. Chandra and RXTE studies of the X-ray/gamma-ray millisecond pulsar PSR J0218+4232

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Stappers, B.W.

    2004-01-01

    We report on high-resolution spatial and timing observations of the millisecond pulsar PSR J0218+4232 performed with the Chandra X-ray Observatory (CXO) and the Rossi X-ray Timing Explorer (RXTE). With these observations we were able to study: (a) the possible spatial extent at X-ray energies of the

  7. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser

    OpenAIRE

    Vahala, Kerry; Paslaski, Joel; Yariv, Amnon

    1985-01-01

    Simultaneous direct modulation response enhancement, phase noise (linewidth) reduction, and frequency modulation suppression are produced in a coupled-cavity semiconductor laser by the detuned loading mechanism.

  8. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  9. Middle Tier Services Accessing the Chandra X-Ray Center Data Archive

    Science.gov (United States)

    Patz, A.; Harbo, P.; Moran, J.; van Stone, D.; Zografou, P.

    The Chandra Data Archive team at the Chandra X-ray Center has developed middle tier services that are used by both our search and retrieval applications to uniformly access our data repository. Accessible through an HTTP URL interface, these services can be called by our J2EE web application (WebChaser) and our Java Swing application (Chaser), as well as any other HTTP client. Programs can call the services to retrieve observation data such as a single FITS file, a proposal abstract or a detailed report of observation parameters. Having a central interface to the archive, shared by client applications, facilitates code reusability and easier maintenance. These middle tier services have been written in Java and packaged into a single J2EE application called the Search and Retrieval (SR) Services. The package consists of a web application front-end and an Enterprise Java Beans back-end. This paper describes the design and use of the SR Services.

  10. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  11. Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk Around PDS 70: Observations of the Disk

    Science.gov (United States)

    Hashimoto, J.; Dong, R.; Kudo, T.; Honda, M.; McClure, M. K.; Zhu, Z.; Muto, T.; Wisniewski, J.; Abe, L.; Brandner, W.; hide

    2012-01-01

    We present high-resolution H-band polarized intensity (FWHM=0".1:14AU) and L'-band imaging data(FWHM= 0".11:15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0".2) up to 210 AU (1".5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is approx.70 AU. Our data show that the geometric center of the disk shifts by approx.6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of spectral energy distribution fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit of approx.30 to approx.50 M(sub J) on the mass of companions within the gap. Taking into account the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap. Key words: planetary systems - polarization - protoplanetary disks - stars: individual (PDS 70) - stars: pre-main sequence.

  12. Chandra Discovers X-ray Source at the Center of Our Galaxy

    Science.gov (United States)

    2000-01-01

    Culminating 25 years of searching by astronomers, researchers at Massachusetts Institute of Technology say that a faint X-ray source, newly detected by NASA's Chandra X-ray Observatory, may be the long-sought X-ray emission from a known supermassive black hole at the center of our galaxy. Frederick K. Baganoff and colleagues from Pennsylvania State University, University Park, and the University of California, Los Angeles, will present their findings today in Atlanta at the 195th national meeting of the American Astronomical Society. Baganoff, lead scientist for the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer (ACIS) team's "Sagittarius A* and the Galactic Center" project and postdoctoral research associate at MIT, said that the precise positional coincidence between the new X-ray source and the radio position of a long-known source called Sagittarius A* "encourages us to believe that the two are the same." Sagittarius A* is a point-like, variable radio source at the center of our galaxy. It looks like a faint quasar and is believed to be powered by gaseous matter falling into a supermassive black hole with 2.6 million times the mass of our Sun. Chandra's remarkable detection of this X-ray source has placed astronomers within a couple of years of a coveted prize: measuring the spectrum of energy produced by Sagittarius A* to determine in detail how the supermassive black hole that powers it works. "The race to be the first to detect X-rays from Sagittarius A* is one of the hottest and longest-running in all of X-ray astronomy," Baganoff said. "Theorists are eager to hear the results of our observation so they can test their ideas." But now that an X-ray source close to Sagittarius A* has been found, it has taken researchers by surprise by being much fainter than expected. "There must be something unusual about the environment around this black hole that affects how it is fed and how the gravitational energy released from the infalling matter is

  13. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  14. Acharya Prafulla Chandra at the College of Science

    Indian Academy of Sciences (India)

    and by his remarkable book, 'History of Hindu Chemistry'. His activities progressed ... chemistry journals in England, Germany and America. Prafulla. Chandra ... Presidency College in 1889, he wrote an illustrated zoology primer for children.

  15. Initial Performance of the Aspect System on the Chandra Observatory: Post-Facto Aspect Reconstruction

    Science.gov (United States)

    Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.

    2000-01-01

    The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.

  16. A medium-deep Chandra and Subaru survey of the 13-h XMM/ROSAT deep survey area

    Science.gov (United States)

    McHardy, I. M.; Gunn, K. F.; Newsam, A. M.; Mason, K. O.; Page, M. J.; Takata, T.; Sekiguchi, K.; Sasseen, T.; Cordova, F.; Jones, L. R.; Loaring, N.

    2003-07-01

    We present the results of a Chandra ACIS-I survey of a high-latitude region at 13 h +38° which was earlier observed with ROSAT and which has recently been observed by XMM-Newton for 200 ks. XMM-Newton will provide good-quality X-ray spectra for over 200 sources with fluxes around the knee of the log N/ log S, which are responsible for the bulk of the X-ray background. The main aim of the Chandra observations is to provide arcsecond, or better, positions, and hence reliable identifications, for the XMM-Newton sources. The ACIS-I observations were arranged in a mosaic of four 30-ks pointings, covering almost all of the 15-arcmin radius XMM-Newton/ROSAT field. We detect 214 Chandra sources above a Cash likelihood statistic of 25, which approximates to 5σ significance, to a limiting flux of ~1.3 × 10-15 erg cm-2 s-1 (0.5-7 keV). Optical counterparts are derived from a Subaru SuprimeCam image reaching to R~ 27. The very large majority of the Chandra sources have an optical counterpart, with the distribution peaking at 23 high LX/Lopt ratios, implying absorption at moderate redshift. Comparison with the earlier ROSAT survey shows that the accuracy of the ROSAT positions agrees very well with the predictions from simulations by McHardy et al. and that the large majority of the identifications were correct.

  17. Nustar and Chandra insight into the nature of the 3-40 kev nuclear emission in NGC 253

    DEFF Research Database (Denmark)

    Lehmer, B. D.; Wik, D. R.; Hornschemeier, A. E.

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array ( NuSTAR ) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 keV intensity of the inner ~ 20 arcsec ( ~ 400 pc) nuclear region...

  18. Jet Power and Black Hole Assortment Revealed in New Chandra Image

    Science.gov (United States)

    2008-01-01

    A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle

  19. CHANDRA HIGH-ENERGY TRANSMISSION GRATING SPECTRUM OF AE AQUARII

    International Nuclear Information System (INIS)

    Mauche, Christopher W.

    2009-01-01

    The nova-like cataclysmic binary AE Aqr, which is currently understood to be a former supersoft X-ray binary and current magnetic propeller, was observed for over two binary orbits (78 ks) in 2005 August with the High-Energy Transmission Grating (HETG) on board the Chandra X-ray Observatory. The long, uninterrupted Chandra observation provides a wealth of details concerning the X-ray emission of AE Aqr, many of which are new and unique to the HETG. First, the X-ray spectrum is that of an optically thin multi-temperature thermal plasma; the X-ray emission lines are broad, with widths that increase with the line energy from σ ∼ 1 eV (510 km s -1 ) for O VIII to σ ∼ 5.5 eV (820 km s -1 ) for Si XIV; the X-ray spectrum is reasonably well fit by a plasma model with a Gaussian emission measure distribution that peaks at log T(K) = 7.16, has a width σ = 0.48, an Fe abundance equal to 0.44 times solar, and other metal (primarily Ne, Mg, and Si) abundances equal to 0.76 times solar; and for a distance d = 100 pc, the total emission measure EM = 8.0 x 10 53 cm -3 and the 0.5-10 keV luminosity L X = 1.1 x 10 31 erg s -1 . Second, based on the f/(i + r) flux ratios of the forbidden (f), intercombination (i), and recombination (r) lines of the Heα triplets of N VI, O VII, and Ne IX measured by Itoh et al. in the XMM-Newton Reflection Grating Spectrometer spectrum and those of O VII, Ne IX, Mg XI, and Si XIII in the Chandra HETG spectrum, either the electron density of the plasma increases with temperature by over three orders of magnitude, from n e ∼ 6 x 10 10 cm -3 for N VI [log T(K) ∼ 6] to n e ∼ 1 x 10 14 cm -3 for Si XIII [log T(K) ∼ 7], and/or the plasma is significantly affected by photoexcitation. Third, the radial velocity of the X-ray emission lines varies on the white dwarf spin phase, with two oscillations per spin cycle and an amplitude K ∼ 160 km s -1 . These results appear to be inconsistent with the recent models of Itoh et al., Ikhsanov, and

  20. The Chandra M10l Megasecond: Diffuse Emission

    Science.gov (United States)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  1. Coronal Physics and the Chandra Emission Line Project

    Science.gov (United States)

    Brickhouse, N. S.; Drake, J. J.

    2000-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.

  2. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    Science.gov (United States)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector

  3. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    Science.gov (United States)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  4. CHANDRA X-RAY DETECTION OF THE ENIGMATIC FIELD STAR BP Psc

    International Nuclear Information System (INIS)

    Kastner, Joel H.; Montez, Rodolfo; Rodriguez, David; Zuckerman, B.; Perrin, Marshall D.; Grosso, Nicolas; Forveille, Thierry; Graham, James R.

    2010-01-01

    BP Psc is a remarkable emission-line field star that is orbited by a dusty disk and drives a parsec-scale system of jets. We report the detection by the Chandra X-ray Observatory of a weak X-ray point source coincident with the centroids of optical/IR and submillimeter continuum emission at BP Psc. As the star's photosphere is obscured throughout the visible and near-infrared, the Chandra X-ray source likely represents the first detection of BP Psc itself. The X-rays most likely originate with magnetic activity at BP Psc and hence can be attributed either to a stellar corona or to star-disk interactions. The log of the ratio of X-ray to bolometric luminosity, log(L X /L bol ), lies in the range -5.8 to -4.2. This is smaller than log(L X /L bol ) ratios typical of low-mass, pre-main sequence stars, but is well within the log(L X /L bol ) range observed for rapidly rotating (FK Com-type) G giant stars. Hence, the Chandra results favor an exotic model wherein the disk/jet system of BP Psc is the result of its very recently engulfing a companion star or a giant planet, as the primary star ascended the giant branch.

  5. The Chandra Source Catalog 2.0: Combining Data for Processing (or How I learned 17 different words for "group")

    Science.gov (United States)

    Hain, Roger; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The Second Chandra Source Catalog (CSC2.0) combines data at multiple stages to improve detection efficiency, enhance source region identification, and match observations of the same celestial source taken with significantly different point spread functions on Chandra's detectors. The need to group data for different reasons at different times in processing results in a hierarchy of groups to which individual sources belong. Source data are initially identified as belonging to each Chandra observation ID and number (an "obsid"). Data from each obsid whose pointings are within sixty arcseconds of each other are reprojected to the same aspect reference coordinates and grouped into stacks. Detection is performed on all data in the same stack, and individual sources are identified. Finer source position and region data are determined by further processing sources whose photons may be commingled together, grouping such sources into bundles. Individual stacks which overlap to any extent are grouped into ensembles, and all stacks in the same ensemble are later processed together to identify master sources and determine their properties.We discuss the basis for the various methods of combining data for processing and precisely define how the groups are determined. We also investigate some of the issues related to grouping data and discuss what options exist and how groups have evolved from prior releases.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  6. VizieR Online Data Catalog: Cool-core clusters with Chandra obs. (Andrade-Santos+, 2017)

    Science.gov (United States)

    Andrade-Santos, F.; Jones, C.; Forman, W. R.; Lovisari, L.; Vikhlinin, A.; van Weeren, R. J.; Murray, S. S.; Arnaud, M.; Pratt, G. W.; Democles, J.; Kraft, R.; Mazzotta, P.; Bohringer, H.; Chon, G.; Giacintucci, S.; Clarke, T. E.; Borgani, S.; David, L.; Douspis, M.; Pointecouteau, E.; Dahle, H.; Brown, S.; Aghanim, N.; Rasia, E.

    2018-02-01

    The main goal of this work is to compare the fraction of cool-core (CC) clusters in X-ray-selected and SZ-selected samples. The first catalog of 189 SZ clusters detected by the Planck mission was released in early 2011 (Planck Collaboration 2011, VIII/88/esz). A Chandra XVP (X-ray Visionary Program--PI: Jones) and HRC Guaranteed Time Observations (PI: Murray) combined to form the Chandra-Planck Legacy Program for Massive Clusters of Galaxies. For each of the 164 ESZ Planck clusters at z<=0.35, we obtained Chandra exposures sufficient to collect at least 10000 source counts. The X-ray sample used here is an extension of the Voevodkin & Vikhlinin (2004ApJ...601..610V) sample. This sample contains 100 clusters and has an effective redshift depth of z<0.3. All have Chandra observations. Of the 100 X-ray-selected clusters, 49 are also in the ESZ sample, and 47 are in the HIFLUGCS (Reiprich & Boehringer 2002ApJ...567..716R) catalog. (2 data files).

  7. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  8. The Chandra Source Catalog: Source Properties and Data Products

    Science.gov (United States)

    Rots, Arnold; Evans, Ian N.; Glotfelty, Kenny J.; Primini, Francis A.; Zografou, Panagoula; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    The Chandra Source Catalog (CSC) is breaking new ground in several areas. There are two aspects that are of particular interest to the users: its evolution and its contents. The CSC will be a living catalog that becomes richer, bigger, and better in time while still remembering its state at each point in time. This means that users will be able to take full advantage of new additions to the catalog, while retaining the ability to back-track and return to what was extracted in the past. The CSC sheds the limitations of flat-table catalogs. Its sources will be characterized by a large number of properties, as usual, but each source will also be associated with its own specific data products, allowing users to perform mini custom analysis on the sources. Source properties fall in the spatial (position, extent), photometric (fluxes, count rates), spectral (hardness ratios, standard spectral fits), and temporal (variability probabilities) domains, and are all accompanied by error estimates. Data products cover the same coordinate space and include event lists, images, spectra, and light curves. In addition, the catalog contains data products covering complete observations: event lists, background images, exposure maps, etc. This work is supported by NASA contract NAS8-03060 (CXC).

  9. Nustar and Chandra Insight into the Nature of the 3-40 Kev Nuclear Emission in Ngc 253

    Science.gov (United States)

    Lehmer, Bret D.; Wik, Daniel R.; Hornschemeier, Ann E.; Ptak, Andrew; Antoniu, V.; Argo, M.K.; Bechtol, K.; Boggs, S.; Christensen, F.E.; Craig, W.W.; hide

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 kiloelectron volt intensity of the inner approximately 20 arcsec (approximately 400 parsec) nuclear region, as measured by NuSTAR, varied by a factor of approximately 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L (sub 2-10 kiloelectron volt) approximately few × 10 (exp 39) erg per s) point source located approximately 1 arcsec from the dynamical center of the galaxy (within the sigma 3 positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or approximately equal to 3 kiloelectron volts. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (power-law model spectral fit value, N(sub H), approximately equal to 1.6 x 10 (exp 23) per square centimeter) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (Phi is approximately equal to 0.4 arcsec); however, this source was offset from the 2012 source position by approximately 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is much greater than 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 kiloelectron volts) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum

  10. Chandra Finds X-ray Star Bonanza in the Orion Nebula

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic

  11. Chandra High Resolution Imaging of NGC 1365 and NGC 4151

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.

    2010-07-01

    We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.

  12. Bistability of Cavity Magnon Polaritons

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  13. A CHANDRA STUDY OF TEMPERATURE DISTRIBUTIONS OF THE INTRACLUSTER MEDIUM IN 50 GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhenghao; Xu, Haiguang; Li, Weitian; Hu, Dan; Zhang, Chenhao; Liu, Chengze [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240 (China); Wang, Jingying; Gu, Junhua; Wu, Xiang-Ping [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Beijing 100012 (China); Gu, Liyi [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); An, Tao [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhongli [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany); Zhu, Jie, E-mail: clsn@sjtu.edu.cn, E-mail: hgxu@sjtu.edu.cn [Department of Electronic Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240 (China)

    2016-01-10

    To investigate the spatial distribution of the intracluster medium temperature in galaxy clusters in a quantitative way and probe the physics behind it, we analyze the X-ray spectra from a sample of 50 clusters that were observed with the Chandra ACIS instrument over the past 15 years and measure the radial temperature profiles out to 0.45r{sub 500}. We construct a physical model that takes into consideration the effects of gravitational heating, thermal history (such as radiative cooling, active galactic nucleus feedback, and thermal conduction), and work done via gas compression, and use it to fit the observed temperature profiles by running Bayesian regressions. The results show that in all cases our model provides an acceptable fit at the 68% confidence level. For further validation, we select nine clusters that have been observed with both Chandra (out to ≳0.3r{sub 500}) and Suzaku (out to ≳1.5r{sub 500}) and fit their Chandra spectra with our model. We then compare the extrapolation of the best fits with the Suzaku measurements and find that the model profiles agree with the Suzaku results very well in seven clusters. In the remaining two clusters the difference between the model and the observation is possibly caused by local thermal substructures. Our study also implies that for most of the clusters the assumption of hydrostatic equilibrium is safe out to at least 0.5r{sub 500} and the non-gravitational interactions between dark matter and its luminous counterparts is consistent with zero.

