WorldWideScience

Sample records for chandra multiwavelength project

  1. A Full Year's Chandra Exposure on SDSS Quasars from the Chandra Multiwavelength Project

    CERN Document Server

    Green, Paul J; Richards, G T; Barkhouse, W A; Constantin, A; Haggard, D; Karovska, M; Kim, D -W; Kim, M; Vikhlinin, A; Mossman, A; Silverman, J D; Anderson, S F; Kashyap, V; Wilkes, B J; Tananbaum, H

    2008-01-01

    We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey (SDSS) that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project (ChaMP). Our highest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.23 QSOs detected, we find no evidence for evolution out to z~5 for either the X-ray photon index Gamma or for the ratio of optical/UV to X-ray flux alpha_ox. About 10% of detected QSOs are obscured (Nh>1E22), but the fraction might reach ~1/3 if most non-detections are absorbed. We confirm a significant correlation between alpha_ox and optical luminosity, but it flattens or disappears for fainter AGN alone. Gamma hardens significantly both towards higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in non-thermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and ...

  2. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    International Nuclear Information System (INIS)

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z ∼ 5.5 and galaxies out to z ∼ 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While ∼58% of X-ray Seyferts (1042 erg s–1 2–10keV 44 erg s–1) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L2–10keV >1044 erg s–1) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a

  3. Multiwavelength campaign on Mrk 509 XIV. Chandra HETGS spectra

    CERN Document Server

    Kaastra, J S; Arav, N; Behar, E; Bianchi, S; Branduardi-Raymont, G; Cappi, M; Costantini, E; Kriss, G A; De Marco, B; Mehdipour, M; Paltani, S; Petrucci, P -O; Pinto, C; Ponti, G; Steenbrugge, K C; de Vries, C P

    2014-01-01

    We present in this paper the results of a 270 ks Chandra HETGS observation in the context of a large multiwavelength campaign on the Seyfert galaxy Mrk 509. The HETGS spectrum allows us to study the high ionisation warm absorber and the Fe-K complex in Mrk 509. We search for variability in the spectral properties of the source with respect to previous observations in this campaign, as well as for evidence of ultra-fast outflow signatures. The Chandra HETGS X-ray spectrum of Mrk 509 was analysed using the SPEX fitting package. We confirm the basic structure of the warm absorber found in the 600 ks XMM-Newton RGS observation observed three years earlier, consisting of five distinct ionisation components in a multikinematic regime. We find little or no variability in the physical properties of the different warm absorber phases with respect to previous observations in this campaign, except for component D2 which has a higher column density at the expense of component C2 at the same outflow velocity (-240 km/s). ...

  4. An Introduction to the Chandra Carina Complex Project

    CERN Document Server

    Townsley, Leisa K; Corcoran, Michael F; Feigelson, Eric D; Gagné, Marc; Montmerle, Thierry; Oey, M S; Smith, Nathan; Garmire, Gordon P; Getman, Konstantin V; Povich, Matthew S; Evans, Nancy Remage; Nazé, Yaël; Parkin, E R; Preibisch, Thomas; Wang, Junfeng; Wolk, Scott J; Chu, You-Hua; Cohen, David H; Gruendl, Robert A; Hamaguchi, Kenji; King, Robert R; Mac Low, Mordecai-Mark; McCaughrean, Mark J; Moffat, Anthony F J; Oskinova, L M; Pittard, Julian M; Stassun, Keivan G; ud-Doula, Asif; Walborn, Nolan R; Waldron, Wayne L; Churchwell, Ed; Nichols, J S; Owocki, Stanley P; Schulz, N S

    2011-01-01

    The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant HII regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60ks pointings using the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of >14,000 X-ray point sources; >9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. In this introductory paper, we motivate the survey design, describe the Chandra observations, and present some simple results, pr...

  5. LOCALIZING INTEGRAL SOURCES WITH CHANDRA: X-RAY AND MULTI-WAVELENGTH IDENTIFICATIONS AND ENERGY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Tomsick, John A.; Bodaghee, Arash [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Chaty, Sylvain; Rodriguez, Jerome [AIM (UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay, FR-91191 Gif-sur-Yvette Cedex (France); Rahoui, Farid [Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Halpern, Jules [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States); Kalemci, Emrah [Faculty of Engineering and Natural Sciences, Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Oezbey Arabaci, Mehtap, E-mail: jtomsick@ssl.berkeley.edu [Physics Department, Middle East Technical University, Ankara 06531 (Turkey)

    2012-08-01

    We report on Chandra observations of 18 hard X-ray (>20 keV) sources discovered with the INTEGRAL satellite near the Galactic plane. For 14 of the INTEGRAL sources, we have uncovered one or two potential Chandra counterparts per source. These provide soft X-ray (0.3-10 keV) spectra and subarcsecond localizations, which we use to identify counterparts at other wavelengths, providing information about the nature of each source. Despite the fact that all of the sources are within 5 Degree-Sign of the plane, four of the IGR sources are active galactic nuclei (AGNs; IGR J01545+6437, IGR J15391-5307, IGR J15415-5029, and IGR J21565+5948) and four others are likely AGNs (IGR J03103+5706, IGR J09189-4418, IGR J16413-4046, and IGR J16560-4958) based on each of them having a strong IR excess and/or extended optical or near-IR emission. We compare the X-ray and near-IR fluxes of this group of sources to those of AGNs selected by their 2-10 keV emission in previous studies and find that these IGR AGNs are in the range of typical values. There is evidence in favor of four of the sources being Galactic (IGR J12489-6243, IGR J15293-5609, IGR J16173-5023, and IGR J16206-5253), but only IGR J15293-5609 is confirmed as a Galactic source as it has a unique Chandra counterpart and a parallax measurement from previous optical observations that puts its distance at 1.56 {+-} 0.12 kpc. The 0.3-10 keV luminosity for this source is (1.4{sup +1.0}{sub -0.4}) Multiplication-Sign 10{sup 32} erg s{sup -1}, and its optical/IR spectral energy distribution is well described by a blackbody with a temperature of 4200-7000 K and a radius of 12.0-16.4 R{sub Sun }. These values suggest that IGR J15293-5609 is a symbiotic binary with an early K-type giant and a white dwarf accretor. We also obtained likely Chandra identifications for IGR J13402-6428 and IGR J15368-5102, but follow-up observations are required to constrain their source types.

  6. Localizing INTEGRAL Sources with Chandra: X-Ray and Multi-Wavelength Identifications and Energy Spectra

    CERN Document Server

    Tomsick, John A; Chaty, Sylvain; Rodriguez, Jerome; Rahoui, Farid; Halpern, Jules; Kalemci, Emrah; Arabaci, Mehtap Ozbey

    2012-01-01

    We report on Chandra observations of 18 hard X-ray (>20 keV) sources discovered with the INTEGRAL satellite near the Galactic plane. For 14 of the INTEGRAL sources, we have uncovered one or two potential Chandra counterparts per source. These provide soft X-ray (0.3-10 keV) spectra and sub-arcsecond localizations, which we use to identify counterparts at other wavelengths, providing information about the nature of each source. Despite the fact that all of the sources are within 5 degrees of the plane, four of the IGR sources are AGN (IGR J01545+6437, IGR J15391-5307, IGR J15415-5029, and IGR J21565+5948) and four others are likely AGN (IGR J03103+5706, IGR J09189-4418, IGR J16413-4046, and IGR J16560-4958) based on each of them having a strong IR excess and/or extended optical or near-IR emission. We compare the X-ray and near-IR fluxes of this group of sources to those of AGN selected by their 2-10 keV emission in previous studies and find that these IGR AGN are in the range of typical values. There is evide...

  7. The Chandra Carina Complex Project View of Trumpler 16

    CERN Document Server

    Wolk, Scott J; Getman, Konstantin V; Feigelson, Eric D; Preibisch, Thomas; Townsley, Leisa K; Wang, Junfeng; Stassun, Keivan G; King, Robert R; McCaughrean, Mark J; Moffat, Anthony F J; Zinnecker, Hans

    2011-01-01

    Trumpler 16 is a well--known rich star cluster containing the eruptive supergiant $\\eta$ Carin\\ae\\ and located in the Carina star-forming complex. In the context of the Chandra Carina Complex Project, we study Trumpler 16 using new and archival X-ray data. A revised X-ray source list of the Trumpler 16 region contains 1232 X-ray sources including 1187 likely Carina members. These are matched to 1047 near-infrared counterparts detected by the HAWK-I instrument at the VLT allowing for better selection of cluster members. The cluster is irregular in shape. Although it is roughly circular, there is a high degree of sub-clustering, no noticeable central concentration and an extension to the southeast. The high--mass stars show neither evidence of mass segregation nor evidence of strong differential extinction. The derived power-law slope of the X-ray luminosity function for Trumpler 16 reveals a much steeper function than the Orion Nebula Cluster implying different ratio of solar- to higher-mass stars. We estimate...

  8. Solid State Multiwavelength LIDAR for Volcanic Ash Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to develop a compact, multiwavelength LIDAR with polarization analysis capability that will be able to identify volcanic ash clouds...

  9. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    CERN Document Server

    Vikhlinin, A; Burenin, R A; Ebeling, H; Forman, W R; Hornstrup, A; Jones, C; Murray, S S; Nagai, D; Quintana, H; Voevodkin, A

    2008-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of structure based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 36 clusters with =0.55 derived from 400deg^2 ROSAT serendipitous survey and 49 brightest z=~0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Omega_Lambda>0 with a ~5sigma significance, and constrains the dark energy equation of state parameter to w0=-1.14+-0.21, assuming constant w and flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, WMAP, and baryonic aco...

  10. HELP : The Herschel Extragalactic Legacy Project & The Coming of Age of Multi-Wavelength Astrophysics

    CERN Document Server

    Vaccari, Mattia

    2015-01-01

    How did galaxies form and evolve? This is one of the most challenging questions in astronomy today. Answering it requires a careful combination of observational and theoretical work to reliably determine the observed properties of cosmic bodies over large portions of the distant Universe on the one hand, and accurately model the physical processes driving their evolution on the other. Most importantly, it requires bringing together disparate multi-wavelength and multi-resolution spectro-photometric datasets in an homogeneous and well-characterized manner so that they are suitable for a rigorous statistical analysis. The Herschel Extragalactic Legacy Project (HELP) funded by the EC FP7 SPACE program aims to achieve this goal by combining the expertise of optical, infrared and radio astronomers to provide a multi-wavelength database for the distant Universe as an accessible value-added resource for the astronomical community. It will do so by bringing together multi-wavelength datasets covering the 1000 deg$^2$...

  11. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    CERN Document Server

    Israel, Gian Luca; Castillo, Guillermo Andres Rodriguez; Sidoli, Lara

    2016-01-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 years of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190,000 lightcurves out of about 430,000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS@BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above about 2,000s resembles that of...

  12. Polarimetric Multiwavelength Focal Plane Arrays for ACE and CLARREO Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project....

  13. The Making of the Chandra X-ray Observatory: the Project Scientist's Perspective

    OpenAIRE

    Weisskopf, Martin C.

    2010-01-01

    The history of the development of the Chandra X-Ray Observatory is reviewed from a personal perspective. This review is necessarily biased and limited by space because it attempts to cover a time span approaching five decades.

  14. Source Contamination in X-ray Studies of Star-Forming Regions: Application to the Chandra Carina Complex Project

    CERN Document Server

    Getman, Konstantin V; Feigelson, Eric D; Townsley, Leisa K; Povich, Matthew S; Garmire, Gordon P; Montmerle, Thierry; Yonekura, Yoshinori; Fukui, Yasuo

    2011-01-01

    We describe detailed simulations of X-ray-emitting populations to evaluate the levels of contamination by both Galactic and extragalactic X-ray sources unrelated to a star-forming region under study. For Galactic contaminations, we consider contribution from main-sequence stars and giants (not including cataclysmic variables and other classes of accretion-driven X-ray binary systems) as they make the dominant contribution at the position of the Carina Nebula. The simulations take into consideration a variety of technical factors involving a Galactic population synthesis model, stellar X-ray luminosity functions, Chandra telescope response, source detection methodology, and possible spatial variations in the X-ray background and absorption through molecular clouds. When applied to the 1.42 square-degree field of the Chandra Carina Complex Project (CCCP), the simulations predict ~5000 contaminating sources (1 source per square arcminute of the survey), evenly distributed across the field. The results of the sim...

  15. Compact, Wavelength Stabilized Seed Source for Multi-Wavelength Lidar Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA LaRC is developing a compact, multi-wavelength High Spectral resolution Lidar (HSRL) system designed to measure various optical and microphysical properties of...

  16. HELP-ing Extragalactic Surveys : The Herschel Extragalactic Legacy Project and The Coming of Age of Multi-Wavelength Astrophysics

    CERN Document Server

    Vaccari, Mattia

    2016-01-01

    How did galaxies form and evolve? This is one of the most challenging questions in astronomy to- day. Answering it requires a careful combination of observational and theoretical work to reliably determine the observed properties of cosmic bodies over large portions of the distant Universe on the one hand, and accurately model the physical processes driving their evolution on the other. Most importantly, it requires bringing together disparate multi-wavelength and multi-resolution spectro-photometric datasets in an homogeneous and well-characterized manner so that they are suitable for a rigorous statistical analysis. The Herschel Extragalactic Legacy Project (HELP) funded by the EC FP7 SPACE program aims to achieve this goal by combining the expertise of optical, infrared and radio astronomers to provide a multi-wavelength database for the dis- tant Universe as an accessible value-added resource for the astronomical community. It will do so by bringing together multi-wavelength datasets covering the 1000 deg...

  17. THE CHANDRA CARINA COMPLEX PROJECT: DECIPHERING THE ENIGMA OF CARINA'S DIFFUSE X-RAY EMISSION

    International Nuclear Information System (INIS)

    We present a 1.42 deg2 mosaic of diffuse X-ray emission in the Great Nebula in Carina from the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer camera. After removing >14,000 X-ray point sources from the field, we smooth the remaining unresolved emission, tessellate it into segments of similar apparent surface brightness, and perform X-ray spectral fitting on those tessellates to infer the intrinsic properties of the X-ray-emitting plasma. By modeling faint resolved point sources, we estimate the contribution to the extended X-ray emission from unresolved point sources and show that the vast majority of Carina's unresolved X-ray emission is truly diffuse. Line-like correlated residuals in the X-ray spectral fits suggest that substantial X-ray emission is generated by charge exchange at the interfaces between Carina's hot, rarefied plasma and its many cold neutral pillars, ridges, and clumps.

  18. The Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca M.; Marchesi, Stefano; Elvis, Martin; Urry, C. Megan; Comastri, Andrea; Suh, Hyewon

    2016-01-01

    In this talk, I will present the 4016 sources sample of the Chandra COSMOS Legacy survey, a 4.6 Ms Chandra survey on the COSMOS field. We have multiwavelength information for 97% of the sources, including photometric and spectroscopic redshifts, and we can therefore study, in a statistical and complete way, the physical properties for all the sample including host galaxies properties. I will focus on the z>3 sample, the largest X-ray selected sample in this range of redshift on a contiguous field, presenting the space density and the clustering analysis using this sample, with a particular focus on how our results can put constraints on the predictions of both phenomenological and physical models of black hole and galaxy growth.

  19. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.;

    2009-01-01

    of relations between the total cluster mass and its X-ray indicators (TX , M gas, and YX ) based on a subsample of low-z relaxed clusters, and present a first measurement of the evolving LX -M tot relation (with M tot estimated from YX ) obtained from a well defined statistically complete cluster sample......We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration...... at a fixed mass threshold, e.g., by a factor of 5.0 ± 1.2 at M 500 = 2.5 × 1014 h –1 M sun between z = 0 and 0.5. This evolution reflects the growth of density perturbations, and can be used for the cosmological constraints complementing those from the distance-redshift relation....

  20. The Megasecond Chandra X-Ray Visionary Project Observation of NGC 3115 (II): properties of point sources

    CERN Document Server

    Lin, Dacheng; Wong, Ka-wah; Jennings, Zachary G; Homan, Jeroen; Romanowsky, Aaron J; Strader, Jay; Sivakoff, Gregory R; Brodie, Jean P; Remillard, Ronald A

    2015-01-01

    We have carried out an in-depth study of low-mass X-ray binaries (LMXBs) detected in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project observation (total exposure time 1.1 Ms). In total we found 136 candidate LMXBs in the field and 49 in globular clusters (GCs) above 2\\sigma\\ detection, with 0.3--8 keV luminosity L_X ~10^36-10^39 erg/s. Other than 13 transient candidates, the sources overall have less long-term variability at higher luminosity, at least at L_X > 2x10^37 erg/s. In order to identify the nature and spectral state of our sources, we compared their collective spectral properties based on single-component models (a simple power law or a multicolor disk) with the spectral evolution seen in representative Galactic LMXBs. We found that in the L_X versus photon index \\Gamma_PL and L_X versus disk temperature kT_MCD plots, most of our sources fall on a narrow track in which the spectral shape hardens with increasing luminosity below L_X~7x10^37 erg/s but is rela...

  1. The Chandra Bibliography Database

    Science.gov (United States)

    Rots, A. H.; Winkelman, S. L.; Paltani, S.; Blecksmith, S. E.; Bright, J. D.

    2004-07-01

    Early in the mission, the Chandra Data Archive started the development of a bibliography database, tracking publications in refereed journals and on-line conference proceedings that are based on Chandra observations, allowing our users to link directly to articles in the ADS from our archive, and to link to the relevant data in the archive from the ADS entries. Subsequently, we have been working closely with the ADS and other data centers, in the context of the ADEC-ITWG, on standardizing the literature-data linking. We have also extended our bibliography database to include all Chandra-related articles and we are also keeping track of the number of citations of each paper. Obviously, in addition to providing valuable services to our users, this database allows us to extract a wide variety of statistical information. The project comprises five components: the bibliography database-proper, a maintenance database, an interactive maintenance tool, a user browsing interface, and a web services component for exchanging information with the ADS. All of these elements are nearly mission-independent and we intend make the package as a whole available for use by other data centers. The capabilities thus provided represent support for an essential component of the Virtual Observatory.

  2. The Development of Polarimetric and Nonpolarimetric Multiwavelength Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance polarimetric and nonpolarimetric sensing is crucial to upcoming NASA missions, including ACE and CLARREO and the multi-agency VIIRS NPP project....

  3. HELP-ing Extragalactic Surveys : The Herschel Extragalactic Legacy Project and The Coming of Age of Multi-Wavelength Astrophysics

    OpenAIRE

    Vaccari, Mattia

    2016-01-01

    How did galaxies form and evolve? This is one of the most challenging questions in astronomy to- day. Answering it requires a careful combination of observational and theoretical work to reliably determine the observed properties of cosmic bodies over large portions of the distant Universe on the one hand, and accurately model the physical processes driving their evolution on the other. Most importantly, it requires bringing together disparate multi-wavelength and multi-resolution spectro-pho...

  4. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    CERN Document Server

    Arzoumanian, Z; Landecker, T L; Kothes, R; Camilo, F

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nonthermal nebula 40'' in diameter exhibiting a power-law spectrum with photon index Gamma = 1.6+/-0.3, typical of a pulsar wind nebula. The implied spin-down luminosity of the neutron star, assuming a conversion efficiency to nebular flux appropriate to Vela-like pulsars, is ~10^{35} ergs/s, again typical of objects a few tens of kyr old. Morphologically, the nebular flux is slightly enhanced along a direction, in projection on the sky, independently demonstrated to be of significance in radio polarization observations; we argue that this represents the orientation o...

  5. The Megasecond Chandra X-Ray Visionary Project Observation of NGC 3115 (III): luminosity functions of LMXBs and dependence on stellar environments

    CERN Document Server

    Lin, Dacheng; Wong, Ka-wah; Jennings, Zachary G; Homan, Jeroen; Romanowsky, Aaron J; Strader, Jay; Brodie, Jean P; Sivakoff, Gregory R; Remillard, Ronald A

    2015-01-01

    We have studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project Observation. With a total exposure time of ~1.1 Ms, we constructed the XLF down to a limiting luminosity of ~10^36 erg/s, much deeper than typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL \\propto L^{-2.2\\pm0.4} above 5.5x10^37 erg/s to dN/dL \\propto L^{-1.0\\pm0.1} below it, though we could not rule out a fit with a higher break at ~1.6x10^38 erg/s. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrup...

  6. The First Chandra Field

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; /NASA, Marshall; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Cameron, Robert A.; /Harvard-Smithsonian Ctr. Astrophys. /SLAC; Gandhi,; Foellmi, Cedric; /European Southern Obs., Chile; Elsner, Ronald F.; /NASA, Marshall; Patel, Sandeep K.; /USRA, Huntsville; Wu, Kinwah; /Mullard Space Sci. Lab.; O' Dell, Stephen; /NASA, Marshall

    2005-09-09

    Before the official first-light images, the Chandra X-ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ''Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a Type-1 (unobscured) active galactic nucleus (AGN) at a redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the Eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive ({ge} 10{sup 9} M{sub {circle_dot}}) black hole, accreting at a rate approaching its Eddington limit.

  7. The ELAIS deep X-ray survey - I. Chandra source catalogue and first results

    OpenAIRE

    Manners, J. C.; Johnson, O; Almaini, O; Willott, C. J.; Gonzalez-Solares, E; Lawrence, A.; Mann, R. G.; Perez-Fournon, I.; Dunlop, J. S.; McMahon, R. G.; Oliver, S. J.; Rowan-Robinson, M.; Serjeant, S.

    2003-01-01

    We present an analysis of two deep (75 ks) Chandra observations of the European Large Area ISO Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well studied regions with extensive multi-wavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to 2 soft extended sources...

  8. Multiwavelength Constraints on the Dynamical History of Omega Centauri

    Science.gov (United States)

    Haggard, Daryl; Cool, A. M.; Arias, T.; Brochmann, M. B.; Dorfman, J.; Gafford, A.; White, V.; Anderson, J.; Davies, M. B.

    2012-09-01

    Omega Centauri, the Milky Way's most massive and enigmatic old stellar cluster, offers a treasure trove of astronomical discovery and controversy. Is the cluster a globular or a dwarf galaxy remnant? Does it host a massive central black hole? What are the origins and dynamical histories of the cluster's multiple stellar populations? I will discuss our multiwavelength imaging and spectroscopic campaigns, and in particular a new Chandra X-ray flux limit on the cluster's purported IMBH. These observations also probe Omega Cen's binary populations and shed light on the cluster's dynamical history.

  9. A Multiwavelength Study of Three Hybrid Blazars

    Science.gov (United States)

    Stanley, E. C.; Kharb, P.; Lister, M. L.; Marshall, H. L.; O'Dea, C.; Baum, S.

    2015-07-01

    We present multiwavelength imaging observations of PKS 1045-188, 8C 1849+670, and PKS 2216-038, three radio-loud active galactic nuclei from the MOJAVE-Chandra Sample that straddle the Fanaroff-Riley (FR) boundary between low- and high-power jets. These hybrid sources provide an excellent opportunity to study jet emission mechanisms and the influence of the external environment. We used archival VLA observations, and new Hubble and Chandra observations to identify and study the spectral properties of five knots in PKS 1045-188, two knots in 8C 1849+670, and three knots in PKS 2216-038. For the seven X-ray visible knots, we constructed and fit the broadband spectra using synchrotron and inverse Compton/cosmic microwave background (IC/CMB) emission models. In all cases, we found that the lack of detected optical emission ruled out the X-ray emission from the same electron population that produces radio emission. All three sources have high total extended radio power, similar to that of FR II sources. We find this is in good agreement with previously studied hybrid sources, where high-power hybrid sources emit X-rays via IC/CMB and the low-power hybrid sources emit X-rays via synchrotron emission. This supports the idea that it is total radio power rather than FR morphology that determines the X-ray emission mechanism. We found no significant asymmetries in the diffuse X-ray emission surrounding the host galaxies. Sources PKS 1045-188 and 8C 1849+670 show significant differences in their radio and X-ray termination points, which may result from the deceleration of highly relativistic bulk motion.

  10. Innovations in the Analysis of Chandra-ACIS Observations

    CERN Document Server

    Broos, Patrick S; Feigelson, Eric D; Getman, Konstantin V; Bauer, Franz E; Garmire, Gordon P

    2010-01-01

    As members of the instrument team for the Advanced CCD Imaging Spectrometer (ACIS) on NASA's Chandra X-ray Observatory and as Chandra General Observers, we have developed a wide variety of data analysis methods that we believe are useful to the Chandra community, and have constructed a significant body of publicly-available software (the ACIS Extract package) addressing important ACIS data and science analysis tasks. This paper seeks to describe these data analysis methods for two purposes: to document the data analysis work performed in our own science projects, and to help other ACIS observers judge whether these methods may be useful in their own projects (regardless of what tools and procedures they choose to implement those methods). The ACIS data analysis recommendations we offer here address much of the workflow in a typical ACIS project, including data preparation, point source detection via both wavelet decomposition and image reconstruction, masking point sources, identification of diffuse structure...

  11. CSTACK: A Web-Based Stacking Analysis Tool for Deep/Wide Chandra Surveys

    Science.gov (United States)

    Miyaji, Takamitsu; Griffiths, R. E.; C-COSMOS Team

    2008-03-01

    Stacking analysis is a strong tool to probe the average X-ray properties of X-ray faint objects as a class, each of which are fainter than the detection limit as an individual source. This is especially the case for deep/wide surveys with Chandra, with its superb spatial resolution and the existence of survey data on the fields with extensive multiwavelength coverages. We present an easy-to use web-based tool (http://saturn.phys.cmu.edu/cstack), which enables users to perform a stacking analysis on a number of Chandra survey fields.Currently supported are C-COSMOS, Extended Chandra Deep Field South (proprietary access, password protected), Chandra Deep Fields South, and North (Guest access user=password=guest). For an input list of positions (e.g. galaxies selected from an optical catalog), the WWW tool returns stacked Chandra images in soft and hard bands and statistical analysis results including bootstrap histograms. We present running examples on the C-COSMOS data. The next version will also include the use of off-axis dependent aperture size, automatic exclusions of resolved sources, and histograms of stacks on random positions.

  12. Multiwavelength Astronomy Modules for High School Students

    Science.gov (United States)

    Thomas, Christie; Brazas, J.; Lane, S.; York, D. G.

    2014-01-01

    The University of Chicago Multiwavelength Astronomy modules are web-based lessons covering the history, science, tools, and impact of astronomy across the wavebands, from gamma ray to infrared. Each waveband includes four lessons addressing one aspect of its development. The lessons are narrated by a historical docent or practicing scientist who contributed to a scientific discovery or instrument design significant to astronomical progress. The process of building each lesson began with an interview conducted with the scientist, or the consultation of a memoir or oral history transcript for historical docents. The source was then excerpted to develop a lesson and supplemented by archival material from the University of Chicago Library and other archives; NASA media; and participant contributed photographs, light curves, and spectra. Practicing educators also participated in the lesson development and evaluation. In July 2013, the University of Chicago sponsored 9 teachers and 15 students to participate in a STEM education program designed to engage participants as co-learners as they used the Multiwavelength Astronomy lessons in conjunction with talks given by the participating scientists. Teachers also practiced implementation of the resources with students and designed authentic research activities that make use of NASA mission data, which were undertaken as mini-research projects by student teams during the course of the program. This poster will introduce the Multiwavelength Astronomy web modules; highlight educator experiences in their use with high school audiences; and analyze the module development process, framing the benefits to and contributions of each of the stakeholders including practicing astronomers in research and space centers, high school science educators, high school students, University libraries and archives, and the NASA Science Mission Directorate. The development of these resources, and the summer professional development workshops were

  13. Predicting Chandra CCD Degradation with the Chandra Radiation Model

    Science.gov (United States)

    Minow, Joseph I.; Blackwell, William C.; DePasquale, Joseph M.; Grant, Catherine E.; O'Dell, Stephen L.; Plucinsky, Paul P.; Schwartz, Daniel A.; Spitzbart, Bradley D.; Wolk, Scott J.

    2008-01-01

    Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This

  14. INNOVATIONS IN THE ANALYSIS OF CHANDRA-ACIS OBSERVATIONS

    International Nuclear Information System (INIS)

    As members of the instrument team for the Advanced CCD Imaging Spectrometer (ACIS) on NASA's Chandra X-ray Observatory and as Chandra General Observers, we have developed a wide variety of data analysis methods that we believe are useful to the Chandra community, and have constructed a significant body of publicly available software (the ACIS Extract package) addressing important ACIS data and science analysis tasks. This paper seeks to describe these data analysis methods for two purposes: to document the data analysis work performed in our own science projects and to help other ACIS observers judge whether these methods may be useful in their own projects (regardless of what tools and procedures they choose to implement those methods). The ACIS data analysis recommendations we offer here address much of the workflow in a typical ACIS project, including data preparation, point source detection via both wavelet decomposition and image reconstruction, masking point sources, identification of diffuse structures, event extraction for both point and diffuse sources, merging extractions from multiple observations, nonparametric broadband photometry, analysis of low-count spectra, and automation of these tasks. Many of the innovations presented here arise from several, often interwoven, complications that are found in many Chandra projects: large numbers of point sources (hundreds to several thousand), faint point sources, misaligned multiple observations of an astronomical field, point source crowding, and scientifically relevant diffuse emission.

  15. Dipping in Cygnus X-2 in a multi-wavelength campaign due to absorption of extended ADC emission

    CERN Document Server

    Balucinska-Church, M; Wilms, J; Gibiec, A; Hanke, M; Spencer, R E; Rushton, A; Church, M J

    2011-01-01

    We report results of one-day simultaneous multiwavelength observations of Cygnus X-2 using XMM, Chandra, the European VLBI Network and the XMM Optical Monitor. During the observations, the source did not exhibit Z-track movement, but remained in the vicinity of the soft apex. It was in a radio quiescent/quiet state of 60 deg, these structures can still cover large parts of the extended ADC, without absorbing emission from the central neutral star.

  16. Sharp Chandra View of ROSAT All-Sky Survey Bright Sources: I. Improvement of Positional Accuracy

    CERN Document Server

    Gao, Shuang; Liu, Jifeng

    2016-01-01

    The ROSAT All-Sky Survey (RASS) represents one of the most complete and sensitive soft X-ray all-sky surveys to date. However, the deficient positional accuracy of the RASS Bright Source Catalog (BSC) and subsequent lack of firm optical identifications affect the multi-wavelength studies of X-ray sources. The widely used positional errors $\\sigma_{pos}$ based on the Tycho Stars Catalog (Tycho-1) have previously been applied for identifying objects in the optical band. The considerably sharper Chandra view covers a fraction of RASS sources, whose $\\sigma_{pos}$ could be improved by utilizing the sub-arcsec positional accuracy of Chandra observations. We cross-match X-ray objects between the BSC and \\emph{Chandra} sources extracted from the Advanced CCD Imaging Spectrometer (ACIS) archival observations. A combined counterparts list (BSCxACIS) with \\emph{Chandra} spatial positions weighted by the X-ray flux of multi-counterparts is employed to evaluate and improve the former identifications of BSC with the other...

  17. Multiwavelength observations of TANAMI sources

    OpenAIRE

    Krauß, Felicia; Müller, Cornelia; Kadler, Matthias; Wilms, Jörn; Böck, Moritz; Ojha, Roopesh; Ros, Eduardo

    2013-01-01

    The TANAMI VLBI program is monitoring a sample of 84 Active Galactic Nuclei of the Southern Sky at 8.4 and 22 GHz. The combination of VLBI and multiwavelength data allows us to study changes in the spectral energy distributions, as well as changes in the structure of the inner jets and to search correlations between both. We present initial results of the multiwavelength analysis of a sub-sample of the TANAMI sources, combining our radio data with simultaneous X-ray and optical/UV observation...

  18. UNBIASED CORRECTION RELATIONS FOR GALAXY CLUSTER PROPERTIES DERIVED FROM CHANDRA AND XMM-NEWTON

    International Nuclear Information System (INIS)

    We use a sample of 62 clusters of galaxies to investigate the discrepancies between the gas temperature and total mass within r 500 from XMM-Newton and Chandra data. Comparisons of the properties show that (1) both the de-projected and projected temperatures determined by Chandra are higher than those of XMM-Newton and there is a good linear relationship for the de-projected temperatures: T Chandra = 1.25 × T XMM–0.13. (2) The Chandra mass is much higher than the XMM-Newton mass with a bias of 0.15 and our mass relation is log10 M Chandra = 1.02 × log10 M XMM+0.15. To explore the reasons for the discrepancy in mass, we recalculate the Chandra mass (expressed as MChmo/d) by modifying its temperature with the de-projected temperature relation. The results show that MChmo/d is closer to the XMM-Newton mass with the bias reducing to 0.02. Moreover, MChmo/d are corrected with the r 500 measured by XMM-Newton and the intrinsic scatter is significantly improved with the value reducing from 0.20 to 0.12. These mean that the temperature bias may be the main factor causing the mass bias. Finally, we find that MChmo/d is consistent with the corresponding XMM-Newton mass derived directly from our mass relation at a given Chandra mass. Thus, the de-projected temperature and mass relations can provide unbiased corrections for galaxy cluster properties derived from Chandra and XMM-Newton

  19. Chandra Images Provide New Vision of Cosmic Explosions

    Science.gov (United States)

    1999-09-01

    Images from NASA's Chandra X-ray Observatory released today reveal previously unobserved features in the remnants of three different supernova explosions. Two of the remnants G21.5-0.9 and PSR 0540-69 show dramatic details of the prodigious production of energetic particles by a rapidly rotating, highly magnetized neutron star, as well as the enormous shell structures produced by the explosions. The image of the third remnant, E0102-72, reveals puzzling spoke-like structures in its interior. G21.5-0.9, in the constellation of Scutum, is about 16,000 light years (1 light year = 6 trillion miles) from Earth. Chandra's image shows a bright nebula surrounded by a much larger diffuse cloud. Inside the inner nebula is a bright central source that is thought to be a rapidly rotating highly magnetized neutron star. A rotating neutron star acts like a powerful generator, creating intense electric voltages that accelerate electrons to speeds close to the speed of light. The total output of this generator is greater than a thousand suns. The fluffy appearance of the central nebula is thought to be due to magnetic field lines which constrain the motions of the high-energy electrons. "It's a remarkable image," said Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics. "Neither the inner core nor the outer shell has ever been seen before." "It is as though we have a set of Russian dolls, with structures embedded within structures," said Professor Gordon Garmire of Penn State University, and principal investigator of the Advanced CCD Imaging Spectrometer, the X-ray camera that was used to make two of the images. NASA's project scientist, Dr. Martin Weisskopf of the Marshall Space Flight Center said, "Chandra's capability to provide surprises and insights continues." PSR 0540-69 PSR 0540-69 The existence of a rotating neutron star, or pulsar, in the center of G21.5-0.9 is inferred from the appearance of the nebula and the energy distribution of X-rays and radio

  20. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  1. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  2. Chandra Observations of Neutron Stars -- An Overview

    OpenAIRE

    Weisskopf, M. C.

    2002-01-01

    We present a brief review of Chandra observations of neutron stars, with a concentration on neutron stars in supernova remnants. The early Chandra results clearly demonstrate how critical the angular resolution has been in order to separate the neutron star emission from the surrounding nebulosity.

  3. Maximising the mileage from the Chandra podcasts

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.

    2008-06-01

    NASA's Chandra X-ray Observatory captures X-ray images and measures spectra of many highenergy cosmic phenomena. There is a constant challenge to devise new and appropriate means to bring these potentially esoteric science results and concepts in a digestible way to the public. One of the ideas to address this challenge became the Chandra podcast.

  4. The international AGN watch: A multiwavelength monitoring consortium

    Science.gov (United States)

    Alloin, D.; Clavel, J.; Peterson, B. M.; Reichert, G. A.; Stirpe, G. M.

    1994-01-01

    The International AGN Watch, an informal consortium of over 100 astronomers, was established to coordinate multiwavelength monitoring of a limited number of active galactic nuclei and thus obtain comprehensive continuum and emission-line variability data with unprecedented temporal and wavelength coverage. We summarize the principal scientific results from two completed space-based and ground-based campaigns on the Seyfert galaxies NGC 5548 and NGC 3783. We describe a project in progress and outline our future plans.

  5. Future Multiwavelength Studies with the Fermi Large Area Telescope

    Science.gov (United States)

    Thompson, David J.

    2011-01-01

    With two and a half years of experience, Fermi LAT contributions to multiwavelength studies have become an integral part of many astrophysical research projects. Future efforts will benefit from (1) Deeper LAT exposures} resulting in more sources; (2) More high-energy, high-angular resolution photons, giving better source locations and imaging; (3) Faster analysis of variability and announcements to the community; and (4) Longer time series for studies of variable source properties in comparison to other wavelengths.

  6. The ELAIS Deep X-ray Survey I Chandra Source Catalogue and First Results

    CERN Document Server

    Manners, J C; Almaini, O; Willott, C J; González-Solares, E A; Lawrence, A; Mann, R G; Pérez-Fournon, I; Dunlop, J S; McMahon, R G; Oliver, S J; Rowan-Robinson, M; Serjeant, S

    2003-01-01

    We present an analysis of two deep (75 ks) Chandra observations of the European Large Area ISO Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well studied regions with extensive multi-wavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to 2 soft extended sources, which are found to be associated with galaxy clusters. An overdensity of sources is found in N1 with 30% more sources than N2, which we attribute to large-scale structure. A similar variance is seen between other deep Chandra surveys. The log(N) - log(S) relations reveal an increasing fraction of hard sources at fainter fluxes. A similar trend is seen with the number of galaxy-like optical counterparts increasing towards fainter fluxes, consistent with the emergence of a population of obscured sources.

  7. Finding Rare AGN: X-ray Number Counts of Chandra Sources in Stripe 82

    CERN Document Server

    LaMassa, Stephanie M; Glikman, Eilat; Cappelluti, Nico; Civano, Francesca; Comastri, Andrea; Treister, Ezequiel; Arifin,; Boehringer, Hans; Cardamone, Carie; Chon, Gayoung; Kephart, Miranda; Murray, Stephen S; Richards, Gordon; Ross, Nic; Rozner, Joshua S; Schawinski, Kevin

    2012-01-01

    We present the first results of a wide area X-ray survey within the Sloan Digital Sky Survey (SDSS) Stripe 82, a 300 deg$^2$ region of the sky with a substantial investment in multi-wavelength coverage. We analyzed archival {\\it Chandra} observations that cover 7.5 deg$^2$ within Stripe 82 ("Stripe 82 ACX"), reaching 4.5$\\sigma$ flux limits of 7.9$\\times10^{-16}$, 3.4$\\times10^{-15}$ and 1.8$\\times10^{-15}$ erg s$^{-1}$ cm$^{-2}$ in the soft (0.5-2 keV), hard (2-7 keV) and full (0.5-7 keV) bands, to find 774, 239 and 1118 X-ray sources, respectively. Three hundred twenty-one sources are detected only in the full band and 9 sources are detected solely in the soft band. Utilizing data products from the {\\it Chandra} Source Catalog, we construct independent Log$N$-Log$S$ relationships, detailing the number density of X-ray sources as a function of flux, which show general agreement with previous {\\it Chandra} surveys. We compare the luminosity distribution of Stripe 82 ACX with the smaller, deeper CDF-S + E-CDFS...

  8. Finding Rare AGN: XMM-Newton and Chandra Observations of SDSS Stripe 82

    CERN Document Server

    LaMassa, Stephanie M; Cappelluti, Nico; Civano, Francesca; Ranalli, Piero; Glikman, Eilat; Treister, Ezequiel; Richards, Gordon; Ballantyne, David; Stern, Daniel; Comastri, Andrea; Cardamone, Carie; Schawinski, Kevin; Boehringer, Hans; Chon, Gayoung; Murray, Stephen S; Green, Paul; Nandra, Kirpal

    2013-01-01

    We have analyzed the {\\it XMM-Newton} and {\\it Chandra} data overlapping $\\sim$16.5 deg$^2$ of Sloan Digital Sky Survey Stripe 82, including $\\sim$4.6 deg$^2$ of proprietary {\\it XMM-Newton} data that we present here. In total, 3362 unique X-ray sources are detected at high significance. We derive the {\\it XMM-Newton} number counts and compare them with our previously reported {\\it Chandra} Log$N$-Log$S$ relations and other X-ray surveys. The Stripe 82 X-ray source lists have been matched to multi-wavelength catalogs using a maximum likelihood estimator algorithm. We discovered the highest redshift ($z=5.86$) quasar yet identified in an X-ray survey. We find 2.5 times more high luminosity (L$_x \\geq 10^{45}$ erg s$^{-1}$) AGN than the smaller area {\\it Chandra} and {\\it XMM-Newton} survey of COSMOS and 1.3 times as many identified by XBo\\"otes. Comparing the high luminosity AGN we have identified with those predicted by population synthesis models, our results suggest that this AGN population is a more import...

  9. Dipping in CygnusX-2 in a multi-wavelength campaign due to absorption of extended ADC emission

    OpenAIRE

    Balucinska-Church, M.; Schulz, N. S.; Wilms, J.; Gibiec, A.; Hanke, M.; Spencer, R.E.; Rushton, A.; Church, M. J.

    2011-01-01

    We report results of one-day simultaneous multiwavelength observations of Cygnus X-2 using XMM, Chandra, the European VLBI Network and the XMM Optical Monitor. During the observations, the source did not exhibit Z-track movement, but remained in the vicinity of the soft apex. It was in a radio quiescent/quiet state of < 150 microJy. Strong dip events were seen as 25% reductions in X-ray intensity. The use of broadband CCD spectra in combination with narrow-band grating spectra has now demonst...

  10. The Chandra X-Ray Optics

    CERN Document Server

    Weisskopf, Martin C

    2011-01-01

    Significant advances in science always take place when the state of the art in instrumentation improves dramatically. NASA's Chandra X-Ray Observatory represents such an advance. Launched in July of 1999, Chandra is an observatory designed to study the x-ray emission from all categories of astronomical objects --- from comets, planets, and normal stars to quasars, galaxies, and clusters of galaxies. At the heart of this observatory is the precision X-Ray optic that has been vital for Chandra's outstanding success and which features an angular resolution improved by an order of magnitude compared to its forerunners. The Chandra mission is now entering its 13-th year of operation. Given that the Observatory was designed for a minimum of 3 years of operation testifies to its robust and carefully thought out design. We review the design and construction of the remarkable telescope, present examples of its usage for astronomy and astrophysics, and speculate upon the future.

  11. Multiwavelength investigations of co-evolution of bright custer galaxies

    CERN Document Server

    Hashimoto, Yasuhiro; Boehringer, Hans

    2014-01-01

    We report a systematic multi-wavelength investigation of environments of the brightest cluster galaxies (BCGs), using the X-ray data from the Chandra archive, and optical images taken with 34'x 27' field-of-view Subaru Suprime-Cam. Our goal is to help understand the relationship between the BCGs and their host clusters, and between the BCGs and other galaxies, to eventually address a question of the formation and co-evolution of BCGs and the clusters. Our results include: 1) Morphological variety of BCGs, or the second or the third brightest galaxy (BCG2, BCG3), is comparable to that of other bright red sequence galaxies, suggesting that we have a continuous variation of morphology between BCGs, BCG2, and BCG3, rather than a sharp separation between the BCG and the rest of the bright galaxies. 2) The offset of the BCG position relative to the cluster centre is correlated to the degree of concentration of cluster X-ray morphology (Spearman rho = -0.79), consistent with an interpretation that BCGs tend to be of...

  12. Chandra Observations of SNR RCW 103

    OpenAIRE

    Frank, Kari A.; Burrows, David N.; Park, Sangwook

    2015-01-01

    We analyze three Chandra observations, with a combined exposure time of 99 ks, of the Galactic supernova remnant RCW 103, a young supernova remnant, previously with no clear detection of metal-rich ejecta. Based on our imaging and spectral analyses of these deep Chandra data, we find evidence for metal-rich ejecta emission scattered throughout the remnant. X-ray emission from the shocked ejecta is generally weak, and the shocked circumstellar medium (CSM) is a largely dominant component acros...

  13. Composition of the Chandra ACIS contaminant

    OpenAIRE

    Marshall, Herman L.; Tennant, Allyn; Grant, Catherine E.; Hitchcock, Adam P.; O'Dell, Steve; Plucinsky, Paul P.

    2003-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also dete...

  14. Chandra Observatory Uncovers Hot Stars In The Making

    Science.gov (United States)

    2000-11-01

    Cambridge, Mass.--In resolving the hot core of one of the Earth's closest and most massive star-forming regions, the Chandra X-ray Observatory showed that almost all the young stars' temperatures are more extreme than expected. Orion Trapezium JPEG, TIFF, PS The Orion Trapezium as observed on October 31st UT 05:47:21 1999. The colors represent energy, where blue and white indicate very high energies and therefore exterme temperatures. The size of the X-ray source in the image also reflects its brightness, i.e. more bright sources appear larger in size. The is an artifact caused by the limiting blur of the telescope optics. The projected diameter of the field of view is about 80 light days. Credit: NASA/MIT Orion Trapezium JPEG, TIFF, PS The Orion Trapezium as observed on November 24th UT 05:37:54 1999. The colors represent energy, where blue and white indicate very high energies and therefore exterme temperatures. The size of the X-ray source in the image also reflects its brightness, i.e. more bright sources appear larger in size. The is an artifact caused by the limiting blur of the telescope optics. The projected diameter of the field of view is about 80 light days. Credit: NASA/MIT The Orion Trapezium Cluster, only a few hundred thousand years old, offers a prime view into a stellar nursery. Its X-ray sources detected by Chandra include several externally illuminated protoplanetary disks ("proplyds") and several very massive stars, which burn so fast that they will die before the low mass stars even fully mature. One of the major highlights of the Chandra observations are identification of proplyds as X-ray point source in the near vicinity of the most massive star in the Trapezium. Previous observations did not have the ability to separate the contributions of the different objects. "We've seen high temperatures in stars before, but what clearly surprised us was that nearly all the stars we see appear at rather extreme temperatures in X-rays, independent of

  15. Multi-wavelength Šolc birefringent filter

    Czech Academy of Sciences Publication Activity Database

    Melich, Radek; Melich, Zbyněk; Šolc, Ivan

    Vol. 7018. Bellingham, Washington : Society of Photo-Optical Instrumentation Engineers, 2008 - (Atad-Ettedgui, E.; Lemke, D.), s. 1-7 ISBN 9780819472281. - (SPIE. 7018). [The Physics of Chromospheric Plasma. Marseille (FR), 23.06.2008-27.06.2008] R&D Projects: GA AV ČR 1QS100820502 Institutional research plan: CEZ:AV0Z20430508 Keywords : Šolc birefringent filter * multiwavelength Subject RIV: BH - Optics, Masers, Lasers http://dx.doi.org/10.1117/12.788814

  16. Multiwavelength Study of the May 13, 2005 Flare Event

    Czech Academy of Sciences Publication Activity Database

    Rovira, M.G.; Šimberová, Stanislava; Karlický, Marian; Luoni, M.L.; Fárník, František

    San Francisco : Astronomical Society of the Pacific, 2007 - (Heinzel, P.; Dorotovič, I.; Rutten, R.), s. 461-465 ISBN 978-1-583812-36-5. - (ASP Conference Series. 368). [Solar Physics Meeting. Coimbra (PT), 09.10.2006-13.10.2006] R&D Projects: GA ČR GA102/04/0155; GA AV ČR 1QS300120506 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar activity * multiwavelength image processing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  17. Multi-wavelength Polarimetry and Variability Study of M87 Jet

    CERN Document Server

    Avachat, Sayali S; Sparks, William B; Cara, Mihai; Owen, Frazer N

    2014-01-01

    We present a high resolution polarimetry and variability study of the M87 jet using VLA and HST data taken during 2002 to 2008. Both data-sets have an angular resolution as high as 0.06$"$, which is 2-3 times better than previous observations. New morphological details are revealed in both the optical and radio, which can help to reveal the energetic and magnetic field structure of the jet. By comparing the data with previously published HST and VLA observations, we show that the jet$'$s morphology in total and polarized light is changing significantly on timescales of $\\sim$a decade. We compare the evolution of the inner jet (particularly the nucleus and knot HST-1), when our observations overlap with the multi-wavelength monitoring campaigns conducted with HST and Chandra. We use these data to comment on particle acceleration and main emission processes.

  18. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  19. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  20. Blazar Demographics Using Multiwavelength Data

    Science.gov (United States)

    Mao, Peiyuan; Massaro, F.; Urry, C. Megan

    2016-01-01

    Blazars are ideal laboratories to study relativistic jets in AGN, which are thought to be an important channel for feeding energy into galaxies and clusters. We present multi-wavelength SEDs of 2214 blazars with known redshifts, based on the Roma-BZCAT data across 12 frequency bands ranging from radio to gamma-ray. We confirm the anti-correlation between radio luminosity and synchrotron peak frequency, (part of what defines the "blazar sequence"), although with greater scatter than seen previously in studies of far fewer blazars. We describe an empirical estimator of luminosities in those 12 frequency bands using only the radio luminosity at 1.4 GHz and the redshift as inputs. Using this estimator, we study the demographics of blazars by comparing Monte-Carlo simulations to blazar surveys at several different frequencies and flux limits. We recover the observed evolutionary parameter for both low-frequency peaked (V/Vmax≈0.6) and high-frequency peaked (V/Vmax≈0.4) blazars, proving that selection effects cause the high-frequency-peaked sources to appear to anti-evolve even though the same underlying evolution was assumed in the simulation. We also show that the if instead we randomly assign fluxes independent of radio luminosity, the simulated blazar samples disagree strongly with the observed ones. These simulations confirm that luminosity and SED shape must indeed be linked in a physical blazar sequence.

  1. Multiwavelength pyrometry for nongray bodies

    Science.gov (United States)

    Ng, Daniel

    1992-01-01

    A multiwavelength technique was developed and applied to measure the temperatures of nongray surfaces. The instruments required are a spectral radiometer, a dedicated auxiliary radiation source, and a computer. In general, three radiation spectra are recorded: (1) spectrum S sub 0 of the auxiliary radiation source; (2) spectrum S sub 1 of the surface-emitted radiation; and (3) spectrum S sub 2, the sum of the radiation of S sub 1 plus the reflected radiation due to the incidence of the auxiliary radiation source on the surface. Subtracting spectrum S sub 1 from spectrum Sub 2 yields the reflection spectrum resulting from the incidence radiation. From these spectra, a quantity z(lambda) is derived and is related to the reflectivity r(lambda) by r(lambda) = z(lambda)/f, where f is a constant. Spectrum S sub 1 is represented mathematically as the product of a wavelength-dependent emissivity obtained from Kirchhoff's law and a Planck function of temperature T. Application of two-variable (lambda and z), nonlinear, least-squares curve-fitting computer software to fit spectrum S sub 1 to this mathematical expression yielded the surface temperature. This technique also measured the spectral reflectivity and emissivity of the surface. Instrumentation necessary to extend measurement to elevated temperatures and in the presence of reflective interference is discussed.

  2. An Overview of the Performance of the Chandra X-ray Observatory

    Science.gov (United States)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2003-08-01

    The Chandra X-ray Observatory is the X-ray component of NASA’s Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA’s Marshall Space Flight Center (MSFC) manages the project and provides project science; Northrop Grumman Space Technology (NGST formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institüt für extraterrestrische Physik (MPE), and the University of Kiel also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  3. Catching a Galactic Football: Chandra Examines Cygnus A

    Science.gov (United States)

    2000-11-01

    falling into the Cygnus A galaxy. However, the two jets powered by the nuclear black hole in this galaxy push this gas outward, like a balloon being inflated by a tank of gas. Cygnus A is not alone in its galactic neighborhood, but is a member of a large cluster containing many galaxies. Extremely hot (tens of millions of degrees Celsius) gas is spread between the galaxies. Although it has a very low density, this gas provides enough resistance to slow down the outward advancement of the particle jets from Cygnus A. At the ends of the jets, astronomers find bright areas of radio and X-ray emission known as "hot spots." Scientists believe that fast atomic particles and magnetic fields from the jets spill out into the region, providing pressure that continuously inflates the cavity. In a paper accepted by the Astrophysical Journal Letters, Wilson, Young and Shopbell discuss how the Chandra observations resolve a long-standing puzzle about the hot spots at the ends of the jets. By analyzing the X-ray emission of the hot spots, the astronomers have measured the strength of the magnetic field associated with them. "The radio data themselves cannot determine the strength of the magnetic field, a limitation that has inhibited progress in our understanding of cosmic radio sources for 50 years," said Wilson. "Combination of the Chandra X-ray and the radio data allows a quite precise measurement of the field strength." The Chandra observation of Cygnus A was made with the ACIS on May 21, 2000, for over nine hours. The ACIS X-ray camera was developed for NASA by Pennsylvania State University and MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. This research was supported by the Chandra project at the NASA Marshall Space Flight Center. Images associated with this

  4. Multi-wavelength Monitoring of Lensed Quasars: Deciphering Quasar Structure at Micro-arcseconds Scales

    Science.gov (United States)

    Mosquera, Ana; Morgan, Christopher W.; Kochanek, Christopher S.; Dai, Xinyu; Chen, Bin; MacLeod, Chelsea Louise; Chartas, George

    2016-01-01

    Microlensing in multiply imaged gravitationally lensed quasars provides us with a unique tool to zoom in on the structure of AGN and explore their physics in more detail. Microlensing magnification, caused primarily by stars and white dwarfs close to the line of sight towards the lensed quasar images, is seen as uncorrelated flux variations due to the relative motions of the quasar, the lens, its stars, and the observer, and it depends on the structural and dynamical properties of the source and the lens. Since the magnification depends upon the size of the source, we can use microlensing to measure the size of quasar emission regions. In essence, the amplitude of the microlensing variability encodes the source size, with smaller sources showing larger variability amplitudes. Using state of the art microlensing techniques, our team has performed pioneering research in the field based on multi-wavelength space and ground-based observations. Among the most remarkable results, using Chandra observations we have set the first quantitative constraints on the sizes of the X-ray emission regions of quasars. In this work l briefly describe the methodology, the results from our previous multi-wavelength monitoring programs, and the next frontier of exploring the dependence of the structure of the X-ray emission regions on black hole mass and X-ray energy.

  5. Photometric Redshifts for the Large-Area Stripe 82X Multiwavelength Survey

    Science.gov (United States)

    Tasnim Ananna, Tonima; Salvato, Mara; Urry, C. Megan; LaMassa, Stephanie M.; STRIPE 82X

    2016-06-01

    The Stripe 82X survey currently includes 6000 X-ray sources in 31.3 square degrees of XMM-Newton and Chandra X-ray coverage, most of which are AGN. Using a maximum-likelihood approach, we identified optical and infrared counterparts in the SDSS, VHS K-band and WISE W1-band catalogs. 1200 objects which had different best associations in different catalogs were checked by eye. Our most recent paper provided the multiwavelength catalogs for this sample. More than 1000 counterparts have spectroscopic redshifts, either from SDSS spectroscopy or our own follow-up program. Using the extensive multiwavelength data in this field, we provide photometric redshift estimates for most of the remaining sources, which are 80-90% accurate according to the training set. Our sample has a large number of candidates that are very faint in optical and bright in IR. We expect a large fraction of these objects to be the obscured AGN sample we need to complete the census on black hole growth at a range of redshifts.

