WorldWideScience

Sample records for chandra comet survey

  1. Chandra Observations of the Deep Impact Encounter with Comet 9P/Tempel 1

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Hoekstra, R.; Makinen, T.; Schultz, P. H.; Weaver, H. A.

    2005-08-01

    On July 4, 2005 NASA's discovery mission Deep Impact (hereafter DI) will send a 375 kg impactor into the nucleus of comet 9P/Tempel 1 at 10.2 km/s relative velocity. In the x-ray, the DI experiment allows for a controlled test of the charge exchange (CXE) emission mechanism that drives cometary x-ray emission (Lisse et al. 2001, Kharchenko and Dalgarno 2001, Krasnopolsky et al.2002). Previous ROSAT and Chandra observations studied cometary x-ray emission as the solar wind changed but the cometary emission remained constant. Here, at a precise time, a fresh amount of neutral material will be injected into a finite volume of the extended atmosphere, or coma, of the comet. This new material will directly increase the emission measure for the comet, passing from the collisionally thick to the collisionally thin regions of emission over the course of days. The DI experiment also allows for a direct search for prompt x-rays created by hyper-velocity impact processes, such as was seen by ROSAT during the impact of the K-fragment of comet D/Shoemaker-Levy 9 on Jupiter (Waite et al. 1995). We report here on the first results of of the Chandra observations of the Deep Impact encounter.

  2. Chandra Observations of a Collisionally and Optically Thin Charge Exchange System - Comet 2P/Encke 2003

    Science.gov (United States)

    Christian, D. J.; Lisse, C. M.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Hoekstra, R.; Makinen, J. T. T.; Weaver, H. A.

    2004-11-01

    The highly favorable perigee passage of the x-ray bright comet 2P/Encke in late 2003 provided an excellent opportunity to use Chandra's high spatial, spectral, and temporal resolution to study cometary x-ray emission in the low neutral target density, low x-ray flux regime. The 1997 ROSAT/EUVE observations of Encke (Lisse et al. 1999) and the nucleus rotation studies of Luu and Jewitt (1990, most likely rotation period = 15 hours) suggested a simple Chandra experiment - continuous ACIS-S observations of Encke over 15 hours during the time of its closest approach to Earth. Here we report initial results from our X-ray observations. X-ray emission from comet Encke was found only in a small, asymmetric region between 1500 km - 40,000 km from the nucleus. The Encke ACIS-S3 200 -- 1000 eV spectrum shows many of the same x-ray emission lines previously observed from comets (C+5, O+6,O+7), including confirmation of several emission lines in the 800 to 1000 eV range. However, the Encke spectrum shows very different line ratios in the 200 - 700 eV range than any previous comet. A lightcurve with peak-to-peak amplitude of 20% and period 11.7 hours was found over the 15 hour observing period. Comparing the observations to contemporaneous measurements of the coma and solar wind made by other means, we find the combination of a low density, collisionally thin (to charge exchange) coma and a post-massive X-flare, high temperature, moderate density solar wind can explain our unusual Encke x-ray observations.

  3. CHANDRA OBSERVATIONS OF COMETS C/2012 S1 (ISON) AND C/2011 L4 (PanSTARRS)

    Energy Technology Data Exchange (ETDEWEB)

    Snios, Bradford; Kharchenko, Vasili [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Wolk, Scott J. [Chandra X-Ray Observatory Center, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dennerl, Konrad [Max-Planck-Institut für extraterrestrische Physik, D-85748 Garching (Germany); Combi, Michael R. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-02-20

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31–November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17–23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comet's emission spectrum from first principles accordingly. Our model agrees with the observational spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophysical plasma interaction and SW composition. In addition, we observe potential soft X-ray emissions via ACIS around 0.2 keV from both comets that are correlated in intensity to the hard X-ray emissions between 0.4–1.0 keV. We fit our CX model to these emissions, but our lack of a unique solution at low energies makes it impossible to conclude if they are cometary CX in origin. Finally, we discuss probable emission mechanism sources for the soft X-rays and explore new opportunities these findings present in understanding cometary emission processes via Chandra.

  4. Chandra ACIS-S imaging spectroscopy of anomalously faint X-ray emission from Comet 103P/Hartley 2 during the EPOXI encounter

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Dennerl, K.; Bodewits, D.; Combi, M. R.; Lepri, S. T.; Zurbuchen, T. H.; Li, J. Y.; Dello-Russo, N.; Belton, M. J. S.; Knight, M. M.

    2013-02-01

    We present results from the Chandra X-ray Observatory's characterization of the X-ray emission from Comet 103P/Hartley 2, in support of NASA's Deep Impact Extended close flyby of the comet on 04 November 2010. The comet was observed 4 times for a total on target time of ˜60 ks between the 17th of October and 16th of November 2010, with two of the visits occurring during the EPOXI close approach on 04 November and 05 November 2010. X-ray emission from 103P was qualitatively similar to that observed for collisionally thin Comets 2P/Encke (Lisse, C.M. et al. [2005]. Astrophys. J. 635, 1329-1347) and 9P/Tempel 1 (Lisse, C.M. et al. [2007]. Icarus 190, 391-405). Emission morphology offset sunward but asymmetrical from the nucleus and emission lines produced by charge exchange between highly stripped C, N, and O solar wind minor ions and coma neutral gas species were found. The comet was very under-luminous in the X-ray at all times, representing the 3rd faintest comet ever detected (LX = 1.1 ± 0.3 × 1014 erg s-1). The coma was collisionally thin to the solar wind at all times, allowing solar wind ions to flow into the inner coma and interact with the densest neutral coma gas. Localization of the X-ray emission in the regions of the major rotating gas jets was observed, consistent with the major source of cometary neutral gas species being icy coma dust particles. Variable spectral features due to changing solar wind flux densities and charge states were also seen. Modeling of the Chandra observations from the first three visits using observed gas production rates and ACE solar wind ion fluxes with a charge exchange mechanism for the emission is consistent with the temporal and spectral behavior expected for a slow, hot wind typical of low latitude emission from the solar corona interacting with the comet's neutral coma. The X-ray emission during the 4th visit on 16 November 2010 is similar to the unusual behavior seen for Comet 17P/Holmes in 2007 (Christian, D.J. et

  5. Ten Years of Chandra

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We celebrated the 10-th anniversary of the Launch of the Chandra X-ray Observatory on July 13, 2009. During these 10 years data from this Great Observatory have had a profound impact on 21st century astrophysics. With its unrivaled capability to produce sub-arcsecond images, the Observatory has enabled astronomers to make new discoveries in topics as diverse as comets and cosmology. We shall review some of the highlights, discuss the current status, and future plans.

  6. A medium-deep Chandra and Subaru survey of the 13-h XMM/ROSAT deep survey area

    Science.gov (United States)

    McHardy, I. M.; Gunn, K. F.; Newsam, A. M.; Mason, K. O.; Page, M. J.; Takata, T.; Sekiguchi, K.; Sasseen, T.; Cordova, F.; Jones, L. R.; Loaring, N.

    2003-07-01

    We present the results of a Chandra ACIS-I survey of a high-latitude region at 13 h +38° which was earlier observed with ROSAT and which has recently been observed by XMM-Newton for 200 ks. XMM-Newton will provide good-quality X-ray spectra for over 200 sources with fluxes around the knee of the log N/ log S, which are responsible for the bulk of the X-ray background. The main aim of the Chandra observations is to provide arcsecond, or better, positions, and hence reliable identifications, for the XMM-Newton sources. The ACIS-I observations were arranged in a mosaic of four 30-ks pointings, covering almost all of the 15-arcmin radius XMM-Newton/ROSAT field. We detect 214 Chandra sources above a Cash likelihood statistic of 25, which approximates to 5σ significance, to a limiting flux of ~1.3 × 10-15 erg cm-2 s-1 (0.5-7 keV). Optical counterparts are derived from a Subaru SuprimeCam image reaching to R~ 27. The very large majority of the Chandra sources have an optical counterpart, with the distribution peaking at 23 high LX/Lopt ratios, implying absorption at moderate redshift. Comparison with the earlier ROSAT survey shows that the accuracy of the ROSAT positions agrees very well with the predictions from simulations by McHardy et al. and that the large majority of the identifications were correct.

  7. Chandra Survey of Nearby Galaxies: The Catalog

    Energy Technology Data Exchange (ETDEWEB)

    She, Rui; Feng, Hua [Department of Engineering Physics and Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100087 (China)

    2017-02-01

    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 10{sup 37} erg s{sup −1} on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  8. VARIABILITY OF OPTICAL COUNTERPARTS IN THE CHANDRA GALACTIC BULGE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Britt, C. T.; Hynes, R. I.; Johnson, C. B.; Baldwin, A.; Collazzi, A.; Gossen, L. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Jonker, P. G.; Torres, M. A. P. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Nelemans, G. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Maccarone, T. [Department of Physics, Texas Tech University, Box 41051, Science Building, Lubbock, TX 79409-1051 (United States); Steeghs, D.; Greiss, S. [Astronomy and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Heinke, C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Bassa, C. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Villar, A. [Department of Physics, Massachussettes Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Gabb, M. [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2014-09-01

    We present optical light curves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey (GBS). Using data from the Mosaic-II instrument on the Blanco 4 m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ∼2 hr to 8 days over the 3/4 of the X-ray survey containing sources from the initial GBS catalog. Among the light curve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. Eighty-seven percent of X-ray sources have at least one potential optical counterpart. Twenty-seven percent of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.

  9. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO2 IN 18 COMETS

    International Nuclear Information System (INIS)

    Ootsubo, Takafumi; Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru; Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka; Ishiguro, Masateru; Sekiguchi, Tomohiko; Watanabe, Jun-ichi; Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi

    2012-01-01

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 μm. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H 2 O) at 2.7 μm and carbon dioxide (CO 2 ) at 4.3 μm. The fundamental vibrational band of carbon monoxide (CO) around 4.7 μm and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-μm region in some of the comets. With respect to H 2 O, gas production rate ratios of CO 2 have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO 2 /H 2 O production rate ratios in comets obtained so far. The CO 2 /H 2 O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within ∼2.5 AU, since H 2 O ice fully sublimates there. The CO 2 /H 2 O ratio in cometary ice spans from several to ∼30% among the comets observed at 2 in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  10. Ensemble Properties of Comets in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; /Adler Planetarium, Chicago; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Harvard Coll. Observ.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /Boston U.; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Knapp, Gillian R.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2012-02-01

    We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u, g, r, i, z) photometry is used to determine the comets colors, sizes, surface brightness profiles, and rates of dust production in terms of the Afp formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(comets. The resolved comets show an extremely narrow distribution of colors (0.57 {+-} 0.05 in g - r for example), which are statistically indistinguishable from that of the Jupiter Trojans. Further, there is no evidence of correlation between color and physical, dynamical, or observational parameters for the observed comets.

  11. The NuSTAR Extragalactic Surveys: Initial Results and Catalog from the Extended Chandra Deep Field South

    DEFF Research Database (Denmark)

    Mullaney, J. R.; Del-Moro, A.; Aird, J.

    2015-01-01

    We present the initial results and the source catalog from the Nuclear Spectroscopic Telescope Array (NuSTAR) survey of the Extended Chandra Deep Field South (hereafter, ECDFS)—currently the deepest contiguous component of the NuSTAR extragalactic survey program. The survey covers the full ≈30......V fluxes) span the range L10 40 keV (0.7 300) 10 erg s» - ´ 43 1 -- ,sampling below the “knee” of the X-ray luminosity function out to z ~ 0.8-1. Finally, we identify oneNuSTAR source that has neither a Chandra nor an XMM-Newton counterpart, but that shows evidence of nuclearactivity at infrared...

  12. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO{sub 2} IN 18 COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Ootsubo, Takafumi [Astronomical Institute, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, Asahikawa Campus, Hokumon 9, Asahikawa, Hokkaido 070-8621 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi, E-mail: ootsubo@astr.tohoku.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-10

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 {mu}m. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H{sub 2}O) at 2.7 {mu}m and carbon dioxide (CO{sub 2}) at 4.3 {mu}m. The fundamental vibrational band of carbon monoxide (CO) around 4.7 {mu}m and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-{mu}m region in some of the comets. With respect to H{sub 2}O, gas production rate ratios of CO{sub 2} have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO{sub 2}/H{sub 2}O production rate ratios in comets obtained so far. The CO{sub 2}/H{sub 2}O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within {approx}2.5 AU, since H{sub 2}O ice fully sublimates there. The CO{sub 2}/H{sub 2}O ratio in cometary ice spans from several to {approx}30% among the comets observed at <2.5 AU (13 out of the 17 comets). Alternatively, the ratio of CO/CO{sub 2} in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  13. Results from the UMD physical properties of comets survey

    Science.gov (United States)

    Lisse, Carey M.; A'Hearn, Michael F.; Fernandez, Yanga R.

    2005-01-01

    We report on an ongoing statistical study of the emitted dust and exposed nuclei of a survey of the brightest near-Earth comets over the last 13 years. Combined thermal infrared and optical observations are analyzed using dynamical spectral and morphological coma models [123] to update and improve dust emission rates [4] and nucleus size estimates [5]. Using these results we show that 1) there is more than enough dust emitted from short period comets into bound solar system orbits to create and support the current interplanetary dust cloud (IPD); 2) that a population of dormant or extinct comets in the solar system is quite plausible; and 3) that the lifetime versus sublimation for the short period comets is much longer than their dynamical lifetime. [1] C.M. Lisse et al. (1998) Ap J 496 971. [2] C.M. Lisse et al. (1999) Icarus 140 189. [3] Y.R. Fernandez et al. (2000) Icarus 147 145 [4] L. Kresak and M. Kresakova (1987) in Symposium on Diversity and Similarity of Comets ESA SP-278 739 [5] D.C.Jewitt (1991) in Comets in the Post-Halley Era (R.L. Newburn M. Neugebauer and J. Rahe Eds.) Kluwer Academic Dordecht 19.

  14. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    International Nuclear Information System (INIS)

    Marchesi, S.; Civano, F.; Urry, C. M.; Elvis, M.; Salvato, M.; Brusa, M.; Lanzuisi, G.; Vignali, C.; Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N.; Hasinger, G.; Miyaji, T.; Treister, E.; Allevato, V.; Finoguenov, A.; Cardamone, C.; Griffiths, R. E.; Karim, A.

    2016-01-01

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg 2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction

  15. A Full Year's Chandra Exposure on Sloan Digital Sky Survey Quasars from the Chandra Multiwavelength Project

    Science.gov (United States)

    Green, Paul J.; Aldcroft, T. L.; Richards, G. T.; Barkhouse, W. A.; Constantin, A.; Haggard, D.; Karovska, M.; Kim, D.-W.; Kim, M.; Vikhlinin, A.; Anderson, S. F.; Mossman, A.; Kashyap, V.; Myers, A. D.; Silverman, J. D.; Wilkes, B. J.; Tananbaum, H.

    2009-01-01

    We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project. Our highest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.2 3, substantially expanding the known sample. We find no evidence for evolution out to z ~ 5 for either the X-ray photon index Γ or for the ratio of optical/UV to X-ray flux αox. About 10% of detected QSOs show best-fit intrinsic absorbing columns greater than 1022 cm-2, but the fraction might reach ~1/3 if most nondetections are absorbed. We confirm a significant correlation between αox and optical luminosity, but it flattens or disappears for fainter (MB gsim -23) active galactic nucleus (AGN) alone. We report significant hardening of Γ both toward higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in nonthermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and AGN. For uniformly selected subsamples of narrow-line Seyfert 1s and narrow absorption line QSOs, we find no evidence for unusual distributions of either αox or Γ.

  16. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Brusa, M.; Lanzuisi, G.; Vignali, C. [Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Allevato, V.; Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Cardamone, C. [Department of Science, Wheelock College, Boston, MA 02215 (United States); Griffiths, R. E. [Physics and Astronomy Dept., Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Karim, A. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2016-01-20

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.

  17. M Stars in the TW Hydra Association: A Chandra Large Program Survey

    Science.gov (United States)

    Punzi, Kristina; Kastner, Joel; Principe, David; Stelzer, Beate; Gorti, Uma; Pascucci, Illaria; Argiroffi, Costanza

    2018-01-01

    We have conducted a Cycle 18 Chandra Large Program survey of very cool members of the $\\sim$ 8 Myr-old TW Hydra Association (TWA) to extend our previous study of the potential connections between M star disks and X-rays (Kastner et al. 2016, AJ, 152, 3) to the extreme low-mass end of the stellar initial mass function. The spectral types of our targets extend down to the M/L borderline. Thus we can further investigate the potential connection between the intense X-ray emission from young, low-mass stars and the lifetimes of their circumstellar planet-forming discs, as well as better constrain the age at which coronal activity declines for stellar masses approaching the H-burning limit of $\\sim$ 0.08 M$_{\\odot}$. We present preliminary results from the Cycle 18 survey, including X-ray detection statistics and measurements of relative X-ray luminosities and coronal (X-ray) temperatures for those TWA stars detected by Chandra. This research is supported by SAO/CXC grant GO7-18002A and NASA Astrophysics Data Analysis program grants NNX12AH37G and NNX16AG13G to RIT.

  18. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  19. Detecting active comets with SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /MIT, MKI; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Princeton U. Observ.; Becker, Andrew; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Hall, Patrick B.; /York U., Canada; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  20. The McDonald Observatory Faint Comet Survey - Gas production in 17 comets

    Science.gov (United States)

    Cochran, Anita L.; Barker, Edwin S.; Ramseyer, Tod F.; Storrs, Alex D.

    1992-01-01

    The complete Intensified Dissector Scanner data set on 17 comets is presented, and production rates are derived and analyzed. It is shown that there is a strong degree of homogenization in the production rate ratios of many comets. It also appears that the ratio of the production rates of the various species has no heliocentric distance dependence, except for the case of NH2. When speaking of the gas in the coma of a comet, it appears that comets must have been formed under remarkably uniform conditions, and that they must have evolved and formed their comae in a similar manner. The data presented here constitute strong evidence that the minor species must be bound up in a lattice and that the interior of a comet must be reasonably uniform.

  1. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Plucinsky, Paul P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Haberl, Frank [Max-Planck-Institut für extraterrestrische Physik, Giessenbach straße, D-85748 Garching (Germany); Sasaki, Manami [Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg (Germany); Laycock, Silas, E-mail: jaesub@head.cfa.harvard.edu [Department of Physics, University of Massachusetts Lowell, MA 01854 (United States)

    2017-09-20

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} erg s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).

  2. Cometary X-rays - the View After the First Chandra Cycle

    Science.gov (United States)

    Lisse, Carey M.

    2001-09-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et al. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998, Lisse et al. 1999) have shown that the very soft (best fit thermal bremsstrahlung model kT 0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission, including new results from Chandra and XMM. As-observed morphologies, spectra, and light curves will be discussed. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma, the structure of the solar wind in the heliosphere, and the source of the local soft x-ray background. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  3. SQCX X-ray Observations Of The Deep Impact Spacecraft Close Encounters With Comets 9P/Tempel 1 And 103P/Hartley 2

    Science.gov (United States)

    Lisse, Carey M.; Dennerl, K.; Wolk, S. J.; Christian, D. J.; Bodewits, D.; Zurbuchen, T. H.; Combi, M.

    2010-03-01

    We present results from the extensive Chandra, SWIFT, Spitzer, and groundbased observing campaigns studying Comet 9P/Tempel 1 in support of NASA's Deep Impact (DI) mission as an indication of the results expected for the next DI flyby of comet 103P/Hartley 2 at 0.1 AU geocentric distance in November 2010. 9P/Tempel 1 was observed for 300 ksec between 30th June and 24th July 2005, and continuously for 60 ksec on July 4th during the impact event. X-ray emission qualitatively similar to that observed for the collisionally thin, cold wind comet 2P/Encke system (Lisse et al. 2005) was found, with emission morphology centered on the nucleus and emission lines due to C, N, O, and Ne solar wind minor ions. The comet was relatively faint on July 4th, and the total increase in x-ray flux due to the Deep Impact excavation was small, 20% of the immediate pre-impact value, consistent with estimates that the total coma neutral gas release due to the impact was 5 x 106 kg ( 10 hrs of normal coma outflow). Over time, other temporally variable spectral features due to changing solar wind flux densities and charge states were clearly seen. Good agreement between the Chandra and SWIFT x-ray photometry was found. Two flares, much stronger than the man-made increase due to Deep Impact, were found in the observed x-rays on June 30th and July 8th, 2005, and are coincident with increases in the solar wind flux arriving at the comet. Modeling of the Chandra data using observed Spitzer gas production rates and ACE solar wind ion fluxes with a SWCX mechanism for the emission was found to be consistent with the temporal- and spectral behavior expected for a slow, hot wind typical of low latitude emission from the solar corona interacting with the comet's neutral coma.

  4. Cometary X-ray Emission: the View After the First Chandra Observations

    Science.gov (United States)

    Lisse, C. M.

    2002-01-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et al. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998, Lisse et al. 1999) have shown that the very soft (best fit thermal bremsstrahlung model kT ~ 0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission, including new results from Chandra and XMM. As-observed morphologies, spectra, and light curves will be discussed. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma, the structure of the solar wind in the heliosphere, and the source of the local soft x-ray background. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  5. Chandra Studies of Planets and Comets in the X-ray

    Science.gov (United States)

    Lisse, Carey; Bhardwaj, A.; Wolk, S. J.; Christian, D. J.; Dennerl, K.; Bodewits, D.; Zurbuchen, T. H.

    2009-09-01

    The discovery of high energy x-ray emission in 1996 from C/1996 B2 (Hyakutake) created a new class of solar system x-ray emitting objects [1]. Subsequent detections of the morphology, spectra, and time dependence of the x-rays from more than 20 comets have shown that the very soft (E Lisse et al., Science 274, 205 (1996)[2] R. Wegmann and K. Dennerl, A&A 430, L33 (2005)[3] D. Bodewits et al., A&A 469, 1183 (2007)[4] A. Bhardwaj et al., PSS 55, 1135 - 1189 (2007)

  6. Observations of EUV and X-ray Emission from Comets

    Science.gov (United States)

    Lisse, C.

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations have shown that the very soft (best fit thermal bremsstrahlung model kT0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the more than 15 comets detected to date in x-rays, I report here on the latest results on cometary x-ray emission, including new results from Chandra, and show that charge exchange between highly ionized minor ions in the solar wind and neutral gases in the cometary coma is the most likely operative mechanism. I then use this result to study a number of problems of astrophysical interest: the nature of the cometary coma, other possible sources of x-ray emission in the solar system, the structure of the solar wind in the heliosphere, and the source of the local x-ray background.

  7. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    International Nuclear Information System (INIS)

    Miller, B. P.; Brandt, W. N.; Garmire, G. P.; Gibson, R. R.; Shemmer, O.

    2009-01-01

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  8. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication

  9. Statistical Characterization of the Chandra Source Catalog

    Science.gov (United States)

    Primini, Francis A.; Houck, John C.; Davis, John E.; Nowak, Michael A.; Evans, Ian N.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Hall, Diane M.; Harbo, Peter N.; He, Xiangqun Helen; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael S.; Van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2011-06-01

    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of 0.75% of the entire sky, using data from ~3900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other large Chandra catalogs, such as the ChaMP Point Source Catalog or the 2 Mega-second Deep Field Surveys, while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point-source populations.

  10. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  11. Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx

    Science.gov (United States)

    Ptak, Andrew

    2018-01-01

    Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.

  12. The "silent world" of Comet 15P/Finlay

    CERN Document Server

    Beech, M; Jones, J

    1999-01-01

    Comet 15P/Finlay is unusual in that, contrary to ab initio expectations, it demonstrates no apparent linkage to any known meteor shower. Using data contained within the Electronic Atlas of Dynamical Evolutions of Short-Period Comets, the authors evaluate theoretical shower radiants for Comet 15P/Finlay, but find no evidence to link it to any meteoric anomalies in recorded antiquity. This result, however, must be tempered by the fact that any Comet 15P/Finlay- derived meteoroids will have a low, 16 km s/sup -1/, encounter velocity with Earth's atmosphere. Typically, therefore, one would expect mostly faint meteors to be produced during an encounter with a Comet 15P/Finlay-derived meteoroid stream. they have conducted a D- criterion survey of meteoroid orbits derived from three southern hemisphere meteor radar surveys conducted during the 1960s, and again they find no evidence for any Comet 15P/Finlay-related activity. Numerical calculations following the orbital evolution of hypothetical meteoroids ejected fro...

  13. STATISTICAL CHARACTERIZATION OF THE CHANDRA SOURCE CATALOG

    International Nuclear Information System (INIS)

    Primini, Francis A.; Evans, Ian N.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Harbo, Peter N.; He Xiangqun; Karovska, Margarita; Houck, John C.; Davis, John E.; Nowak, Michael A.; Hall, Diane M.