  14. A SYSTEMATIC SEARCH FOR X-RAY CAVITIES IN THE HOT GAS OF GALAXY GROUPS

    International Nuclear Information System (INIS)

    Dong Ruobing; Rasmussen, Jesper; Mulchaey, John S.

    2010-01-01

    We have performed a systematic search for X-ray cavities in the hot gas of 51 galaxy groups with Chandra archival data. The cavities are identified based on two methods: subtracting an elliptical β-model fitted to the X-ray surface brightness, and performing unsharp masking. Thirteen groups in the sample (∼25%) are identified as clearly containing cavities, with another 13 systems showing tentative evidence for such structures. We find tight correlations between the radial and tangential radii of the cavities, and between their size and projected distance from the group center, in quantitative agreement with the case for more massive clusters. This suggests that similar physical processes are responsible for cavity evolution and disruption in systems covering a large range in total mass. We see no clear association between the detection of cavities and the current 1.4 GHz radio luminosity of the central brightest group galaxy, but there is a clear tendency for systems with a cool core to be more likely to harbor detectable cavities. To test the efficiency of the adopted cavity detection procedures, we employ a set of mock images designed to mimic typical Chandra data of our sample, and find that the model-fitting approach is generally more reliable than unsharp masking for recovering cavity properties. Finally, we find that the detectability of cavities is strongly influenced by a few factors, particularly the signal-to-noise ratio of the data, and that the real fraction of X-ray groups with prominent cavities could be substantially larger than the 25%-50% suggested by our analysis.

  15. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  16. Romanticism or Reality? An Exploration of Frances Mary Hendry's "Chandra."

    Science.gov (United States)

    Johnson, Jilaine

    This paper singles out a novel written for children about India, "Chandra" (1995) by Frances Mary Hendry, as a powerful and useful novel to present to today's 11 to 14 year old students. The paper contends that the novel allows students to explore and consider different value systems, challenges them to become aware of prejudice and the…

  17. Chandra: Ten Years of Amazing Science with a Great Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We review briefly review the history of the development of the Chandra X-Ray Observatory, highlighting certain details that many attendees of this Conference might not be aware of. We then present a selection of scientific highlights of the first 10 years of this remarkable and unique mission.

  18. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  19. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST

    Science.gov (United States)

    Weisskopf, Martin C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.

  20. Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star

    Science.gov (United States)

    2000-01-01

    studying these supernova remnants for decades, but now we're getting the kind of information we need to really test the theories," said Canizares. "Understanding supernovas helps us to learn about the processes that formed chemical elements like those which are found on Earth and are necessary for life," said Flanagan. Most of the oxygen in the universe, for example, is synthesized in the interiors of relatively few massive stars like the one being studied here. When they explode, they expel the newly manufactured elements which become part of the raw material for new stars and planets. The amount of oxygen in the E0102-72 ring is enough for thousands of solar systems. By measuring the expansion velocity of the ring, the team can estimate the amount of energy liberated in the explosion. The expansion energy would be enough to power the Sun for 3 billion years. The ring has more complex structure and motion than can be explained by current simplified theories, suggesting complexity in the explosion itself or in the surrounding interstellar matter. The supernova remnant also provides a laboratory for atomic physics. The observations show how the atoms in the expelled matter behave when heated to such high temperatures. The images reveal the progressive stripping of electrons from the atoms after the super-sonic shock wave has passed. The Chandra observation was taken using the HETG in conjunction with the Advanced CCD Imaging Spectrometer (ACIS) on September 28 and October 10, 1999. ACIS was built by Pennsylvania State University, University Park, and the Massachusetts Institute of Technology, Cambridge. To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0015/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science

  1. Chandra and the VLT Jointly Investigate the Cosmic X-Ray Background

    Science.gov (United States)

    2001-03-01

    Summary Important scientific advances often happen when complementary investigational techniques are brought together . In the present case, X-ray and optical/infrared observations with some of the world's foremost telescopes have provided the crucial information needed to solve a 40-year old cosmological riddle. Very detailed observations of a small field in the southern sky have recently been carried out, with the space-based NASA Chandra X-Ray Observatory as well as with several ground-based ESO telescopes, including the Very Large Telescope (VLT) at the Paranal Observatory (Chile). Together, they have provided the "deepest" combined view at X-ray and visual/infrared wavelengths ever obtained into the distant Universe. The concerted observational effort has already yielded significant scientific results. This is primarily due to the possibility to 'identify' most of the X-ray emitting objects detected by the Chandra X-ray Observatory on ground-based optical/infrared images and then to determine their nature and distance by means of detailed (spectral) observations with the VLT . In particular, there is now little doubt that the so-called 'X-ray background' , a seemingly diffuse short-wave radiation first detected in 1962, in fact originates in a vast number of powerful black holes residing in active nuclei of distant galaxies . Moreover, the present investigation has permitted to identify and study in some detail a prime example of a hitherto little known type of object, a distant, so-called 'Type II Quasar' , in which the central black hole is deeply embedded in surrounding gas and dust. These achievements are just the beginning of a most fruitful collaboration between "space" and "ground". It is yet another impressive demonstration of the rapid progress of modern astrophysics, due to the recent emergence of a new generation of extremely powerful instruments. PR Photo 09a/01 : Images of a small part of the Chandra Deep Field South , obtained with ESO telescopes

  2. Chandra Sees Wealth Of Black Holes In Star-Forming Galaxies

    Science.gov (United States)

    2001-06-01

    NASA's Chandra X-ray Observatory has found new populations of suspected mid-mass black holes in several starburst galaxies, where stars form and explode at an unusually high rate. Although a few of these objects had been found previously, this is the first time they have been detected in such large numbers and could help explain their relationship to star formation and the production of even more massive black holes. At the 198th meeting of the American Astronomical Society in Pasadena, California, three independent teams of scientists reported finding dozens of X-ray sources in galaxies aglow with star formation. These X-ray objects appear point-like and are ten to a thousand times more luminous in X-rays than similar sources found in our Milky Way and the M81 galaxy. "Chandra gives us the ability to study the populations of individual bright X-ray sources in nearby galaxies in extraordinary detail," said Andreas Zezas, lead author from the Harvard-Smithsonian Center for Astrophysics team that observed The Antennae, a pair of colliding galaxies, and M82, a well-known starburst galaxy. "This allows us to build on earlier detections of these objects and better understand their relationship to starburst galaxies." Antennae-True Color Image True Color Image of Antennae Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption Kimberly Weaver, of NASA's Goddard Space Flight Center in Greenbelt, MD, lead scientist of the team that studied the starburst galaxy NGC 253, discussed the importance of the unusual concentration of these very luminous X-ray sources near the center of that galaxy. Four sources, which are tens to thousands of times more massive than the Sun, are located within 3,000 light years of the galaxy core. "This may imply that these black holes are gravitating toward the center of the galaxy where they could coalesce to form a single supermassive black hole," Weaver suggested. "It could be that this starburst galaxy is transforming itself into a quasar

  3. Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    Science.gov (United States)

    Botteon, A.; Gastaldello, F.; Brunetti, G.

    2018-06-01

    A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have Mdiverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.

  4. Optical colours of AGN in the Extended Chandra Deep Field South: Obscured black holes in early type galaxies

    OpenAIRE

    Rovilos, E.; Georgantopoulos, I.

    2007-01-01

    We investigate the optical colours of X-ray sources from the Extended Chandra Deep Field South (ECDFS) using photometry from the COMBO-17 survey, aiming to explore AGN - galaxy feedback models. The X-ray sources populate both the ``blue'' and the ``red sequence'' on the colour-magnitude diagram. However, sources in the ``red sequence'' appear systematically more obscured. HST imaging from the GEMS survey demonstrates that the nucleus does not affect significantly the observed colours, and the...

  5. Biodiversity and Indigenous Uses of Medicinal Plant in the Chandra Prabha Wildlife Sanctuary, Chandauli District, Uttar Pradesh

    OpenAIRE

    Maurya Santosh Kumar; Seth Ankit; Dev Nath Singh Gautam; Singh Anil Kumar

    2015-01-01

    Conventional medicines are very important part of Indian culture. In this study the outcome of two-year study of ethnomedicinal uses of plants in Chandra Prabha Wildlife Sanctuary (CPWLS) and nearby area is reported. Information related to different plants which are used by local community in the treatment of many common diseases and well-being in the area was collected. Data on the use of medicinal plants were collected using structured interview of about 122 participants and thorough observ...

  6. Chandra Phase-resolved Spectroscopy of the High Magnetic Field Pulsar B1509−58

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chin-Ping; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Takata, J. [School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei (China); Shannon, R. M. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Johnston, S., E-mail: cphu@hku.hk, E-mail: ncy@bohr.physics.hku.hk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia)

    2017-04-01

    We report on a timing and spectral analysis of the young, high magnetic field rotation-powered pulsar (RPP) B1509−58 using Chandra continuous-clocking mode observation. The pulsar’s X-ray light curve can be fit by the two Gaussian components and the pulsed fraction shows moderate energy dependence over the Chandra band. The pulsed X-ray spectrum is well described by a power law with a photon index 1.16(4), which is harder than the values measured with RXTE /PCA and NuSTAR . This result supports the log-parabolic model for the broadband X-ray spectrum. With the unprecedented angular resolution of Chandra , we clearly identified off-pulse X-ray emission from the pulsar, and its spectrum is best fit by a power law plus blackbody model. The latter component has a temperature of ∼0.14 keV with a bolometric luminosity comparable to the luminosities of other young and high magnetic field RPPs, and it lies between the temperature of magnetars and typical RPPs. In addition, we found that the nonthermal X-ray emission of PSR B1509−58 is significantly softer in the off-pulse phase than in the pulsed phase, with the photon index varying between 1.0 and 1.8 and anticorrelated with the flux. This is similar to the behavior of three other young pulsars. We interpreted it as different contributions of pair-creation processes at different altitudes from the neutron star surface according to the outer-gap model.

  7. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  8. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  9. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data

  10. Chandra monitoring of the Galactic Centre magnetar SGR J1745-2900 during the initial 3.5 years of outburst decay

    NARCIS (Netherlands)

    Coti Zelati, F.; Rea, N.; Turolla, R.; Pons, J.A.; Papitto, A.; Esposito, P.; Israel, G.L.; Campana, S.; Zane, S.; Tiengo, A.; Mignani, R.P.; Mereghetti, S.; Baganoff, F.K.; Haggard, D.; Ponti, G.; Torres, D.F.; Borghese, A.; Elfritz, J.

    2017-01-01

    We report on 3.5 yr of Chandra monitoring of the Galactic Centre magnetar SGR J1745−2900 since its outburst onset in 2013 April. The magnetar spin-down has shown at least two episodes of period derivative increases so far, and it has slowed down regularly in the past year or so. We observed a

  11. THE CHANDRA COSMOS-LEGACY SURVEY: THE z > 3 SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Shankar, F. [Department of Physics and Astronomy, University of Southampton, Highfield, SO17 1BJ (United Kingdom); Comastri, A.; Lanzuisi, G.; Vignali, C.; Zamorani, G.; Brusa, M.; Gilli, R. [INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna (Italy); Elvis, M. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Trakhtenbrot, B.; Schawinski, K. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Allevato, V. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Fiore, F. [INAF–Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monte Porzio Catone (Italy); Griffiths, R. [Physics and Astronomy Department, Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile)

    2016-08-20

    We present the largest high-redshift (3 < z < 6.85) sample of X-ray-selected active galactic nuclei (AGNs) on a contiguous field, using sources detected in the Chandra COSMOS-Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift and the other 87 with photometric redshift (z {sub phot}). In this work, we treat z {sub phot} as a probability-weighted sum of contributions, adding to our sample the contribution of sources with z {sub phot} < 3 but z {sub phot} probability distribution >0 at z > 3. We compute the number counts in the observed 0.5–2 keV band, finding a decline in the number of sources at z > 3 and constraining phenomenological models of the X-ray background. We compute the AGN space density at z > 3 in two different luminosity bins. At higher luminosities (log L (2–10 keV) > 44.1 erg s{sup −1}), the space density declines exponentially, dropping by a factor of ∼20 from z ∼ 3 to z ∼ 6. The observed decline is ∼80% steeper at lower luminosities (43.55 erg s{sup −1} < logL(2–10 keV) < 44.1 erg s{sup −1}) from z ∼ 3 to z ∼ 4.5. We study the space density evolution dividing our sample into optically classified Type 1 and Type 2 AGNs. At log L (2–10 keV) > 44.1 erg s{sup −1}, unobscured and obscured objects may have different evolution with redshift, with the obscured component being three times higher at z ∼ 5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGNs. These models significantly overpredict the number of expected AGNs at log L (2–10 keV) > 44.1 erg s{sup −1} with respect to our data.

  12. The Chandra Source Catalog 2.0: Building The Catalog

    Science.gov (United States)

    Grier, John D.; Plummer, David A.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    To build release 2.0 of the Chandra Source Catalog (CSC2), we require scientific software tools and processing pipelines to evaluate and analyze the data. Additionally, software and hardware infrastructure is needed to coordinate and distribute pipeline execution, manage data i/o, and handle data for Quality Assurance (QA) intervention. We also provide data product staging for archive ingestion.Release 2 utilizes a database driven system used for integration and production. Included are four distinct instances of the Automatic Processing (AP) system (Source Detection, Master Match, Source Properties and Convex Hulls) and a high performance computing (HPC) cluster that is managed to provide efficient catalog processing. In this poster we highlight the internal systems developed to meet the CSC2 challenge.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  13. LARGE-SCALE FLOWS IN PROMINENCE CAVITIES

    International Nuclear Information System (INIS)

    Schmit, D. J.; Gibson, S. E.; Tomczyk, S.; Reeves, K. K.; Sterling, Alphonse C.; Brooks, D. H.; Williams, D. R.; Tripathi, D.

    2009-01-01

    Regions of rarefied density often form cavities above quiescent prominences. We observed two different cavities with the Coronal Multichannel Polarimeter on 2005 April 21 and with Hinode/EIS on 2008 November 8. Inside both of these cavities, we find coherent velocity structures based on spectral Doppler shifts. These flows have speeds of 5-10 km s -1 , occur over length scales of tens of megameters, and persist for at least 1 hr. Flows in cavities are an example of the nonstatic nature of quiescent structures in the solar atmosphere.

  14. Development of superconducting cavities at JAERI

    International Nuclear Information System (INIS)

    Ouchi, N.

    2001-01-01

    Development of superconducting (SC) cavities is continued for the high intensity proton accelerator in JAERI. In FY-1999, we carried out R and D work; (1) 2nd vertical test of β=0.886 single-cell cavity, (2) vertical test for observation of Q-disease without heat treatment after electropolishing, (3) vertical test of β=0.5 5-cell cavity, (4) pretuning, surface treatment and vertical test of β=0.886 5-cell cavity, (5) pulsed operation of β=0.886 single-cell cavity in the vertical test to confirm the validity of a new model calculation. This paper describes the present status of the R and D work for the SC cavities in JAERI. (author)

  15. Improved reactor cavity

    International Nuclear Information System (INIS)

    Katz, L.R.; Demarchais, W.E.

    1984-01-01

    A reactor pressure vessel disposed in a cavity has coolant inlet or outlet pipes extending through passages in the cavity walls and welded to pressure nozzles. The cavity wall has means for directing fluid away from a break at a weld away from the pressure vessel, and means for inhibiting flow of fluid toward the vessel. (author)

  16. A Chandra Study of Supernova Remnants in the Large and Small Magellanic Clouds

    Science.gov (United States)

    Schenck, Andrew Corey

    2017-08-01

    In the first part of this thesis we measure the interstellar abundances for the elements O, Ne, Mg, Si, and Fe in the Large Magellanic Cloud (LMC), based on the observational data of sixteen supernova remnants (SNRs) in the LMC as available in the public archive of the Chandra X-ray Observatory (Chandra). We find lower abundances than previous measurements based on a similar method using data obtained with the Advanced Satellite for Astrophysics and Cosmology (ASCA). We discuss the origins of the discrepancy between our Chandra and the previous ASCA measurements. We conclude that our measurements are generally more reliable than the ASCA results thanks to the high-resolution imaging spectroscopy with our Chandra data, although there remain some systematic uncertainties due to the use of different spectral modelings between the previous work and ours. We also discuss our results in comparison with the LMC abundance measurements based on optical observations of stars. The second part of this thesis is a detailed study of a core-collapse SNR B0049-73.6 in the Small Magellanic Cloud (SMC). Based on our deep Chandra observation, we detect metal-rich ejecta features extending out to the outermost boundary of B0049-73.6, which were not seen in the previous data. We find that the central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast the Si-rich material is highly structured. These results suggest that B0049-73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a 13-15M. progenitor. We reveal that the central ring-like (in projection) ejecta nebula extends to ˜9 pc from the SNR center. This suggests that the contact discontinuity (CD) may be located at a further

  17. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    Science.gov (United States)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; hide

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  18. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  19. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  20. Oral cavity eumycetoma

    Directory of Open Access Journals (Sweden)

    Gisele Alborghetti Nai

    2011-06-01

    Full Text Available Mycetoma is a pathological process in which eumycotic (fungal or actinomycotic causative agents from exogenous source produce grains. It is a localized chronic and deforming infectious disease of subcutaneous tissue, skin and bones. We report the first case of eumycetoma of the oral cavity in world literature. CASE REPORT: A 43-year-old male patient, complaining of swelling and fistula in the hard palate. On examination, swelling of the anterior and middle hard palate, with fistula draining a dark liquid was observed. The panoramic radiograph showed extensive radiolucent area involving the region of teeth 21-26 and the computerized tomography showed communication with the nasal cavity, suggesting the diagnosis of periapical cyst. Surgery was performed to remove the lesion. Histopathological examination revealed purulent material with characteristic grain. Gram staining for bacteria was negative and Grocott-Gomori staining for the detection of fungi was positive, concluding the diagnosis of eumycetoma. The patient was treated with ketoconazole for nine months, and was considered cured at the end of treatment. CONCLUSION: Histopathological examination, using histochemical staining, and direct microscopic grains examination can provide the distinction between eumycetoma and actinomycetoma accurately.