  6. Multi-wavelength polarimetry and variability study of M87 jet during 2002-2008

    Science.gov (United States)

    Avachat, Sayali S.; Perlman, Eric S.; Cara, Mihai; Owen, Frazer; Harris, Daniel E.; Sparks, William B.; Li, Kunyang; Kosak, Katie

    2016-01-01

    In this dissertation, we present the multi-wavelength study of M87 jet. We compare the radio and optical polarimetry and variability. We attempt to study the spectrum of the jet in radio through X-rays wavelengths. By comparing the data with previously published VLA and HST observations, we show that the jet's morphology in total and polarized light is changing significantly on timescales of ~1 decade. We are looking for the variability of different knots and changes in their spectra using our deep, high resolution observations of the jet between 2002 and 2008. The observations have 2-3 times better resolution that any similar previous study (Perlman et al. 1999) in addition allowing us to observe variability. During this time, the nucleus showed month-scale variability in optical and X-rays and also flared twice in all wave- lengths including radio. The knot HST-1, located closest to the nucleus, displayed a huge flare, increasing about 100 times in brightness. The knot A and B complex shows variations in polarization structures indicating the presence of a helical magnetic field which may be responsible for the in-situ particle accelerations in the jet. We compare the evolution of different knots and components of the jet, when our observations overlap with the multi-wavelength monitoring campaigns conducted with HST and Chandra and comment on particle acceleration and main emission processes. We further use the data to investigate the observed 3-dimensional structure of the jet and the magnetic field structure.

  7. Novel Analysis of the Multiwavelength Structure of Relativistic Jet in Quasar 3C 273

    CERN Document Server

    Marchenko, Volodymyr; Ostrowski, Michal; Stawarz, Lukasz; Bohdan, Artem; Jamrozy, Marek; Hnatyk, Bohdan

    2016-01-01

    We present a detailed analysis of the best-quality multi-wavelength data gathered for the large-scale jet in the core-dominated quasar 3C 273. We analyze all the archival observations of the target with the Chandra X-ray Observatory, the far-ultraviolet observations with the Hubble Space Telescope, and a 8.4 GHz maps obtained with the Very Large Array. In our study we focus on investigating the morphology of the outflow at different frequencies, and therefore we apply various techniques for the image deconvolution, paying particular attention to a precise modeling of the Chandra and Hubble point spread functions. We find that the prominent brightness enhancements in the X-ray and far-ultraviolet jet of 3C 273 - the "knots" - are not point-like, and can be resolved transversely as extended features with sizes of about $\\simeq 0.5$ kpc. Also, the radio outflow is wider than the deconvolved X-ray/ultraviolet jet. Finally, the intensity peaks of the X-ray knots are located systematically upstream of the correspon...

  8. Chandra Observations of Supernova 1987A

    CERN Document Server

    Park, Sangwook; Garmire, Gordon P; McCray, Richard; Racusin, Judith L; Zhekov, Svetozar A

    2007-01-01

    We have been monitoring Supernova (SN) 1987A with {\\it Chandra X-Ray Observatory} since 1999. We present a review of previous results from our {\\it Chandra} observations, and some preliminary results from new {\\it Chandra} data obtained in 2006 and 2007. High resolution imaging and spectroscopic studies of SN 1987A with {\\it Chandra} reveal that X-ray emission of SN 1987A originates from the hot gas heated by interaction of the blast wave with the ring-like dense circumstellar medium (CSM) that was produced by the massive progenitor's equatorial stellar winds before the SN explosion. The blast wave is now sweeping through dense CSM all around the inner ring, and thus SN 1987A is rapidly brightening in soft X-rays. At the age of 20 yr (as of 2007 January), X-ray luminosity of SN 1987A is $L_{\\rm X}$ $\\sim$ 2.4 $\\times$ 10$^{36}$ ergs s$^{-1}$ in the 0.5$-$10 keV band. X-ray emission is described by two-component plane shock model with electron temperatures of $kT$ $\\sim$ 0.3 and 2 keV. As the shock front inter...

  9. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    CERN Document Server

    Yang, Y; Cowie, L L; Mushotzky, R F

    2006-01-01

    We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg^2 and reach a depth of 3x10^-15 c.g.s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in comoving coordinates, averaged over the redshift range of 0.1

  10. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    Science.gov (United States)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  11. Multi-wavelength Observations of the Radio Magnetar PSR J1622-4950 and Discovery of its Possibly Associated Supernova Remnant

    OpenAIRE

    Anderson, Gemma E.; Gaensler, B. M.; Slane, Patrick Olson; Rea, Nanda; Kaplan, David L.; Posselt, Bettina; Levin, Lina; Johnston, Simon; Murray, Stephen S.; Brogan, Crystal L.; Bailes, Matthew; Bates, Samuel; Benjamin, Robert A.; Ramesh Bhat, N. D.; Burgay, Marta

    2012-01-01

    We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of ~50 over 3.7 years, decaying exponentially with a characteristic time of 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4...

  12. GLAST Large Area Telescope Multiwavelength Opportunities

    International Nuclear Information System (INIS)

    High-energy gamma-ray sources are inherently nonthermal, multiwavelength objects. With the launch of the Gamma-ray Large Area Space Telescope (GLAST) scheduled for later this year, the GLAST Large Area Telescope (LAT) Collaboration invites cooperative efforts from observers at all wavelengths. Among the many topics where multiwavelength studies will maximize the scientific understanding, two stand out for particular emphasis: (1) Active Galactic Nuclei. The study of AGN gamma-ray jets through time variability and spectral modeling can help link the accretion processes close to the black hole with the large-scale interaction of the AGN with its environment; (2) Unidentified Gamma-ray Sources. New gamma-ray sources need first to be identified with known objects seen at other wavelengths using position, spectrum, or time variability, and then multiwavelength studies can be used to explore the astrophysical implications of high-energy radiation from these sources. Observers interested in any type of coordinated observations should contact the LAT Multiwavelength Coordinating Group

  13. GLAST Large Area Telescope Multiwavelength Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David J.; /NASA, Goddard

    2007-10-10

    High-energy gamma-ray sources are inherently nonthermal, multiwavelength objects. With the launch of the Gamma-ray Large Area Space Telescope (GLAST) scheduled for later this year, the GLAST Large Area Telescope (LAT) Collaboration invites cooperative efforts from observers at all wavelengths. Among the many topics where multiwavelength studies will maximize the scientific understanding, two stand out for particular emphasis: (1) Active Galactic Nuclei. The study of AGN gamma-ray jets through time variability and spectral modeling can help link the accretion processes close to the black hole with the large-scale interaction of the AGN with its environment; (2) Unidentified Gamma-ray Sources. New gamma-ray sources need first to be identified with known objects seen at other wavelengths using position, spectrum, or time variability, and then multiwavelength studies can be used to explore the astrophysical implications of high-energy radiation from these sources. Observers interested in any type of coordinated observations should contact the LAT Multiwavelength Coordinating Group.

  14. Composition of the Chandra ACIS contaminant

    CERN Document Server

    Marshall, H L; Grant, C E; Hitchcock, A P; O'Dell, S; Plucinsky, P P; Marshall, Herman L.; Tennant, Allyn; Grant, Catherine E.; Hitchcock, Adam P.; Dell, Steve O'; Plucinsky, Paul P.

    2003-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also detectable. Excluding H, we find that C, O, and F comprise >80%, 7%, and 7% of the contaminant by number, respectively. Nitrogen is less than 3% of the contaminant. We will assess various candidates for the contaminating material and investigate the growth of the layer with time. For example, the detailed structure of the C-K absorption edge provides information about the bonding structure of the compound, eliminating aromatic hydrocarbons as the contaminating material.

  15. Statistical Characterization of the Chandra Source Catalog

    CERN Document Server

    Primini, Francis A; Davis, John E; Nowak, Michael A; Evans, Ian N; Glotfelty, Kenny J; Anderson, Craig S; Bonaventura, Nina R; Chen, Judy C; Doe, Stephen M; Evans, Janet D; Fabbiano, Giuseppina; Galle, Elizabeth C; Gibbs, Danny G; Grier, John D; Hain, Roger M; Hall, Diane M; Harbo, Peter N; Xiangqun,; He,; Karovska, Margarita; Kashyap, Vinay L; Lauer, Jennifer; McCollough, Michael L; McDowell, Jonathan C; Miller, Joseph B; Mitschang, Arik W; Morgan, Douglas L; Mossman, Amy E; Nichols, Joy S; Plummer, David A; Refsdal, Brian L; Rots, Arnold H; Siemiginowska, Aneta; Sundheim, Beth A; Tibbetts, Michael S; Van Stone, David W; Winkelman, Sherry L; Zografou, Panagoula

    2011-01-01

    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of ~0.75% of the entire sky, using data from ~3,900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data-set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other, large Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and e...

  16. Contributions of the NASA's Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2011-01-01

    NASA's Chandra X-ray Observatory performed its first observations over a decade ago. Chandra's spectacular images and detailed spectra of astrophysical systems ranging from solar system objects to distant galaxies and galaxy clusters have provided information on such diverse topics as the properties of planetary and cometary atmospheres, stellar formation and demise, black hole-galaxy-cluster interactions, and properties of dark matter and dark energy. This presentation highlights some discoveries made with Chandra and briefly discusses future prospects.

  17. Chandra Catches Cannibal Galaxy in the Act

    Science.gov (United States)

    2000-07-01

    NASA's Chandra X-ray Observatory image of Perseus A provides new insight into how this supergiant galaxy has grown by cannibalizing other galaxies and gas in the vicinity. For the first time astronomers see an X-ray shadow cast by a smaller galaxy as its gas is being stripped away by the enormous galaxy. The research was reported by Professor Andrew Fabian of the Institute of Astronomy, Cambridge, England on June 7 at the 196th National Meeting of the American Astronomical Society, in Rochester, NY. Other members of the research team are Jeremy Sanders, Stefano Ettori, Steve Allen, Carolin Crawford, Kazushi Iwasawa, and Roderick Johnstone of the Institute of Astronomy, Gregory Taylor on the National Radio Astronomy Observatory, Socorro, NM, and Patrick Ogle of the Massachusetts Institute of Technology, Cambridge, MA. Perseus A, or NGC 1275, is in the center of a large galaxy cluster 320 million light years from Earth. The cluster, which contains thousands of galaxies and enough gas to make thousands more, is one of the largest gravitationally bound objects in the universe. Over the eons, Perseus A has accumulated hundreds of billions of stars to become one of the most massive known galaxies as gas and galaxies have been pulled inward by gravity. The Chandra observation shows a region of hot gas that extends over several hundred thousand light years. The gas in the outer portion of the cluster has a temperature of 70 million degrees. The cluster gas cools gradually and settles toward the center of the cluster. A galaxy with "only" about 20 billion stars is falling into Perseus A (located at two o'clock from the center of the image) and appears as a small dark patch due to absorption of X rays by cool gas in the infalling galaxy. Another larger hole seen further out is thought to be due to a bubble of high-energy particles ejected in an explosion from Perseus A hundreds of millions of years ago. These outbursts are presumably fueled by matter releasing tremendous

  18. An Overview of the Performance of the Chandra X-Ray Observatory

    CERN Document Server

    Weisskopf, M C; Bautz, M; Cameron, R A; Dewey, D; Drake, J J; Grant, C E; Marshall, H L; Murray, S S

    2003-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA's Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST -- formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support a...

  19. Multi-Wavelength Observations of Supernova Remnants

    Science.gov (United States)

    Williams, B.

    2012-01-01

    Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.

  20. Multi-Wavelength Study of Segue 3

    Science.gov (United States)

    Hughes, Joanne D.; Schiefelbein, Spencer; Le, Donna; Corrin, Olivia; Joudi, Hanah; Lacy, Brianna I.

    2016-06-01

    Segue 3 is a very faint and distant star cluster, first identfied as being [Fe/H]=-1.7 dex, but later reclassified as [Fe/H]=-0.8. We study the stellar population in Washington and SDSS filters, adding to VI-photometry in the literature. We show the importance of multi-wavelength coverage, careful filter-selection, and use of the sub-giant and lower red-giant branch populations, to break the age-metallicity degeneracy.

  1. The Chandra Deepest Fields in the Infrared: Making the Connection between Normal Galaxies and AGN

    Science.gov (United States)

    Grogin, N. A.; Ferguson, H. C.; Dickinson, M. E.; Giavalisco, M.; Mobasher, B.; Padovani, P.; Williams, R. E.; Chary, R.; Gilli, R.; Heckman, T. M.; Stern, D.; Winge, C.

    2001-12-01

    Within each of the two Chandra Deepest Fields (CDFs), there are ~10'x15' regions targeted for non-proprietary, deep SIRTF 3.6--24μ m imaging as part of the Great Observatories Origins Deep Survey (GOODS) Legacy program. In advance of the SIRTF observations, the GOODS team has recently begun obtaining non-proprietary, deep ground-based optical and near-IR imaging and spectroscopy over these regions, which contain virtually all of the current ≈1 Msec CXO coverage in the CDF North and much of the ≈1 Msec coverage in the CDF South. In particular, the planned depth of the near-IR imaging (JAB ~ 25.3; HAB ~ 24.8; KAB ~ 24.4) combined with the deep Chandra data can allow us to trace the evolutionary connection between normal galaxies, starbursts, and AGN out to z ~ 1 and beyond. We describe our CDF Archival program, which is integrating these GOODS-supporting observations together with the CDF archival data and other publicly-available datasets in these regions to create a multi-wavelength deep imaging and spectroscpic database available to the entire community. We highlight progress toward near-term science goals of this program, including: (a) pushing constraints on the redshift distribution and spectral-energy distributions of the faintest X-ray sources to the deepest possible levels via photometric redshifts; and (b) better characterizing the heavily-obscured and the high-redshift populations via both a near-IR search for optically-undetected CDF X-ray sources and also X-ray stacking analyses on the CXO-undetected EROs in these fields.

  2. The BMW-Chandra Serendipitous Source Catalog

    Science.gov (United States)

    Romano, P.; Campana, S.; Mignani, R. P.; Moretti, A.; Mottini, M.; Panzera, M. R.; Tagliaferri, G.

    2004-08-01

    We present the BMW-Chandra source catalog drawn from all Chandra ACIS-I pointed observations with an exposure time in excess of 10 ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterize point-like as well as extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings, and do not require a non-automated analysis. This makes our catalog the largest compilation of Chandra sources to date. The 0.5--10 keV absorption corrected fluxes of these sources range from ˜ 3× 10-16 to 9×10-12 erg cm-2 s-1 with a median of 7× 10-15 erg cm-2 s-1. The catalog consists of count rates and relative errors in three energy bands (total, 0.5--7 keV; soft, 0.5--2 keV; and hard band, 2--7 keV), and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate of the extension of the source which we refined with a σ -clipping method. We report on the main properties of the sources in our catalog, such as sky coverage ( ˜ 8 deg2 at a limiting flux of ˜ 10-13 erg cm-2 s-1) and cosmological log N--log S for a subset at high Galactic latitude (∣ b ∣ > 20o) for a flux as low as ˜ 1.5 × 10-15 erg cm-2 s-1. Support for this work was provided by the Italian MIUR.

  3. Multi-wavelength interferometry of evolved stars using VLTI and VLBA

    OpenAIRE

    Wittkowski, M.; Boboltz, D. A.; Driebe, T.; Ohnaka, K.

    2005-01-01

    We report on our project of coordinated VLTI/VLBA observations of the atmospheres and circumstellar environments of evolved stars. We illustrate in general the potential of interferometric measurements to study stellar atmospheres and envelopes, and demonstrate in particular the advantages of a coordinated multi-wavelength approach including near/mid-infrared as well as radio interferometry. We have so far made use of VLTI observations of the near- and mid-infrared stellar sizes and of concur...

  4. Swift J1644+57: Chandra observations

    Science.gov (United States)

    Levan, A. J.; Tanvir, N. R.

    2012-11-01

    We observed the X-ray counterpart to the candidate relativistic tidal disruption event Swift J1644+57 (Levan et al. 2011 Science, 333 199; Bloom et al. 2011 Science 333 202; Burrows et al. 2011 Nature 476 421; Zauderer et al. 2011 Nature 476 425) with the Chandra X-ray Observatory, beginning on 26 November 2012 at 10:25 UT. A total integration of 24.7 ks was obtained, and the object was placed at the default position on the ACIS S3 chip.

  5. Chandra Associates Pulsar and Historic Supernova

    Science.gov (United States)

    2001-01-01

    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar

  6. When Worlds Collide: Chandra Observes Titanic Merger

    Science.gov (United States)

    2002-04-01

    NASA's Chandra X-ray Observatory has provided the best X-ray image yet of two Milky Way-like galaxies in the midst of a head-on collision. Since all galaxies - including our own - may have undergone mergers, this provides insight into how the universe came to look as it does today. Astronomers believe the mega-merger in the galaxy known as Arp 220 triggered the formation of huge numbers of new stars, sent shock waves rumbling through intergalactic space, and could possibly lead to the formation of a supermassive black hole in the center of the new conglomerate galaxy. The Chandra data also suggest that merger of these two galaxies began only 10 million years ago, a short time in astronomical terms. "The Chandra observations show that things really get messed up when two galaxies run into each other at full speed," said David Clements of the Imperial College, London, one of the team members involved in the study. "The event affects everything from the formation of massive black holes to the dispersal of heavy elements into the universe." Arp 220 is considered to be a prototype for understanding what conditions were like in the early universe, when massive galaxies and supermassive black holes were presumably formed by numerous galaxy collisions. At a relatively nearby distance of about 250 million light years, Arp 220 is the closest example of an "ultra-luminous" galaxy, one that gives off a trillion times as much radiation as our Sun. The Chandra image shows a bright central region at the waist of a glowing, hour-glass-shaped cloud of multimillion-degree gas. Rushing out of the galaxy at hundreds of thousands of miles per hour, the super-heated as forms a "superwind," thought to be due to explosive activity generated by the formation of hundreds of millions of new stars. Farther out, spanning a distance of 75,000 light years, are giant lobes of hot gas that could be galactic remnants flung into intergalactic space by the early impact of the collision. Whether the

  7. Spectral Analysis of the Chandra Comet Survey

    CERN Document Server

    Bodewits, D; Torney, M; Dryer, M; Lisse, C M; Dennerl, K; Zurbuchen, T H; Wolk, S J; Tielens, A G G M; Hoekstra, R

    2007-01-01

    We present results of the analysis of cometary X-ray spectra with an extended version of our charge exchange emission model (Bodewits et al. 2006). We have applied this model to the sample of 8 comets thus far observed with the Chandra X-ray observatory and ACIS spectrometer in the 300-1000 eV range. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), C/2000 WM1 (LINEAR), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), C/2001 Q4 (NEAT), 9P/2005 (Tempel 1) and 73P/2006-B (Schwassmann-Wachmann 3) and the observations include a broad variety of comets, solar wind environments and observational conditions. The interaction model is based on state selective, velocity dependent charge exchange cross sections and is used to explore how cometary X-ray emission depend on cometary, observational and solar wind characteristics. It is further demonstrated that cometary X-ray spectra mainly reflect the state of the local solar wind. The current sample of Chandra observations was fit using the constrains of ...

  8. Chandra X-Ray Observatory (CXO) Overview

    CERN Document Server

    Weisskopf, M C; Van Speybroeck, L P; O'Dell, S L

    2000-01-01

    The Chandra X-Ray Observatory (CXO), the x-ray component of NASA's Great Observatories, was launched early in the morning of 1999, July 23 by the Space Shuttle Columbia. The Shuttle launch was only the first step in placing the observatory in orbit. After release from the cargo bay, the Inertial Upper Stage performed two firings, and separated from the observatory as planned. Finally, after five firings of Chandra's own Integral Propulsion System--- the last of which took place 15 days after launch--- the observatory was placed in its highly elliptical orbit of 140,000 km apogee and 10,000 km perigee. After activation, the first x-rays focussed by the telescope were observed on 1999, August 12. Beginning with these initial observations one could see that the telescope had survived the launch environment and was operating as expected. The month following the opening of the sunshade door was spent adjusting the focus for each set of instrument configurations, determining the optical axis, calibrating the star c...

  9. Chandra mission scheduling on-orbit experience

    Science.gov (United States)

    Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David

    2008-07-01

    Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.

  10. Composition of the Chandra ACIS Contaminant

    Science.gov (United States)

    Marshall, Herman; Tennant, Allyn; Grant, Catherine; Hitchcock, Adam; ODell, Steve; Plucinsky, Paul

    2003-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also detectable. We can place stringent limits on nitrogen and high Z elements such as AI, Si, and Mg. Not including H, we find that C, O, and F comprise less than 80%, 7%, and 7% of the contaminant by number, respectively, Nitrogen is less than 3% of the contaminant. We will assess various candidates for the contaminating material and the time dependence. For example, the detailed structure of the absorption edges provides information about the bonding structure of the compound, eliminating aromatic hydrocarbons as the contaminating material.

  11. Chandra Observations of SNR RCW 103

    CERN Document Server

    Frank, Kari A; Park, Sangwook

    2015-01-01

    We analyze three Chandra observations, with a combined exposure time of 99 ks, of the Galactic supernova remnant RCW 103, a young supernova remnant, previously with no clear detection of metal-rich ejecta. Based on our imaging and spectral analyses of these deep Chandra data, we find evidence for metal-rich ejecta emission scattered throughout the remnant. X-ray emission from the shocked ejecta is generally weak, and the shocked circumstellar medium (CSM) is a largely dominant component across the entire remnant. The CSM component shows abundances of ~0.5 solar, while Ne, Mg, Si, S, and Fe abundances of the ejecta are up to a few times solar. Comparison of these ejecta abundances with yields from supernova nucleosynthesis models suggests, together with the existence of a central neutron star, a progenitor mass of ~18-20 M$_\\odot$, though the Fe/Si ratios are larger than predicted. The shocked CSM emission suggests a progenitor with high mass-loss rate and subsolar metallicity.

  12. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  13. Dipping in CygnusX-2 in a multi-wavelength campaign due to absorption of extended ADC emission

    Science.gov (United States)

    Bałucińska-Church, M.; Schulz, N. S.; Wilms, J.; Gibiec, A.; Hanke, M.; Spencer, R. E.; Rushton, A.; Church, M. J.

    2011-06-01

    We report results of one-day simultaneous multiwavelength observations of CygnusX-2 using XMM, Chandra, the European VLBI Network and the XMM Optical Monitor. During the observations, the source did not exhibit Z-track movement, but remained in the vicinity of the soft apex. It was in a radio quiescent/quiet state of column density of 3 × 1023 atom cm-2. Remarkably, the blackbody emission of the neutron star is not affected by these dips, in strong contrast with observations of typical low mass X-ray binary dipping sources. The Chandra and XMM gratings directly measure the optical depths in absorption edges such as Ne K, Fe L, and O K and a comparison of the optical depths in the edges of non-dip and dip data reveals no increase of optical depth during dipping even though the continuum emission sharply decreases. Based on these findings, at orbital phase 0.35, we propose that dipping in this observation is caused by absorption in the outer disk by structures located opposite to the impact bulge of the accretion stream. With an inclination angle >60° these structures can still cover large parts of the extended ADC, without absorbing emission from the central neutral star.

  14. Spitzer Power-law AGN Candidates in the Chandra Deep Field-North

    CERN Document Server

    Donley, J L; Pérez-González, P G; Rigby, J R; Alonso-Herrero, A

    2007-01-01

    We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGN. We study the multiwavelength properties of this sample, and compare the AGN selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the > 2.5 sigma detection level. Most of the remaining galaxies are likely to host AGN that are heavily obscured in the X-ray. Because the power-law selection requires the AGN to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 micron detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates...

  15. Chandra Captures Flare From Brown Dwarf

    Science.gov (United States)

    2000-07-01

    The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars. Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'" Chandra LP 944-20 X-ray Image Press Image and Caption The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team. Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning." LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is

  16. MULTIWAVELENGTH OBSERVATIONS OF THE SS 433 JETS

    OpenAIRE

    Marshall, Herman L.; Canizares, Claude R.; Hillwig, Todd; Mioduszewski, Amy; Rupen, Michael; Schulz, Norbert S.; Nowak, Michael; Heinz, Sebastian

    2013-01-01

    We present observations of the SS 433 jets using the Chandra High Energy Transmission Grating Spectrometer with contemporaneous optical and Very Long Baseline Array observations. The X-ray and optical emission line regions are found to be related but not coincident as the optical line emission persists for days while the X-ray emission lines fade in less than 5000 s. The line Doppler shifts from the optical and X-ray lines match well, indicating that they are less than 3 × 10[superscript 14] ...

  17. Multispectral Particle Absorption Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project concerns the development of a multi-wavelength monitor that will provide rapid, real-time measurement of the...

  18. Multispectral Particle Absorption Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project concerns the development of a multi-wavelength monitor that will provide rapid, real-time measurement of...

  19. The BMW-Chandra Serendipitous Source Catalogue

    Science.gov (United States)

    Romano, P.; Campana, S.; Mignani, R. P.; Moretti, A.; Panzera, M. R.; Tagliaferri, G.

    We present the BMW-Chandra Source Catalogue drawn from all Chandra ACIS-I pointed observations with an exposure time in excess of 10 ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by \\citep{Lazzatiea99} and \\citep{Campanaea99}, which can characterize point-like as well as extended sources, we identified 21325 sources which were visually inspected and verified. Among them, 16758 are not associated with the targets of the pointings and are considered certain; they have a 0.5-10 keV absorption corrected flux distribution median of ˜ 7 × 10-15 erg cm-2 s-1. The catalogue consists of source positions, count rates, extensions and relative errors in three energy bands (total, 0.5-7 keV; soft, 0.5-2 keV; and hard band, 2-7 keV), as well as the additional information drawn from the headers of the original files. We also extracted source counts in four additional energy bands, (0.5-1.0 keV, 1.0-2.0 keV, 2.0-4.0 keV and 4.0-7.0 keV). We compute the sky coverage in the soft and hard bands. The complete catalogue provides a sky coverage in the soft band (0.5-2 keV, S/N =3) of ˜ 8 deg2 at a limiting flux of ˜ 10-13 erg cm-2 s-1, and ˜ 2 deg2 at a limiting flux of ˜ 10-15 erg cm-2 s-1. http://www.merate.mi.astro.it/~xanadu/BMC/bmc_home.html

  20. Star-forming galaxies versus low- and high-excitation radio AGN in the VLA-COSMOS 3GHz Large Project

    CERN Document Server

    Baran, N; Novak, M; Delhaize, J; Delvecchio, I; Capak, P; Civano, F; Herrera-Ruiz, N; Ilbert, O; Laigle, C; Marchesi, S; McCracken, H J; Middelberg, E; Salvato, M; Schinnerer, E

    2016-01-01

    We study the composition of the faint radio population selected from the VLA-COSMOS 3GHz Large Project, a radio continuum survey performed at 10 cm wavelength. The survey covers the full 2 square degree COSMOS field with mean $rms\\sim2.3$ $\\mu$Jy/beam, cataloging 10,899 source components above $5\\times rms$. By combining these radio data with UltraVISTA, optical, near-infrared, and Spitzer/IRAC mid-infrared data, as well as X-ray data from the Chandra Legacy, and Chandra COSMOS surveys, we gain insight into the emission mechanisms within our radio sources out to redshifts of $z\\sim5$. From these emission characteristics we classify our souces as star forming galaxies or AGN. Using their multi-wavelength properties we further separate the AGN into sub-samples dominated by radiatively efficient and inefficient AGN, often referred to as high- and low-excitation emission line AGN. We compare our method with other results based on fitting of the sources' spectral energy distributions using both galaxy and AGN spec...

  1. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    Science.gov (United States)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  2. A multiwavelength view of the flaring state of PKS 2155-304 in 2006

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Balzer, A; Barnacka, A; de Almeida, U Barres; Becherini, Y; Becker, J; Behera, B; Benbow, W; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Boutelier, T; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L -M; Clapson, A C; Coignet, G; Cologna, G; Colom, P; Conrad, J; Coudreau, N; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, P; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gallant, Y A; Gast, H; Gaylard, M J; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Häffner, S; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Keogh, D; Khangulyan, D; Khélifi, B; Klein, M; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Kubanek, P; Laffon, H; Lamanna, G; Lennarz, D; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Martin, J M; Masbou, J; Maurin, D; Maxted, N; McComb, T J L; Medina, M C; Méhault, J; Melady, G; Nguyen, N; Moderski, R; Monard, B; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sikora, M; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Tzioumis, A; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2012-01-01

    Multiwavelength (MWL) observations of the blazar PKS 2155-304 during two weeks in July and August 2006, the period when two exceptional flares at very high energies (VHE, E>= 100 GeV) occurred, provide a detailed picture of the evolution of its emission. The complete data set from this campaign is presented, including observations in VHE gamma-rays (H.E.S.S.), X-rays (RXTE, CHANDRA, SWIFT XRT), optical (SWIFT UVOT, Bronberg, Watcher, ROTSE), and in the radio band (NRT, HartRAO, ATCA). Optical and radio light curves from 2004 to 2008 are compared to the available VHE data from this period, to put the 2006 campaign into the context of the long-term evolution of the source. The X-ray and VHE gamma-ray emission are correlated during the observed high state of the source, but show no direct connection with longer wavelengths. The long-term flux evolution in the optical and radio bands is found to be correlated and shows that the source reaches a high state at long wavelengths after the occurrence of the VHE flares...

  3. A Multiwavelength Study of the Intracluster Medium and the Characterization of the Multiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Siegel, Seth Robert

    The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel'dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample. The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased

  4. Six Years of Chandra Observations of Supernova Remnants

    OpenAIRE

    Weisskopf, Martin C.; Hughes, John P.

    2005-01-01

    We present a review of the first six years of Chandra X-ray Observatory observations of supernova remnants. From the official "first-light" observation of Cassiopeia A that revealed for the first time the compact remnant of the explosion, to the recent million-second spectrally-resolved observation that revealed new details of the stellar composition and dynamics of the original explosion, Chandra observations have provided new insights into the supernova phenomenon. We present an admittedly ...

  5. The Chandra COSMOS Legacy survey: overview and point source catalog

    CERN Document Server

    Civano, F; Comastri, A; Urry, M C; Elvis, M; Cappelluti, N; Puccetti, S; Brusa, M; Zamorani, G; Hasinger, G; Aldcroft, T; Alexander, D M; Allevato, V; Brunner, H; Capak, P; Finoguenov, A; Fiore, F; Fruscione, A; Gilli, R; Glotfelty, K; Griffiths, R E; Hao, H; Harrison, F A; Jahnke, K; Kartaltepe, J; Karim, A; LaMassa, S M; Lanzuisi, G; Miyaji, T; Ranalli, P; Salvato, M; Sargent, M; Scoville, N J; Schawinski, K; Schinnerer, E; Silverman, J; Smolcic, V; Stern, D; Toft, S; Trakhenbrot, B; Treister, E; Vignali, C

    2016-01-01

    The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg$^2$ of the COSMOS field with an effective exposure of $\\simeq$160 ks over the central 1.5 deg$^2$ and of $\\simeq$80 ks in the remaining area. The survey is the combination of 56 new observations, obtained as an X-ray Visionary Project, with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2$\\times 10^{-5}$. We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft and hard band). The limiting depths are 2.2 $\\times$ 10$^{-16}$, 1.5 $\\times$ 10$^{-15}$ and 8.9$\\times$ 10$^{-16}$ ${\\rm erg~cm}^{-2}~{\\rm s}^{-1}$ in the 0.5-2, 2-10 and 0.5-10 keV bands, respectively. The observed fraction of obscured AGN with column density $> 10^{22}$ cm$^{-2}$ from the hardness ratio (HR) is $\\sim$50$^{+17}_{-16}$%...

  6. Chandra X-Ray Observatory (CXO) on Orbit Animation

    Science.gov (United States)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  7. Multiwavelength Emission from Blazars – Conference Summary

    Indian Academy of Sciences (India)

    Meg Urry

    2011-03-01

    Presentations at the Guangzhou Conference on Multiwave-length Emission from Blazars confirmed our understanding of blazars as relativistic jets closely aligned with the line of sight. Powerful new studies have been enabled by the Fermi gamma-ray satellite and new ground-based TeV facilities, which are an order of magnitude more sensitive than their predecessors. Combining gamma-ray data with VLBA radio and with optical/IR photometry has shed new light on the emission mechanisms and the jet geometry. This conference summary sets the context for the 4th blazar conference and presents some of the highlights from the meeting, as well as the questions that remain outstanding.

  8. Multiwavelength Observations of Mrk 501 in 2008

    CERN Document Server

    Kranich, D; Cesarini, A; Falcone, A; Giroletti, M; Hoversten, E; Hovatta, T; Kovalev, Y Y; Lahteenmaki, A; Nieppola, E; Pagani, C; Pichel, A; Satalecka, K; Scargle, J; Steele, D; Tavecchio, F; Tescaro, D; Tornikoski, M; Villata, M

    2009-01-01

    The well-studied VHE (E >100 GeV) blazar Mrk 501 was observed between March and May 2008 as part of an extensive multiwavelength observation campaign including radio, optical, X-ray and VHE gamma-ray instruments. Mrk 501 was in a low state of activity during the campaign, with a low VHE flux of about 20% the Crab Nebula flux. Nevertheless, significant flux variations could be observed in X-rays as well as $\\gamma$-rays. Overall Mrk 501 showed increased variability when going from radio to gamma-ray energies. The broadband spectral energy distribution during the two different emission states of the campaign was well described by a homogeneous one-zone synchrotron self-Compton model. The high emission state was satisfactorily modeled by increasing the amount of high energy electrons with respect to the low emission state. This parameterization is consistent with the energy-dependent variability trend observed during the campaign.

  9. Chandra Observations of QSO 2237+0305

    CERN Document Server

    Dai, X; Agol, E; Bautz, M W; Garmire, G P

    2003-01-01

    We present the observations of the gravitationally lensed system QSO 2237+0305 performed with the Chandra X-ray Observatory on 2000 Sept. 6, and on 2001 Dec. 8 for 30.3 ks and 9.5 ks, respectively. Imaging analysis resolves the four X-ray images of the Einstein Cross. A possible fifth image is detected; however, this detection less certain. Fits to the combined spectrum of all images of the Einstein Cross assuming a simple power law with Galactic and intervening absorption at the lensing galaxy yield a photon index of 1.90(+0.05,-0.05). For the first observation, this spectral model yields a 0.4-8.0 keV X-ray flux of 4.6e-13 erg cm-2 s-1 and a 0.4-8.0 keV lensed luminosity of 1.0e46 erg s-1. The source exhibits variability both over long and short time scales. The X-ray flux has dropped by 20% between the two observations, and the K-S test showed that image A is variable at the 97% confidence level within the first observation. Furthermore, a possible time-delay of 2.7(+0.5,-0.9) hours between images A and B ...

  10. Deep Chandra observations of Pictor A

    CERN Document Server

    Hardcastle, M J; Birkinshaw, M; Croston, J H; Goodger, J L; Marshall, H L; Perlman, E S; Siemiginowska, A; Stawarz, L; Worrall, D M

    2015-01-01

    We report on deep Chandra observations of the nearby broad-line radio galaxy Pictor A, which we combine with new Australia Telescope Compact Array (ATCA) observations. The new X-ray data have a factor 4 more exposure than observations previously presented and span a 15-year time baseline, allowing a detailed study of the spatial, temporal and spectral properties of the AGN, jet, hotspot and lobes. We present evidence for further time variation of the jet, though the flare that we reported in previous work remains the most significantly detected time-varying feature. We also confirm previous tentative evidence for a faint counterjet. Based on the radio through X-ray spectrum of the jet and its detailed spatial structure, and on the properties of the counterjet, we argue that inverse-Compton models can be conclusively rejected, and propose that the X-ray emission from the jet is synchrotron emission from particles accelerated in the boundary layer of a relativistic jet. For the first time, we find evidence that...

  11. Chandra Observations of Black-Widow Pulsars

    CERN Document Server

    Gentile, Peter; Roberts, Mallory; Camilo, Fernando; Hessels, Jason; Kerr, Matthew; Ransom, Scott; Ray, Paul; Stairs, Ingrid

    2012-01-01

    We describe the first X-ray observations of binary millisecond pulsars PSRs J0023+0923, J1810+1744, J2215+5135, and J2256-1024. All four are Fermi gamma-ray sources and three are 'black-widow' pulsars, with companions of mass < 0.1 solar masses. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256-1024, show significant orbital variability and X-ray flux minima at the times of eclipses observed at radio wavelengths. This phenomenon is consistent with intrabinary shock emission characteristic of black-widow pulsars. The other two pulsars, PSRs J0023+0923 and J1810+1744, do not demonstrate significant variability, but are fainter than the other two sources. Spectral fits yield power-law indices that range from 1.4 to 2.3 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component (41% of counts are above 2 keV), which is additional evidence for the presence of ...

  12. Exploring Multiwavelength AGN Variability with Swift Archival Data

    OpenAIRE

    Gelbord, Jonathan; Gronwall, Caryl; Grupe, Dirk; Berk, Dan Vanden; Wu, Jian

    2015-01-01

    We are conducting an archival Swift program to measure multiwavelength variability in active galactic nuclei (AGN). This variability information will provide constraints on the geometry, physical conditions and processes of the structures around the central black holes that emit and reprocess the observed flux. Among our goals are: (1) to produce a catalog of type 1 AGN with time-resolved multi-wavelength data; (2) to characterize variability in the optical, UV and X-ay bands as well as chang...

  13. AstroSat - a multi-wavelength astronomy satellite

    CERN Document Server

    Rao, A R; Bhattacharya, D

    2016-01-01

    AstroSat is a multi-wavelength astronomy satellite, launched on 2015 September 28. It carries a suite of scientific instruments for multi-wavelength observations of astronomical sources. It is a major Indian effort in space astronomy and the context of AstroSat is examined in a historical perspective. The Performance Verification phase of AstroSat has been completed and all instruments are working flawlessly and as planned. Some brief highlights of the scientific results are also given here.

  14. Quantitative Phase Imaging Using Multi-Wavelength Optical Phase Unwrapping

    OpenAIRE

    Warnasooriya, Nilanthi; Kim, Myung K.

    2010-01-01

    In summary, this chpater demonstrates the effectiveness of the multi-wavelength optical unwrapping method. To our knowledge this is the first time that three wavelengths have been used in interferometry for phase unwrapping without increasing phase noise. Unlike conventional software phase unwrapping methods that fail when there is high phase noise and when there are irregularities in the object, the multi-wavelength optical phase unwrapping method can be used with any type of object. Softwar...

  15. CHANDRA ACIS Survey of X-Ray Point Sources: The Source Catalog

    Science.gov (United States)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D 25 isophotes of 1110 galaxies, and 7504 sources are located between the D 25 and 2D 25 isophotes of 910 galaxies. Contamination analysis with the log N–log S relation indicates that 51.3% of objects within 2D 25 isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 1037, 1038, and 1039 erg s‑1, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov–Smirnov (K–S) criterion (P K–S sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (∼2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to categorize these SSSs and pinpoint their properties. In addition, this survey can

  16. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.;

    2009-01-01

    constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = –0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and...

  17. The galaxy cluster outskirts probed by Chandra

    Science.gov (United States)

    Morandi, Andrea; Sun, Ming; Forman, William; Jones, Christine

    2015-08-01

    Exploring the virialization region of galaxy clusters has recently raised the attention of the scientific community, offering a direct view of structure formation. In this talk, I will present recent results on the physical properties of the intracluster medium in the outer volumes of a sample of 320 clusters (0.056 3 keV) in the Chandra archive, with a total integration time of ~20 Ms. We stacked the emission measure profiles of the clusters to detect a signal out to R_{100}. We then measured the average emission measure, gas density and gas fraction, which scale according to the self-similar model of cluster formation. We observe a steepening of the density profiles beyond R_{500} with slope beta ~ 0.68 at R_{500} and beta ~ 1 at R_{200} and beyond. By tracking the direction of the cosmic filaments where the clusters are embedded, we report that galaxy clusters deviate from spherical symmetry. We also did not find evolution of the gas density with redshift, confirming the self-similar evolution of the gas density. The value of the baryon fraction reaches the cosmic value at R_{200}: however, systematics due to non-thermal pressure support and clumpiness might enhance the measured gas fraction, leading to an actual deficit of the baryon budget with respect to the primordial value). This novel method, the stacking the X-ray signal of cluster outskirts, has the capacity to provide a generational leap forward in our understanding of cluster physics and formation, and the use of clusters as cosmological probes.

  18. 75 FR 7471 - Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of...

    Science.gov (United States)

    2010-02-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company... January 8, 2010, Chandra Coffee and Rabun Boatworks (Complainants) filed with the Federal...

  19. SENSITIVE SEARCH FOR RADIO VARIABLES AND TRANSIENTS IN THE EXTENDED CHANDRA DEEP FIELD SOUTH

    International Nuclear Information System (INIS)

    We report on an analysis of the Extended Chandra Deep Field South (E-CDFS) region using archival data from the Very Large Array, with the goal of studying radio variability and transients at the sub-milliJansky level. The 49 epochs of E-CDFS observations at 1.4 GHz sample timescales from 1 day to 3 months. We find that only a fraction (1%) of unresolved radio sources above 40 μJy are variable at the 4σ level. There is no evidence that the fractional variability changes along with the known transition of radio-source populations below 1 mJy. Optical identifications of the sources show that the variable radio emission is associated with the central regions of an active galactic nucleus or a star-forming galaxy. After a detailed comparison of the efficacy of various source-finding algorithms, we use the best to carry out a transient search. No transients were found. This implies that the areal density of transients with peak flux density greater than 0.21 mJy is less than 0.37 deg–2 (at a confidence level of 95%). This result is approximately an order of magnitude below the transient rate measured at 5 GHz by Bower et al. but it is consistent with more recent upper limits from Frail et al. Our findings suggest that the radio sky at 1.4 GHz is relatively quiet. For multi-wavelength transient searches, such as the electromagnetic counterparts to gravitational waves, this frequency may be optimal for reducing the high background of false positives.

  20. Coordinated Optical/X-ray observations of the CTTS V2129 Oph The Chandra View

    Science.gov (United States)

    Flaccomio, E.; Argiroffi, C.; Alencar, S. H. P.; Bouvier, J.; Donati, J.-F.; Getman, K.; Gregory, S. G.; Hussain, G.; Ibrahimov, M.; Jardine, M. M.; Skelly, M.; Walter, F.

    2011-12-01

    Young low-mass accreting stars (classical T Tauri stars; CTTSs) possess strong magnetic fields that are responsible for the regulation of the accretion and outflow processes, and the confinement and heating of coronal plasma. Understanding the physics of CTTS magnetospheres and of their interaction with circumstellar disks can elucidate the history and evolution of our own Sun and Solar System, at the stage when planets were being formed. In June 2009 we have conducted an extensive multi-wavelength observing campaign of V2129 Oph, a K5 CTTS in the ρ Ophiuchi molecular cloud, with the goal of obtaining a synoptic view of its photosphere, magnetic field, coronal plasma, and of its accretion spot(s) and funnel flow(s). We here report on the X-ray emission, as observed by the Chandra High Energy Transmission Grating (HETG). High-density plasma, presumably from the accretion shock, is responsible for the soft X-ray emission, at least during the first half of the observation. The X-ray emission from both the coronal plasma (T˜20MK) and the cooler and denser material from the accretion spot (T˜3MK) is observed to vary between the first and second half of the observation. From the high-resolution X-ray spectra we constrain the emission measure of the two components and the density of the cool plasma. Finally we interpret the time variability of the cool plasma component in terms of stellar rotation and the time-changing viewing angle of the accretion stream, as constrained by simultaneous optical observations.

  1. Multiwavelength Observations of AGN Jets: Untangling the Coupled Problems of Emission Mechanism and Jet Structure

    Science.gov (United States)

    Perlman, Eric S.; Avachat, Sayali S.; Clautice, Devon; Georganopoulos, Markos; Meyer, Eileen; Cara, Mihai

    2016-04-01

    The discovery of X-ray and optical emission from large numbers of AGN jets is one of the key legacies of the Chandra X-ray Observatory and Hubble Space Telescope. Several dozen optical and X-ray emitting jets are now known, most of which are seen in both bands as well as in the radio, where they were first discovered. Jets carry prodigious amounts of energy and mass out from the nuclear regions out to tens to hundreds of kiloparsecs distant from the central black hole, depositing it into the host galaxy and cluster. Interpreting their multiwavelength emissions has not been easy: while in most jets, the optical and radio emission in many objects is believed to emerge via the synchrotron process, due to its characteristic spectral shape and high radio polarization, the X-ray emission has been a tougher nut to crack. In less powerful, FR I jets, such as M87, the X-ray emission is believed to be synchrotron emission from the highest energy electrons, requiring in situ particle acceleration due to the short radiative lifetimes of the particles. However, in FR II and quasar jets, a variety of emission mechanisms are possible. Until the last few years, the leading interpretation had been inverse-Comptonization of Cosmic Microwave Background photons (the IC/CMB mechanism). This requires the jet to be relativistic out to hundreds of kiloparsecs from the nucleus, and requires an electron spectrum that extends to very low Lorentz factors. However, that now appears less likely, due to observed high optical polarizations in jets where the optical and X-ray emission appears to lie on the same spectral component, as well as limits derived from Fermi observations in the GeV gamma-rays. It now appears more likely that the X-rays must arise as synchrotron emission from a second, high energy electron population. With this revelation, we must tackle anew the coupling between jet structure and emission mechanisms. Multiwavelength imaging and polarimetry can give us clues to the

  2. The Chandra Cosmos Legacy Survey: Overview and Point Source Catalog

    Science.gov (United States)

    Civano, F.; Marchesi, S.; Comastri, A.; Urry, M. C.; Elvis, M.; Cappelluti, N.; Puccetti, S.; Brusa, M.; Zamorani, G.; Hasinger, G.; Aldcroft, T.; Alexander, D. M.; Allevato, V.; Brunner, H.; Capak, P.; Finoguenov, A.; Fiore, F.; Fruscione, A.; Gilli, R.; Glotfelty, K.; Griffiths, R. E.; Hao, H.; Harrison, F. A.; Jahnke, K.; Kartaltepe, J.; Karim, A.; LaMassa, S. M.; Lanzuisi, G.; Miyaji, T.; Ranalli, P.; Salvato, M.; Sargent, M.; Scoville, N. J.; Schawinski, K.; Schinnerer, E.; Silverman, J.; Smolcic, V.; Stern, D.; Toft, S.; Trakhtenbrot, B.; Treister, E.; Vignali, C.

    2016-03-01

    The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg2 of the COSMOS field with an effective exposure of ≃ 160 ks over the central 1.5 deg2 and of ≃ 80 ks in the remaining area. The survey is the combination of 56 new observations obtained as an X-ray Visionary Project with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2 × 10-5. We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft, and hard band). The limiting depths are 2.2 × 10-16, 1.5 × 10-15, and 8.9 × 10-16 {\\text{erg cm}}-2 {{{s}}}-1 in the 0.5-2, 2-10, and 0.5-10 keV bands, respectively. The observed fraction of obscured active galactic nuclei with a column density >1022 cm-2 from the hardness ratio (HR) is ˜50{}-16+17%. Given the large sample we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5%-10%. For the first time we compute number counts for obscured (HR > -0.2) and unobscured (HR Legacy area is three times larger than surveys at similar depths and its depth is three times fainter than surveys covering similar areas. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come.

  3. Novel Multiwavelength Microscopic Scanner for Mouse Imaging

    Directory of Open Access Journals (Sweden)

    Herlen Alencar

    2005-11-01

    Full Text Available Real-time in vivo imaging of molecular targets at (subcellular resolution is essential in better understanding complex biology. Confocal microscopy and multiphoton microscopy have been used in the past to achieve this goal, but their true capabilities have often been limited by bulky optics and difficult experimental set-ups requiring exteriorized organs. We describe here the development and validation of a unique nearinfrared laser scanning microscope system that uses novel optics with a millimeter footprint. Optimized for use in the far red and near-infrared ranges, the system allows an imaging depth that extends up to 500 Mm from a 1.3-mm-diameter stick objective, which is up to 2 cm in length. We show exceptionally high spatial, temporal, and multiwavelength resolutions of the system and show that it can be applied to virtually any internal organ through a keyhole surgical access. We demonstrate that, when combined with novel far red imaging probes, it is possible to image the cellular details of many organs and disease processes. The new optics, coupled with the use of near-infrared probes, should prove immensely valuable for in vivo cancer imaging.

  4. Multiwavelength observations of Mrk 501 in 2008

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Knoetig, M L; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nowak, N; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, T; Saito, K; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Sun, S; Surić, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R; :,; Behera, B; Beilicke, M; Benbow, W; Bird, R; Bouvier, A; Bugaev, V; Cerruti, M; Chen, X; Ciupik, L; Collins-Hughes, E; Cui, W; Duke, C; Dumm, J; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fortson, L; Furniss, A; Galante, N; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Hanna, D; Holder, J; Johnson, C A; Kaaret, P; Kertzman, M; Kieda, D; Krawczynski, H; Lang, M J; Madhavan, A S; Maier, G; Majumdar, P; Meagher, K; Moriarty, P; Mukherjee, R; Nieto, D; de Bhróithe, A O'Faoláin; Ong, R A; Otte, A N; Pichel, A; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Rajotte, J; Ratliff, G; Reyes, L C; Reynolds, P T; Richards, G T; Roache, E; Sembroski, G H; Shahinyan, K; Sheidaei, F; Smith, A W; Staszak, D; Telezhinsky, I; Theiling, M; Tyler, J; Varlotta, A; Vincent, S; Wakely, S P; Weekes, T C; Welsing, R; Williams, D A; Zajczyk, A; Zitzer, B; :,; Villata, M; Raiteri, C M; Ajello, M; Perri, M; Aller, H D; Aller, M F; Larionov, V M; Efimova, N V; Konstantinova, T S; Kopatskaya, E N; Chen, W P; Koptelova, E; Hsiao, H Y; Kurtanidze, O M; Nikolashvili, M G; Kimeridze, G N; Jordan, B; Leto, P; Buemi, C S; Trigilio, C; Umana, G; Lahtenmaki, A; Nieppola, E; Tornikoski, M; Sainio, J; Giroletti, M; Cesarini, A; Fuhrmann, L; Kovalev, Yu A; Kovalev, Y Y

    2014-01-01

    Mrk 501 is one of the brightest blazars at TeV energies and has been extensively studied since its first VHE detection in 1996. Our goal is to characterize in detail the source gamma-ray emission, together with the radio-to-X-ray emission, during the non-flaring (low) activity, which is less often studied than the occasional flaring (high) activity. We organized a multiwavelength (MW) campaign on Mrk 501 between March and May 2008. This multi-instrument effort included the most sensitive VHE gamma-ray instruments in the northern hemisphere, namely the imaging atmospheric Cherenkov telescopes MAGIC and VERITAS, as well as Swift, RXTE, the F-GAMMA, GASP-WEBT, and other collaborations and instruments. Mrk 501 was found to be in a low state of activity during the campaign, with a VHE flux in the range of 10%-20% of the Crab nebula flux. Nevertheless, significant flux variations were detected with various instruments, with a trend of increasing variability with energy. The broadband spectral energy distribution du...

  5. Multiwavelength EDM measurements in southern California

    Science.gov (United States)

    Slater, L.E.; McGarr, A.; Langbein, J.O.; Linker, M.F.

    1983-01-01

    We installed a precise geodetic network along the San Andreas fault near Pearblossom, California in November, 1980. The network is within the region frequently referred to as the "Palmdale Uplift" and consists of 13 lines radiating from a central benchmark. The lines range in length from 3.2 to 8.1 km are generally measured several times each week. The multiwavelength distance measuring (MWDM) instrument is located at the central benchmark and is housed in a small protective shelter. The MWDM instrument has demonstrated a capability to make measurements to a precision of 1 part in 10 million. Using a coordinate system whose x-axis is parallel to the local trace of the San Andreas fault the following strain rates were observed during the first 10 months of this effort: {greater-than with dot}exx = -0.180 ?? 0.025 ??str/yr{greater-than with dot}eyy = -0.031 ?? 0.029 ??str/yr{greater-than with dot}exy = +0.077 ?? 0.024 ??str/yr?? = -0.213 ?? 0.039 ??str/yr. The observed strain rates do not appear to be constant in time, much of the deformation occurs in fairly well defined episodes. These changes in strain rate are particularly obvious in the \\ ??.geyy component. ?? 1983.

  6. Multiwavelength Observations of the SS 433 Jets

    CERN Document Server

    Marshall, Herman L; Hillwig, Todd; Mioduszewski, Amy; Rupen, Michael; Schulz, Norbert S; Nowak, Michael; Heinz, Sebastian

    2013-01-01

    We present observations of the SS 433 jets using the Chandra High Energy Transmission Grating Spectrometer with contemporaneous optical and VLBA observations. The X-ray and optical emission line regions are found to be related but not coincident as the optical line emission persists for days while the X-ray emission lines fade in less than 5000 s. The line Doppler shifts from the optical and X-ray lines match well, indicating that they are less than 3e14 cm apart. The jet Doppler shifts show aperiodic variations that could result from shocks in interactions with the local environment. These perturbations are consistent with a change in jet direction but not jet speed. The proper motions of the radio knots match the kinematic model only if the distance to SS 433 is 4.5 +/- 0.2 kpc. Observations during eclipse show that the occulted emission is very hard, seen only above 2 keV and rising to comprise >50% of the flux at 8 keV. The soft X-ray emission lines from the jet are not blocked, constraining the jet lengt...

  7. The Chandra X-Ray Observatory: Observations of Neutron Stars

    OpenAIRE

    Weisskopf, Martin C.

    2004-01-01

    We present here an overview of the status of the Chandra X-ray Observatory which has now been operating for five years. The Observatory is running smoothly, and the scientific return continues to be outstanding. We provide some details on the molecular contamination of the ACIS filters and its impact on observations. We review the observations with Chandra of the pulsar in the Crab Nebula and add some general comments as to the analysis of X-ray spectra. We conclude with comments about the fu...

  8. Lessons We Learned Designing and Building the Chandra Telescope

    Science.gov (United States)

    Arenberg, Jonathan; Matthews, Gary; Atkinson, C.; Cohen, L.; Golisano, C.; Havey, K.; Hefner, K.; Jones, C.; Kegley, J.; Knollenberg, P.; Lavoie, T.; Oliver, J.; Plucinsky, P.; Tananbaun, H.; Texter, S.; Weisskopf, M.

    2014-01-01

    2014 marks the crystal (15th) anniversary of the launch of the Chandra X-ray Observatory. This paper offers some of the major lessons learned by some of the key members of the Chandra Telescope team. We offer some of the lessons gleaned from our experiences developing, designing, building and testing the telescope and its subsystems, with 15 years of hindsight. Among the topics to be discussed are the early developmental tests, known as VETA-I and VETA-II, requirements derivation, the impact of late requirements and reflection on the conservatism in the design process.

  9. Chandra x-ray results on v426 ophiuchi

    Directory of Open Access Journals (Sweden)

    Lee Homer

    2004-01-01

    Full Text Available De las observaciones de 45 ks de Chandra de V426 Oph hemos obtenido espectros de rayos X de alta resoluci on con relaci on se~nal-a-ruido moderada, y una curva de luz no interrumpida de buena calidad. Los espectros se adaptan razonablemente a un modelo de ujo de enfriamiento, similar a EX Hya y U Gem. Nuestro an alisis de las curvas de luz de Chandra y las adicionales de rayos X/ optico revela una modulaci on persistente a 4.2 hr desde 1988 hasta 2003, probablemente el per odo de giro de la enana blanca, indicando una naturaleza polar intermedia para V426 Oph.

  10. Chandra grating spectroscopy of three hot white dwarfs

    OpenAIRE

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2012-01-01

    Context. High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in orde...

  11. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST

    Science.gov (United States)

    Weisskopf, Martin C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.