    2011-01-01

    The first release of the Chandra Source Catalog (CSC) contains ∼95,000 X-ray sources in a total area of 0.75% of the entire sky, using data from ∼3900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other large Chandra catalogs, such as the ChaMP Point Source Catalog or the 2 Mega-second Deep Field Surveys, while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point-source populations.

  14. Studying Short-Period Comets and Long-Period Comets Detected by WISE/NEOWISE

    Science.gov (United States)

    Kramer, Emily A.; Fernández, Yanga R.; Bauer, James M.; Stevenson, Rachel; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph; Walker, Russell G.; Lisse, Carey M.

    2014-11-01

    The Wide-field Infrared Survey Explorer (WISE) mission surveyed the sky in four infrared wavelength bands (3.4, 4.6, 12 and 22-micron) between January 2010 and February 2011 [1, 2]. During the mission, WISE serendipitously observed 160 comets, including 21 newly discovered objects. About 89 of the comets observed by WISE displayed a significant dust tail in the 12 and 22-micron (thermal emission) bands, showing a wide range of activity levels and dust morphology. Since the observed objects are a mix of both long-period comets (LPCs) and short-period comets (SPCs), differences in their activity can be used to better understand the thermal evolution that each of these populations has undergone. For the comets that displayed a significant dust tail, we have estimated the sizes and ages of the particles using dynamical models based on the Finson-Probstein method [3, 4]. For a selection of 40 comets, we have then compared these models to the data using a novel tail-fitting method that allows the best-fit model to be chosen analytically rather than subjectively. For comets that were observed multiple times by WISE, the dust tail particle properties were estimated separately, and then compared. We find that the dust tails of both LPCs and SPCs are primarily comprised of ~mm to cm sized particles, which were the result of emission that occurred several months to several years prior to the observations. The LPCs nearly all have strong dust emission close to the comet's perihelion distance, and the SPCs mostly have strong dust emission close to perihelion, but some have strong dust emission well before perihelion. Acknowledgments: This publication makes use of data products from (1) WISE, which is a joint project of UCLA and JPL/Caltech, funded by NASA; and (2) NEOWISE, which is a project of JPL/Caltech, funded by the Planetary Science Division of NASA. EK was supported by a NASA Earth and Space Sciences Fellowship. RS gratefully acknowledges support from the NASA

  15. Comet: Multifunction VOEvent broker

    Science.gov (United States)

    Swinbank, John

    2014-04-01

    Comet is a Python implementation of the VOEvent Transport Protocol (VTP). VOEvent is the IVOA system for describing transient celestial events. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. The core of Comet is a multifunction VOEvent broker, capable of receiving events either by subscribing to one or more remote brokers or by direct connection from authors; it can then both process those events locally and forward them to its own subscribers. In addition, Comet provides a tool for publishing VOEvents to the global VOEvent backbone.

  16. CHANDRA OBSERVATIONS OF 3C RADIO SOURCES WITH z < 0.3. II. COMPLETING THE SNAPSHOT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Tremblay, G. R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Muenchen (Germany); Harris, D. E.; O' Dea, C. P. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kharb, P.; Axon, D. [Department of Physics, Rochester Institute of Technology, Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Balmaverde, B.; Capetti, A. [INAF-Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Baum, S. A. [Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Chiaberge, M.; Macchetto, F. D.; Sparks, W. [Space Telescope Science Institute, 3700 San Martine Drive, Baltimore, MD 21218 (United States); Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Giovannini, G. [INAF-Istituto di Radioastronomia di Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Grandi, P.; Torresi, E. [INAF-IASF-Istituto di Astrofisica Spaziale e fisica Cosmica di Bologna, Via P. Gobetti 101, I-40129 Bologna (Italy); Risaliti, G. [INAF-Osservatorio Astronomico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-15

    We report on the second round of Chandra observations of the 3C snapshot survey developed to observe the complete sample of 3C radio sources with z < 0.3 for 8 ks each. In the first paper, we illustrated the basic data reduction and analysis procedures performed for the 30 sources of the 3C sample observed during Chandra Cycle 9, while here we present the data for the remaining 27 sources observed during Cycle 12. We measured the X-ray intensity of the nuclei and of any radio hot spots and jet features with associated X-ray emission. X-ray fluxes in three energy bands, i.e., soft, medium, and hard, for all the sources analyzed are also reported. For the stronger nuclei, we also applied the standard spectral analysis, which provides the best-fit values of the X-ray spectral index and absorbing column density. In addition, a detailed analysis of bright X-ray nuclei that could be affected by pile-up has been performed. X-ray emission was detected for all the nuclei of the radio sources in our sample except for 3C 319. Among the current sample, there are two compact steep spectrum radio sources, two broad-line radio galaxies, and one wide angle tail radio galaxy, 3C 89, hosted in a cluster of galaxies clearly visible in our Chandra snapshot observation. In addition, we also detected soft X-ray emission arising from the galaxy cluster surrounding 3C 196.1. Finally, X-ray emission from hot spots has been found in three FR II radio sources and, in the case of 3C 459, we also report the detection of X-ray emission associated with the eastern radio lobe as well as X-ray emission cospatial with radio jets in 3C 29 and 3C 402.

  17. Chandra Snapshot Spectral Imaging of Comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR)

    Science.gov (United States)

    Lisse, Carey

    2003-09-01

    The highly favorable perigee passage of the very bright comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR) in late May 2004 provides an opportunity to study cometary x-ray emission in conjunction with the new CHIPS spectroscopic mission. In 10 ksec of on-target time for each comet, ACIS-S will obtain snapshot images of the comets in the heart of the CHIPS 0.05 0.150 keV spectroscopic monitoring period in late-May 2004. The combined observations have the potential of directly detecting for the first time the ultra-soft emission due to Mg, S, Si, and Fe predicted by McCammon et al. (2002) from soft x-ray background measurements and by Kharchenko et al. (2000, 2003) from models of solar wind minor ion charge exchange emission. New work by Wegmann, Dennerl, and Lisse (2004) allows a determination of the neutral gas production rate from the spatial scale of the emission, and an independent determination of the solar wind minor ion flux density using the x-ray surface brightness.

  18. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.

    2009-01-01

    function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...

  19. The First Chandra Field

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; /NASA, Marshall; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Cameron, Robert A.; /Harvard-Smithsonian Ctr. Astrophys. /SLAC; Gandhi,; Foellmi, Cedric; /European Southern Obs., Chile; Elsner, Ronald F.; /NASA, Marshall; Patel, Sandeep K.; /USRA, Huntsville; Wu, Kinwah; /Mullard Space Sci. Lab.; O' Dell, Stephen; /NASA, Marshall

    2005-09-09

    Before the official first-light images, the Chandra X-ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ''Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a Type-1 (unobscured) active galactic nucleus (AGN) at a redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the Eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive ({ge} 10{sup 9} M{sub {circle_dot}}) black hole, accreting at a rate approaching its Eddington limit.

  20. Second Chandra Instrument Activated August 28

    Science.gov (United States)

    1999-08-01

    Cambridge, MA--NASA's Chandra X-ray Observatory opened a new era in astronomy Saturday, August 28, by making the most precise measurements ever recorded of the energy output from the 10 million degree corona of a star. Last weekend's observations came after the successful activation of an instrument developed by MIT that will allow a one-thousand-fold improvement in the capability to measure X-ray spectra from space. The new measurements, made with the High Energy Transmission Grating Spectrometer, join spectacular images taken last week by Chandra of the aftermath of a gigantic stellar explosion. The spectrometer is one of four key instruments aboard Chandra, and the second to be activated. The others will be turned on over the next two weeks. The spectrometer activated yesterday spreads the X-rays from Chandra's mirrors into a spectrum, much as a prism spreads light into its colors. The spectrum then can be read by Chandra's imaging detectors like a kind of cosmic bar code from which scientists can deduce the chemical composition and temperature of the corona. A corona is a region of hot gas and magnetic loops that extend hundreds of thousands of miles above the star's visible surface and is best studied with X-rays. "The success of the new spectrometer is definitely a major milestone for modern astronomy," said MIT Professor Claude R. Canizares, principal investigator for the instrument and associate director of the Chandra X-ray Observatory Center (CXC). "Within the first hour we had obtained the best X-ray spectrum ever recorded for a celestial source. We can already see unexpected features that will teach us new things about stars and about matter at high temperatures." The spectrometer measured X-rays from the star Capella, which is 40 light years away in the constellation Auriga. Capella is actually two stars orbiting one another and possibly interacting in ways that pump extra heat into the corona, which appears more active than that of the Sun. How a star

  1. Multiwavelength Photometric Imaging of X-Ray and EUV Emission from Comet P/Tempel-Tuttle 1998

    Science.gov (United States)

    Lisse, Carey M.

    2004-01-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et ai. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et ai. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998. Lisse et al. 1999) have shown that the very soft (best fit thermal bremsstrahlung model kT approx. 0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results fiom the 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission, including new results from Chandra and XMM. As-observed morphologies, spectra, and light curves will be discussed. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma, the structure of the solar wind in the heliosphere, and the source of the local soft x-ray background. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  2. Chandra Independently Determines Hubble Constant

    Science.gov (United States)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  3. Observing comets

    CERN Document Server

    James, Nick

    2003-01-01

    Since comet Shoemaker-Levy collided with the planet Jupiter with stupendous force in 1994 there has been an upsurge of amateur interest in comets Most comets are first discovered by amateur astronomers because there are so many amateurs looking for them, and techniques and instruments have improved dramatically in the past few years After a short but detailed introduction to the comets themselves Nick James and Gerald North describe comet hunting, photographing and imaging comets, and digital image processing The use of computers for orbital calculations and even helping to discover new comets is given a full chapter, as are advanced techniques including comet photometry and spectroscopy This comprehensive book has an accompanying CD-ROM and is at once a "primer" for comet hunters and a reference text for more advanced amateur astronomers

  4. X-ray emission from comets

    International Nuclear Information System (INIS)

    Dennerl, Konrad

    1999-01-01

    When comet Hyakutake (C/1996 B2) encountered Earth in March 1996 at a minimum distance of only 15 million kilometers (40 times the distance of the moon), x-ray and extreme ultraviolet emission was discovered for the first time from a comet. The observations were performed with the astronomy satellites ROSAT and EUVE. A systematic search for x-rays from comets in archival data, obtained during the ROSAT all-sky survey in 1990/91, resulted in the discovery of x-ray emission from four additional comets. They were detected at seven occasions in total, when they were optically 300 to 30 000 times fainter than Hyakutake. These findings indicated that comets represent a new class of celestial x-ray sources. Subsequent detections of x-ray emission from additional comets with the satellites ROSAT, EUVE, and BeppoSAX confirmed this conclusion. The x-ray observations have obviously revealed the presence of a process in comets which had escaped attention until recently. This process is most likely charge exchange between highly charged heavy ions in the solar wind and cometary neutrals. The solar wind, a stream of particles continuously emitted from the sun with ≅ 400 km s -1 , consists predominantly of protons, electrons, and alpha particles, but contains also a small fraction (≅0.1%) of highly charged heavier ions, such as C 6+ ,O 6+ ,Ne 8+ ,Si 9+ ,Fe 11+ . When these ions capture electrons from the cometary gas, they attain highly excited states and radiate a large fraction of their excitation energy in the extreme ultraviolet and x-ray part of the spectrum. Charge exchange reproduces the intensity, the morphology and the spectrum of the observed x-ray emission from comets very well

  5. A High-definition View Of The Circum-nuclear Regions In Nearby Seyferts With Chandra And HST

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-09-01

    To improve our understanding of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS), which aims to examine feedback in action in much greater detail than at high redshift. Findings from Chandra studies of the circum-nuclear region in the archetypal Seyfert 1 galaxy NGC 4151 will be discussed in detail. Exploiting Chandra's highest possible resolution, we find evidence for X-ray emission from interaction between radio outflow and the optical narrow-line region clouds, in addition to the emission from photoionized gas.

  6. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES: THE SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng, E-mail: jfliu@bao.ac.cn, E-mail: songw@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D {sub 25} isophotes of 1110 galaxies, and 7504 sources are located between the D {sub 25} and 2 D {sub 25} isophotes of 910 galaxies. Contamination analysis with the log N –log S relation indicates that 51.3% of objects within 2 D {sub 25} isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 10{sup 37}, 10{sup 38}, and 10{sup 39} erg s{sup −1}, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov–Smirnov (K–S) criterion ( P {sub K–S} < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (∼2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to

  7. ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au

    Energy Technology Data Exchange (ETDEWEB)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.; Kelemen, J.; Pál, A.; Szakáts, R.; Szegedi-Elek, E.; Vida, K.; Vinkó, J.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege Miklós út 15-17 (Hungary); Marschalkó, G. [Eötvös Loránd Tudományegyetem, H-1117 Pázmány Péter sétány 1/A, Budapest (Hungary); Szalai, T. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Székely, P. [Department of Experimental Physics, University of Szeged, Szeged H-6720, Dóm tér 9 (Hungary)

    2016-12-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ values >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.

  8. ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au

    International Nuclear Information System (INIS)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.; Kelemen, J.; Pál, A.; Szakáts, R.; Szegedi-Elek, E.; Vida, K.; Vinkó, J.; Kiss, L. L.; Marschalkó, G.; Szalai, T.; Székely, P.

    2016-01-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ values >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.

  9. THE NEOWISE-DISCOVERED COMET POPULATION AND THE CO + CO{sub 2} PRODUCTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, James M.; Stevenson, Rachel; Kramer, Emily; Mainzer, A. K.; Masiero, Joseph R.; Weissman, Paul R.; Nugent, Carrie R.; Sonnett, Sarah [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 183-401, Pasadena, CA 91109 (United States); Grav, Tommy [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395 (United States); Fernández, Yan R. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., P.S. Building, Orlando, FL 32816-2385 (United States); Cutri, Roc M.; Dailey, John W.; Masci, Frank J.; Blair, Nathan; Lucas, Andrew [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Meech, Karen J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Manoa, HI 96822 (United States); Walker, Russel [Monterey Institute for Research in Astronomy, 200 Eighth Street, Marina, CA 93933 (United States); Lisse, C. M. [Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road Laurel, MD 20723-6099 (United States); McMillan, Robert S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Blvd., Kuiper Space Science Bldg. 92, Tucson, AZ 85721-0092 (United States); Wright, Edward L., E-mail: bauer@scn.jpl.nasa.gov [Department of Physics and Astronomy, University of California, P.O. Box 91547, Los Angeles, CA 90095-1547 (United States); Collaboration: WISE and NEOWISE Teams

    2015-12-01

    The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO{sub 2} production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 μm band excess. We find a possible relation between dust and CO + CO{sub 2} production, as well as possible differences in the sizes of long and short period comet nuclei.

  10. THE CHANDRA VARIABLE GUIDE STAR CATALOG

    International Nuclear Information System (INIS)

    Nichols, Joy S.; Lauer, Jennifer L.; Morgan, Douglas L.; Sundheim, Beth A.; Henden, Arne A.; Huenemoerder, David P.; Martin, Eric

    2010-01-01

    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 A range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are

  11. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  12. Theories of comets to the age of Laplace

    Science.gov (United States)

    Heidarzadeh, Tofigh

    Although the development of ideas about cometary motion has been investigated in several projects, a comprehensive and detailed survey of physical theories of comets has not been conducted. The available works either illustrate relatively short periods in the history of physical cometology or portray a landscape view without adequate details. The present study is an attempt to depict the details of the major physical theories of comets from Aristotle to the age of Laplace. The basic question from which this project originated was simple: how did natural philosophers and astronomers define the nature and place of a new category of celestial objects--the comets--after Brahe's estimation of cometary distances? However, a study starting merely from Brahe without covering classical and medieval thought about comets would be incomplete. Thus, based on the fundamental physical characteristics attributed to comets, the history of cometology may be divided into three periods: from Aristotle to Brahe, in which comets were assumed to be meteorological phenomena; from Brahe to Newton, when comets were admitted as celestial bodies but with unknown trajectories; and from Newton to Laplace, in which they were treated as members of the solar system having more or less the same properties of the planets. By estimating the mass of comets in the 1800s, Laplace diverted cometology into a different direction wherein they were considered among the smallest bodies in the solar system and deprived of the most important properties that had been used to explain their physical constitution during the previous two millennia. Ideas about the astrological aspects of comets are not considered in this study. Also, topics concerning the motion of comets are explained to the extent that is helpful in illustrating their physical properties. The main objective is to demonstrate the foundations of physical theories of comets, and the interaction between observational and mathematical astronomy, and

  13. THE CHANDRA SURVEY OF EXTRAGALACTIC SOURCES IN THE 3CR CATALOG: X-RAY EMISSION FROM NUCLEI, JETS, AND HOTSPOTS IN THE CHANDRA ARCHIVAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Harris, D. E.; Paggi, A.; Wilkes, B. J.; Kuraszkiewicz, J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Liuzzo, E.; Orienti, M.; Paladino, R. [Istituto di Radioastronomia, INAF, via Gobetti 101, I-40129, Bologna (Italy); Tremblay, G. R. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Baum, S. A.; O’Dea, C. P. [University of Manitoba, Dept of Physics and Astronomy, Winnipeg, MB R3T 2N2 (Canada)

    2015-09-15

    As part of our program to build a complete radio and X-ray database of all Third Cambridge catalog extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have already been published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the Very Large Array archive. For about 1/3 of the sources in the selected sample, a comparison between the Chandra and radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium for 15 galaxy clusters.

  14. Comets

    International Nuclear Information System (INIS)

    Hughes, D.W.

    1982-01-01

    Comets are objects of considerable fascination and this paper reviews the present knowledge of the physical structure of the cometary nucleus, coma and tail, the orbits of comets in the Solar System, the proposed mechanisms of cometary origin, the decay processes suffered by comets, and the ways in which they can be observed from Earth and by spacecraft. (author)

  15. ASA's Chandra Neon Discovery Solves Solar Paradox

    Science.gov (United States)

    2005-07-01

    NASA's Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works. "We use the sun to test how well we understand stars and, to some extent, the rest of the universe," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But in order to understand the sun, we need to know exactly what it is made of," he added. It is not well known how much neon the sun contains. This is critical information for creating theoretical models of the sun. Neon atoms, along with carbon, oxygen and nitrogen, play an important role in how quickly energy flows from nuclear reactions in the sun's core to its edge, where it then radiates into space. Chandra X-ray Spectrum of II Pegasi Chandra X-ray Spectrum of II Pegasi The rate of this energy flow determines the location and size of a crucial stellar region called the convection zone. The zone extends from near the sun's surface inward approximately 125,000 miles. The zone is where the gas undergoes a rolling, convective motion much like the unstable air in a thunderstorm. "This turbulent gas has an extremely important job, because nearly all of the energy emitted at the surface of the sun is transported there by convection," Drake said. The accepted amount of neon in the sun has led to a paradox. The predicted location and size of the solar convection zone disagree with those deduced from solar oscillations. Solar oscillations is a technique astronomers previously relied on to probe the sun's interior. Several scientists have noted the problem could be fixed if the abundance of neon is in fact about three times larger than currently accepted. Attempts to measure the precise amount of neon in the Sun have been frustrated by a quirk of nature; neon atoms in the Sun give off no signatures in visible light. However, in a gas

  16. Photochemistry of comets

    International Nuclear Information System (INIS)

    Huebner, W.F.

    1985-01-01

    The classification of comets, chemically rich mixtures of volatile materials and refractory grains, is described. The developments of coma and tails, and the composition and structure of coma, plasma tails, dust, and nucleus are examined. The differences between comets and planetary atmospheres are investigated. Three hypotheses on the origin of comets are proposed; one states that comets formed in the region of the giant planets, the second theory has the development of comets occuring in the outer parts of the solar nebula, and the third states that comets formed in a companion fragment of the nebula. The use of radar, photometric, spectral, and laboratory measurements for modeling comets is discussed. The physics and main photolytic and chemical reaction processes of a collision-dominated coma are analyzed; the influence of the solar wind on the coma is studied. A comparison of the model with observed data is presented; good correlation of data is observed. The features of Halley's Comet and other comets with distinctive characteristics are examined. Future comet exploration missions and the need to improve comet models are discussed. 31 references

  17. Visually observing comets

    CERN Document Server

    Seargent, David A J

    2017-01-01

    In these days of computers and CCD cameras, visual comet observers can still contribute scientifically useful data with the help of this handy reference for use in the field. Comets are one of the principal areas for productive pro-amateur collaboration in astronomy, but finding comets requires a different approach than the observing of more predictable targets. Principally directed toward amateur astronomers who prefer visual observing or who are interested in discovering a new comet or visually monitoring the behavior of known comets, it includes all the advice needed to thrive as a comet observer. After presenting a brief overview of the nature of comets and how we came to the modern understanding of comets, this book details the various types of observations that can usefully be carried out at the eyepiece of a telescope. Subjects range from how to search for new comets to visually estimating the brightness of comets and the length and orientation of tails, in addition to what to look for in comet heads a...

  18. The Chandra X-ray Observatory PSF Library

    Science.gov (United States)

    Karovska, M.; Beikman, S. J.; Elvis, M. S.; Flanagan, J. M.; Gaetz, T.; Glotfelty, K. J.; Jerius, D.; McDowell, J. C.; Rots, A. H.

    Pre-flight and on-orbit calibration of the Chandra X-Ray Observatory provided a unique base for developing detailed models of the optics and detectors. Using these models we have produced a set of simulations of the Chandra point spread function (PSF) which is available to the users via PSF library files. We describe here how the PSF models are generated and the design and content of the Chandra PSF library files.

  19. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NARCIS (Netherlands)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric

  20. OpenComet: An automated tool for comet assay image analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Gyori

    2014-01-01

    Full Text Available Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  1. Where are the mini Kreutz-family comets?

    International Nuclear Information System (INIS)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To; Kracht, Rainer

    2014-01-01

    The Kreutz family of sungrazing comets contains over 2000 known members, many of which are believed to be under ∼100 m sizes (mini comets) and have only been studied at small heliocentric distances (r H ) with space-based SOHO/STEREO spacecraft. To understand the brightening process of mini Kreutz comets, we conducted a survey using CFHT/MegaCam at moderate r H guided by SOHO/STEREO observations. We identify two comets that should be in our search area but are not detected, indicating that the comets have either followed a steeper brightening rate within the previously reported rapid brightening stage (the brightening burst), or the brightening burst starts earlier than expected. We present a composite analysis of the pre-perihelion light curves of five Kreutz comets that cover to ∼1 AU. We observe significant diversity in the light curves that can be used to grossly classify them into two types: C/Ikeya-Seki and C/SWAN follow the canonical r H −4 while the others follow r H −7 . In particular, C/SWAN seems to have undergone an outburst (Δm > 5 mag) or a rapid brightening (n ≳ 11) between r H = 1.06 AU and 0.52 AU, and shows hints of structural/compositional differences compared to other bright Kreutz comets. We also find evidence that the Kreutz comets as a population lose their mass less efficiently than the dynamically new comet, C/ISON, and are relatively devoid of species that drive C/ISON's activity at large r H . Concurrent observations of C/STEREO in different wavelengths also suggest that a blueward species such as CN may be the main driver for brightening bursts, instead of sodium as previously thought

  2. Chandra Sees Shape of Universe During Formative, Adolescent Years

    Science.gov (United States)

    2003-03-01

    Scientists using NASA's Chandra X-ray Observatory have taken a snapshot of the adolescent universe from about five billion years ago when the familiar web-like structure of galaxy chains and voids first emerged. The observation reveals distant and massive galaxies dotting the sky, clustered together under the gravitational attraction of deep, unseen pockets of dark matter. This provides important clues of how the universe matured from its chaotic beginnings to its elegant structure we see today. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. "Piece by piece, we are assembling a photo album of the universe through the ages," said Yuxuan Yang, a doctorate candidate at the University of Maryland, College Park, who conducted the analysis. "Last month we saw a picture of the infant universe taken with the Wilkinson Microwave Anisotropy Probe. Now we can add a snapshot of its adolescence." The Chandra observation traced a patch of sky known as the Lockman Hole in the constellation Ursa Major (containing the Big Dipper). Chandra saw a rich density of active galaxies, seven times denser than what has been detected in previous optical and radio surveys at similar distances. This provides the clearest picture yet at the large-scale structure of the universe at such distances (and age), according to Dr. Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who led the observation. Lockman Hole JPEG, TIFF, PS An image that has been "blurred" to allow better view of the structures outlined by the X-ray sources. The color represents the spectra of the AGN. The red color indicates the sources on average radiates at longer wavelength while green and blue colors indicates the sources radiates at shorter wavelength. The Green and blue regions appear to form a wall, or shows more lumpiness than the "red" sources. If one could capture the

  3. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  4. Chandra and the VLT Jointly Investigate the Cosmic X-Ray Background

    Science.gov (United States)

    2001-03-01

    in three different wavebands. PR Photo 09b/01 : A VLT/FORS1 spectrum of a 'Type II Quasar' discovered during this programme. The 'Chandra Deep Field South' and the X-Ray Background ESO PR Photo 09a/01 ESO PR Photo 09a/01 [Preview - JPEG: 400 x 183 pix - 76k] [Normal - JPEG: 800 x 366 pix - 208k] [Hires - JPEG: 3000 x 1453 pix - 1.4M] Caption : PR Photo 09a/01 shows optical/infrared images in three wavebands ('Blue', 'Red', 'Infrared') from ESO telescopes of the Type II Quasar CXOCDFS J033229.9 -275106 (at the centre), one of the distant X-ray sources identified in the Chandra Deep Field South (CDFS) area during the present study. Technical information about these photos is available below. The 'Chandra Deep Field South (CDFS)' is a small sky area in the southern constellation Fornax (The Oven). It measures about 16 arcmin across, or roughly half the diameter of the full moon. There is unusually little gas and dust within the Milky Way in this direction and observations towards the distant Universe within this field thus profit from an particularly clear view. That is exactly why this sky area was selected by an international team of astronomers [1] to carry out an ultra-deep survey of X-ray sources with the orbiting Chandra X-Ray Observatory . In order to detect the faintest possible sources, NASA's satellite telescope looked in this direction during an unprecedented total of almost 1 million seconds of exposure time (11.5 days). The main scientific goal of this survey is to understand the nature and evolution of the elusive sources that make up the 'X-ray background' . This diffuse glare in the X-ray sky was discovered by Riccardo Giacconi and his collaborators during a pioneering rocket experiment in 1962. The excellent imaging quality of Chandra (the angular resolution is about 1 arcsec) makes it possible to do extremely deep exposures without encountering problems introduced by the "confusion effect". This refers to the overlapping of images of sources that are

  5. Application of MCM image construction to IRAS comet observations

    Science.gov (United States)

    Schlapfer, Martin F.; Walker, Russell G.