  1. THE NATURE OF THE BRIGHT ULX X-2 IN NGC 3921: A CHANDRA POSITION AND HST CANDIDATE COUNTERPART

    Energy Technology Data Exchange (ETDEWEB)

    Jonker, P. G.; Heida, M.; Torres, M. A. P.; Ratti, E. M. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Miller-Jones, J. C. A. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Fabian, A. C.; Walton, D. J. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Miniutti, G. [Centro de Astrobiologia (CSIC-INTA), Departamento de Astrofisica, ESA, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Roberts, T. P., E-mail: p.jonker@sron.nl [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-10-10

    We report on Chandra observations of the bright ultraluminous X-ray (ULX) source in NGC 3921. Previous XMM-Newton observations reported in the literature show the presence of a bright ULX at a 0.5-10 keV luminosity of 2 Multiplication-Sign 10{sup 40} erg s{sup -1}. Our Chandra observation finds the source at a lower luminosity of Almost-Equal-To 8 Multiplication-Sign 10{sup 39} erg s{sup -1}; furthermore, we provide a Chandra position of the ULX accurate to 0.''7 at 90% confidence. The X-ray variability makes it unlikely that the high luminosity is caused by several separate X-ray sources. In three epochs of archival Hubble Space Telescope observations, we find a candidate counterpart to the ULX. There is direct evidence for variability between the two epochs of WFPC2 F814W observations with the observation obtained in 2000 showing a brighter source. Furthermore, converting the 1994 F336W and 2000 F300W WFPC2 and the 2010 F336W WFC3 observations to the Johnson U-band filter assuming a spectral type of O7I, we find evidence for a brightening of the U-band light in 2000. Using the higher resolution WFC3 observations, we resolve the candidate counterpart into two sources of similar color. We discuss the nature of the ULX and the probable association with the optical counterpart(s). Finally, we investigate a potential new explanation for some (bright) ULXs as the decaying stages of flares caused by the tidal disruption of a star by a recoiled supermassive black hole. However, we find that there should be at most only one of such systems within z = 0.08.

  2. Solar wind charge exchange emission in the Chandra deep field north

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D.; Wargelin, Bradford J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koutroumpa, Dimitra [LATMOS/IPSL, CNRS, Université Versailles Saint Quentin, 11 Boulevard d' Alembert, F-78280, Guyancourt (France)

    2013-12-10

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s{sup –1} cm{sup –2} sr{sup –1} (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  3. Solar wind charge exchange emission in the Chandra deep field north

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Wargelin, Bradford J.; Koutroumpa, Dimitra

    2013-01-01

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s –1 cm –2 sr –1 (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  4. Chandra ACIS Sub-pixel Resolution

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.

    2011-05-01

    We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy

  5. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  6. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  7. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  8. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  9. THE X-RAY FLUX DISTRIBUTION OF SAGITTARIUS A* AS SEEN BY CHANDRA

    International Nuclear Information System (INIS)

    Neilsen, J.; Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute, Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands))" >Markoff, S.; Nowak, M. A.; Baganoff, F. K.; Dexter, J.; Witzel, G.; Barrière, N.; Li, Y.; Degenaar, N.; Fragile, P. C.; Gammie, C.; Goldwurm, A.; Grosso, N.; Haggard, D.

    2015-01-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-Ray Observatory's 3 Ms Sgr A* X-ray Visionary Project in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q = (5.24 ± 0.08) × 10 –3  counts s –1 , and a variable component, represented by a power law process (dN/dF∝F –ξ , ξ=1.92 −0.02 +0.03 ). This slope matches our recently reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of 1.8 −0.6 +0.8 ×10 −14  erg s –1  cm –2 and a shape parameter σ = 2.4 ± 0.2, but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ∼10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism

  10. INVESTIGATING THE OPTICAL COUNTERPART CANDIDATES OF FOUR INTEGRAL SOURCES LOCALIZED WITH CHANDRA

    International Nuclear Information System (INIS)

    Özbey Arabacı, Mehtap; Kalemci, Emrah; Tomsick, John A.; Bodaghee, Arash; Halpern, Jules; Chaty, Sylvain; Rodriguez, Jerome; Rahoui, Farid

    2012-01-01

    We report on the optical spectroscopic follow-up observations of the candidate counterparts to four INTEGRAL sources: IGR J04069+5042, IGR J06552–1146, IGR J21188+4901, and IGR J22014+6034. The candidate counterparts were determined with Chandra, and the optical observations were performed with 1.5 m RTT-150 telescope (TÜBİTAK National Observatory, Antalya, Turkey) and 2.4 m Hiltner Telescope (MDM Observatory, Kitt Peak, Arizona). Our spectroscopic results show that one of the two candidates of IGR J04069+5042 and the one observed for IGR J06552–1146 could be active late-type stars in RS CVn systems. However, according to the likelihood analysis based on Chandra and INTEGRAL, two optically weaker sources in the INTEGRAL error circle of IGR J06552–1146 have higher probabilities to be the actual counterpart. The candidate counterparts of IGR J21188+4901 are classified as an active M-type star and a late-type star. Among the optical spectra of four candidates of IGR J22014+6034, two show Hα emission lines, one is a late-type star, and the other is an M type. The likelihood analysis favors a candidate with no distinguishing features in the optical spectrum. Two of the candidates classified as M-type dwarfs, are similar to some IGR candidates claimed to be symbiotic stars. However, some of the prominent features of symbiotic systems are missing in our spectra, and their NIR colors are not consistent with those expected for giants. We consider the IR colors of all IGR candidates claimed to be symbiotic systems and find that low-resolution optical spectrum may not be enough for conclusive identification.

  11. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    Science.gov (United States)

    2000-11-01

    NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such

  12. Voltage control of cavity magnon polariton

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S., E-mail: kaurs3@myumanitoba.ca; Rao, J. W.; Gui, Y. S.; Hu, C.-M., E-mail: hu@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Yao, B. M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); National Laboratory for Infrared Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-07-18

    We have experimentally investigated the microwave transmission of the cavity-magnon-polariton (CMP) generated by integrating a low damping magnetic insulator onto a 2D microwave cavity. The high tunability of our planar cavity allows the cavity resonance frequency to be precisely controlled using a DC voltage. By appropriately tuning the voltage and magnetic bias, we can observe the cavity photon magnon coupling and the magnetic coupling between a magnetostatic mode and the generated CMP. The dispersion of the generated CMP was measured by either tuning the magnetic field or the applied voltage. This electrical control of CMP may open up avenues for designing advanced on-chip microwave devices that utilize light-matter interaction.

  13. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.

    2009-01-01

    We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration of relati...... at a fixed mass threshold, e.g., by a factor of 5.0 ± 1.2 at M 500 = 2.5 × 1014 h –1 M sun between z = 0 and 0.5. This evolution reflects the growth of density perturbations, and can be used for the cosmological constraints complementing those from the distance-redshift relation....

  14. Neutron Stars and Black Holes New clues from Chandra and XMM-Newton

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Neutron stars and black holes, the most compact astrophysical objects, have become observable in many different ways during the last few decades. We will first review the phenomenology and properties of neutron stars and black holes (stellar and supermassive) as derived from multiwavelength observatories. Recently much progress has been made by means of the new powerful X-ray observatories Chandra and XMM-Newton which provide a substantial increase in sensitivity as well as spectral and angular resolution compared with previous satellites like ROSAT and ASCA. We shall discuss in more detail two recent topics: (1) The attempts to use X-ray spectroscopy for measuring the radii of neutron stars which depend on the equation of state at supranuclear densities. Have quark stars been detected? (2) The diagnostics of the strong gravity regions around supermassive black holes using X-ray spectroscopy.

  15. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, E. M. H.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Dogiel, V. A., E-mail: cyhui@cnu.ac.kr [I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute of Physics, Leninskii pr. 53, 119991 Moscow (Russian Federation)

    2014-06-20

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons.

  16. Chandra Takes on Heavy Jets and Massive Winds in 4U 1630-47

    Science.gov (United States)

    Neilsen, Joey

    2014-11-01

    Recently, Díaz Trigo et al. reported the discovery of relativistic baryons in a jet in XMM/ATCA observations of the 2012 outburst of the black hole 4U 1630-47. We present a search for a similarly massive jet earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. Despite a detection of radio emission with ATCA, we find no evidence of a heavy jet in the X-ray spectrum, with tight upper limits on the relativistic emission lines seen by Díaz Trigo eight months later. Instead, we find deep absorption lines from a massive, highly ionized disk wind, whose properties can be probed with detailed photoionization models. We explore several scenarios to explain the two modes of massive outflow in this remarkable black hole system.

  17. Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16

    Science.gov (United States)

    Roberts, T. P.; Colbert, E. J. M.

    2003-06-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  18. 75 FR 7471 - Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of...

    Science.gov (United States)

    2010-02-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2354-10] Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of Complaint February 3, 2010. Take notice that on December 14, 2009, as amended on January 8, 2010, Chandra Coffee and Rabun...

  19. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Plucinsky, Paul P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Haberl, Frank [Max-Planck-Institut für extraterrestrische Physik, Giessenbach straße, D-85748 Garching (Germany); Sasaki, Manami [Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg (Germany); Laycock, Silas, E-mail: jaesub@head.cfa.harvard.edu [Department of Physics, University of Massachusetts Lowell, MA 01854 (United States)

    2017-09-20

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} erg s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).

  20. VARIABILITY OF OPTICAL COUNTERPARTS IN THE CHANDRA GALACTIC BULGE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Britt, C. T.; Hynes, R. I.; Johnson, C. B.; Baldwin, A.; Collazzi, A.; Gossen, L. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Jonker, P. G.; Torres, M. A. P. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Nelemans, G. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Maccarone, T. [Department of Physics, Texas Tech University, Box 41051, Science Building, Lubbock, TX 79409-1051 (United States); Steeghs, D.; Greiss, S. [Astronomy and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Heinke, C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Bassa, C. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Villar, A. [Department of Physics, Massachussettes Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Gabb, M. [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2014-09-01

    We present optical light curves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey (GBS). Using data from the Mosaic-II instrument on the Blanco 4 m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ∼2 hr to 8 days over the 3/4 of the X-ray survey containing sources from the initial GBS catalog. Among the light curve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. Eighty-seven percent of X-ray sources have at least one potential optical counterpart. Twenty-seven percent of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.

  1. Cavity design programs

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    Numerous computer programs are available to help accelerator physicists and engineers model and design accelerator cavities and other microwave components. This article discusses the problems these programs solve and the principles upon which these programs are based. Some examples of how these programs are used in the design of accelerator cavities are also given

  2. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  3. Comparative Analysis and Variability of the Jovian X-Ray Spectra Detected by the Chandra and XMM-Newton Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Yawei [ORNL; Schultz, David Robert [ORNL; Kharchenko, Vasili A [ORNL; Bhardwaj, Anil [Vikram Sarabhai Space Center, Trivandrum, India; Branduardi-Raymont, Graziella [University College, London; Stancil, Phillip C. [University of Georgia, Athens, GA; Cravens, Thomas E. E. [University of Kansas; Lisse, Carey M. [Johns Hopkins University; Dalgarno, A. [Harvard-Smithsonian Center for Astrophysics

    2010-01-01

    Expanding upon recent work, a more comprehensive spectral model based on charge exchange induced X-ray emission by ions precipitating into the Jovian atmosphere is used to provide new understanding of the polar auroras. In conjunction with the Xspec spectral fitting software, the model is applied to analyze observations from both Chandra and XMM-Newton by systematically varying the initial precipitating ion parameters to obtain the best fit model for the observed spectra. In addition to the oxygen and sulfur ions considered previously, carbon is included to discriminate between solar wind and Jovian magnetospheric ion origins, enabled by the use of extensive databases of both atomic collision cross sections and radiative transitions. On the basis of fits to all the Chandra observations, we find that carbon contributes negligibly to the observed polar X-ray emission suggesting that the highly accelerated precipitating ions are of magnetospheric origin. Most of the XMM-Newton fits also favor this conclusion with one exception that implies a possible carbon contribution. Comparison among all the spectra from these two observatories in light of the inferred initial energies and relative abundances of precipitating ions from the modeling show that they are significantly variable in time (observation date) and space (north and south polar X-ray auroras).

  4. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    International Nuclear Information System (INIS)

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Fiore, F.; Mainieri, V.; Capak, P.; Caputi, K.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ Δz/(1+z spec ) ∼0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg 2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  5. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    Science.gov (United States)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  6. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  7. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  8. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  9. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  10. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  11. Hydroforming of elliptical cavities

    Science.gov (United States)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  12. Hydroforming of elliptical cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2015-02-01

    Full Text Available Activities of the past several years in developing the technique of forming seamless (weldless cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E_{acc} up to 35  MV/m after buffered chemical polishing (BCP and up to 42  MV/m after electropolishing (EP. More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E_{acc} of 30–35  MV/m were measured after BCP and E_{acc} up to 40  MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E_{acc}=30–35  MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and

  13. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  14. Hydroforming of Tesla Cavities at Desy

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.; Gonin, I.; Zhelezov, I.; Khabibullin, T.; Kneisel, P.; Saito, K.

    2000-01-01

    Since several years the development of seamless niobium cavity fabrication by hydro forming is being pursued at DESY. This technique offers the possibility of lower cost of fabrication and perhaps better rf performance of the cavities because of the elimination of electron-beam welds, which in the standard fabrication technique have sometimes lead to inferior cavity performance due to defects. Several single cell 1300 MHz cavities have been formed from high purity seamless niobium tubes, which are under computer control expanded with internal pressure while simultaneously being swaged axially. The seamless tubes have been made by either back extrusion and flow forming or by spinning or deep drawing. Standard surface treatment techniques such as high temperature post purification, buffered chemical polishing (BCP), electropolishing (EP) and high pressure ultra pure water rinsing (HPR) have been applied to these cavities. The cavities exhibited high Q - values of 2 x 10 10 at 2K and residual resistances as low as 3 n(Omega) after the removal of a surface layer of app. 100 (micro)m by BCP. Surprisingly, even at high gradients up to the maximum measured values of E acc ∼ 33 MV/m the Q-value did not decrease in the absence of field emission as often observed. After electropolishing of additional 100 (micro)m one of the cavities reached an accelerating gradient of E acc (ge) 42 MV/m

  15. Fundamental limitations of cavity-assisted atom interferometry

    Science.gov (United States)

    Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.

    2017-11-01

    Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.

  16. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  17. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  18. Dental Sealants Prevent Cavities

    Science.gov (United States)

    ... Digital Press Kit Read the MMWR Science Clips Dental Sealants Prevent Cavities Effective protection for children Language: ... more use of sealants and reimbursement of services. Dental care providers can Apply sealants to children at ...

  19. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased

  20. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  1. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES: THE SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng, E-mail: jfliu@bao.ac.cn, E-mail: songw@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D {sub 25} isophotes of 1110 galaxies, and 7504 sources are located between the D {sub 25} and 2 D {sub 25} isophotes of 910 galaxies. Contamination analysis with the log N –log S relation indicates that 51.3% of objects within 2 D {sub 25} isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 10{sup 37}, 10{sup 38}, and 10{sup 39} erg s{sup −1}, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov–Smirnov (K–S) criterion ( P {sub K–S} < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (∼2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to

  2. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication

  3. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  4. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  5. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  6. NARROW-LINE X-RAY-SELECTED GALAXIES IN THE CHANDRA -COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Pons, E.; Watson, M. G. [University of Leicester, Leicester (United Kingdom); Elvis, M.; Civano, F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2016-04-20

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg{sup 2} of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10{sup −16} erg cm{sup −2} s{sup −1} in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra -COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of this sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ 3727, [Ne iii] λ 3869, H β , [O iii] λλ 4959, 5007, H α , and [N ii] λλ 6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.

  7. Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra

    Science.gov (United States)

    Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.

    2010-05-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  8. REVISITING THE SHORT-TERM X-RAY SPECTRAL VARIABILITY OF NGC 4151 WITH CHANDRA

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.; Risaliti, G.