  12. Multiwavelength study of the northeastern outskirts of the extended TeV source HESS J1809–193

    Energy Technology Data Exchange (ETDEWEB)

    Rangelov, Blagoy; Kargaltsev, Oleg; Hare, Jeremy; Volkov, Igor [Department of Physics, The George Washington University, 725 21st Street, NW, Washington, DC 20052 (United States); Posselt, Bettina; Pavlov, George G., E-mail: rangelov13@gwu.edu [Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2014-11-20

    HESS J1809–193 is an extended TeV γ-ray source in the Galactic plane. Multiwavelength observations of the HESS J1809–193 field reveal a complex picture. We present results from three Chandra X-Ray Observatory and two Suzaku observations of a region in the northeastern outskirts of HESS J1809-193, where enhanced TeV emission has been reported. Our analysis also includes GeV γ-ray and radio data. One of the X-ray sources in the field is the X-ray binary XTE J1810-189, for which we present the outburst history from multiple observatories and confirm that XTE J1810-189 is a strongly variable type I X-ray burster, which can hardly produce TeV emission. We investigate whether there is any connection between the possible TeV extension of HESS J1809–193 and the sources seen at lower energies. We find that another X-ray binary candidate, Suzaku J1811-1900, and a radio supernova remnant, SNR G11.4–0.1, can hardly be responsible for the putative TeV emission. Our multiwavelength classification of fainter X-ray point sources also does not produce a plausible candidate. We conclude that the northeast extension of HESS J1809–193, if confirmed by deeper observations, can be considered a dark accelerator—a TeV source without a visible counterpart at lower energies.

  13. The ARCHES project

    CERN Document Server

    Motch, C; Genova, F; Esteban, F Jiménez-; López, M; Michel, L; Mingo, B; Mints, A; Gómez-Morán, A Nebot; Pineau, F -X; Rosen, S; Sanchez, E; Schwope, A; Solano, E; Watson, M

    2016-01-01

    ARCHES (Astronomical Resource Cross-matching for High Energy Studies) is a FP7-Space funded project whose aim is to provide the international astronomical community with well-characterised multi-wavelength data in the form of spectral energy distributions (SEDs) for large samples of objects extracted from the 3XMM DR5 X-ray catalogue of serendipitous sources. The project has developed new tools implementing fully probabilistic simultaneous cross-correlation of several catalogues for unresolved sources and a multi-wavelength finder for clusters of galaxies for extended sources. These enhanced resources have been tested in the framework of several science cases.

  14. The 3 Ms Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    CERN Document Server

    Neilsen, J; Gammie, C; Dexter, J; Markoff, S; Haggard, D; Nayakshin, S; Wang, Q D; Grosso, N; Porquet, D; Tomsick, J A; Degenaar, N; Fragile, P C; Houck, J C; Wijnands, R; Miller, J M; Baganoff, F K

    2013-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic Center.

  15. An X-ray and Multiwavelength Survey of Highly Radio-Loud Quasars at z > 4: Jet-Linked Emission in the Brightest Radio Beacons of the Early Universe

    CERN Document Server

    Wu, Jianfeng; Miller, Brendan P; Garmire, Gordon P; Schneider, Donald P; Vignali, Cristian

    2013-01-01

    (Abridged) We present a systematic study of the X-ray and multiwavelength properties of a sample of 17 highly radio-loud quasars (HRLQs) at z > 4 with sensitive X-ray coverage from new Chandra and archival Chandra, XMM-Newton, and Swift observations. Eight of the new and archival observations are reported in this work for the first time. New Chandra observations of two moderately radio-loud and highly optically luminous quasars at z > 4 are also reported. Our HRLQ sample represents the top ~5% of radio-loud quasars in terms of radio loudness. We found that our HRLQs have an X-ray emission enhancement over HRLQs at lower redshifts (by a typical factor of ~3), and this effect, after controlling for several factors which may introduce biases, has been solidly estimated to be significant at the 3-4 sigma level. HRLQs at z=3-4 are also found to have a similar X-ray emission enhancement over z < 3 HRLQs, which supports further the robustness of our results. We discuss models for the X-ray enhancement's origin in...

  16. Exploring Multiwavelength AGN Variability with Swift Archival Data

    CERN Document Server

    Gelbord, Jonathan; Grupe, Dirk; Berk, Dan Vanden; Wu, Jian

    2015-01-01

    We are conducting an archival Swift program to measure multiwavelength variability in active galactic nuclei (AGN). This variability information will provide constraints on the geometry, physical conditions and processes of the structures around the central black holes that emit and reprocess the observed flux. Among our goals are: (1) to produce a catalog of type 1 AGN with time-resolved multi-wavelength data; (2) to characterize variability in the optical, UV and X-ay bands as well as changes in spectral slope; (3) to quantify the impact of variability on multi-wavelength properties; and (4) to measure correlated variability between bands. Our initial efforts have revealed a UVOT calibration issue that can cause a few percent of measured UV fluxes to be anomalously low, by up to 30%.

  17. A LABOCA survey of the Extended Chandra Deep Field South - submillimeter properties of near-IR selected galaxies

    CERN Document Server

    Greve, T R; Walter, F; Smail, I; Zheng, X Z; Knudsen, K K; Coppin, K E K; Kovács, A; Bell, E F; De Breuck, C; Dannerbauer, H; Dickinson, M; Gawiser, E; Lutz, D; Rix, H -W; Schinnerer, E; Alexander, D; Bertoldi, F; Brandt, W N; Chapman, S C; Ivison, R J; Koekemoer, A M; Kreysa, E; Kurczynski, P; Menten, K; Siringo, G; Swinbank, M; Van der Werf, P P

    2009-01-01

    Using the 330hr ESO-MPG 870-micron survey of the Extended Chandra Deep Field South (ECDF-S) obtained with the Large Apex BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX), we have carried out a stacking analysis at submillimeter (submm) wavelengths of a sample of 8266 near-infra-red (near-IR) selected (K_vega <= 20) galaxies, including 893 BzK galaxies, 1253 extremely red objects (EROs) and 737 distant red galaxies (DRGs), selected from the Multi-wavelength Survey by Yale-Chile (MUSYC). We measure average 870-micron fluxes of 0.20+-0.01mJy (20.0sigma), 0.45+-0.04mJy (11.3sigma), 0.42+-0.03mJy (14.0sigma), and 0.41+-0.04mJy (10.3sigma) for the K_vega <= 20, BzK, ERO and DRG samples, respectively. For the BzK, ERO and DRG subsamples, which overlap to some degree and are like to be at z ~ 1-2, this implies an average far-IR luminosity of ~2-6x10^{11} Lsolar and star formation rate of ~40-100Msolar. Splitting the BzK galaxies up into star-forming (sBzK) and passive (pBzK) galaxies, the f...

  18. Examining the Radio-Loud/Radio-Quiet dichotomy with new Chandra and VLA observations of 13 UGC galaxies

    CERN Document Server

    Kharb, Preeti; Axon, D J; Chiaberge, M; Grandi, P; Robinson, A; Giovannini, G; Balmaverde, B; Macchetto, D; Montez, R

    2012-01-01

    (Abridged) We present the results from new 15 ks Chandra-ACIS and 4.9 GHz Very Large Array observations of 13 galaxies hosting low luminosity AGN. This completes the multiwavelength study of a sample of 51 nearby early-type galaxies described in Capetti & Balmaverde (2005, 2006); Balmaverde & Capetti (2006). The aim of the three previous papers was to explore the connection between the host galaxies and AGN activity in a radio-selected sample. We detect nuclear X-ray emission in eight sources and radio emission in all but one (viz., UGC6985). The new VLA observations improve the spatial resolution by a factor of ten: the presence of nuclear radio sources in 12 of the 13 galaxies confirms their AGN nature. As previously indicated, the behavior of the X-ray and radio emission in these sources depends strongly on the form of their optical surface brightness profiles derived from Hubble Space Telescope imaging, i.e., on their classification as "core", "power-law" or "intermediate" galaxies. With more than...

  19. MULTIWAVELENGTH OBSERVATIONS OF THE SS 433 JETS

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Herman L.; Canizares, Claude R.; Schulz, Norbert S.; Nowak, Michael [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Hillwig, Todd [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Mioduszewski, Amy; Rupen, Michael [NRAO, P.O. Box 2, Socorro, NM 87801 (United States); Heinz, Sebastian, E-mail: hermanm@space.mit.edu, E-mail: crc@space.mit.edu, E-mail: nss@space.mit.edu, E-mail: mnowak@space.mit.edu, E-mail: todd.hillwig@valpo.edu, E-mail: amiodusz@nrao.edu, E-mail: mrupen@aoc.nrao.edu, E-mail: heinzs@astro.wisc.edu [Astronomy Department, 5408 Sterling Hall, University of Wisconsin, Madison, WI 53706 (United States)

    2013-09-20

    We present observations of the SS 433 jets using the Chandra High Energy Transmission Grating Spectrometer with contemporaneous optical and Very Long Baseline Array observations. The X-ray and optical emission line regions are found to be related but not coincident as the optical line emission persists for days while the X-ray emission lines fade in less than 5000 s. The line Doppler shifts from the optical and X-ray lines match well, indicating that they are less than 3 × 10{sup 14} cm apart. The jet Doppler shifts show aperiodic variations that could result from shocks in interactions with the local environment. These perturbations are consistent with a change in jet direction but not jet speed. The proper motions of the radio knots match the kinematic model only if the distance to SS 433 is 4.5 ± 0.2 kpc. Observations during eclipse show that the occulted emission is very hard, seen only above 2 keV and rising to comprise >50% of the flux at 8 keV. The soft X-ray emission lines from the jet are not blocked, constraining the jet length to ∼> 2 × 10{sup 12} cm. The base jet density is in the range 10{sup 10-13} cm{sup –3}, in contrast to our previous estimate based on the Si XIII triplet, which is likely to have been affected by UV de-excitation. There is a clear overabundance of Ni by a factor of about 15 relative to the solar value, which may have resulted from an unusual supernova that formed the compact object.

  20. Multiwavelength Observations of the SS 433 Jets

    Science.gov (United States)

    Marshall, Herman L.; Canizares, Claude R.; Hillwig, Todd; Mioduszewski, Amy; Rupen, Michael; Schulz, Norbert S.; Nowak, Michael; Heinz, Sebastian

    2013-09-01

    We present observations of the SS 433 jets using the Chandra High Energy Transmission Grating Spectrometer with contemporaneous optical and Very Long Baseline Array observations. The X-ray and optical emission line regions are found to be related but not coincident as the optical line emission persists for days while the X-ray emission lines fade in less than 5000 s. The line Doppler shifts from the optical and X-ray lines match well, indicating that they are less than 3 × 1014 cm apart. The jet Doppler shifts show aperiodic variations that could result from shocks in interactions with the local environment. These perturbations are consistent with a change in jet direction but not jet speed. The proper motions of the radio knots match the kinematic model only if the distance to SS 433 is 4.5 ± 0.2 kpc. Observations during eclipse show that the occulted emission is very hard, seen only above 2 keV and rising to comprise >50% of the flux at 8 keV. The soft X-ray emission lines from the jet are not blocked, constraining the jet length to >~ 2 × 1012 cm. The base jet density is in the range 1010-13 cm-3, in contrast to our previous estimate based on the Si XIII triplet, which is likely to have been affected by UV de-excitation. There is a clear overabundance of Ni by a factor of about 15 relative to the solar value, which may have resulted from an unusual supernova that formed the compact object.

  1. Chandra Observations of Eight Sources Discovered by INTEGRAL

    CERN Document Server

    Tomsick, John A; Wang, Qinan; Bodaghee, Arash; Chaty, Sylvain; Rahoui, Farid; Rodriguez, Jerome; Fornasini, Francesca M

    2015-01-01

    We report on 0.3-10 keV observations with the Chandra X-ray Observatory of eight hard X-ray sources discovered within 8 degrees of the Galactic plane by the INTEGRAL satellite. The short (5 ks) Chandra observations of the IGR source fields have yielded very likely identifications of X-ray counterparts for three of the IGR sources: IGR J14091-6108, IGR J18088-2741, and IGR J18381-0924. The first two have very hard spectra in the Chandra band that can be described by a power-law with photon indices of Gamma = 0.6+/-0.4 and -0.7(+0.4)(-0.3), respectively (90% confidence errors are given), and both have a unique near-IR counterpart consistent with the Chandra position. IGR J14091-6108 also displays a strong iron line and a relatively low X-ray luminosity, and we argue that the most likely source type is a Cataclysmic Variable (CV), although we do not completely rule out the possibility of a High Mass X-ray Binary. IGR J18088-2741 has an optical counterpart with a previously measured 6.84 hr periodicity, which may...

  2. The Chandra X-Ray Observatory: Progress Report and Highlights

    CERN Document Server

    Weisskopf, Martin C

    2012-01-01

    Over the past 13 years, the Chandra X-ray Observatory's ability to provide high resolution X-ray images and spectra have established it as one of the most versatile and powerful tools for astrophysical research in the 21st century. Chandra explores the hot, x-ray-emitting regions of the universe, observing sources with fluxes spanning more than 10 orders of magnitude, from the X-ray brightest, Sco X-1, to the faintest sources in the Chandra Deep Field South survey. Thanks to its continuing operational life, the Chandra mission now also provides a long observing baseline which, in and of itself, is opening new research opportunities. In addition, observations in the past few years have deepened our understanding of the co-evolution of supermassive black holes and galaxies, the details of black hole accretion, the nature of dark energy and dark matter, the details of supernovae and their progenitors, the interiors of neutron stars, the evolution of massive stars, and the high-energy environment of protoplanetar...

  3. The Chandra X-Ray Observatory: Five Years of Operation

    OpenAIRE

    Weisskopf, Martin C.

    2005-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program and has been operating successfully for over five years. We present here brief overview of the technical performance and some of the remarkable discoveries.

  4. The Chandra Observation of the IP TX Col

    OpenAIRE

    Schlegel, Eric M.; Salinas, Anandi

    2003-01-01

    We present a preliminary look at the serendipitous observation of the intermediate polar TX Col by Chandra. The 52 ksec observation is uninterrupted, providing an opportunity to disentangle the light curve and power spectra components. We illustrate the energy-dependence of the power spectrum.

  5. Romanticism or Reality? An Exploration of Frances Mary Hendry's "Chandra."

    Science.gov (United States)

    Johnson, Jilaine

    This paper singles out a novel written for children about India, "Chandra" (1995) by Frances Mary Hendry, as a powerful and useful novel to present to today's 11 to 14 year old students. The paper contends that the novel allows students to explore and consider different value systems, challenges them to become aware of prejudice and the making of…

  6. Highlights and Discoveries from the Chandra X-ray Observatory

    CERN Document Server

    Tananbaum, H; Tucker, W; Wilkes, B; Edmonds, P

    2014-01-01

    Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding ...

  7. First Terrestrial Soft X-ray Aurora Observations by Chandra

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Ostgaard, Nikolai; Chang, Shen-Wu; Metzger, Albert E.; Majeed, Tariq

    2004-01-01

    Northern polar "auroral" regions of Earth was observed by High-Resolution Camera in imaging mode (T32C-I) aboard Chandra X-Ray Observatory (CXO) during mid December 2003 - mid April 2004. Ten CXO observations, each approximately 20 min duration, were made in a non-conventional method (due to CXO technical issues), such that Chandra was aimed at a fixed point in sky and the Earth's polar cusp was allowed to drift through the HRC-I field-of-view. The observations were performed when CXO was near apogee and timed during northern winter mostly near midnight (6 hr), except two observations which occurred around 1200 UT, so that northern polar region is entirely in dark and solar fluoresced x-ray contamination can be avoided. These observations were aimed at searching the Earth's soft x-ray aurora and to do a comparative study with Jupiter's x-ray aurora, where a pulsating x-ray hot-spot near the northern magnetic pole has been observed by Chandra that implies a particle source region near Jupiter's magnetopause, and entry of heavy solar wind ions due to high-latitude reconnection as a viable explanation for the soft x-ray emissions. The first Chandra soft (0.1-2 keV) x-ray observations of Earth's aurora show that it is highly variable (intense arc, multiple arcs, diffuse, at times almost absent). In at least one of the observations an isolated blob of emission is observed where we expect cusp to be: giving indication of solar wind charge-exchange signature in x-rays. We are comparing the Chandra x-ray observations with observations at other wavelengths and particle data from Earth-orbiting satellites and solar wind measurements from near-Earth ACE and SOH0 spacecraft. Preliminary results from these unique CXO-Earth observations will be presented and discussed.

  8. Chandra X-ray observation of the HII region Gum 31 in the Carina Nebula complex

    CERN Document Server

    Preibisch, T; Townsley, L; Broos, P; Ratzka, T

    2014-01-01

    (abridged) We used the Chandra observatory to perform a deep (70 ksec) X-ray observation of the Gum 31 region and detected 679 X-ray point sources. This extends and complements the X-ray survey of the central Carina nebula regions performed in the Chandra Carina Complex Project. Using deep near-infrared images from our recent VISTA survey of the Carina nebula complex, our Spitzer point-source catalog, and optical archive data, we identify counterparts for 75% of these X-ray sources. Their spatial distribution shows two major concentrations, the central cluster NGC 3324 and a partly embedded cluster in the southern rim of the HII region, but majority of X-ray sources constitute a rather homogeneously distributed population of young stars. Our color-magnitude diagram analysis suggests ages of ~1-2 Myr for the two clusters, whereas the distributed population shows a wider age range up to ~10 Myr. We also identify previously unknown companions to two of the three O-type members of NGC 3324 and detect diffuse X-ra...

  9. A Catalog of Chandra X-ray Sources in the Carina Nebula

    CERN Document Server

    Broos, Patrick S; Feigelson, Eric D; Getman, Konstantin V; Garmire, Gordon P; Preibisch, Thomas; Smith, Nathan; Babler, Brian L; Hodgkin, Simon; Indebetouw, Rémy; Irwin, Mike; King, Robert R; Lewis, Jim; Majewski, Steven R; McCaughrean, Mark J; Meade, Marilyn R; Zinnecker, Hans

    2011-01-01

    We present a catalog of ~14,000 X-ray sources observed by the ACIS instrument on the Chandra X-ray Observatory within a 1.42 square degree survey of the Great Nebula in Carina, known as the Chandra Carina Complex Project (CCCP). This study appears in a Special Issue of the ApJS devoted to the CCCP. Here, we describe the data reduction and analysis procedures performed on the X-ray observations, including calibration and cleaning of the X-ray event data, point source detection, and source extraction. The catalog appears to be complete across most of the field to an absorption-corrected total-band luminosity of ~10^{30.7} erg/s for a typical low-mass pre-main sequence star. Counterparts to the X-ray sources are identified in a variety of visual, near-infrared, and mid-infrared surveys. The X-ray and infrared source properties presented here form the basis of many CCCP studies of the young stellar populations in Carina.

  10. Chandra Science Operational Data System Migration to Linux: Herding Cats through a Funnel

    Science.gov (United States)

    Evans, J.; Evans, I.; Fabbiano, G.; Nichols, J.; Paton, L.; Rots, A.

    2014-05-01

    Migration to a new operational system requires technical and non-technical planning to address all of the functional associations affiliated with an established operations environment. The transition to (or addition of) a new platform often includes project planning that has organizational and operational elements. The migration likely tasks individuals both directly and indirectly involved in the project, so identification and coordination of key personnel is essential. The new system must be accurate and robust, and the transition plan typically must ensure that interruptions to services are minimized. Despite detailed integration and testing efforts, back-up plans that include procedures to follow if there are issues during or after installation need to be in place as part of the transition task. In this paper, we present some of the important steps involved in the migration of an operational data system. The management steps include setting objectives and defining scope, identifying stakeholders and establishing communication, assessing the environment and estimating workload, building a schedule, and coordinating with all involved to see it through. We discuss, specifically, the recent migration of the Chandra data system and data center operations from Solaris 32 to Linux 64. The code base is approximately 2 million source lines of code, and supports proposal planning, science mission planning, data processing, and the Chandra data archive. The overall project took approximately 18 months to plan and implement with the resources we had available. Data center operations continued uninterrupted with the exception of a small downtime during the changeover. We highlight our planning and implementation, the experience we gained during the project, and the lessons that we have learned.

  11. Multiwavelength observations of Mrk 501 in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Aleksic, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Gonzalez, Becerra; Bednarek, W.; Zitzer, B.

    2015-01-01

    Context. Blazars are variable sources on various timescales over a broad energy range spanning from radio to very high energy (>100 GeV, hereafter VHE). Mrk 501 is one of the brightest blazars at TeV energies and has been extensively studied since its first VHE detection in 1996. However, most of the γ-ray studies performed on Mrk 501 during the past years relate to flaring activity, when the source detection and characterization with the available γ-ray instrumentation was easier toperform. Aims. Our goal is to characterize the source γ-ray emission in detail, together with the radio-to-X-ray emission, during the non-flaring (low) activity, which is less often studied than the occasional flaring (high) activity. Methods. We organized a multiwavelength (MW) campaign on Mrk 501 between March and May 2008. This multi-instrument effort included the most sensitive VHE γ-ray instruments in the northern hemisphere, namely the imaging atmospheric Cherenkov telescopes MAGIC and VERITAS, as well as Swift, RXTE, the F-GAMMA, GASP-WEBT, and other collaborations and instruments. This provided extensive energy and temporal coverage of Mrk 501 throughout the entire campaign. Results. Mrk 501 was found to be in a low state of activity during the campaign, with a VHE flux in the range of 10%–20% of the Crab nebula flux. Nevertheless, significant flux variations were detected with various instruments, with a trend of increasing variability with energy and a tentative correlation between the X-ray and VHE fluxes. The broadband spectral energy distribution during the two different emission states of the campaign can be adequately described within the homogeneous one-zone synchrotron self-Compton model, with the (slightly) higher state described by an increase in the electron number density. Conclusions. The one-zone SSC model can adequately describe the broadband spectral energy distribution of the source during the two months covered by the MW campaign. This agrees with

  12. PKS 2155-304 in July 2006: H.E.S.S. results and simultaneous multi-wavelength observations

    International Nuclear Information System (INIS)

    The high-frequency-peaked BL Lac PKS 2155-304 is one of the brightest and best-studied VHE γ-ray sources in the southern hemisphere. The High Energy Stereoscopic System (H.E.S.S.) has monitored PKS 2155-304 in 2006 and a multi-wavelength campaign involving X-ray, optical and radio observatories was triggered by the detection of an active state in July 2006, followed by the detection of two extraordinary flares on July, 28th and 30th, with peak fluxes ∼100 times the usual values. We present results from the spectral and flux variability analysis of the VHE and simultaneous X-ray observations with Chandra during the second flare, as well as the detailed evolution of the VHE flux of PKS 2155-304 observed by H.E.S.S. in 2006. A study of flux correlations in the different frequency ranges during the second flare and the adjacent nights is discussed. We also present an interpretation of the active state of PKS 2155-304 in the framework of synchrotron self-Compton emission.

  13. Chandra Opens New Line of Investigation on Dark Energy

    Science.gov (United States)

    2004-05-01

    Astronomers have detected and probed dark energy by applying a powerful, new method that uses images of galaxy clusters made by NASA's Chandra X-ray Observatory. The results trace the transition of the expansion of the Universe from a decelerating to an accelerating phase several billion years ago, and give intriguing clues about the nature of dark energy and the fate of the Universe. "Dark energy is perhaps the biggest mystery in physics," said Steve Allen of the Institute of Astronomy (IoA) at the University of Cambridge in England, and leader of the study. "As such, it is extremely important to make an independent test of its existence and properties." Abell 2029 Chandra X-ray Image of Abell 2029 Allen and his colleagues used Chandra to study 26 clusters of galaxies at distances corresponding to light travel times of between one and eight billion years. These data span the time when the Universe slowed from its original expansion, before speeding up again because of the repulsive effect of dark energy. "We're directly seeing that the expansion of the Universe is accelerating by measuring the distances to these galaxy clusters," said Andy Fabian also of the IoA, a co-author on the study. The new Chandra results suggest that the dark energy density does not change quickly with time and may even be constant, consistent with the "cosmological constant" concept first introduced by Albert Einstein. If so, the Universe is expected to continue expanding forever, so that in many billions of years only a tiny fraction of the known galaxies will be observable. More Animations Animation of the "Big Rip" If the dark energy density is constant, more dramatic fates for the Universe would be avoided. These include the "Big Rip," where dark energy increases until galaxies, stars, planets and eventually atoms are eventually torn apart. The "Big Crunch," where the Universe eventually collapses on itself, would also be ruled out. Chandra's probe of dark energy relies on the unique

  14. Multiwavelength erbium-doped fiber laser exploiting intracavity polarization inhomogeneity

    Institute of Scientific and Technical Information of China (English)

    孙军强; 丘军林; 黄德修

    2000-01-01

    Simultaneous multiwavelength lasing is demonstrated exploiting intracavity polarization in-homogeneity in an erbium-doped fiber laser. Experiments indicate that polarization hole burning can be enhanced by the changes of optical MQW waveguide bias current and the polarization states in the laser cavity. Ten wavelengths with 0.9 nm spacing are generated at room temperature.

  15. Strictly Transparent Wavelength Conversion Using Multi-Wavelength Signal Generation

    Institute of Scientific and Technical Information of China (English)

    Eiichi; Yamada; Hiroaki; Sanjoh; Yuzo; Yoshikuni

    2003-01-01

    We succeeded in strictly transparent wavelength conversion by means of channel selection from multi-wavelength signals generated by sinusoidal modulation of input signal. Modulation-format-independent and bit-rate-independent wavelength conversion is achieved with small power penalty.

  16. Multiwavelength erbium-doped fiber laser exploiting intracavity polarization inhomogeneity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Simultaneous multiwavelength lasing is demonstrated exploiting intracavity polarization inhomogeneity in an erbium-doped fiber laser. Experiments indicate that polarization hole burning can be enhanced by the changes of optical MQW waveguide bias current and the polarization states in the laser cavity. Ten wavelengths with 0.9 nm spacing are generated at room temperature.

  17. Coordinated multi-wavelength observations of Sgr A*

    NARCIS (Netherlands)

    A. Eckart; R. Schödel; F.K. Baganoff; M. Morris; T. Bertram; M. Dovciak; D. Downes; W.J. Duschl; V. Karas; S. König; T. Krichbaum; M. Krips; D. Kunneriath; R.S. Lu; S. Markoff; J. Mauerhan; L. Meyer; J. Moultaka; K. Muzic; F. Najarro; K. Schuster; L. Sjouwerman; C. Straubmeier; C. Thum; S. Vogel; H. Wiesemeyer; G. Witzel; M. Zamaninasab; A. Zensus

    2008-01-01

    We report on recent near-infrared (NIR) and X-ray observations of Sagittarius A* (Sgr A*), the electromagnetic manifestation of the ~4x10^6 M-circle-dot solar masses super-massive black hole (SMBH) at the Galactic Center. The goal of these coordinated multi-wavelength observations is to investigate

  18. Highlights and discoveries from the Chandra X-ray Observatory.

    Science.gov (United States)

    Tananbaum, H; Weisskopf, M C; Tucker, W; Wilkes, B; Edmonds, P

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy. PMID:24913425

  19. Chandra and Swift Observations of Unidentified Fermi-LAT Objects

    Science.gov (United States)

    Donato, Davide; Cheung, T.; Gehrels, N.

    2010-02-01

    In the last year we targeted some of the unidentified Fermi-LAT objects (UFOs) at high Galactic latitude with Chandra and Swift in order to determine the basic properties (positions, fluxes, hardness ratios) of all X-ray sources within the Fermi-LAT localization circles. These satellites enable us to detect the X-ray conterparts with a flux limit that is at least an order of magnitude lower than achieved in extant RASS data and to further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources. Here we present the results obtained with 5 Chandra pointings of high Galactic latitude UFOs in the Fermi-LAT 3-months bright source list. The association of detected X-ray sources within the improved 11-months Fermi-LAT localization circles with available optical and radio observations is discussed.

  20. Chandra Observes Cloud Powered by Black Hole in Distant Galaxy

    Science.gov (United States)

    2000-06-01

    NASA's Chandra X-ray Observatory has shown that a large gas cloud is being blasted by X rays from the vicinity of a giant black hole which lurks in its center. The observation is of special interest because it shows the disruptive effects that a massive black hole can have over thousands of light years. The results are being presented today by Drs. Patrick M. Ogle, Herman L. Marshall, Julia C. Lee, and Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 196th national meeting of the American Astronomical Society in Rochester, NY. The observation also demonstrates that the searchlight beam of X rays from the black hole can be used to probe the environment around a black hole. The galaxy NGC 4151 is located at a distance of 50 million light years in a direction just south of the Big Dipper. It is a prominent example of a class of galaxies that show unusual energetic activity in their nucleus. This activity is now known to be due to the presence of a giant black hole in the nucleus with an estimated mass 10 million times that of the Sun. As matter swirls toward the black hole, it releases a prodigious amount of energy, much of it in X rays. Previous observations showed that X rays are also coming from an enormous cloud 3000 light years across that surrounds the black hole. The precise mirrors of Chandra allowed astronomers to make an X-ray image showing unprecedented detail of the massive cloud in the center of NGC 4151. The brightest regions in the cloud correspond to wisps that were previously observed in visible light by the Hubble Space Telescope. The shape of the cloud confirms that X rays from the black hole are collimated into a narrow beam, and illuminate only certain quadrants of the galaxy. "The black hole is shining an X-ray searchlight which illuminates the clouds in the night sky of NGC 4151" said Ogle. By using the High Energy Transmission Grating (HETG), astronomers were able to resolve the X-ray spectrum from the

  1. TGCat : THE CHANDRA TRANSMISSION GRATING DATA CATALOG AND ARCHIVE

    International Nuclear Information System (INIS)

    The Chandra Transmission Grating Data Archive and Catalog (TGCat) provides easy access to analysis-ready products, specifically, high-resolution X-ray count spectra and their corresponding calibrations. The web interface makes it easy to find observations of a particular object, type of object, or type of observation; to quickly assess the quality and potential usefulness of the spectra from pre-computed summary plots; or to customize a view with an interactive plotter, optionally combining spectra over multiple orders or observations. Data and responses can be downloaded as a package or as individual files, and the query results themselves can be retrieved as ASCII or Virtual Observatory tables. Portable reprocessing scripts used to create the archive and which use the Chandra X-ray Center's (CXC's) software and other publicly available software are also available, facilitating standard or customized reprocessing from Level 1 CXC archival data to spectra and responses with minimal user interaction.

  2. Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

    CERN Document Server

    Britt, Christopher T; Johnson, C B; Baldwin, A; Jonker, P G; Nelemans, G; Torres, M A P; Maccarone, T; Steeghs, D; Greiss, S; Heinke, C; Bassa, C G; Collazzi, A; Villar, A; Gabb, M; Gossen, L

    2014-01-01

    We present optical lightcurves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey. Using data from the Mosaic-II instrument on the Blanco 4m Telescope at CTIO, we gathered time-resolved photometric data on timescales from $\\sim2$ hr to 8 days over the $\\frac{3}{4}$ of the X-ray survey containing sources from the initial GBS catalog. Among the lightcurve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. $87\\%$ of X-ray sources have at least one potential optical counterpart. $24\\%$ of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and di...

  3. Multiwavelength observations of Mrk 501 in 2008

    Science.gov (United States)

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Caneva, G.; de Lotto, B.; Delgado Mendez, C.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giavitto, G.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadamek, A.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nowak, N.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saggion, A.; Saito, T.; Saito, K.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Sun, S.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; Bugaev, B.; Cerruti, M.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Duke, C.; Dumm, J.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Johnson, C. A.; Kaaret, P.; Kertzman, M.; Kieda, D.; Krawczynski, H.; Lang, M. J.; Madhavan, A. S.; Maier, G.; Majumdar, P.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Pichel, A.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Rajotte, J.; Ratliff, G.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sembroski, G. H.; Shahinyan, K.; Sheidaei, F.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Theiling, M.; Tyler, J.; Varlotta, A.; Vincent, S.; Wakely, S. P.; Weekes, T. C.; Welsing, R.; Williams, D. A.; Zajczyk, A.; Zitzer, B.; VERITAS Collaboration; Villata, M.; Raiteri, C. M.; Ajello, M.; Perri, M.; Aller, H. D.; Aller, M. F.; Larionov, V. M.; Efimova, N. V.; Konstantinova, T. S.; Kopatskaya, E. N.; Chen, W. P.; Koptelova, E.; Hsiao, H. Y.; Kurtanidze, O. M.; Nikolashvili, M. G.; Kimeridze, G. N.; Jordan, B.; Leto, P.; Buemi, C. S.; Trigilio, C.; Umana, G.; Lähteenmäki, A.; Nieppola, E.; Tornikoski, M.; Sainio, J.; Kadenius, V.; Giroletti, M.; Cesarini, A.; Fuhrmann, L.; Kovalev, Yu. A.; Kovalev, Y. Y.

    2015-01-01

    Context. Blazars are variable sources on various timescales over a broad energy range spanning from radio to very high energy (>100 GeV, hereafter VHE). Mrk 501 is one of the brightest blazars at TeV energies and has been extensively studied since its first VHE detection in 1996. However, most of the γ-ray studies performed on Mrk 501 during the past years relate to flaring activity, when the source detection and characterization with the available γ-ray instrumentation was easier toperform. Aims: Our goal is to characterize the source γ-ray emission in detail, together with the radio-to-X-ray emission, during the non-flaring (low) activity, which is less often studied than the occasional flaring (high) activity. Methods: We organized a multiwavelength (MW) campaign on Mrk 501 between March and May 2008. This multi-instrument effort included the most sensitive VHE γ-ray instruments in the northern hemisphere, namely the imaging atmospheric Cherenkov telescopes MAGIC and VERITAS, as well as Swift, RXTE, the F-GAMMA, GASP-WEBT, and other collaborations and instruments. This provided extensive energy and temporal coverage of Mrk 501 throughout the entire campaign. Results: Mrk 501 was found to be in a low state of activity during the campaign, with a VHE flux in the range of 10%-20% of the Crab nebula flux. Nevertheless, significant flux variations were detected with various instruments, with a trend of increasing variability with energy and a tentative correlation between the X-ray and VHE fluxes. The broadband spectral energy distribution during the two different emission states of the campaign can be adequately described within the homogeneous one-zone synchrotron self-Compton model, with the (slightly) higher state described by an increase in the electron number density. Conclusions: The one-zone SSC model can adequately describe the broadband spectral energy distribution of the source during the two months covered by the MW campaign. This agrees with previous

  4. The Chandra X-Ray Observatory (CXO): An Overview

    OpenAIRE

    Weisskopf, Martin C.

    1999-01-01

    Significant advances in science inevitably occur when the state of the art in instrumentation improves. NASA's newest Great Observatory, the Chandra X-Ray Observatory (CXO) -- formally known as the Advanced X-Ray Astrophysics Facility (AXAF) -- launched on July 23, 1999 and represents such an advance. The CXO is designed to study the x-ray emission from all categories of astronomical objects from normal stars to quasars.

  5. 10+ more years of Chandra-XMM-Newton Synergy

    Science.gov (United States)

    Wilkes, B.

    2016-06-01

    In this current golden age of X-ray astronomy, the frontiers of the X-ray Universe are continually expanding in multiple, often unexpected, directions, due to the extraordinary success and longevity of both ESA's XMM-Newton and NASA's Chandra X-ray Observatory. These two ground-breaking, major observatories are supported by a number of smaller, more focused missions which feed into and expand the discovery space of X-ray astronomy even further. With the prospect of another decade of observing, now is an excellent time to take stock of how far we have come, and to look forward to the future with a view to maximizing the scientific legacy of both XMM-Newton and Chandra. This not only involves optimizing the contents of the archives and the impact of the science results, but also laying the ground-work for the next generation of X-ray telescopes, led by ESA's Athena mission in the late 2020s. I will summarize the synergy between XMM-Newton and Chandra, including complementary capabilities which facilitate coordinated observations and science programs, and overlapping capabilities which often provide the necessary confirmation (or not) of new, marginal and/or controversial results.

  6. Chandra Observation of Abell 2065: An Unequal Mass Merger?

    CERN Document Server

    Chatzikos, M; Sarazin, C L; Chatzikos, Marios; Sarazin, Craig L.

    2006-01-01

    We present an analysis of a 41 ks Chandra observation of the merging cluster Abell 2065 with the ACIS-I detector. Previous observations with ROSAT and ASCA provided evidence for an ongoing merger, but also suggested that there were two surviving cooling cores, which were associated with the two cD galaxies in the center of the cluster. The Chandra observation reveals only one X-ray surface brightness peak, which is associated with the more luminous, southern cD galaxy. The gas related with that peak is cool and displaced slightly from the position of the cD. The data suggest that this cool material has formed a cold front. On the other hand, in the higher spatial resolution Chandra image, the second feature to the north is not associated with the northern cD; rather, it appears to be a trail of gas behind the main cD. We argue that only one of the two cooling cores has survived the merger, although it is possible that the northern cD may not have possessed a cool core prior to the merger. We use the cool core...

  7. Chandra Examines Black Holes Large and Small in Nearby Galaxy

    Science.gov (United States)

    2001-05-01

    Probing a large, nearby galaxy in the constellation of Circinus, NASA’s Chandra X-ray Observatory presents a new view of both the galaxy’s supermassive black hole and a host of potential smaller black holes sprinkled throughout its spiral arms. The results include the first detection of a black hole’s periodic variability in X-rays outside our galactic neighborhood. Astronomers from Penn State University used Chandra to discover a variable object within the dozen or so X-ray emitting sources sprinkled throughout the Circinus galaxy. The intensity of X-rays from this source changes on a cycle of 7.5 hours - the first time this "periodic variability" has been detected at X-ray wavelengths in an object outside the "Local Group" of galaxies. And, along with its brightness, this evidence strongly suggests that the system contains a black hole some 50 times the mass of the Sun. "Extremely luminous X-ray sources such as this one appear to be common among other galaxies," said Franz Bauer, a postdoctoral scholar at Penn State and lead author of a July 2001 paper in The Astronomical Journal. "But until Chandra, we have never had an instrument that could clearly identify whether they were simply massive X-ray binary systems, or if they represented a new class of objects" "The periodic variability in the Chandra data of Circinus provides us with a key signature that these objects are indeed X-ray binary systems," continued Bauer. "This is important because black holes with masses much larger than 10 times the mass of the Sun such as this one are difficult to explain under current theories of star formation and destruction. Definitively finding a periodic signal in one allows us to test some of our past assumptions." The X-ray data acquired by two independent teams -- one at Penn State and George Mason University and the other at the University of Maryland -- also provide evidence that strongly supports the "unified model," a theory in which a large doughnut-shaped ring

  8. EIS Data on the Chandra Deep Field South Released

    Science.gov (United States)

    2001-03-01

    The purpose of this note is to announce that the ESO Imaging Survey programme has released a full set of optical/infrared data covering the socalled Chandra Deep Field South (CDF-S) rapidly becoming a favoured target for cosmological studies in the southern hemisphere. The field was originally selected for deep X-ray observations with Chandra and XMM. The former have already been completed producing the deepest high-resolution X-ray image ever taken with a total integration time of one million seconds. The data obtained by EIS include J and Ks infrared observations of an area of 0.1 square degree nearly matching the Chandra image down to JAB ~ 23.4 and KAB ~ 22.6 and UU'BVRI optical observations over 0.25 square degree, matching the XMM field of view, reaching 5 s limiting magnitudes of U'AB = 26.0, UAB = 25.7, BAB = 26.4, VAB = 25.4, RA B = 25.5 and IA B = 24.7 mag, as measured within a 2 ´ FWHM aperture.

  9. High School Students Discover Neutron Star Using Chandra and VLA Data

    Science.gov (United States)

    2000-12-01

    students who develop independent research projects in the physical or biological sciences, or mathematics. The North Carolina School of Science and Mathematics is a free statewide residential high school for students with a strong aptitude and interest in math and science. The NCSSM was founded in 1980 as part of the University of North Carolina system. About 550 high school juniors and seniors reside on the school's campus. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Massachusetts. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  10. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    Science.gov (United States)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  11. Chandra grating spectroscopy of three hot white dwarfs

    Science.gov (United States)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2012-10-01

    Context. High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB 1919) and the other is a non-DA of spectral type PG 1159 (PG 1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD 246). Aims: The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB 1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD 246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG 1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods: The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results: No metals could be identified in LB 1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD 246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG 1520+525 constrains the effective temperature to Teff = 150 000 ± 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GW Vir class (PG 1159 - 035) defines the location of the blue edge of the GW Vir

  12. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    OpenAIRE

    Weisskopf, Martin C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution ...

  13. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  14. A Chandra X-ray Study of NGC 1068: II. The Luminous X-ray Source Population

    OpenAIRE

    Smith, David A.; Wilson, Andrew S.

    2003-01-01

    We present an analysis of the compact X-ray source population in the Seyfert~2 galaxy NGC 1068, imaged with Chandra. We find a total of 84 compact sources, of which 66 are projected onto the galactic disk of NGC 1068. Spectra of the brightest sources have been modeled with both multi-color disk blackbody and power-law models. The power-law model provides the better description of the spectrum for most of these sources. Five sources have 0.4-8 keV intrinsic luminosities greater than 10^{39} er...

  15. Multiwavelength and parsec-scale properties of extragalactic jets

    CERN Document Server

    Cornelia, Müller

    2016-01-01

    Extragalactic jets originating from the central supermassive black holes of active galaxies are powerful, highly relativistic plasma outflows, emitting light from the radio up to the gamma-ray regime. The details of their formation, composition and emission mechanisms are still not completely clear. The combination of high-resolution observations using very long baseline interferometry (VLBI) and multiwavelength monitoring provides the best insight into these objects. Here, such a combined study of sources of the TANAMI sample is presented, investigating the parsec-scale and high-energy properties. The TANAMI program is a multiwavelength monitoring program of a sample of the radio and gamma-ray brightest extragalactic jets in the southern sky, below -30deg declination. We obtain the first-ever VLBI images for most of the sources, providing crucial information on the jet kinematics and brightness distribution at milliarcsecond resolution. Two particular sources are discussed in detail: PMN J1603-4904, which ca...

  16. Monte Carlo studies of multiwavelength pyrometry using linearized equations

    Science.gov (United States)

    Gathers, G. R.

    1992-03-01

    Multiwavelength pyrometry has been advertised as giving significant improvement in precision by overdetermining the solution with extra wavelengths and using least squares methods. Hiernaut et al. [1] have described a six-wavelength pyrometer for measurements in the range 2000 to 5000 K. They use the Wien approximation and model the logarithm of the emissivity as a linear function of wavelength in order to produce linear equations. The present work examines the measurement errors associated with their technique.

  17. A Synoptic, Multiwavelength Analysis of a Large Quasar Sample

    OpenAIRE

    Rengstorf, Adam W.; Brunner, Robert J.; Wilhite, Brian C.

    2005-01-01

    We present variability and multi-wavelength photometric information for the 933 known quasars in the QUEST Variability Survey. These quasars are grouped into variable and non-variable populations based on measured variability confidence levels. In a time-limited synoptic survey, we detect an anti-correlation between redshift and the likelihood of variability. Our comparison of variability likelihood to radio, IR, and X-ray data is consistent with earlier quasar studies. Using already-known qu...

  18. Multiwavelength analysis of a solar quiet region

    Czech Academy of Sciences Publication Activity Database

    Tsiropoula, G.; Tziotziou, K.; Schwartz, Pavol; Heinzel, Petr

    2009-01-01

    Roč. 493, č. 1 (2009), s. 217-225. ISSN 0004-6361 Grant ostatní: EU(XE) ESA-PECS project No. 98030 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun * chromosphere * transition region Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  19. Chandra Images the Seething Cauldron of Starburst Galaxy

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has imaged the core of the nearest starburst galaxy, Messier 82 (M82). The observatory has revealed a seething cauldron of exploding stars, neutron stars, black holes, 100 million degree gas, and a powerful galactic wind. The discovery will be presented by a team of scientists from Carnegie Mellon University, Pittsburgh, Penn., Pennsylvania State University, University Park, and the University of Michigan, Ann Arbor, on January 14 at the 195th national meeting of the American Astronomical Society. "In the disk of our Milky Way Galaxy, stars form and die in a relatively calm fashion like burning embers in a campfire," said Richard Griffiths, Professor of Astrophysics at Carnegie Mellon University. "But in a starburst galaxy, star birth and death are more like explosions in a fireworks factory." Short-lived massive stars in a starburst galaxy produce supernova explosions, which heat the interstellar gas to millions of degrees, and leave behind neutron stars and black holes. These explosions emit light in the X rays rather than in visible light. Because the superhot components inside starburst galaxies are complex and sometimes confusing, astronomers need an X-ray-detecting telescope with the highest focusing power (spatial resolution) to clearly discriminate the various structures. "NASA's Chandra X-ray Observatory is the perfect tool for studying starburst galaxies since it has the critical combination of high-resolution optics and good sensitivity to penetrating X rays," said Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Pennsylvania State University, and head of the team that conceived and built Chandra's Advanced CCD Imaging Spectrograph (ACIS) X-ray camera, which acquired the data. Many intricate structures missed by earlier satellite observatories are now visible in the ACIS image, including more than twenty powerful X-ray binary systems that contain a normal star in a close orbit around a neutron star

  20. Chandra and Very Large Array Observations of the Nearby Sd Galaxy NGC 45

    Science.gov (United States)

    Pannuti, Thomas G.; Swartz, Douglas A.; Laine, Seppo; Schlegel, Eric M.; Lacey, Christina K.; Moffitt, William P.; Sharma, Biswas; Lackey-Stewart, Aaron M.; Kosakowski, Alekzander R.; Filipović, Miroslav D.; Payne, Jeffrey L.

    2015-09-01

    intervals). The VLA observations reveal seven discrete radio sources: we find no overlaps between these sources and the X-ray detected sources. Based on their measured spectral indices and their locations with respect to the visible extent of NGC 45, we classify one source as a candidate radio SNR associated with the galaxy and the others as likely background galaxies seen in projection toward NGC 45. Finally, we discuss the properties of a background cluster of galaxies (denoted as CXOU J001354.2-231254.7) seen in projection toward NGC 45 and detected by the Chandra observations. The fit parameters to the extracted Chandra spectra of this cluster are a column density {N}{{H}} = 0.07(<0.14) × 1022 cm-2, a temperature kT = 4.22{}-1.42+2.08 keV, an abundance Z = 0.30(<0.75) relative to solar and a redshift z = 0.28 ± 0.14. From the fit parameters we derive an electron number density {n}{{e}} = 4(±1) × 10-3 cm-3, an unabsorbed X-ray luminosity {L}0.5-7.0 {keV} ˜ 8.77(±0.96) × 1043 erg s-1 for the cluster and an X-ray emitting mass M = 2.32(±1.75) × 1012 {M}⊙ .

  1. Modeling Multi-Wavelength Stellar Astrometry. II. Determining Absolute Inclinations, Gravity Darkening Coefficients, and Spot Parameters of Single Stars with SIM Lite

    OpenAIRE

    Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.

    2010-01-01

    We present a novel technique to determine the absolute inclination of single stars using multi-wavelength sub-milliarcsecond astrometry. The technique exploits the effect of gravity darkening, which causes a wavelength-dependent astrometric displacement parallel to a star’s projected rotation axis. We find that this effect is clearly detectable using SIM Lite for various giant stars and rapid rotators, and present detailed models for multiple systems using the reflux code. We also explo...

  2. Chandra Finds Most Distant X-ray Galaxy Cluster

    Science.gov (United States)

    2001-02-01

    The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the

  3. CHANG-ES - VI. Probing Supernova energy deposition in spiral galaxies through multiwavelength relationships

    Science.gov (United States)

    Li, Jiang-Tao; Beck, Rainer; Dettmar, Ralf-Jürgen; Heald, George; Irwin, Judith; Johnson, Megan; Kepley, Amanda A.; Krause, Marita; Murphy, E. J.; Orlando, Elena; Rand, Richard J.; Strong, A. W.; Vargas, Carlos J.; Walterbos, Rene; Wang, Q. Daniel; Wiegert, Theresa

    2016-02-01

    How a galaxy regulates its supernovae (SNe) energy into different interstellar/circumgalactic medium components strongly affects galaxy evolution. Based on the JVLA D-configuration C- (6 GHz) and L-band (1.6 GHz) continuum observations, we perform statistical analysis comparing multiwavelength properties of the Continuum Haloes in Nearby Galaxies - an EVLA Survey galaxies. The high-quality JVLA data and edge-on orientation enable us for the first time to include the halo into the energy budget for a complete radio-flux-limited sample. We find tight correlations of Lradio with the mid-IR-based star formation rate (SFR). The normalization of our I1.6 GHz/W Hz-1-SFR relation is ˜2-3times of those obtained for face-on galaxies, probably a result of enhanced IR extinction at high inclination. We also find tight correlations between Lradio and the SNe energy injection rate dot{E}_SN(Ia+CC), indicating the energy loss via synchrotron radio continuum accounts for ˜1 of dot{E}_SN, comparable to the energy contained in cosmic ray electrons. The integrated C-to-L-band spectral index is α ˜ 0.5-1.1 for non-active galactic nucleus galaxies, indicating a dominance by the diffuse synchrotron component. The low-scatter Lradio-SFR/L_radio-dot{E}_{SN (Ia+CC)} relationships have superlinear logarithmic slopes at ˜2σ in L band (1.132 ± 0.067/1.175 ± 0.102) while consistent with linear in C band (1.057 ± 0.075/1.100 ± 0.123). The superlinearity could be naturally reproduced with non-calorimeter models for galaxy discs. Using Chandra halo X-ray measurements, we find sublinear LX-Lradio relations. These results indicate that the observed radio halo of a starburst galaxy is close to electron calorimeter, and a galaxy with higher SFR tends to distribute an increased fraction of SNe energy into radio emission (than X-ray).

  4. A multi-wavelength study of the gravitational lens COSMOS J095930+023427

    Science.gov (United States)

    Cao, Shuo; Covone, Giovanni; Paolillo, Maurizio; Zhu, Zong-Hong

    2013-01-01

    We present a multi-wavelength study of the gravitational lens COSMOS J095930+023427 (z1 = 0.892), together with the associated galaxy group along the line of sight located at z ~ 0.7, and the lensed background galaxy. The source redshift is currently unknown, but estimated to be at zs ~ 2. This analysis is based on publicly available HST, Subaru and Chandra imaging data, as well as VLT spectroscopy. The lensing system is an early-type galaxy showing a strong [OII] emission line, and produces four bright images of the distant background source. It has an Einstein radius of 0.79″, about four times larger than the effective radius. We perform a lensing analysis using both a singular isothermal ellipsoid and a peudo-isothermal elliptical mass distribution for the lensing galaxy, and find that the final results on the total mass, the dark matter (DM) fraction within the Einstein radius and the external shear due to a foreground galaxy group are robust with respect to the choice of the parametric model and the source redshift (yet unknown). We measure the luminous mass from the photometric data, and find the DM fraction within the Einstein radius fDM to be between 0.71 ± 0.13 and 0.79 ± 0.15, depending on the unknown source redshift. Meanwhile, the non-null external shear found in our lensing models supports the presence and structure of a galaxy group at z ~ 0.7, and an independent measurement of the 0.5-2 keV X-ray luminosity within 20″ around the X-ray centroid provides a group mass of M = (3 - 10) × 1013 Msolar, in good agreement with the previous estimate derived through weak lensing analysis. Finally, by inverting the HST/ACS I814 image with the lensing equation, we obtain the reconstructed image of the magnified source galaxy, which has a scale of about 3.3 kpc at zs = 2 (2.7 kpc at zs = 4) and the typical disturbed disk-like appearance observed in low-mass star-forming galaxies at z ~ 3. However, deep, spatially resolved spectroscopic data for similar

  5. A multi-wavelength study of the gravitational lens COSMOS J095930+023427

    International Nuclear Information System (INIS)

    We present a multi-wavelength study of the gravitational lens COSMOS J095930+023427 (z1 = 0.892), together with the associated galaxy group along the line of sight located at z ∼ 0.7, and the lensed background galaxy. The source redshift is currently unknown, but estimated to be at zs ∼ 2. This analysis is based on publicly available HST, Subaru and Chandra imaging data, as well as VLT spectroscopy. The lensing system is an early-type galaxy showing a strong [OII] emission line, and produces four bright images of the distant background source. It has an Einstein radius of 0.79″, about four times larger than the effective radius. We perform a lensing analysis using both a singular isothermal ellipsoid and a peudo-isothermal elliptical mass distribution for the lensing galaxy, and find that the final results on the total mass, the dark matter (DM) fraction within the Einstein radius and the external shear due to a foreground galaxy group are robust with respect to the choice of the parametric model and the source redshift (yet unknown). We measure the luminous mass from the photometric data, and find the DM fraction within the Einstein radius fDM to be between 0.71 ± 0.13 and 0.79 ± 0.15, depending on the unknown source redshift. Meanwhile, the non-null external shear found in our lensing models supports the presence and structure of a galaxy group at z ∼ 0.7, and an independent measurement of the 0.5−2 keV X-ray luminosity within 20″ around the X-ray centroid provides a group mass of M = (3 − 10) × 1013 Msun, in good agreement with the previous estimate derived through weak lensing analysis. Finally, by inverting the HST/ACS I814 image with the lensing equation, we obtain the reconstructed image of the magnified source galaxy, which has a scale of about 3.3 kpc at zs = 2 (2.7 kpc at zs = 4) and the typical disturbed disk-like appearance observed in low-mass star-forming galaxies at z ∼ 3. However, deep, spatially resolved spectroscopic data for

  6. Chandra Observations of the A3266 Galaxy Cluster Merger

    OpenAIRE

    Henriksen, Mark J.; Tittley, Eric R.

    2002-01-01

    Analysis of a 30,000 s X-ray observation of the Abell 3266 galaxy cluster with the ACIS on board the Chandra Observatory has produced several new insights into the cluster merger. The intracluster medium has a non-monotonically decreasing radial abundance profile. We argue that the most plausible origin for the abundance enhancement is unmixed, high abundance subcluster gas from the merger. The enrichment consists of two stages: off-center deposition of a higher abundance material during a su...

  7. "Hidden" Seyfert 2 Galaxies in the Chandra Deep Field North

    OpenAIRE

    Cardamone, Carolin N.; Moran, Edward C.; Kay, Laura E.

    2007-01-01

    We have compared the X-ray--to--optical flux ratios (F_x/F_opt) of absorbed active galactic nuclei (AGNs) in the Chandra Deep Field North (CDF-N) with those of nearby, optically classified Seyfert 2 galaxies. The comparison provides an opportunity to explore the extent to which the local population of absorbed AGNs can account for the properties of the distant, spectroscopically ambiguous sources that produce the hard X-ray background. Our nearby sample consists of 38 objects that well repres...

  8. Investigating the cores of fossil systems with Chandra

    OpenAIRE

    Bharadwaj, V.; Reiprich, T. H.; Sanders, J.S.; Schellenberger, G.

    2015-01-01

    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with th...

  9. Chandra Observations of Tycho’s Supernova Remnant

    Indian Academy of Sciences (India)

    U. Hwang; R. Petre; A. E. Szymkowiak; S. S. Holt

    2002-03-01

    We present a new Chandra observation of Tycho’s supernova remnant with the Advanced CCD Imaging Spectrometer. Multicolor X-ray imaging reveals new details of the outer shock and ejecta. At energies between 4 and 6 keV, the outline of the outer shock is clearly revealed in X-rays for the first time. The distribution of the emission from lines of Si and Fe are confirmed to have a different morphology from each other, and the Si ejecta are shown to extend to the blast shock at several locations. Characteristic spectra of the outer shock and ejecta are also presented.

  10. Lessons Learned Designing and Building the Chandra Telescope

    Science.gov (United States)

    Arenberg, Jonathan

    2016-04-01

    This poster offers some of the major lessons learned by key members of the Chandra Telescope team. These lessons are gleaned from our experiences developing, designing, building and testing the telescope and its subsystems, with 15 years of hindsight. Among the topics to be discussed are the early developmental tests, known as VETA-I and VETA-II, requirements derivation, the impact of late requirements and reflection on the conservatism in the design process. This poster offers some opinions on how these lessons can affect future missions.