    1994-01-01

    There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.

  6. The role of Chandra in ten years from now and for the next few decades of astrophysical research

    Science.gov (United States)

    D'Abrusco, Raffaele; Becker, Glenn E.; McCollough, Michael L.; Rots, Arnold H.; Thong, Sinh A.; Van Stone, David; Winkelman, Sherry

    2018-06-01

    For almost twenty years, Chandra has advanced our understanding of the X-ray Universe by allowing astronomers to peer into a previously unexplored region of the high-energy observational parameters space. Thanks to its longevity,the mission has accumulated a large, unique body of observations whose legacy value, already tangible at this point, will only increase with time, and whose long-lasting influence extends well beyond the energy interval probed by Chandra. The Chandra archive, through the extensive characterization of the links between observations and literature, has measured the impact of Chandra on the astrophysical literature at a high level of granularity, providing striking evidence of how deeply and widely Chandra has impacted the advancement of both high-energy astrophysics and astronomical research from a multi-wavelength perspective. In this talk, based on the missions that have been submitted for recommendation at the next decadal survey and the possible outcomes of the evaluation process, I will discuss how Chandra archival data can be used to anticipate the projected scientific success and long-lasting effects of a X-ray mission like Lynx or, differently, how they will become instrumental to maximize the scientific output of a new generation of facilities that will observe in different energies. I will argue that, in either scenario, the centrality of Chandra will extend well after the final demise of the mission, and its data will continue serving the community in many different ways for the foreseeable future.

  7. Constraints on Comet 332P/Ikeya-Murakami

    Science.gov (United States)

    Hui, Man-To; Ye, Quan-Zhi; Wiegert, Paul

    2017-01-01

    Encke-type comet 332P/Ikeya-Murakami is experiencing cascading fragmentation events during its 2016 apparition. It is likely the first splitting Encke-type comet ever observed. A nongravitational solution to the astrometry reveals a statistical detection of the radial and transverse nongravitational parameters, {A}1=(1.54+/- 0.39)× {10}-8 au day‑2 and {A}2=(7.19+/- 1.92)× {10}-9 au day‑2, respectively, which implies a nucleus erosion rate of (9.1+/- 1.7)‰ per orbital revolution. The mass-loss rate likely has to be supported by a much larger fraction of an active surface area than known cases of short-period comets; it may be relevant to the ongoing fragmentation. We failed to detect any serendipitous pre-discovery observations of the comet in archival data from major sky surveys, whereby we infer that 332P used to be largely inactive, and is perhaps among the few short-period comets that have been reactivated from weakly active or dormant states. We therefore constrain an upper limit to the nucleus size as 2.0 ± 0.2 km in radius. A search for small bodies in similar orbits to that of 332P reveals comet P/2010 B2 (WISE) to be the best candidate. From an empirical generalized Jupiter-family (Encke-type included) comet population model, we estimate the likelihood of a chance alignment of the 332P–P/2010 B2 pair to be 1 in 33, a small number indicative of a genetic linkage between the two comets on a statistical basis. The pair possibly originated from a common progenitor, which underwent a disintegration event well before the twentieth century.

  8. Macdonald difference operators and Harish-Chandra series

    NARCIS (Netherlands)

    Letzter, G.; Stokman, J.V.

    2008-01-01

    We analyse the centralizer of the Macdonald difference operator in an appropriate algebra of Weyl group invariant difference operators. We show that it coincides with Cherednik's commuting algebra of difference operators via an analog of the Harish-Chandra isomorphism. Analogs of Harish-Chandra

  9. Chandra Images Provide New Vision of Cosmic Explosions

    Science.gov (United States)

    1999-09-01

    Images from NASA's Chandra X-ray Observatory released today reveal previously unobserved features in the remnants of three different supernova explosions. Two of the remnants G21.5-0.9 and PSR 0540-69 show dramatic details of the prodigious production of energetic particles by a rapidly rotating, highly magnetized neutron star, as well as the enormous shell structures produced by the explosions. The image of the third remnant, E0102-72, reveals puzzling spoke-like structures in its interior. G21.5-0.9, in the constellation of Scutum, is about 16,000 light years (1 light year = 6 trillion miles) from Earth. Chandra's image shows a bright nebula surrounded by a much larger diffuse cloud. Inside the inner nebula is a bright central source that is thought to be a rapidly rotating highly magnetized neutron star. A rotating neutron star acts like a powerful generator, creating intense electric voltages that accelerate electrons to speeds close to the speed of light. The total output of this generator is greater than a thousand suns. The fluffy appearance of the central nebula is thought to be due to magnetic field lines which constrain the motions of the high-energy electrons. "It's a remarkable image," said Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics. "Neither the inner core nor the outer shell has ever been seen before." "It is as though we have a set of Russian dolls, with structures embedded within structures," said Professor Gordon Garmire of Penn State University, and principal investigator of the Advanced CCD Imaging Spectrometer, the X-ray camera that was used to make two of the images. NASA's project scientist, Dr. Martin Weisskopf of the Marshall Space Flight Center said, "Chandra's capability to provide surprises and insights continues." PSR 0540-69 PSR 0540-69 The existence of a rotating neutron star, or pulsar, in the center of G21.5-0.9 is inferred from the appearance of the nebula and the energy distribution of X-rays and radio

  10. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Observations of the bright side of the Moon with NASA's Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed. "We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., at a press conference at the "Four Years with Chandra" symposium in Huntsville, Alabama. "We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area," continued Drake. "It's the next best thing to being there, and it's very fast and cost-effective." The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra. According to the currently popular "giant impact" theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth's mantle, Drake and his colleagues plan to help test the giant impact hypothesis. "One early result," quipped Drake, "is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon." Illustration of Earth's Geocorona Illustration of Earth's Geocorona The same

  11. Chandra Sees Wealth Of Black Holes In Star-Forming Galaxies

    Science.gov (United States)

    2001-06-01

    -like galaxy as we watch. In NGC 253, Chandra may have found the causal connection between starburst activity and quasars." Chandra detected variability and a relatively large ratio of high- to low-energy X-rays in these sources - two characteristics of superheated gas falling into black holes. When combined with extreme luminosities, this tells astronomers that some of these objects must have masses many times greater than ordinary stellar black holes, if they radiate energy uniformly in all directions. Scenarios for the formation of such "intermediate-mass" black holes include the direct collapse of a single, massive cloud of gas into a black hole, or the coalescence of a cluster of stellar black holes, but no uniformly accepted model exists. M82-True Color Image True Color Image of M82 Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption An alternative possibility, mentioned by Giuseppina Fabbiano of the Harvard-Smithsonian team, is that the X-rays from such highly luminous sources are beamed toward us -- perhaps by a funnel formed by the infalling matter. This would imply that the mass of the underlying black hole is only about ten times the mass of the Sun, in line with the known black hole sources in our galaxy. In this event, they would represent a short-lived but common stage in the evolution of black holes in close binary star systems. Long-term monitoring of the very luminous X-ray sources should distinguish between these possibilities. Andrew Ptak, led a team from Carnegie-Mellon University in Pittsburgh, PA, and Penn State University, University Park, PA, that used Chandra data to survey 37 galaxies. Ptak’s team found that 25 percent of galaxies, which were chosen for their suspected central supermassive black holes and areas of star formation, had these very luminous X-ray sources. The team plans to expand their survey with Chandra to assess the probability of finding these very bright X-ray sources in other types of galaxies. NASA's Marshall Space Flight

  12. THE CHANDRA COSMOS-LEGACY SURVEY: THE z > 3 SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Shankar, F. [Department of Physics and Astronomy, University of Southampton, Highfield, SO17 1BJ (United Kingdom); Comastri, A.; Lanzuisi, G.; Vignali, C.; Zamorani, G.; Brusa, M.; Gilli, R. [INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna (Italy); Elvis, M. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Trakhtenbrot, B.; Schawinski, K. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Allevato, V. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Fiore, F. [INAF–Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monte Porzio Catone (Italy); Griffiths, R. [Physics and Astronomy Department, Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile)

    2016-08-20

    We present the largest high-redshift (3 < z < 6.85) sample of X-ray-selected active galactic nuclei (AGNs) on a contiguous field, using sources detected in the Chandra COSMOS-Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift and the other 87 with photometric redshift (z {sub phot}). In this work, we treat z {sub phot} as a probability-weighted sum of contributions, adding to our sample the contribution of sources with z {sub phot} < 3 but z {sub phot} probability distribution >0 at z > 3. We compute the number counts in the observed 0.5–2 keV band, finding a decline in the number of sources at z > 3 and constraining phenomenological models of the X-ray background. We compute the AGN space density at z > 3 in two different luminosity bins. At higher luminosities (log L (2–10 keV) > 44.1 erg s{sup −1}), the space density declines exponentially, dropping by a factor of ∼20 from z ∼ 3 to z ∼ 6. The observed decline is ∼80% steeper at lower luminosities (43.55 erg s{sup −1} < logL(2–10 keV) < 44.1 erg s{sup −1}) from z ∼ 3 to z ∼ 4.5. We study the space density evolution dividing our sample into optically classified Type 1 and Type 2 AGNs. At log L (2–10 keV) > 44.1 erg s{sup −1}, unobscured and obscured objects may have different evolution with redshift, with the obscured component being three times higher at z ∼ 5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGNs. These models significantly overpredict the number of expected AGNs at log L (2–10 keV) > 44.1 erg s{sup −1} with respect to our data.

  13. Mystery of comets

    International Nuclear Information System (INIS)

    Whipple, F.L.

    1985-01-01

    An account is given of the growth of human understanding of comets with emphasis initially placed on theories developed before the twentieth century and subsequently on information regarding the nature of comets, their origin and possible relation to life on earth. Special consideration is given to a description of how the author arrived at his own model of the origin and nature of comets, the dirty snowball theory. The significance of comets (i.e. the hazards they may represent) is assessed and space missions to Halley's comet together with the first landing on a comet (tentatively planned for 1995) are described. It is noted that this growth of cometary understanding is presented as an integral part of the growth of science and technology. 14 references

  14. Venkataraman, Prof. Chandra

    Indian Academy of Sciences (India)

    Elected: 2018 Section: Earth & Planetary Sciences. Venkataraman, Prof. Chandra Ph.D. (Univ. Calif., Los Angeles), FNAE, FNASc. Date of birth: 3 June 1963. Specialization: Aerosol Science & Engineering, Environmental & Climate Science, Atmospheric Science Address: Department of Chemical Engineering, Indian ...

  15. Physics of comets

    CERN Document Server

    Krishna Swamy, K S

    1997-01-01

    The study of Comet Halley in 1986 was a tremendous success for cometary science. In March of that year, six spacecrafts passed through Comet Halley as close as 600 km from the nucleus and made the in situ measurements of various kinds. These space missions to Comet Halley and that of the ICE spacecraft to Comet Giacobini-Zinner combined with studies, both ground-based and above the atmosphere, have increased our knowledge of cometary science in a dramatic way.This new edition of Physics of Comets incorporates these new and exciting findings. The emphasis of the book is on the physical processe

  16. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  17. Chandra Discovers Cosmic Cannonball

    Science.gov (United States)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  18. Chandra Maps Vital Elements From Supernova

    Science.gov (United States)

    1999-12-01

    A team of astronomers led by Dr. John Hughes of Rutgers University in Piscataway, NJ has used observations from NASA's orbital Chandra X-ray Observatory to make an important new discovery that sheds light on how silicon, iron, and other elements were produced in supernova explosions. An X-ray image of Cassiopeia A (Cas A), the remnant of an exploded star, reveals gaseous clumps of silicon, sulfur, and iron expelled from deep in the interior of the star. The findings appear online in the Astrophysical Journal Letters at http://www.journals.uchicago.edu/ and are slated for print publication on Jan. 10, 2000. Authors of the paper, "Nucleosynthesis and Mixing in Cassiopeia A", are Hughes, Rutgers graduate student Cara Rakowski, Dr. David Burrows of the Pennsylvania State University, University Park, PA and Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA. According to Hughes, one of the most profound accomplishments of twentieth century astronomy is the realization that nearly all of the elements other than hydrogen and helium were created in the interiors of stars. "During their lives, stars are factories that take the simplest element, hydrogen, and convert it into heavier ones," he said. "After consuming all the hydrogen in their cores, stars begin to evolve rapidly, until they finally run out of fuel and begin to collapse. In stars ten times or so more massive than our Sun, the central parts of the collapsing star may form a neutron star or a black hole, while the rest of the star is blown apart in a tremendous supernova explosion." Supernovae are rare, occurring only once every 50 years or so in a galaxy like our own. "When I first looked at the Chandra image of Cas A, I was amazed by the clarity and definition," said Hughes. "The image was much sharper than any previous one and I could immediately see lots of new details." Equal in significance to the image clarity is the potential the Chandra data held for measuring the

  19. CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS

    International Nuclear Information System (INIS)

    Vikhlinin, A.; Forman, W. R.; Jones, C.; Murray, S. S.; Kravtsov, A. V.; Burenin, R. A.; Voevodkin, A.; Ebeling, H.; Hornstrup, A.; Nagai, D.; Quintana, H.

    2009-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with (z) = 0.55 derived from 400 deg 2 ROSAT serendipitous survey and 49 brightest z ∼ 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Ω Λ > 0 with a ∼5σ significance, and constrains the dark energy equation-of-state parameter to w 0 = -1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = -0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos Σm ν M h and σ 8 from the low-redshift cluster mass function.

  20. Comets and their origin the tools to decipher a comet

    CERN Document Server

    Meierhenrich, Uwe

    2014-01-01

    Divided into two parts, the first four chapters of Comets and their Origin refer to comets and their formation in general, describing cometary missions, comet remote observations, astrochemistry, artificial comets, and the chirality phenomenon.The second part covers the cometary Rosetta mission, its launch, journey, scientific objectives, and instrumentations, as well as the landing scenario on a cometary nucleus. Along the way, the author presents general questions concerning the origin of terrestrial water and the molecular beginnings of lifeon Earth, as well as how the instruments used on

  1. Nirab Chandra Adhikary

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nirab Chandra Adhikary. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1613-1624. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process · Bhabesh Kumar Nath Aziz Khan ...

  2. Comet Giacobini-Zinner - a normal comet?

    International Nuclear Information System (INIS)

    Cochran, A.L.; Barker, E.S.

    1987-01-01

    Observations of Comet Giacobini-Zinner were obtained during its 1985 apparition using an IDS spectrograph at McDonald Observatory. Column densities and production rates were computed. The production rates were compared to observations of other normal comets. Giacobini-Zinner is shown to be depleted in C2 and C3 relative to CN. These production rates are down by a factor of 5. 12 references

  3. Origin and development of comets

    International Nuclear Information System (INIS)

    Kresak, L.

    1989-01-01

    The comets are the most primitive and probably also the oldest members of the solar system. Comet cores are brittle bodies of an irregular shape and of a size of 1 to 10 km whose main component is ice. Around 130 comets move along short-period paths whose aphelia are concentrated in the area of Jupiter. They are in the last stage of development. About 20 comets have periods of 20 to 200 years and feature higher motion stability. Roughly 180 comets have elliptical orbits of a period exceeding 200 years, 200 comets have parabolic and 120 comets have hyperbolic orbits. The most distant comets form the Oort cloud around the solar system consisting of about one billion comets. Comets originated roughly 4.6 thousand million years ago together with planets, probably inside the Oort cloud. (M.D.). 11 figs

  4. subhas chandra saha

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. SUBHAS CHANDRA SAHA. Articles written in Sadhana. Volume 41 Issue 5 May 2016 pp 549-559. A comparative study of multiple regression analysis and back propagation neural network approaches on plain carbon steel in submerged-arc welding · ABHIJIT SARKAR PRASENJIT DEY R N ...

  5. The Chandra Source Catalog : Automated Source Correlation

    Science.gov (United States)

    Hain, Roger; Evans, I. N.; Evans, J. D.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-01-01

    Chandra Source Catalog (CSC) master source pipeline processing seeks to automatically detect sources and compute their properties. Since Chandra is a pointed mission and not a sky survey, different sky regions are observed for a different number of times at varying orientations, resolutions, and other heterogeneous conditions. While this provides an opportunity to collect data from a potentially large number of observing passes, it also creates challenges in determining the best way to combine different detection results for the most accurate characterization of the detected sources. The CSC master source pipeline correlates data from multiple observations by updating existing cataloged source information with new data from the same sky region as they become available. This process sometimes leads to relatively straightforward conclusions, such as when single sources from two observations are similar in size and position. Other observation results require more logic to combine, such as one observation finding a single, large source and another identifying multiple, smaller sources at the same position. We present examples of different overlapping source detections processed in the current version of the CSC master source pipeline. We explain how they are resolved into entries in the master source database, and examine the challenges of computing source properties for the same source detected multiple times. Future enhancements are also discussed. This work is supported by NASA contract NAS8-03060 (CXC).

  6. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  7. Simultaneous Chandra/Swift Observations of the RT Cru Symbiotic System

    Science.gov (United States)

    Kashyap, Vinay; Kennea, J. A.; Karovska, M.; Calibration, Chandra

    2013-04-01

    The symbiotic star RT Cru was observed simultaneously by the Chandra/HRC-I and Swift/XRT in Dec 2012. The observations were carried out as part of a program to calibrate the Chandra PSF. The Chandra light curve shows a number of brightenings by factors of 2, with strong indications of a softening of the spectrum at these times. Swift observations cover a brief part of the Chandra light curve, and the intensities over this duration are tightly correlated. The Swift spectral data confirm the anticorrelation between intensity and spectral hardness. However, there are differences in the correlations at different periods that are not understood. We report on our analysis of the data, with emphasis on the spectral modeling at different times and intensity levels, and discuss the implications of the results on the emission mechanisms on symbiotic stars. We also report our inferences on the structure and energy dependence of the Chandra PSF anomaly, and on the high-energy cross-calibration between the HRC-I and XRT. This work is supported by the NASA contract NAS8-03060 to the Chandra X-ray Center.

  8. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    Science.gov (United States)

    Newburn, Ray L., Jr.; Spinrad, Hyron

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986.

  9. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.; Spinrad, H.

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986. 61 references

  10. Numerical simulations of comets - predictions for Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    Fedder, J.A.; Lyon, J.G.; Giuliani, J.L. Jr.

    1986-01-01

    Simulations of Comet Giacobini-Zinner's interaction with solar wind are described and results are presented. The simulations are carried out via the numerical solution of the ideal MHD equations as an initial value problem in a uniform solar wind. The calculations are performed on a Cartesian mesh centered at the comet. Results reveal that the first significant modifications of the solar wind along the ISEE/ICE trajectory will occur 100,000 km from the solar wind comet axis. 6 references

  11. Mission to the comets

    International Nuclear Information System (INIS)

    Hughes, D.

    1980-01-01

    The plans of space agencies in the United States and Europe for an exploratory comet mission including a one year rendezvous with comet Temple-2 and a fast fly-by of comet Halley are discussed. The mission provides an opportunity to make comparative measurements on the two different types of comets and also satisfies the three major scientific objectives of cometary missions namely: (1) To determine the chemical nature and the physical structure of cometary nuclei, and the changes that occur with time and orbital position. (2) To study the chemical and physical nature of the atmospheres and ionospheres of comets, the processes that occur in them, and their development with time and orbital position. (3) To determine the nature of the tails of comets and the processes by which they are formed, and to characterise the interaction of comets with solar wind. (UK)

  12. Deep 20-GHz survey of the Chandra Deep Field South and SDSS Stripe 82: source catalogue and spectral properties

    Science.gov (United States)

    Franzen, Thomas M. O.; Sadler, Elaine M.; Chhetri, Rajan; Ekers, Ronald D.; Mahony, Elizabeth K.; Murphy, Tara; Norris, Ray P.; Waldram, Elizabeth M.; Whittam, Imogen H.

    2014-04-01

    We present a source catalogue and first results from a deep, blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array, with follow-up observations at 5.5, 9 and 18 GHz. The Australia Telescope 20 GHz (AT20G) deep pilot survey covers a total area of 5 deg2 in the Chandra Deep Field South and in Stripe 82 of the Sloan Digital Sky Survey. We estimate the survey to be 90 per cent complete above 2.5 mJy. Of the 85 sources detected, 55 per cent have steep spectra (α _{1.4}^{20} law spectra between 1.4 and 18 GHz, while the spectral indices of the flat- or inverted-spectrum sources tend to steepen with frequency. Among the 18 inverted-spectrum (α _{1.4}^{20} ≥ 0.0) sources, 10 have clearly defined peaks in their spectra with α _{1.4}^{5.5} > 0.15 and α 9^{18} Cambridge and Tenth Cambridge surveys: there is a shift towards a steeper-spectrum population when going from ˜1 Jy to ˜5 mJy, which is followed by a shift back towards a flatter-spectrum population below ˜5 mJy. The 5-GHz source-count model by Jackson & Wall, which only includes contributions from FRI and FRII sources, and star-forming galaxies, does not reproduce the observed flattening of the flat-spectrum counts below ˜5 mJy. It is therefore possible that another population of sources is contributing to this effect.

  13. The Chandra Source Catalog: Storage and Interfaces

    Science.gov (United States)

    van Stone, David; Harbo, Peter N.; Tibbetts, Michael S.; Zografou, Panagoula; Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Winkelman, Sherry L.

    2009-09-01

    The Chandra Source Catalog (CSC) is part of the Chandra Data Archive (CDA) at the Chandra X-ray Center. The catalog contains source properties and associated data objects such as images, spectra, and lightcurves. The source properties are stored in relational databases and the data objects are stored in files with their metadata stored in databases. The CDA supports different versions of the catalog: multiple fixed release versions and a live database version. There are several interfaces to the catalog: CSCview, a graphical interface for building and submitting queries and for retrieving data objects; a command-line interface for property and source searches using ADQL; and VO-compliant services discoverable though the VO registry. This poster describes the structure of the catalog and provides an overview of the interfaces.

  14. Ammonia abundances in comets

    Science.gov (United States)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  15. Chandra Source Catalog: Background Determination and Source Detection

    Science.gov (United States)

    McCollough, Michael L.; Rots, A. H.; Primini, F. A.; Evans, I. N.; Glotfelty, K. J.; Hain, R.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-01-01

    The Chandra Source Catalog (CSC) is a major project in which all of the pointed imaging observations taken by the Chandra X-Ray Observatory will used to generate the most extensive X-ray source catalog produced to date. Early in the development of the CSC it was recognized that the ability to estimate local background levels in an automated fashion would be critical for essential CSC tasks such as source detection, photometry, sensitivity estimates, and source characterization. We present a discussion of how such background maps are created directly from the Chandra data and how they are used in source detection. The general background for Chandra observations is rather smoothly varying, containing only low spatial frequency components. However, in the case of ACIS data, a high spatial frequency component is added that is due to the readout streaks of the CCD chips. We discuss how these components can be estimated reliably using the Chandra data and what limitations and caveats should be considered in their use. We will discuss the source detection algorithm used for the CSC and the effects of the background images on the detection results. We will also touch on some the Catalog Inclusion and Quality Assurance criteria applied to the source detection results. This work is supported by NASA contract NAS8-03060 (CXC).