    2010-01-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ∼200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 x 10 -11 erg s -1 cm -2 and 10 -10 erg s -1 cm -2 (L 2-10 k eV ∼ 1.3-2.1 x 10 42 erg s -1 ). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ∼ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ∼ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ∼ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA 'long look' observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ∼ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M BH ∼4.6x10 7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r ∼< 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  9. Short-cavity squeezing in barium

    Science.gov (United States)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  10. HDE 245059: A WEAK-LINED T TAURI BINARY REVEALED BY CHANDRA AND KECK

    International Nuclear Information System (INIS)

    Baldovin-Saavedra, C.; Audard, M.; Duchene, G.; Guedel, M.; Skinner, S.L.; Paerels, F. B. S.; Ghez, A.; McCabe, C.

    2009-01-01

    We present the Chandra High Energy Transmission Grating Spectrometer and Keck observations of HDE 245059, a young weak-lined T Tauri star (WTTS), member of the pre-main-sequence group in the λ Orionis Cluster. Our high spatial resolution, near-infrared observations with Keck reveal that HDE 245059 is in fact a binary separated by 0.''87, probably composed of two WTTS based on their color indices. Based on this new information we have obtained an estimate of the masses of the binary components; ∼3 M sun and ∼2.5 M sun for the north and south components, respectively. We have also estimated the age of the system to be ∼2-3 Myr. We detect both components of the binary in the zeroth-order Chandra image and in the grating spectra. The light curves show X-ray variability of both sources and in particular a flaring event in the weaker southern component. The spectra of both stars show similar features: a combination of cool and hot plasma as demonstrated by several iron lines from Fe XVII to Fe XXV and a strong bremsstrahlung continuum at short wavelengths. We have fitted the combined grating and zeroth-order spectrum (considering the contribution of both stars) in XSPEC. The coronal abundances and emission measure distribution for the binary have been obtained using different methods, including a continuous emission measure distribution and a multi-temperature approximation. In all cases we have found that the emission is dominated by plasma between ∼8 and ∼15 MK a soft component at ∼4 MK and a hard component at ∼50 MK are also detected. The value of the hydrogen column density was low, N H ∼ 8 x 10 19 cm -2 , likely due to the clearing of the inner region of the λ Orionis cloud, where HDE 245059 is located. The abundance pattern shows an inverse first ionization potential effect for all elements from O to Fe, the only exception being Ca. To obtain the properties of the binary components, a 3-T model was fitted to the individual zeroth-order spectra

  11. THE X-RAY FLUX DISTRIBUTION OF SAGITTARIUS A* AS SEEN BY CHANDRA

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, J. [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Markoff, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Nowak, M. A.; Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Dexter, J. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720-3411 (United States); Witzel, G. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Barrière, N. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Li, Y. [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Degenaar, N. [Institute of Astronomy, University of Cambridge, Cambridge, CB3 OHA (United Kingdom); Fragile, P. C. [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States); Gammie, C. [Department of Astronomy, University of Illinois Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Goldwurm, A. [AstroParticule et Cosmologie (APC), Université Paris 7 Denis Diderot, F-75205 Paris cedex 13 (France); Grosso, N. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Haggard, D., E-mail: jneilsen@space.mit.edu [Department of Physics and Astronomy, AC# 2244, Amherst College, Amherst, MA 01002 (United States)

    2015-02-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-Ray Observatory's 3 Ms Sgr A* X-ray Visionary Project in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q = (5.24 ± 0.08) × 10{sup –3} counts s{sup –1}, and a variable component, represented by a power law process (dN/dF∝F {sup –ξ}, ξ=1.92{sub −0.02}{sup +0.03}). This slope matches our recently reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of 1.8{sub −0.6}{sup +0.8}×10{sup −14} erg s{sup –1} cm{sup –2} and a shape parameter σ = 2.4 ± 0.2, but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ∼10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism.

  12. Cavity QED with single trapped Ca+-ions

    International Nuclear Information System (INIS)

    Mundt, A.B.

    2003-02-01

    This thesis reports on the design and setup of a vacuum apparatus allowing the investigation of cavity QED effects with single trapped 40 Ca + ions. The weak coupling of ion and cavity in the 'bad cavity limit' may serve to inter--convert stationary and flying qubits. The ion is confined in a miniaturized Paul trap and cooled via the Doppler effect to the Lamb--Dicke regime. The extent of the atomic wave function is less than 30 nm. The ion is enclosed by a high finesse optical cavity. The technically--involved apparatus allows movement of the trap relative to the cavity and the trapped ion can be placed at any position in the standing wave. By means of a transfer lock the cavity can be resonantly stabilized with the S 1/2 ↔ D 5/2 quadrupole transition at 729 nm (suitable as a qubit) without light at that wavelength being present in the cavity. The coupling of the cavity field to the S 1/2 ↔ D 5/2 quadrupole transition is investigated with various techniques in order to determine the spatial dependence as well as the temporal dynamics. The orthogonal coupling of carrier and first--order sideband transitions at field nodes and antinodes is explored. The coherent interaction of the ion and the cavity field is confirmed by exciting Rabi oscillations with short resonant pulses injected into the cavity. Finally, first experimental steps towards the observation of cavity enhanced spontaneous emission have been taken. (author)

  13. Video Toroid Cavity Imager

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  14. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  15. Beam induced rf cavity transient voltage

    International Nuclear Information System (INIS)

    Kramer, S.L.; Wang, J.M.

    1998-10-01

    The authors calculate the transient voltage induced in a radio frequency cavity by the injection of a relativistic bunched beam into a circular accelerator. A simplified model of the beam induced voltage, using a single tone current signal, is generated and compared with the voltage induced by a more realistic model of a point-like bunched beam. The high Q limit of the bunched beam model is shown to be related simply to the simplified model. Both models are shown to induce voltages at the resonant frequency ω r of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the accelerating frequency for powered cavity operation) hω ο . The presence of two nearby frequencies in the cavity leads to a modulation of the carrier wave exp(hω ο t). A special emphasis is placed in this paper on studying the modulation function. These models prove useful for computing the transient voltage induced in superconducting rf cavities, which was the motivation behind this research. The modulation of the transient cavity voltage discussed in this paper is the physical basis of the recently observed and explained new kinds of longitudinal rigid dipole mode which differs from the conventional Robinson mode

  16. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  17. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1999-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  18. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  19. Chandra X-Rays from the Redshift 7.54 Quasar ULAS J1342+0928

    Science.gov (United States)

    Bañados, Eduardo; Connor, Thomas; Stern, Daniel; Mulchaey, John; Fan, Xiaohui; Decarli, Roberto; Farina, Emanuele P.; Mazzucchelli, Chiara; Venemans, Bram P.; Walter, Fabian; Wang, Feige; Yang, Jinyi

    2018-04-01

    We present a 45 ks Chandra observation of the quasar ULAS J1342+0928 at z = 7.54. We detect {14.0}-3.7+4.8 counts from the quasar in the observed-frame energy range 0.5–7.0 keV (6σ detection), representing the most distant non-transient astronomical source identified in X-rays to date. The present data are sufficient only to infer rough constraints on the spectral parameters. We find an X-ray hardness ratio of { \\mathcal H }{ \\mathcal R }=-{0.51}-0.28+0.26 between the 0.5–2.0 keV and 2.0–7.0 keV ranges and derive a power-law photon index of {{Γ }}={1.95}-0.53+0.55. Assuming a typical value for high-redshift quasars of Γ = 1.9, ULAS J1342+0928 has a 2–10 keV rest-frame X-ray luminosity of {L}2-10={11.6}-3.5+4.3× {10}44 {erg} {{{s}}}-1. Its X-ray-to-optical power-law slope is {α }OX}=-{1.67}-0.10+0.16, consistent with the general trend indicating that the X-ray emission in the most bolometrically powerful quasars is weaker relative to their optical emission.

  20. Cometary X-rays - the View After the First Chandra Cycle

    Science.gov (United States)

    Lisse, Carey M.

    2001-09-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et al. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998, Lisse et al. 1999) have shown that the very soft (best fit thermal bremsstrahlung model kT 0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission, including new results from Chandra and XMM. As-observed morphologies, spectra, and light curves will be discussed. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma, the structure of the solar wind in the heliosphere, and the source of the local soft x-ray background. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  1. The Chandra Deep Field South as a test case for Global Multi Conjugate Adaptive Optics

    Science.gov (United States)

    Portaluri, E.; Viotto, V.; Ragazzoni, R.; Gullieuszik, M.; Bergomi, M.; Greggio, D.; Biondi, F.; Dima, M.; Magrin, D.; Farinato, J.

    2017-04-01

    The era of the next generation of giant telescopes requires not only the advent of new technologies but also the development of novel methods, in order to exploit fully the extraordinary potential they are built for. Global Multi Conjugate Adaptive Optics (GMCAO) pursues this approach, with the goal of achieving good performance over a field of view of a few arcmin and an increase in sky coverage. In this article, we show the gain offered by this technique to an astrophysical application, such as the photometric survey strategy applied to the Chandra Deep Field South as a case study. We simulated a close-to-real observation of a 500 × 500 arcsec2 extragalactic deep field with a 40-m class telescope that implements GMCAO. We analysed mock K-band images of 6000 high-redshift (up to z = 2.75) galaxies therein as if they were real to recover the initial input parameters. We attained 94.5 per cent completeness for source detection with SEXTRACTOR. We also measured the morphological parameters of all the sources with the two-dimensional fitting tools GALFIT. The agreement we found between recovered and intrinsic parameters demonstrates GMCAO as a reliable approach to assist extremely large telescope (ELT) observations of extragalactic interest.

  2. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  3. Chandra's Darkest Bright Star: not so Dark after All?

    Science.gov (United States)

    Ayres, Thomas R.

    2008-11-01

    The Chandra High Resolution camera (HRC) has obtained numerous short exposures of the ultraviolet (UV)-bright star Vega (α Lyrae; HD 172167: A0 V), to calibrate the response of the detector to out-of-band (non-X-ray) radiation. A new analysis uncovered a stronger "blue leak" in the imaging section (HRC-I) than reported in an earlier study of Vega based on a subset of the pointings. The higher count rate—a factor of nearly 2 above prelaunch estimates—raised the possibility that genuine coronal X-rays might lurk among the out-of-band events. Exploiting the broader point-spread function of the UV leak compared with soft X-rays identified an excess of counts centered on the target, technically at 3σ significance. A number of uncertainties, however, prevent a clear declaration of a Vegan corona. A more secure result would be within reach of a deep uninterrupted HRC-I pointing.

  4. Multipactors in klystron cavities

    International Nuclear Information System (INIS)

    Hayashi, Kazutaka; Iyeki, Hiroshi; Kikunaga, Toshiyuki.

    1993-01-01

    A multipactor phenomenon in a klystron causes gain shortage or instability problem. Some tests using a prototype klystron input cavity revealed the microwave discharges in vacuum with magnetic field. The test results and the methods to avoid multipactors are discussed in this paper. (author)

  5. What's a Cavity?

    Science.gov (United States)

    ... and deeper over time. Cavities are also called dental caries (say: KARE-eez), and if you have a ... made up mostly of the germs that cause tooth decay. The bacteria in your mouth make acids and when plaque clings to your teeth, the acids can eat away at the outermost ...

  6. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  7. Oral cavity and jaw

    International Nuclear Information System (INIS)

    Solntsev, A.M.; Koval', G.Yu.

    1984-01-01

    Radioanatome of oral cavity and jaw is described. Diseases of the teeth, jaw, large salivary glands, temporo-mandibular articulation are considered. Roentgenograms of oral cacity and jaw of healthy people are presented and analyzed as well as roentgenograms in the above-mentioned diseases

  8. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  9. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  10. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  11. Cavity Nesting Birds

    Science.gov (United States)

    Virgil E. Scott; Keith E. Evans; David R. Patton; Charles P. Stone

    1977-01-01

    Many species of cavity-nesting birds have declined because of habitat reduction. In the eastern United States, where primeval forests are gone, purple martins depend almost entirely on man-made nesting structures (Allen and Nice 1952). The hole-nesting population of peregrine falcons disappeared with the felling of the giant trees upon which they depended (Hickey and...

  12. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  13. Open microwave cavities

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr; Rotter, I.; Mueller, M.; Persson, C.; Pichugin, Konstantin N.

    2001-01-01

    Roč. 9, - (2001), s. 484-487 ISSN 1386-9477 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : microwave cavity * resonances Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.009, year: 2001

  14. Cavity Optomechanics at Millikelvin Temperatures

    Science.gov (United States)

    Meenehan, Sean Michael

    mechanical frequency of these systems allows for the possibility of using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts to realize the measurement of OMC cavities inside a dilution refrigerator, including the development of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of the mechanical resonator at sub-kelvin temperatures. We will begin by summarizing the theoretical framework used to describe cavity optomechanical systems, as well as a handful of the quantum applications envisioned for such devices. Then, we will present background on the design of the nanobeam OMC cavities used for this work, along with details of the design and characterization of tapered fiber couplers for optical coupling inside the fridge. Finally, we will present measurements of the devices at fridge base temperatures of Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as well as detailed analysis of the prospects for future quantum applications based on the observed optically-induced heating.

  15. Three-Dimensional Morphology of a Coronal Prominence Cavity

    Science.gov (United States)

    Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; hide

    2010-01-01

    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs

  16. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  17. Implosion of the small cavity and large cavity cannonball targets

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Yamanaka, Chiyoe.

    1984-01-01

    Recent results of cannonball target implosion research are briefly reviewed with theoretical predictions for GEKKO XII experiments. The cannonball targets are classified into two types according to the cavity size ; small cavity and large cavity. The compression mechanisms of the two types are discussed. (author)

  18. Contributions of the "Great" X-Ray Observatories (XMM-Newton and Chandra) to Astronomy and Astrophysics

    Science.gov (United States)

    Weisskopf, Martin

    2011-01-01

    NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.

  19. Plasma Evolution within an Erupting Coronal Cavity

    Science.gov (United States)

    Long, David M.; Harra, Louise K.; Matthews, Sarah A.; Warren, Harry P.; Lee, Kyoung-Sun; Doschek, George A.; Hara, Hirohisa; Jenkins, Jack M.

    2018-03-01

    Coronal cavities have previously been observed to be associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting an analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet. The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in nonthermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blueshifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows, which resulted in the eruption of an under-dense filamentary flux rope.

  20. Internalization of Calcium Oxalate Calculi Developed in Narrow Cavities

    Directory of Open Access Journals (Sweden)

    Fèlix Grases

    2014-03-01

    Full Text Available We describe the case of a patient with calcium oxalate monohydrate and calcium oxalate dihydrate calculi occluded in cavities. All those calculi were located inside narrow cavities covered with a thin epithelium that permits their visualization. Urinary biochemical analysis showed high calciuria, not hypercalciuria, hypocitraturia, and a ratio [calcium]/[citrate] >0.33. The existence of cavities of very low urodynamic efficacy was decisive in the formation of such calculi. It is important to emphasize that we observed a thin epithelium covering such cavities, demonstrating that this epithelium may be formed after the development of the calculi through a re-epithelialization process.

  1. CORRELATION OF CHANDRA PHOTONS WITH THE RADIO GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Bilous, A. V.; McLaughlin, M. A.; Kondratiev, V. I.; Ransom, S. M.

    2012-01-01

    No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hr of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range of 1.5-4.5 keV. During the Crab pulsar periods with GPs, the X-ray flux in radio emission phase windows does not change more than by ±10% for main pulse (MP) GPs and ±30% for interpulse (IP) GPs. During GPs themselves, the X-ray flux does not change by more than two times for MP GPs and five times for IP GPs. All limits quoted are compatible with 2σ fluctuations of the X-ray flux around the sets of false GPs with random arrival times. The results speak in favor of changes in plasma coherence as the origin of GPs. However, the results do not rule out variations in the rate of particle creation if the particles that emit coherent radio emission are mostly at the lowest Landau level.

  2. An Archival Chandra and XMM-Newton Survey of Type 2 Quasars

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy; Zakamska, Nadia L.

    2013-01-01

    In order to investigate obscuration in high-luminosity type 2 active galactic nuclei (AGNs), we analyzed Chandra and XMM-Newton archival observations for 71 type 2 quasars detected at 0.05 100 eV in the rest frame) and we detect this line in the other sources through a joint fit (spectral stacking). The correlation between the Fe K alpha and [O III] fluxes and the inverse correlation of the equivalent width of the Fe Ka line with the ratio of hard X-ray and [O III] fluxes is consistent with previous results for lower luminosity Seyfert 2 galaxies. We conclude that obscuration is the cause of the weak hard X-ray emission rather than intrinsically low X-ray luminosities. We find that about half of the population of optically selected type 2 quasars are likely to be Compton thick. We also find no evidence that the amount of X-ray obscuration depends on the AGN luminosity (over a range of more than three orders of magnitude in luminosity).

  3. Chandra's Ultimate Angular Resolution: Studies of the HRC-I Point Spread Function

    Science.gov (United States)

    Juda, Michael; Karovska, M.

    2010-03-01

    The Chandra High Resolution Camera (HRC) should provide an ideal imaging match to the High-Resolution Mirror Assembly (HRMA). The laboratory-measured intrinsic resolution of the HRC is 20 microns FWHM. HRC event positions are determined via a centroiding method rather than by using discrete pixels. This event position reconstruction method and any non-ideal performance of the detector electronics can introduce distortions in event locations that, when combined with spacecraft dither, produce artifacts in source images. We compare ray-traces of the HRMA response to "on-axis" observations of AR Lac and Capella as they move through their dither patterns to images produced from filtered event lists to characterize the effective intrinsic PSF of the HRC-I. A two-dimensional Gaussian, which is often used to represent the detector response, is NOT a good representation of the intrinsic PSF of the HRC-I; the actual PSF has a sharper peak and additional structure which will be discussed. This work was supported under NASA contract NAS8-03060.