  11. A Chandra Proper Motion for PSR J1809-2332

    CERN Document Server

    Van Etten, Adam; Ng, C -Y

    2012-01-01

    We report on a new Chandra exposure of PSR J1809-2332, the recently discovered pulsar powering the bright EGRET source 3EG J1809-2328. By registration of field X-ray sources in an archival exposure, we measure a significant proper motion for the pulsar point source over an ~11 year baseline. The shift of 0.30+/-0.06" (at PA= 153.3+/-18.4) supports an association with proposed SNR parent G7.5-1.7. Spectral analysis of diffuse emission in the region also supports the interpretation as a hard wind nebula trail pointing back toward the SNR.

  12. A Chandra Proper Motion for PSR J1809-2332

    OpenAIRE

    Van Etten, Adam; Romani, Roger W.; Ng, C. -Y.

    2012-01-01

    We report on a new Chandra exposure of PSR J1809-2332, the recently discovered pulsar powering the bright EGRET source 3EG J1809-2328. By registration of field X-ray sources in an archival exposure, we measure a significant proper motion for the pulsar point source over an ~11 year baseline. The shift of 0.30+/-0.06" (at PA= 153.3+/-18.4) supports an association with proposed SNR parent G7.5-1.7. Spectral analysis of diffuse emission in the region also supports the interpretation as a hard wi...

  13. A Million-Second Chandra View of Cassiopeia A

    CERN Document Server

    Hwang, U; Badenes, C; Berends, F A; Blondin, J M; Cioffi, D; Delaney, T A; Dewey, D; Fesen, R A; Flanagan, K A; Fryer, C L; Ghavamian, P; Hughes, J P; Morse, J A; Plucinsky, P P; Petre, R; Pohl, M; Rudnick, L; Sankrit, R; Slane, P O; Smith, R K; Vink, J; Warren, J S; Hwang, Una; Badenes, Carles; Berendse, Fred; Blondin, John; Cioffi, Denis; Laney, Tracey De; Dewey, Daniel; Fesen, Robert; Flanagan, Kathryn A.; Fryer, Christopher L.; Ghavamian, Parviz; Hughes, John P.; Morse, Jon A.; Plucinsky, Paul P.; Petre, Robert; Pohl, Martin; Rudnick, Lawrence; Sankrit, Ravi; Slane, Patrick O.; Smith, Randall K.; Vink, Jacco; Warren, Jessica S.

    2004-01-01

    We introduce a million-second observation of the supernova remnant Cassiopeia A with the Chandra X-ray Observatory. The bipolar structure of the Si-rich ejecta (NE jet and SW counterpart) is clearly evident in the new images, and their chemical similarity is confirmed by their spectra. These are most likely due to jets of ejecta as opposed to cavities in the circumstellar medium, since we can reject simple models for the latter. The properties of these jets and the Fe-rich ejecta will provide clues to the explosion of Cas A.

  14. Chandra Observes the End of an Era SN 1987A

    OpenAIRE

    Frank, Kari A.; Zhekov, Svetozar A.; Park, Sangwook; McCray, Richard; Dwek, Eli; Burrows, David N.

    2016-01-01

    Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at ~8x10^-12 erg s^-1 cm^-2 since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies

  15. Chandra Sees Shape of Universe During Formative, Adolescent Years

    Science.gov (United States)

    2003-03-01

    Scientists using NASA's Chandra X-ray Observatory have taken a snapshot of the adolescent universe from about five billion years ago when the familiar web-like structure of galaxy chains and voids first emerged. The observation reveals distant and massive galaxies dotting the sky, clustered together under the gravitational attraction of deep, unseen pockets of dark matter. This provides important clues of how the universe matured from its chaotic beginnings to its elegant structure we see today. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. "Piece by piece, we are assembling a photo album of the universe through the ages," said Yuxuan Yang, a doctorate candidate at the University of Maryland, College Park, who conducted the analysis. "Last month we saw a picture of the infant universe taken with the Wilkinson Microwave Anisotropy Probe. Now we can add a snapshot of its adolescence." The Chandra observation traced a patch of sky known as the Lockman Hole in the constellation Ursa Major (containing the Big Dipper). Chandra saw a rich density of active galaxies, seven times denser than what has been detected in previous optical and radio surveys at similar distances. This provides the clearest picture yet at the large-scale structure of the universe at such distances (and age), according to Dr. Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who led the observation. Lockman Hole JPEG, TIFF, PS An image that has been "blurred" to allow better view of the structures outlined by the X-ray sources. The color represents the spectra of the AGN. The red color indicates the sources on average radiates at longer wavelength while green and blue colors indicates the sources radiates at shorter wavelength. The Green and blue regions appear to form a wall, or shows more lumpiness than the "red" sources. If one could capture the

  16. The discovery of X-rays from Venus with Chandra

    OpenAIRE

    Dennerl, K.; Burwitz, V.; Englhauser, J.; Lisse, C.; Wolk, S.

    2002-01-01

    On January 10 and 13, 2001, Venus was observed for the first time with an X-ray astronomy satellite. The observation, performed with the ACIS-I and LETG/ACIS-S instruments on Chandra, yielded data of high spatial, spectral, and temporal resolution. Venus is clearly detected as a half-lit crescent, with considerable brightening on the sunward limb. The morphology agrees well with that expected from fluorescent scattering of solar X-rays in the planetary atmosphere. The radiation is observed at...

  17. Discovery of X-rays from Venus with Chandra

    OpenAIRE

    Dennerl, K.; Burwitz, V.; Englhauser, J.; Lisse, C.; Wolk, S.

    2002-01-01

    On January 10 and 13, 2001, Venus was observed for the first time with an X-ray astronomy satellite. The observation, performed with the ACIS-I and LETG/ACIS-S instruments on Chandra, yielded data of high spatial, spectral, and temporal resolution. Venus is clearly detected as a half-lit crescent, with considerable brightening on the sunward limb. The morphology agrees well with that expected from fluorescent scattering of solar X-rays in the planetary atmosphere. The radiation is observed at...

  18. Discovery of X-rays from Mars with Chandra

    OpenAIRE

    Dennerl, Konrad

    2002-01-01

    On 4 July 2001, X-rays from Mars were detected for the first time. The observation was performed with the ACIS-I detector onboard Chandra and yielded data of high spatial and temporal resolution, together with spectral information. Mars is clearly detected as an almost fully illuminated disk, with an indication of limb brightening at the sunward side, accompanied by some fading on the opposite side. The morphology and the X-ray luminosity of ~4 MW are fully consistent with fluorescent scatter...

  19. Historical Remembrances of the Chandra X-ray Observatory: How Partnerships Created Success

    Science.gov (United States)

    Burke, Robert

    2009-09-01

    As the astronomy community plans for new ventures in space, we're forced to find creative solutions to operate within the ever increasing fiscal constraints of the current economic environment. The Chandra X-ray Observatory program offers an example of how missions can be successfully developed within manageable budget constraints. The ten year anniversary offers us the chance to look back at the Chandra team's special partnership between scientists, managers, and industry that led to our success.Chandra experienced many of the challenges common to major observatories: state-of-the-art technical requirements, budget-induced slips, and restructurings. Yet the Chandra team achieved excellent performance for dramatically lower cost. In fact, Chandra completed its prime mission for billions of dollars less than originally planned. In 1992, NASA MSFC and Northrop Grumman (then TRW) together led a major restructure that saved approximately 3.4B in program cost, while we improved the imaging capability and observing efficiency of Chandra. This was accomplished by a combination of team-work, systems engineering, advanced technology insertion, and effective approaches for program implementation, combined with a high performance culture that aligned goals and focused on mission success. Northrop Grumman is proud of our role in supporting the NASA Marshall Space Flight Center and our academic partners in advancing the frontiers of x-ray astronomy and scientific discovery with Chandra. As Chandra continues its extended mission, the observatory continues to provide superb scientific performance.

  20. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk 348

    Indian Academy of Sciences (India)

    J. Wang; J. S. Zhang; Q. Guo

    2014-09-01

    For H2O megamaser galaxy Mrk 348, Chandra and XMM–Newton data are analysed. The nuclear fitting results of XMM–Newton data suggest the possible existence of a heavily obscured AGN. But the nuclear spectrum extracted from Chandra cannot be well-fitted by the best fitting model for XMM–Newton. Further optimal fitting and discussions are needed.

  1. SBF: multi-wavelength data and models

    CERN Document Server

    Cantiello, M; Blakeslee, J P; Brocato, E; Capaccioli, M

    2007-01-01

    Recent applications have proved that the Surface Brightness Fluctuations (SBF) technique is a reliable distance indicator in a wide range of distances, and a promising tool to analyze the physical and chemical properties of unresolved stellar systems, in terms of their metallicity and age. We present the preliminary results of a project aimed at studying the evolutionary properties and distance of the stellar populations in external galaxies based on the SBF method. On the observational side, we have succeeded in detecting I-band SBF gradients in six bright ellipticals imaged with the ACS, for these same objects we are now presenting also B-band SBF data. These B-band data are the first fluctuations magnitude measurements for galaxies beyond 10 Mpc. To analyze the properties of stellar populations from the data, accurate SBF models are essential. As a part of this project, we have evaluated SBF magnitudes from Simple Stellar Population (SSP) models specifically optimized for the purpose. A wide range of chemi...

  2. MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Margutti, Raffaella; Soderberg, Alicia M.; Chomiuk, Laura; Sanders, Nathan E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pignata, Giuliano; Bufano, Filomena [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Fesen, Robert A.; Parrent, Jerod T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Parker, Stuart [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand); Mazzali, Paolo [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Pian, Elena [Kavli Institute for Theoretical Physics, Kohn Hall, University of California at Santa Barbara, Santa Barbara, CA 93106-4030 (United States); Pickering, Timothy; Buckley, David A. H.; Crawford, Steven M.; Gulbis, Amanda A. S.; Hettlage, Christian [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Hooper, Eric; Nordsieck, Kenneth H. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); O' Donoghue, Darragh, E-mail: dmilisav@cfa.harvard.edu [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others

    2013-04-10

    We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within {approx}1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on a timescale of one week. High-cadence monitoring of this transition suggests absorption attributable to a high-velocity ({approx}> 12, 000 km s{sup -1}) H-rich shell, which is likely present in many Type Ib events. Radio observations imply a shock velocity of v Almost-Equal-To 0.13 c and a progenitor star average mass-loss rate of M-dot {approx}1.4 Multiplication-Sign 10{sup -5} M{sub sun} yr{sup -1} (assuming wind velocity v{sub w} = 10{sup 3} km s{sup -1}). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 M{sub Sun }), compact (R{sub *} {approx}< 1 Multiplication-Sign 10{sup 11} cm), He-core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass loss. We conclude that SN 2011ei's rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of the relative explosion rates for Type IIb and Ib objects, and that important information about a progenitor star's evolutionary state and mass loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.

  3. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    Science.gov (United States)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).

  4. Chandra Observations of SN 1987A: The Soft X-Ray Light Curve Revisited

    Science.gov (United States)

    Helder, E. A.; Broos, P. S.; Dewey, D.; Dwek, E.; McCray, R.; Park, S.; Racusin, J. L.; Zhekov, S. A.; Burrows, D. N.

    2013-01-01

    We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by approximately 6 x 10(exp-13) erg s(exp-1)cm(exp-2) per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.

  5. XMM-Newton and Chandra observations of SHEEP sources

    CERN Document Server

    Georgantopoulos, I; Brotherton, M; Georgakakis, A; Papadakis, I E; O'Neill, P

    2006-01-01

    We present Chandra and XMM observations of 12 bright (f(2-10 keV) > 10^-13 cgs) sources from the ASCA SHEEP (Search for the High Energy Extragalactic Population) survey. Most of these have been either not observed or not detected previously with the ROSAT mission and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating with accuracy the optical counterpart of the X-ray sources. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects), and Broad-Line (BL) AGN (five objects) with one source remaining unidentified. Our sources cover the redshift range 0.04 to 1.29 spanning luminosities from 10^42 to 10^45 cgs (2-10 keV). The NL sources have preferentially lower redshift (and luminosity) compared with the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a...

  6. Chandra Identification of Two AGN Discovered by INTEGRAL

    CERN Document Server

    Tomsick, John A; Rahoui, Farid; Ajello, Marco; Rodriguez, Jerome; Barriere, Nicolas; Bodaghee, Arash; Chaty, Sylvain

    2015-01-01

    Here, we report on observations of two hard X-ray sources that were originally discovered with the INTEGRAL satellite: IGR J04059+5416 and IGR J08297-4250. We use the Chandra X-ray Observatory to localize the sources and then archival near-IR images to identify the counterparts. Both sources have counterparts in the catalog of extended 2 Micron All-Sky Survey sources, and the counterpart to IGR J04059+5416 has been previously identified as a galaxy. Thus, we place IGR J04059+5416 in the class of Active Galactic Nuclei (AGN), and we suggest that IGR J08297-4250 is also an AGN. If this identification is correct, the near-IR images suggest that the host galaxy of IGR J08297-4250 may be merging with a smaller nearby galaxy. For IGR J04059+5416, the 0.3-86 keV spectrum from Chandra and INTEGRAL is consistent with an absorbed power-law with a column density of N_H = 3.1(+2.0)(-1.5)e22 cm-2 and a photon index of Gamma = 1.4+/-0.7, and we suggest that it is a Seyfert galaxy. For IGR J08297-4250, the photon index is s...

  7. The Chandra COSMOS Survey, I: Overview and Point Source Catalog

    CERN Document Server

    Elvis, Martin; Vignali, Cristian; Puccetti, Simonetta; Fiore, Fabrizio; Cappelluti, Nico; Aldcroft, T L; Fruscione, Antonella; Zamorani, G; Comastri, Andrea; Brusa, Marcella; Gilli, Roberto; Miyaji, Takamitsu; Koekemoer, Francesco Damiani Anton; Finoguenov, Alexis; Brunner, Hermann; Urry, C M; Silverman, John; Mainieri, Vincenzo; Hasinger, Guenther; Griffiths, Richard; Carollo, Marcella; Hao, Heng; Guzzo, Luigi; Blain, Andrew; Calzetti, Daniela; Carilli, C; Capak, Peter; Ettori, Stefano; Fabbiano, Giuseppina; Impey, Chris; Lilly, Simon; Mobasher, Bahram; Rich, Michael; Salvato, Mara; Sanders, D B; Schinnerer, Eva; Scoville, N; Shopbell, Patrick; Taylor, James E; Taniguchi, Yoshiaki; Volonteri, Marta

    2009-01-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra} program that has imaged the central 0.5 sq.deg of the COSMOS field (centered at 10h, +02deg) with an effective exposure of ~160ksec, and an outer 0.4sq.deg. area with an effective exposure of ~80ksec. The limiting source detection depths are 1.9e-16 erg cm^-2 s$-1 in the Soft (0.5-2 keV) band, 7.3e^-16 erg cm^-2 s^-1 in the Hard (2-10 keV) band, and 5.7e^-16 erg cm^-2 s^-1 in the Full (0.5-10 keV) band. Here we describe the strategy, design and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2e^-5 (1655 in the Full, 1340 in the Soft, and 1017 in the Hard bands). By using a grid of 36 heavily (~50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform (to 12%) exposure across the inner 0.5 sq.deg field was obtained, leading to a sharply defined lower flux limit. The widely different PSFs obtained in each exposure at each point in the field r...

  8. The CHANDRA X-ray Grating Spectrum of Eta Carinae

    CERN Document Server

    Corcoran, M F; Petre, R; Ishibashi, K; Davidson, K; Townsley, L K; Smith, R; White, S; Viotti, R; Damineli, A

    2001-01-01

    Eta Car may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emisssion. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively ``resolving'' the shock. The pre-shock wind velocities are ~500 and ~ 2000 km/s in our analysis, and these velocities are interpreted as the terminal velocities of the winds from Eta Car and from the hidden companion star. The abundances of Si and Fe are significantly non-solar based on the strengths of the observed H- and He-like emission lines. The iron fluorescent line at 1.93 Angstrom, first detected by ASCA, is clearly resolved from the thermal iron line in th...

  9. Chandra grating spectroscopy of three hot white dwarfs

    CERN Document Server

    Adamczak, J; Rauch, T; Schuh, S; Drake, J J; Kruk, J W

    2012-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB 1919) and the other is a non-DA of spectral type PG1159 (PG 1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD 246). The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB 1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD 246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. (abridged)

  10. Chandra Observes the End of an Era SN 1987A

    CERN Document Server

    Frank, Kari A; Park, Sangwook; McCray, Richard; Dwek, Eli; Burrows, David N

    2016-01-01

    Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at ~8x10^-12 erg s^-1 cm^-2 since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies <2 keV. Images show a reversal of the east-west asymmetry between 7000 and 8000 days after the explosion. The latest images suggest the southeastern side of the equatorial ring is beginning to fade. Consistent with the latest optical and infrared results, our Chandra analysis indicates the blast wave is now leaving the dense equatorial ring, which marks the beginning of a major change in the evolutionary phase of the supernova remnant 1987A.

  11. The BMW-Chandra survey. Serendipitous Source Catalogue

    CERN Document Server

    Romano, P; Campana, S; Moretti, A; Panzera, M R; Tagliaferri, G; Mottini, M

    2009-01-01

    We present the BMW-Chandra source catalogue derived from Chandra ACIS-I observations (exposure time >10ks) public as of March 2003 by using a wavelet detection algorithm (Lazzati et al. 1999; Campana et al. 1999). The catalogue contains a total of 21325 sources, 16758 of which are serendipitous. Our sky coverage in the soft band (0.5-2 keV, S/N =3) is ~8 deg^2 for F_X > 10^-13 erg cm^-2 s-1, and ~2 deg^2 for F_X >10^-15 erg cm^-2 s^-1. The catalogue contains information on positions, count rates (and errors) in three energy bands. (total, 0.5-7 keV; soft, 0.5-2 keV; and hard, 2-7keV), and in four additional energy bands, SB1 (0.5-1keV), SB2 (1-2 keV), HB1 (2-4 keV), and HB2 (4-7keV), as well as information on the source extension, and cross-matches with the FIRST, IRAS, 2MASS, and GSC-2 catalogues.

  12. The BMW-Chandra survey. Serendipitous Source Catalogue

    Science.gov (United States)

    Romano, P.; Mignani, R. P.; Campana, S.; Moretti, A.; Panzera, M. R.; Tagliaferri, G.; Mottini, M.

    2009-07-01

    We present the BMW-Chandra source catalogue derived from Chandra ACIS-I observations (exposure time > 10ks) public as of March 2003 by using a wavelet detection algorithm (Lazzati et al. 1999; Campana et al. 1999). The catalogue contains a total of 21325 sources, 16758 of which are serendipitous. Our sky coverage in the soft band (0.5-2keV, S/N=3) is ~ 8 deg2 for FX ≥ 10-13 erg cm-2 s-1, and ~ 2 deg2 for FX ≥ 10-15 erg cm-2 s-1. The catalogue contains information on positions, count rates (and errors) in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), and in four additional energy bands, SB1 (0.5-1keV), SB2 (1-2keV), HB1 (2-4keV), and HB2 (4-7keV), as well as information on the source extension, and cross-matches with the FIRST, IRAS, 2MASS, and GSC-2 catalogues.

  13. The Chandra COSMOS Legacy survey: optical/IR identifications

    CERN Document Server

    Marchesi, S; Elvis, M; Salvato, M; Brusa, M; Comastri, A; Gilli, R; Hasinger, G; Lanzuisi, G; Miyaji, T; Treister, E; Urry, C M; Vignali, C; Zamorani, G; Allevato, V; Cappelluti, N; Cardamone, C; Finoguenov, A; Griffiths, R E; Karim, A; Laigle, C; LaMassa, S M; Jahnke, K; Ranalli, P; Schawinski, K; Schinnerer, E; Silverman, J D; Smolcic, V; Suh, H; Trakhtenbrot, B

    2015-01-01

    We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 square degrees of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 micron identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 micron information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while 54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is availa...

  14. Chandra Captures Venus In A Whole New Light

    Science.gov (United States)

    2001-11-01

    Scientists have captured the first X-ray view of Venus using NASA's Chandra X-ray Observatory. The observations provide new information about the atmosphere of Venus and open a new window for examining Earth's sister planet. Venus in X-rays looks similar to Venus in visible light, but there are important differences. The optically visible Venus is due to the reflection of sunlight and, for the relative positions of Venus, Earth and Sun during these observations, shows a uniform half-crescent that is brightest toward the middle. The X-ray Venus is slightly less than a half-crescent and brighter on the limbs. The differences are due to the processes by which Venus shines in visible and X-ray light. The X-rays from Venus are produced by fluorescence, rather than reflection. Solar X-rays bombard the atmosphere of Venus, knock electrons out of the inner parts of the atoms, and excite the atoms to a higher energy level. The atoms almost immediately return to their lower energy state with the emission of a fluorescent X-ray. A similar process involving ultraviolet light produces the visible light from fluorescent lamps. For Venus, most of the fluorescent X-rays come from oxygen and carbon atoms between 120 and 140 kilometers (74 to 87 miles) above the planet's surface. In contrast, the optical light is reflected from clouds at a height of 50 to 70 kilometers (31 to 43 miles). As a result, Venus' Sun-lit hemisphere appears surrounded by an almost-transparent luminous shell in X-rays. Venus looks brightest at the limb since more luminous material is there. Venus X-ray/Optical Composite of Venus Credit: Xray: NASA/CXC/MPE/K.Dennerl et al., Optical: Konrad Dennerl "This opens up the exciting possibility of using X-ray observations to study regions of the atmosphere of Venus that are difficult to investigate by other means," said Konrad Dennerl of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, leader of an international team of scientists that

  15. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    Science.gov (United States)

    Loh, K. K.; Yeo, K. S.; Shee, Y. G.

    2015-04-01

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  16. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    Energy Technology Data Exchange (ETDEWEB)

    Loh, K. K.; Yeo, K. S.; Shee, Y. G. [Integrated Lightwave Research Group, Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  17. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    International Nuclear Information System (INIS)

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated

  18. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment

    International Nuclear Information System (INIS)

    We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L 5 GHz ≈ 1029 erg s–1 Hz–1). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ∼10–4 M ☉ yr–1 × (vw /1000 km s–1), and a velocity of ≈0.3-0.5 c for the fastest moving ejecta (at ≈10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude Mr ≈ –13 mag may have occurred ≈2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.

  19. Data Reduction of Multi-wavelength Observations

    CERN Document Server

    Pilia, M; Pellizzoni, A P; Bachetti, M; Piano, G; Poddighe, A; Egron, E; Iacolina, M N; Melis, A; Concu, R; Possenti, A; Perrodin, D

    2015-01-01

    Multi-messenger astronomy is becoming the key to understanding the Universe from a comprehensive perspective. In most cases, the data and the technology are already in place, therefore it is important to provide an easily-accessible package that combines datasets from multiple telescopes at different wavelengths. In order to achieve this, we are working to produce a data analysis pipeline that allows the data reduction from different instruments without needing detailed knowledge of each observation. Ideally, the specifics of each observation are automatically dealt with, while the necessary information on how to handle the data in each case is provided by a tutorial that is included in the program. We first focus our project on the study of pulsars and their wind nebulae (PWNe) at radio and gamma-ray frequencies. In this way, we aim to combine time-domain and imaging datasets at two extremes of the electromagnetic spectrum. In addition, the emission has the same non-thermal origin in pulsars at radio and gam...

  20. All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser

    International Nuclear Information System (INIS)

    We propose and demonstrate an all-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser with a periodic birefringence fiber filter, for the first time to our best knowledge. Numerical simulations show that single-, dual-, and multi-wavelength dissipative solitons can be generated under appropriate filter bandwidth and saturation power. Under a certain filter bandwidth, the generated wavelength number of multi-wavelength mode-locked dissipative solitons is related to the saturation power, decreasing with increasing saturation power. The maximal and minimal attainable wavelength spacing of multi-wavelength dissipative solitons are also investigated, which are 21 nm and 4.6 nm, respectively, according to our simulations. Furthermore, the generation of multi-wavelength dissipative solitons has been verified by experiments. Dual- and three-wavelength dissipative solitons with a wavelength spacing of 16.4 nm have been achieved. (letter)

  1. Multi-Wavelength Observations of Nearby Starburst Galaxies

    Science.gov (United States)

    Lee, Janice

    2015-08-01

    Do cycles of violent, intense, but short-lived bursts constitute a significant mode of global star formation in present-day galaxies? Such events can have a profound effect on galaxies, particularly those with shallow potential wells, and observational measures of their prevalence inform our understanding of a wide range of issues in galaxy evolution. I will highlight what we have learned about starbursts from multi-wavelength observations of galaxies in the local volume on both galactic and smaller scales, and explore how connections with the study of the deaths of massive stars may further our understanding of open issues in galaxy evolution.

  2. Methods of data processing in multi-wavelength thermometry

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-gang; ZHAO Wei; YUAN Gui-bin; DAI Jing-min

    2006-01-01

    Three kinds of methods for processing the data of the multi-wavelength pyrometer are presented in this paper and are named curve auto-search method, curve auto-regression method and neural network method.The experimental results indicate that the calculated temperature and the spectral emissivity compared with the true target temperature and spectral emissivity have significant deviation using the curve auto-search and the curve auto-regression methods. However, the calculated temperature and the spectral emissivity with higher accuracy can be obtained using the neural network method.

  3. Multiwavelength Observations of a Flare from Markarian 501

    OpenAIRE

    Catanese, M.; Bradbury, S. M.; Breslin, A. C.; J. H. Buckley(Department of Physics, Washington University, St. Louis, USA); Carter-Lewis, D. A.; Cawley, M. F.; Dermer, C. D.; Fegan, D. J.; Finley, J. P.; Gaidos, J. A.; Hillas, A.M.; Johnson, W. N.; Krennrich, F.; Lamb, R. C.; Lessard, R. W.

    1997-01-01

    We present multiwavelength observations of the BL Lacertae object Markarian 501 (Mrk 501) in 1997 between April 8 and April 19. Evidence of correlated variability is seen in very high energy (VHE, E > 350 GeV) gamma-ray observations taken with the Whipple Observatory gamma-ray telescope, data from the Oriented Scintillation Spectrometer Experiment of the Compton Gamma-Ray Observatory, and quicklook results from the All-Sky Monitor of the Rossi X-ray Timing Explorer while the Energetic Gamma-R...

  4. Nonlinear optical signal processing on multiwavelength sensitive materials.

    Science.gov (United States)

    Azimipour, Mehdi; Pashaie, Ramin

    2013-11-01

    Exploiting salient features in the photodynamics of specific types of light sensitive materials, a new approach is presented for realization of parallel nonlinear operations with optics. We briefly review the quantum structure and mathematical models offered for the photodynamics of two multiwavelength sensitive materials, doped crystals of lithium niobate and thick layers of bacteriorhodopsin. Next, a special mode of these dynamics in each material is investigated and a graphical design procedure is offered to produce highly nonlinear optical responses that can be dynamically reshaped via applying minimum changes in the optical setup. PMID:24177084

  5. Molecular transport network security using multi-wavelength optical spins.

    Science.gov (United States)

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established. PMID:25058032

  6. Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera

    OpenAIRE

    Golwala, Sunil R.; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Hollister, Matthew I.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.

    2012-01-01

    We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses br...

  7. AN X-RAY AND MULTIWAVELENGTH SURVEY OF HIGHLY RADIO-LOUD QUASARS AT z > 4: JET-LINKED EMISSION IN THE BRIGHTEST RADIO BEACONS OF THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    We present a systematic study of the X-ray and multiwavelength properties of a sample of 17 highly radio-loud quasars (HRLQs) at z > 4 with sensitive X-ray coverage from new Chandra and archival Chandra, XMM-Newton, and Swift observations. Eight of the new and archival observations are reported in this work for the first time. New Chandra observations of two moderately radio-loud and highly optically luminous quasars at z ∼> 4 are also reported. Our HRLQ sample represents the top ∼5% of radio-loud quasars (RLQs) in terms of radio loudness. We found that our HRLQs have an X-ray emission enhancement over HRLQs at lower redshifts (by a typical factor of ≈3), and this effect, after controlling for several factors which may introduce biases, has been solidly estimated to be significant at the 3σ-4σ level. HRLQs at z = 3-4 are also found to have a similar X-ray emission enhancement over z H ∼ 1023 cm–2) may be present. Our z > 4 HRLQs generally have higher X-ray luminosities than those for the composite broadband spectral energy distributions of HRLQs at lower redshift, which further illustrates and supports the X-ray emission enhancement of z > 4 HRLQs. Some of our HRLQs also show an excess of mid-infrared emission which may originate from the synchrotron emission of the relativistic jets. None of our z > 4 HRLQs is detected by the Fermi-LAT two-year survey, which provides constraints on jet-emission models.

  8. A $Chandra-Swift$ View of Point Sources in Hickson Compact Groups: High AGN fraction but a dearth of strong AGNs

    CERN Document Server

    Tzanavaris, P; Hornschemeier, A E; Fedotov, K; Eracleous, M; Brandt, W N; Desjardins, T D; Charlton, J C; Gronwall, C

    2014-01-01

    We present $Chandra$ X-ray point source catalogs for 9 Hickson Compact Groups (HCGs, 37 galaxies) at distances $34 - 89$ Mpc. We perform detailed X-ray point source detection and photometry, and interpret the point source population by means of simulated hardness ratios. We thus estimate X-ray luminosities ($L_X$) for all sources, most of which are too weak for reliable spectral fitting. For all sources, we provide catalogs with counts, count rates, power-law indices ($\\Gamma$), hardness ratios, and $L_X$, in the full ($0.5-8.0$ keV), soft ($0.5-2.0$ keV) and hard ($2.0-8.0$ keV) bands. We use optical emission-line ratios from the literature to re-classify 24 galaxies as star-forming, accreting onto a supermassive black hole (AGNs), transition objects, or low-ionization nuclear emission regions (LINERs). Two-thirds of our galaxies have nuclear X-ray sources with $Swift$/UVOT counterparts. Two nuclei have $L_{X,{\\rm 0.5-8.0 keV}}$~$ > 10^{42}$ erg s$^{-1}$, are strong multi-wavelength AGNs and follow the known...

  9. Joint Analysis of Cluster Observations: II. Chandra/XMM-Newton X-ray and Weak Lensing Scaling Relations for a Sample of 50 Rich Clusters of Galaxies

    CERN Document Server

    Mahdavi, A; Babul, A; Bildfell, C; Jeltema, T; Henry, J P

    2012-01-01

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15 +/- 6% intrinsic scatter at r500. The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small BCG to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller <10% deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure YX does not discrimi...

  10. Chandra "Hears" A Black Hole For The First Time

    Science.gov (United States)

    2003-09-01

    NASA's Chandra X-ray Observatory detected sound waves, for the first time, from a super-massive black hole. The "note" is the deepest ever detected from an object in the universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics. The black hole resides in the Perseus cluster, located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster's central black hole. perseus animation Illustration of Ripples in Perseus "We have observed the prodigious amounts of light and heat created by black holes, now we have detected the sound," said Andrew Fabian of the Institute of Astronomy (IoA) in Cambridge, England, and leader of the study. In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance, because the note is 57 octaves lower than middle-C (by comparison a typical piano contains only about seven octaves). At a frequency over a million, billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the universe. "The Perseus sound waves are much more than just an interesting form of black hole acoustics," said Steve Allen, also of the IoA and a co-investigator in the research. "These sound waves may be the key in figuring out how galaxy clusters, the largest structures in the universe, grow," Allen said. For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays should cool, and the dense central gas should cool the fastest. The pressure in this cool central gas should then fall, causing gas further out to sink in towards the galaxy, forming trillions of

  11. Quasar Rain: Chandra and the Inner Structure of AGN

    Science.gov (United States)

    Elvis, Martin

    2014-11-01

    Chandra observations of X-ray eclipses (XRE) and Warm Absorbers (WA) in quasars produce a self-consistent view of the X-ray source and of the broad emission line region (BELR). XREs limit the size of the X-ray source and enable topographic imaging of both continuum and relativistic Fe-K. XREs imply the existence of >10(8) discrete absorbing clouds with properties consistent with being BELR clouds. These clouds are being ablated away in months and must be constantly renewed. Both eclipsing and BELR clouds have the same properties as the low ionization phase of the WAs found in LETG/HETG spectra. Hence BELR clouds must be continually condensing out of the quasar disk wind in a mist. If the clouds have not reached escape velocity they will fall toward the black hole as a quasar rain.

  12. An X-ray photometry system I: Chandra ACIS

    CERN Document Server

    Grimm, H -J; Fabbiano, G; Elvis, M

    2008-01-01

    We present a system of X-ray photometry for the Chandra satellite. X-ray photometry can be a powerful tool to obtain flux estimates, hardness ratios, and colors unbiased by assumptions about spectral shape and independent of temporal and spatial changes in instrument characteristics. The system we have developed relies on our knowledge of effective area and the energy-to-channel conversion to construct filters similar to photometric filters in the optical bandpass. We show that the filters are well behaved functions of energy and that this X-ray photometric system is able to reconstruct fluxes to within about 20%, without color corrections, for non-pathological spectra. Even in the worst cases it is better than 50%. Our method also treats errors in a consistent manner, both statistical as well as systematic.

  13. Chandra Observations of Io and the Io Plasma Torus

    Science.gov (United States)

    Elsner, Ronald F.; Gladstone, G. R.; Waite, J. H., Jr.; Grodent, D. C.; Crary, F. J.; Metzger, A. E.; Hurley, K. C.; Ford, P.; Feigelson, E.; Garmire, G.; Whitaker, Ann (Technical Monitor)

    2001-01-01

    Chandra observed the Jovian system for approximately 1 day with ACIS-S in Nov, 1999, and approximately 10 hours with HRC-I in Dec, 2000. Among the many results of great interest to planetary scientists are the detection of x-ray emission from the Io Plasma Torus (IPT) and, very faintly, associated with the Jovian moon Io itself. The IPT is an almost self-generating donut of S and O ions in Io's orbit that ultimately derive from volcanoes on the surface. While EUV and visible emissions from the IPT are relatively well understood to result from low charge state transitions of S and O and from electron impact, the x-ray emissions are too energetic to be explained this way and seem to require the presence of higher charge states of S and O. We present current ideas as to origins of these x-ray emissions.

  14. Jet evolution in Steep Spectrum Radio Quasars: a multiwavelength study

    Directory of Open Access Journals (Sweden)

    Torresi Eleonora

    2013-12-01

    Full Text Available Thanks to the Fermi γ-ray satellite, it is now confirmed that Misaligned Active Galactic Nuclei (MAGN, i.e. radio galaxies and steep spectrum radio quasars, are a new class of GeV emitters. In this work we present the first γ-ray and multiwavelength study of the two steep spectrum radio quasars, i.e. 3C 207 and 3C 380, belonging to the MAGN sample. From the γ -ray variability study we estimate the physical size of the zone where high-energy photons are dissipated: for both sources this region should be very compact, not larger than 0.05 pc. As a successive step, we build multiwavelength light curves of 3C 207 and 3C 380 to search for possible simultaneous outbursts in different wavebands with the aim of localizing the compact emitting region. This is an important issue with strong impact on theoretical models: indeed, knowing where highenergy photons are dissipated (at sub-pc or pc-scale provides information on the nature of the seed photons involved in the production of the GeV radiation.

  15. Calibration of Multi-wavelength Raman Polarization Lidar

    Directory of Open Access Journals (Sweden)

    Wang Xuan

    2015-01-01

    Full Text Available The current high energy cosmic ray detection technology, including Cherenkov telescopes and fluorescence detector, is mainly limited by uncertainties in the determination of atmospheric parameters. LIDARs are currently the best suited technology to get atmospheric parameters for the atmosphere correction of high energy cosmic ray observatory data with one single instrument. A new Multi-wavelength Raman Polarization Lidar (AMPLE has been developed and introduced in this paper. In order to provide precise and accurate results, lidar system should be calibrated before using for atmosphere correction in cosmic rays observatory. The calibration methods and results of AMPLE have been presented, including overlap function calibration, multi-wavelength channel calibration, depolarization calibration. In order to verify the accuracy of parameter measured by AMPLE lidar system, the comparison with radio sounder and sun-photometer has been done. The results show AMPLE lidar system has the ability to precisely measure the vertical profile of the atmosphere properties without any assumption and is a good choice for cosmic rays observatory to get atmosphere correction information.

  16. RADIOMETRIC CALIBRATION OF MULTI-WAVELENGTH AIRBORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    C. Briese

    2012-07-01

    Full Text Available Airborne laser scanning (ALS is a widely used technique for the sampling of the earth's surface. Nowadays a wide range of ALS sensor systems with different technical specifications can be found. One parameter is the laser wavelength which leads to a sensitivity for the wavelength dependent backscatter characteristic of sensed surfaces. Current ALS sensors usually record next to the geometric information additional information on the recorded signal strength of each echo. In order to utilize this information for the study of the backscatter characteristic of the sensed surface, radiometric calibration is essential. This paper focuses on the radiometric calibration of multi-wavelength ALS data and is based on previous work on the topic of radiometric calibration of monochromatic (single-wavelength ALS data. After a short introduction the theory and whole workflow for calibrating ALS data radiometrically based on in-situ reference surfaces is presented. Furthermore, it is demonstrated that this approach for the monochromatic calibration can be used for each channel of multi-wavelength ALS data. The resulting active multi-channel radiometric image does not have any shadows and from a geometric viewpoint the position of the objects on top of the terrain surface is not altered (the result is a multi-channel true orthophoto. Within this paper the approach is demonstrated by three different single-wavelength ALS data acquisition campaigns (532nm, 1064nm and 1550nm covering the area of the city Horn (Austria. The results and practical issues are discussed.

  17. DMMW: A tool for multi-wavelength dark matter searches

    International Nuclear Information System (INIS)

    The level of emission expected from Dark Matter annihilation at radio frequencies, UV and at X-ray frequencies is comparable, and thus complementary, to searches in gamma rays with Fermi-LAT. However, unlike the prompt gamma-ray emission, the secondary inverse Compton, bremsstrahlung and synchrotron emission from leptons depends on the transport setup and the astrophysical properties of the object under consideration. At the same time Cosmic Ray electrons and positrons, as well as protons form a background which is subject to the same transport model uncertainties. Here we present first results from DMMW (Dark Matter Multi-Wavelength), a tool which is capable of simultaneously fitting the multi-wavelength emission spectrum of a given object for generic Dark Matter models, density distributions and Cosmic Ray transport setups. DMMW allows the user to make reliable predictions about the radio, UV, X-ray and soft gamma-ray emission associated with the relativistic electrons and positrons produced in Dark Matter annihilation, as well as the relativistic electrons, positrons and protons produced in Cosmic Ray sources and Cosmic Ray interactions with the gas. The stable charged annihilation products are propagated in the same framework as the Cosmic Rays, thus allowing the user to probe different transport setups and self-consistently constrain a possible signal from Dark Matter Annihilation from radio to soft gamma-rays.

  18. Searching for bulk motions in the ICM of massive, merging clusters with Chandra CCD data

    CERN Document Server

    Liu, Ang; Tozzi, Paolo; Zhu, Zong-Hong

    2016-01-01

    We search for bulk motions in the Intra Cluster Medium (ICM) of massive clusters showing evidence of an ongoing or a recent major merger, with spatially resolved spectroscopy in {\\sl Chandra} CCD data. We identify a sample of 6 merging clusters with >150 ks {\\sl Chandra} exposure in the redshift range 0.1 1000$ km/s in the ICM of massive merging clusters at 0.1 < z < 0.3. Despite the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, {\\sl Chandra} CCD data constitute a key diagnostic tool complementary to X-ray bolometers onboard future X-ray missions.

  19. The Ionized Absorber and Nuclear Environment of IRAS 13349+2438: Multi-wavelength insights from coordinated Chandra HETGS, HST STIS, HET, and Spitzer IRS

    CERN Document Server

    Lee, Julia C; Chakravorty, Susmita; Rahoui, Farid; Young, Andrew J; Brandt, William N; Hines, Dean C; Ogle, Patrick M; Reynolds, Christopher S

    2013-01-01

    We present results from a coordinated IR-to-X-ray spectral campaign of the QSO IRAS 13349+2438. Optical spectra reveal extreme Eigenvector-1 characteristics, but the H-beta line width argues against a NLS1 classification; we refine z=0.10853 based on [O III]. We estimate a BH mass=10^9 Msun using 2 independent methods (H-beta line width & SED fits). Blue-shifted absorption (-950km/s & -75km/s) is seen for the 1st time in STIS UV spectra from Ly-alpha, NV, & CIV. The higher velocity UV lines are coincident with the lower-ionisation (xi~1.6) X-ray warm absorber lines. A dusty multiple ionization absorber blueshifted by 700-900km/s is required to fit the X-ray data. Theoretical models comparing different ionising SEDs reveal that a UV-inclusive (i.e., the accretion disc) ionising continuum strongly impacts conclusions for the thermodynamic stability of the warm absorber. Specific to IRAS13349, an Xray-UV ionising SED favors a continuous distribution of ionisation states in a smooth flow (this paper),...

  20. ChanPlaNS: The Chandra Planetary Nebula Survey

    Science.gov (United States)

    Kastner, Joel; Montez, Rodolfo; Freeman, Marcus; ChanPlaNS Team

    2015-01-01

    The physical mechanisms responsible for the morphological diversity among planetary nebulae (PNe) have been the subject of intense interest and hot debate among PN researchers over the past two decades. The PN shaping problem is multifaceted, with connections to (and implications for) a wide variety of astrophysical systems. Two areas of particular importance are (1) binary star astrophysics and (2) wind interactions and their implications for nebular shaping. X-ray observations play a pivotal role in the study of both of these fundamental aspects of PNe, by revealing (1) point-like X-ray sources at PN central stars that may be indicative of binary companions, and (2) diffuse X-ray emission generated by energetic, PN-shaping shocks. To assess the frequency of appearance and characteristics of these respective PN X-ray sources, we have undertaken the Chandra Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood. ChanPlaNS began with a combined Cycle 12 Large Program and archival survey of 35 PNe, with emphasis on high-excitation nebulae, and continued via a Cycle 14 Large Program targeting an additional 24 known compact (R_neb central stars (~60%) and for the compact (young) PN subsample (~50%). These results demonstrate the potential for insight into PN shaping processes provided by ChanPlaNS. In companion presentations at this meeting (Montez et al.; Freeman et al.), we present highlights of the astrophysics gleaned to date from these Chandra detections (and nondetections) of X-ray emission from PNe and their central stars.

  1. Investigating the cores of fossil systems with Chandra

    Science.gov (United States)

    Bharadwaj, V.; Reiprich, T. H.; Sanders, J. S.; Schellenberger, G.

    2016-01-01

    Aims: We aim to systematically investigate the cores of a sample of fossil galaxy groups and clusters ("fossil systems"), using Chandra data, to see what hints they can offer about the properties of the intracluster medium in these particular objects. Methods: We chose a sample of 17 fossil systems from literature with archival Chandra data and determined the cool-core fraction for fossils via three observable diagnostics, namely the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG) separation, and the X-ray peak/emission weighted centre separation. We also investigated the X-ray emission coincident with the brightest cluster galaxy (BCG) to detect the presence of potential thermal coronae. A deprojection analysis was performed for fossils with zBCG unlike coronae observed for some other clusters. Fossils lack universal temperature profiles, with some low-temperature objects generally not showing features that are expected for ostensibly relaxed objects with a cool-core. The entropy profiles of the z< 0.05 fossil systems can be described well by a power law with shallower indices than what is expected for pure gravitational processes. Finally, the fossils LX - T relation shows indications of an elevated normalisation with respect to other groups, which seems to persist even after factoring in selection effects. Conclusions: We interpret these results within the context of the formation and evolution of fossils, and speculate that non-gravitational heating, and AGN feedback in particular, could have had an impact on the ICM properties of these systems.

  2. Chandra resolves the T Tauri binary system RW Aur

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2014-06-20

    RW Aur is a multiple T Tauri system consisting of an early-K type primary (A) and a K5 companion (B) at a separation of 1.''4. RW Aur A drives a bipolar optical jet that is well characterized optically. We present results of a sensitive Chandra observation whose primary objective was to search for evidence of soft extended X-ray emission along the jet, as has been seen for a few other nearby T Tauri stars. The binary is clearly resolved by Chandra and both stars are detected as X-ray sources. The X-ray spectra of both stars reveal evidence for cool and hot plasma. Surprisingly, the X-ray luminosity of the less-massive secondary is at least twice that of the primary and is variable. The disparity is attributed to the primary whose X-ray luminosity is at the low end of the range for classical T Tauri stars of similar mass based on established correlations. Deconvolved soft-band images show evidence for slight outward elongation of the source structure of RW Aur A along the blueshifted jet axis inside the central arcsecond. In addition, a faint X-ray emission peak is present on the redshifted axis at an offset of 1.''2 ± 0.''2 from the star. Deprojected jet speeds determined from previous optical studies are too low to explain this faint emission peak as shock-heated jet plasma. Thus, unless flow speeds in the redshifted jet have been underestimated, other mechanisms such as magnetic jet heating may be involved.

  3. X-ray Mass Profiles from Chandra Galaxy Atlas

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra

    2016-04-01

    We present preliminary results of a Chandra/XMM-Newton joint analysis on a sample of three Early Type Galaxies (ETGs, namely NGC4649, NGC4636 and NGC5846). X-ray observations of the hot ISM is used to measure the total enclosed mass assuming hydrostatic equilibrium, and compasion with mass distributions obtained through optical kinematics data of globular clusters and planetary nebulae yields informations about disturbances in the ISM distribution due to nuclear activity, merging history, etc. Our analysis makes use of the Chandra Galaxy Atlas (CGA) data products - exploiting the unmatched spatial resolution of the ACIS detectors to reveal fine ISM features and disturbances in the inner galactic regions - and XMM-Newton data - relying on the large field of view of EPIC detector to extend the mass profiles to larger radii. We then measured the mass profiles in various pie sectors to separate different gas features (e.g., discontinuity and extended tail) and compared them with GCs/PNe based mass profiles. The X-ray mass profiles of NGC4649 show a generally relaxed morphology and, in agreement with previous analysis, the comparison with the optical mass profiles shows a significant deviations on parsec scale likely due to non-thermal pressure linked to nuclear activity. In significantly disturbed cases (NGC4648 and NGC5846) where we found discontinuities and extended tails, we found that the mass profiles are over-estimated toward the compressed discontinuity and under-estimated toward the extended tails, similar to inflow and outflow cases. These preliminary results are promising toward an extended analysis of the whole CGA sample in order to study the distribution of gas temperature and metal abundances in the ISM, and to investigate scaling relations between ETG global quantities like ISM temperature, luminosity and total mass.

  4. A DEEP CHANDRA VIEW OF THE NGC 404 CENTRAL ENGINE

    International Nuclear Information System (INIS)

    We present the results of a 100 ks Chandra observation of the NGC 404 nuclear region. The long exposure and excellent spatial resolution of Chandra have enabled us to critically examine the nuclear environment of NGC 404, which is known to host a nuclear star cluster and potentially an intermediate-mass black hole (IMBH; on the order of a few times 105 Msun). We find two distinct X-ray sources: a hard, central point source coincident with the optical and radio centers of the galaxy, and a soft extended region that is coincident with areas of high Hα emission and likely recent star formation. When we fit the 0.3-8 keV spectra of each region separately, we find the hard nuclear point source to be dominated by a power law (Γ = 1.88), while the soft off-nuclear region is best fit by a thermal plasma model (kT = 0.67 keV). We therefore find evidence for both a power-law component and hot gas in the nuclear region of NGC 404. We estimate the 2-10 keV luminosity to be 1.3+0.8-0.5 x 1037 erg s-1. A low level of diffuse X-ray emission was detected out to ∼15'' (∼0.2 kpc) from the nucleus. We compare our results to the observed relationships between power-law photon index and Eddington ratio for both X-ray binaries and low-luminosity active galaxies and find NGC 404 to be consistent with other low-luminosity active galaxies. We therefore favor the conclusion that NGC 404 harbors an IMBH accreting at a very low level.

  5. NASA'S Chandra Finds New Evidence on Origin of Supernovas

    Science.gov (United States)

    2011-04-01

    CAMBRIDGE, Ma. -- Astronomers may now know the cause of an historic supernova explosion that is an important type of object for investigating dark energy in the universe. The discovery, made using NASA's Chandra X-ray Observatory, also provides strong evidence that a star can survive the explosive impact generated when a companion star goes supernova. The new study examined the remnant of a supernova observed by the Danish astronomer Tycho Brahe in 1572. The object, dubbed Tycho for short, was formed by a Type Ia supernova, a category of stellar explosion useful in measuring astronomical distances because of their reliable brightness. Type Ia supernovas have been used to determine that the universe is expanding at an accelerating rate, an effect attributed to the prevalence of an invisible, repulsive force throughout space called dark energy. A team of researchers analyzed a deep Chandra observation of Tycho and found an arc of X-ray emission in the supernova remnant. Evidence supports the conclusion that a shock wave created the arc when a white dwarf exploded and blew material off the surface of a nearby companion star. "There has been a long-standing question about what causes Type Ia supernovas," said Fangjun Lu of the Institute of High Energy Physics, Chinese Academy of Sciences in Beijing. "Because they are used as steady beacons of light across vast distances, it is critical to understand what triggers them." One popular scenario for Type Ia supernovas involves the merger of two white dwarfs. In this case, no companion star or evidence for material blasted off a companion should exist. In the other main competing theory, a white dwarf pulls material from a "normal," or sun-like, companion star until a thermonuclear explosion occurs. Both scenarios may actually occur under different conditions, but the latest Chandra result from Tycho supports the latter one. n addition, the Tycho study seems to show the remarkable resiliency of stars, as the supernova

  6. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    International Nuclear Information System (INIS)

    We present deep optical 18-medium-band photometry from the Subaru telescope over the ∼30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find ∼40,000 galaxies with R AB 3.5. For 0.1 < z < 1.2, we find a 1σ scatter in Δz/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that ∼20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.

  7. Multiwavelength analysis of the Lyman alpha emitting galaxy Haro 2: relation between the diffuse Lyman alpha and soft X-ray emissions

    CERN Document Server

    Oti-Floranes, H; Jimenez-Bailon, E; Schaerer, D; Hayes, M; Ostlin, G; Atek, H; Kunth, D

    2012-01-01

    In order to use Lyman alpha (Lya) emission as star formation tracer in cosmological studies, we must understand how the resonant scattering affects the escape fraction of the Lya photons. Thus, high spatial resolution multiwavelength studies of nearby Lya emitters, like Haro 2, are highly needed. For that purpose, we have used Chandra X-ray and HST (UV, optical and NIR) images of Haro 2, and STIS and ground-based spectral images along its major and minor axes, to characterize the Lya emission and the properties of the stellar population. The UV, Ha (Halpha) and FIR luminosities of the Haro 2 nuclear starburst are reproduced using evolutionary synthesis models assuming a young stellar population with ages ~3.5-5.0 Myr, affected by differential interstellar extinctions. The observed X-ray emission is attributed to gas heated by the mechanical energy released by the starburst (soft component) and a Ultra-Luminous X-ray source candidate (hard). Both compact and diffuse Lya components are observed. Whereas Lya is ...

  8. OH (1720 MHz) Masers: A Multiwavelength Study of the Interaction between the W51C Supernova Remnant and the W51B Star Forming Region

    CERN Document Server

    Brogan, C L; Hunter, T R; Richards, A M S; Chandler, C J; Lazendic, J S; Koo, B -C; Hoffman, I M; Claussen, M J

    2013-01-01

    We present a comprehensive view of the W51B HII region complex and the W51C supernova remnant (SNR) using new radio observations from the VLA, VLBA, MERLIN, JCMT, and CSO along with archival data from Spitzer, ROSAT, ASCA, and Chandra. Our VLA data include the first 400 cm (74 MHz) continuum image of W51 at high resolution (88 arcsec). The 400 cm image shows non-thermal emission surrounding the G49.2-0.3 HII region, and a compact source of non-thermal emission (W51B_NT) coincident with the previously-identified OH (1720 MHz) maser spots, non-thermal 21 and 90 cm emission, and a hard X-ray source. W51B_NT falls within the region of high likelihood for the position of TeV gamma-ray emission. Using the VLBA three OH (1720 MHz) maser spots are detected in the vicinity of W51B_NT with sizes of 60 to 300 AU and Zeeman effect magnetic field strengths of 1.5 to 2.2 mG. The multiwavelength data demonstrate that the northern end of the W51B HII region complex has been partly enveloped by the advancing W51C SNR and this...

  9. A tunable multiwavelength Brillouin fiber laser with a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    A multiwavelength Brillouin fiber laser with wavelength tunability using a semiconductor optical amplifier (SOA) and a birefringence fiber loop mirror has been demonstrated. The inhomogeneous broadening, and flat and broad gain in the SOA make the proposed multiwavelength laser comparatively stable and have the potential to generate a large number of Brillouin lasing wavelengths. A stable multiwavelength output with a spectral spacing of the Brillouin frequency shift of 0.08 nm and a wavelength number of more than 91 has been successfully produced. Moreover, wavelength tuning over a 21 nm wavelength range has been achieved. (paper)

  10. A Common Question From The Chandra Help Desk: How Do You Combine Or Merge Observations?

    Science.gov (United States)

    Burke, Douglas J.; X-ray Center, Chandra

    2008-03-01

    As the archive of Chandra observations grows, and the scheduling constraints on new observations becomes ever-more stringent, the number of Help Desk questions about how one should combine or merge observations has increased. In this presentation we shall describe the main scientific and technical issues behind analyzing multi-observation imaging datasets from Chandra, highlight the present support for the tasks in CIAO, and provide a forum for discussing future improvements.

  11. Reconciling Planck cluster counts and cosmology? Chandra/XMM instrumental calibration and hydrostatic mass bias

    OpenAIRE

    Israel, H.; Schellenberger, G.; Nevalainen, J.; Massey, R; Reiprich, T. H.

    2014-01-01

    The mass of galaxy clusters can be inferred from the temperature of their X-ray emitting gas, $T_{\\mathrm{X}}$. Their masses may be underestimated if it is assumed that the gas is in hydrostatic equilibrium, by an amount $b^{\\mathrm{hyd}}\\sim(20\\pm10)$ % suggested by simulations. We have previously found consistency between a sample of observed \\textit{Chandra} X-ray masses and independent weak lensing measurements. Unfortunately, uncertainties in the instrumental calibration of {\\em Chandra}...

  12. Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor

    OpenAIRE

    Grant, C. E.; LaMarr, B.; Bautz, M.W.; O'Dell, S. L.

    2010-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telesc...

  13. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    Science.gov (United States)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and

  14. THE X-RAY FLUX DISTRIBUTION OF SAGITTARIUS A* AS SEEN BY CHANDRA

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, J. [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Markoff, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Nowak, M. A.; Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Dexter, J. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720-3411 (United States); Witzel, G. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Barrière, N. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Li, Y. [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Degenaar, N. [Institute of Astronomy, University of Cambridge, Cambridge, CB3 OHA (United Kingdom); Fragile, P. C. [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States); Gammie, C. [Department of Astronomy, University of Illinois Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Goldwurm, A. [AstroParticule et Cosmologie (APC), Université Paris 7 Denis Diderot, F-75205 Paris cedex 13 (France); Grosso, N. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Haggard, D., E-mail: jneilsen@space.mit.edu [Department of Physics and Astronomy, AC# 2244, Amherst College, Amherst, MA 01002 (United States)

    2015-02-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-Ray Observatory's 3 Ms Sgr A* X-ray Visionary Project in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q = (5.24 ± 0.08) × 10{sup –3} counts s{sup –1}, and a variable component, represented by a power law process (dN/dF∝F {sup –ξ}, ξ=1.92{sub −0.02}{sup +0.03}). This slope matches our recently reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of 1.8{sub −0.6}{sup +0.8}×10{sup −14} erg s{sup –1} cm{sup –2} and a shape parameter σ = 2.4 ± 0.2, but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ∼10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism.