  16. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    Science.gov (United States)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  17. Comets in Australian Aboriginal Astronomy

    Science.gov (United States)

    Hamacher, Duane W.; Norris, Ray P.

    2011-03-01

    We present 25 accounts of comets from 40 Australian Aboriginal communities, citing both supernatural perceptions of comets and historical accounts of historically bright comets. Historical and ethnographic descriptions include the Great Comets of 1843, 1861, 1901, 1910, and 1927. We describe the perceptions of comets in Aboriginal societies and show that they are typically associated with fear, death, omens, malevolent spirits, and evil magic, consistent with many cultures around the world. We also provide a list of words for comets in 16 different Aboriginal languages.

  18. Chance and Chandra

    Indian Academy of Sciences (India)

    with inverse-square interparticle forces. The roles of ... ness fluctuations in the star fields of the Milky Way [1] and one on the inference of the distribution ... Chandra, however, argued for a cut-off at the mean interparticle distance, D ... the root of the difficulty with large impact parameters lies in the insistence upon Markovian.

  19. Comet showers and the steady-state infall of comets from the Oort cloud

    International Nuclear Information System (INIS)

    Hills, J.G.

    1981-01-01

    The appearance of an inner edge to the Oort comet cloud at a semimajor axis of a = (1--2) x 10 4 AU is an observational artifact. Stellar perturbations are frequent enough and strong enough to assure that a constant fraction of the comets with semimajor axes greater than this are in orbits which bring them within the planetary region. Only infrequent, close stellar encounters are able to repopulate the planet-crossing orbits of comets with smaller semimajor axes. Owing to their relatively short orbital periods which return them frequently to the planetary system, the comets in these more tightly bound orbits will be deflected by Jupiter into drastically different orbits or be destroyed by solar heating before another close stellar passage repopulates their numbers. Comets with semimajor axes less than 2 x 10 4 AU appear in the inner solar system only in intense bursts or showers which last for a few orbital periods after the close passage of a star to the Sun. This is followed by a much longer span of time during which only comets with a>2 x 10 4 AU enter the planetary system. The theoretically determined location of the boundary between the semimajor axes of those comets which enter the planetary system only in bursts or showers and those which arrive in a steady stream is very abrupt and falls at the observed inner edge of the Oort cloud. We propose that the comets formed in the outer parts of the collapsing protosun, which had a radius of less than 5 x 10 3 AU. If this produced a first-generation comet cloud with a radius of 10 3 AU or greater, the coupled dynamical perturbations of passing stars and Jupiter will, of necessity, lead to the formation of a comet cloud similar that of the observed Oort comet cloud

  20. Ammonia abundances in four comets

    International Nuclear Information System (INIS)

    Wickoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses. 64 refs

  1. NASA's Chandra Reveals Origin of Key Cosmic Explosions

    Science.gov (United States)

    2010-02-01

    brightness. Because these two scenarios would generate different amounts of X-ray emission, Gilfanov and Bogdan used Chandra to observe five nearby elliptical galaxies and the central region of the Andromeda galaxy. A Type 1a supernova caused by accreting material produces significant X- ray emission prior to the explosion. A supernova from a merger of two white dwarfs, on the other hand, would create significantly less X-ray emission than the accretion scenario. The scientists found the observed X-ray emission was a factor of 30 to 50 times smaller than expected from the accretion scenario, effectively ruling it out. This implies that white dwarf mergers dominate in these galaxies. An open question remains whether these white dwarf mergers are the primary catalyst for Type Ia supernovae in spiral galaxies. Further studies are required to know if supernovae in spiral galaxies are caused by mergers or a mixture of the two processes. Another intriguing consequence of this result is that a pair of white dwarfs is relatively hard to spot, even with the best telescopes. "To many astrophysicists, the merger scenario seemed to be less likely because too few double-white-dwarf systems appeared to exist," said Gilfanov. "Now this path to supernovae will have to be investigated in more detail." In addition to the X-rays observed with Chandra, other data critical for this result came from NASA's Spitzer Space Telescope and the ground-based, infrared Two Micron All Sky Survey. The infrared brightness of the galaxies allowed the team to estimate how many supernovae should occur. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  2. Chandra Sees Remarkable Eclipse of Black Hole

    Science.gov (United States)

    2007-04-01

    A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365

  3. Realm of the comets

    International Nuclear Information System (INIS)

    Weissman, P.R.

    1987-01-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars

  4. Budhani, Dr Ramesh Chandra

    Indian Academy of Sciences (India)

    Budhani, Dr Ramesh Chandra Ph.D. (IIT, Delhi), FNASc, FNA. Date of birth: 3 February 1955. Specialization: Renewable Energy, Nanoscale Systems, Experimental Condensed Matter Physics, Superconductivity and Magnetism Address: Department of Physics, Lasers & Photonics, Indian Institute of Technology, Kanpur 208 ...

  5. COMETARY VOLATILES AND THE ORIGIN OF COMETS

    International Nuclear Information System (INIS)

    A'Hearn, Michael F.; Feaga, Lori M.; Sunshine, Jessica M.; Besse, Sebastien; Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S.; Keller, H. Uwe; Kawakita, Hideyo; Hampton, Donald L.; Kissel, Jochen; Klaasen, Kenneth P.; Yeomans, Donald K.; McFadden, Lucy A.; Meech, Karen J.; Schultz, Peter H.; Thomas, Peter C.; Veverka, Joseph; Groussin, Olivier; Lisse, Carey M.

    2012-01-01

    We describe recent results on the CO/CO 2 /H 2 O composition of comets together with a survey of older literature (primarily for CO/H 2 O) and compare these with models of the protoplanetary disk. Even with the currently small sample, there is a wide dispersion in abundance ratios and little if any systematic difference between Jupiter-family comets (JFCs) and long-period and Halley-type comets (LPCs and HTCs). We argue that the cometary observations require reactions on grain surfaces to convert CO to CO 2 and also require formation of all types of comets in largely, but not entirely, overlapping regions, probably between the CO and CO 2 snow lines. Any difference in the regions of formation is in the opposite direction from the classical picture with the JFCs having formed closer to the Sun than the LPCs. In the classical picture, the LPCs formed in the region of the giant planets and the JFCs formed in the Kuiper Belt. However, these data suggest, consistent with suggestions on dynamical grounds, that the JFCs and LPCs formed in largely overlapping regions where the giant planets are today and with JFCs on average forming slightly closer to the Sun than did the LPCs. Presumably at least the JFCs passed through the scattered disk on their way to their present dynamical family.

  6. COMETARY VOLATILES AND THE ORIGIN OF COMETS

    Energy Technology Data Exchange (ETDEWEB)

    A' Hearn, Michael F.; Feaga, Lori M.; Sunshine, Jessica M.; Besse, Sebastien; Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Keller, H. Uwe [Institute for Geophysics and Extraterrestrial Physics, Technische Universitaet Braunschweig, D-38106 Braunschweig (Germany); Kawakita, Hideyo [Department of Physics, Kyoto Sangyo University, Kamigamo JP Kita-ku, Kyoto 603-8555 (Japan); Hampton, Donald L. [Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775 (United States); Kissel, Jochen [Max-Planck-Institut for Solar System Research, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany); Klaasen, Kenneth P.; Yeomans, Donald K. [Jet Propulsion Laboratory/Caltech, Pasadena, CA 91109 (United States); McFadden, Lucy A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Meech, Karen J. [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Schultz, Peter H. [Department of Geological Sciences, Brown University, Providence, RI 02912 (United States); Thomas, Peter C.; Veverka, Joseph [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Groussin, Olivier [Laboratoire d' Astrophysique de Marseille, Universite d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Lisse, Carey M., E-mail: ma@astro.umd.edu [Space Department, JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); and others

    2012-10-10

    We describe recent results on the CO/CO{sub 2}/H{sub 2}O composition of comets together with a survey of older literature (primarily for CO/H{sub 2}O) and compare these with models of the protoplanetary disk. Even with the currently small sample, there is a wide dispersion in abundance ratios and little if any systematic difference between Jupiter-family comets (JFCs) and long-period and Halley-type comets (LPCs and HTCs). We argue that the cometary observations require reactions on grain surfaces to convert CO to CO{sub 2} and also require formation of all types of comets in largely, but not entirely, overlapping regions, probably between the CO and CO{sub 2} snow lines. Any difference in the regions of formation is in the opposite direction from the classical picture with the JFCs having formed closer to the Sun than the LPCs. In the classical picture, the LPCs formed in the region of the giant planets and the JFCs formed in the Kuiper Belt. However, these data suggest, consistent with suggestions on dynamical grounds, that the JFCs and LPCs formed in largely overlapping regions where the giant planets are today and with JFCs on average forming slightly closer to the Sun than did the LPCs. Presumably at least the JFCs passed through the scattered disk on their way to their present dynamical family.

  7. CIAO: CHANDRA/X-RAY DATA ANALYSIS FOR EVERYONE

    Science.gov (United States)

    McDowell, Jonathan; CIAO Team

    2018-01-01

    Eighteen years after the launch of Chandra, the archive is full of scientifically rich data and new observations continue. Improvements in recent years to the data analysis package CIAO (Chandra Interactive Analysis of Observations) and its extensive accompanying documentation make it easier for astronomers without a specialist background in high energy astrophysics to take advantage of this resource.The CXC supports hundreds of CIAO users around the world at all levels of training from high school and undergraduate students to the most experienced X-ray astronomers. In general, we strive to provide a software system which is easy for beginners, yet powerful for advanced users.Chandra data cover a range of instrument configurations and types of target (pointlike, extended and moving), requiring a flexible data analysis system. In addition to CIAO tools using the familiar FTOOLS/IRAF-style parameter interface, CIAO includes applications such as the Sherpa fitting engine which provide access to the data via Python scripting.In this poster we point prospective (and existing!) users to the high level Python scripts now provided to reprocess Chandra or other X-ray mission data, determine source fluxes and upper limits, and estimate backgrounds; and to the latest documentation including the CIAO Gallery, a new entry point featuring the system's different capabilities.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  8. EMISSION LINES BETWEEN 1 AND 2 keV IN COMETARY X-RAY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Ian; Christian, Damian J. [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330 (United States); Bodewits, Dennis [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Dennerl, Konrad [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, D-85741 Garching Germany (Germany); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723 (United States); Wolk, Scott J., E-mail: ian.ewing.794@my.csun.edu, E-mail: daman.christian@csun.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-01-20

    We present the detection of new cometary X-ray emission lines in the 1.0-2.0 keV range using a sample of comets observed with the Chandra X-Ray Observatory and ACIS spectrometer. We have selected five comets from the Chandra sample with good signal-to-noise spectra. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), and C/2008 8P (Tuttle). We modeled the spectra with an extended version of our solar wind charge exchange (SWCX) emission model. Above 1 keV, we find Ikeya-Zhang to have strong emission lines at 1340 and 1850 eV which we identify as being created by SWCX lines of Mg XI and Si XIII, respectively, and weaker emission lines at 1470, 1600, and 1950 eV formed by SWCX of Mg XII, Mg XI, and Si XIV, respectively. The Mg XI and XII and Si XIII and XIV lines are detected at a significant level for the other comets in our sample (LS4, MH, Encke, 8P), and these lines promise additional diagnostics to be included in SWCX models. The silicon lines in the 1700-2000 eV range are detected for all comets, but with the rising background and decreasing cometary emission, we caution that these detections need further confirmation with higher resolution instruments.

  9. Comet thermal modeling

    International Nuclear Information System (INIS)

    Weissman, P.R.; Kieffer, H.H.

    1987-01-01

    The past year was one of tremendous activity because of the appearance of Halley's Comet. Observations of the comet were collected from a number of sources and compared with the detailed predictions of the comet thermal modeling program. Spacecraft observations of key physical parameters for cometary nucleus were incorporated into the thermal model and new cases run. These results have led to a much better understanding of physical processes on the nucleus and have pointed the way for further improvements to the modeling program. A model for the large-scale structure of cometary nuclei was proposed in which comets were envisioned as loosely bound agglomerations of smaller icy planetesimals, essentially a rubble pile of primordial dirty snowballs. In addition, a study of the physical history of comets was begun, concentrating on processes during formation and in the Oort cloud which would alter the volatile and nonvolatile materials in cometary nuclei from their pristine state before formation

  10. Lakhotia, Prof. Subhash Chandra

    Indian Academy of Sciences (India)

    Elected: 1994 Section: Animal Sciences. Lakhotia, Prof. Subhash Chandra Ph.D. (Calcutta), FNA, FNASc. Date of birth: 4 October 1945. Specialization: Ayurvedic Biology, Cytogenetics, Gene Expression, Stress Biology and Molecular Biology Address: INSA Senior Scientist, Department of Zoology, Banaras Hindu University ...

  11. Disintegration of comet nuclei

    International Nuclear Information System (INIS)

    Ksanfomality, Leonid V

    2012-01-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)

  12. Disintegration of comet nuclei

    Science.gov (United States)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  13. Optical observation of comets

    International Nuclear Information System (INIS)

    Tanabe, Hiroyoshi

    1974-01-01

    The observation of comets is proposed to study the state of interplanetary space. The behavior of the tails of comets shows the state of solar wind. On July 4, 1964, large bending was seen in the tail of the Tomita-Gerber-Handa comet. Then, on July 7, 1964, geomagnetic disturbance was observed. Disturbance in the tail of Kohoutek comet was seen on Jan. 19, 1974, and Ksub(p)--5 on the ground on Jan. 25. The effort for the quantitative measurement of the parameters of solar wind has been continued in various countries. Recently, the large scale observation of the Kohoutek comet was carried out in the world. Preliminary report is presented in this paper. Waving in the type 1 tail of the comet was seen, and this phenomenon may show some instability due to the interaction between the tail and the solar wind. Periodic variation of the direction of the tail has been reported. The present result also confirmed this report. In case of small comets, flare-up occurs and original luminous intensity is regained after several days. Measurement of the spectrum at the time of flare-up may show information concerning temporary variation of the state of interplanetary space. For the tracking of time variation of comets, cooperation of a number of stations at different positions is required. (Kato, T.)

  14. Disappearance and disintegration of comets

    Science.gov (United States)

    Sekanina, Z.

    1984-01-01

    The present investigation has the objective to provide a summary of the existing evidence on the disappearance of comets and to draw conclusions regarding the physical processes involved in the disappearance. Information concerning the classification of evidence and the causes of apparent disappearance of comets is presented in a table. Attention is given to the dissipating comets, the headless sungrazing comet 1887 I, and the physical behavior of the dissipating comets and the related phenomena. It is found that all comets confined to the planetary region of the solar system decay on astronomically short time scales. However, only some of them appear to perish catastrophically. Some of the observed phenomena could be successfully interpreted. But little insight has been obtained into the character of the processes which the dissipating comets experience.

  15. The Chandra Source Catalog: Processing and Infrastructure

    Science.gov (United States)

    Evans, Janet; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Hall, Diane M.; Miller, Joseph B.; Plummer, David A.; Zografou, Panagoula; Primini, Francis A.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    Chandra Source Catalog processing recalibrates each observation using the latest available calibration data, and employs a wavelet-based source detection algorithm to identify all the X-ray sources in the field of view. Source properties are then extracted from each detected source that is a candidate for inclusion in the catalog. Catalog processing is completed by matching sources across multiple observations, merging common detections, and applying quality assurance checks. The Chandra Source Catalog processing system shares a common processing infrastructure and utilizes much of the functionality that is built into the Standard Data Processing (SDP) pipeline system that provides calibrated Chandra data to end-users. Other key components of the catalog processing system have been assembled from the portable CIAO data analysis package. Minimal new software tool development has been required to support the science algorithms needed for catalog production. Since processing pipelines must be instantiated for each detected source, the number of pipelines that are run during catalog construction is a factor of order 100 times larger than for SDP. The increased computational load, and inherent parallel nature of the processing, is handled by distributing the workload across a multi-node Beowulf cluster. Modifications to the SDP automated processing application to support catalog processing, and extensions to Chandra Data Archive software to ingest and retrieve catalog products, complete the upgrades to the infrastructure to support catalog processing.

  16. Physical processes in comets

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.

    1988-01-01

    When this program began in 1975 only limited photometry had been carried out on comets at any wavelength. Program goals were to observe many comets, including faint periodic comets, at a range of heliocentric distances in order to begin to understand the range of behavior among comets and in a given comet during its approach and departure from the sun. Then a study of the continuum of scattered light from dust was added. More recently the value of joint team observations in visible and infrared light has been recognized and utilized as often as possible. All 1978 to 1982 data was reanalyzed and 1983 to 1986 data analyzed in the framwork of the post-Halley paradigm, covering 25 comets in all. Four observing runs (June, July, Sept., and Jan.) with Hanner produced excellent results on Wilson, Bradfield, P/Klemola, and P/Borrelly and lesser data on other objects, including the last reported IR photometry of P/Halley. The Wilson and Halley data have been reduced

  17. Thakur, Dr Vikram Chandra

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1991 Section: Earth & Planetary Sciences. Thakur, Dr Vikram Chandra Ph.D. (London). Date of birth: 15 January 1940. Specialization: Structural Geology, Tectonics of Himalayan Geology and Active Tectonics Address: 9/12 (Lane 9), Ashirwad Eclave, Dehra Dun 248 001, ...

  18. Chaturvedi, Prof. Umesh Chandra

    Indian Academy of Sciences (India)

    Chaturvedi, Prof. Umesh Chandra M.D. (Lucknow), FRC Path. (London), FAMS, FNA, FNASc, FAAM(USA). Date of birth: 2 March 1939. Specialization: Medical Microbiology, Virology and Immunology Address: 201, Annapurna Apartments, No. 1, Bishop Rocky Street, Faizabad Road, Lucknow 226 007, U.P.. Contact:

  19. Chandra Discovers X-ray Source at the Center of Our Galaxy

    Science.gov (United States)

    2000-01-01

    observations," Baganoff said. If Sagittarius A* is powered by a supermassive black hole, astronomers expected that there would be a lot of matter to suck up in a crowded place like the galactic center. The faintness of the source may indicate a dearth of matter floating toward the black hole or it may indicate that the environment of the black hole is for some reason rejecting most of the infalling material. Chandra's Powerful Vision Optical telescopes such as the Hubble Space Telescope cannot see the center of our galaxy, which is enshrouded in thick clouds of dust and gas in the plane of the galaxy. However, hot gas and charged particles moving at nearly the speed of light produce X-rays that penetrate this shroud. Only a few months after its launch, Chandra accomplished what no other optical or X-ray satellite was able to do: separate the emissions from the surrounding hot gas and nearby compact sources that prevented other satellites from detecting this new X-ray source. Mark Morris of the University of California at Los Angeles, who has studied this region intensely for 20 years, called Chandra's data "a gold mine" for astronomers. "With more observing time on Chandra in the next two or three years, we will be able to build up a spectrum that will allow us to rule out various classes of objects and either emission," Baganoff said. "If we show that the emission is from a supermassive black hole, we will then be set to begin a detailed study of the X-ray emission from the nearest analog of a quasar or active galactic nucleus." Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, was conceived and developed for NASA by Penn State University and MIT under the leadership of Penn State Professor Gordon Garmire. Related Press Press Room: Sagittarius A* Press Release (06 Jan 03) Press Room: Galactic Center (Survey) Press Release (09 Jan 02) To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0204/index

  20. CO2 Orbital Trends in Comets

    Science.gov (United States)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  1. CHEERS Results on Mrk 573: A Study of Deep Chandra Observations

    Science.gov (United States)

    Paggi, Alessandro; Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita

    2012-09-01

    We present results on Mrk 573 obtained as part of the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS). Previous studies showed that this source features a biconical emission in the soft X-ray band closely related to the narrow-line region as mapped by the [O III] emission line and the radio emission, though on a smaller scale; we investigate the properties of soft X-ray emission from this source with new deep Chandra observations. Making use of the subpixel resolution of the Chandra/ACIS image and point-spread function deconvolution, we resolve and study substructures in each ionizing cone. The two cone spectra are fitted with a photoionization model, showing a mildly photoionized phase diffused over the bicone. Thermal collisional gas at about ~1.1 keV and ~0.8 keV appears to be located between the nucleus and the "knots" resolved in radio observations, and between the "arcs" resolved in the optical images, respectively; this can be interpreted in terms of shock interaction with the host galactic plane. The nucleus shows a significant flux decrease across the observations indicating variability of the active galactic nucleus (AGN), with the nuclear region featuring a higher ionization parameter with respect to the bicone region. The long exposure allows us to find extended emission up to ~7 kpc from the nucleus along the bicone axis. Significant emission is also detected in the direction perpendicular to the ionizing cones, disagreeing with the fully obscuring torus prescribed in the AGN unified model and suggesting instead the presence of a clumpy structure.

  2. The Chandra Source Catalog: Background Determination and Source Detection

    Science.gov (United States)

    McCollough, Michael; Rots, Arnold; Primini, Francis A.; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Danny G. Gibbs, II; Grier, John D.; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The Chandra Source Catalog (CSC) is a major project in which all of the pointed imaging observations taken by the Chandra X-Ray Observatory are used to generate one of the most extensive X-ray source catalog produced to date. Early in the development of the CSC it was recognized that the ability to estimate local background levels in an automated fashion would be critical for essential CSC tasks such as source detection, photometry, sensitivity estimates, and source characterization. We present a discussion of how such background maps are created directly from the Chandra data and how they are used in source detection. The general background for Chandra observations is rather smoothly varying, containing only low spatial frequency components. However, in the case of ACIS data, a high spatial frequency component is added that is due to the readout streaks of the CCD chips. We discuss how these components can be estimated reliably using the Chandra data and what limitations and caveats should be considered in their use. We will discuss the source detection algorithm used for the CSC and the effects of the background images on the detection results. We will also touch on some the Catalog Inclusion and Quality Assurance criteria applied to the source detection results. This work is supported by NASA contract NAS8-03060 (CXC).

  3. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    -energy X-ray background, showing that it arose in very faraway galaxies with extremely bright cores, called quasars or Active Galactic Nuclei (AGN). The Chandra team sampled a region of the sky about one-fifth the angular area of a full moon and resolved about 80 percent of the more-energetic X-ray background into discrete sources. Stretched across the entire sky, this would account for approximately 70 million sources, most of which would be identified with galaxies. Their analysis confirms that a significant fraction of the X-ray background cannot be due to diffuse radiation from hot, intergalactic gas. Combined X-ray and optical observations showed that nearly one third of the sources are galaxies whose cores are very bright in X rays yet emit virtually no optical light from the core. The observation suggests that these "veiled galactic nuclei" galaxies may number in the tens of millions over the whole sky. They almost certainly harbor a massive black hole at their core that produces X rays as the gas is pulled toward it at nearly the speed of light. Their bright X-ray cores place these galaxies in the AGN family. Because these numerous AGN are bright in X rays, but optically dim, the Chandra observation implies that optical surveys of AGN are very incomplete. A second new class of objects, comprising approximately one-third of the background, is assumed to be "ultra-faint galaxies." Mushotzky said that these sources may emit little or no optical light, either because the dust around the galaxy blocks the light totally or because the optical light is eventually absorbed by relatively cool gas during its long journey across the universe. In the latter scenario, Mushotzky said that these sources would have a redshift of 6 or higher, meaning that they are well over 14 billion light years away and thus the earliest, most distant objects ever identified. "This is a very exciting discovery," said Dr. Alan Bunner, Director of NASA's Structure and Evolution of the universe

  4. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    Science.gov (United States)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  5. Cometography a catalog of comets

    CERN Document Server

    Kronk, Gary W; Seargent, David A J

    2017-01-01

    Cometography is a multi-volume catalog of every comet observed from ancient times up to the 1990s, when the internet took off as a medium of scientific record. It uses the most reliable orbits known to determine the distances from the Earth and Sun at the time of discovery and last observation, as well as the largest and smallest angular distance to the Sun, most northerly and southerly declination, closest distance to the Earth, and other details, to enable the reader to understand each comet's physical appearance. Volume 6, the final volume in the catalog, covers the observations and pertinent calculations for every comet seen between 1983 and 1993. The comets are listed in chronological order, with complete references to publications relating to each comet and physical descriptions of each comet's development throughout its apparition. Cometography is the definitive reference on comets through the ages, for astronomers and historians of science.