  4. Chandra Studies of the X-ray gas properties of fossil systems

    International Nuclear Information System (INIS)

    Qin, Zhen-Zhen

    2016-01-01

    We study ten galaxy groups and clusters suggested in the literature to be “fossil systems (FSs)” based on Chandra observations. According to the M 500 − T and L X − T relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the f gas, 2500 − T relation and find that the FSs exhibit the same trend as ordinary systems. The gas densities of FSs within 0.1r 200 are ∼ 10 −3 cm −3 , which is the same order of magnitude as galaxy clusters. The entropies within 01r 200 (S 0.1r200 ) of FSs are systematically lower than those inordinary galaxy groups, which is consistent with previous reports, but we find their S 0.1r200 − T relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk and White model in (0.1 − 1)r 200 , and the relation between scale radius r s and characteristic mass density δ c indicates self-similarity of dark matter halos of FSs. The ranges of r s and δ c for FSs are also close to those of galaxy clusters. Therefore, FSs share more common characteristics with galaxy clusters. The special birth place of the FS makes it a distinct type of galaxy system. (paper)

  5. Chandra Studies of the X-ray gas properties of fossil systems

    Science.gov (United States)

    Qin, Zhen-Zhen

    2016-03-01

    We study ten galaxy groups and clusters suggested in the literature to be “fossil systems (FSs)” based on Chandra observations. According to the M500 - T and LX - T relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the fgas, 2500 - T relation and find that the FSs exhibit the same trend as ordinary systems. The gas densities of FSs within 0.1r200 are ˜ 10-3 cm-3, which is the same order of magnitude as galaxy clusters. The entropies within 01r200 (S0.1r200) of FSs are systematically lower than those inordinary galaxy groups, which is consistent with previous reports, but we find their S0.1r200 - T relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk and White model in (0.1 - 1)r200, and the relation between scale radius rs and characteristic mass density δc indicates self-similarity of dark matter halos of FSs. The ranges of rs and δc for FSs are also close to those of galaxy clusters. Therefore, FSs share more common characteristics with galaxy clusters. The special birth place of the FS makes it a distinct type of galaxy system.

  6. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  7. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  8. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  9. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  10. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  11. Leaching materials from cavities

    International Nuclear Information System (INIS)

    Hodgson, T.D.; Jordan, T.W.J.

    1980-01-01

    A material is leached from a cavity by contacting the material with a liquid and subjecting the liquid to a number of pressure cycles, each pressure cycle involving a decrease in pressure to cause boiling of the liquid, followed by a rise in pressure to inhibit the boiling. The method may include the step of heating the liquid to a temperature near to its boiling point. The material may be nuclear fuel pellets or calcium carbonate pellets. (author)

  12. Superconducting cavities for HERA

    International Nuclear Information System (INIS)

    Dwersteg, B.; Ebeling, W.; Moeller, W.D.; Renken, D.; Proch, D.; Sekutowicz, J.; Susta, J.; Tong, D.

    1988-01-01

    Superconducting 500 MHz cavities are developed to demonstrate the feasibility of upgrading the e-beam energy of the HERA storage ring. A prototype module with 2 x 4 cell resonators and appropriate fundamental and higher mode couplers has been designed at DESY and is being built by industrial firms. The design and results of RF and cryogenic measurements are reported in detail. 17 references, 10 figures, 2 tables

  13. Atmospheric signals produced by cavity rebound

    International Nuclear Information System (INIS)

    Jones, E.M.; App, F.N.; Whitaker, R.W.

    1993-01-01

    An analysis of the atmospheric acoustic signals produced by a class of low-yield tests conducted just below the base of the alluvial cover in Yucca Flat of the Nevada Test Site (NTS), has revealed a clear manifestation of an elastic, cavity rebound signal. We use modeling as the basis for understanding the observed phenomena

  14. Testing the Universality of the Stellar IMF with Chandra and HST

    Science.gov (United States)

    Coulter, D. A.; Lehmer, B. D.; Eufrasio, R. T.; Kundu, A.; Maccarone, T.; Peacock, M.; Hornschemeier, A. E.; Basu-Zych, A.; Gonzalez, A. H.; Maraston, C.; Zepf, S. E.

    2017-02-01

    The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be “bottom-heavy” for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g., Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m≲ 0.5 {M}⊙ ) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m≳ 8 {M}⊙ ) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. searched for evidence of this trend and found that the observed number of LMXBs per unit K-band luminosity (N/{L}K) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory and Hubble Space Telescope observations of seven low-mass ellipticals where N/{L}K is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/{L}K. We reproduce the result of Peacock et al., strengthening the constraint that the slope of the IMF at m≳ 8 {M}⊙ must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope ({α }1=3.84) for stars 0.5 {M}⊙ , and discuss its wider ramifications and limitations.

  15. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  16. MR imaging of oropharynx and oral cavity

    International Nuclear Information System (INIS)

    Vogl, T.; Markl, A.F.; Bruning, R.; Greves, G.; Kang, K.; Lissner, J.A.

    1988-01-01

    The effect of intravenously administered Gd-DTPA on signal intensity, in the oropharynx and oral cavity was analyzed, in comparison with plain imaging the examinations were carried out on 150 patients, with a 1.5-T magnetic resonance (MR) imaging unit. During and after the application of Gd-DTPA, flash images with a repetition time of 30, an echo time of 12 msec, and a 20 0 flip angle were acquired over a period of 7 minutes. In 89 patients, malignant tumors were discovered, located primarily in the oropharynx and oral cavity. Plain MR imaging was equal to or better than computed tomograph in all patients except five. Marked contrast enhancement was observed in carcinomas, sarcomas, and inflammation. The enhancement of signal intensity versus time allowed a better differentiation of histologic features. MR imaging contributes substantially to the imaging of the oropharynx and oral cavity by improved soft-tissue contrast and the capacity for multiplanar imaging

  17. PEP-II RF cavity revisited

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Koehler, G.; Li, D.; Hartman, N.; Folwell, N.; Hodgson, J.; Ko, K.; McCandless, B.

    1999-01-01

    This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall losses, and the development of broadband time domain simulation methods in MAFIA for the HOM loading. The computed HOM spectrum is compared with cavity measurements and observed beam-induced signals. The cavity fabrication method is reviewed, with the benefit of hindsight, and simplifications are discussed

  18. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  19. The Role of Project Science in the Chandra X-Ray Observatory

    Science.gov (United States)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  20. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    Science.gov (United States)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  1. Prominence mass supply and the cavity

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, Donald J.; Innes, D. [Max Planck Institute for Solar System Research, D-37191 Katlenburg-Lindau (Germany); Gibson, S. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307 (United States); Luna, M. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Karpen, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-20

    A prevalent but untested paradigm is often used to describe the prominence-cavity system: the cavity is under-dense because it is evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolution of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model with diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prominence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 Å bandpass near the prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of our one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  2. Prominence Mass Supply and the Cavity

    Science.gov (United States)

    Schmit, Donald J.; Gibson, S.; Luna, M.; Karpen, J.; Innes, D.

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system; the cavity is under-dense because it it evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolutin of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model and diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prminence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 A badpass near he prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  3. The statistics of foreshock cavities: results of a Cluster survey

    Directory of Open Access Journals (Sweden)

    L. Billingham

    2008-11-01

    Full Text Available We use Cluster magnetic field, thermal ion, and energetic particle observations upstream of the Earth's bow shock to investigate the occurrence patterns of foreshock cavities. Such cavities are thought to form when bundles of magnetic field connect to the quasi-parallel bow shock. Shock-processed suprathermal ions can then stream along the field, back against the flow of the solar wind. These suprathermals enhance the pressure on shock-connected field lines causing them to expand into the surrounding ambient solar wind plasma. Foreshock cavities exhibit depressions in magnetic field magnitude and thermal ion density, associated with enhanced fluxes of energetic ions. We find typical cavity duration to be few minutes with interior densities and magnetic field magnitudes dropping to ~60% of those in the surrounding solar wind. Cavities are found to occur preferentially in fast, moderate magnetic field strength solar wind streams. Cavities are observed in all parts of the Cluster orbit upstream of the bow shock. When localised in a coordinate system organised by the underlying physical processes in the foreshock, there is a systematic change in foreshock cavity location with IMF cone angle. At low (high cone angles foreshock cavities are observed outside (inside the expected upstream boundary of the intermediate ion foreshock.

  4. The statistics of foreshock cavities: results of a Cluster survey

    Directory of Open Access Journals (Sweden)

    L. Billingham

    2008-11-01

    Full Text Available We use Cluster magnetic field, thermal ion, and energetic particle observations upstream of the Earth's bow shock to investigate the occurrence patterns of foreshock cavities. Such cavities are thought to form when bundles of magnetic field connect to the quasi-parallel bow shock. Shock-processed suprathermal ions can then stream along the field, back against the flow of the solar wind. These suprathermals enhance the pressure on shock-connected field lines causing them to expand into the surrounding ambient solar wind plasma. Foreshock cavities exhibit depressions in magnetic field magnitude and thermal ion density, associated with enhanced fluxes of energetic ions. We find typical cavity duration to be few minutes with interior densities and magnetic field magnitudes dropping to ~60% of those in the surrounding solar wind. Cavities are found to occur preferentially in fast, moderate magnetic field strength solar wind streams. Cavities are observed in all parts of the Cluster orbit upstream of the bow shock. When localised in a coordinate system organised by the underlying physical processes in the foreshock, there is a systematic change in foreshock cavity location with IMF cone angle. At low (high cone angles foreshock cavities are observed outside (inside the expected upstream boundary of the intermediate ion foreshock.

  5. Living with a Red Dwarf: A Chandra Archival Study of dM Star Activity and Habitability

    Science.gov (United States)

    Engle, Scott

    2017-09-01

    We propose to analyze 6 archival Chandra visits, not pointed at, but serendipitously including 3 dM stars of known age. GJ 669 AB are a common proper motion pair, each are resolved and detected in 3 exposures, and LHS 373 is a much older dM star also detected on 3 exposures. Photometry (by us) of GJ 669 AB began 5 years ago, is ongoing, and has precisely determined rotation rates for both stars and evidence of frequent flaring from GJ 669 B. We will analyze the multiple exposures, derive an accurate mean level of X-ray activity from the targets, and also separate out and individually analyze and model any observed X-ray flares. This proposal will provide highly accurate coronal properties for the targets, but also very useful data for stellar evolution and planetary habitability studies.

  6. RESOLVING THE ξ BOO BINARY WITH CHANDRA, AND REVEALING THE SPECTRAL TYPE DEPENDENCE OF THE CORONAL 'FIP EFFECT'

    International Nuclear Information System (INIS)

    Wood, Brian E.; Linsky, Jeffrey L.

    2010-01-01

    On 2008 May 2, Chandra observed the X-ray spectrum of ξ Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of ξ Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5%, respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for ξ Boo) leads to the surprising conclusion that ξ Boo B may dominate the wind from the binary, with ξ Boo A's wind being very weak despite its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of 'FIP effect' on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries, or extremely active stars with log L X >29, explaining why this correlation has not been recognized in the past.

  7. Resolving the xi Boo Binary with Chandra, and Revealing the Spectral Type Dependence of the Coronal "Fip Effect"

    Science.gov (United States)

    Wood, Brian E.; Linsky, Jeffrey L.

    2010-01-01

    On 2008 May 2, Chandra observed the X-ray spectrum of xi Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of ξ Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5% respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for xi Boo) leads to the surprising conclusion that xi Boo B may dominate the wind from the binary, with xi Boo A's wind being very weak despite its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of FIP effect on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries or extremely active stars with logLX 29, explaining why this correlation has not been recognized in the past.

  8. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    International Nuclear Information System (INIS)

    Miller, B. P.; Brandt, W. N.; Garmire, G. P.; Gibson, R. R.; Shemmer, O.

    2009-01-01

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  9. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  10. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  11. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    International Nuclear Information System (INIS)

    Hou, Meicun; Li, Zhiyuan

    2016-01-01

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10 36 erg s −1 are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10 35 erg s −1 per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission

  12. CHANDRA IDENTIFICATION OF 26 NEW BLACK HOLE CANDIDATES IN THE CENTRAL REGION OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.; Garcia, M. R.; Murray, S. S. [Harvard-Smithsonian Center for Astrophysics (CFA), Cambridge, MA 02138 (United States)

    2013-06-20

    We have previously identified 10 M31 black hole candidates (BHCs) in M31 from their X-ray properties alone. They exhibit ''hard state'' emission spectra that are seen at luminosities {approx}<10% Eddington in X-ray binaries (XBs) containing a neutron star (NS) or black hole, at luminosities that significantly exceed the NS threshold. Nine of these are associated with globular clusters (GCs); hence, these are most likely low mass X-ray binaries; eight are included in this survey. We have recently discovered that analysis of the long term 0.5-4.5 keV variability of XBs via structure functions allows us to separate XBs from active galactic nuclei, even though the emission spectra are often similar; this has enabled us to search for BHCs outside of GCs. We have identified 26 new BHCs (12 strong, 14 plausible) within 20' of the M31 nucleus (M31*), using 152 Chandra observations spaced over {approx}13 yr; some of our classifications were enhanced with XMM-Newton observations. Of these, seven appear within 100'' of M31*; this supports the theory suggesting that this region experiences enhanced XB production via dynamical processes similar to those seen in GCs. We have found a parameter space where our BHCs are separated from Galactic NS binaries: we show that modeling a simulated hard state spectrum with a disk blackbody + blackbody model yields parameters that lie outside the space occupied by NS binaries that are modeled this way. The probability that our BHCs all lie within the NS parameter space is {approx}3 Multiplication-Sign 10{sup -29}.

  13. XMM observations of Pluto

    Science.gov (United States)

    Lisse, C.; McNutt, R.; Dennerl, K.

    2017-10-01

    We have used XMM to observe the Pluto system in late March 2017. Following up on the reported detection of 7 photons representing X-ray emission by Chandra (Lisse et al., Icarus 287, 103), XMM searched for emission from the system, expecting approximately 10 times as many photons in 1/3 the observing time. If the results of the XMM measurements are as expected, then detections of other large KBOs with lossy atmospheres should be possible, ushering in the era of XMM KBO X-ray astronomy. In this talk we describe the preliminary results of our March 2017 XMM Pluto observations.

  14. Cryostat for TRISTAN superconducting cavity

    International Nuclear Information System (INIS)

    Mitsunobu, S.; Furuya, T.; Hara, K.

    1990-01-01

    Superconducting cavities generate rather high heat load of hundreds watts in one cryostat and have high sensitivity for pressure. We adopted usual pool-boiling type cooling for its stable pressure operation. Two 5-cell Nb cavities were installed in one flange type cryostat. Tuning mechanics actuated by a pulse-motor and a Piezo-electric element are set at outside of vacuum end flange. The design and performance of the cryostat for TRISTAN superconducting cavities are described. (author)

  15. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  16. Cavity Optomechnics with 150nm-thick GaAs Membrane

    DEFF Research Database (Denmark)

    Usami, K.; Melholt Nielsen, B.; Naesby, A.

    2010-01-01

    -coupled to a Fabry-P´erot cavity formed between the membrane and a mirror (Finesse: 24) inside a vacuum chamber (10 7Torr), is used to lock the cavity length at the cavity resonant slope and to induce mechanical oscillations by modulating the intensity from the offset level for ring down measurements. We observe...

  17. Red-cockaded woodpecker cavity tree resin avoidance by southern flying squirrels

    Science.gov (United States)

    Richard R. Schaefer; Daniel Saenz

    1998-01-01

    While examining red-cockaded woodpecker (Picoides borealis) cavity contents in eastern Texas, the authors observed cavity tree resin avoidance by southern flying squirrels (Glaucomys volans). The tree surface around an active red-cockaded woodpecker cavity is coated with sticky resin which flows from resin wells created by the woodpecker. The southern flying squirrel...

  18. A COMPTON-THICK ACTIVE GALACTIC NUCLEUS AT z ∼ 5 IN THE 4 Ms CHANDRA DEEP FIELD SOUTH

    International Nuclear Information System (INIS)

    Gilli, R.; Comastri, A.; Su, J.; Norman, C.; Vignali, C.; Tozzi, P.; Rosati, P.; Mainieri, V.; Stiavelli, M.; Brandt, W. N.; Xue, Y. Q.; Luo, B.; Castellano, M.; Fontana, A.; Fiore, F.; Ptak, A.