  15. Wide-field VLBA Observations of the Chandra Deep Field South

    CERN Document Server

    Middelberg, Enno; Morgan, John; Rottmann, Helge; Alef, Walter; Tingay, Steven; Norris, Ray; Bach, Uwe; Brisken, Walter; Lenc, Emil

    2010-01-01

    Wide-field surveys are a commonly-used method for studying thousands of objects simultaneously, to investigate, e.g., the joint evolution of star-forming galaxies and active galactic nuclei. VLBI observations can yield valuable input to such studies because they are able to identify AGN. However, VLBI observations of large swaths of the sky are impractical using standard methods, because the fields of view of VLBI observations are of the order of 10" or less. We have embarked on a project to carry out Very Long Baseline Array (VLBA) observations of all 96 known radio sources in one of the best-studied areas in the sky, the Chandra Deep Field South (CDFS). The challenge was to develop methods which could significantly reduce the amount of observing (and post-processing) time. We have developed an extension to the DiFX software correlator which allows one to correlate hundreds of positions within the primary beams. This extension enabled us to target many sources, at full resolution and high sensitivity, using ...

  16. Deep Chandra study of the truncated cool core of the Ophiuchus cluster

    CERN Document Server

    Werner, N; Canning, R E A; Allen, S W; King, A L; Sanders, J S; Simionescu, A; Taylor, G B; Morris, R G; Fabian, A C

    2016-01-01

    We present the results of a deep (280 ks) Chandra observation of the Ophiuchus cluster, the second-brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT~1 keV in the core to kT~9 keV at r~30 kpc. Beyond r~30 kpc the intra-cluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing induced cold fronts, with indications for both Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The sloshing is the result of the strongly perturbed gravitational potential in the cluster core, with the central brightest cluster galaxy (BCG) being displaced southward from the global center of mass. The residual image reveals a likely subcluster south of the core at the projected distance of r~280 kpc. The cluster also harbors a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuat...

  17. Chandra Observation of Abell 1142: A Cool-core Cluster Lacking a Central Brightest Cluster Galaxy?

    Science.gov (United States)

    Su, Yuanyuan; Buote, David A.; Gastaldello, Fabio; van Weeren, Reinout

    2016-04-01

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s-1. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous LX-TX scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  18. The X-ray Flux Distribution of Sagittarius A* as Seen by Chandra

    CERN Document Server

    Neilsen, J; Nowak, M A; Dexter, J; Witzel, G; Barrière, N; Li, Y; Baganoff, F K; Degenaar, N; Fragile, P C; Gammie, C; Goldwurm, A; Grosso, N; Haggard, D

    2014-01-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-ray Observatory's 3 Ms Sgr A* X-ray Visionary Project (XVP) in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate $Q=(5.24\\pm0.08)\\times10^{-3}$ cts s$^{-1},$ and a variable component, represented by a power law process ($dN/dF\\propto F^{-\\xi},$ $\\xi=1.92_{-0.02}^{+0.03}$). This slope matches our recently-reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of $1.8^{+0.9}_{-0.6}\\times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ and a shape parameter $\\sigma=2.4\\pm0.2,$ but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely ...

  19. A Chandra/HETGS Census of X-ray Variability From Sgr A* During 2012

    CERN Document Server

    Neilsen, J; Gammie, C; Dexter, J; Markoff, S; Haggard, D; Nayakshin, S; Wang, Q D; Grosso, N; Porquet, D; Tomsick, J A; Degenaar, N; Fragile, P C; Wijnands, R; Miller, J M; Baganoff, F K

    2013-01-01

    We present the first systematic analysis of the X-ray variability of Sgr A* during the Chandra X-ray Observatory's 2012 Sgr A* X-ray Visionary Project (XVP). With 38 High Energy Transmission Grating Spectrometer (HETGS) observations spaced an average of 7 days apart, this unprecedented campaign enables detailed study of the X-ray emission from this supermassive black hole at high spatial, spectral and timing resolution. In 3 Ms of observations, we detect 39 X-ray flares from Sgr A*, lasting from a few hundred seconds to approximately 8 ks, and ranging in 2-10 keV luminosity from ~1e34 erg/s to 2e35 erg/s. Despite tentative evidence for a gap in the distribution of flare peak count rates, there is no evidence for X-ray color differences between faint and bright flares. Our preliminary X-ray flare luminosity distribution dN/dL is consistent with a power law with index -1.9 (+0.3 -0.4); this is similar to some estimates of Sgr A*'s NIR flux distribution. The observed flares contribute one-third of the total X-ra...

  20. Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations

    CERN Document Server

    Walker, S A; Kosec, P

    2014-01-01

    We examine deep stacked Chandra observations of the galaxy cluster Abell 1795 (over 700ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV=4x10^60 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central AGN inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the BCG, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas ...

  1. Cosmic rays from multiwavelength observations of the Galactic diffuse emission

    CERN Document Server

    Orlando, Elena

    2016-01-01

    Cosmic rays (CRs) generate diffuse emission while interacting with the Galactic magnetic field (B-field), the interstellar gas and the radiation field. This diffuse emission extends from radio, microwaves, through X-rays, to high-energy gamma rays. Diffuse emission has considerably increased the interest of the astrophysical community due to recent detailed observations by Planck, Fermi-LAT, and by very-high-energy Cherenkov telescopes. Observations of this emission and comparison with detailed predictions are used to gain information on the properties of CRs, such as their density, spectra, distribution and propagation in the Galaxy. Unfortunately disentangling and characterizing this diffuse emission strongly depends on uncertainties in the knowledge of unresolved sources, gas, radiation fields, and B-fields, other than CRs throughout the Galaxy. We report here on recent multiwavelength observations of the Galactic diffuse emission, and discuss the diffuse emission produced by CRs and its model uncertaintie...

  2. Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP).

    Science.gov (United States)

    Xing, Jian; Rana, R S; Gu, Weihong

    2016-08-22

    In order to realize rapid and real temperature measurement for high temperature targets by multi-wavelength pyrometer (MWP), emissivity range constraints to optimize data processing algorithm without effect from emissivity has been developed. Through exploring the relation between emissivity deviation and true temperature by fitting of large number of data from different emissivity distribution target models, the effective search range of emissivity for every time iteration is obtained, so data processing time is greatly reduced. Simulation and experimental results indicate that calculation time is less by 0.2 seconds with 25K absolute error at 1800K true temperature, and the efficiency is improved by more than 90% compared with the previous algorithm. The method has advantages of simplicity, rapidity, and suitability for in-line high temperature measurement. PMID:27557198

  3. High power and compact switchable bismuth based multiwavelength fiber laser

    International Nuclear Information System (INIS)

    A compact switchable multiwavelength fibre laser (SWFL) is proposed and demonstrated using a bismuth based erbium doped fibre amplifier (Bi-EDFA) and a Sagnac loop mirror (SLM) in a ring cavity. The proposed compact SWFL can generate up to 6 switchable wavelengths with an average peak power of 11 dBm and also shows good stability over time with a high side mode signal ratio (SMSR) of 40 dB that negates minor fluctuations in the laser output. The Bi-EDF based gain medium gives the SWFL a large usable bandwidth of up to 80 nm, and it is expected that this will allow the SWFL to be used as a tunable laser source for high power applications to meet increasing demand

  4. Simultaneous Multiwavelength Observations of Markarian 421 During Outburst

    CERN Document Server

    Perez, I de la Calle; Rodríguez, P

    2009-01-01

    We report on the results of two coordinated multiwavelength campaigns that focused on the blazar Markarian 421 during its 2006 and 2008 outbursts. These campaigns obtained UV and X-ray data using the XMM-Newton satellite, while the gamma-ray data were obtained utilizing three imaging atmospheric Cerenkov telescopes, the Whipple 10m telescope and VERITAS, both based in Arizona, as well as the MAGIC telescope, based on La Palma in the Canary Islands. The coordinated effort between the gamma-ray groups allowed for truly simultaneous data in UV/X-ray/gamma-ray wavelengths during a significant portion of the XMM-Newton observations. This simultaneous coverage allowed for a reliable search for correlations between UV, X-ray and gamma-ray variability over the course of the observations. Investigations of spectral hysteresis and modeling of the spectral energy distributions are also presented.

  5. SIMULTANEOUS MULTIWAVELENGTH OBSERVATIONS OF MARKARIAN 421 DURING OUTBURST

    International Nuclear Information System (INIS)

    We report on the results of two coordinated multiwavelength campaigns that focused on the blazar Markarian 421 during its 2006 and 2008 outbursts. These campaigns obtained UV and X-ray data using the XMM-Newton satellite, while the gamma-ray data were obtained utilizing three imaging atmospheric Cerenkov telescopes, the Whipple 10 m telescope and VERITAS, both based in Arizona, as well as the MAGIC telescope, based on La Palma in the Canary Islands. The coordinated effort between the gamma-ray groups allowed for truly simultaneous data in UV/X-ray/gamma-ray wavelengths during a significant portion of the XMM-Newton observations. This simultaneous coverage allowed for a reliable search for correlations between UV, X-ray, and gamma-ray variability over the course of the observations. Investigations of spectral hysteresis and modeling of the spectral energy distributions are also presented.

  6. A multiwavelength study of young stars in the Elephant Trunk

    Science.gov (United States)

    López Martí, B.; Bayo, A.; Morales Calderón, M.; Barrado, D.

    2013-05-01

    We present the results of a multiwavelength study of young stars in IC 1396A, ``the Elephant Trunk Nebula''. Our targets are selected combining optical, near-infrared and mid-infrared photometry. Near-infrared and optical spectroscopy are used to confirm their youth and to derive spectral types for these objects, showing that they are early to mid-M stars, and that our sample includes some of the lowest-mass objects reported so far in the region. The photometric and spectroscopic information is used to construct the spectral energy distributions and to study the properties of the stars (mass, age, accretion, disks, spatial location). The implications for the triggered star formation picture are discussed.

  7. Multi-Wavelength Variability in PKS 2155-304

    Indian Academy of Sciences (India)

    Y. G. Zheng; L. Zhang; X. Zhang; H. J. Ma

    2011-03-01

    We study multi-wavelength variability in BL Lacertae object PKS 2155-304 in the frame of the time dependent one-zone synchrotron self-Compton (SSC) model, where stochastic particle acceleration is taken into account. In this model, a homogeneously and isotropically spherical structure is assumed, the Fokker–Planck type equation which describes the evolution of the particles energy is numerically solved, and the synchrotron and self-Compton components from the spherical blob are calculated. Our results can reproduce observed spectra energy distribution (SED) and give definite predictions for the flux and spectral variability of PKS 2155-304.We find that particle injection rate, magnetic field and Doppler factor in the acceleration zone are important parameters for explaining its flaring behaviour.

  8. A new configuration of multi-wavelength Brillouin fiber laser

    International Nuclear Information System (INIS)

    A multi-wavelength laser is demonstrated using stimulated Brillouin scattering in a single-mode fiber with a feedback loop using two couplers and an optical circulator. This Brillouin fiber laser can operate at any wavelength depending on the Brillouin pump (BP) wavelength used. With a BP of 14 dBm, approximately 8 to 10 BFL lines are obtained in both forward and backward directions respectively with a line spacing of 0.16 nm. The use of the 99/1 coupler and 50/50 coupler gives the highest power and number of lines for the forward and backward outputs respectively. The maximum Stokes power obtained is approximately 8.0 dBm. The anti-Stokes lines are also obtained due to four wave mixing and bidirectional operation. The combination of forward and backward output can generate a larger number of lines with channel spacing of 0.08 nm

  9. A Synoptic, Multiwavelength Analysis of a Large Quasar Sample

    CERN Document Server

    Rengstorf, A W; Wilhite, B C; Brunner, Robert J.; Rengstorf, Adam W.; Wilhite, Brian C.

    2005-01-01

    We present variability and multi-wavelength photometric information for the 933 known quasars in the QUEST Variability Survey. These quasars are grouped into variable and non-variable populations based on measured variability confidence levels. In a time-limited synoptic survey, we detect an anti-correlation between redshift and the likelihood of variability. Our comparison of variability likelihood to radio, IR, and X-ray data is consistent with earlier quasar studies. Using already-known quasars as a template, we introduce a light curve morphology algorithm that provides an efficient method for discriminating variable quasars from periodic variable objects in the absence of spectroscopic information. The establishment of statistically robust trends and efficient, non-spectroscopic selection algorithms will aid in quasar identification and categorization in upcoming massive synoptic surveys. Finally, we report on three interesting variable quasars, including variability confirmation of the BL Lac candidate P...

  10. Connecting the Baryons: Multiwavelength Data for SKA HI Surveys

    CERN Document Server

    Meyer, Martin; Obreschkow, Danail; Driver, Simon; Staveley-Smith, Lister; Zwaan, Martin

    2015-01-01

    The science achievable with SKA HI surveys will be greatly increased through the combination of HI data with that at other wavelengths. These multiwavelength datasets will enable studies to move beyond an understanding of HI gas in isolation to instead understand HI as an integral part of the highly complex baryonic processes that drive galaxy evolution. As they evolve, galaxies experience a host of environmental and feedback influences, many of which can radically impact their gas content. Important processes include: accretion (hot and cold mode, mergers), depletion (star formation, galactic winds, AGN), phase changes (ionised/atomic/molecular), and environmental effects (ram pressure stripping, tidal effects, strangulation). Governing all of these to various extents is the underlying dark matter distribution. In turn, the result of these processes can significantly alter the baryonic states in which material is finally observed (stellar populations, dust, chemistry) and its morphology (galaxy type, bulge/d...

  11. Multi-wavelength probes of distant lensed galaxies

    CERN Document Server

    Serjeant, Stephen

    2011-01-01

    I summarise recent results on multi-wavelength properties of distant lensed galaxies, with a particular focus on Herschel. Submm surveys have already resulted in a breakthrough discovery of an extremely efficient selection technique for strong gravitational lenses. Benefitting from the gravitational magnification boost, blind mm-wave redshifts have been demonstrated on IRAM, SMA and GBT, and follow-up emission line detections have been made of water, [OIII], [CII] and other species, revealing the PDR/XDR/CRDR conditions. I also discuss HST imaging of submm lenses, lensed galaxy reconstruction, the prospects for ALMA and e-Merlin and the effects of differential magnification. Many emission line diagnostics are relatively unaffected by differential magnification, but SED-based estimates of bolometric fractions in lensed infrared galaxies are so unreliable as to be useless, unless a lens mass model is available to correct for differential amplification.

  12. Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging

    Science.gov (United States)

    Fonseca, M.; Zeqiri, B.; Beard, P. C.; Cox, B. T.

    2016-07-01

    Quantitative photoacoustic imaging (qPAI) has the potential to provide high- resolution in vivo images of chromophore concentration, which may be indicative of tissue function and pathology. Many strategies have been proposed recently for extracting quantitative information, but many have not been experimentally verified. Experimental phantom-based validation studies can be used to test the robustness and accuracy of such algorithms in order to ensure reliable in vivo application is possible. The phantoms used in such studies must have well-characterised optical and acoustic properties similar to tissue, and be versatile and stable. Polyvinyl chloride plastisol (PVCP) has been suggested as a phantom for quality control and system evaluation. By characterising its multiwavelength optical properties, broadband acoustic properties and thermoelastic behaviour, this paper examines its potential as a phantom for qPAI studies too. PVCP’s acoustic properties were assessed for various formulations, as well as its intrinsic optical absorption, and scattering with added TiO2, over a range of wavelengths from 400-2000 nm. To change the absorption coefficient, pigment-based chromophores that are stable during the phantom fabrication process, were used. These yielded unique spectra analogous to tissue chromophores and linear with concentration. At the high peak powers typically used in photoacoustic imaging, nonlinear optical absorption was observed. The Grüneisen parameter was measured to be Γ   =  1.01  ±  0.05, larger than typically found in tissue, though useful for increased PA signal. Single and multiwavelength 3D PA imaging of various fabricated PVCP phantoms were demonstrated.

  13. Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging.

    Science.gov (United States)

    Fonseca, M; Zeqiri, B; Beard, P C; Cox, B T

    2016-07-01

    Quantitative photoacoustic imaging (qPAI) has the potential to provide high- resolution in vivo images of chromophore concentration, which may be indicative of tissue function and pathology. Many strategies have been proposed recently for extracting quantitative information, but many have not been experimentally verified. Experimental phantom-based validation studies can be used to test the robustness and accuracy of such algorithms in order to ensure reliable in vivo application is possible. The phantoms used in such studies must have well-characterised optical and acoustic properties similar to tissue, and be versatile and stable. Polyvinyl chloride plastisol (PVCP) has been suggested as a phantom for quality control and system evaluation. By characterising its multiwavelength optical properties, broadband acoustic properties and thermoelastic behaviour, this paper examines its potential as a phantom for qPAI studies too. PVCP's acoustic properties were assessed for various formulations, as well as its intrinsic optical absorption, and scattering with added TiO2, over a range of wavelengths from 400-2000 nm. To change the absorption coefficient, pigment-based chromophores that are stable during the phantom fabrication process, were used. These yielded unique spectra analogous to tissue chromophores and linear with concentration. At the high peak powers typically used in photoacoustic imaging, nonlinear optical absorption was observed. The Grüneisen parameter was measured to be [Formula: see text]  =  1.01  ±  0.05, larger than typically found in tissue, though useful for increased PA signal. Single and multiwavelength 3D PA imaging of various fabricated PVCP phantoms were demonstrated. PMID:27286411

  14. Flexible Optical-Comb-Based Multi-Wavelength Conversion for Optical Switching and Multicast

    OpenAIRE

    Vilar Mateo, Ruth; Ramos Pascual, Francisco; Marques, C.; Nogueira, Regina Isabel; Teixeira, A; Llorente Sáez, Roberto; RAMOS, FRAN JOSE

    2011-01-01

    Experimental results on multi-wavelength conversion based on optical comb generation for optical switching and multicast applications are presented. All the newly generated channels showed good performance with clear and open eye diagrams. FP7-ICT- 2009-4-249142 FP7-ICT-2007-1- 216863 Vilar Mateo, R.; Ramos Pascual, F.; Marques, C.; Nogueira, RI.; Teixeira, A.; Llorente Sáez, R.; Ramos, FJ. (2011). Flexible Optical-Comb-Based Multi-Wavelength Conversion for Optical Switch...

  15. X-ray Monitoring of Gravitational Lenses With Chandra

    CERN Document Server

    Chen, Bin; Kochanek, Christopher S; Chartas, George; Blackburne, Jeffery A; Morgan, Christopher W

    2012-01-01

    We present \\emph{Chandra} monitoring data for six gravitationally lensed quasars: QJ 0158$-$4325, HE 0435$-$1223, HE 1104$-$1805, SDSS 0924+0219, SDSS 1004+4112, and Q 2237+0305. We detect X-ray microlensing variability in all six lenses with high confidence. We detect energy dependent microlensing in HE 0435$-$1223, SDSS 1004+4112, SDSS 0924+0219 and Q 2237+0305. We present a detailed spectral analysis for each lens, and find that simple power-law models plus Gaussian emission lines give good fits to the spectra. We detect intrinsic spectral variability in two epochs of Q 2237+0305. We detect differential absorption between images in four lenses. We also detect the \\feka\\ emission line in all six lenses, and the Ni XXVII K$\\alpha$ line in two images of Q 2237+0305. The rest frame equivalent widths of the \\feka\\ lines are measured to be 0.4--1.2 keV, significantly higher than those measured in typical active galactic nuclei of similar X-ray luminosities. This suggests that the \\feka\\ emission region is more c...

  16. Testing Photoionization Calculations Using Chandra X-ray Spectra

    Science.gov (United States)

    Kallman, Tim

    2008-01-01

    A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn on many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. In such cases the most practical approach to understanding the sensitivity of observables to atomic cross sections is to perform numerical experiments, by calculating models with various rates perturbed by random (but known) factors. In addition, it is useful to compare the results of such experiments with some sample observations, in order to focus attention on the rates which are of the greatest relevance to real observations. In this paper I will present some attempts to carry out this program, focussing on two sample datasets taken with the Chandra HETG. I will discuss the sensitivity of synthetic spectra to atomic data affecting ionization balance, temperature, and line opacity or emissivity, and discuss the implications for the ultimate goal of inferring astrophysical parameters.

  17. Chandra observations of SGR 1627-41 near quiescence

    CERN Document Server

    An, Hongjun; Tomsick, John A; Cumming, Andrew; Bodaghee, Arash; Gotthelf, Eric; Rahoui, Farid

    2012-01-01

    We report on an observation of SGR 1627-41 made with the Chandra X-ray Observatory on 2011 June 16. Approximately three years after its outburst activity in 2008, the source's flux has been declining, as it approaches its quiescent state. For an assumed power-law spectrum, we find that the absorbed 2--10 keV flux for the source is $1.0^{+0.3}_{-0.2} \\times 10^{-13} erg cm^{-2} s^{-1}$ with a photon index of $2.9 \\pm 0.8$ ($N_H=1.0\\times10^{23}$ cm^{-2}). This flux is approximately consistent with that measured at the same time after the source's outburst in 1998. With measurements spanning 3 years after the 2008 outburst, we analyze the long-term flux and spectral evolution of the source. The flux evolution is well described by a double exponential with decay times of 0.5 $\\pm$ 0.1 and 59 $\\pm$ 6 days, and a thermal cooling model fit suggests that SGR 1627-41 may have a hot core ($T_c ~ 2\\times 10^8$ K). We find no clear correlation between flux and spectral hardness as found in other magnetars. We consider t...

  18. CHANDRA OBSERVATIONS OF SGR 1627–41 NEAR QUIESCENCE

    International Nuclear Information System (INIS)

    We report on an observation of SGR 1627–41 made with the Chandra X-Ray Observatory on 2011 June 16. Approximately three years after its outburst activity in 2008, the source's flux has been declining, as it approaches its quiescent state. For an assumed power-law spectrum, we find that the absorbed 2-10 keV flux for the source is 1.0+0.3–0.2 × 10–13 erg cm–2 s–1 with a photon index of 2.9 ± 0.8 (NH = 1.0 × 1023 cm–2). This flux is approximately consistent with that measured at the same time after the source's outburst in 1998. With measurements spanning three years after the 2008 outburst, we analyze the long-term flux and spectral evolution of the source. The flux evolution is well described by a double exponential with decay times of 0.5 ± 0.1 and 59 ± 6 days, and a thermal cooling model fit suggests that SGR 1627–41 may have a hot core (Tc ∼ 2 × 108 K). We find no clear correlation between flux and spectral hardness as found in other magnetars. We consider the quiescent X-ray luminosities of magnetars and the subset of rotation-powered pulsars with high magnetic fields (B ∼> 1013 G) in relation to their spin-inferred surface magnetic field strength and find a possible trend between the two quantities.

  19. Chandra Phase-Resolved Spectroscopy of the Crab Pulsar

    CERN Document Server

    Weisskopf, M C; Paerels, F; Becker, W; Tennant, A F; Swartz, D A; Weisskopf, Martin C.; Dell, Stephen L. O'; Paerels, Frits; Becker, Werner; Tennant, Allyn F.; Swartz, Douglas A.

    2004-01-01

    We present the first phase-resolved study of the X-ray spectral properties of the Crab Pulsar that covers all pulse phases. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity, even at pulse minimum. Analysis of the pulse-averaged spectrum measures interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We confirm previous findings that the line-of-sight to the Crab is underabundant in oxygen, although more-so than recently measured. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (3.33 +/-0.25) x 10**-4. Analysis of the spectrum as a function of pulse phase measures the low-energy X-ray spectral index even at pulse minimum -- albeit with large statistical uncertainty -- and we find marginal evidence for variations of the spectral index. The data are also used to set a new (3-sigma) upper lim...

  20. Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra

    CERN Document Server

    Walton, D J; Miller, J M; Reis, R C; Stern, D; Harrison, F A

    2015-01-01

    Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission...

  1. LOFAR, VLA, and Chandra observations of the Toothbrush galaxy cluster

    CERN Document Server

    van Weeren, R J; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Williams, W L; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Hardcastle, M J; Jones, C; Miley, G K; Rafferty, D A; Rudnick, L; Sabater, J; Sarazin, C L; Shimwell, T W; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Dijkema, T J; Ensslin, T; Ferrari, C; Heald, G; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Sridhar, S S; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    We present deep LOFAR observations between 120-181 MHz of the "Toothbrush" (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $\\alpha = -0.8 \\pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $\\alpha \\approx - 2$. The spectral index of the radio halo is remarkably uniform ($\\alpha = -1.16$, with an intrinsic scatter of $\\leq 0.04$). The observed radio relic spectral index gives a Mach number of $\\mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio r...

  2. The Chandra COSMOS-Legacy Survey: The z>3 Sample

    Science.gov (United States)

    Marchesi, S.; Civano, F.; Salvato, M.; Shankar, F.; Comastri, A.; Elvis, M.; Lanzuisi, G.; Trakhtenbrot, B.; Vignali, C.; Zamorani, G.; Allevato, V.; Brusa, M.; Fiore, F.; Gilli, R.; Griffiths, R.; Hasinger, G.; Miyaji, T.; Schawinski, K.; Treister, E.; Urry, C. M.

    2016-08-01

    We present the largest high-redshift (3 detected in the Chandra COSMOS-Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift and the other 87 with photometric redshift (z phot). In this work, we treat z phot as a probability-weighted sum of contributions, adding to our sample the contribution of sources with z phot 0 at z > 3. We compute the number counts in the observed 0.5–2 keV band, finding a decline in the number of sources at z > 3 and constraining phenomenological models of the X-ray background. We compute the AGN space density at z > 3 in two different luminosity bins. At higher luminosities (logL(2–10 keV) > 44.1 erg s‑1), the space density declines exponentially, dropping by a factor of ∼20 from z ∼ 3 to z ∼ 6. The observed decline is ∼80% steeper at lower luminosities (43.55 erg s‑1 44.1 erg s‑1, unobscured and obscured objects may have different evolution with redshift, with the obscured component being three times higher at z ∼ 5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGNs. These models significantly overpredict the number of expected AGNs at logL (2–10 keV) > 44.1 erg s‑1 with respect to our data.

  3. Echoes of multiple outbursts of Sagittarius A* revealed by Chandra

    CERN Document Server

    Clavel, Maïca; Goldwurm, A; Morris, M R; Ponti, G; Soldi, S; Trap, G

    2013-01-01

    The relatively rapid spatial and temporal variability of the X-ray radiation from some molecular clouds near the Galactic center shows that this emission component is due to the reflection of X-rays generated by a source that was luminous in the past, most likely the central supermassive black hole, Sagittarius A*. Studying the evolution of the molecular cloud reflection features is therefore a key element to reconstruct Sgr A*'s past activity. The aim of the present work is to study this emission on small angular scales in order to characterize the source outburst on short time scales. We use Chandra high-resolution data collected from 1999 to 2011 to study the most rapid variations detected so far, those of clouds between 5' and 20' from Sgr A* towards positive longitudes. Our systematic spectral-imaging analysis of the reflection emission, notably of the Fe Kalpha line at 6.4 keV and its associated 4-8 keV continuum, allows us to characterize the variations down to 15" angular scale and 1-year time scale. ...

  4. Chandra counterparts of CANDELS GOODS-S sources

    CERN Document Server

    Cappelluti, N; Fontana, A; Zamorani, G; Amorin, R; Castellano, M; Merlin, E; Santini, P; Elbaz, D; Schreiber, C; Shu, X; Wang, T; Dunlop, J S; Bourne, N; Bruce, V A; Buitrago, F; Michałowski, Michał J; Derriere, S; Ferguson, H C; Faber, S M; Vito, F

    2015-01-01

    Improving the capabilities of detecting faint X-ray sources is fundamental to increase the statistics on faint high-z AGN and star-forming galaxies.We performed a simultaneous Maximum Likelihood PSF fit in the [0.5-2] keV and [2-7] keV energy bands of the 4 Ms {\\em Chandra} Deep Field South (CDFS) data at the position of the 34930 CANDELS H-band selected galaxies. For each detected source we provide X-ray photometry and optical counterpart validation. We validated this technique by means of a raytracing simulation. We detected a total of 698 X-ray point-sources with a likelihood $\\mathcal{L}$$>$4.98 (i.e. $>$2.7$\\sigma$). We show that the prior knowledge of a deep sample of Optical-NIR galaxies leads to a significant increase of the detection of faint (i.e. $\\sim$10$^{-17}$ cgs in the [0.5-2] keV band) sources with respect to "blind" X-ray detections. By including previous catalogs, this work increases the total number of X-ray sources detected in the 4 Ms CDFS, CANDELS area to 793, which represents the large...

  5. Chandra's Darkest Bright Star: not so Dark after All?

    Science.gov (United States)

    Ayres, Thomas R.

    2008-11-01

    The Chandra High Resolution camera (HRC) has obtained numerous short exposures of the ultraviolet (UV)-bright star Vega (α Lyrae; HD 172167: A0 V), to calibrate the response of the detector to out-of-band (non-X-ray) radiation. A new analysis uncovered a stronger "blue leak" in the imaging section (HRC-I) than reported in an earlier study of Vega based on a subset of the pointings. The higher count rate—a factor of nearly 2 above prelaunch estimates—raised the possibility that genuine coronal X-rays might lurk among the out-of-band events. Exploiting the broader point-spread function of the UV leak compared with soft X-rays identified an excess of counts centered on the target, technically at 3σ significance. A number of uncertainties, however, prevent a clear declaration of a Vegan corona. A more secure result would be within reach of a deep uninterrupted HRC-I pointing.

  6. Chandra Observations of Outflows from PSR J1509-5850

    CERN Document Server

    Klingler, Noel; Rangelov, Blagoy; Pavlov, George G; Posselt, Bettina; Ng, C -Y

    2016-01-01

    PSR J1509-5850 is a middle-aged pulsar with the period P ~ 89 ms, spin-down power Edot = 5.1 x 10^35 erg/s, at a distance of about 3.8 kpc. We report on deep Chandra X-ray Observatory observations of this pulsar and its pulsar wind nebula (PWN). In addition to the previously detected tail extending up to 7' southwest from the pulsar (the southern outflow), the deep images reveal a similarly long, faint diffuse emission stretched toward the north (the northern outflow) and the fine structure of the compact nebula (CN) in the pulsar vicinity. The CN is resolved into two lateral tails and one axial tail pointing southwest (a morphology remarkably similar to that of the Geminga PWN), which supports the assumption that the pulsar moves towards the northeast. The luminosities of the southern and northern outflows are about 1 x 10^33 and 4 x 10^32 erg/s, respectively. The spectra extracted from four regions of the southern outflow do not show any softening with increasing distance from the pulsar. The lack of synchr...

  7. Chandra Survey of Radio-quiet, High-redshift Quasars

    CERN Document Server

    Bechtold, J; Shields, J; Czerny, B; Janiuk, A; Hamann, F; Aldcroft, T L; Elvis, M; Dobrzycki, A; Bechtold, Jill; Siemiginowska, Aneta; Shields, Joseph; Czerny, Bozena; Janiuk, Agnieszka; Hamann, Fred; Aldcroft, Thomas L.; Elvis, Martin; Dobrzycki, Adam

    2003-01-01

    We observed 17 optically-selected, radio-quiet high-redshift quasars with the Chandra Observatory ACIS, and detected 16 of them. The quasars have redshift between 3.70 and 6.28 and include the highest redshift quasars known. When compared to low-redshift quasars observed with ROSAT, these high redshift quasars are significantly more X-ray quiet. We also find that the X-ray spectral index of the high redshift objects is flatter than the average at lower redshift. These trends confirm the predictions of models where the accretion flow is described by a cold, optically-thick accretion disk surrounded by a hot, optically thin corona, provided the viscosity parameter alpha >= 0.02. The high redshift quasars have supermassive black holes with masses ~10^{10} M_{sun}, and are accreting material at ~0.1 the Eddington limit. We detect 10 X-ray photons from the z=6.28 quasar SDS 1030+0524, which may have a Gunn-Peterson trough and be near the redshift of reionization of the intergalactic medium. The X-ray data place an...

  8. Chandra observation of the relativistic binary J1906+0746

    CERN Document Server

    Kargaltsev, O

    2009-01-01

    PSR J1906+0746 is a 112-kyr-old radio pulsar in a tight relativistic binary with a compact high-mass companion, at the distance of about 5 kpc. We observed this unique system with the Chandra ACIS detector for 31.6 ks. Surprisingly, not a single photon was detected within the 3" radius from the J1906+0746 radio position. For a plausible range of hydrogen column densities, n_H=(0.5-1)\\times10^{22} cm^{-2}, the nondetection corresponds to the 90% upper limit of (3-5)\\times10^{30} erg s^{-1} on the unabsorbed 0.5-8 keV luminosity for the power-law model with Gamma=1.0-2.0, and ~10^{32} erg s^{-1} on the bolometric luminosity of the thermal emission from the NS surface. The inferred limits are the lowest known for pulsars with spin-down properties similar to those of PSR J1906+0746. We have also tentatively detected a puzzling extended structure which looks like a tilted ring with a radius of 1.6' centered on the pulsar. The measured 0.5-8 keV flux of the feature, 3.1\\times10^{-14} erg cm^{-2} s^{-1}, implies an ...

  9. Investigating the cores of fossil systems with Chandra

    CERN Document Server

    Bharadwaj, V; Sanders, J S; Schellenberger, G

    2016-01-01

    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with the BCG to detect the presence of potential thermal coronae. A deprojection analysis was performed for z < 0.05 fossils to obtain cooling time and entropy profiles, and to resolve subtle temperature structures. We investigated the Lx-T relation for fossils from the 400d catalogue to see if the scaling relation deviates from that of other groups. Most fossils are identified as cool-core objects via at least two cool-core diagnostics. All fossils have their dominant elliptical galaxy within 50 kpc of the X-ray peak, and mo...

  10. Discovery of X-rays from Mars with Chandra

    CERN Document Server

    Dennerl, K

    2002-01-01

    On 4 July 2001, X-rays from Mars were detected for the first time. The observation was performed with the ACIS-I detector onboard Chandra and yielded data of high spatial and temporal resolution, together with spectral information. Mars is clearly detected as an almost fully illuminated disk, with an indication of limb brightening at the sunward side, accompanied by some fading on the opposite side. The morphology and the X-ray luminosity of ~4 MW are fully consistent with fluorescent scattering of solar X-rays in the upper Mars atmosphere. The X-ray spectrum is dominated by a single narrow emission line, which is most likely caused by O-K_alpha fluorescence. No evidence for temporal variability is found. This is in agreement with the solar X-ray flux, which was almost constant during the observation. In addition to the X-ray fluorescence, there is evidence for an additional source of X-ray emission, indicated by a faint X-ray halo which can be traced to about three Mars radii, and by an additional component ...

  11. Chandra High Energy Transmission Grating Spectrum of AE Aquarii

    CERN Document Server

    Mauche, Christopher W

    2009-01-01

    (Abridged) The results of a Chandra X-ray Observatory High-Energy Transmission Grating (HETG) observation of the nova-like cataclysmic binary AE Aqr are described. First, the X-ray spectrum is that of an optically thin multi-temperature thermal plasma; the X-ray emission lines are broad, with widths that increase with the line energy, from sigma~1 eV for O VIII to sigma~5.5 eV for Si XIV; the X-ray spectrum is reasonably well fit by a plasma model with a Gaussian emission measure distribution that peaks at log T(K)=7.16, has a width sigma=0.48, an Fe abundance equal to 0.44 times solar, and other metal (primarily Ne, Mg, and Si) abundances equal to 0.76 times solar; and for a distance d=100 pc, the total emission measure EM=8.0E53 cm^-3 and the 0.5-10 keV luminosity L_X=1.1E31 erg/s. Second, based on the f/(i+r) flux ratios of the forbidden (f), intercombination (i), and recombination (r) lines of the He alpha triplets of N VI, O VII, and Ne IX measured by Itoh et al. in the XMM-Newton Reflection Grating Spec...

  12. SN 1987A: Chandra Witnesses the End of an Era

    Science.gov (United States)

    Frank, Kari A.; Burrows, David N.

    2016-04-01

    Due to its age and close proximity, the remnant of SN 1987A is the only supernova remnant in which we can study the early developmental stages in detail, providing insight into stellar evolution, the mechanisms of the supernova explosion, and the transition from supernova to supernova remnant as the debris begins to interact with the surrounding circumstellar medium (CSM). We present the latest results from 16 years of Chandra ACIS observations of SN 1987A, now covering 4600 - 10500 days after the supernova. At approximately day 7500, the east-west asymmetry of the ring began to reverse, while the spectra and soft X-ray light curve revealed that the increase in soft X-ray emission slowed dramatically. This suggests the average CSM density encountered by the blast wave decreased at this time, likely due to lack of new emission from the densest clumps in the equatorial ring. Since day 9700 the soft X-ray light curve has flattened and remained approximately constant, evidence that the blast wave has now left the dense material of the known equatorial ring and is beginning to probe the unknown territory beyond.

  13. EXAMINING THE RADIO-LOUD/RADIO-QUIET DICHOTOMY WITH NEW CHANDRA AND VLA OBSERVATIONS OF 13 UGC GALAXIES

    International Nuclear Information System (INIS)

    We present the results from new ∼15 ks Chandra-ACIS and 4.9 GHz Very Large Array (VLA) observations of 13 galaxies hosting low-luminosity active galactic nuclei (AGNs). This completes the multiwavelength study of a sample of 51 nearby early-type galaxies described in Capetti and Balmaverde and Balmaverde and Capetti. The aim of the three previous papers was to explore the connection between the host galaxies and AGN activity in a radio-selected sample. We detect nuclear X-ray emission in eight sources and radio emission in all but one (viz., UGC 6985). The new VLA observations improve the spatial resolution by a factor of 10: the presence of nuclear radio sources in 12 of the 13 galaxies confirms their AGN nature. As previously indicated, the behavior of the X-ray and radio emission in these sources depends strongly on the form of their optical surface brightness profiles derived from Hubble Space Telescope imaging, i.e., on their classification as 'core', 'power-law', or 'intermediate' galaxies. With more than twice the number of 'power-law' and 'intermediate' galaxies compared to previous work, we confirm with a much higher statistical significance that these galaxies lie well above the radio-X-ray correlation established in Fanaroff-Riley type I radio galaxies and the low-luminosity 'core' galaxies. This result highlights the fact that the 'radio-loud/radio-quiet' dichotomy is a function of the host galaxy's optical surface brightness profile. We present radio-optical-X-ray spectral indices for all 51 sample galaxies. Survival statistics point to significant differences in the radio-to-optical and radio-to-X-ray spectral indices between the 'core' and 'power-law galaxies (Gehan's Generalized Wilcoxon test probability p for the two classes being statistically similar is –5), but not in the optical-to-X-ray spectral indices (p = 0.25). Therefore, the primary difference between the 'core' and 'power-law' galaxies is in their ability to launch powerful radio

  14. The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    Science.gov (United States)

    Schanne, S.; Atteia, J.-L.; Barret, D.; Basa, S.; Boer, M.; Casse, F.; Cordier, B.; Daigne, F.; Klotz, A.; Limousin, O.; Manchanda, R.; Mandrou, P.; Mereghetti, S.; Mochkovitch, R.; Paltani, S.; Paul, J.; Petitjean, P.; Pons, R.; Ricker, G.; Skinner, G.

    2006-11-01

    Gamma-ray bursts (GRB)—at least those with a duration longer than a few seconds—are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore, in 2009 ECLAIRs is expected to be the only space-borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground-based spectroscopic telescopes available by then. A “Phase A study” of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the “Myriade” family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in the 4 50 keV energy band, together with a soft X-ray camera for onboard position refinement to 1 arcmin. The ground-based optical robotic telescopes will detect the GRB prompt/early afterglow emission and localize the event to arcsec accuracy, for spectroscopic follow-up observations.

  15. The Herschel-ATLAS Data Release 1 Paper II: Multi-wavelength counterparts to submillimetre sources

    CERN Document Server

    Bourne, N; Maddox, S J; Dye, S; Furlanetto, C; Hoyos, C; Smith, D J B; Eales, S; Smith, M W L; Valiante, E; Alpaslan, M; Andrae, E; Baldry, I K; Cluver, M E; Cooray, A; Driver, S P; Dunlop, J S; Grootes, M W; Ivison, R J; Jarrett, T H; Liske, J; Madore, B F; Popescu, C C; Robotham, A G; Rowlands, K; Seibert, M; Thompson, M A; Tuffs, R J; Viaene, S; Wright, A H

    2016-01-01

    This paper is the second in a pair of articles presenting data release 1 (DR1) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), the largest single open-time key project carried out with the Herschel Space Observatory. The H-ATLAS is a wide-area imaging survey carried out in five photometric bands at 100, 160, 250, 350 and 500$\\mu$m covering a total area of 600deg$^2$. In this paper we describe the identification of optical counterparts to submillimetre sources in DR1, comprising an area of 161 deg$^2$ over three equatorial fields of roughly 12$^\\circ$x4.5$^\\circ$ centred at 9$^h$, 12$^h$ and 14.5$^h$ respectively. Of all the H-ATLAS fields, the equatorial regions benefit from the greatest overlap with current multi-wavelength surveys spanning ultraviolet (UV) to mid-infrared regimes, as well as extensive spectroscopic coverage. We use a likelihood-ratio technique to identify SDSS counterparts at r<22.4 for 250-$\\mu$m-selected sources detected at $\\geq$ 4$\\sigma$ ($\\approx$28mJy). We fin...

  16. Characterization of female breast lesions from multi-wavelength time-resolved optical mammography

    International Nuclear Information System (INIS)

    Characterization of both malignant and benign lesions in the female breast is presented as the result of a clinical study that involved more than 190 subjects in the framework of the OPTIMAMM European project. All the subjects underwent optical mammography, by means of a multi-wavelength time-resolved mammograph, in the range 637-985 nm. Optical images were processed by applying a perturbation model, relying on a nonlinear approximation of time-resolved transmittance curves in the presence of an inclusion, with the aim of estimating the major tissue constituents (i.e. oxy- and deoxy-haemoglobin, lipid and water) and structural parameters (linked to dimension and density of the scatterer centres) for both the lesion area and the surrounding tissue. The critical factors for the application of the perturbation model on in vivo data are also discussed. Forty-six malignant and 68 benign lesions were analysed. A subset of 32 cancers, 40 cysts and 14 fibroadenomas were found reliable for the perturbation analysis. For cancers, we show a higher blood content with respect to the surrounding tissue, while cysts are characterized by a lower concentration of scattering centres with respect to the surrounding tissue. For fibroadenomas, the low number of cases does not allow any definite conclusions

  17. The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    CERN Document Server

    Schanne, S; Barret, D; Basa, S; Boër, M; Casse, F; Cordier, B; Daigne, F; Klotz, A; Limousin, O; Manchanda, R; Mandrou, P; Mereghetti, S; Mochkovitch, R; Paltani, S; Paul, J; Petitjean, P; Pons, R; Ricker, G; Skinner, G K

    2006-01-01

    Gamma-ray bursts (GRB), at least those with a duration longer than a few seconds are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore in 2009 ECLAIRs is expected to be the only space borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground based spectroscopic telescopes available by then. A "Phase A study" of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the "Myriade" family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB ...

  18. Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling

    Science.gov (United States)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.

    2013-01-01

    This paper investigates multiwavelength retrievals of median equivolumetric drop diameter D(sub 0) suitable for drizzle and light rain, through collocated 355-/527-nm Micropulse Lidar Network (MPLNET) observations collected during precipitation occurring 9 May 2012 at the Goddard Space Flight Center (GSFC) project site. By applying a previously developed retrieval technique for infrared bands, the method exploits the differential backscatter by liquid water at 355 and 527 nm for water drops larger than approximately 50 micrometers. In the absence of molecular and aerosol scattering and neglecting any transmission losses, the ratio of the backscattering profiles at the two wavelengths (355 and 527 nm), measured from light rain below the cloud melting layer, can be described as a color ratio, which is directly related to D(sub 0). The uncertainty associated with this method is related to the unknown shape of the drop size spectrum and to the measurement error. Molecular and aerosol scattering contributions and relative transmission losses due to the various atmospheric constituents should be evaluated to derive D(sub 0) from the observed color ratio profiles. This process is responsible for increasing the uncertainty in the retrieval. Multiple scattering, especially for UV lidar, is another source of error, but it exhibits lower overall uncertainty with respect to other identified error sources. It is found that the total error upper limit on D(sub 0) approaches 50%. The impact of this retrieval for long-term MPLNET monitoring and its global data archive is discussed.

  19. The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    International Nuclear Information System (INIS)

    Gamma-ray bursts (GRB)-at least those with a duration longer than a few seconds-are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore, in 2009 ECLAIRs is expected to be the only space-borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground-based spectroscopic telescopes available by then. A 'Phase A study' of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the 'Myriade' family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in the 4-50 keV energy band, together with a soft X-ray camera for onboard position refinement to 1 arcmin. The ground-based optical robotic telescopes will detect the GRB prompt/early afterglow emission and localize the event to arcsec accuracy, for spectroscopic follow-up observations

  20. Multi-Wavelength Studies on H2O Maser Host Galaxies

    Indian Academy of Sciences (India)

    J. S. Zhang; J. Wang

    2011-03-01

    H2O maser emissions have been found in external galaxies for more than 30 years. Main sciences associated with extragalactic H2O masers can be summarized roughly into three parts: maser emission itself, AGN sciences and cosmology exploration. Our work in this field focusses on two projects: X-ray data analysis of individual maser source using X-ray penetrability to explore maser host obscured AGN; multi-wavelength statistical properties of the whole published H2O maser sample. Here their nuclear radio properties were investigated in detail, based on their 6-cm and 20-cm radio observation data. Comparing the radio properties between maser-detected sources and non-detected sources at similar distance scale, we find that: (1) maser host galaxies tend to have higher nuclear radio luminosity; (2) the spectral index of both samples is comparable (∼ 0.6), within the error ranges. In addition, for AGN-maser sources, the isotropic maser luminosity tends to increase with rising radio luminosity. Thus we propose the nuclear radio luminosity as one good indicator for searching AGN-masers in the future.

  1. A Model for (Quasi-)Periodic Multiwavelength Photometric Variability in Young Stellar Objects

    Science.gov (United States)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth; Whitney, Barbara A.; Hillenbrand, L. A.; Gregory, Scott G.; Stauffer, J. R.; Morales-Calderon, M.; Rebull, L.; Alencar, S. H. P.

    2016-09-01

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.

  2. The ARCHES Project

    Science.gov (United States)

    Motch, C.; Arches Consortium

    2015-09-01

    The Astronomical Resource Cross-matching for High Energy Studies (ARCHES) project is a FP7-Space funded programme started in 2013 and involving the Observatoire Astronomique de Strasbourg including the CDS (France), the Leibniz- Institut für Astrophysik Potsdam (Germany), the University of Leicester (UK), the Universidad de Cantabria (IFCA, Spain) and the Instituto Nacional de Tecnica Aeroespacial (Spain). ARCHES will provide the international astronomical community with well-characterised multi-wavelength data in the form of spectral energy distributions (SEDs) for large samples of objects extracted from the 3XMM X-ray catalogue of serendipitous sources. The project develops new tools implementing fully probabilistic simultaneous cross-correlation of several catalogues and a multi-wavelength finder for clusters of galaxies. SEDs are based on an enhanced version of the 3XMM catalogue and on a careful selection of the most relevant multi-wavelength archival catalogues. In order to ensure the largest audience, SEDs will be distributed to the international community through CDS services and through the Virtual Observatory. These enhanced resources are tested in the framework of several science cases. More information may be found at http://www.arches-fp7.eu/

  3. The ASTRODEEP Frontier Fields catalogues. I. Multiwavelength photometry of Abell-2744 and MACS-J0416

    Science.gov (United States)

    Merlin, E.; Amorín, R.; Castellano, M.; Fontana, A.; Buitrago, F.; Dunlop, J. S.; Elbaz, D.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Ferguson, H. C.; Giallongo, E.; Grazian, A.; Lotz, J.; Michałowski, M. J.; Paris, D.; Pentericci, L.; Pilo, S.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.

    2016-05-01

    Context. The Frontier Fields survey is a pioneering observational program aimed at collecting photometric data, both from space (Hubble Space Telescope and Spitzer Space Telescope) and from ground-based facilities (VLT Hawk-I), for six deep fields pointing at clusters of galaxies and six nearby deep parallel fields, in a wide range of passbands. The analysis of these data is a natural outcome of the Astrodeep project, an EU collaboration aimed at developing methods and tools for extragalactic photometry and creating valuable public photometric catalogues. Aims: We produce multiwavelength photometric catalogues (from B to 4.5 μm) for the first two of the Frontier Fields, Abell-2744 and MACS-J0416 (plus their parallel fields). Methods: To detect faint sources even in the central regions of the clusters, we develop a robust and repeatable procedure that uses the public codes Galapagos and Galfit to model and remove most of the light contribution from both the brightest cluster members, and the intra-cluster light. We perform the detection on the processed HST H160 image to obtain a pure H-selected sample, which is the primary catalogue that we publish. We also add a sample of sources which are undetected in the H160 image but appear on a stacked infrared image. Photometry on the other HST bands is obtained using SExtractor, again on processed images after the procedure for foreground light removal. Photometry on the Hawk-I and IRAC bands is obtained using our PSF-matching deconfusion code t-phot. A similar procedure, but without the need for the foreground light removal, is adopted for the Parallel fields. Results: The procedure of foreground light subtraction allows for the detection and the photometric measurements of ~2500 sources per field. We deliver and release complete photometric H-detected catalogues, with the addition of the complementary sample of infrared-detected sources. All objects have multiwavelength coverage including B to H HST bands, plus K

  4. Chandra Observation of the Cluster of Galaxies MS 0839.9+2938 at z=0.194: the Central Excess Iron and SN Ia Enrichment

    OpenAIRE

    Wang, Yu; Xu, Haiguang; Zhang, Zhongli; Xu, Yueheng; Wu, Xiang-Ping; Xue, Sui-Jian; Li, Zongwei

    2005-01-01

    We present the Chandra study of the intermediately distant cluster of galaxies MS 0839.9+2938. By performing both the projected and deprojected spectral analyses, we find that the gas temperature is approximately constant at about 4 keV in 130-444h_70^-1 kpc. In the inner regions, the gas temperature descends towards the center, reaching ~ 0.2. We argue that most of the excess iron should have been contributed by SNe Ia. By utilizing the observed SN Ia rate and stellar mass loss rate, we esti...

  5. The CHANDRA HETGS X-ray Grating Spectrum of Eta Carinae

    Science.gov (United States)

    Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; White, S.; Viotti, R.; Damineli, A.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Eta Carinae may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emission. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively 'resolving' the shock. If so, the pre-shock wind velocities are approximately 700 and 1800 km/s in our analysis, and these velocities may be interpreted as the terminal velocities of the winds from 71 Carinae and from the hidden companion star. The forbidden-to-intercombination line ratios for the He-like ions of S, Si, and Fe are large, indicating that the line forming region lies far from the stellar photosphere. The iron fluorescent line at 1.93 angstroms, first detected by ASCA, is clearly resolved from the thermal iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in our CHANDRA observation than in any of the ASCA spectra. The CHANDRA observation also provides the first high-time resolution lightcurve of the uncontaminated stellar X-ray emission from 77 Carinae and shows that there is no significant, coherent variability during the CHANDRA observation. The 77 Carinae CHANDRA grating spectrum is unlike recently published X-ray grating spectra of single massive stars in significant ways and is generally consistent with colliding wind emission in a massive binary.

  6. The Chandra COSMOS Legacy Survey: Clustering of X-ray selected AGN at 2.9

    CERN Document Server

    Allevato, V; Finoguenov, A; Marchesi, S; Zamorani, G; Hasinger, G; Salvato, M; Miyaji, T; Gilli, R; Cappelluti, N; Brusa, M; Suh, H; Lanzuisi, G; Trakhtenbrot, B; Griffiths, R; Vignali, C; Schawinski, K; Karim, A

    2016-01-01

    We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$\\leq$z$\\leq$5.5 ($\\langle L_{bol} \\rangle \\sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $\\pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$\\sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{\\odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $\\sigma_z$ = 0.052 of our sample at z$\\geq$2.9. Once we integrate the projected 2pcf up to $\\pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and \\textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only...

  7. CHANDRA OBSERVATIONS OF SGR 1627-41 NEAR QUIESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun; Kaspi, Victoria M.; Cumming, Andrew [Department of Physics, McGill University, Rutherford Physics Building, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Tomsick, John A.; Bodaghee, Arash [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Gotthelf, E. V. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Rahoui, Farid [Department of Astronomy and Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-09-20

    We report on an observation of SGR 1627-41 made with the Chandra X-Ray Observatory on 2011 June 16. Approximately three years after its outburst activity in 2008, the source's flux has been declining, as it approaches its quiescent state. For an assumed power-law spectrum, we find that the absorbed 2-10 keV flux for the source is 1.0{sup +0.3}{sub -0.2} Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1} with a photon index of 2.9 {+-} 0.8 (N{sub H} = 1.0 Multiplication-Sign 10{sup 23} cm{sup -2}). This flux is approximately consistent with that measured at the same time after the source's outburst in 1998. With measurements spanning three years after the 2008 outburst, we analyze the long-term flux and spectral evolution of the source. The flux evolution is well described by a double exponential with decay times of 0.5 {+-} 0.1 and 59 {+-} 6 days, and a thermal cooling model fit suggests that SGR 1627-41 may have a hot core (T{sub c} {approx} 2 Multiplication-Sign 10{sup 8} K). We find no clear correlation between flux and spectral hardness as found in other magnetars. We consider the quiescent X-ray luminosities of magnetars and the subset of rotation-powered pulsars with high magnetic fields (B {approx}> 10{sup 13} G) in relation to their spin-inferred surface magnetic field strength and find a possible trend between the two quantities.

  8. Chandra Counterparts of CANDELS GOODS-S Sources

    Science.gov (United States)

    Cappelluti, N.; Comastri, A.; Fontana, A.; Zamorani, G.; Amorin, R.; Castellano, M.; Merlin, E.; Santini, P.; Elbaz, D.; Schreiber, C.; Shu, X.; Wang, T.; Dunlop, J. S.; Bourne, N.; Bruce, V. A.; Buitrago, F.; Michałowski, Michał J.; Derriere, S.; Ferguson, H. C.; Faber, S. M.; Vito, F.

    2016-06-01

    Improving the capabilities of detecting faint X-ray sources is fundamental for increasing the statistics on faint high-z active galactic nuclei (AGNs) and star-forming galaxies (SFGs). We performed a simultaneous maximum likelihood point-spread function fit in the [0.5–2] keV and [2–7] keV energy bands of the 4 Ms Chandra Deep Field South (CDFS) data at the position of the 34,930 CANDELS H-band selected galaxies. For each detected source we provide X-ray photometry and optical counterpart validation. We validated this technique by means of a ray-tracing simulation. We detected a total of 698 X-ray point sources with a likelihood { L }\\gt 4.98 (i.e., >2.7σ). We show that prior knowledge of a deep sample of optical–NIR galaxies leads to a significant increase in the detection of faint (i.e., ∼10‑17 cgs in the [0.5–2] keV band) sources with respect to “blind” X-ray detections. By including previous X-ray catalogs, this work increases the total number of X-ray sources detected in the 4 Ms CDFS, CANDELS area to 793, which represents the largest sample of extremely faint X-ray sources assembled to date. Our results suggest that a large fraction of the optical counterparts of our X-ray sources determined by likelihood ratio actually coincides with the priors used for the source detection. Most of the new detected sources are likely SFGs or faint, absorbed AGNs. We identified a few sources with putative photometric redshift z > 4. Despite the low number statistics and the uncertainties on the photo z, this sample significantly increases the number of X-ray-selected candidate high-z AGNs.