  6. Postencounter view of comets

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1988-01-01

    Ground-based and space observations of Comet Halley during its 1986 perihelion passage are reviewed, with an emphasis on their implications for theoretical models. Consideration is given to the shape, surface morphology, and composition of the comet nucleus; the shape, dynamics, and composition of the dust tail; neutral and ionic gas species in the head and plasma tail; and the comet/solar-wind interaction. Extensive diagrams, graphs, and sample images are provided, and the potential value of the new kinds of data to be obtained with the NASA Comet-Rendezvous/Asteroid-Flyby spacecraft is discussed. 139 references

  7. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    Science.gov (United States)

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The

  8. Composition of faint comets

    International Nuclear Information System (INIS)

    Brown, L.W.

    1986-01-01

    The study uses an emission line, differential imaging camera built by the Science Operations Branch. This instrument allows photometric data to be obtained over a large area of a comet in a large number of resolution elements. The detector is a 100x100 Reticon array which with interchangeable optics can give resolutions from 2'' to 30'' over a field of 1' to 15'. The camera through its controlling computer can simultaneously take images in on-line and continuum filters and through computer subtraction and calibration present a photometric image of the comet produced by only the emission of the molecule under study. Initial work has shown two significant problems. First the auxiliary equipment of the telescope has not allowed the unambiguous location of faint comets so that systematic observations could be made, and secondly initial data has not shown much molecular emission from the faint comets which were located. Work last year on a software and hardware display system and this year on additional guide motors on the 36-inch telescope has allowed the differential camera to act as its own finder and guide scope. Comet IRAS was observed in C2 and CO+, as well as an occultation by the comet of SAO029103. The perodic comet Giacobini-Zinner was also observed in C2

  9. ISO's analysis of Comet Hale-Bopp

    Science.gov (United States)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition

  10. Physics of comets

    CERN Document Server

    Krishna Swamy, K S

    2010-01-01

    This revised edition places a unique emphasis on all the new results from ground-based, satellites and space missions - detection of molecule H2 and prompt emission lines of OH for the first time; discovery of X-rays in comets; observed diversity in chemical composition among comets; the puzzle of the constancy of spin temperature; the well-established mineralogy of cometary dust; extensive theoretical modeling carried out for understanding the observed effects; and, the similarity in the mineralogy of dust in circumstellar shell of stars, comets, meteorites, asteroids and IDPs, thus indicatin

  11. Comets in UV

    Science.gov (United States)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  12. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  13. Periodic Comet Machholz and its idiosyncrasies

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1990-01-01

    The dynamics and physical characteristics of Comet P/Machholz are analyzed. The discovery of the comet (Machholz, 1986) is discussed, including the observational conditions and the theory that the comet is inactive over extensive periods of time. Consideration is given to observations of the two tails of Comet P/Machholz (Emerson, 1986), the brightness variations and light curve of the comet, and nuclear photometry of the comet (Green, 1987). It is suggested that the increase in activity beginning one day after perihelion was triggered by a discrete source within 15 deg of the rotation pole that became sunlit after perihelion. Also, the possibility that Comet P/Machholz is associated with a meteor stream is examined. 45 refs

  14. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  15. Chandra Early Type Galaxy Atals

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer; McCollough, Michael; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa Dil; Trinchieri, Ginevra

    2017-08-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion, stripping and star formation and its quenching. We have systematically analyzed the archival Chandra data of ~100 ETGs to study the hot ISM. We produce the uniformly derived data products with spatially resolved spectral information and will make them accessible via a public web site. With 2D spectral infomation, we further discuss gas morphology, scaling relations, X-ray based mass profiles and their implications related to various physical mechanisms (e.g., stellar and AGN feedback).

  16. The End of Days -- Chandra Catches X-ray Glow From Supernova

    Science.gov (United States)

    1999-12-01

    Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the

  17. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  18. Particle acceleration in the plasma fields near comet Halley

    International Nuclear Information System (INIS)

    Somogyi, A.J.; Erdoes, G.; Shapiro, V.D.; Shevchenko, V.I.

    1990-01-01

    Spacecraft VEGA-1 approached Halley comet to distances less than 10 million km in March 1986. It was equipped with devices capable to detect and measure the energies of charged particles (higher than 50 keV). After a survey of acceleration mechanisms the properties of the 50-800 keV charged particle fluxes observed in various regions around Halley comet are reported. In particular, the regions outside the cometary bow shock, the region between the bow shock and the cometopause, and inside the latter, especially in the magnetic pile-up region are considered. Possible mechanisms responsible for the accelerations of the particle fluxes described are discussed. (author) 73 refs.; 7 figs.; 3 tabs

  19. Cosmological constraints from Chandra observations of galaxy clusters.

    Science.gov (United States)

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  20. INNOVATIONS IN THE ANALYSIS OF CHANDRA-ACIS OBSERVATIONS

    International Nuclear Information System (INIS)

    Broos, Patrick S.; Townsley, Leisa K.; Feigelson, Eric D.; Getman, Konstantin V.; Garmire, Gordon P.; Bauer, Franz E.

    2010-01-01

    As members of the instrument team for the Advanced CCD Imaging Spectrometer (ACIS) on NASA's Chandra X-ray Observatory and as Chandra General Observers, we have developed a wide variety of data analysis methods that we believe are useful to the Chandra community, and have constructed a significant body of publicly available software (the ACIS Extract package) addressing important ACIS data and science analysis tasks. This paper seeks to describe these data analysis methods for two purposes: to document the data analysis work performed in our own science projects and to help other ACIS observers judge whether these methods may be useful in their own projects (regardless of what tools and procedures they choose to implement those methods). The ACIS data analysis recommendations we offer here address much of the workflow in a typical ACIS project, including data preparation, point source detection via both wavelet decomposition and image reconstruction, masking point sources, identification of diffuse structures, event extraction for both point and diffuse sources, merging extractions from multiple observations, nonparametric broadband photometry, analysis of low-count spectra, and automation of these tasks. Many of the innovations presented here arise from several, often interwoven, complications that are found in many Chandra projects: large numbers of point sources (hundreds to several thousand), faint point sources, misaligned multiple observations of an astronomical field, point source crowding, and scientifically relevant diffuse emission.

  1. Molecular ions in comet tails

    International Nuclear Information System (INIS)

    Wyckoff, S.; Wehinger, P.A.

    1976-01-01

    Band intensities of the molecular ions CH + , CO + , N 2 + , and H 2 O + have been determined on an absolute scale from tail spectra of comet Kohoutek (1973f) and comet Bradfield (1974b). Photoionization and photodissociation rates have been computed for CH, CO, and N 2 . Also emission rate excitation g-factors for (1) photoionization plus excitation and (2) resonance fluorescence have been computed for the observed ions. It is shown that resonance fluorescence is the dominant excitation mechanism for observed comet tail ions at rapprox. =1 AU. Band system luminosities and molecular ion abundances within a projected nuclear distance rho 4 km have been determined for CH + , CO + , N 2 + , and H 2 O + in comet Kohoutek, and for H 2 O + in comet Bradfield. Estimates are also given for column densities of all observed ions at rhoapprox. =10 4 km on the tailward side of the coma. The observed H 2 O + column densities were found to be roughly the same in comet Kohoutek and comet Bradfield et equal heliocentric distances, while CO + was found to be approximately 100 times more abundant than H 2 O + , N 2 + , and CH + at rhoapprox. =10 4 km in comet Kohoutek. Finally, the relative abundances of the observed ions and of the presumed parent neutral species are briefly discussed

  2. Comets and their composition

    International Nuclear Information System (INIS)

    Spinrad, H.

    1987-01-01

    Recent theoretical and observational studies of comets are reviewed, with an emphasis on in situ data from spacecraft encounters with P/Giacobini-Zinner (September 1985) and P/Halley (March 1986). Topics addressed include clues on the origin and permanence of the Oort cometary cloud, observations of cometary nuclei far from the sun, the Halley nucleus, compositional and physical data from comae studies, and the parent molecules in comet ices. Also discussed are quantitative analyses of coma production; special features in the tail of P/Giacobini-Zinner; and proposals for (1) observations to detect distant giant comets, (2) high-resolution spectroscopic studies of comae, and (3) additional spacecraft missions such as the NASA Comet Rendezvous and Asteroid Flyby. 121 references

  3. Reasonable threshold value used to segment the individual comet from the comet assay image

    International Nuclear Information System (INIS)

    Yan Xuekun; Chen Ying; Du Jie; Zhang Xueqing; Luo Yisheng

    2009-01-01

    Reasonable segmentation of the individual comet contour from the Comet Assay (CA) images is the precondition for all of parameters analysis during the automatic analyzing for the CA. The Otsu method and several arithmetic operators for image segmentation, such as Sobel, Prewitt, Roberts and Canny were used to segment the comet contour, and characters of the CA images were analyzed firstly. And then the segmentation methods which had been adopted in the software for CA automatic analysis, such as the CASP, the TriTek CometScore TM , were put for-ward and compared. At last, a two-step procedure for threshold calculation based on image-content analysis is adopted to segment the individual comet from the CA images, and several principles for the segmentation are put forward too.(authors)

  4. DIRBE Comet Trails

    Science.gov (United States)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  5. Singing comet changes its song

    Science.gov (United States)

    Volwerk, M.; Goetz, C.; Delva, M.; Richter, I.; Tsurutani, B. T.; Eriksson, A.; Odelstad, E.; Meier, P.; Nilsson, H.; Glassmeier, K.-H.

    2017-09-01

    The singing comet was discovered at the beginning of the Rosetta mission around comet 67P/Churyumov-Gerasimenko. Large amplitude compressional waves with frequencies between 10 and 100 mHz were observed. When the comet became more active this signal was no longer measured. During the so-called tail excursion, late in the mission after perihelion, with again a less active comet, the singing was observed again and interestingly, going from 26 March to 27 March 2016 the character of the singing changed.

  6. Optical colours of AGN in the Extended Chandra Deep Field South: Obscured black holes in early type galaxies

    OpenAIRE

    Rovilos, E.; Georgantopoulos, I.

    2007-01-01

    We investigate the optical colours of X-ray sources from the Extended Chandra Deep Field South (ECDFS) using photometry from the COMBO-17 survey, aiming to explore AGN - galaxy feedback models. The X-ray sources populate both the ``blue'' and the ``red sequence'' on the colour-magnitude diagram. However, sources in the ``red sequence'' appear systematically more obscured. HST imaging from the GEMS survey demonstrates that the nucleus does not affect significantly the observed colours, and the...

  7. Nature and origin of comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Jockers, K.

    1983-01-01

    The review examines basic history and morphology, motion, dynamic evolution, physical properties of neutral gaseous matter, vaporization of gases and outflow from the nucleus, chemistry of the coma gases, the comet nucleus, dust particles, solar wind-comet interactions and tail formation and the origin of comets. (U.K.)

  8. A New Orbit for Comet C/1865 B1 (Great Southern Comet of 1865)

    Science.gov (United States)

    Branham, Richard L., Jr.

    2018-04-01

    Comet C/1865 B1 (Great southern comet of 1865), observed only in the southern hemisphere, is one of a large number of comets with parabolic orbits. Given that there are 202 observations in right ascension and 165 in declination it proves possible to calculate a better orbit than that Körber published in 1887, the orbit used in various catalogs and data bases. C/1865 B1's orbit is hyperbolic and statistically distinguishable from a parabola. This object, therefore, cannot be considered an NEO. The comet has a small perihelion distance of 0.026 AU.

  9. Halley comet, implication on the origin

    International Nuclear Information System (INIS)

    Festou, M.C.

    1990-01-01

    One will first give a rapid description of the different parts that compose a comet coma. Then one will describe the spectrum of comets from the UV to the IR regions with special emphasis on how information relative to the physico-chemistry of comet atmospheres can be retrieved. Our basic knowledge about the composition of comets before 1985 will be summarized and the input of the 1985-86 observing campaign of comet Halley will be shown (in situ, ground-based and space borne observations). One will see then that the chemical composition of comets appears as of today completely compatible with a formation from pre-solar matter that condensed inside the solar system [fr

  10. Chandra Discovers Light Echo from the Milky Way's Black Hole

    Science.gov (United States)

    2007-01-01

    Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center. A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra. Variability in Chandra Images of Light Echo Variability in Chandra Images of Light Echo "This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction." Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra. Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past. Illustrations of Light Echo Illustrations of Light Echo Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays. "This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick

  11. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    Science.gov (United States)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  12. The search for main-belt comets: The Pan-STARRS1 perspective

    Science.gov (United States)

    Hsieh, H.; Denneau, L.; Wainscoat, R.; Jedicke, R.; Schorghofer, N.; Micheli, M.; Veres, P.; Kleyna, J.; Bolin, B.

    2014-07-01

    In recent years, an increasing number of objects have been discovered in the main asteroid belt that exhibit comet-like activity. Some instances of activity are believed to result from sublimation of volatile sub-surface ice, and the objects exhibiting this type of activity have come to be known as main-belt comets (MBCs; Hsieh & Jewitt 2006). For most MBCs, the presence of gas is only inferred from visible dust emission, although water vapor outgassing has recently been directly detected from (1) Ceres (Kuppers et al. 2014), indicating that water sublimation on MBCs could also be possible. In other instances, comet-like dust emission has been found to result from impacts onto otherwise inert objects, rotational disruption, or a combination of effects (cf., Jewitt 2012). In these cases, the objects can be referred to as disrupted asteroids. Collectively, MBCs and disrupted asteroids are known as active asteroids. MBCs have attracted interest in astrobiology due to theoretical studies indicating that material from the asteroid belt region could have been a significant primordial source of the water and other volatiles on the Earth. Icy asteroids also contain some of the least altered material from the inner protosolar disk still in existence today, presenting us with opportunities to learn about the earliest stages of our solar system's formation. The added bonus of the MBCs' relatively close proximity in the asteroid belt means that in situ spacecraft studies are entirely feasible using present-day technology. Pan-STARRS1 (PS1) is a wide-field synoptic survey telescope located on Halekala in Hawaii. It employs a 3.2×3.2 deg 1.4 gigapixel camera and uses an SDSS-like filter system. As of 2014 March 31, the Pan-STARRS1 survey has discovered three MBCs --- P/2006 VW139, P/2012 T1 (PANSTARRS), and P/2013 R3 (Catalina-PANSTARRS) --- as well as one disrupted asteroid (P/2013 P5 (PANSTARRS)), two active Centaurs, 33 Jupiter-family comets, and 17 long-period comets. For

  13. The Chandra Source Catalog 2.0: Calibrations

    Science.gov (United States)

    Graessle, Dale E.; Evans, Ian N.; Rots, Arnold H.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    Among the many enhancements implemented for the release of Chandra Source Catalog (CSC) 2.0 are improvements in the processing calibration database (CalDB). We have included a thorough overhaul of the CalDB software used in the processing. The software system upgrade, called "CalDB version 4," allows for a more rational and consistent specification of flight configurations and calibration boundary conditions. Numerous improvements in the specific calibrations applied have also been added. Chandra's radiometric and detector response calibrations vary considerably with time, detector operating temperature, and position on the detector. The CalDB has been enhanced to provide the best calibrations possible to each observation over the fifteen-year period included in CSC 2.0. Calibration updates include an improved ACIS contamination model, as well as updated time-varying gain (i.e., photon energy) and quantum efficiency maps for ACIS and HRC-I. Additionally, improved corrections for the ACIS quantum efficiency losses due to CCD charge transfer inefficiency (CTI) have been added for each of the ten ACIS detectors. These CTI corrections are now time and temperature-dependent, allowing ACIS to maintain a 0.3% energy calibration accuracy over the 0.5-7.0 keV range for any ACIS source in the catalog. Radiometric calibration (effective area) accuracy is estimated at ~4% over that range. We include a few examples where improvements in the Chandra CalDB allow for improved data reduction and modeling for the new CSC.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  14. A Spectral Survey of Six Comets in the Mid-Infrared.

    Science.gov (United States)

    Lisse, Carey M.; Sitko, M. L.; Reach, W. T.; Fernandez, Y. R.; Kelley, M. S.

    2008-09-01

    With the Spitzer Space Telescope (SST) and Infrared Space Observatory (ISO) we are beginning to understand the details of how the composition and formation of our own Solar System compares to those of other stars in our Galaxy. Recent, detailed observations of comets (remnants of the solar system's proto-stellar nebula), protoplanetary disks around young stellar objects (YSOs), and debris disks around moderate-age stars have given us a collection of detailed spectra containing clues about our Galactic context. Here we discuss 5 to 35 micron spectroscopy of the emission from dust grains and gas molecules in the comae of 6 recent comets: C/Hale-Bopp 1995 O1 [1], 29P/SW1 2004 [2], 9P/Tempel 1 2005 (ejecta) [3], 73P/SW3 (fragments B and C) [4], C/McNaught 2006 P1 [5], and 17P/Holmes 2007 [6]. We thank the Spitzer Science Center, the ISO project, and the NASA/IRTF for their support of this work. References: [1] Crovisier, J. et al. 1997, Science 275, 1904. [2] Stansberry, J.A. et al. 2004, ApJ Suppl. 154, 463. [3] Lisse, C.M. et al. 2006, Science 313, 635. [4] Sitko, M.L., et al. 2008, ACM 2008 abstract #8101. [5] Lisse, C.M. et al. 2007, IAUC 8862. [6] Reach, W.T. et al. 2009, in prep.

  15. CHANDRA OBSERVATIONS OF SN 1987A: THE SOFT X-RAY LIGHT CURVE REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Helder, E. A.; Broos, P. S.; Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Dewey, D. [MIT Kavli Institute, Cambridge, MA 02139 (United States); Dwek, E. [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McCray, R. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Park, S. [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States); Racusin, J. L. [NASA, Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Zhekov, S. A. [Space Research and Technology Institute, Akad. G. Bonchev str., bl.1, Sofia 1113 (Bulgaria)

    2013-02-10

    We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by {approx}6 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2} per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.

  16. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  17. Black Hole Paradox Solved By NASA's Chandra

    Science.gov (United States)

    2006-06-01

    Black holes are lighting up the Universe, and now astronomers may finally know how. New data from NASA's Chandra X-ray Observatory show for the first time that powerful magnetic fields are the key to these brilliant and startling light shows. It is estimated that up to a quarter of the total radiation in the Universe emitted since the Big Bang comes from material falling towards supermassive black holes, including those powering quasars, the brightest known objects. For decades, scientists have struggled to understand how black holes, the darkest objects in the Universe, can be responsible for such prodigious amounts of radiation. Animation of a Black Hole Pulling Matter from Companion Star Animation of a Black Hole Pulling Matter from Companion Star New X-ray data from Chandra give the first clear explanation for what drives this process: magnetic fields. Chandra observed a black hole system in our galaxy, known as GRO J1655-40 (J1655, for short), where a black hole was pulling material from a companion star into a disk. "By intergalactic standards J1655 is in our backyard, so we can use it as a scale model to understand how all black holes work, including the monsters found in quasars," said Jon M. Miller of the University of Michigan, Ann Arbor, whose paper on these results appears in this week's issue of Nature. Gravity alone is not enough to cause gas in a disk around a black hole to lose energy and fall onto the black hole at the rates required by observations. The gas must lose some of its orbital angular momentum, either through friction or a wind, before it can spiral inward. Without such effects, matter could remain in orbit around a black hole for a very long time. Illustration of Magnetic Fields in GRO J1655-40 Illustration of Magnetic Fields in GRO J1655-40 Scientists have long thought that magnetic turbulence could generate friction in a gaseous disk and drive a wind from the disk that carries angular momentum outward allowing the gas to fall inward

  18. DRBE comet trails

    International Nuclear Information System (INIS)

    Arendt, Richard G.

    2014-01-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr −1 , respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  19. DRBE comet trails

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov [CREST/UMBC, Code 665, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  20. NARROW-LINE X-RAY-SELECTED GALAXIES IN THE CHANDRA -COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Pons, E.; Watson, M. G. [University of Leicester, Leicester (United Kingdom); Elvis, M.; Civano, F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2016-04-20

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg{sup 2} of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10{sup −16} erg cm{sup −2} s{sup −1} in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra -COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of this sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ 3727, [Ne iii] λ 3869, H β , [O iii] λλ 4959, 5007, H α , and [N ii] λλ 6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.

  1. Inside look at Halley's comet

    International Nuclear Information System (INIS)

    Beatty, J.K.

    1986-01-01

    The 1985-1986 emergence of Halley's comet, the first since the advent of the space age, was explored by a variety of spacecraft. The Vega 1, launched by the USSR together with the Eastern-block alliance, passed 5523 miles from the comet's nucleus at 7:20:06 Universal time. It indicated that the comet was about 300 miles closer to the sun than had been predicted. The Japanese spacecraft, Suisei, was created to map the distribution of neutral hydrogen atoms outside Halley's visible coma. Its pictures indicated that the comet's output of water varied between 25 and 60 tons per second. Five days after the Vega 2's passage through the comet, the Giotto (sponsored by the European Space Agency) probe appeared. Giotto's close approach took place 3.1 minutes after midnight UT on March 14th; the craft had passed 376 miles from its target. Giotto's data indicated that the nucleus was bigger than expected, and that the comet was composed primarily of water, CO2 and N2. The Vegas and Giotto found that as the solar wind approaches Halley, it slows gradually and the solar magnetic lines embedded in the wind begin to pile up. Pick-up ions, from the comet's halo of neutral hydrogen, were found in this solar wind. Sensors on the Vega spacecraft found a variety of plasma waves propagating inside the bow wave. In order to synthesize all the results, a conference on the exploration of Halley's comet will be held this October

  2. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  3. Chandra Adds to Story of the Way We Were

    Science.gov (United States)

    2003-05-01

    Data from NASA's Chandra X-ray Observatory have enabled astronomers to use a new way to determine if a young star is surrounded by a planet-forming disk like our early Sun. These results suggest that disks around young stars can evolve rapidly to form planets, or they can be disrupted by close encounters with other stars. Chandra observed two young star systems, TW Hydrae and HD 98800, both of which are in the TW Hydrae Association, a loose cluster of 10 million-year-old stars. Observations at infrared and other wavelengths have shown that several stars in the TW Hydrae Association are surrounded by disks of dust and gas. At a distance of about 180 light years from Earth, these systems are among the nearest analogs to the early solar nebula from which Earth formed. "X-rays give us an excellent new way to probe the disks around stars," said Joel Kastner of the Rochester Institute of Technology in Rochester, NY during a press conference today in Nashville, Tenn. at a meeting of the American Astronomical Society. "They can tell us whether a disk is very near to its parent star and dumping matter onto it, or whether such activity has ceased to be important. In the latter case, presumably the disk has been assimilated into larger bodies - perhaps planets--or disrupted." TW Hydrae and HD 98800A Chandra 0th Order Image of HD98800 Kastner and his colleagues found examples of each type of behavior in their study. One star, TW Hydrae, namesake of the TW Hydrae Association, exhibited features in its X-ray spectrum that provide strong, new evidence that matter is accreting onto the star from a circumstellar disk. They concluded that matter is guided by the star's magnetic field onto one or more hot spots on the surface of the star. In contrast, Chandra observations of the young multiple star system HD 98800 revealed that its brightest star, HD 98800A, is producing X-rays much as the Sun does, from a hot upper atmosphere or corona. HD 98800 is a complex multiple-star system

  4. Comet Mineralogy as Inferred from Infrared Spectra of Comets

    Science.gov (United States)

    Wooden, Diane H.

    2006-01-01

    For most comets, infrared (IR) spectroscopy (remote sensing) is the method through which we diagnose the mineralogy and size distribution of dust in their comae. The shape and contrast of the IR spectral features depend on the particle size: optically active minerals (absorbing of visible and near-IR solar photons) and submicron solid grains or highly porous (> 90% vacuum) grains primarily contribute to the shapes of the observed resonances. Comet mineralogies typically are determined by fitting thermal emission models of ensembles of discrete mineral grains to observed IR spectral energy distributions. The absorptivities (Q-abs) and scattering efficiencies (Q-scat) of the discrete mineral grains are computed using Mie scattering, Maxwell-Garnet mixing, Discrete Dipole Approximation, and Multi-Layered Sphere codes. These techniques when applied to crystalline minerals, specifically olivine (Mg_x, Fe_1-x)2 Si04, x>0.9, require the use of ellipsoidal shaped particles with elongated axial ratios or hollow spheres to produce the shapes of the resonances observed both from comet comae and laboratory samples. The wavelength positions of the distinct resonances from submicron-radii crystalline silicates, as well as their thermal equilibrium temperatures, constrain the crystalline olivine to have a relatively high Mg-content (x>0.9, or Fo>90). Only resonances computed for submicron Mg-rich crystalline olivine and crystalline orthopyroxene match the observed IR spectral features. However, this has led to the interpretation that micron-radii and larger crystals are absent from comet comae. Furthermore, the mass fraction of silicate crystals is dependent upon whether just the submicron portion of the size distribution is being compared or the submicron crystals compare to the aggregates of porous amorphous silicates that are computationally tractable as porous spheres. We will discuss the Deep Impact results as examples of these challenges to interpreting mid-IR spectra of

  5. Chandra Captures Flare From Brown Dwarf

    Science.gov (United States)

    2000-07-01

    The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars. Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'" Chandra LP 944-20 X-ray Image Press Image and Caption The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team. Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning." LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is

  6. Comet Halley and interstellar chemistry

    International Nuclear Information System (INIS)

    Snyder, L.E.