    2011-01-01

    We report the discovery of a Compton-thick active galactic nucleus (AGN) at z = 4.76 in the 4 Ms Chandra Deep Field South. This object was selected as a V-band dropout in HST/ACS images and previously recognized as an AGN from optical spectroscopy. The 4 Ms Chandra observations show a significant (∼4.2σ) X-ray detection at the V-band dropout position. The X-ray source displays a hardness ratio of HR = 0.23 ± 0.24, which, for a source at z ∼ 5, is highly suggestive of Compton-thick absorption. The source X-ray spectrum is seen above the background level in the energy range of ∼0.9-4 keV, i.e., in the rest-frame energy range of ∼5-23 keV. When fixing the photon index to Γ = 1.8, the measured column density is N H = 1.4 +0.9 -0.5 x 10 24 cm -2 , which is Compton thick. To our knowledge, this is the most distant heavily obscured AGN, confirmed by X-ray spectral analysis, discovered so far. The intrinsic (de-absorbed), rest-frame luminosity in the 2-10 keV band is ∼2.5 x 10 44 erg s -1 , which places this object among type-2 quasars. The spectral energy distribution shows that massive star formation is associated with obscured black hole (BH) accretion. This system may have then been caught during a major coeval episode of BH and stellar mass assembly at early times. The measure of the number density of heavily obscured AGN at high redshifts will be crucial to reconstructing the BH/galaxy evolution history from the beginning.

  19. A Joint Chandra and Swift View of the 2015 X-ray Dust-scattering Echo of V404 Cygni

    Science.gov (United States)

    Heinz, S.; Corrales, L.; Smith, R.; Brandt, W. N.; Jonker, P. G.; Plotkin, R. M.; Neilsen, J.

    2016-07-01

    We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using a stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray light curve of the 2015 June outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8. By deconvolving the intensity profiles with the reconstructed outburst light curve, we show that the rings correspond to eight separate dust concentrations with precise distance determinations. We further show that the column density of the clouds varies significantly across the field of view, with the centroid of most of the clouds shifted toward the Galactic plane, relative to the position of V404 Cyg, invalidating the assumption of uniform cloud column typically made in attempts to constrain dust properties from light echoes. We present a new XSPEC spectral dust-scattering model that calculates the differential dust-scattering cross section for a range of commonly used dust distributions and compositions and use it to jointly fit the entire set of Swift echo data. We find that a standard Mathis-Rumpl-Nordsieck model provides an adequate fit to the ensemble of echo data. The fit is improved by allowing steeper dust distributions, and models with simple silicate and graphite grains are preferred over models with more complex composition.

  20. CEBAF: Accelerating cavities look good

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications.

  1. CEBAF: Accelerating cavities look good

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications

  2. Analytic parameter dependence of Harish-Chandra modules for real reductive Lie groups - a family affair

    NARCIS (Netherlands)

    van der Noort, V.

    2009-01-01

    This thesis is written in the subfield of mathematics known as representation theory of real reductive Lie groups. Let G be a Lie group in the Harish-Chandra class with maximal compact subgroup K and Lie algebra g. Let Omega be a connected complex manifold. By a family of G-representations

  3. Rapport de frais de 2016-2017 pour Chandra Madramootoo | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Rapport de frais de 2016-2017 pour Chandra Madramootoo. Total des frais de déplacement : CAD$10,750.19. Réunion du Conseil des gouverneurs. 20 mars 2017 au 22 mars 2017. CAD$821.31. Réunion du Conseil des gouverneurs. 20 novembre 2016 au 23 novembre 2016. CAD$907.94. Initiation des nouveaux ...

  4. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NARCIS (Netherlands)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric

  5. Grain boundary cavity growth under applied stress and internal pressure

    International Nuclear Information System (INIS)

    Mancuso, J.F.

    1977-08-01

    The growth of grain boundary cavities under applied stress and internal gas pressure was investigated. Methane gas filled cavities were produced by the C + 4H reversible CH4 reaction in the grain boundaries of type 270 nickel by hydrogen charging in an autoclave at 500 0 C with a hydrogen pressure of either 3.4 or 14.5 MPa. Intergranular fracture of nickel was achieved at a charging temperature of 300 0 C and 10.3 MPa hydrogen pressure. Cavities on the grain boundaries were observed in the scanning electron microscope after fracture. Photomicrographs of the cavities were produced in stereo pairs which were analyzed so as to correct for perspective distortion and also to determine the orientational dependence of cavity growth under an applied tensile stress

  6. Benchmarking Microwave Cavity Dark Matter Searches using a Radioactive Source

    CERN Multimedia

    Caspers, F

    2014-01-01

    A radioactive source is proposed as a calibration device to verify the sensitivity of a microwave dark matter search experiment. The interaction of e.g., electrons travelling in an arbitrary direction and velocity through an electromagnetically “empty” microwave cavity can be calculated numerically. We give an estimation of the energy deposited by a charged particle into a particular mode. Numerical examples are given for beta emitters and two particular cases: interaction with a field free cavity and interaction with a cavity which already contains an electromagnetic field. Each particle delivers a certain amount of energy related to the modal R/Q value of the cavity. The transferred energy is a function of the particles trajectory and its velocity. It results in a resonant response of the cavity, which can be observed using a sensitive microwave receiver, provided that the deposited energy is significantly above the single photon threshold.

  7. Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra

    Science.gov (United States)

    Sun, Xiao-Na; Yang, Rui-Zhi; Rieger, Frank M.; Liu, Ruo-Yu; Aharonian, Felix

    2018-05-01

    The X-ray emission from the jets in active galactic nuclei (AGN) carries important information on the distributions of relativistic electrons and magnetic fields on large scales. We reanalysed archival Chandra observations on the jet of M 87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore the X-ray emission characteristics along the jet. We investigated the variability behaviours of the nucleus and the inner jet component HST-1, and confirm indications for day-scale X-ray variability in the nucleus contemporaneous to the 2010 high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last few years consistent with its synchrotron interpretation. We extracted the X-ray spectra for the nucleus and all knots in the jet, showing that they are compatible with a single power law within the X-ray band. There are indications that the resultant X-ray photon index exhibit a trend, with slight but significant index variations ranging from ≃ 2.2 (e.g. in knot D) to ≃ 2.4-2.6 (in the outer knots F, A, and B). When viewed in a multiwavelength context, a more complex situation can be seen. Fitting the radio to X-ray spectral energy distributions (SEDs) assuming a synchrotron origin, we show that a broken power-law electron spectrum with break energy Eb around 1 (300 μG/B)1/2 TeV allows a satisfactory description of the multiband SEDs for most of the knots. However, in the case of knots B, C, and D we find indications that an additional high-energy component is needed to adequately reproduce the broad-band SEDs. We discuss the implications and suggest that a stratified jet model may account for the differences.

  8. Chandra X-ray Time-Domain Study of Alpha Centauri AB, Procyon, and their Environs

    Science.gov (United States)

    Ayres, Thomas R.

    2018-06-01

    For more than a decade, Chandra X-ray Observatory has been monitoring the central AB binary (G2V+K1V) of the α Centauri triple system with semi-annual pointings, using the High-Resolution Camera. This study has been extended in recent years to the mid-F subgiant, Procyon. The main objective is to follow the coronal (T~1MK) activity variations of the three stars, analogous to the Sun's 11-year sunspot cycle. Tentative periods of 20 yr and 8 yr have been deduced for α Cen A and B, respectively; but so far Procyon has shown only a slow, very modest decline in count rate, which could well reflect a slight instrumental degradation rather than intrinsic behavior. The negligible high-energy variability of Procyon sits in stark contrast to the dramatic factor of several to ten changes in the X-ray luminosities of α Cen AB and the Sun over their respective cycles. Further, although sunlike α Cen A has been observed by successive generations of X-ray observatories for nearly four decades, albeit sporadically, there are key gaps in the coverage that affect the determination of the cycle period. In fact, the most recent pointings suggest a downturn in A's count rate that might be signaling a shorter, more solar-like cycle following a delayed minimum in the 2005--2010 time frame (perhaps an exaggerated version of the extended solar minimum between recent Cycles 23 and 24). Beyond the coronal cycles of the three stars, the sequence of periodic X-ray images represents a unique time-domain history concerning steady as well as variable sources in the two 30'x30' fields. The most conspicuous of the variable objects -- in the α Cen field -- will be described here.

  9. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  10. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  11. A prototype superconducting cavity for TRISTAN

    International Nuclear Information System (INIS)

    Furuya, T.; Hara, K.; Hosoyama, K.

    1987-01-01

    Following the feasibility study on the 3-cell superconducting cavity in the TRISTAN Accumulation Ring (TAR), a 5-cell 508 MHz Nb cavity was constructed and tested in the TAR. The cavity was equipped with a RF input coupler on a beam pipe, two HOM couplers on the other beam pipe and two additional HOM couplers on the equator of an end cell. The maximum accelerating field (Eaxx) was 4.5 MV/m with a Q value of about 1x10 9 at 4.2 deg K. The field was limited by the electron field emission and neither electron multipacting nor breakdown caused by couplers was observed. Damping of the HOM was sufficient and the input coupler was tested up to 82 KW in total reflection. A frequency tuning system consisted of two piezo electric and mechanical tuners. The piezo tuner was fast enough and the mechanical tuner covered wide range. In the beam test, the single bunch electron current of 29 mA was captured by the superconducting cavity alone and 13 mA was accelerated to 4.8 GeV. The maximum power transferred to the beam was 26 KW. The refrigeration system worked very stably

  12. Analysis of the cool down related cavity performance of the European XFEL vertical acceptance tests

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc; Schaffran, J.

    2017-09-15

    For the European X-Ray Free Electron Laser (XFEL) cavity production, the cold radio-frequency (RF) test of the cavities at 2 K after delivery from the two vendors was the mandatory acceptance test. It has been previously reported, that the cool down dynamics of a cavity across T{sub c} has a significant influence on the observed intrinsic quality factor Q{sub 0}, which is a measure of the losses on the inner cavity surface. A total number of 367 cool downs is used to analyze this correlation and we show that such a correlation is not observed during the European XFEL cavity production.

  13. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.

    2013-01-01

    for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...

  14. Chandra and XMM–Newton Observations of H 2 O Maser Galaxy ...

    Indian Academy of Sciences (India)

    Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.

  15. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk ...

    Indian Academy of Sciences (India)

    Model I: An absorbed thermal model plus power law (Brassington et al. 2007). Model II: A thermal model for soft component and an absorbed power-law for hard component. Model III: A thermal model for soft component and high energy reflect model for hard component (Zhang et al. 2006). 10. 0.01. 2×10 3. 5×10 3 normaliz.

  16. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  17. Pacer processing: cavity inventory relationships

    International Nuclear Information System (INIS)

    Dietz, R.J.; Gritzo, L.A.

    1975-09-01

    The pacer cavity and its associated primary power loop comprise a recirculating system in which materials are introduced by a series of thermonuclear explosions while debris is continuously removed by radioactive decay, sorption phenomena, and deliberate processing. Safe, reliable, and economical realization of the Pacer concept depends on the removal and control of both noxious and valuable by-products of the fusion reaction. Mathematical relationships are developed that describe the quantities of materials that are introduced into the Pacer cavity by a series of discrete events and are removed continuously by processing and decay. An iterative computer program based on these relationships is developed that allows both the total cavity inventory and the amounts of important individual species to be determined at any time during the lifetime of the cavity in order to establish the effects of the thermonuclear event, the cavity, the flow, and various processing parameters on Pacer design requirements

  18. Line-of-sight velocity as a tracer of coronal cavity magnetic structure

    Directory of Open Access Journals (Sweden)

    Urszula eBak-Steslicka

    2016-03-01

    Full Text Available We present a statistical analysis of 66 days of observations of quiescent (non-erupting coronal cavities and associated velocity and thermal structures. We find that nested rings of LOS-oriented velocity are common in occurrence and spatially well correlated with cavities observed in emission. We find that the majority of cavities possess multiple rings, and a range in velocity on the order of several $km/sec$. We find that the tops of prominences lie systematically below the cavity center and location of largest Doppler velocity. Finally, we use DEM analysis to consider the temperature structure of two cavities in relation to cavity, prominence, and flows. These observations yield new constraints on the magnetic structure of cavities, and on the conditions leading up to solar eruptions.

  19. Line-of-Sight Velocity As a Tracer of Coronal Cavity Magnetic Structure

    International Nuclear Information System (INIS)

    Bąk-Stȩślicka, Urszula; Gibson, Sarah E.; Chmielewska, Ewa

    2016-01-01

    We present a statistical analysis of 66 days of observations of quiescent (non-erupting) coronal cavities and associated velocity and thermal structures. We find that nested rings of LOS-oriented velocity are common in occurrence and spatially well correlated with cavities observed in emission. We find that the majority of cavities possess multiple rings, and a range in velocity on the order of several km∕sec. We find that the tops of prominences lie systematically below the cavity center and location of largest Doppler velocity. Finally, we use DEM analysis to consider the temperature structure of two cavities in relation to cavity, prominence, and flows. These observations yield new constraints on the magnetic structure of cavities, and on the conditions leading up to solar eruptions.

  20. LEP superconducting accelerating cavity module

    CERN Multimedia

    1995-01-01

    With its 27-kilometre circumference, the Large Electron-Positron (LEP) collider was the largest electron-positron accelerator ever built. The excavation of the LEP tunnel was Europe’s largest civil-engineering project prior to the Channel Tunnel. Three tunnel-boring machines started excavating the tunnel in February 1985 and the ring was completed three years later. In its first phase of operation, LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions. LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The collider's initial energy was chosen to be around 91 GeV, so that Z bosons could be produced. The Z boson and its charged partner the W boson, both discovered at CERN in 1983, are responsible for the weak force, which drives the Sun, for example. Observing the creation and decay of the short-lived Z boson was a critical test of...

  1. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  2. Nonlocal Intracranial Cavity Extraction

    Science.gov (United States)

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  3. Nonlocal Intracranial Cavity Extraction

    Directory of Open Access Journals (Sweden)

    José V. Manjón

    2014-01-01

    Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.

  4. Low-field magnetotransport in graphene cavity devices

    Science.gov (United States)

    Zhang, G. Q.; Kang, N.; Li, J. Y.; Lin, Li; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.

    2018-05-01

    Confinement and edge structures are known to play significant roles in the electronic and transport properties of two-dimensional materials. Here, we report on low-temperature magnetotransport measurements of lithographically patterned graphene cavity nanodevices. It is found that the evolution of the low-field magnetoconductance characteristics with varying carrier density exhibits different behaviors in graphene cavity and bulk graphene devices. In the graphene cavity devices, we observed that intravalley scattering becomes dominant as the Fermi level gets close to the Dirac point. We associate this enhanced intravalley scattering to the effect of charge inhomogeneities and edge disorder in the confined graphene nanostructures. We also observed that the dephasing rate of carriers in the cavity devices follows a parabolic temperature dependence, indicating that the direct Coulomb interaction scattering mechanism governs the dephasing at low temperatures. Our results demonstrate the importance of confinement in carrier transport in graphene nanostructure devices.

  5. Photons in a spherical cavity

    International Nuclear Information System (INIS)

    Ionescu-Pallas, N.; Vlad, V.I.

    1999-01-01

    The spectrum of black body radiation at the absolute temperature T, in an ideal spherical cavity of radius R, is studied. The departures from the classical predictions of Planck's theory, due to the discrete energies of the radiation quanta confined inside the cavity, depend on the adiabatic invariant RT and are significant for RT≤ 1 cm K. Special attention was paid to evidence sudden changes in the spectrum intensities, forbidden bands of frequency, as well as major modifications of the total energy for RT≤ 1 cm K. Similar effects were present in case of a cubic cavity too. (authors)

  6. The statistics of foreshock cavities: results of a Cluster survey

    OpenAIRE

    L. Billingham; S. J. Schwartz; D. G. Sibeck

    2008-01-01

    We use Cluster magnetic field, thermal ion, and energetic particle observations upstream of the Earth's bow shock to investigate the occurrence patterns of foreshock cavities. Such cavities are thought to form when bundles of magnetic field connect to the quasi-parallel bow shock. Shock-processed suprathermal ions can then stream along the field, back against the flow of the solar wind. These suprathermals enhance the pressure on shock-connected field lines causing them to expand into th...

  7. Orthogonal Coupling in Cavity BPM with Slots

    CERN Document Server

    Lipka, D; Siemens, M; Vilcins, S; Caspers, Friedhelm; Stadler, M; Treyer, DM; Maesaka, H; Shintake, T

    2009-01-01

    XFELs require high precision orbit control in their long undulator sections. Due to the pulsed operation of drive linacs the high precision has to be reached by single bunch measurements. So far only cavity BPMs achieve the required performance and will be used at the European XFEL, one between each of the up to 116 undulators. Coupling between the orthogonal planes limits the performance of beam position measurements. A first prototype build at DESY shows a coupling between orthogonal planes of about -20 dB, but the requirement is lower than -40 dB (1%). The next generation cavity BPM was build with tighter tolerances and mechanical changes, the orthogonal coupling is measured to be lower than -43 dB. This report discusses the various observations, measurements and improvements which were done.

  8. The Chandra Dust-scattering Halo of Galactic Center Transient Swift J174540.7–290015

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, L. R. [Einstein Fellow, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI, 53706 (United States); Mon, B.; Haggard, D. [McGill Space Institute, McGill University, 3550 University Street, Montreal, QC, H3A 2A7 (Canada); Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Garmire, G. [Huntingdon Institute for X-ray Astronomy, 10677 Franks Road Huntingdon, PA, 16652 (United States); Degenaar, N. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Reynolds, M. [University of Michigan, 1085 S. University, 311 West Hall, Ann Arbor, MI 48109 (United States)

    2017-04-20

    We report the detection of a dust-scattering halo around a recently discovered X-ray transient, Swift J174540.7–290015, which in early 2016 February underwent one of the brightest outbursts ( F {sub X} ≈ 5 × 10{sup −10} erg cm{sup −2} s{sup −1}) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pile-up, we construct a point-spread function for each observation and compare it to the GC field before the outburst. We find residual surface brightness around Swift J174540.7–290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L {sub X} ∼ 10{sup 36} erg s{sup −1}. This behavior is consistent with the hypothesis that the object is a low-mass X-ray binary in the Galactic Center.