  9. The 2010 Very High Energy γ-Ray Flare and 10 Years of Multi-wavelength Observations of M 87

    Science.gov (United States)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Clapson, A. C.; Coignet, G.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Häffner, S.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; H.E.S.S. Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Huber, B.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Krause, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Munar, P.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thom, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Huan, H.; Hui, C. M.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nuñez, P. D.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Prokoph, H.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Ruppel, J.; Schroedter, M.; Sembroski, G. H.; Şentürk, G. D.; Telezhinsky, I.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vivier, M.; Wakely, S. P.; Weekes, T. C.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Barres de Almeida, U.; Cara, M.; Casadio, C.; Cheung, C. C.; McConville, W.; Davies, F.; Doi, A.; Giovannini, G.; Giroletti, M.; Hada, K.; Hardee, P.; Harris, D. E.; Junor, W.; Kino, M.; Lee, N. P.; Ly, C.; Madrid, J.; Massaro, F.; Mundell, C. G.; Nagai, H.; Perlman, E. S.; Steele, I. A.; Walker, R. C.; Wood, D. L.

    2012-02-01

    The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) × 109 M ⊙) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) γ-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE γ-ray emitter since 2006. The VHE γ-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE γ-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of τrise d = (1.69 ± 0.30) days and τdecay d = (0.611 ± 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (~day), peak fluxes (Φ>0.35 TeV ~= (1-3) × 10-11 photons cm-2 s-1), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken ~3 days after the peak of the VHE γ-ray emission reveal an enhanced flux from the core (flux increased by factor ~2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network

  10. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    Science.gov (United States)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and

  11. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A. [Department of Physics, The George Washington University, 725 21st St, NW, Washington, DC 20052 (United States); Ofek, E. O.; Gal-Yam, A.; Xu, D. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Kulkarni, S. R.; Horesh, A.; Carpenter, J.; Arcavi, I.; Cao, Y.; Mooley, K.; Sesar, B. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, D. B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sullivan, M.; Maguire, K.; Pan, Y.-C. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Cenko, S. B. [NASA Goddard Space Flight Center, Code 685, Greenbelt, MD 20771 (United States); Sternberg, A. [Max-Planck-Institut fur Astrophysik, D-85741 Garching (Germany); Bersier, D., E-mail: corsi@gwu.edu [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); and others

    2014-02-10

    We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L {sub 5} {sub GHz} ≈ 10{sup 29} erg s{sup –1} Hz{sup –1}). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ∼10{sup –4} M {sub ☉} yr{sup –1} × (v{sub w} /1000 km s{sup –1}), and a velocity of ≈0.3-0.5 c for the fastest moving ejecta (at ≈10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude M{sub r} ≈ –13 mag may have occurred ≈2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.

  12. PollyNET: a network of multiwavelength polarization Raman lidars

    Science.gov (United States)

    Althausen, Dietrich; Engelmann, Ronny; Baars, Holger; Heese, Birgit; Kanitz, Thomas; Komppula, Mika; Giannakaki, Eleni; Pfüller, Anne; Silva, Ana Maria; Preißler, Jana; Wagner, Frank; Rascado, Juan Luis; Pereira, Sergio; Lim, Jae-Hyun; Ahn, Joon Young; Tesche, Matthias; Stachlewska, Iwona S.

    2013-10-01

    PollyNET is a growing global network of automatized multiwavelength polarization Raman lidars of type Polly (Althausen et al., 2009). The goal of this network is to conduct advanced remote measurements of aerosol profiles and clouds by the same type of instrument. Since 2006 this network assists the controlling and adjustment activities of Polly systems. A central facility receives the data from the Polly measurements. The observational data are displayed in terms of quicklooks at http://polly:tropos.de in near real time. In this way, the network serves as a central information platform for inquisitive scientists. PollyNET comprises permanent stations at Leipzig (Germany), Kuopio (Finland), Evora (Portugal), Baengnyeong Island (South Korea), Stockholm (Sweden), and Warsaw (Poland). Non-permanent stations have been used during several field experiments under both urban and very remote conditions - like the Amazon rainforest. These non-permanent stations were lasting from several weeks up to one year and have been located in Brazil, India, China, South Africa, Chile, and also aboard the German research vessels Polarstern and Meteor across the Atlantic. Within PollyNET the interaction and knowledge exchange is encouraged between the Polly operators. This includes maintenance support in system calibration procedures and distribution of latest hardware and software improvements. This presentation introduces the PollyNET. Main features of the Polly systems will be presented as well as recent instrumental developments. Some measurement highlights achieved within PollyNET are depicted.

  13. Multi-wavelength follow-up of ANTARES neutrino alerts

    Science.gov (United States)

    Mathieu, Aurore

    2015-10-01

    Transient sources are often associated with the most violent phenomena in the Universe, where the acceleration of hadrons may occur. Such sources include gamma-ray bursts (GRBs), active galactic nuclei (AGN) or core-collapse supernovae (CCSNe), and are promising candidates for the production of high energy cosmic rays and neutrinos. The ANTARES telescope, located in the Mediterranean sea, aims at detecting these high energy neutrinos, which could reveal the presence of a cosmic ray accelerator. However, to enhance the sensitivity to transient sources, a method based on multi-wavelength follow-up of neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes and the Swift-XRT with a delay of only a few seconds after a neutrino detection. The telescopes start an observation program of the corresponding region of the sky in order to detect a possible electromagnetic counterpart to the neutrino event. The work presented in this thesis covers the development and implementation of an optical image analysis pipeline, as well as the analysis of optical and X-ray data to search for fast transient sources, such as GRB afterglows, and slowly varying transient sources, such as CCSNe.

  14. Multiwavelength interferometry system for the Orion laser facility.

    Science.gov (United States)

    Patankar, S; Gumbrell, E T; Robinson, T S; Lowe, H F; Giltrap, S; Price, C J; Stuart, N H; Kemshall, P; Fyrth, J; Luis, J; Skidmore, J W; Smith, R A

    2015-12-20

    We report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam. Example data confirms the broadband achromatic capability of the imaging system with operation from the UV (263 nm) to visible (527 nm) and demonstrates that features as small as 5 μm can be resolved for object sizes of 15 by 10 mm. Results are also shown for an off-harmonic wavelength that will underpin a future capability. The primary optics package is accommodated inside the footprint of a ten-inch manipulator to allow the system to be deployed from a multitude of viewing angles inside the 4 m diameter Orion target chamber. PMID:26837022

  15. Portable multiwavelength laser diode source for handheld photoacoustic devices

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2016-04-01

    The ageing population faces today an increase of chronic diseases such as rheumatism/arthritis, cancer and cardio vascular diseases for which appropriate treatments based on a diagnosis at an early-stage of the disease are required. Some imaging techniques are already available in order to get structural information. Within the non-invasive group, ultrasound images are common in these fields of medicine. However, there is a need for a point-of-care device for imaging smaller structures such as blood vessels that cannot be observed with purely ultrasound based devices. Photoacoustics proved to be an attractive candidate. This novel imaging technique combines pulsed laser light for excitation of tissues and an ultrasound transducer as a receptor. Introduction of this technique into the clinic requires to drastically shrink the size and cost of the expensive and bulky nanosecond lasers generally used for light emission. In that context, demonstration of ultra-short pulse emission with highly efficient laser diodes in the near-infrared range has been performed by Quantel, France. A multi-wavelength laser source as small as a hand emitted more than 1 mJ per wavelength with four different wavelengths available in pulses of about 90 ns. Such a laser source can be integrated into high sensitivity photoacoustic handheld systems due to their outstanding electrical-to-optical efficiency of about 25 %. Further work continues to decrease the pulse length as low as 40 ns while increasing the pulse energy to 2 mJ.

  16. Multiwavelength Observations of a Flare from Markarian 501

    CERN Document Server

    Catanese, M; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Cawley, M F; Dermer, C D; Fegan, D J; Finley, J P; Gaidos, J A; Hillas, A M; Johnson, W N; Krennrich, F; Lamb, R C; Lessard, R W; Macomb, D J; McEnery, J E; Moriarty, P; Quinn, J; Rodgers, A J; Rose, H J; Samuelson, F W; Sembroski, G H; Srinivasan, R; Weekes, T C; Zweerink, J A

    1997-01-01

    We present multiwavelength observations of the BL Lacertae object Markarian 501 (Mrk 501) in 1997 between April 8 and April 19. Evidence of correlated variability is seen in very high energy (VHE, E > 350 GeV) gamma-ray observations taken with the Whipple Observatory gamma-ray telescope, data from the Oriented Scintillation Spectrometer Experiment of the Compton Gamma-Ray Observatory, and quicklook results from the All-Sky Monitor of the Rossi X-ray Timing Explorer while the Energetic Gamma-Ray Experiment Telescope did not detect Mrk 501. Short term optical correlations are not conclusive but the U-band flux observed with the 1.2m telescope of the Whipple Observatory was 10% higher than in March. The average energy output of Mrk 501 appears to peak in the 2 keV to 100 keV range suggesting an extension of the synchrotron emission to at least 100 keV, the highest observed in a blazar and ~100 times higher than that seen in the other TeV-emitting BL Lac object, Mrk 421. The VHE gamma-ray flux observed during thi...

  17. Gamma-Ray and Multiwavelength Emission from Blazars

    Indian Academy of Sciences (India)

    Meg Urry

    2011-03-01

    Blazars are now well understood as approaching relativistic jets aligned with the line of sight. The long-time uncertainty about the demographics of blazars is starting to become clearer: since the Fermi blazar sample includes a larger fraction of high-frequency peaked blazars (like the typical X-ray-selected blazars in, say, the Einstein Slew Survey sample) than did the higher-flux-limit EGRET blazar sample, these low-luminosity sources must be more common than their higher luminosity, low-frequency-peaked cousins. Blazar spectral energy distributions have a characteristic two-component form, with synchrotron radiation at radio through optical (UV, X-ray) frequencies and gamma-rays from X-ray through GeV (TeV) energies.Multiwavelength monitoring has suggested that gamma-ray flares can result from acceleration of electrons at shocks in the jet, and there appears to be an association between the creation of outflowing superluminal radio components in VLBI maps and the gamma-ray flares. In many cases, the gamma-ray emission is produced by inverse Compton upscattering of ambient optical-UV photons, although the contribution from energetic hadrons cannot be ruled out. The next few years of coordinated gamma-ray, X-ray, UV, optical, infrared and radio monitoring of blazars will be important for characterizing jet content, structure, and total power.

  18. Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera

    CERN Document Server

    Golwala, Sunil R; Brugger, Spencer; Czakon, Nicole G; Day, Peter K; Downes, Thomas P; Duan, Ran; Gao, Jiansong; Gill, Amandeep K; Glenn, Jason; Hollister, Matthew I; LeDuc, Henry G; Maloney, Philip R; Mazin, Benjamin A; McHugh, Sean G; Miller, David; Noroozian, Omid; Nguyen, Hien T; Sayers, Jack; Schlaerth, James A; Siegel, Seth; Vayonakis, Anastasios K; Wilson, Philip R; Zmuidzinas, Jonas

    2012-01-01

    We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses broadband superconducting phased-array slot-dipole antennas to form beams, lumped-element on-chip bandpass filters to define spectral bands, and microwave kinetic inductance detectors to senseincoming light. The focal plane is fabricated in 8 tiles consisting of 72 spatial pixels each. It is coupled to the telescope via an ambient temperature ellipsoidal mirror and a cold reimaging lens. A cold Lyot stop sits at the image of the primary mirror formed by the ellipsoidal mirror. Dielectric and metal mesh filters are used to b...

  19. Multiwavelength videomicrofluorometry for multiparametric investigations of multidrug resistance

    Science.gov (United States)

    Rocchi, Emmanuelle; Salmon, Jean-Marie; Vigo, Jean; Viallet, Pierre M.

    1996-05-01

    A major problem in the cancer chemotherapy is the development of resistance to a whole range of drugs not only similar to the drugs used for resistance induction but also to some functionally and structurally unrelated. It's one of the multifactorial causes of failure of chemotherapy. Thus it appears essential to evaluate the multi-drug resistance (MDR) in living cells populations to: detect the MDR phenotype, to discriminate between resistant and sensitive cells, to identify mechanisms which are involved in the induction or the reversion of resistance and to study the cytotoxic process. Such a challenge implies the use of multiparametric approach that has been possible using a protocol involving microfluorometry connected to numerical image analysis on single living cells. This protocol relays on the correlation existing between the decreased intracellular accumulation of some fluorescent probes such as Hoechst 33342 (Ho342) and Rhodamine 123 (R123) in resistant cells. The simultaneous estimation of the fluorescence intensities of these probes has required the use of a third probe, the Nile Red, for cell contour delineation. The analysis of parameters related to Ho342 and R123 allows the discrimination of sensitive and resistant cells. So the multiparametric approach using multi-wavelength image analysis, which appears to be a powerful technique, has allowed us to show on human lymphoblastoid CCRF-CEM cells lines that the cytotoxic effects could be different depending on the cell resistance or on the cytotoxic drug used: Adriamycine, Vinblastine and the different cell behavior could be used for cell differentiation.

  20. Multi-wavelength observations of novae in outburst

    International Nuclear Information System (INIS)

    This review serves as the introduction to the observational studies of novae and I will mention a number of results that will be emphasized by other reviewers. Therefore, I will try to provide the physical framework for multi-wavelength observations as applied to studies of novae. I divide the outburst into phases based on the physical effects that are occurring at that time. The first phase is the rise to bolometric maximum and occurs on a convective time scale. The second phase is the rise to visual maximum and occurs on the time scale for the envelope to expand to ∼1012cm. The third phase is the time when the nova is emitting at constant bolometric luminosity, but declining optical magnitude, and it lasts until most of the accreted material has been either exhausted or eroded from the surface of the white dwarf. The fourth and final phase is the return is the return to quiescence (turn-off phase) and it occurs at the time that nuclear burning is ending. I will discuss each of these phases in turn and end with a discussion. 36 refs

  1. Multiwavelength Gamma-Ray Bursts Observations with ECLAIRs

    CERN Document Server

    Gotz, Diego

    2007-01-01

    ECLAIRs is the next space borne instrument that will be fully dedicated to multi-wavelength studies of Gamma-Ray Bursts (GRBs). It consists of a coded mask telescope with a wide (~2 sr) field of view, made of 6400 CdTe pixels (~1000 cm^2), which will work in the 4-300 keV energy band. It is expected to localise ~80 GRBs/yr, thanks to the on-board real time event processing. The GRBs (and other transients) coordinates will be distributed within a few seconds from the onset of the burst with a typical uncertainty of ~5-10 arcmin. The detection system will also include a soft X-ray camera (1-10 keV) allowing to study in detail the prompt soft X-ray emission and to reduce the error box for about half of the GRBs seen by ECLAIRs to ~30 arcsec. ECLAIRs is expected to be flown in late 2011 and to be the only instrument capable of providing GRB triggers with sufficient localisation accuracy for GRB follow-up observations with the powerful ground based spectroscopic telescopes available by then. We will present the cu...

  2. Modeling the early multiwavelength emission in GRB130427A

    CERN Document Server

    Fraija, Nissim; Veres, Péter

    2016-01-01

    One of the most powerful gamma-ray bursts, GRB 130427A was swiftly detected from GeV $\\gamma$-rays to optical wavelengths. In the GeV band, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope observed the highest-energy photon ever recorded of 95 GeV, and a bright peak in the early phase followed by emission temporally extended for more than 20 hours. In the optical band, a bright flash with a magnitude of $7.03\\pm 0.03$ in the time interval from 9.31 s to 19.31 s after the trigger was reported by RAPTOR in r-band. We study the origin of the GeV $\\gamma$-ray emission, using the multiwavelength observation detected in X-ray and optical bands. The origin of the temporally extended LAT, X-ray and optical flux is naturally interpreted as synchrotron radiation and the 95-GeV photon and the integral flux upper limits placed by the HAWC observatory are consistent with synchrotron self-Compton from an adiabatic forward shock propagating into the stellar wind of its progenitor. The extreme LAT ...

  3. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% ± 6% intrinsic scatter at r500WL (the pseudo-pressure YX yields a consistent scatter of 22% ± 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (X does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r500WL; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r2500WL and r500WL, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  4. A deep Chandra observation of the active galactic nucleus outburst and merger in Hickson compact group 62

    NARCIS (Netherlands)

    D.A. Rafferty; L. Bîrzan; P.E.J. Nulsen; B.R. McNamara; W.N. Brandt; M.W. Wise; H.J.A. Röttgering

    2013-01-01

    We report on an analysis of new Chandra data of the galaxy group HCG 62, well known for possessing cavities in its intragroup medium (IGM) that were inflated by the radio lobes of its central active galactic nucleus (AGN). With the new data, a factor of 3 deeper than previous Chandra data, we re-exa

  5. The Chandra survey of the COSMOS field II: source detection and photometry

    OpenAIRE

    Puccetti, S.; Vignali, C.; Cappelluti, N.; Fiore, F.; Zamorani, G.; Aldcroft, T. L.; Elvis, M.; Gilli, R.; Miyaji, T.; Brunner, H; Brusa, M.; Civano, F.; Comastri, A.; Damiani, F; Fruscione, A.

    2009-01-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program, that covers the central contiguous ~0.92 deg^2 of the COSMOS field. C-COSMOS is the result of a complex tiling, with every position being observed in up to six overlapping pointings (four overlapping pointings in most of the central ~0.45 deg^2 area with the best exposure, and two overlapping pointings in most of the surrounding area, covering an additional ~0.47 deg^2). Therefore, the full exploitation of the C-COSMOS ...

  6. Chandra-ASCA-RXTE observations of the micro-quasar GRS 1915+105

    CERN Document Server

    Lee, J C; Reynolds, C S; Fabian, A C; Blackman, E G

    2000-01-01

    A Chandra AO1 30ks HETGS observation of the X-ray transient micro-quasar GRS 1915+105 reveals absorption edges and faint line emission over the HETG energy range. We find from a preliminary analysis evidence for prominent neutral K edges associated with iron, silicon, magnesium, and tentatively sulphur. The column densities assuming solar abundances are consistent with ~ few x $10^{22} cm^{-2}$ in excess of the Galactic value, and may point to surrounding cold material associated with GRS 1915+105. Neutral Fe K$\\alpha$ emission, and ionized absorption from Fe XXV and Fe XXVI are resolved. We limit our discussion to the Chandra results.

  7. High-Resolution Chandra X-ray Imaging and Spectroscopy of the Sigma Orionis Cluster

    OpenAIRE

    Skinner, S.L.; Sokal, K. R.; Cohen, D. H.; Gagne, M.; Owocki, S.P.; Townsend, R. D.

    2008-01-01

    We present results of a 90 ksec Chandra X-ray observation of the young sigma Orionis cluster (age ~3 Myr) obtained with the High Energy Transmission Grating Spectrometer. We use the high resolution grating spectrum and moderate resolution CCD spectrum of the massive central star sigma Ori AB (O9.5V + B0.5V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the p...

  8. The Chandra/HETG view of NGC 1365 in a Compton-thick state

    OpenAIRE

    Nardini, E.; Gofford, J; Reeves, JN; Braito, V.; Risaliti, G.; Costa, M.

    2015-01-01

    We present the analysis of a Chandra High-Energy Transmission Grating (HETG) observation of the local Seyfert galaxy NGC 1365. The source, well known for its dramatic X-ray spectral variability, was caught in a reflection-dominated, Compton-thick state. The high spatial resolution afforded by Chandra allowed us to isolate the soft X-ray emission from the active nucleus, neglecting most of the contribution from the kpc-scale starburst ring. The HETG spectra thus revealed a wealth of He- and H-...

  9. The CHANDRA HETGS X-ray Grating Spectrum of Eta Car

    OpenAIRE

    Corcoran, M. F; Swank, J.H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; S. White; Viotti, R; A. Damineli

    2001-01-01

    Eta Car may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emisssion. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on...

  10. Chandra Observations of Dying Radio Sources in Galaxy Clusters

    Science.gov (United States)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-01-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions. We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from

  11. Early-type galaxies in the Chandra cosmos survey

    International Nuclear Information System (INIS)

    We study a sample of 69 X-ray detected early-type galaxies (ETGs), selected from the Chandra COSMOS survey, to explore the relation between the X-ray luminosity of hot gaseous halos (LX,gas) and the integrated stellar luminosity (LK ) of the galaxies, in a range of redshift extending out to z = 1.5. In the local universe, a tight, steep relationship has been established between these two quantities (LX,gas∼LK4.5), suggesting the presence of largely virialized halos in X-ray luminous systems. We use well-established relations from the study of local universe ETGs, together with the expected evolution of the X-ray emission, to subtract the contribution of low-mass X-ray binary populations from the X-ray luminosity of our sample. Our selection minimizes the presence of active galactic nuclei (AGNs), yielding a sample representative of normal passive COSMOS ETGs; therefore, the resulting luminosity should be representative of gaseous halos, although we cannot exclude other sources such as obscured AGNs or enhanced X-ray emission connected with embedded star formation in the higher-z galaxies. We find that most of the galaxies with estimated LX < 1042 erg s–1 and z < 0.55 follow the LX,gas-LK relation of local universe ETGs. For these galaxies, the gravitational mass can be estimated with a certain degree of confidence from the local virial relation. However, the more luminous (1042 erg s–1

  12. A MULTI-WAVELENGTH APPROACH TO THE PROPERTIES OF EXTREMELY RED GALAXY POPULATIONS. I. CONTRIBUTION TO THE STAR FORMATION RATE DENSITY AND ACTIVE GALACTIC NUCLEUS CONTENT

    International Nuclear Information System (INIS)

    We present a multi-wavelength analysis of the properties of extremely red galaxy (ERG) populations, selected in the GOODS-South/Chandra Deep Field South field. By using all the photometric and spectroscopic information available on large deep samples of extremely red objects (EROs; 645 sources), IRAC EROs (IEROs; 294 sources), and distant red galaxies (DRGs; 350 sources), we derive redshift distributions, identify active galactic nucleus (AGN)-powered and star formation (SF)-powered galaxies, and, using the radio observations of this field, estimate robust (AGN- and dust-unbiased) SF rate densities (ρ-dot*) for these populations. We also investigate the properties of 'pure' (galaxies that conform to only one of the three ERG criteria considered) and 'combined' (galaxies that verify all three criteria) sub-populations. Overall, a large number of AGNs are identified (up to ∼30%, based on X-rays and mid-infrared criteria), the majority of which are type-2 (obscured) objects. Among ERGs with no evidence for AGN activity, we identify sub-populations covering a wide range of average SF rates, from below 10 M sun yr-1 to as high as 200 M sun yr-1. Applying a redshift separation (1 ≤ z * for EROs and DRGs, while none is observed for IEROs. The former populations can contribute more than 20% to the global ρ-dot*at 2 ≤ z ≤ 3. The emission from AGN activity is typically not strong in the ERG population, with AGNs increasing the average radio luminosity of ERG sub-populations by, nominally, less than 20%. AGNs are common, however, and, if no discrimination is attempted, this could significantly increase the ρ-dot* estimate (by over 100% in some cases). Thus, and while the contribution of star-forming processes to the radio luminosity in galaxies with AGN remains uncertain, a comprehensive identification of AGNs in these populations is necessary to obtain meaningful results.

  13. A Multiwavelength Study of the Orion-Eridanus Superbubble.

    Science.gov (United States)

    Guo, Zhiyu

    1995-01-01

    A multiwavelength study of the Orion-Eridanus superbubble has been carried out based on the ROSAT PSPC pointed observation data, IRAS 100 μm data, the 21 cm data obtained with NRAO 140-foot telescope at Green Bank and the inter-stellar Na D data obtained with NOAO Coude Feed telescope. The temperature and the N_{rm H} distribution across the superbubble have been obtained from the X-ray data analysis. It is found that the temperature and N _{rm H} distribution obtained from the best fit are consistent with the morphology difference between the 1over 4 keV and the 3over 4 keV X-ray emission results from the absorption by the intervening gas. Distance limits to the boundary of the Local Bubble and to the near and far sides of the shell associated with the Orion-Eridanus bubble have been estimated based on our 21 cm mapping of the X-ray absorbing clouds and our interstellar Na D absorption line observations toward stars in the 21 cm fields. It is found that the distance to the near side of the Orion -Eridanus bubble is 155 +/- 22 pc in the direction (1,b) ~ (203 ^circ, -40^circ ) and the upper distance limit to the far side of the bubble is 586 pc in the same direction. The observed geometry and kinematics of the Orion-Eridanus feature have been compared with the standard wind-blown bubble theory. It is found that the Orion-Eridanus feature can be explained as a stellar wind superbubble associated with the Orion OB1 association. The evolution and dynamics of the Orion -Eridanus superbubble have also been discussed and it is found that the interstellar pressures from cosmic rays and interstellar magnetic fields play important roles in determining whether the Orion-Eridanus superbubble will blow out the entire galactic H scI disk.

  14. Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Golwala, Sunil R.; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Hollister, Matthew I.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Schlaerth, James A.; Siegel, Seth; Vayonakis, Anastasios K.; Wilson, Philip R.; Zmuidzinas, Jonas

    2012-09-01

    We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses broadband superconducting phased-array slot-dipole antennas to form beams, lumpedelement on-chip bandpass filters to define spectral bands, and microwave kinetic inductance detectors to sense incoming light. The focal plane is fabricated in 8 tiles consisting of 72 spatial pixels each. It is coupled to the telescope via an ambient-temperature ellipsoidal mirror and a cold reimaging lens. A cold Lyot stop sits at the image of the primary mirror formed by the ellipsoidal mirror. Dielectric and metal-mesh filters are used to block thermal infrared and out-ofband radiation. The instrument uses a pulse tube cooler and 3He/ 3He/4He closed-cycle cooler to cool the focal plane to below 250 mK. A multilayer shield attenuates Earth's magnetic field. Each focal plane tile is read out by a single pair of coaxes and a HEMT amplifier. The readout system consists of 16 copies of custom-designed ADC/DAC and IF boards coupled to the CASPER ROACH platform. We focus on recent updates on the instrument design and results from the commissioning of the full camera in 2012.

  15. Hunting for treasures among the Fermi unassociated sources: A multiwavelength approach

    International Nuclear Information System (INIS)

    The Fermi Gamma-Ray Space Telescope has been detecting a wealth of sources where the multiwavelength counterpart is either inconclusive or missing altogether. We present a combination of factors that can be used to identify multiwavelength counterparts to these Fermi unassociated sources. This approach was used to select and investigate seven bright, high-latitude unassociated sources with radio, UV, X-ray, and γ-ray observations. As a result, four of these sources are candidates to be active galactic nuclei, and one to be a pulsar, while two do not fit easily into these known categories of sources. The latter pair of extraordinary sources might reveal a new category subclass or a new type of γ-ray emitter. These results altogether demonstrate the power of a multiwavelength approach to illuminate the nature of unassociated Fermi sources.

  16. AEGIS: A MULTIWAVELENGTH STUDY OF SPITZER POWER-LAW GALAXIES

    International Nuclear Information System (INIS)

    This paper analyzes a sample of 489 Spitzer/Infrared Array Camera (IRAC) sources in the Extended Groth Strip (EGS), whose spectral energy distributions fit a red power law (PL) from 3.6 to 8.0 μm. The median redshift for sources with known redshifts is (z) = 1.6. Though all or nearly all of the sample galaxies are likely to be active galactic nuclei (AGNs), only 33% were detected in the EGS X-ray survey (AEGIS-X) using 200 ks Chandra observations. The detected sources are X-ray luminous with L X>1043 erg s-1 and moderately to heavily obscured with N H>1022 cm-2. Stacking the X-ray-undetected sample members yields a statistically significant X-ray signal, suggesting that they are on average more distant or more obscured than sources with X-ray detections. The ratio of X-ray to mid-infrared fluxes suggests that a substantial fraction of the sources undetected in X-rays are obscured at the Compton-thick level, in contrast to the X-ray-detected sources, all of which appear to be Compton thin. For the X-ray-detected PL sources with redshifts, an X-ray luminosity L X ∼ 1044 erg s-1 marks a transition between low-luminosity, blue sources dominated by the host galaxy to high-luminosity, red PL sources dominated by nuclear activity. X-ray-to-optical ratios, infrared variability, and 24 μm properties of the sample are consistent with the identification of infrared PL sources as active nuclei, but a rough estimate is that only 22% of AGNs are selected by the PL criteria. Comparison of the PL selection technique and various IRAC color criteria for identifying AGNs confirms that high-redshift samples selected via simple IRAC colors may be heavily contaminated by starlight-dominated objects.

  17. A unidirectional room temperature multi-wavelength fiber ring laser without isolator

    Institute of Scientific and Technical Information of China (English)

    Guoyong Sun(孙国勇); Jing Yang(杨敬); Ronghui Qu(瞿荣辉); Zujie Fang(方祖捷); Xiangzhao Wang(王向朝)

    2004-01-01

    A simplified ring cavity for achieving a unidirectional room temperature multi-wavelength erbium-doped fiber ring laser without optical isolator is demonstrated. The fiber ring cavity is built in such a way that the optical fields propagating in two directions suffer different losses caused by one sampled fiber Bragg grating. Furthermore, simultaneous multi-wavelength lasing with 0.8-nm intervals is demonstrated with sinusoidal phase modulation just before the sampled fiber Bragg grating to prevent single-wavelength lasing and unstable wavelength oscillation.

  18. Quantum dot SOA/silicon external cavity multi-wavelength laser.

    Science.gov (United States)

    Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael

    2015-02-23

    We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission. PMID:25836504

  19. Semiconductor optical amplifier based multi-wavelength lasers in 0.4 nm channel spacing

    International Nuclear Information System (INIS)

    We propose a multi-wavelength fiber laser employing a double-pass Mach–Zehnder interferometer filter, a piece of polarization maintaining fiber, a semiconductor optical amplifier and an optical isolator. The proposed fiber laser has the advantages of stable multi-wavelength lasing with 33 channels in standard wavelength division multiplexing channel spacing of 0.4 nm using 15 m polarization maintaining fiber. Power ripple among channels could be reduced by increasing the bias current of the semiconductor optical amplifier. (paper)

  20. Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber

    Institute of Scientific and Technical Information of China (English)

    Shan Qin; Yongbo Tang; Daru Chen

    2006-01-01

    A stable and uniform multi-wavelength fiber laser based on the hybrid gain of a dispersion compensating fiber as the Raman gain medium and an erbium-doped fiber (EDF) is introduced. The gain competition effects in the fiber Raman amplification (FRA) and EDF amplification are analyzed and compared experimentaUy. The FRA gain mechanism can suppress the gain competition effectively and make the present multi-wavelength laser stable at room temperature. The hybrid gain medium can also increase the lasing bandwidth compared with a pure EDF laser, and improve the power conversion efficiency compared with a pure fiber Raman laser.

  1. Chandra Data Analysis of H2O Megamaser Galaxy NGC 4258

    Indian Academy of Sciences (India)

    Baisheng Liu; Jiangshui Zhang; Jin Wang

    2011-03-01

    Chandra observations of NGC 4258 were analyzed to investigate the circumnuclear environment of the H2O megamaser galaxy. Its adaptively-smoothed image shows a bright nucleus and another weak source nearby. For the maser host nucleus, our preferred fitting of its spectra gives the absorption of ∼ 7 × 1022cm-2.

  2. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk 266

    Indian Academy of Sciences (India)

    J. Wang; J. S. Zhang; J. H. Fan

    2011-03-01

    For H2O megamaser galaxy Mrk 266, its Chandra and XMM–Newton data are analyzed here. It shows existence of two obscured nuclei (separation is ∼ 5''). Our preferred model, the high energy reflected model can fit the hard component of both nuclei spectra well.

  3. M31 in the Chandra Era: A High Definition Movie of a Nearby Galaxy

    Science.gov (United States)

    Kong, Albert; di Stefano, Rosanne

    2009-09-01

    M31 has been a prime targets for all X-ray missions since the first detection in 1974. With its superb spatial resolution, Chandra is unique in resolving dense source regions and detecting faint sources. Since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec. The X-ray skies of M31 not only consist of many transients and variables, globular cluster X-ray sources in M31 are also different from our Milky Way. They are in general more luminous and one of them may even host an intermediate-mass black hole. Supersoft and quasi-soft X-ray sources in M31 are the best kept secret to unlock the nature of the progenitor of Type Ia supernova. In this talk, I will review some of the important Chandra discoveries in M31 in the past 10 years.

  4. STS-93: Crew Watch the Installation of Chandra's Solar Panel in the VPF

    Science.gov (United States)

    1999-01-01

    Live footage shows the crewmembers, Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley, Catherine G. Coleman and Michel Tognini, watching the installation of Chandra's Solar Panel in the Vertical Processing Facility (VPF) at Kennedy Space Center. Crewmembers ask the engineers questions about different components in order to familiarize themselves.

  5. VizieR Online Data Catalog: Chandra X-ray observations of M81 (Swartz+, 2003)

    Science.gov (United States)

    Swartz, D. A.; Ghosh, K. K.; McCollough, M. L.; Pannuti, T. G.; Tennant, A. F.; Wu, K.

    2003-02-01

    The primary X-ray data set is a 49926s observation of M81 obtained on 2000 May 7 with the Chandra Advanced CCD Imaging Spectrometer (ACIS) spectroscopy array operating in imaging mode. Unless otherwise noted, references to X-ray data will refer to this data set. The X-ray data were reprocessed by the Chandra X-ray Center (CXC) on 2001 January 4. This reprocessed data are used in this work. There are no significant differences between the reprocessed data and the originally distributed data analyzed by Tennant et al. (2001ApJ...549L..43T). The observation was taken in faint timed exposure mode at 3.241s/frame at a focal plane temperature of -120{deg}C. Standard CXC processing has applied aspect corrections and compensated for spacecraft dither. The primary target, SN 1993J, was located near the nominal aimpoint on the back-illuminated (BI) device S3. The nucleus of M81 lies 2.79' from SN 1993J toward the center of S3 in this observation. Accurate positions of these two objects and two G0 stars located on device S2 were used to identify any offset and to determine absolute locations of the remaining Chandra sources as well as objects in other X-ray images and those obtained at other wavelengths. No offset correction was applied to the Chandra X-ray positions. (2 data files).

  6. GRB 150101B/ Swift J123205.1-105602: Second epoch Chandra observations

    Science.gov (United States)

    Levan, A. J.; Hjorth, J.; Tanvir, N. R.; van der Horst, A. J.

    2015-02-01

    We obtained a second epoch of observations of the very short GRB 150101B/ Swift J123205.1-105602 (Cummings et al. GCN 17267) with Chandra. Observations began on 10 Feb 2015, 39 days after the burst, and 32 days after the first epoch of observations.

  7. X-ray observations of dust obscured galaxies in the Chandra Deep Field South

    CERN Document Server

    Corral, A; Comastri, A; Ranalli, P; Akylas, A; Salvato, M; Lanzuisi, G; Vignali, C; Koutoulidis, L

    2016-01-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra Deep Field South. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields. In that work, we only found a moderate percentage ($<$ 50%) of CT AGN among the DOGs sample, but we were limited by poor photon statistics. In this paper, we use not only a deeper 6 Ms Chandra survey of the Chandra Deep Field South (CDF-S), but combine these data with the 3 Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (but only 3 could be CT AGN), wherea...

  8. Structure of the other spin-3/2 equation of Harish-Chandra degree four

    Energy Technology Data Exchange (ETDEWEB)

    Labonte, G.

    1984-04-21

    We analyse the structure of the only higher-spin fermion equation, beside the Fierz-Pauli equation, with Harish-Chandra degree four. It is rewritten in a basis corresponding to invariant subspaces for the irreducible Lorentz representations involved. Its irreducibility is demonstrated. Finally, it is rewritten in the more familiar formalism of Dirac ..gamma..-matrices and tensor-spinor fields.

  9. First Terrestrial Soft X-Ray Auroral Observation by the Chandra X-Ray Observatory

    Science.gov (United States)

    Bhardwaj, Anil; Gladstone, G. Randall; Elsner, Ronald F.; Oestgaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2007-01-01

    Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each approx.20 min duration) between mid- December 2003 and mid-April 2004. These observations aimed at searching for Earth's soft (X-ray aurora in a comparative study with Jupiter's X-ray aurora, where a pulsating X-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft X-ray observations of Earth's aurora show that it is highly variable 0ntense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.

  10. Analytic parameter dependence of Harish-Chandra modules for real reductive Lie groups - a family affair

    NARCIS (Netherlands)

    van der Noort, V.

    2009-01-01

    This thesis is written in the subfield of mathematics known as representation theory of real reductive Lie groups. Let G be a Lie group in the Harish-Chandra class with maximal compact subgroup K and Lie algebra g. Let Omega be a connected complex manifold. By a family of G-representations parametri

  11. AEGIS-X: Deep Chandra imaging of the Central Groth Strip

    CERN Document Server

    Nandra, K; Aird, J A; Salvato, M; Georgakakis, A; Barro, G; Gonzalez, P G Perez; Barmby, P; Chary, R -R; Coil, A; Cooper, M C; Davis, M; Dickinson, M; Faber, S M; Fazio, G G; Guhathakurta, P; Gwyn, S; Hsu, L -T; Huang, J -S; Ivison, R J; Koo, D C; Newman, J A; Rangel, C; Yamada, T; Willmer, C

    2015-01-01

    We present the results of deep \\chandra\\ imaging of the central region of the Extended Groth Strip, the AEGIS-X Deep (AEGIS-XD) survey. When combined with previous \\chandra\\ observations of a wider area of the strip, AEGIS-X Wide (AEGIS-XW; Laird et~al. 2009), these provide data to a nominal exposure depth of 800ks in the three central ACIS-I fields, a region of approximately $0.29$~deg$^{2}$. This is currently the third deepest X-ray survey in existence, a factor $\\sim 2-3$ shallower than the Chandra Deep Fields (CDFs) but over an area $\\sim 3$ times greater than each CDF. We present a catalogue of 937 point sources detected in the deep \\chandra\\ observations. We present identifications of our X-ray sources from deep ground-based, Spitzer, GALEX and HST imaging. Using a likelihood ratio analysis, we associate multi band counterparts for 929/937 of our X-ray sources, with an estimated 95~\\% reliability, making the identification completeness approximately 94~\\% in a statistical sense. Reliable spectroscopic r...

  12. The Brera Multi-scale Wavelet Chandra Survey. The serendipitous source catalogue

    CERN Document Server

    Romano, P; Mignani, R P; Moretti, A; Panzera, M R; Tagliaferri, G; Mottini, M

    2009-01-01

    We present the Brera Multi-scale Wavelet Chandra (BMW-Chandra) source catalogue drawn from essentially all Chandra ACIS-I pointed observations with an exposure time in excess of 10ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterise both point-like and extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings. This makes our catalogue the largest compilation of Chandra sources to date. The 0.5-10keV absorption corrected fluxes of these sources range from 3E-16 to 9E-12 erg/cm2/s with a median of 7E-15 erg/cm2/s. The catalogue consists of count rates and relative errors in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), where the detection was performed, and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate...

  13. Chandra detection of increased X-ray activity from SAX J1747.0-2853

    Science.gov (United States)

    Clavel, M.; Tomsick, J. A.; Terrier, R.; Goldwurm, A.

    2016-06-01

    We report the detection of a bright halo in the Chandra ACIS-I observation obtained on 2016 May 17 (ObsID 18852, MJD 57525). The shape of this diffuse emission is consistent with a dust scattering halo surrounding the neutron star LMXB SAX J1747.0-2853, which is outside of the field of view.

  14. AN X-RAY AND MULTIWAVELENGTH SURVEY OF HIGHLY RADIO-LOUD QUASARS AT z > 4: JET-LINKED EMISSION IN THE BRIGHTEST RADIO BEACONS OF THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianfeng; Brandt, W. N.; Garmire, Gordon P.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Miller, Brendan P. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Vignali, Cristian, E-mail: jfwu@astro.psu.edu [Dipartimento di Astronomia, Universita degli Studi di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)

    2013-02-15

    We present a systematic study of the X-ray and multiwavelength properties of a sample of 17 highly radio-loud quasars (HRLQs) at z > 4 with sensitive X-ray coverage from new Chandra and archival Chandra, XMM-Newton, and Swift observations. Eight of the new and archival observations are reported in this work for the first time. New Chandra observations of two moderately radio-loud and highly optically luminous quasars at z {approx}> 4 are also reported. Our HRLQ sample represents the top {approx}5% of radio-loud quasars (RLQs) in terms of radio loudness. We found that our HRLQs have an X-ray emission enhancement over HRLQs at lower redshifts (by a typical factor of Almost-Equal-To 3), and this effect, after controlling for several factors which may introduce biases, has been solidly estimated to be significant at the 3{sigma}-4{sigma} level. HRLQs at z = 3-4 are also found to have a similar X-ray emission enhancement over z < 3 HRLQs, which further supports the robustness of our results. We discuss models for the X-ray enhancement's origin including a fractional contribution from inverse Compton scattering of cosmic microwave background photons. No strong correlations are found between the relative X-ray brightness and optical/UV emission-line rest-frame equivalent widths (REWs) for RLQs. However, the line REWs are positively correlated with radio loudness, which suggests that relativistic jets make a negligible contribution to the optical/UV continua of these HRLQs (contrary to the case where the emission lines are diluted by the relativistically boosted continuum). Our HRLQs are generally consistent with the known anti-correlation between radio loudness and X-ray power-law photon index. We also found that the two moderately radio-loud quasars appear to have the hardest X-ray spectra among our objects, suggesting that intrinsic X-ray absorption (N {sub H} {approx} 10{sup 23} cm{sup -2}) may be present. Our z > 4 HRLQs generally have higher X-ray luminosities

  15. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  16. The Chandra Xbootes Survey - IV: Mid-Infrared and Submillimeter Counterparts

    Science.gov (United States)

    Brown, Arianna; Mitchell-Wynne, Ketron; Cooray, Asantha R.; Nayyeri, Hooshang

    2016-06-01

    In this work, we use a Bayesian technique to identify mid-IR and submillimeter counterparts for 3,213 X-ray point sources detected in the Chandra XBoötes Survey so as to characterize the relationship between black hole activity and star formation in the XBoötes region. The Chandra XBoötes Survey is a 5-ks X-ray survey of the 9.3 square degree Boötes Field of the NOAO Deep Wide-Field Survey (NDWFS), a survey imaged from the optical to the near-IR. We use a likelihood ratio analysis on Spitzer-IRAC data taken from The Spitzer Deep, Wide-Field Survey (SDWFS) to determine mid-IR counterparts, and a similar method on Herschel-SPIRE sources detected at 250µm from The Herschel Multi-tiered Extragalactic Survey to determine the submillimeter counterparts. The likelihood ratio analysis (LRA) provides the probability that a(n) IRAC or SPIRE point source is the true counterpart to a Chandra source. The analysis is comprised of three parts: the normalized magnitude distributions of counterparts and background sources, and the radial probability distribution of the separation distance between the IRAC or SPIRE source and the Chandra source. Many Chandra sources have multiple prospective counterparts in each band, so additional analysis is performed to determine the identification reliability of the candidates. Identification reliability values lie between 0 and 1, and sources with identification reliability values ≥0.8 are chosen to be the true counterparts. With these results, we will consider the statistical implications of the sample's redshifts, mid-IR and submillimeter luminosities, and star formation rates.

  17. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  18. Multiwavelength Observations of the Candidate Disintegrating Sub-Mercury KIC 12557548b

    Science.gov (United States)

    Croll, Bryce; Rappaport, Saul; DeVore, John; Gilliland, Ronald L.; Crepp, Justin R.; Howard, Andrew W.; Star, Kimberly M.; Chiang, Eugene; Levine, Alan M.; Jenkins, Jon M.; Albert, Loic; Bonomo, Aldo S.; Fortney, Jonathan J.; Isaacson, Howard

    2014-05-01

    We present multiwavelength photometry, high angular resolution imaging, and radial velocities of the unique and confounding disintegrating low-mass planet candidate KIC 12557548b. Our high angular resolution imaging, which includes space-based Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) observations in the optical (~0.53 μm and ~0.77 μm), and ground-based Keck/NIRC2 observations in K' band (~2.12 μm), allow us to rule out background and foreground candidates at angular separations greater than 0.''2 that are bright enough to be responsible for the transits we associate with KIC 12557548. Our radial velocity limit from Keck/HIRES allows us to rule out bound, low-mass stellar companions (~0.2 M ⊙) to KIC 12557548 on orbits less than 10 yr, as well as placing an upper limit on the mass of the candidate planet of 1.2 Jupiter masses; therefore, the combination of our radial velocities, high angular resolution imaging, and photometry are able to rule out most false positive interpretations of the transits. Our precise multiwavelength photometry includes two simultaneous detections of the transit of KIC 12557548b using Canada-France-Hawaii Telescope/Wide-field InfraRed Camera (CFHT/WIRCam) at 2.15 μm and the Kepler space telescope at 0.6 μm, as well as simultaneous null-detections of the transit by Kepler and HST/WFC3 at 1.4 μm. Our simultaneous HST/WFC3 and Kepler null-detections provide no evidence for radically different transit depths at these wavelengths. Our simultaneous CFHT/WIRCam detections in the near-infrared and with Kepler in the optical reveal very similar transit depths (the average ratio of the transit depths at ~2.15 μm compared with ~0.6 μm is: 1.02 ± 0.20). This suggests that if the transits we observe are due to scattering from single-size particles streaming from the planet in a comet-like tail, then the particles must be ~0.5 μm in radius or larger, which would favor that KIC 12557548b is a sub-Mercury rather than super

  19. SOLITONS AND OPTICAL FIBERS: Multiwavelength pulse transmission in an optical fibre — amplifier system

    Science.gov (United States)

    Panoiu, N.-C.; Mel'nikov, I. V.; Mihalache, D.; Etrich, C.; Lederer, F.

    2002-11-01

    The structure and dynamics of solitary waves created in the interaction of multiwavelength pulses in a single-mode optical fibre with amplification, filtering, and amplitude modulation is analysed. It is shown that there is a critical wavelength separation between channels above which wavelength-division multiplexing with solitons is feasible and that this separation increases with the number of channels.

  20. Multi-Wavelength Conversion Using FP-LD with Linear Optical Amplifier

    Institute of Scientific and Technical Information of China (English)

    Jeung-Mo Kang; Yong-Ook Kim; Sang-Kook Han

    2003-01-01

    We propose and demonstrate a multi-wavelength converter using FP-LD with linear optical amplifier (LOA) which based on cross-gain modulation can convert an input signal to many wavelengths simultaneously for reconfigurable wavelength conversion in OXC and broadcasting in WDM systems.

  1. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm : Application to Western Europe

    NARCIS (Netherlands)

    Curier, R.L.; Veefkind, J.P.; Braak, R.; Veihelmann, B.; Torres, O.; Leeuw, G. de

    2008-01-01

    The Ozone Monitoring Instrument (OMI) multiwavelength algorithm has been developed to retrieve aerosol optical depth using OMI-measured reflectance at the top of the atmosphere. This algorithm was further developed by using surface reflectance data from a field campaign in Cabauw (The Netherlands),

  2. Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications

    Science.gov (United States)

    Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.

    1998-01-01

    Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.

  3. Multi-wavelength observations of the peculiar red giant HR 3126

    Science.gov (United States)

    Pesce, Joseph E.; Stencel, Robert E.; Walter, Frederick M.; Doggett, Jesse; Dachs, Joachim; Whitelock, Patricia A.; Mundt, Reinhard

    1988-01-01

    Ultraviolet observations of the red giant HR 3126 are combined with multi-wavelength data in order to provide a firmer basis for explaining the arc-minute sized nebula surrounding the object. Possibilities as to the location of HR 3126 on the Hertzsprung-Russel diagram, and to the formation mechanisms of the reflection nebula IC 2220 associated with it, are summarized.

  4. Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer

    International Nuclear Information System (INIS)

    A tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer is proposed and experimentally demonstrated. The in-line Mach Zehnder interferometer is realized by using cascaded long-period fiber gratings. The long-period fiber gratings can couple the guided core mode to several cladding modes. If two identical long-period fiber gratings are concatenated, an interference pattern can be generated, which results from an interaction of the core and the cladding modes in the second long-period fiber grating. Therefore, a simple multichannel filter based on an in-line Mach Zehnder interferometer can be realized. The wavelength spacing of the proposed multichannel filter is controlled by the number of long-period fiber gratings. We apply the proposed multichannel fiber to the generation of a multiwavelength erbium-doped fiber laser with a tunability on the order of the wavelength spacing. An erbium-doped fiber amplifier is implemented as a gain medium. The gain competition of erbium ions is suppressed by soaking the erbium-doped fiber in liquid nitrogen. The power fluctuation of the proposed multiwavelength fiber laser is measured to be less than 0.5 dB. A high-quality multiwavelength output with a high extinction ratio of more than 40 dB is achieved. The wavelength spacing of the proposed multiwavelength fiber laser is controlled by increasing the number of long-period fiber gratings. The wavelength spacing is changed from 0.8 nm to 1.6 nm discretely.

  5. ESO imaging survey. Deep public survey: Multi-color optical data for the Chandra Deep Field South

    Science.gov (United States)

    Arnouts, S.; Vandame, B.; Benoist, C.; Groenewegen, M. A. T.; da Costa, L.; Schirmer, M.; Mignani, R. P.; Slijkhuis, R.; Hatziminaoglou, E.; Hook, R.; Madejsky, R.; Rité, C.; Wicenec, A.

    2001-11-01

    This paper presents multi-passband optical data obtained from observations of the Chandra Deep Field South (CDF-S), located at alpha ~ 3h 32m, delta ~ -27o 48'. The observations were conducted at the ESO/MPG 2.2 m telescope at La Silla using the 8kx8k Wide-Field Imager (WFI). This data set, taken over a period of one year, represents the first field to be completed by the ongoing Deep Public Survey (DPS) being carried out as a part of the ESO Imaging Survey (EIS) project. This paper describes the optical observations, the techniques employed for un-supervised pipeline processing and the general characteristics of the final data set. Image processing has been performed using multi-resolution image decomposition techniques adapted to the EIS pipeline. The automatic processing steps include standard de-bias and flat-field, automatic removal of satellite tracks, de-fringing/sky-subtraction, image stacking/mosaicking and astrometry. Stacking of dithered images is carried out using pixel-based astrometry which enables the efficient removal of cosmic rays and image defects, yielding remarkably clean final images. The final astrometric calibration is based on a pre-release of the GSC-II catalog and has an estimated intrinsic accuracy of la 0.10 arcsec, with all passbands sharing the same solution. The paper includes data taken in six different filters (U'UBVRI). The data cover an area of about 0.25 square degrees reaching 5sigma limiting magnitudes of U'AB=26.0, UAB=25.7, BAB=26.4, VAB=25.4, RAB=25.5 and IAB= 24.7 mag, as measured within a 2 x FWHM aperture. The optical data covers an area of ~ 0.1 square degrees for which moderately deep observations in two near-infrared bands are also available, reaching 5sigma limiting magnitudes of JAB ~ 23.4 and KAB ~ 22.6. The current optical/infrared data also fully encompass the region of the deep X-ray observations recently completed by the Chandra telescope. The optical data presented here, as well as the infrared data released

  6. A method to search for bulk motions in the ICM with {\\sl Chandra} CCD spectra: application to the Bullet cluster

    CERN Document Server

    Liu, Ang; Tozzi, Paolo; Zhu, Zong-Hong

    2015-01-01

    We propose a strategy to search for bulk motions in the intracluster medium (ICM) of merging clusters based on {\\sl Chandra} CCD data. Our goal is to derive robust measurements of the average redshift of projected ICM regions obtained from the centroid of the $K_\\alpha$ line emission. We thoroughly explore the effect of the unknown temperature structure along the line of sight to accurately evaluate the systematic uncertainties on the ICM redshift. We apply our method to the "Bullet cluster" (1E~0657-56). We directly identify 23 independent regions on the basis of the surface brightness contours, and measure the redshift of the ICM averaged along the line of sight in each. We find that the redshift distribution across these regions is marginally inconsistent with the null hypothesis of a constant redshift or no bulk motion in the ICM, at a confidence level of about $2\\, \\sigma$. We tentatively identify the regions most likely affected by bulk motions and find a maximum velocity gradient of about $(46\\pm 13)$ ...

  7. Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II

    CERN Document Server

    Grant, C E; Bautz, M W; O'Dell, S L

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  8. Modeling Contamination Migration on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  9. Chandra mapping of the cosmic web converging on the virialization region of Abell 1795

    Science.gov (United States)

    Vikhlinin, Alexey

    2014-09-01

    Detailed observations of the "cosmic melting pot" in the virialization zone of rich galaxy clusters are a fairly new territory for the physics of clusters and the intergalactic medium. The first step has been taken with a deep Chandra study of A133, which has provided a uniquely detailed picture of the Cosmic Web converging onto the cluster virial radius and demonstrated that Chandra can probe to fainter surface brightness levels than any other X-ray observatory now operating. Many of the results from the A133 observation are potentially game-changers for our understanding of the virialization region and its proper modeling. We now need to follow this up with a similarly deep observation of at least one more cluster.

  10. Evolution of the Chandra CCD Spectra of SNR 1987A: Probing the Reflected-Shock Picture

    CERN Document Server

    Zhekov, Svetozar A; McCray, Richard; Racusin, Judith L; Burrows, David N

    2010-01-01

    We continue to explore the validity of the reflected shock structure (RSS) picture in SNR 1987A that was proposed in our previous analyses of the X-ray emission from this object. We used an improved version of our RSS model in a global analysis of 14 CCD spectra from the monitoring program with Chandra. In the framework of the RSS picture, we are able to match both the expansion velocity curve deduced from the analysis of the X-ray images and light curve. Using a simplified analysis, we also show that the X-rays and the non-thermal radio emission may originate from the same shock structure (the blast wave). We believe that using the RSS model in the analysis of grating data from the Chandra monitoring program of SNR 1987A that cover a long enough time interval, will allow us to build a more realistic physical picture and model of SNR 1987A.

  11. Applying the Background-Source separation algorithm to Chandra Deep Field South data

    CERN Document Server

    Guglielmetti, F; Fischer, R; Rosati, P; Tozzi, P

    2012-01-01

    A probabilistic two-component mixture model allows one to separate the diffuse background from the celestial sources within a one-step algorithm without data censoring. The background is modeled with a thin-plate spline combined with the satellite's exposure time. Source probability maps are created in a multi-resolution analysis for revealing faint and extended sources. All detected sources are automatically parametrized to produce a list of source positions, fluxes and morphological parameters. The present analysis is applied to the Chandra Deep Field South 2 Ms public released data. Within its 1.884 ks of exposure time and its angular resolution (0.984 arcsec), the Chandra Deep Field South data are particularly suited for testing the Background-Source separation algorithm.

  12. The High Resolution Chandra X-Ray Spectrum of 3C273

    Science.gov (United States)

    Fruscione, Antonella; Lavoie, Anthony (Technical Monitor)

    2000-01-01

    The bright quasar 3C273 was observed by Chandra in January 2000 for 120 ksec as a calibration target. It was observed with all detector- plus-grating combinations (ACIS+HETG, ACIS+LETG, and HRC+LETG) yielding an X-ray spectrum across the entire 0.1-10 keV band with unprecedented spectral resolution. At about 10 arcsec from the nucleus, an X-ray jet is also clearly visible and resolved in the Oth order images. While the jet is much fainter than the nuclear source, the Chandra spatial resolution allows, for the first time, spectral analysis of both components separately. We will present detailed spectral analysis with particular emphasis on possible absorption features and comparison with simultaneous BeppoSAX data.