    1989-01-01

    How complex is the chemistry of the interstellar medium? How far does it evolve and how has it interacted with the chemistry of the solar system? Are the galactic chemical processes destroyed, preserved, or even enhanced in comets? Are biogenic molecules formed in space and have the formation mechanisms interacted in any way with prebiotic organic chemical processes on the early earth? Radio molecular studies of comets are important for probing deep into the coma and nuclear region and thus may help answer these questions. Comets are believed to be pristine samples of the debris left from the formation of the solar system and may have been the carrier between interstellar and terrestrial prebiotic chemistries. Recent observations of Comet Halley and subsequent comets have given the author an excellent opportunity to study the relationship between interstellar molecular chemistry and cometary chemistry

  7. Origin of Short-Perihelion Comets

    Science.gov (United States)

    Guliyev, A. S.

    2011-01-01

    New regularities for short-perihelion comets are found. Distant nodes of cometary orbits of Kreutz family are concentrated in a plane with ascending node 76 and inclination 267 at the distance from 2 up to 3 a.u. and in a very narrow interval of longitudes. There is a correlation dependence between q and cos I concerning the found plane (coefficient of correlation 0.41). Similar results are received regarding to cometary families of Meyer, Kracht and Marsden. Distant nodes of these comets are concentrated close three planes (their parameters are discussed in the article) and at distances 1.4; 0.5; 6 a.u. accordingly. It is concluded that these comet groups were formed as a result of collision of parent bodies with meteoric streams. One more group, consisting of 7 comets is identified. 5 comet pairs are selected among sungrazers.

  8. Patel, Prof. Chandra Kumar Naranbhai

    Indian Academy of Sciences (India)

    Elected: 1995 Honorary. Patel, Prof. Chandra Kumar Naranbhai. Date of birth: 2 July 1938. Address: President & CEO, Pranalytica Inc., 1101, Colorado Avenue, Santa Monica, CA 90401, U.S.A.. Contact: Office: (+1-310) 458 0808. Residence: (+1-310) 471 6505. Fax: (+1-310) 458 0171. Email: patel@pranalytica.com.

  9. X-rays from comets - a surprising discovery

    CERN Document Server

    CERN. Geneva

    2000-01-01

    Comets are kilometre-size aggregates of ice and dust, which remained from the formation of the solar system. It was not obvious to expect X-ray emission from such objects. Nevertheless, when comet Hyakutake (C/1996 B2) was observed with the ROSAT X-ray satellite during its close approach to Earth in March 1996, bright X-ray emission from this comet was discovered. This finding triggered a search in archival ROSAT data for comets, which might have accidentally crossed the field of view during observations of unrelated targets. To increase the surprise even more, X-ray emission was detected from four additional comets, which were optically 300 to 30 000 times fainter than Hyakutake. For one of them, comet Arai (C/1991 A2), X-ray emission was even found in data which were taken six weeks before the comet was optically discovered. These findings showed that comets represent a new class of celestial X-ray sources. The subsequent detection of X-ray emission from several other comets in dedicated observations confir...

  10. Chandra High Resolution Imaging of NGC 1365 and NGC 4151

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.

    2010-07-01

    We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.

  11. An Archival Chandra and XMM-Newton Survey of Type 2 Quasars

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy; Zakamska, Nadia L.

    2013-01-01

    In order to investigate obscuration in high-luminosity type 2 active galactic nuclei (AGNs), we analyzed Chandra and XMM-Newton archival observations for 71 type 2 quasars detected at 0.05 100 eV in the rest frame) and we detect this line in the other sources through a joint fit (spectral stacking). The correlation between the Fe K alpha and [O III] fluxes and the inverse correlation of the equivalent width of the Fe Ka line with the ratio of hard X-ray and [O III] fluxes is consistent with previous results for lower luminosity Seyfert 2 galaxies. We conclude that obscuration is the cause of the weak hard X-ray emission rather than intrinsically low X-ray luminosities. We find that about half of the population of optically selected type 2 quasars are likely to be Compton thick. We also find no evidence that the amount of X-ray obscuration depends on the AGN luminosity (over a range of more than three orders of magnitude in luminosity).

  12. The Halley comet

    International Nuclear Information System (INIS)

    Encrenaz, T.; Festou, M.

    1985-01-01

    The conspicuous part of a comet, made of tenuous gas and dusts, represents only a tiny part of its mass. The main information is hidden in the central part: a solid nucleus, ice and rock blocks with a radius less than 10 km, completely invisible from the Earth. The knowledge of the nucleus structure and its composition could give the key of the planet creation mechanisms. That is a reason why it has been decided to send an automatic device to penetrate the Halley comet atmosphere and that two Soviet probes, Vega 1 and 2, one European probe Giotto, and two Japanese, Planet-A and MS-TS, will explore in-situ in March 1986, for the first time, a comet at atmosphere [fr

  13. The Chandra Source Catalog: Spectral Properties

    Science.gov (United States)

    Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).

  14. Comet prospects for 2004

    Science.gov (United States)

    Shanklin, J. D.

    2003-12-01

    2004 sees the return of 18 periodic comets. None are particularly bright and the best are likely to be 78P/Gehrels and 88P/Howell. Three new long period comets are likely to put on a good show: 2001 Q4 (NEAT) reaches perihelion in May, when it could make at least 3rd magnitude. Northern hemisphere observers will first pick it up just after perihelion as it rapidly moves north. 2002 T7 (LINEAR) could also reach 3rd magnitude at closest approach in May, however northern hemisphere observers will have lost it as a binocular object in mid-March. Observers at far southern latitudes may be able to see these two naked eye comets at the same time. 2003 K4 (LINEAR) could reach 6th magnitude as it brightens on its way to perihelion. Several other long period comets discovered in previous years are also still visible.

  15. Patel, Prof. Chandra Kumar Naranbhai

    Indian Academy of Sciences (India)

    Patel, Prof. Chandra Kumar Naranbhai. Date of birth: 2 July 1938. Address: President & CEO, Pranalytica Inc., 1101, Colorado Avenue, Santa Monica, CA 90401, U.S.A.. Contact: Office: (+1-310) 458 0808. Residence: (+1-310) 471 6505. Fax: (+1-310) 458 0171. Email: patel@pranalytica.com. YouTube · Twitter · Facebook ...

  16. Meteoroid Streams from Sunskirter Comet Breakup

    Science.gov (United States)

    Jenniskens, P. M.

    2012-12-01

    In its first year of operations, the CAMS project (Cameras for Allsky Meteor Surveillance) has measured 47,000 meteoroid orbits at Earth, including some that pass the Sun as close as 0.008 AU. The population density increases significantly above perihelion distance q = 0.037 AU. Meteoroid streams are known with q about 0.1 AU. The Sun has a profound effect on comets that pass at 0.04-0.16 AU distance, called the sunskirter comets. SOHO and STEREO see families of small comets called the Marsden and Kracht groups. Sunlight is efficiently scattered by small 10-m sized fragments, making those fragments visible even when far from Earth. These comet groups are associated with meteor showers on Earth, in particular the Daytime Arietids and Delta Aquariids. All are related to 96P/Machholz, a highly inclined short-period (5.2 year) Jupiter family comet that comes to within 0.12 AU from the Sun, the smallest perihelion distance known among numbered comets. The proximity of the Sun speeds up the disintegration process, providing us a unique window on this important decay mechanism of Jupiter family comets and creating meteoroid streams. These are not the only sunskirting comets, however. In this presentation, we will present CAMS observations of the complete low-q meteoroid population at Earth and review their association with known parent bodies.

  17. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.

    2009-01-01

    We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration of relati...... at a fixed mass threshold, e.g., by a factor of 5.0 ± 1.2 at M 500 = 2.5 × 1014 h –1 M sun between z = 0 and 0.5. This evolution reflects the growth of density perturbations, and can be used for the cosmological constraints complementing those from the distance-redshift relation....

  18. Systematic random sampling of the comet assay.

    Science.gov (United States)

    McArt, Darragh G; Wasson, Gillian R; McKerr, George; Saetzler, Kurt; Reed, Matt; Howard, C Vyvyan

    2009-07-01

    The comet assay is a technique used to quantify DNA damage and repair at a cellular level. In the assay, cells are embedded in agarose and the cellular content is stripped away leaving only the DNA trapped in an agarose cavity which can then be electrophoresed. The damaged DNA can enter the agarose and migrate while the undamaged DNA cannot and is retained. DNA damage is measured as the proportion of the migratory 'tail' DNA compared to the total DNA in the cell. The fundamental basis of these arbitrary values is obtained in the comet acquisition phase using fluorescence microscopy with a stoichiometric stain in tandem with image analysis software. Current methods deployed in such an acquisition are expected to be both objectively and randomly obtained. In this paper we examine the 'randomness' of the acquisition phase and suggest an alternative method that offers both objective and unbiased comet selection. In order to achieve this, we have adopted a survey sampling approach widely used in stereology, which offers a method of systematic random sampling (SRS). This is desirable as it offers an impartial and reproducible method of comet analysis that can be used both manually or automated. By making use of an unbiased sampling frame and using microscope verniers, we are able to increase the precision of estimates of DNA damage. Results obtained from a multiple-user pooled variation experiment showed that the SRS technique attained a lower variability than that of the traditional approach. The analysis of a single user with repetition experiment showed greater individual variances while not being detrimental to overall averages. This would suggest that the SRS method offers a better reflection of DNA damage for a given slide and also offers better user reproducibility.

  19. Chandra Source Catalog: User Interface

    Science.gov (United States)

    Bonaventura, Nina; Evans, Ian N.; Rots, Arnold H.; Tibbetts, Michael S.; van Stone, David W.; Zografou, Panagoula; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Helen; Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Winkelman, Sherry L.

    2009-09-01

    The Chandra Source Catalog (CSC) is intended to be the definitive catalog of all X-ray sources detected by Chandra. For each source, the CSC provides positions and multi-band fluxes, as well as derived spatial, spectral, and temporal source properties. Full-field and source region data products are also available, including images, photon event lists, light curves, and spectra. The Chandra X-ray Center CSC website (http://cxc.harvard.edu/csc/) is the place to visit for high-level descriptions of each source property and data product included in the catalog, along with other useful information, such as step-by-step catalog tutorials, answers to FAQs, and a thorough summary of the catalog statistical characterization. Eight categories of detailed catalog documents may be accessed from the navigation bar on most of the 50+ CSC pages; these categories are: About the Catalog, Creating the Catalog, Using the Catalog, Catalog Columns, Column Descriptions, Documents, Conferences, and Useful Links. There are also prominent links to CSCview, the CSC data access GUI, and related help documentation, as well as a tutorial for using the new CSC/Google Earth interface. Catalog source properties are presented in seven scientific categories, within two table views: the Master Source and Source Observations tables. Each X-ray source has one ``master source'' entry and one or more ``source observation'' entries, the details of which are documented on the CSC ``Catalog Columns'' pages. The master source properties represent the best estimates of the properties of a source; these are extensively described on the following pages of the website: Position and Position Errors, Source Flags, Source Extent and Errors, Source Fluxes, Source Significance, Spectral Properties, and Source Variability. The eight tutorials (``threads'') available on the website serve as a collective guide for accessing, understanding, and manipulating the source properties and data products provided by the catalog.

  20. Chandra Source Catalog: User Interfaces

    Science.gov (United States)

    Bonaventura, Nina; Evans, I. N.; Harbo, P. N.; Rots, A. H.; Tibbetts, M. S.; Van Stone, D. W.; Zografou, P.; Anderson, C. S.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Glotfelty, K. J.; Grier, J. D.; Hain, R.; Hall, D. M.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Winkelman, S. L.

    2010-03-01

    The CSCview data mining interface is available for browsing the Chandra Source Catalog (CSC) and downloading tables of quality-assured source properties and data products. Once the desired source properties and search criteria are entered into the CSCview query form, the resulting source matches are returned in a table along with the values of the requested source properties for each source. (The catalog can be searched on any source property, not just position.) At this point, the table of search results may be saved to a text file, and the available data products for each source may be downloaded. CSCview save files are output in RDB-like and VOTable format. The available CSC data products include event files, spectra, lightcurves, and images, all of which are processed with the CIAO software. CSC data may also be accessed non-interactively with Unix command-line tools such as cURL and Wget, using ADQL 2.0 query syntax. In fact, CSCview features a separate ADQL query form for those who wish to specify this type of query within the GUI. Several interfaces are available for learning if a source is included in the catalog (in addition to CSCview): 1) the CSC interface to Sky in Google Earth shows the footprint of each Chandra observation on the sky, along with the CSC footprint for comparison (CSC source properties are also accessible when a source within a Chandra field-of-view is clicked); 2) the CSC Limiting Sensitivity online tool indicates if a source at an input celestial location was too faint for detection; 3) an IVOA Simple Cone Search interface locates all CSC sources within a specified radius of an R.A. and Dec.; and 4) the CSC-SDSS cross-match service returns the list of sources common to the CSC and SDSS, either all such sources or a subset based on search criteria.

  1. OpenComet: An automated tool for comet assay image analysis

    OpenAIRE

    Gyori, Benjamin M.; Venkatachalam, Gireedhar; Thiagarajan, P.S.; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires ...

  2. Comets and How to Observe Them

    CERN Document Server

    Schmude, Richard

    2010-01-01

    Comets have inspired wonder, excitement and even fear ever since they were first observed. They contain material from early in the life of the Solar System, held in deep-freeze. This makes them key in our understanding of the formation and evolution of many Solar System bodies. Recent ground- and space-based observations have changed much in our understanding of comets. Comets and How to Observe Them gives a summary of our current knowledge and describes how amateur astronomers can contribute to the body of scientific knowledge of comets. This book contains many practical examples of how to construct comet light-curves, measure how fast a comet’s coma expands, and determine the rotation period of the nucleus. All these examples are illustrated with drawings and photographs.

  3. When Worlds Collide: Chandra Observes Titanic Merger

    Science.gov (United States)

    2002-04-01

    NASA's Chandra X-ray Observatory has provided the best X-ray image yet of two Milky Way-like galaxies in the midst of a head-on collision. Since all galaxies - including our own - may have undergone mergers, this provides insight into how the universe came to look as it does today. Astronomers believe the mega-merger in the galaxy known as Arp 220 triggered the formation of huge numbers of new stars, sent shock waves rumbling through intergalactic space, and could possibly lead to the formation of a supermassive black hole in the center of the new conglomerate galaxy. The Chandra data also suggest that merger of these two galaxies began only 10 million years ago, a short time in astronomical terms. "The Chandra observations show that things really get messed up when two galaxies run into each other at full speed," said David Clements of the Imperial College, London, one of the team members involved in the study. "The event affects everything from the formation of massive black holes to the dispersal of heavy elements into the universe." Arp 220 is considered to be a prototype for understanding what conditions were like in the early universe, when massive galaxies and supermassive black holes were presumably formed by numerous galaxy collisions. At a relatively nearby distance of about 250 million light years, Arp 220 is the closest example of an "ultra-luminous" galaxy, one that gives off a trillion times as much radiation as our Sun. The Chandra image shows a bright central region at the waist of a glowing, hour-glass-shaped cloud of multimillion-degree gas. Rushing out of the galaxy at hundreds of thousands of miles per hour, the super-heated as forms a "superwind," thought to be due to explosive activity generated by the formation of hundreds of millions of new stars. Farther out, spanning a distance of 75,000 light years, are giant lobes of hot gas that could be galactic remnants flung into intergalactic space by the early impact of the collision. Whether the

  4. Stellar Forensics with Striking Image from Chandra

    Science.gov (United States)

    2007-10-01

    A spectacular new image shows how complex a star's afterlife can be. By studying the details of this image made from a long observation by NASA's Chandra X-ray Observatory, astronomers can better understand how some stars die and disperse elements like oxygen into the next generation of stars and planets. At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen. The image shows a rapidly expanding, intricately structured, debris field that contains, along with oxygen, other elements such as neon and silicon that were forged in the star before it exploded. Hard X-ray Image of G292.0+1.8 Hard X-ray Image of G292.0+1.8 "We are finding that, just like snowflakes, each supernova remnant is complicated and beautiful in its own way," said Sangwook Park of Penn State who led the work, released in conjunction with the "8 Years of Chandra" symposium in Huntsville, Ala. The new, deep Chandra image - equaling nearly 6 days worth of observing time - shows an incredibly complex structure. Understanding the details of G292.0+1.8 is especially important because astronomers have considered it to be a "textbook" case of a supernova created by the death of a massive star. Chandra X-ray Image of G292.0+1.8 Chandra X-ray Image of G292.0+1.8 By mapping the distribution of X-rays in different energy bands, the Chandra image traces the distribution of chemical elements ejected in the supernova. The results imply that the explosion was not symmetrical. For example, blue (silicon and sulfur) and green (magnesium) are seen strongly in the upper right, while yellow and orange (oxygen) dominate the lower left. These elements light up at different temperatures, indicating that the temperature is higher in the upper right portion of G292.0+1.8. Slightly below and to the left of the center of G292.0+1.8 is a pulsar, a dense, rapidly rotating neutron star that remained behind after the original star

  5. Harish-Chandra Research Institute, Allahabad

    Indian Academy of Sciences (India)

    The Harish-Chandra Research Institute (known as the Mehta Research Institute of Math- ematics and Mathematical Physics until October 2000) came into existence in 1975, with a donation of some land and Rs. 40 lakhs from the B S Mehta Trust in Calcutta. With the aim of converting it into a top-class research Institute in ...

  6. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    Science.gov (United States)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  7. Astrobiology of Comets

    Science.gov (United States)

    Hoover, Richard B.; Wickramasinghe, Nalin C.; Wallis, Max K.; Sheldon, Robert B.

    2004-01-01

    We review the current state of knowledge concerning microbial extremophiles and comets and the potential significance of comets to Astrobiology. We model the thermal history of a cometary body, regarded as an assemblage of boulders, dust, ices and organics, as it approaches a perihelion distance of - IAU. The transfer of incident energy from sunlight into the interior leads to the melting of near surface ices, some under stable porous crust, providing possible habitats for a wide range of microorganisms. We provide data concerning new evidence for indigenous microfossils in CI meteorites, which may be the remains of extinct cometary cores. We discuss the dominant microbial communities of polar sea-ice, Antarctic ice sheet, and cryoconite environments as possible analogs for microbial ecosystems that may grow in sub-crustal pools or in ice/water films in comets.

  8. A Spitzer Search for Activity in Dormant Comets

    Science.gov (United States)

    Mommert, Michael; Trilling, David; Hora, Joseph; Smith, Howard

    2018-05-01

    Dormant comets are inactive cometary nuclei hiding in the asteroid populations. Due to their cometary origin, it is possible that volatiles are still retained in their interiors. This hypothesis is supported by the case of near-Earth asteroid Don Quixote, which had been known as an asteroid for 30 yr before activity was discovered in this team's prior Spitzer observations. Interestingly, Don Quixote showed outgassing of CO or CO2, but no dust activity. This significant observation was repeated in 2017 with the same result, suggesting that Don Quixote is continuously outgassing - and still an active comet. Don Quixote's case suggests that other dormant comets might be outgassing with low dust production rates, concealing their activity to optical surveys. The implication of this scenario is that the volatile inventory of the asteroid populations might be significantly larger than currently assumed. We propose 48.8 hr of deep IRAC observations of eight dormant comets in search of faint activity in them. For each target, we will (1) measure (or provide upper limits on) gas and dust production rates from our IRAC CH1 and CH2 observations, (2) derive the diameters and albedos of five of our targets using asteroid thermal modeling, (3) measure the near-infrared spectral slope between CH1 and CH2 for three of our targets, and (4) obtain lightcurve observations of the nuclei of all of our targets. Our observations, which are combined with ground-based observations as part of a NASA-funded program, will provide important constraints on the volatile content of the asteroid population, as well as the origin, evolution, and physical properties of cometary nuclei.

  9. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    bright active galaxies, often referred to as Active Galactic Nuclei, or AGN. Many astronomers think that all galaxies have central, supermassive black holes, yet only a small percent show activity. What is needed to power the AGN is fuel in the form of a nearby reservoir of gas and dust. Galaxy clusters contain hundreds to thousands of galaxies. They are the largest known structures in the universe and serve as a microcosm for the mechanics of the Universe at large. The galaxies in clusters are often old, reddish elliptically shaped galaxies, distinct from blue, spiral galaxies like our own. These old galaxies also do not have many young stars. The theory now in question is that as galaxies enter into clusters at high speeds, they are stripped of their interstellar gas, much as a strong wind strips leaves from a tree. Galaxies may also collide with one another and use up all of their gas in one huge burst of star formation triggered by this interaction. These processes remove most, if not all, of the gas that isn't locked up in stars. As they no longer have the raw material to form new stars, the stellar population slowly gets old and the Galaxy appears red. No gas is left to fuel an AGN. Previous surveys of galaxy clusters with optical telescopes have found that about only one percent of the galaxies in a cluster have AGN. This latest Chandra observation if typical, however, bumps the count up to about 5 percent. The team found six red galaxies with high X-ray activity during a nearly 14-hour Chandra observation of a galaxy cluster named Abell 2104, over 700 million light years from Earth. Based on previous optical surveys, only one was expected. "If we relied on optical data alone, we would have missed these hidden monsters," said co-author Dr. John Mulchaey. Only one of the six AGN, in fact, had the optical spectral properties typical of AGN activity. "The presence of these AGN indicate that supermassive black holes have somehow retained a fuel source, despite the

  10. COMET concept; COMET-Konzept

    Energy Technology Data Exchange (ETDEWEB)

    Alsmeyer, H.; Tromm, W.

    1995-08-01

    Studies of the COMET core catcher concept developed for a future PWR have been continued. The concept is based on the spreading of a core melt on a sacrificial layer and its erosion, until a subsequent addition of water from below causes a fragmentation of the melt. A porous solidification of the melt would then admit a complete flooding within a short period. (orig.)

  11. Comets in Indian Scriptures

    Science.gov (United States)

    Das Gupta, P.

    2016-01-01

    The Indo-Aryans of ancient India observed stars and constellations for ascertaining auspicious times in order to conduct sacrificial rites ordained by the Vedas. Naturally, they would have sighted comets and referred to them in the Vedic texts. In Rigveda (circa 1700-1500 BC) and Atharvaveda (circa 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Rigveda speaks of a fig tree whose aerial roots spread out in the sky (Parpola 2010). Had this imagery been inspired by the resemblance of a comet's tail with long and linear roots of a banyan tree (ficus benghalensis)? Varahamihira (AD 550) and Ballal Sena (circa AD 1100-1200) described a large number of comets recorded by ancient seers, such as Parashara, Vriddha Garga, Narada, and Garga, to name a few. In this article, we propose that an episode in Mahabharata in which a radiant king, Nahusha, who rules the heavens and later turns into a serpent after he kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  12. Jupiter Laser Facility - COMET Laser

    Data.gov (United States)

    Federal Laboratory Consortium — COMET has 4 beam configurations with uncompressed pulse lengths from 500 ps to 6 ns, compressed pulses to 0.5 ps, and beam energies up to 20 J. COMET can fire every...

  13. Comet-Narval acquisition notice

    International Nuclear Information System (INIS)

    Le Bris, J.; Sellem, R.; Artiges, J.C.; Clavelin, J.F.; Du, S.; Grave, X.; Hubert, O.; Sauvage, J.; Roussiere, B.

    2006-01-01

    The COMET cards (encoding and time marking) serve to determine the energies and the time correlations of radiations detected during a multiparameter experiment while avoiding any extra specific module like coincidence circuits or delays) to set this time correlation. For each detected radiation, the arrival time information as well as the amplitude of the detected signal, are encoded. The results of these amplitude and time coding are associated to create an event. In this way, each detector is an independent source which provides a building block of the general information obtained by all the detectors. The COMET cards are associated with a NARVAL data acquisition system. This document is the instruction booklet of the COMET-NARVAL acquisition system

  14. Comets in the space age

    International Nuclear Information System (INIS)

    Whipple, F.L.