  9. Cavity and goaf control

    Energy Technology Data Exchange (ETDEWEB)

    Stassen, P

    1978-01-01

    A summary of stowing, including a definition, calculation of stowing material requirements and settling of packs is given. A) Stowing using dirt found locally - the dirt bands in the seam - the use of ripping dirt brought down by the scraper loader and used for packing purposes and the construction of dummy roads. B) Control of cavities by leaving short, thick props and timber chocks in place. C) Stowing methods involving imported firt: packing by hand, use of scraper loaders, slinger stowing and control led-gravity stowing. D) Pneumatic stowing: describes the various types of machine and their scope; pipelines, their installation and cost price; pneumatic stowing in conjunc tion with powered supports; the use of crusher-stowers for stowing ripping dirt; construction of anhydrite packs by means of a pneumatic stower. E) Hydraulic stowing: how it works, the materials involved, utilization conditions, the surface storage post, pipes, stoppings with stowed material, water removal, rates of hydraulic stowing, results of theoretical studies, and the use of hydraulic stowing in the metal-mines. F) Pumped packs: how they work, how the packs are installed, the strength of the packs and their various uses. G) Caving: describes the principle of caving, support patterns, caving with packs and makes a comparison between caving and stowing. H) Comparison between the various methods of stowing compares pneumatic with hydraulic stowing methods; compares packing by hand and mechanical stowing compares surface subsidence in terms of the method of goaf used underground. An appendix gives details of equipment used. (15 refs.) (In French)

  10. Enhanced photoelastic modulation in silica phononic crystal cavities

    Science.gov (United States)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-04-01

    The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.

  11. Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx

    Science.gov (United States)

    Ptak, Andrew

    2018-01-01

    Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.

  12. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  13. Loggerhead oral cavity morphometry study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard external morphometrics and internal oral cavity morphometrics data were collected on wild and captive reared loggerhead sea turtles in size classes ranging...

  14. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  15. Design of rf conditioner cavities

    International Nuclear Information System (INIS)

    Govil, R.; Rimmer, R.A.; Sessler, A.; Kirk, H.G.

    1992-06-01

    Theoretical studies are made of radio frequency structures which can be used to condition electron beams so as to greatly reduce the stringent emittance requirements for successful lasing in a free-electron laser. The basic strategy of conditioning calls for modulating an electron beam in the transverse dimension, by a periodic focusing channel, while it traverses a series of rf cavities, each operating in a TM 210 mode. In this paper, we analyze the cavities both analytically and numerically (using MAFIA simulations). We find that when cylindrical symmetry is broken the coupling impedance can be greatly enhanced. We present results showing various performance characteristics as a function of cavity parameters, as well as possible designs for conditioning cavities

  16. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-07-17

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  17. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  18. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  19. A HIGH FIDELITY SAMPLE OF COLD FRONT CLUSTERS FROM THE CHANDRA ARCHIVE

    International Nuclear Information System (INIS)

    Owers, Matt S.; Nulsen, Paul E. J.; Markevitch, Maxim; Couch, Warrick J.

    2009-01-01

    This paper presents a sample of 'cold front' clusters selected from the Chandra archive. The clusters are selected based purely on the existence of surface brightness edges in their Chandra images which are modeled as density jumps. A combination of the derived density and temperature jumps across the fronts is used to select nine robust examples of cold front clusters: 1ES0657 - 558, Abell 1201, Abell 1758N, MS1455.0+2232, Abell 2069, Abell 2142, Abell 2163, RXJ1720.1+2638, and Abell 3667. This sample is the subject of an ongoing study aimed at relating cold fronts to cluster merger activity, and understanding how the merging environment affects the cluster constituents. Here, temperature maps are presented along with the Chandra X-ray images. A dichotomy is found in the sample in that there exists a subsample of cold front clusters which are clearly mergers based on their X-ray morphologies, and a second subsample of clusters which harbor cold fronts, but have surprisingly relaxed X-ray morphologies, and minimal evidence for merger activity at other wavelengths. For this second subsample, the existence of a cold front provides the sole evidence for merger activity at X-ray wavelengths. We discuss how cold fronts can provide additional information which may be used to constrain merger histories, and also the possibility of using cold fronts to distinguish major and minor mergers.

  20. The Ultra-fast Outflow of the Quasar PG 1211+143 as Viewed by Time-averaged Chandra Grating Spectroscopy

    Science.gov (United States)

    Danehkar, Ashkbiz; Nowak, Michael A.; Lee, Julia C.; Kriss, Gerard A.; Young, Andrew J.; Hardcastle, Martin J.; Chakravorty, Susmita; Fang, Taotao; Neilsen, Joseph; Rahoui, Farid; Smith, Randall K.

    2018-02-01

    We present a detailed X-ray spectral study of the quasar PG 1211+143 based on Chandra High Energy Transmission Grating Spectrometer (HETGS) observations collected in a multi-wavelength campaign with UV data using the Hubble Space Telescope Cosmic Origins Spectrograph (HST-COS) and radio bands using the Jansky Very Large Array (VLA). We constructed a multi-wavelength ionizing spectral energy distribution using these observations and archival infrared data to create XSTAR photoionization models specific to the PG 1211+143 flux behavior during the epoch of our observations. Our analysis of the Chandra-HETGS spectra yields complex absorption lines from H-like and He-like ions of Ne, Mg, and Si, which confirm the presence of an ultra-fast outflow (UFO) with a velocity of approximately ‑17,300 km s‑1 (outflow redshift z out ∼ ‑0.0561) in the rest frame of PG 1211+143. This absorber is well described by an ionization parameter {log}ξ ∼ 2.9 {erg} {{{s}}}-1 {cm} and column density {log}{N}{{H}}∼ 21.5 {{cm}}-2. This corresponds to a stable region of the absorber’s thermal stability curve, and furthermore its implied neutral hydrogen column is broadly consistent with a broad Lyα absorption line at a mean outflow velocity of approximately ‑16,980 km s‑1 detected by our HST-COS observations. Our findings represent the first simultaneous detection of a UFO in both X-ray and UV observations. Our VLA observations provide evidence for an active jet in PG 1211+143, which may be connected to the X-ray and UV outflows; this possibility can be evaluated using very-long-baseline interferometric observations.

  1. Construction and present status of KEKB superconducting cavities

    International Nuclear Information System (INIS)

    Tajima, T.; Akai, K.; Ezura, E; Furuya, T.; Hosoyama, K.; Mitsunobu, S.

    2000-01-01

    The superconducting cavity (SCC) for KEKB is 508 MHz single-cell cavity that has large beam pipes (22 cm and 30 cm i.d.) so that higher-order modes propagate out of the cavity and be absorbed by a lossy material. The input coupler is the TRISTAN-type coaxial one with some modifications such that dc bias voltage can be applied to avoid multipactoring during beam operation, fins to efficiently cool the outer conductor and a heater to remove condensed gases. The higher-order mode absorber is made of ferrite directly sinter-bonded on the inner surface of the copper pipe using a technique called Hot Isostatic Press (HIP). One prototype cavity was tested up to 0.57 A at TRISTAN Accumulation Ring (AR) in 1996. Then, four cavities were constructed for KEKB. One of the cavities achieved an accelerating field of 19 MV/m at a test in a vertical cryostat; this field is the world record at this frequency to our knowledge. No degradation of the field after assembly into horizontal cryostats was observed up to the available power of 300 kW that corresponds to ∼12 MV/m. These four cavities were installed in KEKB tunnel and are expected to supply 6 MV in total voltage to the 1.1 A electron beam in high energy ring (HER). Since beam commissioning started in Dec. 1998, the system has been supplying 6 MV and working very smoothly without any trouble. The maximum current has been 0.51 A and power delivered to beam per cavity is 370-380 kW/cavity up to the end of Apr., 1999. (author)

  2. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a device that consists of a compound intended to coat a prepared cavity of a tooth before insertion of...

  3. Nonlinear dynamics and cavity cooling of levitated nanoparticles

    Science.gov (United States)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-09-01

    We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.

  4. Fundamental tests in Cavity Quantum Electrodynamics

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    At the dawn of quantum physics, Einstein and Bohr had the dream to confine a photon in a box and to use this contraption in order to illustrate the strange laws of the quantum world. Cavity Quantum Electrodynamics has now made this dream real, allowing us to actually achieve in the laboratory variants of the thought experiments of the founding fathers of quantum theory. In our work at Ecole Normale Supérieure, we use a beam of Rydberg atoms to manipulate and probe non-destructively microwave photons trapped in a very high Q superconducting cavity. We realize ideal quantum non-demolition (QND) measurements of photon numbers, observe the radiation quantum jumps due to cavity relaxation and prepare non-classical fields such as Fock and Schrödinger cat states. Combining QND photon counting with a homodyne mixing method, we reconstruct the Wigner functions of these non-classical states and, by taking snapshots of these functions at increasing times, obtain movies of the decoherence process. These experiments ope...

  5. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)˜ {10}10{--}{10}11 achieved on the Nb cavities at 1.3-2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  6. Atraumatic restorative treatment in atypical cavities

    Directory of Open Access Journals (Sweden)

    Letícia Simino Carvalho

    2009-10-01

    Full Text Available The atraumatic restorative treatment has been widely divulged among professionals in the area of Pediatric Dentistry. This restorative technique is included in the philosophy of Minimal Intervention and is considered one of the most conservative treatments, because only the layer of infected dentin caries is removed. Moreover, the atraumatic restorative treatment has been shown to be less painful than conventional approaches, and local anesthesia is rarely required. After the removal of the infected dentin, the cavities are filled with glass ionomer cement, a material that has antimicrobial capacity, good marginal sealing and constant fluorine release and recharge. In spite of the increasing number of studies about atraumatic restorative treatment, only studies related to restorations in occlusal cavities have shown scientific evidences about the technique. The aim of this study was to evaluate the feasibility of atraumatic restorative treatment in cavities with 3 or more surfaces involved, by means of a clinical case report of a patient with extensive dstruction in primary teeth, who was submitted to atraumatic restorative treatment, and observe the result of the treatment after one year of clinical and radiographic control.

  7. Bistable output from a coupled-resonator vertical-cavity laser diode

    International Nuclear Information System (INIS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K.

    2000-01-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point

  8. Fabrication of elliptical SRF cavities

    Science.gov (United States)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  9. Hydroforming of superconducting TESLA cavities

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.

    2003-01-01

    Seamless fabrication of single-cell and multi-cell TESLA shape cavities by hydroforming has been developed at DESY. The forming takes place by expanding the seamless tube with internal water pressure while simultaneously swaging it axially. Tube radius and axial displacement are being computer controlled in accordance with results of FEM simulations and the experimentally obtained strain-stress curve of tube material. Several Nb single cell cavities have been produced. A first bulk Nb double cell cavity has been fabricated. The Nb seamless tubes have been produced by spinning and deep drawing. Surface treatment such as buffered chemical polishing, (BCP), electropolishing (EP), high pressure ultra pure water rinsing (HPR), annealing at 800degC and baking at ca. 150degC have been applied. The best single cell bulk Nb cavity has reached an accelerating gradient of Eacc > 42 MV/m after ca. 250 μm BCP and 100 μm EP. Several bimetallic NbCu single cell cavities of TESLA shape have been fabricated. The seamless tubes have been produced by explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 mm and 3 mm respectively. The RF performance of NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m after ca. 180 μm BCP, annealing at 800degC and baking at 140degC for 30 hours. The degradation of the quality factor Qo after repeated quenching is moderate, after ca. 150 quenches it reaches the saturation point of Qo=1.4x10 10 at low field. This indicates that on the basis of RF performance and material costs the combination of hydroforming with tube cladding is a very promising option. (author)

  10. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  11. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  12. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  13. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production

    Science.gov (United States)

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; William G. Ross; David L. Kulhavy

    1998-01-01

    The authors evaluated selection of nest sites by male red-cockaded woodpeckers (Picoides borealis) in Texas relative to the age of the cavity when only cavities excavated by the woodpeckers were available and when both naturally excavated cavities and artificial cavities were available. They also evaluated nest-cavity selection relative to the ability of naturally...

  14. CEBAF's SRF cavity manufacturing experience

    International Nuclear Information System (INIS)

    Benesch, J.F.; Reece, C.E.

    1994-01-01

    Construction of the Continuous Electron Beam Accelerator Facility (CEBAF) recirculating linac represents the largest scale application of superconducting rf (SRF) technology to date. The accelerating structures in CEBAF are 169 pairs of 1.5 GHz superconducting rf cavities -- 9 pairs in an injector and 80 pairs each in two linacs. The beam is to be recirculated up to five passes through each linac. Data is presented on mechanical tolerances achieved by the industrial fabricator of the rf cavities (Siemens). Liquid helium leak rates integrated over 22 vacuum seals have been measured on over 110 cavity pairs. A roughly normal distribution of the log 10 (leak rate) is seen, centered about a rate of 10 -10.4 torr-l/s. Over 140 pairs of the cavities have been assembled and have completed rf testing at 2.0 K. Among these, 54% demonstrated usable accelerating gradients greater than 10 MV/m. Although the rf performance characteristics well exceed the CEBAF baseline requirements of 5 MV/m at Q 0 = 2.4x10 9 , the usual limiting phenomena are encountered: field emission, quenching, and occasional multipacting. A discussion of the occurrence conditions and severity of these phenomena during production cavity testing is presented. The frequency with which performance is limited by quenching suggests that additional material advances may be required for applications which require the reliable achievement of accelerating gradients of more than 15 MV/m

  15. Coupling of an overdriven cavity

    International Nuclear Information System (INIS)

    Garbin, H.D.

    1993-01-01

    It is well known that when a nuclear test is conducted in a sufficiently large cavity, the resulting seismic signal is sharply reduced when compared to a normal tamped event. Cavity explosions are of interest in the seismic verification community because of this possibility of reducing the seismic energy generated which can lower signal amplitudes and make detection difficult. Reduced amplitudes would also lower seismic yield estimates which has implications in a Threshold Test Ban Treaty (TTBT). In the past several years, there have been a number of nuclear tests at NTS (Nevada Test Site) inside hemispherical cavities. Two such tests were MILL YARD and MISTY ECHO which had instrumentation at the surface and in the free-field. These two tests differ in one important aspect. MILL YARD was completely decoupled i.e., the cavity wall behaved in an elastic manner. It was estimated that MILL YARD's ground motion was reduced by a factor of at least 70. In contrast, MISTY ECHO was detonated in a hemispherical cavity with the same dimensions as MILL YARD, but with a much larger device yield. This caused an inelastic behavior on the wall and the explosion was not fully decoupled

  16. The puzzling detection of x-rays from Pluto by Chandra

    Science.gov (United States)

    Lisse, C. M.; McNutt, R. L.; Wolk, S. J.; Bagenal, F.; Stern, S. A.; Gladstone, G. R.; Cravens, T. E.; Hill, M. E.; Kollmann, P.; Weaver, H. A.; Strobel, D. F.; Elliott, H. A.; McComas, D. J.; Binzel, R. P.; Snios, B. T.; Bhardwaj, A.; Chutjian, A.; Young, L. A.; Olkin, C. B.; Ennico, K. A.

    2017-05-01

    Using Chandra ACIS-S, we have obtained low-resolution imaging X-ray spectrophotometry of the Pluto system in support of the New Horizons flyby on 14 July 2015. Observations were obtained in a trial ;seed; campaign conducted in one visit on 24 Feb 2014, and a follow-up campaign conducted soon after the New Horizons flyby that consisted of 3 visits spanning 26 Jul to 03 Aug 2015. In a total of 174 ksec of on-target time, in the 0.31 to 0.60 keV passband, we measured 8 total photons in a co-moving 11 × 11 pixel2 box (the 90% flux aperture determined by observations of fixed background sources in the field) measuring ∼121,000 × 121,000 km2 (or ∼100 × 100 RPluto) at Pluto. No photons were detected from 0.60 to 1.0 keV in this box during the same exposures. Allowing for background, we find a net signal of 6.8 counts and a statistical noise level of 1.2 counts, for a detection of Pluto in this passband at > 99.95% confidence. The Pluto photons do not have the spectral shape of the background, are coincident with a 90% flux aperture co-moving with Pluto, and are not confused with any background source, so we consider them as sourced from the Pluto system. The mean 0.31 - 0.60 keV X-ray power from Pluto is 200 +200/-100 MW, in the middle range of X-ray power levels seen for other known Solar System emission sources: auroral precipitation, solar X-ray scattering, and charge exchange (CXE) between solar wind (SW) ions and atmospheric neutrals. We eliminate auroral effects as a source, as Pluto has no known magnetic field and the New Horizons Alice UV spectrometer detected no airglow from Pluto during the flyby. Nano-scale atmospheric haze particles could lead to enhanced resonant scattering of solar X-rays from Pluto, but the energy signature of the detected photons does not match the solar spectrum and estimates of Pluto's scattered X-ray emission are 2 to 3 orders of magnitude below the 3.9 ± 0.7 × 10-5cps found in our observations. Charge-exchange-driven emission

  17. An In-depth Chandra ACIS View Of The Circumnuclear Region Of NGC 4151: The Jet, The Biconical Outflow, And A Leaky Torus

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-05-01

    We report on the imaging analysis of 200 ks Chandra ACIS-S observations of the nearby Seyfert 1 galaxy NGC 4151. Structured soft X-ray emission is observed to extend from 30 pc to 1.5 kpc. We find strong evidence for jet-gas cloud interaction in the inner 150 pc region, confirming our previous HRC results. Self-consistent photoionization models provide good descriptions of the spectra of the optical bi-cone, supporting the dominant role of nuclear photoionization. Presence of both low and high ionization spectral components and extended emission in the X-ray image perpendicular to the bi-cone indicates leakage of nuclear ionization. Using spatially resolved features, we estimate the kinematic power of the outflow in NGC 4151 to be 0.3% of its bolometric luminosity. This work is supported by NASA grant GO8-9101X and GO1-12009X.