  13. 1WGAJ1226.9+3332: a high redshift cluster discovered by Chandra

    OpenAIRE

    Cagnoni, I.; Elvis, M.; Kim, D. -W.; Mazzotta, P.; Huang, J. -S.; Celotti, A.

    2001-01-01

    We report the detection of 1WGAJ1226.9+3332 as an arcminute scale extended X-ray source with the Chandra X-ray Observatory. The Chandra observation and R and K band imaging strongly support the identification of 1WGAJ1226.9+3332 as a high redshift cluster of galaxies, most probably at z=0.85 +- 0.15, with an inferred temperature kT =10 (+4;-3) keV and an unabsorbed luminosity (in a r=120" aperture) of 1.3 (+0.16;-0.14) x 1e45 erg/s (0.5-10 keV). This indication of redshift is also supported b...

  14. Spatially Resolved Chandra HETG Spectroscopy of the NLR Ionization Cone in NGC 1068

    CERN Document Server

    Evans, Daniel A; Marshall, Herman L; Nowak, Mike A; Bianchi, Stefano; Guainazzi, Matteo; Longinotti, Anna Lia; Dewey, Dan; Schulz, Norbert S; Noble, Mike S; Houck, John; Canizares, Claude R

    2009-01-01

    We present initial results from a new 440-ks Chandra HETG GTO observation of the canonical Seyfert 2 galaxy NGC 1068. The proximity of NGC 1068, together with Chandra's superb spatial and spectral resolution, allow an unprecedented view of its nucleus and circumnuclear NLR. We perform the first spatially resolved high-resolution X-ray spectroscopy of the `ionization cone' in any AGN, and use the sensitive line diagnostics offered by the HETG to measure the ionization state, density, and temperature at discrete points along the ionized NLR. We argue that the NLR takes the form of outflowing photoionized gas, rather than gas that has been collisionally ionized by the small-scale radio jet in NGC 1068. We investigate evidence for any velocity gradients in the outflow, and describe our next steps in modeling the spatially resolved spectra as a function of distance from the nucleus.

  15. Jet Power and Black Hole Assortment Revealed in New Chandra Image

    Science.gov (United States)

    2008-01-01

    A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle

  16. The BMW Detection Algorithm applied to the Chandra Deep Field south deeper and deeper

    CERN Document Server

    Moretti, A; Campana, S; Tagliaferri, G

    2002-01-01

    Chandra deep fields represent the deepest look at the X-ray sky. We analyzed the Chandra Deep Field South (CDFS) with the aid of a dedicated wavelet-based algorithm. Here we present a detailed description of the procedures used to analyze this field, tested and verified by means of extensive simulations. We show that we can safely reconstruct the LogN-Log S source distribution of the CDFS down to limiting fluxes of 2.4x10^-17 and 2.1x10^-16 erg s^-1 cm^-2 in the soft (0.5-2 keV) and hard (2-10 keV) bands, respectively, fainter by a factor ~ 2 than current estimates. At these levels we can account for ~ 90% of the 1-2 keV and 2-10 keV X-ray background.

  17. Chandra observations of the H2O megamaser galaxy Mrk1210

    Institute of Scientific and Technical Information of China (English)

    ZHANG JiangShui; FAN JunHui

    2009-01-01

    We present the first Chandra X-ray observations of the H2O megamaser galaxy Mrk1210 (UGC4203), a Seyfert 2 galaxy at an approximate distance of D~57.6 Mpc. The Chandra X-ray image, with by far the highest angular resolution (~1"), displays an unresolved compact core toward the nuclear region of Mrk1210. Comparisons with the previous X-ray observations in the nuclear emission and the spectral shape indicate a fairly stable phase between 2001 (BeppoSAX and XMM-Newton) and 2004 (Chandra) after a dramatic variation since 1995 (ASCA). The best-fit model of Chandra X-ray spectrum consists of two components. The soft scattered component can be best fitted by a moderately absorbed power-law model adding a spectral line at ~0.9 keV (possibly a Ne-Kα fluorescent line), while the hard nuclear component can be well reproduced by a heavily absorbed power-law model (NH~2×1023cm-2) with an additional line at~6.19 keV (close to the Fe-Kα fluorescent line). The derived absorption-corrected X-ray luminosity implies that the dramatic variation of spectral properties is caused by significant changes of the absorbing column density along the line-of-sight, while the intrinsic nuclear X-ray luminosity remains stable. In this case, the absorbers should be anisotropic and its size can be constrained to be less than 0.0013 pc. In addition, we also estimate the mass of central engine, the disk radius and the accretion rate of the accretion disk to be 107.12±0.31M⊙, ~1 pc and 0.006, respectively.

  18. Chandra X-ray Observatory Study of the Orion Nebula Cluster and BN/KL Region

    OpenAIRE

    Garmire, Gordon,; Feigelson, Eric D.; Broos, Patrick; Hillenbrand, Lynne A.; Pravdo, Steven H.; Townsley, Leisa; Tsuboi, Yohko

    2000-01-01

    About 1000 X-ray emitting young pre-main sequence (PMS) stars distributed in mass from 0.05 to 50 solar masses are detected in an image of the Orion Nebula obtained with the Advanced CCD Imaging Spectrometer on board the Chandra X-ray Observatory. This is the richest field of sources ever obtained in X-ray astronomy. ACIS sources include 85-90% of V

  19. Finding Supernova Ia Progenitors with the Chandra X-ray Observatory

    OpenAIRE

    Nielsen, M. T. B.; Nelemans, G.A.; Voss, R.

    2010-01-01

    We examine pre-supernova Chandra images to find X-ray luminosities of type Ia supernova progenitors. At present, we have one possible direct detection and upper limits for the X-ray luminosities of a number of other supernova progenitors. The method has also yielded a possible detection of a X-ray binary Wolf-Rayet system as the progenitor of a type Ib supernova.

  20. Chandra and NuSTAR studies of the ultraluminous X-ray sources in M82

    Science.gov (United States)

    Brightman, Murray; Harrison, Fiona; Walton, Dom; Fuerst, Felix; Bachetti, Matteo; Zezas, Andreas; Ptak, Andrew; Hornschemeier, Ann E.; Yukita, Mihoko; Tendulkar, Shriharsh P.; Grefenstette, Brian

    2016-04-01

    With the discovery of the ultraluminous X-ray pulsar in M82 by Bachetti et al (2014), there has been renewed interest in the galaxy, which also hosts one of the best candidates for an intermediate-mass black hole. We present results on the spectral and temporal properties of the pulsar from 15 years of Chandra observations with implications for theoretical modeling of the source, as well as the high-energy constraints on both sources from NuSTAR.

  1. Chandra observations of the H2O megamaser galaxy Mrk1210

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We present the first Chandra X-ray observations of the H2O megamaser galaxy Mrk1210 (UGC4203), a Seyfert 2 galaxy at an approximate distance of D~57.6 Mpc. The Chandra X-ray image, with by far the highest angular resolution (~1"), displays an unresolved compact core toward the nuclear region of Mrk1210. Comparisons with the previous X-ray observations in the nuclear emission and the spectral shape indicate a fairly stable phase between 2001 (BeppoSAX and XMM-Newton) and 2004 (Chandra) after a dramatic variation since 1995 (ASCA). The best-fit model of Chandra X-ray spectrum consists of two components. The soft scattered component can be best fitted by a moderately absorbed power-law model adding a spectral line at ~0.9 keV (possibly a Ne-Kα fluorescent line), while the hard nuclear component can be well reproduced by a heavily absorbed power-law model (NH~2×1023 cm-2) with an additional line at ~6.19 keV (close to the Fe-Kα fluorescent line). The derived absorption-corrected X-ray luminosity implies that the dramatic variation of spectral properties is caused by significant changes of the absorbing column density along the line-of-sight, while the intrinsic nuclear X-ray lu-minosity remains stable. In this case, the absorbers should be anisotropic and its size can be constrained to be less than 0.0013 pc. In addition, we also estimate the mass of central engine, the disk radius and the accretion rate of the accretion disk to be 107.12±0.31M⊙, ~1 pc and 0.006, respectively.

  2. The origin of emission and absorption features in Ton S180 Chandra observations

    OpenAIRE

    Różańska, A.; Czerny, B.; Siemiginowska, A.; Dumont, A. -M.; Kawaguchi, T.

    2003-01-01

    We present new interpretation of Ton S180 spectrum obtained by {\\it Chandra} Spectrometer (Low Energy Transmission Grating). Several narrow absorption lines and a few emission disk lines have been successfully fitted to the data. We have not found any significant edges accompanying line emission. We propose the interpretation of narrow lines consistent with the paper recently written by Krolik (2002), where warm absorber is strongly inhomogeneous. Such situation is possible in so called multi...

  3. Effective nonlinearities and multi-wavelength second-harmonic generation in modulated quasi-phase-matching gratings

    OpenAIRE

    Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev

    2000-01-01

    Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation.

  4. Generation of tunable multi-wavelength EDFL by using graphene thin film as nonlinear medium and stabilizer

    Science.gov (United States)

    Ahmad, Harith; Hassan, Nor Ahya; Aidit, Siti Nabila; Tiu, Zian Cheak

    2016-07-01

    The applications of graphene thin film as a nonlinear medium and stabilizer to generate a stable multi-wavelength is proposed and demonstrated. A 50 m long highly nonlinear photonic crystal fiber (PCF) is incorporated into the cavity to achieve unstable multi-wavelength based on nonlinear polarization rotation (NPR) effect. By introducing the graphene thin film into the cavity, a stable multi-wavelength oscillation is obtained. The laser generates more than 7 lasings with constant spacing of 0.47 nm. The output is highly stable with power fluctuation of less than 3 dB within a period of 30 min. The multi-wavelength EDFL exhibits a tunability from the center wavelength of 1550 nm to 1560 nm.

  5. Chandra X-ray spectroscopy of a clear dip in GX 13+1

    CERN Document Server

    D'Aì, A; Di Salvo, T; Riggio, A; Burderi, L; Robba, N R

    2014-01-01

    The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an accreting neutron star. It shows highly ionized absorption features, with a blueshift of $\\sim$ 400 km s$^{-1}$ and an outflow-mass rate similar to the accretion rate. Many other X-ray sources exhibit warm absorption features, and they all show periodic dipping behavior at the same time. Recently, a dipping periodicity has also been determined for GX 13+1 using long-term X-ray folded light-curves, leading to a clear identification of one of such periodic dips in an archival Chandra observation. We give the first spectral characterization of the periodic dip of GX 13+1 found in this archival Chandra observation performed in 2010. We used Chandra/HETGS data (1.0--10 keV band) and contemporaneous RXTE/PCA data (3.5--25 keV) to analyze the broadband X-ray spectrum. We adopted different spectral models to describe the continuum emission and used the XSTAR-derived warm absorber component to constrain the highly ionized absorption features. ...

  6. Managing Radiation Degradation of CCDs on the Chandra X-Ray Observatory--III

    Science.gov (United States)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Blackwell, William C.; Bucher, Sabina L.; Chappell, Jon H.; DePasquale, Joseph M.; Grant, Catherine E.; Juda, Michael; Martin, Eric R.; Minow, Joseph I.; Murray, Stephen S.; Plucinsky, Paul P.; Shropshire, Daniel P.; Spitzbart, Bradley J.; Viens, Paul R.; Wolk, Scott J.; Schwartz, Daniel A.

    2007-01-01

    The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra team developed, implemented, and maintains a radiation-protection program. This program--involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing--has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 3.2x 10(exp -6) (2.3 percent) for the front-illuminated CCDs and 1.0x10(exp -6) (6.7 percent) for the back-illuminated CCDs. This paper describes the current status of the Chandra radiation-management program, emphasizing enhancements implemented since the previous papers.

  7. X-ray luminous galaxies I. Chandra observations of IRAS00317-2142

    CERN Document Server

    Georgantopoulos, I; Ward, M J

    2003-01-01

    We present Chandra observations of the enigmatic galaxy IRAS00317-2142, which is classified as a star-forming galaxy on the basis of the ionization level of its emission lines. However, a weak broad H\\alpha wing and a high X-ray luminosity give away the presence of an active nucleus. The Chandra image reveals a nuclear point source (L_(2-10 keV) 6x10^{41} erg s-1), contributing over 80% of the galaxy X-ray counts in the 0.3-8 keV band. This is surrounded by some fainter nebulosity extending up to 6 kpc. The nucleus does not show evidence for short-term variability. However, we detect long term variations between the ROSAT, ASCA and Chandra epoch. Indeed,the source has decreased its flux by over a factor of 25 in a period of about 10 years. The nuclear X-ray spectrum is well represented by a power-law with a photon index of 1.91^{+0.17}_{-0.15} while the extended emission by a Raymond-Smith component with a temperature of 0.6 keV. We find no evidence for the presence of an Fe line. The nucleus is absorbed by a...

  8. Chandra observations of NGC4698: a Seyfert-2 with no absorption

    CERN Document Server

    Georgantopoulos, I

    2003-01-01

    We present Chandra ACIS-S observations of the enigmatic Seyfert-2 galaxy NGC4698. This object together with several other bona-fide Seyfert-2 galaxies show no absorption in the low spatial resolution ASCA data, in contrast to the standard unification models. Our Chandra observations of NGC4698 probe directly the nucleus allowing us to check whether nearby sources contaminate the ASCA spectrum. Indeed, the Chandra observations show that the ASCA spectrum is dominated by two nearby AGN. The X-ray flux of NGC4698 is dominated by a nuclear source with luminosity L(0.3-8 keV) ~ 10^39, erg s-1 coincident with the radio nucleus. Its spectrum is well represented by a power-law, ~ 2.2, obscured by a small column density of 5x10^20 cm-2 suggesting that NGC4698 is an atypical Seyfert galaxy. On the basis of its low luminosity we then interpret NGC4698 as a Seyfert galaxy which lacks a broad-line region.

  9. A Chandra Search for Coronal X Rays from the Cool White Dwarf GD 356

    CERN Document Server

    Weisskopf, M C; Trimble, V; O'Dell, S L; Elsner, R F; Zavlin, V E; Kouveliotou, C; Weisskopf, Martin C.; Wu, Kinwah; Trimble, Virginia; Dell, Stephen L. O'; Elsner, Ronald F.; Zavlin, Vyacheslav E.; Kouveliotou, Chryssa

    2006-01-01

    We report observations with the Chandra X-ray Observatory of the single, cool, magnetic white dwarf GD 356. For consistent comparison with other X-ray observations of single white dwarfs, we also re-analyzed archival ROSAT data for GD 356 (GJ 1205), G 99-47 (GR 290 = V1201 Ori), GD 90, G 195-19 (EG250 = GJ 339.1), and WD 2316+123 and archival Chandra data for LHS 1038 (GJ 1004) and GD 358 (V777 Her). Our Chandra observation detected no X rays from GD 356, setting the most restrictive upper limit to the X-ray luminosity from any cool white dwarf -- L_{X} < 6.0 x 10^{25} ergs/s, at 99.7% confidence, for a 1-keV thermal-bremsstrahlung spectrum. The corresponding limit to the electron density is n_{0} < 4.4 x 10^{11} cm^{-3}. Our re-analysis of the archival data confirmed the non-detections reported by the original investigators. We discuss the implications of our and prior observations on models for coronal emission from white dwarfs. For magnetic white dwarfs, we emphasize the more stringent constraints i...

  10. Faint Source Counts from the Off-source fluctuation Analysis on the Deepest Chandra Fields

    CERN Document Server

    Miyaji, T; Miyaji, Takamitsu; Griffiths, Richard E.

    2002-01-01

    We show the results of the fluctuation analysis applied to the off-source areas from the two 1 Million second Chandra Deep Fields, including our new results on the Chandra Deep Field-South (CDF-S) in the 0.5-2 keV band in addition to those on the Chandra Deep Field-North (CDF-N), which have already been reported. The distribution of the X-ray counts in cells has been compared with the expectation from the Log N - Log S model to constrain the behavior of the source number density down to a factor of several lower than the source-detection limit. We show that our results are insensitive to the non-uniformity of the non X-ray background (NXB). Our results show that the number counts in the soft band (0.5-2 [keV]) continue to grow down to Sx =7e-18 erg/s/cm2, possibly suggesting the emergence of a new population and they agree well with a prediction of star forming galaxies.

  11. A possible Chandra and Hubble Space Telescope detection of extragalactic WHIM towards PG 1116+215

    CERN Document Server

    Bonamente, M; Tilton, E; Liivamagi, J; Tempel, E; Heinamaki, P; Fang, T

    2016-01-01

    (Abridged) We have analyzed Chandra LETG and XMM-Newton RGS spectra towards the z=0.177 quasar PG 1116+215, a sightline that is rendered particularly interesting by the HST detection of several OVI and HI broad Lyman-alpha absorption lines that may be associated with the warm-hot intergalactic medium. We performed a search for resonance K-alpha absorption lines from OVII and OVIII at the redshifts of the detected far-ultraviolet lines. We detected an absorption line in the Chandra spectra at 5.2 sigma confidence level at wavelengths corresponding to OVIII K-alpha at z=0.0911+-0.0004+-0.0005 (statistical followed by systematic error). This redshift is within 3 sigma of that of a HI broad Lyman-alpha of b=130 km/s at z=0.09279+-0.00005. We have also analyzed the available XMM-Newton RGS data towards PG 1116+215. Unfortunately, the XMM-Newton data are not suitable to investigate this line because of instrumental features at the wavelengths of interest. At the same redshift, the Chandra and XMM-Newton spectra hav...

  12. Chandra and XMM Observations of the Composite Supernova Remnant G327.1-1.1

    CERN Document Server

    Temim, Tea; Gaensler, B M; Hughes, John P; van der Swaluw, Eric

    2008-01-01

    We present new X-ray imaging and spectroscopy of a composite supernova remnant G327.1-1.1 using the Chandra and XMM-Newton X-ray observatories. G327.1-1.1 has an unusual morphology consisting of a symmetric radio shell and an off center nonthermal component that indicates the presence of a pulsar wind nebula (PWN). Radio observations show a narrow finger of emission extending from the PWN structure towards the northwest. X-ray studies with ASCA, ROSAT, and BeppoSAX revealed elongated extended emission and a compact source at the tip of the finger that may be coincident with the actual pulsar. The high resolution Chandra observations provide new insight into the structure of the inner region of the remnant. The images show a compact source embedded in a cometary structure, from which a trail of X-ray emission extends in the southeast direction. The Chandra images also reveal two prong-like structures that appear to originate from the vicinity of the compact source and extend into a large bubble that is oriente...

  13. A Chandra Study of the Interstellar Metallicity in the Large Magellanic Cloud Using Supernova Remnants

    CERN Document Server

    Schenck, Andrew; Post, Seth

    2016-01-01

    We report on the results from our measurements of the interstellar medium (ISM) abundances for the elements O, Ne, Mg, Si, and Fe in the Large Magellanic Cloud (LMC). We used the archival Chandra data for sixteen supernova remnants (SNRs) in the LMC (0453--68.5, DEM L71, N23, 0519--69.0, N49B, N132D, N49, N206, 0534--69.9, DEM L238, N63A, Honeycomb, N157B, 0540--69.3, DEM L316B, and 0548--70.4). Our results represent LMC abundance measurements based on the modern Chandra data. We place tight constraints on our measured elemental abundances and find lower abundances than previous measurements by Hughes et al. (1998) (by a factor of ~2 on average except for Si) who utilized similar methods based on a smaller sample of ASCA data of SNRs in the LMC. We discuss origins of the discrepancy between our Chandra and the previous ASCA measurements. We also discuss our results in comparisons with the LMC abundance measurements in literatures.

  14. X-Rays Beware: The Deepest Chandra Catalogue of Point Sources in M31

    CERN Document Server

    Vulic, N; Barmby, P

    2016-01-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ~1 Ms, we detected 795 X-ray sources in the bulge, northeast, and southwest fields of M31, covering an area of approximately 0.6 deg$^{2}$, to a limiting unabsorbed 0.5-8.0 keV luminosity of $10^{34}$ erg/s. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's $D_{25}$ isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49%) of our Chandra sources (352 or 44% unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to ...

  15. A Chandra Study of the Interstellar Metallicity in the Large Magellanic Cloud Using Supernova Remnants

    Science.gov (United States)

    Schenck, Andrew; Park, Sangwook; Post, Seth

    2016-06-01

    We report on the results from our measurements of the interstellar medium (ISM) abundances for the elements O, Ne, Mg, Si, and Fe in the Large Magellanic Cloud (LMC). We used the archival Chandra data for sixteen supernova remnants (SNRs) in the LMC (0453-68.5, DEM L71, N23, 0519-69.0, N49B, N132D, N49, N206, 0534-69.9, DEM L238, N63A, Honeycomb, N157B, 0540-69.3, DEM L316B, and 0548-70.4). Our results represent LMC abundance measurements based on the modern Chandra data. We place tight constraints on our measured elemental abundances and find lower abundances than previous measurements by Hughes et al. (by a factor of approximately two on average except for Si) who utilized similar methods based on a smaller sample of ASCA data of SNRs in the LMC. We discuss the origins of the discrepancy between our Chandra and the previous ASCA measurements. We also discuss our results in comparison with the LMC abundance measurements in the literature.

  16. Towards combined analysis of the most distant massive galaxy clusters with XMM and Chandra

    Science.gov (United States)

    Bartalucci, I.

    2016-06-01

    We present a detailed study of the gas and dark matter properties of the 5 most massive and distant, z ˜ 1, clusters detected via the Sunyaev-Zel'Dovich effect. These massive objects represent an ideal laboratory to test our models of structure evolution in a mass regime driven mainly by gravity. This work presents a new method to study these objects, where informations coming from XMM-Newton and Chandra instruments are efficiently combined. The combination of Chandra fine spatial resolution and XMM-Newton effective area allows us to efficiently investigate the properties of the Intra Cluster medium in the core and probe cluster outskirts. The resulting combined density profiles are used to fully characterize the thermodynamic and physical properties of the gas. Evolution properties are investigated from comparison with the REXCESS local galaxy cluster sample. In the context of the joint analysis of future Chandra and XMM large programs, we discuss the current limitations of this method and future prospects.

  17. Reconciling Planck cluster counts and cosmology: Chandra/XMM instrumental calibration and hydrostatic mass bias

    CERN Document Server

    Israel, Holger; Nevalainen, Jukka; Massey, Richard; Reiprich, Thomas

    2014-01-01

    The temperature of X-ray emitting gas $T_X$ is often used to infer the total mass of galaxy clusters (under the assumption of hydrostatic equilibrium). Unfortunately, XMM-Newton and Chandra observatories measure inconsistent temperatures for the same gas, due to uncertain instrumental calibration. We translate the relative bias in $T_X$ measurements of Schellenberger et al. (2014) into a bias on inferred mass for a sample of clusters with homogeneous weak lensing (WL) masses, to simultaneously examine the hydrostatic bias and instrument calibration. Israel et al. (2014) found consistent WL and Chandra hydrostatic X-ray masses for a sample of clusters at $z$~0.5 and masses of a few $10^{14}$ $M_{\\odot}$. We find their XMM-Newton masses to be lower by $b^{xcal}=15$-$20$ % than their Chandra masses. At the massive end ($>5\\cdot 10^{14}$ $M_{\\odot}$), the XMM-Newton masses are ~35% lower than the WL masses. Assuming that the true hydrostatic bias is 20 %, as indicated by simulations, our results for the massive e...

  18. The Brera Multi-scale Wavelet Chandra Survey. I. Serendipitous source catalogue

    CERN Document Server

    Romano, P; Mignani, R P; Moretti, A; Mottini, M; Panzera, M R; Tagliaferri, G

    2008-01-01

    We present the BMW-Chandra source catalogue drawn from essentially all Chandra ACIS-I pointed observations with an exposure time in excess of 10ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterise both point-like and extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings, and do not require a non-automated analysis. This makes our catalogue the largest compilation of Chandra sources to date. The 0.5--10 keV absorption corrected fluxes of these sources range from ~3E-16 to 9E-12 erg cm^-2 s^-1 with a median of 7E-15 erg cm^-2 s^-1. The catalogue consists of count rates and relative errors in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate of the exten...

  19. Dynamics of the Shocked Gas in the Eta Carinae System as Seen by Chandra

    Science.gov (United States)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D. B.; Ishibashi, K.; Gull, T.; Nielsen, K.; Pittard, J. M.

    2006-01-01

    We report on a series of X-ray spectra of the supermassive star Eta Carinae obtained by the High Energy Transmission Grating Spectrometer on the CHANDRA X-ray observatory before, during and after the star's X-ray minimum in the summer of 2003. The X-ray spectra show significant variations in emission measure and absorption, in the strength of the iron K edge and fluorescent iron emission, but show little change in the distribution of emission measure with temperature. The CHANDRA spectra also resolve emission from Si, S, Fe and other elements in H-like and He-like configurations. The HETGS spectra show that these lines change in centroid energy along with evidence of changes in the forbidden-to-intercombination ratios of the He-like triplets. These spectra offer strong support that the X-ray emission originates within a shock cone around an unseen, massive companion. The variations of the X-ray line spectrum provide a direct measure of the dynamics of the shocked gas in this cone and also evidence that the hottest region of the shock is not always in collisional ionization equilibrium. We discuss these results in light of the recent discovery of He II 4686 emission and the reported discovery of FUV emission from the companion star. This work was supported by SAO/Chandra grant GO3-4008A.

  20. Stable multi-wavelength erbium-doped fiber laser based on dispersion-shifted fiber and Sagnac loop filter

    Institute of Scientific and Technical Information of China (English)

    Ying Gao; Daru Chen; Shiming Gao

    2007-01-01

    @@ A multi-wavelength erbium-doped fiber laser (MEDFL) with simple line structure is experimentally demonstrated by using a Sagnac interferometer as a comb filter. It is shown that the multi-wavelength lasing is quite stable at room temperature due to the four-wave mixing (FWM) effect among different laser channels in the dispersion-shifted fiber cooperated in the laser cavity.

  1. Effective nonlinearities and multi-wavelength second-harmonic generation in modulated quasi-phase-matching gratings

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev

    2000-01-01

    Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation.......Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation....

  2. T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry

    Science.gov (United States)

    Merlin, E.; Fontana, A.; Ferguson, H. C.; Dunlop, J. S.; Elbaz, D.; Bourne, N.; Bruce, V. A.; Buitrago, F.; Castellano, M.; Schreiber, C.; Grazian, A.; McLure, R. J.; Okumura, K.; Shu, X.; Wang, T.; Amorín, R.; Boutsia, K.; Cappelluti, N.; Comastri, A.; Derriere, S.; Faber, S. M.; Santini, P.

    2015-10-01

    Context. The advent of deep multiwavelength extragalactic surveys has led to the necessity for advanced and fast methods for photometric analysis. In fact, codes which allow analyses of the same regions of the sky observed at different wavelengths and resolutions are becoming essential to thoroughly exploit current and future data. In this context, a key issue is the confusion (i.e. blending) of sources in low-resolution images. Aims: We present t-phot, a publicly available software package developed within the astrodeep project. t-phot is aimed at extracting accurate photometry from low-resolution images, where the blending of sources can be a serious problem for the accurate and unbiased measurement of fluxes and colours. Methods: t-phot can be considered as the next generation to tfit, providing significant improvements over and above it and other similar codes (e.g. convphot). t-phot gathers data from a high-resolution image of a region of the sky, and uses this information (source positions and morphologies) to obtain priors for the photometric analysis of the lower resolution image of the same field. t-phot can handle different types of datasets as input priors, namely i) a list of objects that will be used to obtain cutouts from the real high-resolution image; ii) a set of analytical models (as .fits stamps); iii) a list of unresolved, point-like sources, useful for example for far-infrared (FIR) wavelength domains. Results: By means of simulations and analysis of real datasets, we show that t-phot yields accurate estimations of fluxes within the intrinsic uncertainties of the method, when systematic errors are taken into account (which can be done thanks to a flagging code given in the output). t-phot is many times faster than similar codes like tfit and convphot (up to hundreds, depending on the problem and the method adopted), whilst at the same time being more robust and more versatile. This makes it an excellent choice for the analysis of large datasets

  3. COLOR-MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS

    International Nuclear Information System (INIS)

    We extend color-magnitude relations for moderate-luminosity X-ray active galactic nucleus (AGN) hosts and non-AGN galaxies through the galaxy formation epoch (z ∼ 1-4) in the Chandra Deep Field-North and Chandra Deep Field-South (CDF-N and CDF-S, respectively; jointly CDFs) surveys. This study was enabled by the deepest available X-ray data from the 2 Ms CDF surveys as well as complementary ultradeep multiwavelength data in these regions. We utilized analyses of color-magnitude diagrams (CMDs) to assess the role of moderate-luminosity AGNs in galaxy evolution. First, we confirm some previous results and extend them to higher redshifts, finding, for example, that (1) there is no apparent color bimodality (i.e., the lack of an obvious red sequence and blue cloud) for AGN hosts from z ∼ 0to2, but non-AGN galaxy color bimodality exists up to z ∼ 3 and the relative fraction of red-sequence galaxies generally increases as the redshift decreases (consistent with a blue-to-red migration of galaxies), (2) most AGNs reside in massive hosts and the AGN fraction rises strongly toward higher stellar mass, up to z ∼ 2-3, and (3) the colors of both AGN hosts and non-AGN galaxies become redder as the stellar mass increases, up to z ∼ 2-3. Second, we point out that, in order to obtain a complete and reliable picture, it is critical to use mass-matched samples to examine color-magnitude relations of AGN hosts and non-AGN galaxies. We show that for mass-matched samples up to z ∼ 2-3, AGN hosts lie in the same region of the CMD as non-AGN galaxies; i.e., there is no specific clustering of AGN hosts in the CMD around the red sequence, the top of the blue cloud, or the green valley in between. The AGN fraction (∼ 10%) is mostly independent of host-galaxy color, providing an indication of the duty cycle of supermassive black hole growth in typical massive galaxies. These results are in contrast to those obtained with non-mass-matched samples where there is apparent AGN

  4. The ECLAIRs micro-satellite for multi-wavelength studies of gamma-ray burst prompt emission

    CERN Document Server

    Schanne, S; Barret, D; Basa, S; Boër, M; Cordier, B; Daigne, F; Ealet, A; Goldoni, P; Klotz, A; Limousin, O; Mandrou, P; Mochkovitch, R; Paltani, S; Paul, J; Petitjean, P; Pons, R; Skinner, G K

    2004-01-01

    The cosmological revolution of 1997 has established that (at least long duration) gamma-ray bursts (GRB) are among the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations for astrophysical studies of GRB and for their possible use as cosmological probes. It is expected to be the only space borne GRB trigger available for ground based robotic telescopes operational at that time. This paper presents the ECLAIRs project and its status. An X/gamma-ray camera onboard ECLAIRs with a wide field of view of 2 sr, will detect ~100 GRB/yr in the 4-50 keV energy range, localize the GRB with a precision of ~10 arcmin on the sky, and transmit this information to the ground in near real-time, as a GRB trigger for ground based optical telescopes. Inspired by the INTEGRAL imager IBIS, it is based on a CdTe detection plane covering 1000 cm^2, placed 35 cm below a coded mask. An optical camera, sensitive to mag...

  5. Chandra and XMM-Newton view of the warm absorbing gas in Mrk 290

    Science.gov (United States)

    Zhang, S. N.; Ji, L.; Marshall, H. L.; Longinotti, A. L.; Evans, D.; Gu, Q. S.

    2011-02-01

    We present a detailed analysis of the Chandra High Energy Transmission Grating Spectrometer (HETGS) and XMM-Newton high-resolution spectra of the bright Seyfert 1 galaxy, Mrk 290. The Chandra HETGS spectra reveal complex absorption features that can be best described by a combination of three ionized absorbers. The outflow velocities of these warm absorbers are about 450 km s-1, consistent with the three absorption components found in a previous far-UV study. The ionizing continuum of Mrk 290 fluctuated by a factor of 1.4 during Chandra observations on a time-scale of 17 d. Using the response in opacity of the three absorbers to this fluctuation, we put a lower limit on the distance from the ionizing source of 0.9 pc for the medium ionized absorber and an upper limit on a distance of 2.5 pc for the lowest ionized absorber. The three ionization components lie on the stable branch of the thermal equilibrium curve, indicating roughly the same gas pressure. Therefore, the thermal wind from the torus is most likely the origin of warm absorbing gas in Mrk 290. During the XMM-Newton observation, the ionizing luminosity was 50 per cent lower compared to that in the Chandra observation. The Reflection Grating Spectrometer spectrum is well fitted by a two-phase warm absorber, with several additional absorption lines attributed to a Galactic high-velocity cloud, complex C. Neither the ionization parameter ξ nor the column density NH of the two absorbing components varied significantly, compared to the results from Chandra observations. The outflow velocities of both components were 1260 km s-1. We suggest that an entirely new warm absorber from the torus passed through our line of sight. Assuming the torus wind model, the estimated mass outflow rate is ˜0.1 M⊙ per year while the nuclear accretion rate is ˜0.04 M⊙ per year. The O VII and Ne IX forbidden lines are the most prominent soft X-ray emission lines, with a mean redshift of 700 km s-1 relative to the systematic

  6. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94131 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Babul, Arif; Bildfell, Chris [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Jeltema, Tesla [Santa Cruz Institute for Particle Physics, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Henry, J. Patrick [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-04-20

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  7. Flickering Quasar Helps Chandra Measure the Expansion Rate of the universe

    Science.gov (United States)

    2000-11-01

    Astronomers using the Chandra X-ray Observatory have identified a flickering, four-way mirage image of a distant quasar. A carefully planned observation of this mirage may be used to determine the expansion rate of the universe as well as to measure the distances to extragalactic objects, arguably two of the most important pursuits in modern astronomy. quasar RX J0911.4+0551 This figure is a composite of the X-ray image of the gravitational lens RX J0911.4+551 (top panel) and the light curves of the lensed images A2 (left panel) and A1 (right panel). Credit: NASA George Chartas, senior research associate at The Pennsylvania State University (Penn State) and Marshall W. Bautz, principal research scientist at the Massachusetts Institute of Technology (MIT) Center for Space Research, present their findings today at the meeting of the High Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. "With a carefully planned follow-up, the Chandra observation of quasar RX J0911.4+0551 may lead to a measurement of the Hubble constant, the expansion rate of the universe, in less than a day," said Chartas. The observation would be done not with mirrors but with mirages--four images of a single quasar that capture the quasar's light at different moments of time due to the speed of light and the location of the mirages. Quasars are extremely distant galaxies with cores that glow with the intensity of 10 trillion Suns, a phenomenon likely powered by a supermassive black hole in the heart of the galaxy. This single "point source" image of a quasar may appear as four or five sources when the quasar--from our vantage point on Earth--is behind a massive intervening deflector, such as a dim galaxy. A mirage of images form when the gravity of the intervening deflector forces light rays to bend and take different paths to reach us. The time it takes for light to reach us from the distant object will depend on which path a ray decides to take. "An

  8. Stable and tunable self-seeded multiwavelength Brillouin-erbium fiber laser with higher OSNR

    Science.gov (United States)

    Zou, Hui; Yang, Ruilan; Shen, Xiao; Wei, Wei

    2016-07-01

    A stable and tunable self-seeded multiwavelength Brillouin-erbium fiber laser (BEFL) is designed and demonstrated based on a Single-Mode-Multimode-Single-Mode (SMS) fiber filter. The SMS filter is fabricated by splicing a 15 cm long multimode fiber between two single mode fibers. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber. By applying axial strain (from 0 to 466.7 μɛ) to the SMS filter with the same step of 66.7 μɛ , the multiwavelength of the output laser is tuned from 1553.58 to 1559.79 nm correspondingly, and the tunable range is 6.21 nm. The generation of up to 16 Brillouin Stokes wavelengths with 30 dB optical signal to noise ratio (OSNR) are obtained.

  9. Using a multiwavelength LiDAR for improved remote sensing of natural waters.

    Science.gov (United States)

    Gray, Deric J; Anderson, John; Nelson, Jean; Edwards, Jarrod

    2015-11-01

    This paper describes research to characterize the benefits of a multiwavelength oceanographic LiDAR for various water types. Field measurements were conducted to establish endmembers representative of both typical and extremely challenging natural conditions. Laboratory tests were performed using a prototype multiwavelength LiDAR in water tanks with optical conditions simulating both sediment-laden and biologically rich water types. LiDAR models were used to simulate the LiDAR signal from both field and laboratory experiments. Our measurements and models show that using a laser wavelength of 470-490 nm in the open ocean leads to an improvement factor of 1.50-1.75 compared to a 532 nm system. In more turbid areas using a laser wavelength of 560-580 nm leads to an improvement factor of 1.25. We conclude by demonstrating how using multiple LiDAR wavelengths can help detect and characterize constituents in the water column. PMID:26560612

  10. Wavelength Spacing Tunable, Multiwavelength Q-switched Fiber Laser Mode-locked by Graphene Oxide

    CERN Document Server

    Gao, Lei

    2014-01-01

    We demonstrate a wavelength spacing tunable, multiwavelength Q-switched mode-locked fiber laser (QML) based on a fiber taper deposited with graphene oxide. The operation of the laser can be understood in terms of the formation of bunches of QMLs which possess small temporal intervals, and multiwavelength spectra are generated due to the Fourier transformation. We find that the temporal spacing of the QMLs is highly sensitive to the pump power, and as a result, the wavelength spacing can be easily tuned by varying the pump power. Our experimental laser provides a wavelength spacing tuning range from ~0.001 nm to 0.145 nm with a pump power variation less than 10 mW. The laser could be developed into a low lost wavelength spacing tunable optical source for a wide range of applications, such as spectroscopy, microwave/terahertz signal generation, optical metrology, optical communications and sensing.

  11. Strong Gravitational Lenses and Multi-Wavelength Galaxy Surveys with AKARI, Herschel, SPICA and Euclid

    CERN Document Server

    Serjeant, Stephen

    2016-01-01

    Submillimetre and millimetre-wave surveys with Herschel and the South Pole Telescope have revolutionised the discovery of strong gravitational lenses. Their follow-ups have been greatly facilitated by the multi-wavelength supplementary data in the survey fields. The forthcoming Euclid optical/near-infrared space telescope will also detect strong gravitational lenses in large numbers, and orbital constraints are likely to require placing its deep survey at the North Ecliptic Pole (the natural deep field for a wide class of ground-based and space-based observatories including AKARI, JWST and SPICA). In this paper I review the current status of the multi-wavelength survey coverage in the NEP, and discuss the prospects for the detection of strong gravitational lenses in forthcoming or proposed facilities such as Euclid, FIRSPEX and SPICA.

  12. Messier 35 (NGC2168) DANCe I. Membership, proper motions and multi-wavelength photometry

    CERN Document Server

    Bouy, H; Barrado, D; Sarro, L M; Olivares, J; Moraux, E; Bouvier, J; Cuillandre, J -C; Ribas, A; Beletsky, Y

    2015-01-01

    We aim at identifying the cluster's members by deriving membership probabilities for the sources within 1 degree of the cluster's center, going further away than equivalent previous studies. We measure accurate proper motions and multi-wavelength (optical and near-infrared) photometry using ground based archival images of the cluster. We use these measurements to compute membership probabilities. The list of candidate members from Barrado+2001 is used as training set to identify the cluster's locus in a multi-dimensional space made of proper motions, luminosities and colors. The final catalog includes 338892 sources with multi-wavelength photometry. Approximately half (194452) were detected at more than two epochs and we measured their proper motion and used it to derive membership probability. A total of 4349 candidate members with membership probabilities greater than 50% are found in this sample in the luminosity range between 10 and 22mag. The slow proper motion of the cluster and the overlap of its seque...

  13. Compact, Wavelength Stabilized Seed Source for Multi-Wavelength Lidar Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort proposes to establish the feasibility of developing a compact, high performance laser source for integration into the next generation seed...

  14. Multi-zone temperature sensor using a multi-wavelength Brillouin fiber ring laser

    OpenAIRE

    Galíndez Jamioy, Carlos Augusto; Madruga Saavedra, Francisco Javier; Ullán Nieto, Ángel; López Amo, Manuel; López Higuera, José Miguel

    2009-01-01

    A simple system for sensing temperature in multiple zones based on a multi-wavelength Brillouin fiber laser ring is presented. Optical fiber reels are serially concatenated and divided in zones (one per sensing area). Setting the Brillouin lasing in each spool of fiber generates a characteristic wavelength that depends on the fiber properties and the temperature in the zone. Thus, it is possible to measure temperature independently and accurately through heterodyne detection between two narro...

  15. Reliability of temperature determination from curve-fitting in multi-wavelength pyrometery

    OpenAIRE

    Ni, P. A.

    2014-01-01

    Abstract This paper examines the reliability of a widely used method for temperature determination by multi-wavelength pyrometry. In recent WDM experiments with ion-beam heated metal foils, we found that the statistical quality of the fit to the measured data is not necessarily a measure of the accuracy of the inferred temperature. We found a specific example where a second-best fit leads to a more realistic temperature value. The physics issue is the wavelength-dependent emissivity of ...

  16. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    OpenAIRE

    Minho Song; Hyoung-Jun Park

    2008-01-01

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of th...

  17. Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs

    Directory of Open Access Journals (Sweden)

    Martin J. Süess

    2016-05-01

    Full Text Available In this article we present our latest work on the optimization of mid-infrared quantum cascade laser fabrication techniques. Our efforts are focused on low dissipation devices, broad-area high-power photonic crystal lasers, as well as multi-wavelength devices realized either as arrays or multi-section distributed feedback (DFB devices. We summarize our latest achievements and update them with our most recent results.

  18. High-brightness switchable multi-wavelength remote laser in air

    OpenAIRE

    Yao, Jinping; Zeng, Bin; Xu, Huailiang; Li, Guihua; Chu, Wei; Ni, Jielei; Zhang, Haisu; Chin, See Leang; Cheng, Ya; Xu, Zhizhan

    2011-01-01

    Remote laser in air based on amplified spontaneous emission (ASE) has produced rather well-collimated coherent beams in both backward and forward propagation directions, opening up possibilities for new remote sensing approaches. The remote ASE-based lasers were shown to enable operation either at ~391 and 337 nm using molecular nitrogen or at ~845 nm using molecular oxygen as gain medium, depending on the employed pump lasers. To date, a multi-wavelength laser in air that allows for dynamica...

  19. Statistics and multiwavelength synthesis models: towards a new generation of synthesis models

    OpenAIRE

    Cerviño, M.

    2002-01-01

    In this contribution I present my current work in a new generation of evolutionary synthesis models that compute the multiwavelength energy distribution (from gamma-rays to radio) as well as the associated dispersion for young stellar systems. I will also show some statistical effects that may appear in the analysis of surveys, like bimodal or multi-modal distributions and bias when color indices computed by the codes are compared with observations. Such new generation of synthesis models may...

  20. Virtual 3D interactive system with embedded multiwavelength optical sensor array and sequential devices

    Science.gov (United States)

    Wang, Guo-Zhen; Huang, Yi-Pai; Hu, Kuo-Jui

    2012-06-01

    We proposed a virtual 3D-touch system by bare finger, which can detect the 3-axis (x, y, z) information of finger. This system has multi-wavelength optical sensor array embedded on the backplane of TFT panel and sequentail devices on the border of TFT panel. We had developed reflecting mode which can be worked by bare finger for the 3D interaction. A 4-inch mobile 3D-LCD with this proposed system was successfully been demonstrated already.

  1. A New Multi-wavelength Solar Telescope: Optical and Near-infrared Solar Eruption Tracer (ONSET)

    OpenAIRE

    Fang, C.; Chen, P. F.; Li, Z.; Ding, M. D.; Dai, Y.; X. Y. Zhang; Mao, W. J.; J. P. Zhang; T. Li; Liang, Y J; Lu, H T

    2013-01-01

    A new multi-wavelength solar telescope, Optical and Near-infrared Solar Eruption Tracer (ONSET) of Nanjing University, was constructed, being fabricated by Nanjing Institute of Astronomical Optics & Technology and run in cooperation with Yunnan Astronomical Observatory. ONSET is able to observe the Sun in three wavelength windows: He {\\small I} 10830 \\AA, H$\\alpha$, and white-light at 3600 \\AA and 4250 \\AA, which are selected in order to obtain the dynamics in the corona, chromosphere, and th...

  2. Multi-wavelength Analysis of a Solar Network Region

    Czech Academy of Sciences Publication Activity Database

    Tsiropoula, G.; Tziotziou, K.; Schwartz, Pavol; Heinzel, Petr

    2008-01-01

    Roč. 32, č. 1 (2008), s. 109-116. ISSN 1845-8319 Grant ostatní: EU(XE) ESA-PECS project No. 98030 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun * network * oscillations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. Multi-Wavelength Variability Properties of Fermi Blazar S5 0716+714

    Indian Academy of Sciences (India)

    N. H. Liao; J. M. Bai; H. T. Liu; S. S. Weng; Liang Chen; F. Li

    2014-09-01

    The multi-wavelength variability properties of blazar S5 0716 + 714 are reported. We construct multi-wavelength light curves of radio, optical, X-ray and -ray including our optical observation at Yunnan Observatories. In all the bands, the light curves show intense variabilities. The variability amplitudes in -ray and optical bands are larger than those in the hard X-ray and radio bands. The characteristic variability timescales at 14.5 GHz, optical, X-ray, and -ray bands are comparable. The variations of the hard X-ray and 14.5GHz emissions are correlated with zero lag, and so are the V band and -ray variations. The multi-wavelength variability behaviours can be naturally explained by the classic leptonic model. We model the average SED of S5 0716 + 714 by leptonic model. The SSC+ERC model using the external seed photons from hot dust or Broad Line Region (BLR) emission is probably favourable avoiding the extreme input parameters from the pure SSC model.

  4. The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

    CERN Document Server

    Whittam, I H; Green, D A; Jarvis, M J; Vaccari, M

    2015-01-01

    A complete, flux density limited sample of 96 faint ($> 0.5$ mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including SERVS, SWIRE, UKIDSS and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric reshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and starforming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions o...

  5. Flaring activity of Mrk 421 in 2012 and 2013: orphan flare and multiwavelength analysis

    CERN Document Server

    Fraija, Nissim; Benítez, Erika; Hiriart, David

    2015-01-01

    The first one started in 2012 July 16 (MJD 56124) and the second one in 2013 April 9 (MJD 56391). The multiwavelength data analysis shows that the $\\gamma$-ray flare observed in 2012 was not detected in the hard-X ray bands. This result is usually interpreted as an "orphan" flare. In 2013, the analysis of the multiwavelength light curves shows that there are two very bright states detected in the optical R-band. The first one in 2013 April 9 (R =11.74 $\\pm$ 0.04) and the second one in May 12 (R =11.62 $\\pm$ 0.04). Also, high activity states were detected in the soft and hard X-rays. A discrete correlation function analysis of this last flare shows a strong correlation between the GeV $\\gamma$-rays and the optical/hard-X ray emission. These results are discussed in terms of the more adequate standard scenarios that could explain the multiwavelength variations displayed by this blazar.

  6. Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has revealed an expanding ring-like structure of oxygen and neon that was hurled into space by the explosion of a massive star. The image of E0102-72 provides unprecedented details about the creation and dispersal of heavy elements necessary to form planets like Earth. The results were reported by Professor Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 195th national meeting of the American Astronomical Society in Atlanta, Ga. Drs. Kathryn Flanagan, David Davis, and John Houck of MIT collaborated with Canizares in this investigation. E0102-72 is the remnant of a supernova explosion located in our neighbor galaxy, the Small Magellanic Cloud, nearly 200,000 light years away. It was created by the explosion of a star that was more than ten times as massive as our Sun. We are seeing the aftermath of the explosion a thousand or more years after the outburst. Shock waves are heating gas to temperatures of nearly 10 million degrees, so it glows with X-rays that are detected by Chandra's instruments. By using the High Energy Transmission Grating Spectrometer (HETG), astronomers were able to pinpoint the distribution of each chemical element individually and measure the velocities of different parts of the expanding ring. They also show the shock wave in a kind of "freeze-frame," revealing the progressive heating of the stellar matter as it plows into the surrounding gas. This is the first time such detailed X-ray information has ever been obtained for a supernova remnant, and should provide critical clues to the nature of supernovas. The grating spectrometer, which was built by an MIT team led by Canizares, spreads the X-rays according to their wavelength, giving distinct images of the object at specific wavelengths characteristic of each chemical element. Small wavelength shifts caused by the Doppler effect are used to measure the expansion velocities of each element independently. "We've been

  7. Exploring GLIMPSE bubble N107 Multiwavelength observations and simulations

    Czech Academy of Sciences Publication Activity Database

    Sidorin, Vojtěch; Douglas, K.A.; Palouš, Jan; Wünsch, Richard; Ehlerová, Soňa

    2014-01-01

    Roč. 565, May (2014), A6/1-A6/14. ISSN 0004-6361 R&D Projects: GA ČR GD205/09/H033; GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : ISM: bubbles * ISM: clouds * ISM: supernova remnants Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  8. OH (1720 MHz) MASERS: A MULTIWAVELENGTH STUDY OF THE INTERACTION BETWEEN THE W51C SUPERNOVA REMNANT AND THE W51B STAR FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Brogan, C. L.; Hunter, T. R. [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903 (United States); Goss, W. M.; Chandler, C. J.; Claussen, M. J. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Richards, A. M. S. [Jodrell Bank Centre for Astrophysics, Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Lazendic, J. S. [Monash University, Clayton, VIC 3800 (Australia); Koo, B.-C. [Astronomy Program, SEES, Seoul National University, Seoul 151-742 (Korea, Republic of); Hoffman, I. M., E-mail: cbrogan@nrao.edu [Wittenberg University, Springfield, OH 45501 (United States)

    2013-07-10

    We present a comprehensive view of the W51B H II region complex and the W51C supernova remnant (SNR) using new radio observations from the VLA, VLBA, MERLIN, JCMT, and CSO along with archival data from Spitzer, ROSAT, ASCA, and Chandra. Our VLA data include the first {lambda} = 400 cm (74 MHz) continuum image of W51 at high resolution (88''). The 400 cm image shows non-thermal emission surrounding the G49.2-0.3 H II region, and a compact source of non-thermal emission (W51B{sub N}T) coincident with the previously-identified OH (1720 MHz) maser spots, non-thermal 21 and 90 cm emission, and a hard X-ray source. W51B{sub N}T falls within the region of high likelihood for the position of TeV {gamma}-ray emission. Using the VLBA, three OH (1720 MHz) maser spots are detected in the vicinity of W51B{sub N}T with sizes of 60-300 AU and Zeeman effect magnetic field strengths of 1.5-2.2 mG. The multiwavelength data demonstrate that the northern end of the W51B H II region complex has been partly enveloped by the advancing W51C SNR and this interaction explains the presence of W51B{sub N}T and the OH masers. This interaction also appears in the thermal molecular gas which partially encircles W51B{sub N}T and exhibits narrow pre-shock ({Delta}v {approx} 5 km s{sup -1}) and broad post-shock ({Delta}v {approx} 20 km s{sup -1}) velocity components. RADEX radiative transfer modeling of these two components yield physical conditions consistent with the passage of a non-dissociative C-type shock. Confirmation of the W51B/W51C interaction provides additional evidence in favor of this region being one of the best candidates for hadronic particle acceleration known thus far.

  9. A Chandra Study of Temperature Distributions of the Intracluster Medium in 50 Galaxy Clusters

    Science.gov (United States)

    Zhu, Zhenghao; Xu, Haiguang; Wang, Jingying; Gu, Junhua; Li, Weitian; Hu, Dan; Zhang, Chenhao; Gu, Liyi; An, Tao; Liu, Chengze; Zhang, Zhongli; Zhu, Jie; Wu, Xiang-Ping

    2016-01-01

    To investigate the spatial distribution of the intracluster medium temperature in galaxy clusters in a quantitative way and probe the physics behind it, we analyze the X-ray spectra from a sample of 50 clusters that were observed with the Chandra ACIS instrument over the past 15 years and measure the radial temperature profiles out to 0.45r500. We construct a physical model that takes into consideration the effects of gravitational heating, thermal history (such as radiative cooling, active galactic nucleus feedback, and thermal conduction), and work done via gas compression, and use it to fit the observed temperature profiles by running Bayesian regressions. The results show that in all cases our model provides an acceptable fit at the 68% confidence level. For further validation, we select nine clusters that have been observed with both Chandra (out to ≳0.3r500) and Suzaku (out to ≳1.5r500) and fit their Chandra spectra with our model. We then compare the extrapolation of the best fits with the Suzaku measurements and find that the model profiles agree with the Suzaku results very well in seven clusters. In the remaining two clusters the difference between the model and the observation is possibly caused by local thermal substructures. Our study also implies that for most of the clusters the assumption of hydrostatic equilibrium is safe out to at least 0.5r500 and the non-gravitational interactions between dark matter and its luminous counterparts is consistent with zero.

  10. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    Science.gov (United States)

    Walker, S. A.; Sanders, J. S.; Fabian, A. C.

    2016-09-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.

  11. CHANDRA AND XMM OBSERVATIONS OF THE COMPOSITE SUPERNOVA REMNANT G327.1-1.1

    International Nuclear Information System (INIS)

    We present new X-ray imaging and spectroscopy of a composite supernova remnant G327.1-1.1 using the Chandra and XMM-Newton X-ray observatories. G327.1-1.1 has an unusual morphology consisting of a symmetric radio shell and an off center nonthermal component that indicates the presence of a pulsar wind nebula (PWN). Radio observations show a narrow finger of emission extending from the PWN structure toward the northwest. X-ray studies with ASCA, ROSAT, and BeppoSAX revealed elongated extended emission and a compact source at the tip of the finger that may be coincident with the actual pulsar. The high resolution Chandra observations provide new insight into the structure of the inner region of the remnant. The images show a compact source embedded in a cometary structure from which a trail of X-ray emission extends in the southeast direction. The Chandra images also reveal two prong-like structures that appear to originate from the vicinity of the compact source and extend into a large bubble that is oriented in the northwest direction, opposite from the bright radio PWN. The emission from the entire radio shell is detected in the XMM data and can be characterized by a thermal plasma model with a temperature of ∼ 0.3 keV, which we use to estimate the physical properties of the remnant. The peculiar morphology of G327.1-1.1 may be explained by the emission from a moving pulsar and a relic PWN that has been disrupted by the reverse shock.