    1989-01-01

    The historical development of the study of the nature of comets and their origin is discussed, emphasizing the use of aerospace technology in cometary science. The use of satellites to study the Comet Kohoutek 1973 XII, advances between Kohoutek and P/Halley, and studies of P/Halley during its 1986 return are examined. Consideration is given to data from ground, air, and space sensors, and from the Giotto and Vega spacecraft missions. Also, the physical structure of the nucleus of Comet Halley is described. 136 refs

  15. Report of Some Comets: The Discovery of Uranus and Comets by William, Caroline, and John Herschel

    Science.gov (United States)

    Pasachoff, Jay M.; Olson, R. J. M.

    2011-01-01

    We report on the discovery and drawings of comets by William, Caroline, and John Herschel. The first discovery, by William Herschel, in 1781 from Bath, published in the Philosophical Transactions of the Royal Society with the title "Report of a Comet," turned out to be Uranus, the first planet ever discovered, Mercury through Saturn having been known since antiquity. William's sister Caroline was given duties of sweeping the skies and turned out to be a discoverer of 8 comets in her own right, in addition to keeping William's notes. Caroline's comets were discovered from Slough between 1786 and 1797. In the process, we also discuss original documents from the archives of the Royal Society and of the Royal Astronomical Society. We conclude by showing comet drawings that we have recently attributed to John Herschel, including Halley's Comet from 1836, recently located in the Ransom Center of the University of Texas at Austin. Acknowledgments: Planetary astronomy at Williams College is supported in part by grant NNX08AO50G from NASA Planetary Astronomy. We thank Peter Hingley of the Royal Astronomical Society and Richard Oram of the Harry Ransom Center of The University of Texas at Austin for their assistance.

  16. 100 and counting : SOHO's score as the world's top comet finder

    Science.gov (United States)

    2000-02-01

    SOHO's comet discoveries would be one fewer without a recent bonus from SWAN. This instrument's name unpacks into Solar Wind Anisotropies, and it was provided by the French Service d'Aéronomie and the Finnish Meteorological Institute. SWAN looks away from the Sun to survey atomic hydrogen in the Solar System, which glows with ultraviolet light and is altered by the solar wind. The instrument also sees large clouds of hydrogen surrounding comets, produced by the break-up of water molecules evaporating from the comets' ice. In December 1999 the International Astronomical Union retrospectively credited SWAN and SOHO with finding Comet 1997 K2 in SWAN full-sky images from May to July 1997. It made number 93 on the SOHO scorecard. This comet remained outside the orbit of the Earth even at its closest approach to the Sun. Although it was presumably a small, faint comet, the gas cloud grew to a width of more than 4 million kilometres. "The discovery was a surprise," said Teemu Mäkinen, a Finnish member of the SWAN group. "Our normal procedure is to observe hydrogen clouds of comets detected by other people. In that respect, SWAN on SOHO is the most important instrument now available for routinely measuring the release of water vapour from comets." When Comet Wirtanen, the target for ESA's Rosetta mission (2003), made its most recent periodic visit to the Sun, it pumped out water vapour at a rate of 20,000 tons a day, according to the SWAN data. For the great Comet Hale-Bopp the rate reached 20 million tons a day and SWAN watched its hydrogen cloud grow to 70 million kilometres -- by far the largest object ever seen in the Solar System.

  17. The Role of Project Science in the Chandra X-Ray Observatory

    Science.gov (United States)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  18. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus. 63 references

  19. Comet or Asteroid?

    Science.gov (United States)

    1997-11-01

    When is a minor object in the solar system a comet? And when is it an asteroid? Until recently, there was little doubt. Any object that was found to display a tail or appeared diffuse was a comet of ice and dust grains, and any that didn't, was an asteroid of solid rock. Moreover, comets normally move in rather elongated orbits, while most asteroids follow near-circular orbits close to the main plane of the solar system in which the major planets move. However, astronomers have recently discovered some `intermediate' objects which seem to possess properties that are typical for both categories. For instance, a strange object (P/1996 N2 - Elst-Pizarro) was found last year at ESO ( ESO Press Photo 36/96 ) which showed a cometary tail, while moving in a typical asteroidal orbit. At about the same time, American scientists found another (1996 PW) that moved in a very elongated comet-type orbit but was completely devoid of a tail. Now, a group of European scientists, by means of observations carried out at the ESO La Silla observatory, have found yet another object that at first appeared to be one more comet/asteroid example. However, continued and more detailed observations aimed at revealing its true nature have shown that it is most probably a comet . Consequently, it has received the provisional cometary designation P/1997 T3 . The Uppsala-DLR Trojan Survey Some time ago, Claes-Ingvar Lagerkvist (Astronomical Observatory, Uppsala, Sweden), in collaboration with Gerhard Hahn, Stefano Mottola, Magnus Lundström and Uri Carsenty (DLR, Institute of Planetary Exploration, Berlin, Germany), started to study the distribution of asteroids near Jupiter. They were particularly interested in those that move in orbits similar to that of Jupiter and which are located `ahead' of Jupiter in the so-called `Jovian L4 Lagrangian point'. Together with those `behind' Jupiter, these asteroids have been given the names of Greek and Trojan Heroes who participated in the famous Trojan war

  20. EPOXI at comet Hartley 2.

    Science.gov (United States)

    A'Hearn, Michael F; Belton, Michael J S; Delamere, W Alan; Feaga, Lori M; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P; McFadden, Lucy A; Meech, Karen J; Melosh, H Jay; Schultz, Peter H; Sunshine, Jessica M; Thomas, Peter C; Veverka, Joseph; Wellnitz, Dennis D; Yeomans, Donald K; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J; Carcich, Brian T; Collins, Steven M; Farnham, Tony L; Groussin, Olivier; Hermalyn, Brendan; Kelley, Michael S; Kelley, Michael S; Li, Jian-Yang; Lindler, Don J; Lisse, Carey M; McLaughlin, Stephanie A; Merlin, Frédéric; Protopapa, Silvia; Richardson, James E; Williams, Jade L

    2011-06-17

    Understanding how comets work--what drives their activity--is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO(2), which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus.

  1. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  2. Comet formation

    Science.gov (United States)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  3. Comet Halley Returns. A Teacher's Guide, 1985-1986.

    Science.gov (United States)

    Chapman, Robert D.; Bondurant, R. Lynn, Jr.

    This booklet was designed as an aid for elementary and secondary school teachers. It is divided into two distinct parts. Part I is a brief tutorial which introduces some of the most important concepts about comets. Areas addressed include: the historical importance of Comet Halley; how comets are found and names; cometary orbits; what Comet Halley…

  4. Chandra Finds X-ray Star Bonanza in the Orion Nebula

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic

  5. Comets and the origin and evolution of life

    CERN Document Server

    McKay, Christopher P

    2006-01-01

    Nine years after the publication of Comets and the Origin and Evolution of Life, one of the pioneering books in Astrobiology, this second edition revisits the role comets may have played in the origins and evolution of life. Recent analyses of Antarctic micrometeorites and ancient rocks in Australia and South Africa, the continuing progress in discovering complex organic macromolecules in comets, protostars and interstellar clouds, new insights into organic synthesis in comets, and numerical simulations of comet impacts on the Earth and other members of the solar system yield a spectacular wea

  6. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  7. Chandra X-ray Center Science Data Systems Regression Testing of CIAO

    Science.gov (United States)

    Lee, N. P.; Karovska, M.; Galle, E. C.; Bonaventura, N. R.

    2011-07-01

    The Chandra Interactive Analysis of Observations (CIAO) is a software system developed for the analysis of Chandra X-ray Observatory observations. An important component of a successful CIAO release is the repeated testing of the tools across various platforms to ensure consistent and scientifically valid results. We describe the procedures of the scientific regression testing of CIAO and the enhancements made to the testing system to increase the efficiency of run time and result validation.

  8. Detection of radiation-induced apoptosis using the comet assay

    International Nuclear Information System (INIS)

    Wada, Seiichi; Kobayashi, Yasuhiko; Funayama, Tomoo; Yamamoto, Kazuo; Khoa, Tran Van; Natsuhori, Masahiro; Ito, Nobuhiko

    2003-01-01

    The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to satin the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis. (author)

  9. The Chandra Source Catalog: X-ray Aperture Photometry

    Science.gov (United States)

    Kashyap, Vinay; Primini, F. A.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, I. N.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) represents a reanalysis of the entire ACIS and HRC imaging observations over the 9-year Chandra mission. We describe here the method by which fluxes are measured for detected sources. Source detection is carried out on a uniform basis, using the CIAO tool wavdetect. Source fluxes are estimated post-facto using a Bayesian method that accounts for background, spatial resolution effects, and contamination from nearby sources. We use gamma-function prior distributions, which could be either non-informative, or in case there exist previous observations of the same source, strongly informative. The current implementation is however limited to non-informative priors. The resulting posterior probability density functions allow us to report the flux and a robust credible range on it.

  10. Invited Review Article: The Chandra X-ray Observatory

    Science.gov (United States)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  11. The comet assay as a tool for human biomonitoring studies: the ComNet project.

    Science.gov (United States)

    Collins, Andrew; Koppen, Gudrun; Valdiglesias, Vanessa; Dusinska, Maria; Kruszewski, Marcin; Møller, Peter; Rojas, Emilio; Dhawan, Alok; Benzie, Iris; Coskun, Erdem; Moretti, Massimo; Speit, Günter; Bonassi, Stefano

    2014-01-01

    The comet assay is widely used in human biomonitoring to measure DNA damage as a marker of exposure to genotoxic agents or to investigate genoprotective effects. Studies often involve small numbers of subjects, and design may be sub-optimal in other respects. In addition, comet assay protocols in use in different laboratories vary significantly. In spite of these difficulties, it is appropriate to carry out a pooled analysis of all available comet assay biomonitoring data, in order to establish baseline parameters of DNA damage, and to investigate associations between comet assay measurements and factors such as sex, age, smoking status, nutrition, lifestyle, etc. With this as its major objective, the ComNet project has recruited almost 100 research groups willing to share datasets. Here we provide a background to this project, discussing the history of the comet assay and practical issues that can critically affect its performance. We survey its diverse applications in biomonitoring studies, including environmental and occupational exposure to genotoxic agents, genoprotection by dietary and other factors, DNA damage associated with various diseases, and intrinsic factors that affect DNA damage levels in humans. We examine in depth the quality of data from a random selection of studies, from an epidemiological and statistical point of view. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Comets - cosmic 'snowballs'

    International Nuclear Information System (INIS)

    Luest, R.

    1979-01-01

    Non-periodic comets come from regions at the limit of our solar system and have conserved their original structure and composition since they have originated from a pre-solar nebuly together with the sun and the planets about 4.5 x 10 9 years ago. They are icy bodies of kilometer size whose structure and chemical composition is of great interest also with respect to the origin of the solar system. It is hoped to send a space craft to comet Halley in 1986 to get more detailed informations. (orig.) [de

  13. The Chandra Source Catalog 2.0: Interfaces

    Science.gov (United States)

    D'Abrusco, Raffaele; Zografou, Panagoula; Tibbetts, Michael; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Van Stone, David W.

    2018-01-01

    Easy-to-use, powerful public interfaces to access the wealth of information contained in any modern, complex astronomical catalog are fundamental to encourage its usage. In this poster,I present the public interfaces of the second Chandra Source Catalog (CSC2). CSC2 is the most comprehensive catalog of X-ray sources detected by Chandra, thanks to the inclusion of Chandra observations public through the end of 2014 and to methodological advancements. CSC2 provides measured properties for a large number of sources that sample the X-ray sky at fainter levels than the previous versions of the CSC, thanks to the stacking of single overlapping observations within 1’ before source detection. Sources from stacks are then crossmatched, if multiple stacks cover the same area of the sky, to create a list of unique, optimal CSC2 sources. The properties of sources detected in each single stack and each single observation are also measured. The layered structure of the CSC2 catalog is mirrored in the organization of the CSC2 database, consisting of three tables containing all properties for the unique stacked sources (“Master Source”), single stack sources (“Stack Source”) and sources in any single observation (“Observation Source”). These tables contain estimates of the position, flags, extent, significances, fluxes, spectral properties and variability (and associated errors) for all classes of sources. The CSC2 also includes source region and full-field data products for all master sources, stack sources and observation sources: images, photon event lists, light curves and spectra.CSCview, the main interface to the CSC2 source properties and data products, is a GUI tool that allows to build queries based on the values of all properties contained in CSC2 tables, query the catalog, inspect the returned table of source properties, browse and download the associated data products. I will also introduce the suite of command-line interfaces to CSC2 that can be used in

  14. Nitrogen abundance in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion. 88 refs

  15. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    International Nuclear Information System (INIS)

    Hartmann, W.K.; Tholen, D.J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range. 40 refs

  16. Solar wind interaction with type-1 comet tails

    International Nuclear Information System (INIS)

    Ershkovich, A.I.

    1977-01-01

    A comet tail is considered as a plasma cylinder separated by a tangential discontinuity surface from the solar wind. Under typical conditions a comet tail boundary is shown to undergo the Kelvin-Helmholtz instability. With infinite amplitude the stabilizing effect of the magnetic field increases, and waves become stable. The proposed model supplies the detailed quantitative description of helical waves observed in type-1 comet tails. This theory enables the evaluation of the comet tail magnetic field by means of the observations of helical waves. The magnetic field in the comet tail turns out to be of the order of the interplanetary field. This conclusion seems to be in accordance with Alfven's idea that the magnetic field in type-1 comet tails is a captured interplanetary field. (Auth.)

  17. COLOR SYSTEMATICS OF COMETS AND RELATED BODIES

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David, E-mail: jewitt@ucla.edu [Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States)

    2015-12-15

    Most comets are volatile-rich bodies that have recently entered the inner solar system following long-term storage in the Kuiper belt and the Oort cloud reservoirs. These reservoirs feed several distinct, short-lived “small body” populations. Here, we present new measurements of the optical colors of cometary and comet-related bodies including long-period (Oort cloud) comets, Damocloids (probable inactive nuclei of long-period comets) and Centaurs (recent escapees from the Kuiper belt and precursors to the Jupiter family comets). We combine the new measurements with published data on short-period comets, Jovian Trojans and Kuiper belt objects to examine the color systematics of the comet-related populations. We find that the mean optical colors of the dust in short-period and long-period comets are identical within the uncertainties of measurement, as are the colors of the dust and of the underlying nuclei. These populations show no evidence for scattering by optically small particles or for compositional gradients, even at the largest distances from the Sun, and no evidence for ultrared matter. Consistent with earlier work, ultrared surfaces are common in the Kuiper belt and on the Centaurs, but not in other small body populations, suggesting that this material is hidden or destroyed upon entry to the inner solar system. The onset of activity in the Centaurs and the disappearance of the ultrared matter in this population begin at about the same perihelion distance (∼10 AU), suggesting that the two are related. Blanketing of primordial surface materials by the fallback of sub-orbital ejecta, for which we calculate a very short timescale, is the likely mechanism. The same process should operate on any mass-losing body, explaining the absence of ultrared surface material in the entire comet population.

  18. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  19. Acharya Prafulla Chandra at the College of Science

    Indian Academy of Sciences (India)

    and by his remarkable book, 'History of Hindu Chemistry'. His activities progressed ... chemistry journals in England, Germany and America. Prafulla. Chandra ... Presidency College in 1889, he wrote an illustrated zoology primer for children.

  20. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    Energy Technology Data Exchange (ETDEWEB)

    Shou, Y.; Combi, M.; Gombosi, T.; Toth, G. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI (United States); Jia, Y.-D. [IGPP, and EPSS, University of California, Los Angeles, CA 90095 (United States); Rubin, M. [Physikalisches Institut, University of Bern, Sidlerstrasse. 5, CH-3012 Bern (Switzerland)

    2015-08-20

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.

  1. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    International Nuclear Information System (INIS)

    Shou, Y.; Combi, M.; Gombosi, T.; Toth, G.; Jia, Y.-D.; Rubin, M.

    2015-01-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses

  2. To Catch A Comet...Learning From Halley's.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    Comet chronicles and stories extend back over thousands of years. A common theme has been that comets are a major cause of catastrophe and tragedy here on earth. In addition, both Aristotle and Ptolemy believed that comets were phenomena within the earth's atmosphere, and it wasn't until the 16th century, when Danish astronomer Tycho Brache…

  3. NASA Chandra X-ray Observatory Selected as Editor's Choice in 2000 Discover Magazine Awards for Technological Innovation

    Science.gov (United States)

    2000-06-01

    The Chandra X-ray Observatory, NASA's newest and most powerful X-ray space telescope, has been selected as the winner of the Editor's Choice category of the 2000 Discover Magazine Awards for Technological Innovation. The team of government, industry, university and research institutions that designed, built and deployed Chandra for NASA's Marshall Space Flight Center, Huntsville, Ala, will be formally recognized June 24 at a gala awards celebration at Epcot at the Walt Disney World Resort in Orlando, Fl. Dr. Harvey Tananbaum, director of the Smithsonian Astrophysical Observatory's Chandra X-ray Science Center, Cambridge, Mass., which conducts the Chandra science mission for NASA, will receive the award on behalf of the team. "Chandra has opened a new window for astronomers into the universe of high-energy cosmic events such as pulsars, supernova remnants and black holes," said Tananbaum. "We're now able to create spectacularly detailed images of celestial phenomena whose mere existence we could only hypothesize before." Among Chandra's most significant discoveries to date, he lists the detection of a giant ring around the heart of the Crab Nebula, details of the shock wave created by an exploding star and resolution of the high-energy X-ray "glow" in the universe into millions of specific light sources. "The successful launch, deployment and on-orbit operations of NASA's Chandra X-ray Observatory is a testament to the solid partnership between TRW, NASA and the science community that has been enabling NASA's most important space science missions for the past 40 years," said Timothy W. Hannemann, executive vice president and general manager, TRW Space & Electronics Group. "The extraordinary images that Chandra is delivering daily speaks loudly not only to the quality of the science instruments on board, but also to the engineering talents and dedication to mission success exhibited by every member of NASA's Chandra mission team." Chandra, named in honor of Nobel

  4. Autonomous Onboard Science Data Analysis for Comet Missions

    Science.gov (United States)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  5. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    Science.gov (United States)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  6. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    Science.gov (United States)

    Disanti, Michael A.; Mumma, Michael J.

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  7. The comet assay in Environmental Risk Assessment of marine pollutants: applications, assets and handicaps of surveying genotoxicity in non-model organisms.

    Science.gov (United States)

    Martins, Marta; Costa, Pedro M

    2015-01-01

    Determining the genotoxic effects of pollutants has long been a priority in Environmental Risk Assessment (ERA) for coastal ecosystems, especially of complex areas such as estuaries and other confined waterbodies. The acknowledged link between DNA damage, mutagenicity and carcinogenicity to the exposure to certain toxicants has been responsible to the growing interest in determining the genotoxic effects of xenobiotics to wildlife as a measure of environmental risk. The comet assay, although widely employed in in vivo and in vitro toxicology, still holds many constraints in ERA, in large part owing to difficulties in obtaining conclusive cause-effect relationships from complex environments. Nevertheless, these challenges do not hinder the attempts to apply the alkaline comet assay on sentinel organisms, wild or subjected to bioassays in or ex situ (from fish to molluscs) as well to standardise protocols and establish general guidelines to the interpretation of findings. Fish have been regarded as an appealing subject due to the ease of performing the comet assay in whole blood. However, the application of the comet assay is becoming increasingly common in invertebrates (e.g. in molluscan haemocytes and solid tissues such as gills). Virtually all sorts of results have been obtained from the application of the comet assay in ERA (null, positive and inconclusive). However, it has become clear that interpreting DNA damage data from wild organisms is particularly challenging due to their ability to adapt to continuous environmental stressors, including toxicants. Also, the comet assay in non-model organisms for the purpose of ERA implies different constraints, assumptions and interpretation of findings, compared with the in vitro procedures from which most guidelines have been derived. This paper critically reviews the application of the comet assay in ERA, focusing on target organisms and tissues; protocol developments, case studies plus data handling and

  8. What's Causing the Activity on Comet 67P?

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    Comet 67P/ChuryumovGerasimenko made famous by the explorations of the Rosetta mission has been displaying puzzling activity as it hurtles toward the Sun. However, recent modeling of the comet by a group of scientists from the Cte dAzur University may now explain whats causing 67Ps activity.Shadowed ActivityA model of comet 67P, with the colors indicating the rate of change of the temperature on the comets surface. The most rapid temperature changes are seen at the comets neck, in the same locations as the early activity seen in the Rosetta images. [Al-Lagoa et al. 2015] Between June and September of 2014, Rosetta observed comet 67P displaying early activity in the form of jets of dust emitted from near the neck of the comet (its narrowest point). Such activity is usually driven by the sublimation of volatiles from the comets surface as a result of sun exposure. But the neck of the comet is frequently shadowed as the comet rotates, and it receives significantly less sunlight than the rest of the comet. So why would the early activity originate from the comets neck?The authors of a recent study, led by Victor Al-Lagoa, hypothesize that its precisely because the neck is receiving alternating sunlight/shadows that its displaying activity. They suggest that thermal cracking of the surface of the comet is happening faster in this region, due to the rapid changes in temperature that result from the shadows cast by the surrounding terrain. The cracking exposes subsurface ices in the neck faster than in other regions, and the ensuing sublimation of that ice is what creates the activity were seeing.Temperature Models: To test their hypothesis, the authors study the surface temperatures on comet 67P by means of a thermophysical model a model used to calculate the temperatures on an airless body, both on and below the surface. The model takes into account factors like thermal inertia (how quickly the bodys temperature responds to changes in the incident energy), shadowing, and

  9. Chandra Looks Over a Cosmic Four-Leaf Clover

    Science.gov (United States)

    2004-07-01

    A careful analysis of observations by NASA's Chandra X-ray Observatory of a rare quadruple quasar has uncovered evidence that possibly a single star in a foreground galaxy magnified X-rays coming from the quasar. This discovery gives astronomers a new and extremely precise probe of the gas flow around the supermassive black hole that powers the quasar. "If our interpretation is correct, then we are seeing details around this black hole that are 50,000 times smaller than either the Hubble Space Telescope or Chandra could see under ordinary circumstances," said George Chartas of Penn State University in University Park, and lead author of a recent article on the Cloverleaf quasar in The Astrophysical Journal. The Cloverleaf quasar is a single object about 11 billion light years from Earth that appears as four images produced by a process known as gravitational lensing. If one or more galaxies lie along the line of sight to a more distant quasar, the gravitational field of the intervening galaxies can bend and magnify the light from the quasar and produce multiple images of it. The four images of the Cloverleaf quasar have been produced by one or more intervening galaxies. Cloverleaf Quasar Chandra X-ray Image of the Cloverleaf quasar One of the images (A), in the Cloverleaf is brighter than the others in both optical and X-ray light. Chartas and his colleagues found the relative brightness of this image was greater in X-ray than in optical light. The X-rays from iron atoms were also enhanced relative to X-rays at lower energies. Since the amount of brightening due to gravitational lensing does not vary with the wavelength, this means that an additional object has magnified the X-rays. The increased magnification of the X-ray light can be explained by gravitational microlensing, an effect which has been used to search for compact stars and planets in our galaxy. Microlensing occurs when a star or a multiple star system passes in front of light from a background object

  10. Comet/Asteroid Protection System (CAPS): A Space-Based System Concept for Revolutionizing Earth Protection and Utilization of Near-Earth Objects

    Science.gov (United States)

    Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Kay-Bunnell, Linda; Werner, Martin R.; Park, Sang-Young; Kumar, Renjith R.

    2002-01-01

    There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS is a future spacebased system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This paper provides a summary of CAPS and discusses several key areas and technologies that are being investigated.

  11. Modeling Formaldehyde Emission in Comets

    Science.gov (United States)

    Disanti, M. A.; Reuter, D. C.; Bonev, B. P.; Mumma, M. J.; Villanueva, G. L.