  18. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  19. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  20. Temporal dynamics of all-optical switching in Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Colman, Pierre; Heuck, Mikkel; Yu, Yi

    2014-01-01

    The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....

  1. Breaking and Moving Hotspots in a Large Grain Nb Cavity with a Laser Beam

    International Nuclear Information System (INIS)

    Ciovati, G.; Cheng, G.; Flood, R. J.; Jordan, K.; Kneisel, P.; Morrone, M. L.; Turlington, L.; Wilson, K. M.; Zhang, S.; Anlage, S. M.; Gurevich, A. V.; Nemes, G.; Baldwin, C.

    2011-01-01

    Magnetic vortices pinned near the inner surface of SRF Nb cavities are a possible source of RF hotspots, frequently observed by temperature mapping of the cavities outer surface at RF surface magnetic fields of about 100 mT. Theoretically, we expect that the thermal gradient provided by a 10 W green laser shining on the inner cavity surface at the RF hotspot locations can move pinned vortices to different pinning locations. The experimental apparatus to send the beam onto the inner surface of a photoinjector-type large-grain Nb cavity is described. Preliminary results on the changes in thermal maps observed after applying the laser heating are also reported

  2. Biodiversity and Indigenous Uses of Medicinal Plant in the Chandra Prabha Wildlife Sanctuary, Chandauli District, Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Maurya Santosh Kumar

    2015-01-01

    Full Text Available Conventional medicines are very important part of Indian culture. In this study the outcome of two-year study of ethnomedicinal uses of plants in Chandra Prabha Wildlife Sanctuary (CPWLS and nearby area is reported. Information related to different plants which are used by local community in the treatment of many common diseases and well-being in the area was collected. Data on the use of medicinal plants were collected using structured interview of about 122 participants and thorough observations and conversations with local communities. Approximately 100 plants belonging to 43 families used by the local healers were reported in this study. The plant species with the highest fidelity level (Fl were Holarrhena antidysenterica, Lawsonia inermis, Gymnema sylvestre, Dalbergia sissoo, Cassia fistula Linn., Butea monosperma (Lam. Kuntze., Boerhaavia diffusa Linn., Albizia lebbeck Benth., Aegle marmelos Correa., Sphaeranthus indicus Linn., and Solanum surattense Burm. f. The most frequent ailments reported were hepatitis, jaundice, constipation, and skin and urinary problems. The parts of the plants most frequently used were fruit, roots, and whole plants (17% followed by leaves (16% and bark (15%. This study presents new research efforts and perspectives on the search for new drugs based on local uses of medicinal plants.

  3. Characterization of nasal cavity-associated lymphoid tissue in ducks.

    Science.gov (United States)

    Kang, Haihong; Yan, Mengfei; Yu, Qinghua; Yang, Qian

    2014-05-01

    The nasal mucosa is involved in immune defense, as it is the first barrier for pathogens entering the body through the respiratory tract. The nasal cavity-associated lymphoid tissue (NALT), which is found in the mucosa of the nasal cavity, is considered to be the main mucosal immune inductive site in the upper respiratory tract. NALT has been found in humans and many mammals, which contributes to local and systemic immune responses after intranasal vaccination. However, there are very few data on NALT in avian species, especially waterfowl. For this study, histological sections of the nasal cavities of Cherry Valley ducks were used to examine the anatomical location and histological characteristics of NALT. The results showed that several lymphoid aggregates are present in the ventral wall of the nasal cavity near the choanal cleft, whereas several more lymphoid aggregates were located on both sides of the nasal septum. In addition, randomly distributed intraepithelial lymphocytes and isolated lymphoid follicles were observed in the regio respiratoria of the nasal cavity. There were also a few lymphoid aggregates located in the lamina propria of the regio vestibularis, which was covered with a stratified squamous epithelium. This study focused on the anatomic and histological characteristics of the nasal cavity of the duck and performed a systemic overview of NALT. This will be beneficial for further understanding of immune mechanisms after nasal vaccination and the development of effective nasal vaccines for waterfowls. Copyright © 2014 Wiley Periodicals, Inc.

  4. Criteria for vacuum breakdown in rf cavities

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.; Kadish, A.; Thode, L.E.

    1983-01-01

    A new high-voltage scaling based on Kilpatrick's criterion is presented that suggests that voltages more than twice the Kilpatrick limit can be obtained with identical initial conditions of vacuum and surface cleanliness. The calculations are based on the experimentally observed decrease in secondary electron emission with increasing ion-impact energy above 100 keV. A generalized secondary-emission package has been developed to simulate actual cavity dynamics in conjunction with our 2 1/2-dimensional fully electromagnetic particle-in-cell code CEMIT. The results are discussed with application to the suppression of vacuum breakdown in rf accelerator devices

  5. A Rare Tumor of Nasal Cavity: Glomangiopericytoma

    Directory of Open Access Journals (Sweden)

    Aysegul Verim

    2014-01-01

    Full Text Available Glomangiopericytoma is a rare vascular neoplasm characterized by a pattern of prominent perivascular growth. A 72-year-old woman was admitted to our clinic complaining of nasal obstruction, frequent epistaxis, and facial pain. A reddish tumor filling the left nasal cavity was observed on endoscopy and treated with endoscopic excision. Microscopically, closely packed cells interspersed with numerous thin-walled, branching staghorn vessels were seen. Glomangiopericytoma is categorized as a borderline low malignancy tumor by WHO classification. Long-term follow-up with systemic examination is necessary due to high risk of recurrence.

  6. Plasmon resonant cavities in vertical nanowire arrays

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  7. On niobium sputter coated cavities

    International Nuclear Information System (INIS)

    Arnolds-Mayer, G.; Kaufmann, U.; Downar, H.

    1988-01-01

    To coat copper cavities with a thin film of niobium, facilities for electropolishing and sputter deposition have been installed at Dornier. Experiments have been performed on samples to optimize electropolishing and deposition parameters. In this paper, characteristics concerning surface properties, adhesion of the niobium film to the copper substrate, and film properties were studied on planar samples. A 1.5 GHz single cell cavity made from oxygen free high conductivity (OFHC) copper was sputter coated twice. First rf measurements were performed in the temperature range from 300 K to 2 K

  8. Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities

    Directory of Open Access Journals (Sweden)

    M. Prakash

    2013-01-01

    Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.

  9. Effect of trailing edge ramp on cavity flow structures and pressure drag

    International Nuclear Information System (INIS)

    Pey, Yin Yin; Chua, Leok Poh; Siauw, Wei Long

    2014-01-01

    Highlights: • Trailing edge ramps were used to reduce unsteadiness and pressure drag of a cavity. • Proper Orthogonal Decomposition was used to educe the coherent structures. • The 30° ramp was successful in redistributing the energy content within the cavity. • The 30° ramp guides the flow smoothly out of the cavity, reducing flow impingement. • A substantial reduction of pressure drag was achieved by the 30° ramp. -- Abstract: The effects of trailing edge ramp modifications on time-averaged velocity and pressure distributions within a cavity with a length to depth ratio of 2, at a speed of 15 m/s were investigated. The ramp angles were varied at 30°, 45° and 60° and ramp heights were varied at 0.25 times and 0.5 times of cavity depth. The mean flow within the cavity differed significantly from the baseline case when ramp angle was 30° and 45° with ramp height 0.5 times of cavity depth. At these 2 configurations, moment about the center of the cavity floor was reduced significantly. These could be attributed to the more steady flow within the cavity as compared to the baseline case. Spatial correlation of velocity in the cavity of ramp angle 30° showed that internal cavity flow was less sensitive to flow changes in the shear layer as compared to the baseline case. In the same cavity, snapshot Proper Orthogonal Decomposition revealed a redistribution of energy content where energetic structures exist only in the shear layer as opposed to energetic structures in both the shear layer and internal cavity for the baseline case. A reduction of pressure drag was also observed as the gentle ramp angle of 30° guides the flow smoothly out of the cavity and reduces trailing edge impingement

  10. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  11. A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Lehmer, B. D.; Jenkins, L. P.; Alexander, D. M.; Goulding, A. D.; Roberts, T. P.; Bauer, F. E.; Brandt, W. N.; Ptak, A.

    2010-01-01

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D H ∼ 20 cm -2 . The LIRGs in our sample have total infrared (8-1000 μm) luminosities in the range of L IR ∼ (1-8) x 10 11 L sun . The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M * ) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L gal HX ) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M * , respectively, we constrain the relation L gal HX = αM * + βSFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of α = (9.05 ± 0.37) x 10 28 erg s -1 M -1 sun and β = (1.62 ± 0.22) x 10 39 erg s -1 (M sun yr -1 ) -1 . This scaling provides a more physically meaningful estimate of L gal HX , with ∼0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M * ∼>5.9 x 10 -11 yr -1 , a factor of ∼2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M * ∼> 10 -9 yr -1 , appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions

  12. The 2-79 keV X-ray spectrum of the circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully compton-thick active galactic nucleus

    DEFF Research Database (Denmark)

    Arévalo, P.; Bauer, F. E.; Puccetti, S.

    2014-01-01

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical......-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering...

  13. Improved-Delayed-Detached-Eddy Simulation of cavity-induced transition in hypersonic boundary layer

    International Nuclear Information System (INIS)

    Xiao, Lianghua; Xiao, Zhixiang; Duan, Zhiwei; Fu, Song

    2015-01-01

    Highlights: • This work is about hypersonic cavity-induced transition with IDDES approach. • The length-to-width-to-depth ratio of the cavity is 19.9:3.57:1 at AoA −10° and −15°. • Flow remains laminar at −10°, transition occurs at −15° and cavity changed from open to close type. • Streamwise vortices, impingement shock, traveling shocks and exit shock are observed. • Breakdown of these vortices triggering rapid flow transition. - Abstract: Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition

  14. Sterility of the uterine cavity

    DEFF Research Database (Denmark)

    Møller, Birger R.; Kristiansen, Frank V.; Thorsen, Poul

    1995-01-01

    from the same sites. Nearly a quarter of all the patients harbored one or more microorganisms in the uterus, mostly Gardnerella vaginalis, Enterobacter and Streptococcus agalactiae. We found that in a significant number of cases, the uterine cavity is colonized with potentially pathogenic organisms...

  15. Flux trapping in superconducting cavities

    International Nuclear Information System (INIS)

    Vallet, C.; Bolore, M.; Bonin, B.; Charrier, J.P.; Daillant, B.; Gratadour, J.; Koechlin, F.; Safa, H.

    1992-01-01

    The flux trapped in various field cooled Nb and Pb samples has been measured. For ambient fields smaller than 3 Gauss, 100% of the flux is trapped. The consequences of this result on the behavior of superconducting RF cavities are discussed. (author) 12 refs.; 2 figs

  16. Field emission in RF cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    Electron field emission limits the accelerating gradient in superconducting cavities. It is shown how and why it is an important problem. The phenomenology of field emission is then described, both in DC and RF regimes. Merits of a few plausible 'remedies' to field emission are discussed. (author)

  17. Superconducting cavity development at RRCAT

    International Nuclear Information System (INIS)

    Joshi, S.C.

    2015-01-01

    Raja Ramanna Centre for Advanced Technology (RRCAT), Indore pursuing a program on 'R and D Activities for High Energy Proton Linac based Spallation Neutron Source'. Spallation neutron source (SNS) facility will provide high flux pulse neutrons for research in the areas of condensed matter physics, materials science, chemistry, biology and engineering. This will complement the existing synchrotron light source facility, INDUS-2 at RRCAT and reactor based neutron facilities at BARC. RRCAT is also participating in approved mega project on 'Physics and Advanced Technology for High Intensity Proton Accelerator' to support activities of Indian Institutions - Fermilab Collaboration (IIFC). The SNS facility will have a 1 GeV superconducting proton injector linac and 1 GeV accumulator ring. The linac will comprise of large number of superconducting radio-frequency (SCRF) cavities operating at different RF frequencies housed in suitable cryomodules. Thus, an extensive SCRF cavity infrastructure setup is being established. In addition, a scientific and technical expertise are also being developed for fabrication, processing and testing of the SCRF cavities for series production. The paper presents the status of superconducting cavity development at RRCAT

  18. Thoracic cavity after thoracic operations

    International Nuclear Information System (INIS)

    Rabkin, I.Kh.

    1983-01-01

    The problems of roentgenologic method application to detect postoperative c omplications in pulmonary tissue, bronchi, pleural cavity, mediastinum, have been considered. It is shown, that the use of the above mentioned method permit s to judge on the rates and degrees of the lungs straightening, anatomic structures shift, the change in air- and blood-filling, accumulation of liquid a nd air in pleuritic

  19. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  20. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also d...

  1. Superconducting cavities for beauty factories

    International Nuclear Information System (INIS)

    Lengeler, H.

    1992-01-01

    The possibilities and merits of superconducting accelerating cavities for Beauty-factories are considered. There exist already large sc systems of size and frequency comparable to the ones needed for Beauty-factories. Their status and operation experience is discussed. A comparison of normal conducting and superconducting systems is done for two typical Beauty-factory rings

  2. Op. No A4495 Columbia, STS-93 Chandra - Breakfast, Suiting, and Walkout

    Science.gov (United States)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows the astronauts after breakfast getting into spacesuits, walking out to board the bus, and boarding the bus prior to launch.

  3. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  4. NASA Chandra X-ray Observatory Selected as Editor's Choice in 2000 Discover Magazine Awards for Technological Innovation

    Science.gov (United States)

    2000-06-01

    The Chandra X-ray Observatory, NASA's newest and most powerful X-ray space telescope, has been selected as the winner of the Editor's Choice category of the 2000 Discover Magazine Awards for Technological Innovation. The team of government, industry, university and research institutions that designed, built and deployed Chandra for NASA's Marshall Space Flight Center, Huntsville, Ala, will be formally recognized June 24 at a gala awards celebration at Epcot at the Walt Disney World Resort in Orlando, Fl. Dr. Harvey Tananbaum, director of the Smithsonian Astrophysical Observatory's Chandra X-ray Science Center, Cambridge, Mass., which conducts the Chandra science mission for NASA, will receive the award on behalf of the team. "Chandra has opened a new window for astronomers into the universe of high-energy cosmic events such as pulsars, supernova remnants and black holes," said Tananbaum. "We're now able to create spectacularly detailed images of celestial phenomena whose mere existence we could only hypothesize before." Among Chandra's most significant discoveries to date, he lists the detection of a giant ring around the heart of the Crab Nebula, details of the shock wave created by an exploding star and resolution of the high-energy X-ray "glow" in the universe into millions of specific light sources. "The successful launch, deployment and on-orbit operations of NASA's Chandra X-ray Observatory is a testament to the solid partnership between TRW, NASA and the science community that has been enabling NASA's most important space science missions for the past 40 years," said Timothy W. Hannemann, executive vice president and general manager, TRW Space & Electronics Group. "The extraordinary images that Chandra is delivering daily speaks loudly not only to the quality of the science instruments on board, but also to the engineering talents and dedication to mission success exhibited by every member of NASA's Chandra mission team." Chandra, named in honor of Nobel

  5. SRF Cavity Fabrication and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, W [DESY (Germany)

    2014-07-01

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. The equator welds are particularly critical. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on halfcells and by careful tracking of weld shrinkage. The established procedure is suitable for large series production. The main aspects of quality assurance management are mentioned. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and EBW. Accelerating gradients at the level of 35–45 MV·m–1 can be achieved by applying Electropolishing (EP) treatment. Furthermore, the single-crystal option (grain boundary free) is promising. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the

  6. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  7. Radiation-induced formation of cavities in amorphous germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1989-01-01

    Prethinned polycrystalline Ge TEM samples were irradiated with 1.5 MeV Kr + ions at room temperature while structural and morphological changes were observed in situ in the Argonne High Voltage Electron Microscope-Tandem Facility. After a Kr + dose of 1.2x10 14 ions/cm 2 , the irradiated Ge was completely amorphized. A high density of small void-like cavities was observed after a Kr + dose of 7x10 14 ions/cm 2 . With increasing Kr + ion dose, these cavities grew into large holes transforming the irradiated Ge into a sponge-like porous material after 8.5x10 15 ions/cm 2 . The radiation-induced nucleation of void-like cavities in amorphous material is astonishing, and the final structure of the irradiated Ge with enormous surface area may have potential applications

  8. The Highest Resolution Chandra View of Photoionization and Jet-Cloud Interaction in the Nuclear Regio