  12. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, Univ. of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space Research and Technology Institute, Akad. G. Bonchev Str., Sofia, 1113 (Bulgaria); Güdel, Manuel [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner, E-mail: stephen.skinner@colorado.edu, E-mail: szhekov@space.bas.bg, E-mail: manuel.guedel@univie.ac.at, E-mail: werner.schmutz@pmodwrc.ch [Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland)

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  13. A Chandra Observation of the Eclipsing Wolf-Rayet Binary CQ Cep

    Science.gov (United States)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ~1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T >~ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P orb = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  14. Multiwavelength digital holography for polishing tool shape measurement

    Czech Academy of Sciences Publication Activity Database

    Lédl, Vít; Psota, Pavel; Václavík, Jan; Doleček, Roman; Vojtíšek, Petr

    Vol. 8884. Bellingham : The Society of Photo-Optical Instrumentation Engineers (SPIE), 2013 - (Bentley, J.; Pfaff, M.), 88840E-88840E ISBN 978-0-8194-9747-5. ISSN 0277-786X. - (SPIE. 8884). [SPIE Optifab 2013. Rochester (US), 14.10.2013-17.10.2013] R&D Projects: GA MŠk(CZ) OE10003 Institutional support: RVO:61389021 Keywords : digital holography * polishing * spatial frequencies * chemicals * high power lasers * holographic interferometry * manufacturing * optics * phase shifts Subject RIV: JB - Sensors, Measurment, Regulation http://dx.doi.org/10.1117/12.2030004

  15. NASA Chandra X-ray Observatory Selected as Editor's Choice in 2000 Discover Magazine Awards for Technological Innovation

    Science.gov (United States)

    2000-06-01

    The Chandra X-ray Observatory, NASA's newest and most powerful X-ray space telescope, has been selected as the winner of the Editor's Choice category of the 2000 Discover Magazine Awards for Technological Innovation. The team of government, industry, university and research institutions that designed, built and deployed Chandra for NASA's Marshall Space Flight Center, Huntsville, Ala, will be formally recognized June 24 at a gala awards celebration at Epcot at the Walt Disney World Resort in Orlando, Fl. Dr. Harvey Tananbaum, director of the Smithsonian Astrophysical Observatory's Chandra X-ray Science Center, Cambridge, Mass., which conducts the Chandra science mission for NASA, will receive the award on behalf of the team. "Chandra has opened a new window for astronomers into the universe of high-energy cosmic events such as pulsars, supernova remnants and black holes," said Tananbaum. "We're now able to create spectacularly detailed images of celestial phenomena whose mere existence we could only hypothesize before." Among Chandra's most significant discoveries to date, he lists the detection of a giant ring around the heart of the Crab Nebula, details of the shock wave created by an exploding star and resolution of the high-energy X-ray "glow" in the universe into millions of specific light sources. "The successful launch, deployment and on-orbit operations of NASA's Chandra X-ray Observatory is a testament to the solid partnership between TRW, NASA and the science community that has been enabling NASA's most important space science missions for the past 40 years," said Timothy W. Hannemann, executive vice president and general manager, TRW Space & Electronics Group. "The extraordinary images that Chandra is delivering daily speaks loudly not only to the quality of the science instruments on board, but also to the engineering talents and dedication to mission success exhibited by every member of NASA's Chandra mission team." Chandra, named in honor of Nobel

  16. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    OpenAIRE

    Wu, MH; Hui, CY; Kong, AKH; Tam, PH; Cheng, KS; Dogel, V

    2014-01-01

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index $\\Gamma\\sim1.0$ and plasma temperature $kT\\sim0.2$ keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could...

  17. Chandra Letgs spectroscopy of ionized absorbers: The quasar MR 2251-178

    OpenAIRE

    Ramírez, J. M.; Stefanie Komossa; Vadim Burwitz; Smita Mathur

    2008-01-01

    Analizamos la observación de MR 2251-178, tomada con el LETGS que se encuentra a bordo de Chandra. El absorbedor tibio de MR 2251-178 se puede describir bien con una densidad de columna de ≈ 2 _ 10 21cm ֿ², un parámetro de ionización log(ξ) ≈ 0.6, y una velocidad promedio global de ≈-1100 kms ֿ¹ . Encontramos en el espectro evidencias de líneas de absorción estrechas producidas por transiciones K α y Kβ de iones de C VI y N VI, que muestran veloc...

  18. X-ray spectral properties of AGN in the Chandra Deep Field South

    OpenAIRE

    Tozzi, P.; Gilli, R.; Mainieri, V.; C. Norman(JHU, Baltimore, USA); Risaliti, G.; Rosati, P.; Bergeron, J.; Borgani, S.; Giacconi, R.; Hasinger, G.; Nonino, M.; Streblyanska, A.; Szokoly, G.; Wang, J X; Zheng, W.

    2006-01-01

    We present a detailed X-ray spectral analysis of the sources in the 1Ms catalog of the Chandra Deep Field South (CDFS) taking advantage of optical spectroscopy and photometric redshifts for 321 sources. As a default spectral model, we adopt a power law with slope Gamma with an intrinsic redshifted absorption N_H, a fixed Galactic absorption and an unresolved Fe emission line. For 82 X-ray bright sources, we perform the X-ray spectral analysis leaving both Gamma and N_H free. The weighted mean...

  19. The Nature of the Faint Chandra X-ray Sources in the Galactic Centre

    OpenAIRE

    Ruiter, A.J.; Belczynski, K.; Harrison, T. E.

    2005-01-01

    Recent Chandra observations have revealed a large population of faint X-ray point sources in the Galactic Centre. The observed population consists of about 2000 faint sources in the luminosity range ~10^31-10^33 erg/s. The majority of these sources (70%) are described by hard spectra, while the rest are rather soft. The nature of these sources still remains unknown. Belczynski & Taam (2004) demonstrated that X-ray binaries with neutron star or black hole accretors may account for most of the ...

  20. Modeling Contamination Migration on the Chandra X-ray Observatory - II

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.

    2013-01-01

    During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.

  1. Deeper Chandra Follow-up of Cygnus TeV Source Perpetuates Mystery

    CERN Document Server

    Butt, Y; Benaglia, P; Combi, J; Dame, T; Miniati, F; Romero, G; Butt, Yousaf; Drake, Jeremy; Benaglia, Paula; Combi, Jorge; Dame, Thomas; Miniati, Francesco; Romero, Gustavo

    2005-01-01

    A 50 ksec Chandra observation of the unidentified TeV source in Cygnus reported by the HEGRA collaboration reveals no obvious X-ray counterpart(s). 220 Point-like X-ray sources are detected within or nearby the extended TeV J2032+4130 source region, of which at least 30 are massive stars and 6 are known radio emitters. Based on the low X-ray and radio emissivity we favor a nucleonic rather than electronic origin of the very high energy gamma-ray flux and suspect it is related to the very massive and extremely powerful Cygnus OB2 stellar association.

  2. Simultaneous Chandra and VLA Observations of Young Stars and Protostars in rho Ophiuchus Cloud Core A

    OpenAIRE

    Gagne, Marc; Skinner, Stephen L.; Daniel, Kathryne J.

    2004-01-01

    A 96-ks Chandra X-ray observation of rho Ophiuchus cloud core A detected 87 sources, of which 60 were identified with counterparts at other wavelengths. The X-ray detections include 12 of 14 known classical T Tauri stars in the field, 15 of 17 known weak-lined TTS, and 4 of 15 brown dwarf candidates. The X-ray detections are characterized by hard, heavily absorbed emission. The mean photon energy of a typical source is 3 keV, and more than half of the detections are variable. Prominent X-ray ...

  3. Chandra Observations of Variable Embedded X-ray sources in Orion. Paper I: Resolving Orion Trapezium

    OpenAIRE

    Schulz, N. S.; Canizares, C.; Huenemoerder, D.; Kastner, J.H.; Taylor, S. C.; Bergstrom, E. J.

    2000-01-01

    We used the High Energy Transmission Grating Spectrometer (HETGS) onboard the Chandra X-ray Observatory to perform two observations, separated by three weeks, of the Orion Trapezium region. The zeroth order images on the Advanced CCD Imaging Spectrometer (ACIS) provide spatial resolution of 0.5" and moderate energy resolution. Within a 160"x140" region around the Orion Trapezium we resolve 111 X-ray sources with luminosities between 7x10^{28} ergs/s and 2x10^{32} ergs/s. We do not detect any ...

  4. The Soft X-ray Spectrum from NGC 1068 Observed with LETGS on Chandra

    OpenAIRE

    Brinkman, A. C.; Kaastra, J.S.; Van Der Meer, R.L.J.; Kinkhabwala, A.; Behar, E; Kahn, S. M.; Paerels, F. B. S.; Sako, M.

    2002-01-01

    Using the combined spectral and spatial resolving power of the Low Energy Transmission Grating (LETGS) on board Chandra, we obtain separate spectra from the bright central source of NGC 1068 (Primary region), and from a fainter bright spot 4" to the NE (Secondary region). Both spectra are dominated by line emission from H- and He-like ions of C through S, and from Fe L-shell ions, but also include narrow radiative recombination continua, indicating that most of the soft X-ray emission arises ...

  5. High-resolution X-ray spectroscopy of Procyon by Chandra and XMM-Newton

    OpenAIRE

    Raassen, A.J.J.; Mewe, R.; Audard, M.; Guedel, M.; Behar, E; Kaastra, J.S.; Van Der Meer, R.L.J.; Foley, C. R.; Ness, J.-U.

    2002-01-01

    We report the analysis of the high-resolution soft X-ray spectrum of the nearby F-type star Procyon in the wavelength range from 5 to 175 Angstrom obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board Chandra and with the Reflection Grating Spectrometers (RGS) and the EPIC-MOS CCD spectrometers on board XMM-Newton. Line fluxes have been measured separately for the RGS and LETGS. Spectra have been fitted globally to obtain self-consistent temperatures, emission measur...

  6. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    OpenAIRE

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. ...

  7. Contemporaneous Chandra HETG and Suzaku X-ray Observations of NGC 4051

    OpenAIRE

    Lobban, AP; Reeves, JN; Miller, LL; Turner, TJ; Braito, V.; Kraemer, SB; Crenshaw, DM

    2011-01-01

    We present the results of a deep 300ks Chandra High Energy Transmission Grating (HETG) observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionized lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from Ovii and Neix) plus high-ionization L-shell transitions from Fexvii to Fex...

  8. HDE 245059: A Weak-Lined T Tauri Binary Revealed by Chandra and Keck

    OpenAIRE

    Saavedra, C. Baldovin; Audard, M.; Duchêne, G.; Güdel, M.; Skinner, S.L.; Paerels, F. B. S.; Ghez, A.; McCabe, C.

    2009-01-01

    We present the Chandra High Energy Transmission Grating Spectrometer (HETGS) and Keck observations of HDE 245059, a young weak-lined T Tauri star (WTTS), member of the pre-main sequence group in the Lambda Orionis Cluster. Our high spatial resolution, near-infrared observations with Keck reveal that HDE 245059 a binary separated by 0.87". Based on this new information we have obtained an estimate of the masses of the binary components; 3M_{sun} and 2.5M_{sun} for the north and south component...

  9. Modeling Contamination Migration on the Chandra X-Ray Observatory - III

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.

    2015-01-01

    During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations

  10. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  11. A Chandra X-ray Study of Cygnus A - III. The Cluster of Galaxies

    OpenAIRE

    Smith, David A.; Wilson, Andrew S.; Arnaud, Keith A.; Terashima, Yuichi; Young, Andrew J.

    2001-01-01

    The results from a recent Chandra ACIS-S study of the cluster surrounding Cygnus A are presented. We have deprojected the X-ray spectra taken from various elliptical shells in order to derive the run of temperature, density, pressure, and abundance for the ICM as a function of radius. We confirm a drop in temperature of the X-ray emitting gas from $\\sim 8$ keV more than $\\sim 2^{\\prime}$ from the center to $\\simeq 5$ keV some $30^{\\prime\\prime}$ from the center, with the coolest gas immediate...

  12. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    CERN Document Server

    Canizares, C R; Dewey, D; Flanagan, K A; Galton, E B; Huenemoerder, D P; Ishibashi, K; Markert, T H; Marshall, H L; McGuirk, M; Schattenburg, M L; Schulz, N S; Smith, H I; Wise, M; Canizares, Claude R.; Davis, John E.; Dewey, Daniel; Flanagan, Kathryn A.; Galton, Eugene B.; Huenemoerder, David P.; Ishibashi, Kazunori; Markert, Thomas H.; Marshall, Herman L.; Guirk, Michael Mc; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Henry I.; Wise, Michael

    2005-01-01

    Details of the design, fabrication, ground and flight calibration of the High Energy Transmission Grating, HETG, on the Chandra X-ray Observatory are presented after five years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly six years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.

  13. A Systematic Chandra study of Sgr A$^{\\star}$: I. X-ray flare detection

    OpenAIRE

    Yuan, Qiang; Wang, Q. Daniel

    2015-01-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{\\star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {\\it Chandra} observations obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare...

  14. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    International Nuclear Information System (INIS)

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31-0.23+0.46 (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 ± 0.2 arcsec, which corresponds to 8.4 ± 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  15. A deep Chandra observation of oxygen-rich supernova remnant B0049-73.6 in the Small Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, Andrew; Park, Sangwook [Box 19059, Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Burrows, David N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Lee, Jae-Joon [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Mori, Koji, E-mail: andrew.schenck@mavs.uta.edu [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192 (Japan)

    2014-08-10

    We report on the initial results from our deep Chandra observation (450 ks) of O-rich supernova remnant (SNR) B0049-73.6 in the Small Magellanic Cloud. We detect small metal-rich ejecta features extending out to the outermost boundary of B0049-73.6, which were not seen in the previous data with a shorter exposure. The central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast, the Si-rich material is highly structured. These results suggest that B0049-73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a 13-15 M{sub ☉} progenitor. The central ring-like (in projection) ejecta nebula extends to ∼9 pc from the SNR center. This suggests that the contact discontinuity may be located at a further distance from the SNR center than the previous estimate. We estimate the Sedov age of ∼17,000 yr and an explosion energy of E{sub 0} ∼1.7 × 10{sup 51} erg for B0049-73.6. We place a stringent upper limit on the 2-7 keV band luminosity of L{sub X} ∼ 8.5 × 10{sup 31} erg s{sup –1} for the embedded compact stellar remnant at the center of B0049-73.6.

  16. A Joint Chandra and Swift View of the 2015 X-Ray Dust Scattering Echo of V404 Cygni

    OpenAIRE

    Heinz, S.; Corrales, L.; Smith, R.; Brandt, W. N.; Jonker, P.G.; Plotkin, R.M.; Neilsen, J.

    2016-01-01

    We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray lightcurve of the June 2015 outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8.By deconvolving the intensity...

  17. The XBootes Chandra Survey Paper II: The X-ray Source Catalog

    CERN Document Server

    Kenter, A; Forman, W R; Jones, C; Green, P; Kochanek, C S; Vikhlinin, A; Fabricant, D; Fazio, G; Brand, K; Brown, M J I; Dey, A; Jannuzi, B T; Najita, J; McNamara, B; Shields, J; Rieke, M; Kenter, Almus; Murray, Stephen S.; Forman, William R.; Jones, Christine; Green, Paul; Kochanek, Christopher S.; Vikhlinin, Alexey; Fabricant, Daniel; Fazio, Giovani; Brand, Katherine; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Najita, Joan; Namara, Brian Mc; Shields, Joseph; Rieke, Marcia

    2005-01-01

    We present results from a Chandra survey of the nine square degree Bootes field of the NOAO Deep Wide-Field Survey (NDWFS). This XBootes survey consists of 126 separate contiguous ACIS-I observations each of approximately 5000 seconds in duration. These unique Chandra observations allow us to search for large scale structure and to calculate X-ray source statistics o ver a wide, contiguous field of view with arcsecond angular resolution and uniform coverage. Optical spectroscopic follow-up observations and the rich NDWFS data set will allow us to identify and classify these X-ray selected sources. Using wavelet decomposition, we detect 4642 point sources with n $\\ge$ 2 counts. In order to keep our detections ~99% reliable, we limit our list to sources with n $\\ge$ 4 counts. The full 0.5--7 keV band n $\\ge$ 4 count list has 3293 point sources. In addition to the point sources, 43 extended sources have been detected consistent, with the depth of these observations and the number counts of clusters. We present h...

  18. Deep Chandra Observations of HCG 16 - I. Active Nuclei, Star formation and Galactic Winds

    CERN Document Server

    O'Sullivan, E; Vrtilek, J M; Giacintucci, S; Trevisan, M; David, L P; Ponman, T J; Mamon, G A; Raychaudhury, S

    2014-01-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610~MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation and the high luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe-K$\\alpha$ emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infra-red and ultra-vio...

  19. Chandra and RXTE Spectra of the Burster GS 1826-238

    CERN Document Server

    Thompson, T W J; Tomsick, J A; Marshall, H L

    2005-01-01

    Using simultaneous observations from Chandra and RXTE, we investigated the LMXB GS 1826-238 with the goal of studying its spectral and timing properties. The uninterrupted Chandra observation captured 6 bursts (RXTE saw 3 of the 6), yielding a recurrence time of 3.54 +/- 0.03 hr. Using the proportional counter array on board RXTE, we made a probable detection of 611 Hz burst oscillations in the decaying phases of the bursts with an average rms signal amplitude of 4.8%. The integrated persistent emission spectrum can be described as the dual Comptonization of ~ 0.3 keV soft photons by a plasma with kT_e ~ 20 keV and an optical depth of about 2.6 (interpreted as emission from the accretion disk corona), plus the Comptonization of hotter ~ 0.8 keV seed photons by a ~ 6.8 keV plasma (interpreted as emission from or near the boundary layer). We discovered evidence for a neutral Fe K\\alpha emission line, and we found interstellar Fe L_II and Fe L_III absorption features. The burst spectrum can be fit by fixing the ...

  20. Investigating the Optical Counterpart Candidates of Four INTEGRAL Sources localized with Chandra

    CERN Document Server

    Arabacı, Mehtap Özbey; Tomsick, John A; Halpern, Jules; Bodaghee, Arash; Chaty, Sylvain; Rodriguez, Jerome; Rahoui, Farid

    2012-01-01

    We report on the optical spectroscopic follow up observations of the candidate counterparts to four INTEGRAL sources: IGR J04069+5042, IGR J06552-1146, IGR J21188+4901 and IGR J22014+6034. The candidate counterparts were determined with Chandra, and the optical observations were performed with 1.5-m RTT-150 telescope (T\\"{U}B\\.{I}TAK National Observatory, Antalya, Turkey) and 2.4-m Hiltner Telescope (MDM Observatory, Kitt Peak, Arizona). Our spectroscopic results show that one of the two candidates of IGR J04069+5042 and the one observed for IGR J06552-1146 could be active late-type stars in RS CVn systems. However, according to the likelihood analysis based on Chandra and INTEGRAL, two optically weaker sources in the INTEGRAL error circle of IGR J06552-1146 have higher probabilities to be the actual counterpart. The candidate counterparts of IGR J21188+4901 are classified as an active M-type star and a late-type star. Among the optical spectra of four candidates of IGR J22014+6034, two show H\\alpha emission ...

  1. Chandra and H.E.S.S. observations of the Supernova Remnant CTB 37B

    CERN Document Server

    Aharonian, F; Barresde Almeida, U; Bazer-Bachi, A R; Behera, B; Beilicke, M; Benbow, W; Bernlöhr, K; Boisson, C; Borrel, V; Braun, I; Brion, E; Brucker, J; Buhler, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Chaves, R C G; Chounet, L M; Clapson, A C; Coignet, G; Cornils, R; Costamante, L; Dalton, M; Degrange, B; Dickinson, H J; Djannati-Ata, A; Domainko, W; O'Connor-Drury, L; Dubois, F; Dubus, G; Dyks, J; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Funk, S; Fuling, M; Gabici, S; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, Y A; Gallant, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Jung, I; Katarzynski, K; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khelifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Latham, I J; Lemoine-Goumard, M; Lenain, J P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, D; McComb, T J L; Moderski, R; Moulin, E; Naumann-Godo, M; De Naurois, Mathieu; Nedbal, D; Nekrassov, D; Nolan, S J; Ohm, S; Olive, J P; de Ona Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, Andreas G; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Reimer, O; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Ruppel, J; Sahakian, V V; Santangelo, A; Schlickeiser, R; Schock, F M; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Skilton, J L; Sol, H; Spangler, D; Stawarz, L; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2008-01-01

    The >100 GeV gamma-ray source, HESS J1713-381, apparently associated with the shell-type supernova remnant (SNR) CTB 37B, was discovered using H.E.S.S. in 2006. X-ray follow-up observations with Chandra were performed in 2007 with the aim of identifying a synchrotron counterpart to the TeV source and/or thermal emission from the SNR shell. These new Chandra data, together with additional TeV data, allow us to investigate the nature of this object in much greater detail than was previously possible. The new X-ray data reveal thermal emission from a ~4' region in close proximity to the radio shell of CTB 37B. The temperature of this emission implies an age for the remnant of ~5000 years (assuming a spherical Sedov expansion), disfavouring a suggested association with the supernova of AD 373. A bright (approx 7 x10^-13erg cm^-2 s^-1) and unresolved (<1'') source (CXOU J171405.7-381031) with a soft (Gamma ~ 3.3) non -thermal spectrum is also detected in coincidence with the radio shell. Absorption indicates a ...

  2. TWO RAPIDLY VARIABLE GALACTIC X-RAY TRANSIENTS OBSERVED WITH CHANDRA, XMM-NEWTON, AND SUZAKU

    International Nuclear Information System (INIS)

    We have identified two moderately bright, rapidly variable transients in new and archival X-ray data near the Galactic center. Both objects show strong, flaring variability on timescales of tens to thousands of seconds, evidence of NH variability, and hard spectra. XMMU J174445.5-295044 is seen at 2-10 keV fluxes of 3 x 10-11 to -12 erg cm-2 s-1, with NH at or above 5 x 1022 cm-2, by XMM-Newton, Chandra, and Suzaku. A likely Two Micron All Sky Survey (2MASS) counterpart with KS = 10.2 shows colors indicative of a late-type star. CXOU J174042.0-280724 is a likely counterpart to the fast hard transient IGR J17407-2808. Chandra observations find FX (2-10 keV) ∼10-12 erg cm-2 s-1, with large NH variations (from 2 x 1022 to >2 x 1023 cm-2). No 2MASS counterpart is visible, to KS >13. XMMU J174445.5-295044 seems likely to be a new symbiotic star or symbiotic X-ray binary, while CXOU J174042.0-280724 is more mysterious, likely an unusual low-mass X-ray binary.

  3. The globular cluster NGC 6388: $XMM$-Newton and $Chandra$ observations

    CERN Document Server

    Nucita, A A; Ingrosso, G; Carpano, S; Guainazzi, M

    2007-01-01

    By studying the optical brightness surface density of the globular cluster NGC 6388, it has been recently proposed that it harbors a central intermediate-mass black hole with mass $\\simeq 5.7\\times 10^3$ M$_{\\odot}$. We expect that the compact object in the center of NGC 6388 emits radiation in the $X$-ray band as a consequence of the accretion from the surrounding matter. We searched for $XMM$-Newton and $Chandra$ observations towards NGC 6388 to test this hypothesis. The $Chandra$ satellite disentangles several point-like $X$-ray sources, probably low mass $X$-ray binaries, well within the core radius of the globular cluster. However, three of them, coinciding with the cluster center of gravity, remain unresolved. Their total luminosity is $L_X^{Obs}\\simeq 2.7\\times 10^{33}$ erg s$^{-1}$. If one of these sources is the $X$-ray counterpart of the intermediate-mass black hole in NGC 6388, the corresponding upper limit on the accretion efficiency, with respect to the Eddington luminosity, is $3\\times 10^{-9}$....

  4. Comparing GC and Field LMXBs in Elliptical Galaxies with deep Chandra and Hubble data

    CERN Document Server

    Kim, D -W; Brassington, N J; Fragos, T; Kalogera, V; Zezas, A; Jordan, A; Sivakoff, G R; Kundu, A; Zepf, S E; Angelini, L; Davies, R L; Gallagher, J S; Juett, A M; King, A R; Pellegrini, S; Sarazin, C L; Trinchieri, G

    2009-01-01

    (abridged) We present a statistical study of the low-mass X-ray binary (LMXB) populations of three nearby, old elliptical galaxies: NGC 3379, NGC 4278, and NGC 4697. With a cumulative ~1 Ms Chandra ACIS observing time, we detect 90-170 LMXBs within the D25 ellipse of each galaxy. Cross-correlating Chandra X-ray sources and HST optical sources, we identify 75 globular cluster (GC) LMXBs and 112 field LMXBs. In the low luminosity range allowed by our deeper data (LX < 5 x 1037 erg s-1), we find a significant relative lack of GC-LMXBs, when compared with field sources. Using the co-added sample from the three galaxies, we find that the incompleteness-corrected X-ray luminosity functions (XLFs) of GC and field LMXBs differ at ~4# significance at LX < 5 x 1037 erg s-1. As previously reported, these XLFs are consistent at higher luminosities. Our observations may indicate a potential predominance of GC-LMXBs with donors evolved beyond the main sequence, when compared to current models, but their efficient for...

  5. Chandra observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    CERN Document Server

    Hlavacek-Larrondo, J; Hogan, M T; Gendron-Marsolais, M -L; Edge, A C; Fabian, A C; Russell, H R; Iwasawa, K; Mezcua, M

    2016-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with L_IR>10^13L_sun. They are thought to be closer counterparts of the more distant sub-mm galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z=0.93, hosting a radio-loud AGN (L_1.4GHz=3.5*10^25 W/Hz). The Chandra X-ray images reveal extended, asymmetric X-ray emission in the soft 0.3-2.0 keV band, extending to 160 kpc in the southern direction. VLA observations at 1.4 GHz and 8.4 GHz reveal no radio counterpart to this extended X-ray emission. The emission is therefore most likely of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. The temperature (2 keV) and bolometric X-ray luminosity (3*10^43 erg/s) of the gas follow the expected L_X-ray-T correlation for groups and clusters of galaxies. We also find that th...

  6. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    CERN Document Server

    Walker, S A; Fabian, A C

    2016-01-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high energy astrophysics. Here we explore applications of Gaussian Gradient Magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large ...

  7. Chandra Observations and Modeling of Geocoronal Charge Exchange X-Ray Emission During Solar Wind Gusts

    Science.gov (United States)

    Kornbleuth, Marc; Wargelin, Bradford J.; Juda, Michael

    2014-06-01

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O7+ collide with neutral gas. The best known examples of this occur around comets, but SWCX emission also arises in the Earth's tenuous outer atmosphere and throughout the heliosphere as neutral H and He from the interstellar medium flows into the solar system. This geocoronal and heliospheric emission comprises much of the soft X-ray background and is seen in every X-ray observation. Geocoronal emission, although usually weaker than heliospheric emission, arises within a few tens of Earth radii and therefore responds much more quickly (on time scales of less than an hour) to changes in solar wind intensity than the widely distributed heliospheric emission.We have studied a dozen Chandra observations when the flux of solar wind protons and O7+ ions was at its highest. These gusts of wind cause correspondingly abrupt changes in geocoronal SWCX X-ray emission,which may or may not be apparent in Chandra data depending on a given observation's line of sight through the magnetosphere. We compare observed changes in the X-ray background with predictions from a fully 3D analysis of SWCX emission based on magnetospheric simulations using the BATS-R-US model.

  8. Observations of the core of the Pleiades with the Chandra X-ray Observatory

    CERN Document Server

    Krishnamurthi, A; Linsky, J L; Martin, E; Gagna, M; Krishnamurthi, Anita; Reynolds, Christopher S; Linsky, Jeffrey L.; Martin, Eduardo; Gagna, Marc

    2001-01-01

    We present results from a 36-ksec observation of the core of the Pleiades open cluster using ACIS-I on the Chandra X-ray Observatory. We have detected 57 sources, most of which do not have previously known optical counterparts. Follow-up photometry indicates that many of the detections are likely to be AGNs, in accordance with extragalactic source counts, but some of the sources may be previously undiscovered low-mass members of the Pleiades. We discuss our dataset and our findings about X-ray emission from early-type stars as well as very late type stars. In particular, the large X-ray fluxes, lack of variability, and hardness ratios of the four Pleiades B6 IV -- F4 V stars suggest a tentative conclusion that Pleiades stars in this spectral type range are intrinsic X-ray sources rather than previously unknown binaries in which the X-ray emission is from a late-type companion. Also the sensitivity of Chandra allowed us to detect nonflare X-ray emission from late-M stars.

  9. Chandra ACIS Survey of X-ray Point Sources: The Source Catalog

    CERN Document Server

    Wang, Song; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-01-01

    The $Chandra$ archival data is a valuable resource for various studies on different topics of X-ray astronomy. In this paper, we utilize this wealth and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 ACIS observations, which produces 363,530 source detections, belonging to 217,828 distinct X-ray sources. This number is twice the size of the $Chandra$ Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows 17,828 sources are located within the $D_{25}$ isophotes of 1110 galaxies, and 7504 sources are located between the $D_{25}$ and 2$D_{25}$ isophotes of 910 galaxies. Contamination analysis with the log$N$--log$S$ relation indicates that 51.3\\% of objects within 2$D_{25}$ isophotes are...

  10. A Deep Chandra Observation of the AGN Outburst and Merger in Hickson Compact Group 62

    CERN Document Server

    Rafferty, D A; Nulsen, P E J; McNamara, B R; Brandt, W N; Wise, M W; Röttgering, H J A

    2012-01-01

    We report on an analysis of new Chandra data of the galaxy group HCG 62, well known for possessing cavities in its intragroup medium (IGM) that were inflated by the radio lobes of its central active galactic nucleus (AGN). With the new data, a factor of three deeper than previous Chandra data, we re-examine the energetics of the cavities and determine new constraints on their contents. We confirm that the ratio of radiative to mechanical power of the AGN outburst that created the cavities is less than 10^-4, among the lowest of any known cavity system, implying that the relativistic electrons in the lobes can supply only a tiny fraction of the pressure required to support the cavities. This finding implies additional pressure support in the lobes from heavy particles (e.g., protons) or thermal gas. Using spectral fits to emission in the cavities, we constrain any such volume-filling thermal gas to have a temperature kT > 4.3 keV. For the first time, we detect X-ray emission from the central AGN, with a lumino...

  11. The outer regions of galaxy clusters: Chandra constraints on the X-ray surface brightness

    CERN Document Server

    Ettori, S

    2008-01-01

    (Abridged version) We study the properties of the X-ray surface brightness profiles in a sample of galaxy clusters that are observed with Chandra and have emission detectable with a signal-to-noise ratio larger than 2 at a radius beyond R500 ~ 0.7 R200. Our study aims at measuring the slopes of the X-ray surface brightness and of the gas density profiles in the outskirts of massive clusters. These constraints are then compared to similar results obtained from observations and numerical simulations of the temperature and dark matter density profiles with the intention to present a consistent picture of the outer regions of galaxy clusters. We extract the surface brightness profiles S_b(r) from X-ray exposures obtained with Chandra of 52 X-ray luminous galaxy clusters at z>0.3. We estimate R200 both using a beta-model to reproduce the surface brightness profile and scaling relations from the literature, showing that the two methods converge to comparable values. We evaluate then the radius, R_S2N, at which the ...

  12. Inferring coronal structure using X-ray spectra: A Chandra study of AB Dor

    CERN Document Server

    Hussain, G A J; Dupree, A K; Jardine, M; Van Ballegooijen, A A; Cameron, A C; Donati, J F; Favata, F

    2004-01-01

    The Chandra X-ray observatory monitored the single cool star, AB Doradus, continuously for a period lasting 88ksec (1.98 Prot) in 2002 December with the LETG/HRC-S. The X-ray lightcurve shows significant rotational modulation. It can be represented as having a flat level of emission superimposed with bright flaring regions that appear at the same phases in both rotation cycles. Phase-binned OVIII line profiles show centroid shifts that also repeat in consecutive rotation cycles. These Doppler shifts trace a roughly sinusoidal pattern with a a semi-amplitude of 30 +/-10km/s. By taking both the lightcurve and spectral diagnostics into account along with constraints on the rotational broadening of line profiles (provided by archival Chandra HETG FeXVII line profiles) we can construct a simple model of the X-ray corona. The corona can be described as having two components, one component is homogeneously distributed, extending less than 1.75R*; and the other consists of at least two compact emitting regions near t...

  13. Impact of Chandra calibration uncertainties on galaxy cluster temperatures: application to the Hubble Constant

    CERN Document Server

    Reese, Erik D; Kitayama, Tetsu; Ota, Naomi; Sasaki, Shin; Suto, Yasushi

    2010-01-01

    We perform a uniform, systematic analysis of a sample of 38 X-ray galaxy clusters with three different Chandra calibrations. The temperatures change systematically between calibrations. Cluster temperatures change on average by roughly ~6% for the smallest changes and roughly ~13% for the more extreme changes between calibrations. We explore the effects of the changing cluster spectral properties on Sunyaev-Zel'dovich effect (SZE) and X-ray determinations of the Hubble constant. The Hubble parameter changes by +10% and -13% between the current calibration and two previous Chandra calibrations, indicating that changes in the cluster temperature basically explain the entire change in H_0. Although this work focuses on the difference in spectral properties and resultant Hubble parameters between the calibrations, it is intriguing to note that the newer calibrations favor a lower value of the Hubble constant, H_0 ~ 60 km s-1 Mpc-1, typical of results from SZE/X-ray distances. Both galaxy clusters themselves and t...

  14. Chandra Observations of the Flat Spectrum Seyfert-2 Galaxies NGC 2110 and NGC 7582

    Institute of Scientific and Technical Information of China (English)

    Hui Dong; Sui-Jian Xue; Cheng Li; Fu-Zhen Cheng

    2004-01-01

    Chandra observations of the Seyfert-2 galaxies NGC 2110 and NGC 7582 are presented. With the superb spatial resolution of Chandra we found that in NGC 7582 the soft (≤2keV) and hard (2-10keV) X-rays are emitted in different regions, consistent with the report by Xue et al. By comparing the present X-ray data with the previous infrared data, we determined that the soft X-ray region is the site of starburst activities. We found no significant temporal variations during our observations. We confirm the previous finding that NGC 2110 and NGC 7582 are fiat-spectrum sources. We argue that the fiat spectra may result from a cold absorbing material such as envisaged in the "dual absorbed" model. Strong Fe Ks emission feature is detected in 6~7keV. Its equivalent width is so large that it cannot be reproduced by using the Galactic column density of ~ 1022 cm-2.

  15. HDE 245059: A Weak-Lined T Tauri Binary Revealed by Chandra and Keck

    CERN Document Server

    Saavedra, C Baldovin; Duchêne, G; Güdel, M; Skinner, S L; Paerels, F B S; Ghez, A; McCabe, C

    2009-01-01

    We present the Chandra High Energy Transmission Grating Spectrometer (HETGS) and Keck observations of HDE 245059, a young weak-lined T Tauri star (WTTS), member of the pre-main sequence group in the Lambda Orionis Cluster. Our high spatial resolution, near-infrared observations with Keck reveal that HDE 245059 a binary separated by 0.87". Based on this new information we have obtained an estimate of the masses of the binary components; 3M_{sun} and 2.5M_{sun} for the north and south components, respectively. We have estimated the age of the system to be ~2-3 Myr. We detect both components of the binary in the zeroth order Chandra image and in the grating spectra. Our fits to the spectrum of the binary have shown that the emission is dominated by a plasma between 8 and 15 MK, a soft component at 4 MK and a hard component at 50 MK are also detected. The value of the hydrogen column density was low, 8 x 10^{19} cm^{-2}, likely due to the clearing of the inner region of the Lambda Orionis cloud. The abundance pat...

  16. High-Resolution Chandra X-ray Imaging and Spectroscopy of the Sigma Orionis Cluster

    CERN Document Server

    Skinner, S L; Cohen, D H; Gagné, M; Owocki, S P; Townsend, R D

    2008-01-01

    We present results of a 90 ksec Chandra X-ray observation of the young sigma Orionis cluster (age ~3 Myr) obtained with the High Energy Transmission Grating Spectrometer. We use the high resolution grating spectrum and moderate resolution CCD spectrum of the massive central star sigma Ori AB (O9.5V + B0.5V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the primary CCD (ACIS-S3). All but five have near-IR or optical counterparts and about one-fourth are variable. Notable high-mass stellar detections are sigma Ori AB, the magnetic B star sigma Ori E, and the B5V binary HD 37525. Most of the other detections have properties consistent with lower mass K or M-type stars. We present the first X-ray spectrum of the unusual infrared source IRS1 located 3.3 arc-sec north of sigma Ori AB, which is likely an embedded T Tauri star whose disk/envelope is being photoevaporated by sigma Or...

  17. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    CERN Document Server

    Brickhouse, N S; Dupree, A K; Luna, G J M; Wolk, S

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/- 0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model pred...

  18. Dissecting Photometric redshift for Active Galactic Nuclei using XMM- and Chandra-COSMOS samples

    CERN Document Server

    Salvato, M; Hasinger, G; Rau, A; Civano, F; Zamorani, G; Brusa, M; Elvis, M; Vignali, C; Aussel, H; Comastri, A; Fiore, F; Floc'h, E Le; Mainieri, V; Bardelli, S; Bolzonella, M; Bongiorno, A; Capak, P; Caputi, K; Cappelluti, N; Carollo, C M; Contini, T; Garilli, B; Iovino, A; Fotopoulou, S; Fruscione, A; Gilli, R; Halliday, C; Kneib, J-P; Kakazu, Y; Kartaltepe, J S; Koekemoer, A M; Kovac, K; Ideue, Y; Ikeda, H; Impey, C D; Fevre, O Le; Lamareille, F; Lanzuisi, G; Borgne, J-F Le; Brun, V Le; Lilly, S J; Maier, C; Manohar, S; Masters, D; McCracken, H; Messias, H; Mignoli, M; Mobasher, B; Nagao, T; Pello, R; Puccetti, S; Renzini, E Perez Montero A; Sargent, M; Sanders, D B; Scodeggio, M; Scoville, N; Shopbell, P; Silvermann, J; Taniguchi, Y; Tasca, L; Tresse, L; Trump, J R; Zucca, E

    2011-01-01

    With this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the COSMOS field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by AGN-dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy sigma_(Delta z/(1+z_spec)) \\sim0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 sq. deg.of COSMOS. For 248 sources, our upda...

  19. A Chandra Observation of Abell 13: Investigating the Origin of the Radio Relic

    CERN Document Server

    Juett, Adrienne M; Clarke, Tracy E; Andernach, Heinz; Ehle, Matthias; Fujita, Yutaka; Kempner, Joshua C; Roy, Alan L; Rudnick, Lawrence; Slee, O Bruce

    2007-01-01

    We present results from the Chandra X-ray observation of Abell 13, a galaxy cluster that contains an unusual noncentral radio source, also known as a radio relic. This is the first pointed X-ray observation of Abell 13, providing a more sensitive study of the properties of the X-ray gas. The X-ray emission from Abell 13 is extended to the northwest of the X-ray peak and shows substructure indicative of a recent merger event. The cluster X-ray emission is centered on the bright galaxy H of Slee et al. 2001. We find no evidence for a cooling flow in the cluster. A knot of excess X-ray emission is coincident with the other bright elliptical galaxy F. This knot of emission has properties similar to the enhanced emission associated with the large galaxies in the Coma cluster. With these Chandra data we are able to compare the properties of the hot X-ray gas with those of the radio relic from VLA data, to study the interaction of the X-ray gas with the radio emitting electrons. Our results suggest that the radio re...

  20. 1WGAJ1226.9+3332 a high redshift cluster discovered by Chandra

    CERN Document Server

    Cagnoni, I; Kim, D W; Mazzotta, P; Huang, J S; Celotti, A

    2001-01-01

    We report the detection of 1WGAJ1226.9+3332 as an arcminute scale extended X-ray source with the Chandra X-ray Observatory. The Chandra observation and R and K band imaging strongly support the identification of 1WGAJ1226.9+3332 as a high redshift cluster of galaxies, most probably at z=0.85 +- 0.15, with an inferred temperature kT =10 (+4;-3) keV and an unabsorbed luminosity (in a r=120" aperture) of 1.3 (+0.16;-0.14) x 1e45 erg/s (0.5-10 keV). This indication of redshift is also supported by the K and R band imaging, and is in agreement with the spectroscopic redshift of 0.89 found by Ebeling et al. (2001). The surface brightness profile is consistent with a beta-model with beta=0.770 +- 0.025, rc=(18.1 +-0.9)" (corresponding to 101 +- 5 kpc at z=0.89), and S(0)=1.02 +- 0.08 counts/arcsec**2. 1WGAJ1226.9+3332 was selected as an extreme X-ray loud source with FX/FV>60; this selection method, thanks to the large area sampled, seems to be a highly efficient method for finding luminous high z clusters of galaxi...

  1. A Chandra Observation of the Eclipsing Wolf-Rayet Binary CQ Cep

    CERN Document Server

    Skinner, S L; Guedel, M; Schmutz, W

    2014-01-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ~1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the...

  2. A spectral and spatial analysis of eta Carinae's diffuse X-ray emission using CHANDRA

    CERN Document Server

    Weis, K; Bomans, D J; Davidson, K; Weis, Kerstin; Corcoran, Michael F.; Bomans, Dominik J.; Davidson, Kris

    2004-01-01

    The luminous unstable star (star system) eta Carinae is surrounded by an optically bright bipolar nebula, the Homunculus and a fainter but much larger nebula, the so-called outer ejecta. As images from the EINSTEIN and ROSAT satellites have shown, the outer ejecta is also visible in soft X-rays, while the central source is present in the harder X-ray bands. With our CHANDRA observations we show that the morphology and properties of the X-ray nebula are the result of shocks from fast clumps in the outer ejecta moving into a pre-existing denser circumstellar medium. An additional contribution to the soft X-ray flux results from mutual interactions of clumps within the ejecta. Spectra extracted from the CHANDRA data yield gas temperatures kT of 0.6-0.76 keV. The implied pre-shock velocities of 670-760 km/s are within the scatter of the velocities we measure for the majority of the clumps in the corresponding regions. Significant nitrogen enhancements over solar abundances are needed for acceptable fits in all pa...

  3. The Chandra/HETG view of NGC 1365 in a Compton-thick state

    CERN Document Server

    Nardini, E; Reeves, J N; Braito, V; Risaliti, G; Costa, M

    2015-01-01

    We present the analysis of a Chandra High-Energy Transmission Grating (HETG) observation of the local Seyfert galaxy NGC 1365. The source, well known for its dramatic X-ray spectral variability, was caught in a reflection-dominated, Compton-thick state. The high spatial resolution afforded by Chandra allowed us to isolate the soft X-ray emission from the active nucleus, neglecting most of the contribution from the kpc-scale starburst ring. The HETG spectra thus revealed a wealth of He- and H-like lines from photoionized gas, whereas in larger aperture observations these are almost exclusively produced through collisional ionization in the circumnuclear environment. Once the residual thermal component is accounted for, the emission-line properties of the photoionized region close to the hard X-ray continuum source indicate that NGC 1365 has some similarities to the local population of obscured active galaxies. In spite of the limited overall data quality, several soft X-ray lines seem to have fairly broad prof...

  4. Wavelength Spacing Tunable, Multiwavelength Q-Switched Mode-Locked Laser Based on Graphene-Oxide-Deposited Tapered Fiber

    CERN Document Server

    Gao, Lei; Zeng, Jing

    2014-01-01

    A wavelength spacing tunable, multiwavelength Q-switched mode-locked (QML) fiber laser in an erbium-doped fiber cavity based on graphene oxide deposited on tapered fiber is proposed by choosing the diameter and length of the taper, graphene oxide thickness and cavity dispersion, in which the wavelength spacing could be tuned by pump power. The evolutions of temporal and spectral with different pump strengths are investigated. Results show that the tunability of the multiwavelength laser can be interpreted by the bound states of QML laser resulting from a mutual interaction of dispersion, nonlinear effect, insertion loss, and pump power. To the best of our knowledge, it is the first experimental observation of bound states of QML, which provides a new mechanism to fabricate tunable multiwavelength laser.

  5. Linear Estimation of Particle Bulk Parameters from Multi-Wavelength Lidar Measurements

    Science.gov (United States)

    Veselovskii, Igor; Dubovik, Oleg; Kolgotin, A.; Korenskiy, M.; Whiteman, D. N.; Allakhverdiev, K.; Huseyinoglu, F.

    2012-01-01

    An algorithm for linear estimation of aerosol bulk properties such as particle volume, effective radius and complex refractive index from multiwavelength lidar measurements is presented. The approach uses the fact that the total aerosol concentration can well be approximated as a linear combination of aerosol characteristics measured by multiwavelength lidar. Therefore, the aerosol concentration can be estimated from lidar measurements without the need to derive the size distribution, which entails more sophisticated procedures. The definition of the coefficients required for the linear estimates is based on an expansion of the particle size distribution in terms of the measurement kernels. Once the coefficients are established, the approach permits fast retrieval of aerosol bulk properties when compared with the full regularization technique. In addition, the straightforward estimation of bulk properties stabilizes the inversion making it more resistant to noise in the optical data. Numerical tests demonstrate that for data sets containing three aerosol backscattering and two extinction coefficients (so called 3 + 2 ) the uncertainties in the retrieval of particle volume and surface area are below 45% when input data random uncertainties are below 20 %. Moreover, using linear estimates allows reliable retrievals even when the number of input data is reduced. To evaluate the approach, the results obtained using this technique are compared with those based on the previously developed full inversion scheme that relies on the regularization procedure. Both techniques were applied to the data measured by multiwavelength lidar at NASA/GSFC. The results obtained with both methods using the same observations are in good agreement. At the same time, the high speed of the retrieval using linear estimates makes the method preferable for generating aerosol information from extended lidar observations. To demonstrate the efficiency of the method, an extended time series of

  6. Iteration method for the inversion of simulated multiwavelength lidar signals to determine aerosol size distribution

    Institute of Scientific and Technical Information of China (English)

    Tao Zong-Ming; Zhang Yin-Chao; Liu Xiao-Qin; Tan Kun; Shao Shi-Sheng; Hu Huan-Ling; Zhang Gai-Xia; Lü Yong-Hui

    2004-01-01

    A new method is proposed to derive the size distribution of aerosol from the simulated multiwavelength lidar extinction coefficients. The basis for this iteration is to consider the extinction efficiency factor of particles as a set of weighting function covering the entire radius region of a distribution. The weighting functions are calculated exactly from Mie theory. This method extends the inversion region by subtracting some extinction coefficient. The radius range of simulated size distribution is 0.1-10.0μm, the inversion radius range is 0.1-2.0μm, but the inverted size distributions are in good agreement with the simulated one.

  7. Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules

    CERN Document Server

    Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Faraon, Andrei

    2016-01-01

    Metasurfaces are nano-structured devices composed of arrays of subwavelength scatterers (or meta-atoms) that manipulate the wavefront, polarization, or intensity of light. Like other diffractive optical devices, metasurfaces suffer from significant chromatic aberrations that limit their bandwidth. Here, we present a method for designing multiwavelength metasurfaces using unit cells with multiple meta-atoms, or meta-molecules. Transmissive lenses with efficiencies as high as 72% and numerical apertures as high as 0.46 simultaneously operating at 915 nm and 1550 nm are demonstrated. With proper scaling, these devices can be used in applications where operation at distinct known wavelengths is required, like various fluorescence microscopy techniques.

  8. A multi-wavelength view on the dusty Wolf-Rayet star WR 48a

    OpenAIRE

    Zhekov, Svetozar A.; Tomov, Toma; Gawronski, Marcin P.; Georgiev, Leonid N.; Borissova, Jura; Kurtev, Radostin; Gagne, Marc; Hajduk, Marcin

    2014-01-01

    We present results from the first attempts to derive various physical characteristics of the dusty Wolf-Rayet star WR 48a based on a multi-wavelength view of its observational properties. This is done on the basis of new optical and near-infrared spectral observations and on data from various archives in the optical, radio and X-rays. The optical spectrum of WR 48a is acceptably well represented by a sum of two spectra: of a WR star of the WC8 type and of a WR star of the WN8h type. The stren...

  9. Signatures of magnetic reconnection in solar eruptive flares: A multi-wavelength perspective

    CERN Document Server

    Joshi, Bhuwan; Manoharan, P K; Somov, B V; 10.1007/978-3-642-30442-2_4

    2012-01-01

    In this article, we review some key aspects of a multi-wavelength flare which have essentially contributed to form a standard flare model based on the magnetic reconnection. The emphasis is given on the recent observations taken by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on the X-ray emission originating from different regions of the coronal loops. We also briefly summarize those observations which do not seem to accommodate within the canonical flare picture and discuss the challenges for future investigations.

  10. Dynamic analysis of holographic gratings in a multi-wavelength visible light sensitive photopolymer

    International Nuclear Information System (INIS)

    A dynamic theoretical model of photochemistry and hologram formation in holographic photopolymer is established, and the dynamic development process of holographic gratings in the photopolymer is discussed with the model. A novel multi-wavelength visible light sensitive photopolymer for holographic storage is prepared. The influence of exposure wavelength on holographic storage characteristics is analysed. By fitting the experimental data of transmittance and diffraction efficiency to a function of time with different exposure intensities and wavelengths, the variations of dynamic parameters of photochemistry and photopolymerization diffusion are presented. (classical areas of phenomenology)

  11. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    Directory of Open Access Journals (Sweden)

    Minho Song

    2008-10-01

    Full Text Available The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  12. Multiwavelength lidar node development and simulation for a regional tropospheric aerosol monitoring network

    International Nuclear Information System (INIS)

    This work studies multiwavelength lidar node operation requirements to operate in a regional aerosol monitoring network. Some of the parameters taken into account are simplicity and robustness of the system in continuous and remote operation conditions. Sub-system modularity and accessibility is also contemplated. A numerical simulation is performed on a synthetic atmospheric signal to analyze the behaviour of this system in a) the visible (532 nm) and infrared (1064 nm) spectral regions; b) the main atmospheric compound Raman spectral region (nitrogen, oxygen water vapor). Adding depolarization channels in the 532 nm spectral region is also contemplated.

  13. 30 years of multi-wavelength observations of 3C 273

    OpenAIRE

    Turler, M.; Paltani, S.; Courvoisier, T. J. -L.; Aller, M. F.; H. D. Aller(Astronomy Department, University of Michigan, Ann Arbor); Blecha, A.; Bouchet, P.; Lainela, M.; McHardy, I.M.; Robson, E. I.; J. A. Stevens; Terasranta, H.; Tornikoski, M.; Ulrich, M.-H.; Waltman, E. B.

    1998-01-01

    We present a wide multi-wavelength database of most observations of the quasar 3C 273 obtained during the last 30 years. This database is the most complete set of observations available for an active galactic nucleus (AGN). It contains nearly 20'000 observations grouped together into 70 light curves covering 16 orders of magnitude in frequency from the radio to the gamma-ray domain. The database is constituted of many previously unpublished observations and of most publicly available data gat...

  14. Multi-wavelength Observations of 3C 273 in 1993-1995

    OpenAIRE

    von Montigny, C.

    1997-01-01

    We present the results of the multi-wavelength campaigns on 3C 273 in 1993-1995. During the observations in late 1993 this quasar showed an increase of its flux for energies greater equal 100 MeV from about 2.1 x 10^-7 photons/cm^2/s to approximately 5.6 x 10^-7 photons/cm^2/s during a radio outburst at 14.5, 22 and 37 GHz. However, no one-to-one correlation of the gamma-ray radiation with any frequency could be found. The photon spectral index of the high energy spectrum changed from (3.20 +...

  15. Software for retrieval of aerosol particle size distribution from multiwavelength lidar signals

    Science.gov (United States)

    Sitarek, S.; Stacewicz, T.; Posyniak, M.

    2016-02-01

    Software to retrieve profiles of aerosol particle size distribution (APSD) from multiwavelength lidar signals is presented. The approach consists in direct fit of artificial signal generated using predefined distribution to the experimental signals. Combination of two lognormal functions with a few free parameters is applied for the predefined APSD. The minimization technique allows finding lognormal function parameters which provide the best fit. The approach was tested on the experimental signals registered at 1064, 532 and 355 nm. The software is designated for processing on PCs. The computation time was about several minutes.

  16. Influence of color coatings on aircraft surface ice detection based on multi-wavelength imaging

    Science.gov (United States)

    Zhuge, Jing-chang; Yu, Zhi-jing; Gao, Jian-shu; Zheng, Da-chuan

    2016-03-01

    In this paper, a simple aircraft surface ice detection system is proposed based on multi-wavelength imaging. Its feasibility is proved by the experimental results. The influence of color coatings of aircraft surface is investigated. The results show that the ice area can be clearly distinguished from the red, white, gray and blue coatings painted aluminum plates. Due to the strong absorption, not enough signals can be detected for the black coatings. Thus, a deep research is needed. Even though, the results of this paper are helpful to the development of aircraft surface ice detection.

  17. Multi-wavelength observations of an unusual impulsive flare associated with CME

    OpenAIRE

    Uddin, Wahab; Jain, Rajmal; Yoshimura, Keiji; Chandra, Ramesh; Sakao, T.; Kosugi, T.; Joshi, Anita; Despande, M. R.

    2004-01-01

    We present the results of a detailed analysis of multi-wavelength observations of a very impulsive solar flare 1B/M6.7, which occurred on 10 March, 2001 in NOAA AR 9368 (N27 W42). The observations show that the flare is very impulsive with very hard spectrum in HXR that reveal non-thermal emission was most dominant. On the other hand this flare also produced type II radio burst and coronal mass ejections (CME), which are not general characteristics for impulsive flares. In H$\\alpha$ we observ...

  18. Multiwavelength Study of M8.9/3B Solar Flare from AR NOAA 10960

    OpenAIRE

    Kumar, Pankaj; A.K. Srivastava; Filippov, B.; Uddin, Wahab

    2010-01-01

    We present a multi-wavelength analysis of a long duration white-light solar flare (M8.9/3B) event that occurred on 4 June 2007 from NOAA AR 10960. The flare was observed by several spaceborne instruments, namely SOHO/MDI, Hinode/SOT, TRACE and STEREO/SECCHI. The flare was initiated near a small, positive-polarity, satellite sunspot at the centre of the AR, surrounded by opposite-polarity field regions. MDI images of the AR show considerable amount of changes in a small positive-polarity sunsp...

  19. Multiwavelength observations of the black hole candidate Swift J1753.5-0127

    CERN Document Server

    Soleri, Paolo; Fender, Rob; Casella, Piergiorgio; Tudose, Valeriu; Maitra, Dipankar; Wijnands, Rudy; Belloni, Tomaso; Miller-Jones, James; Klein-Wolt, Marc; van der Klis, Michiel

    2008-01-01

    We present preliminary results from the analysis of simultaneous multiwavelength observations of the black hole candidate Swift J1753.5-0127. The source is still continuing its outburst started in May 2005, never leaving the Low/Hard State. In the X-ray energy spectra we confirm evidence for a thermal component at a very low luminosity possibly extending close to but not at the innermost stable orbit. This is unusual for black hole candidates in the Low/Hard State. Furthermore, we confirm that its radio emission is significantly fainter than expected from the relation observed in other black hole candidates between the observed radio/X-ray fluxes.

  20. Multiwavelength Spectroscopy of the Bipolar Outflow from Cepheus E

    Science.gov (United States)

    Smith, Michael D.; Froebrich, Dirk; Eislöffel, Jochen

    2003-07-01

    Cepheus E is the site of an exceptional example of a protostellar outflow with a very young dynamical age and extremely high near-infrared luminosity. We combine molecular spectroscopic data from the submillimeter to the near-infrared in order to interpret the rotational excitation of CO and the rovibrational excitation of H2. We conclude that C-type shocks with a paraboloidal bow shock geometry can simultaneously explain all the molecular excitations. Extinction accounts for the deviation of the column densities from local thermodynamic equilibrium. A difference in the extinction between the red- and blueshifted outflow lobes may account for the measured flux difference. The outflow is deeply embedded in a clump of density 105 cm-3, yet a good fraction of atomic hydrogen, about 40%, is required to explain the excitation and statistical equilibrium. We propose that this atomic component arises, self-consistently, from the dissociated gas at the apex of the leading bow shocks and the relatively long molecule reformation time. At least 20 bow shocks are required in each lobe, although these may be subdivided into smaller bows and turbulent shocked regions. The total outflow mechanical power and cooling amounts to over 30 Lsolar, almost half the source's bolometric luminosity. Nevertheless, only about 6% of the clump mass has been set in outward motion by the outflow, allowing a collapse to continue. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.