    Modeling fluorescent emission from monomeric formaldehyde (H2CO) forms an integral part of our overall comprehensive program of measuring the volatile composition of comets through high-resolution (RP ~ 25,000) infrared spectroscopy using CSHELL at the IRTF and NIRSPEC at Keck II. The H2CO spectra contain lines from both the nu1 (symmetric CH2 stretch) and nu5 (asymmetric CH2 stretch) bands near 3.6 microns. We have acquired high-quality spectra of twelve Oort cloud comets, and at least six of these show clear emission from H2CO. We also detected H2CO with NIRSPEC in one Jupiter Family comet, 9P/Tempel 1, during Deep Impact observations. Our H2CO model, originally developed to interpret low-resolution spectra of comets Halley and Wilson (Reuter et al. 1989 Ap J 341:1045), predicts individual line intensities (g-factors) as a function of rotational temperature for approximately 1300 lines having energies up to approximately 400 cm^-1 above the ground state. Recently, it was validated through comparison with CSHELL spectra of C/2002 T7 (LINEAR), where newly developed analyses were applied to obtain robust determinations of both the rotational temperature and abundance of H2CO (DiSanti et al. 2006 Ap J 650:470). We are currently in the process of extending the model to higher rotational energy (i.e., higher rotational quantum number) in an attempt to improve the fit to high-J lines in our spectra of C/T7 and other comets. Results will be presented, and implications discussed.Modeling fluorescent emission from monomeric formaldehyde (H2CO) forms an integral part of our overall comprehensive program of measuring the volatile composition of comets through high-resolution (RP ~ 25,000) infrared spectroscopy using CSHELL at the IRTF and NIRSPEC at Keck II. The H2CO spectra contain lines from both the nu1 (symmetric CH2 stretch) and nu5 (asymmetric CH2 stretch) bands near 3.6 microns. We have acquired high-quality spectra of twelve Oort cloud comets, and at least six of

  12. APC implementation in Chandra Asri - ethylene plant

    Science.gov (United States)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  13. Distant Galaxies, Black Holes and Other Celestial Phenomena: NASA's Chandra X-ray Observatory Marks Four Years of Discovery Firsts

    Science.gov (United States)

    2003-09-01

    Launched in 1999, NASA's Chandra X-ray Observatory promised to be one of the world's most powerful tools to better understand the structure and evolution of the universe - and it has lived up to expectations. "In four short years, Chandra has achieved numerous scientific firsts, revealing new details on all categories of astronomical objects including distant galaxies, planets, black holes and stars," said Chandra project scientist Dr. Martin C. Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "In the last year alone, Chandra has generated the most sensitive or 'deepest' X-ray exposure ever made, shed new light on the planet Mars, and made several new discoveries involving supermassive black holes," added Weisskopf, who has dedicated nearly 30 years to the Chandra program. The deepest X-ray exposure, Chandra Deep Field North, captured for 23 days an area of the sky one-fifth the size of the full moon. Even though the faintest sources detected produced only one X-ray photon every four days, Chandra found more than 600 X-ray sources -- most of them supermassive black holes in galaxy centers. If the number of black holes seen in that area of the sky were typical, 300 million supermassive black holes would be detectable over the whole sky. In our own solar system, another Chandra image offered scientists their first look at X-rays from Mars . Not only did Chandra detect X-rays in the sparse upper atmosphere 750 miles above the planet, it also offered evidence for a faint halo of X-rays extending out 4,350 miles above the Martian surface. "In its fourth year of operation, Chandra continues to prove itself an engineering marvel," said Chandra Program Manager Keith Hefner at NASA's Marshall Center. "At its highest point, it travels one-third of the way to the Moon, yet it consistently delivers breathtaking results gleaned from millions, sometimes billions, of light years away." Some of Chandra's most intriguing discoveries involved black holes

  14. Finding Long Lost Lexell's Comet: The Fate of the First Discovered Near-Earth Object

    Science.gov (United States)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To

    2018-04-01

    Jupiter-family Comet D/1770 L1 (Lexell) was the first discovered Near-Earth Object (NEO) and passed the Earth on 1770 July 1 at a recorded distance of 0.015 au. The comet was subsequently lost due to unfavorable observing circumstances during its next apparition followed by a close encounter with Jupiter in 1779. Since then, the fate of D/Lexell has attracted interest from the scientific community, and now we revisit this long-standing question. We investigate the dynamical evolution of D/Lexell based on a set of orbits recalculated using the observations made by Charles Messier, the comet’s discoverer, and find that there is a 98% chance that D/Lexell remains in the solar system by the year of 2000. This finding remains valid even if a moderate non-gravitational effect is imposed. Messier’s observations also suggest that the comet is one of the largest known near-Earth comets, with a nucleus of ≳10 km in diameter. This implies that the comet should have been detected by contemporary NEO surveys regardless of its activity level if it has remained in the inner solar system. We identify asteroid 2010 JL33 as a possible descendant of D/Lexell, with a 0.8% probability of chance alignment, but a direct orbital linkage of the two bodies has not been successfully accomplished. We also use the recalculated orbit to investigate the meteors potentially originating from D/Lexell. While no associated meteors have been unambiguously detected, we show that meteor observations can be used to better constrain the orbit of D/Lexell despite the comet being long lost.

  15. The COMET Sleep Research Platform.

    Science.gov (United States)

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  16. Comet Halley and its historic passages during the past millennium

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1986-01-01

    The March 12, 1759 return of Comet Halley verified Halley's hypothesis on the existence of periodic comets and supported Newton's principle of universal attraction. Comet Halley's appearances before the 16th century are traced and it is noted that the length of the comet's tail has varied greatly. The comet's rendezvous with ESA's satellite Giotto is discussed briefly

  17. The Comet Halley Handbook: An Observer's Guide. Second Edition.

    Science.gov (United States)

    Yeomans, Donald K.

    This handbook contains information on: (1) the orbit of comet Halley; (2) the expected physical behavior of comet Halley in 1985-1986, considering brightness estimates, coma diameters, and tail lengths; (3) observing conditions for comet Halley in 1985-1986; and (4) observing conditions for the dust tail of comet Halley in 1985-1986. Additional…

  18. 67P, Singing Comet

    Science.gov (United States)

    Smirnova, Ekaterina

    2017-04-01

    I would like to propose to present a short science-art-music collaboration film called "67P, Singing Comet" (5:27 min). If time of the session will allow, prior to the film I would like to make a slide show introduction to this project, highlighting the inspiration - the mission Rosetta by the European Space Agency (ESA) - and the artistic collaboration that took place in creating this piece. Inspired by the ESA Rosetta mission to the comet 67P, Ekaterina Smirnova (artist and project director, New York), Lee Mottram (clarinetist, Wales), Takuto Fukuda (composer, Japan) and Brian Hekker (video editor, New York) collaborated to create a unique atmospheric piece. Water and the origins of life throughout the Universe (specifically the Earth) is an element of the mission and the focus of Ekaterina's artistic vision. Ekaterina literally and figuratively paints a sensory assemblage using a combination of synthetic and natural elements to shape this artistic creation. To paint her watercolor works she is using a replica of the water found on the comet and implementing her own heartbeat into the music to create a recognizable inward sound of life. The Electro-Acoustic composition by Takuto Fukuda features an electronically manipulated performance by clarinetist Lee Mottram. The piece ceremoniously begins with reverberant bursts of low-register atonal bells transporting the listener to their ethereal inner origins of body and mind. The imagination takes the experience to an unknown destination as it gains speed gliding through the visual and audible textures of space and time. The comet's water similarly reacts with an ebb and flow thawing ice to potentially give life a chance as it is thrust along an orbit around the Sun. Near then far from the heat the comet forms frozen particles from vapors as it reaches it's furthest stretches creating an aerodynamic tail of icicles that slowly dissipate in a cycle that repeats itself until the comet's ultimate collision with an

  19. Study of Comets Composition and Structure

    Science.gov (United States)

    Khalaf, S. Z.; Selman, A. A.; Ali, H. S.

    2008-12-01

    The present paper focuses on the nature of the different interactions between cometary nucleus and tail with solar wind. The dynamics of the comet will impose many features that provide unique behavior of the comet when entering the solar system. These features are reviewed in this paper and few investigations are made. The calculations made in this work represent the analysis and interpretation of the different features of the comet, such as perihelion and eccentricity dependence on the gas production rate, and the dependence of the latter on the composition of the comet nucleus. The dependences of the heliocentric, bow shock, contact surface, and stand-off distances with gas production rate for many types of comets that cover linear and non-linear types are studied in this work. Important results are obtained which indicated the different physical interactions between cometary ions and solar wind. Furthermore, the important relation between mean molecular weight and gas production rate are analyzed and studied in this work and a conclusion is made that, as the gas production rate increases, the mean molecular weight will decrease exponentially. A detailed discussion for this unique relation is given.

  20. Comet assay on mice testicular cells

    Directory of Open Access Journals (Sweden)

    Anoop Kumar Sharma

    2015-05-01

    Full Text Available Heritable mutations may result in a variety of adverse outcomes including genetic disease in the offspring. In recent years the focus on germ cell mutagenicity has increased and the “Globally Harmonized System of Classification and Labelling of Chemicals (GHS” has published classification criteria for germ cell mutagens (Speit et al., 2009. The in vivo Comet assay is considered a useful tool for investigating germ cell genotoxicity. In the present study DNA strand breaks in testicular cells of mice were investigated. Different classes of chemicals were tested in order to evaluate the sensitivity of the comet assay in testicular cells. The chemicals included environmentally relevant substances such as Bisphenol A, PFOS and Tetrabrombisphenol A. Statistical power calculations will be presented to aid in the design of future Comet assay studies on testicular cells. Power curves were provided with different fold changes in % tail DNA, different number of cells scored and different number of gels (Hansen et al., 2014. An example is shown in Figure 1. A high throughput version of the Comet assay was used. Samples were scored with a fully automatic comet assay scoring system that provided faster scoring of randomly selected cells.

  1. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Qiu, Yanli; Liu, Jifeng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Bregman, Joel N., E-mail: songw@bao.ac.cn, E-mail: jfliu@bao.ac.cn [University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-20

    Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.

  2. A GREAT search for Deuterium in Comets

    Science.gov (United States)

    Mumma, Michael

    2013-10-01

    Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only eight comets. Seven were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.

  3. A quantitative comet infection assay for influenza virus

    Science.gov (United States)

    Lindsay, Stephen M.; Timm, Andrea; Yin, John

    2011-01-01

    Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578

  4. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  5. The Chandra X-ray Observatory data processing system

    Science.gov (United States)

    Evans, Ian; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Janet; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Plummer, David; Zografou, Panagoula

    2006-06-01

    Raw data from the Chandra X-ray Observatory are processed by a set of standard data processing pipelines to create scientifically useful data products appropriate for further analysis by end users. Fully automated pipelines read the dumped raw telemetry byte stream from the spacecraft and perform the common reductions and calibrations necessary to remove spacecraft and instrumental signatures and convert the data into physically meaningful quantities that can be further analyzed by observers. The resulting data products are subject to automated validation to ensure correct pipeline processing and verify that the spacecraft configuration and scheduling matched the observers request and any constraints. In addition, pipeline processing monitors science and engineering data for anomalous indications and trending, and triggers alerts if appropriate. Data products are ingested and stored in the Chandra Data Archive, where they are made available for downloading by users. In this paper, we describe the architecture of the data processing system, including the scientific algorithms that are applied to the data, and interfaces to other subsystems. We place particular emphasis on the impacts of design choices on system integrity and maintainability. We review areas where algorithmic improvements or changes in instrument characteristics have required significant enhancements, and the mechanisms used to effect these changes while assuring continued scientific integrity and robustness. We discuss major enhancements to the data processing system that are currently being developed to automate production of the Chandra Source Catalog.

  6. Stardust: Catching a Comet and Bringing it Home

    Science.gov (United States)

    Brownlee, Donald E.

    2007-01-01

    The NASA STARDUST mission collected thousands of particles from Comet Wild 2 that are now being studied by two hundred scientists around the world. The spacecraft captured the samples during a close flyby of the comet in 2004 and returned them to Earth with a dramatic entry into the atmosphere early in 2006. The precious cargo of comet dust is being studied to determine new information about the origin of the Sun and planets. The comet formed at the edge of the solar system, beyond the orbit of Neptune, and is a sample of the material from which the solar system was formed. One of the most dramatic early findings from the mission was that a comet that formed in the coldest place in the solar system contained minerals that formed in the hottest place in the solar system. The comet samples are telling stories of fire and ice and they providing fascinating and unexpected information about our origins.

  7. Comets, Asteroids, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide

  8. TGCat, The Chandra Transmission Grating Catalog and Archive: Systems, Design and Accessibility

    OpenAIRE

    Mitschang, Arik W.; Huenemoerder, David P.; Nichols, Joy S.

    2009-01-01

    The recently released Chandra Transmission Grating Catalog and Archive, TGCat, presents a fully dynamic on-line catalog allowing users to browse and categorize Chandra gratings observations quickly and easily, generate custom plots of resulting response corrected spectra on-line without the need for special software and to download analysis ready products from multiple observations in one convenient operation. TGCat has been registered as a VO resource with the NVO providing direct access to ...

  9. Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has revealed an expanding ring-like structure of oxygen and neon that was hurled into space by the explosion of a massive star. The image of E0102-72 provides unprecedented details about the creation and dispersal of heavy elements necessary to form planets like Earth. The results were reported by Professor Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 195th national meeting of the American Astronomical Society in Atlanta, Ga. Drs. Kathryn Flanagan, David Davis, and John Houck of MIT collaborated with Canizares in this investigation. E0102-72 is the remnant of a supernova explosion located in our neighbor galaxy, the Small Magellanic Cloud, nearly 200,000 light years away. It was created by the explosion of a star that was more than ten times as massive as our Sun. We are seeing the aftermath of the explosion a thousand or more years after the outburst. Shock waves are heating gas to temperatures of nearly 10 million degrees, so it glows with X-rays that are detected by Chandra's instruments. By using the High Energy Transmission Grating Spectrometer (HETG), astronomers were able to pinpoint the distribution of each chemical element individually and measure the velocities of different parts of the expanding ring. They also show the shock wave in a kind of "freeze-frame," revealing the progressive heating of the stellar matter as it plows into the surrounding gas. This is the first time such detailed X-ray information has ever been obtained for a supernova remnant, and should provide critical clues to the nature of supernovas. The grating spectrometer, which was built by an MIT team led by Canizares, spreads the X-rays according to their wavelength, giving distinct images of the object at specific wavelengths characteristic of each chemical element. Small wavelength shifts caused by the Doppler effect are used to measure the expansion velocities of each element independently. "We've been

  10. ESA Unveils Its New Comet Chaser.

    Science.gov (United States)

    1999-07-01

    The objective is to study one of these primordial objects at close quarters by placing a lander on its surface and chasing, with an orbiter, the comet for millions of kilometres through space. Comets - among the oldest (4.6 billion years!) and last altered objects in the solar system - are regarded as the building blocks from which the planets formed. Thus the Rosetta's discoveries will allow the scientists to learn more about birth and evolution of the planets and about the origin of life on the Earth. The final design of the Rosetta orbiter will be revealed for the first time at the Royal Society in London on 1 July when a 1:4 scale model will be unveiled by ESA's Director of Science, Prof.. Roger Bonnet. (The full size version of the spacecraft is 32 metres across, so large that it would stretch the entire width of a football pitch. Almost 90 of this is accounted for by the giant solar panels which are needed to provide electrical power in the dark depths of the Solar System). "Rosetta is a mission of major scientific importance," said Prof. Bonnet. "It will build on the discoveries made by Giotto and confirm ESA's leading role in the exploration of the Solar System and the Universe as a whole." The timing of this event has been chosen to coincide with the London meeting of the Rosetta Science Working Team and the second Earth flyby of the now non-operational Giotto spacecraft. In addition, the opening of the British Museum's 'Cracking Codes' Exhibition, for which the Rosetta Stone is the centrepiece, is set to take place on 10 July. The Rosetta mission. Rosetta is the third Cornerstone in ESA's 'Horizon 2000' long-term scientific programme. It will be launched by Ariane 5 rocket from Kourou spaceport in French Guiana in January 2003. In order to gain sufficient speed to reach the distant comet, Rosetta will require gravity assists from the Earth (twice) and Mars. After swinging around Mars in May 2005, Rosetta will return to Earth's vicinity in October 2005 and

  11. Giacobini-Zinner comet: polarimetric and physical observations

    International Nuclear Information System (INIS)

    Martel, M.T.; Maines, P.; Grudzinska, S.; Stawikowski, A.

    1984-10-01

    The results of observations of the Giacobini-Zinner comet on 25 and 31 October 1959 are presented. The magnitude of the comet was measured photoelectrically in two spectral regions. The radius is on the order of one kilometer. The photoelectric measurements of comets 1959b and 1957c were used to measure the abundances of the CN and C2 radicals and of solid particles in the heads

  12. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  13. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    International Nuclear Information System (INIS)

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Fiore, F.; Mainieri, V.; Capak, P.; Caputi, K.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ Δz/(1+z spec ) ∼0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg 2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  14. On the origin of comets

    Science.gov (United States)

    Mendis, A.; Alfven, H.

    1976-01-01

    Physico-chemical processes leading to the dynamic formation and physical evolution of comets are reviewed in relationship to the various theories that propose solar origins, protoplanetary origins, planetary origins and interstellar origins. Evidence points to the origins of comets by the growth and agglomeration of small particles from gas and dust at very low temperatures at undetermined regions in space.

  15. Planetary perturbations and the origins of short-period comets

    International Nuclear Information System (INIS)

    Quinn, T.; Tremaine, S.; Duncan, M.

    1990-01-01

    To investigate the dynamical plausibility of possible sources for the short-period comets, a representative sample of comet orbits in the field of the sun and the giant planets was integrated, with the aim to determine whether the distribution of orbits from a proposed source that reach observable perihelia (q less than 2.5 AU) matches the observed distribution of short-period orbits. It is found that the majority of the short-period comets, those with orbital period P less than 20 yr (the Jupiter family), cannot arise from isotropic orbits with perihelia near Jupiter's orbit, because the resulting observable comet orbits have the wrong distribution in period, inclination, and argument of perihelion. The simulations also show that Jupiter-family comets cannot arise from isotropic orbits with perihelia in the Uranus-Neptune region. On the other hand, a source of low-inclination Neptune-crossing orbits yields a distribution of observable Jupiter-family comets that is consistent with the data in all respects. These results imply that the Jupiter-family comets arise from a disk source in the outer solar system rather than from the Oort comet cloud. 30 refs

  16. Comet Tempel 1 Went Back to Sleep

    Science.gov (United States)

    2005-07-01

    Astronomers Having Used ESO Telescopes Start Analysing Unique Dataset on the Comet Following the Deep Impact Mission Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the ESO Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet. The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission' scientific team, they will try to assemble a clear picture of the comet and of the impact. The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome. From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface. ESO PR Photo 22/05 ESO PR Photo 22/05 Evolution of Comet Tempel 1 (FORS2/VLT) [Preview - JPEG: 400 x 701 pix - 128k] [Normal - JPEG: 800 x 1401 pix - 357k] ESO PR Photo 22/05 Animated Gif Caption: ESO PR Photo 22/05 shows the evolution of Comet Tempel 1 as observed with the FORS2 instrument on Antu (VLT). The images obtained at the VLT show that

  17. Random, double- and single-strand DNA breaks can be differentiated in the method of Comet assay by the shape of the comet image.

    Science.gov (United States)

    Georgieva, Milena; Zagorchev, Plamen; Miloshev, George

    2015-10-01

    Comet assay is an invaluable tool in DNA research. It is widely used to detect DNA damage as an indicator of exposure to genotoxic stress. A canonical set of parameters and specialized software programs exist for Comet assay data quantification and analysis. None of them so far has proven its potential to employ a computer-based algorithm for assessment of the shape of the comet as an indicator of the exact mechanism by which the studied genotoxins cut in the molecule of DNA. Here, we present 14 unique measurements of the comet image based on the comet morphology. Their mathematical derivation and statistical analysis allowed precise description of the shape of the comet image which in turn discriminated the cause of genotoxic stress. This algorithm led to the development of the "CometShape" software which allowed easy discrimination among different genotoxins depending on the type of DNA damage they induce. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A dynamical study on extrasolar comets

    Science.gov (United States)

    Loibnegger, B.; Dvorak, R.

    2017-09-01

    Since the detection of absorption features in spectra of beta Pictoris varying on short time scales it is known that comets exist in other stellar systems. We investigate the dynamics of comets in two differently build systems (HD 10180 and HIP 14810). The outcomes of the scattering process, as there are collisions with the planets, captures and ejections from the systems are analysed statistically. Collisions and close encounters with the planets are investigated in more detail in order to conclude about transport of water and organic material. We will also investigate the possibility of detection of comets in other planetary systems.

  19. Jet Power and Black Hole Assortment Revealed in New Chandra Image

    Science.gov (United States)

    2008-01-01

    A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle

  20. The Cosmic History of Black Hole Accretion from Chandra X-ray Stacking

    Science.gov (United States)

    Treister, Ezequiel; Urry, C.; Schawinski, K.; Lee, N.; Natarajan, P.; Volonteri, M.; Sanders, D. B.

    2012-05-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are black holes growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. We take advantage of the rich multi-wavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Msec Chandra observations (the deepest X-ray data to date), in order to measure the amount of black hole accretion as a function of cosmic history, from z 0 to z 6. We obtain stacked rest-frame X-ray spectra for samples of galaxies binned in terms of their IR luminosity, stellar mass and other galaxy properties. We find that the AGN fraction and their typical luminosities, and thus black hole accretion rates, increase with IR luminosity and stellar mass. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We find evidence for a strong connection between significant black hole growth events and major galaxy mergers from z 0 to z 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. E.T. and K.S. gratefully acknowledges the support provided by NASA through Chandra Postdoctoral Fellowship Award Numbers PF8-90055 and PF9-00069, respectively issued by the Chandra X-ray Observatory Center. E.T. also thanks support by NASA through Chandra Award SP1-12005X Center of Excellence in Astrophysics and Associated Technologies (PFB 06). C. M. Urry acknowledges support from NSF Grants AST-0407295, AST-0449678, AST-0807570, and Yale University.

  1. New Image of Comet Halley in the Cold

    Science.gov (United States)

    2003-09-01

    brightness of the cometary image perfectly matches that expected for the nucleus alone, taking into account the distance, the solar illumination and the reflectivity of the surface. This shows that all cometary activity has now ceased. The nucleus is now an inert ball of ice and dust, and is likely to remain so until it again returns to the solar neighbourhood, more than half a century from now. A record observation At 28.06 AU heliocentric distance (1 AU = 149,600,000 km - the mean distance between the Earth and the Sun), this is by far the most distant observation ever made of a comet [2]. It is also the faintest comet ever detected (by a factor of about 5); the previous record, magnitude 26.5, was co-held by comet Halley at 18.8 AU (with the ESO New Technology Telescope in 1994) and Comet Sanguin at 8.5 AU (with the Keck II telescope in 1997). Interestingly, when Comet Halley reaches its largest distance from the Sun in December 2023, about 35 AU, it will only be 2.5 times fainter than it is now. The comet would still have been detected within the present exposure time. This means that with the VLT, for the first time in the long history of this comet, the astronomers now possess the means to observe it at any point in its 76-year orbit! A census of faint Transneptunian Objects The image of Halley was obtained by combining a series of exposures obtained simultaneously with three of the 8.2-m telescopes (ANTU, MELIPAL and YEPUN) during 3 consecutive nights with the main goal to count the number of small icy bodies orbiting the Sun beyond Neptune, known as Transneptunian Objects (TNOs). Since the discovery of the first TNO in 1992, more than 600 have been found, most of these measuring several hundred km across. The VLT observations aim at a census of smaller TNOs - the incorporation of the sky field with Comet Halley allows verification of the associated, extensive data processing. Similar TNO-surveys have been performed before, but this is the first time that several very

  2. Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory

    Science.gov (United States)

    2002-10-01

    New evidence from NASA's Chandra X-ray Observatory challenges an alternative theory of gravity that eliminates the need for dark matter. The observation also narrows the field for competing forms of dark matter, the elusive material thought to be the dominant form of matter in the universe. An observation of the galaxy NGC 720 shows it is enveloped in a slightly flattened, or ellipsoidal cloud of hot gas that has an orientation different from that of the optical image of the galaxy. The flattening is too large to be explained by theories in which stars and gas are assumed to contain most of the mass in the galaxy. "The shape and orientation of the hot gas cloud require it to be confined by an egg-shaped dark matter halo," said David Buote of the University of California, Irvine, and lead author of a report on this research in the 2002 September 20 issue of The Astrophysical Journal. "This means that dark matter is not just an illusion due to a shortcoming of the standard theory of gravity - it is real." According to the generally accepted standard theory of gravity, the hot X-ray cloud would need an additional source of gravity - a halo of dark matter - to keep the hot gas from expanding away. The mass of dark matter required would be about five to ten times the mass of the stars in the galaxy. If the dark matter tracked the optical light from the stars in the galaxy, the hot X-ray cloud would be more round than it is. The flattened shape of the hot gas cloud requires a flattened dark matter halo. An alternative theory of gravity called MOND, for Modified Newtonian Dynamics, was proposed in 1983 by Mordecai Milgrom of the Weizmann Institute in Israel, and has remained viable over the years. MOND does away with the need for dark matter by modifying the theory where the acceleration produced by gravity is very small, such as the outskirts of galaxies. However, MOND cannot explain the Chandra observation of NGC 720. This is apparently the first dynamical evidence that

  3. VizieR Online Data Catalog: Cool-core clusters with Chandra obs. (Andrade-Santos+, 2017)

    Science.gov (United States)

    Andrade-Santos, F.; Jones, C.; Forman, W. R.; Lovisari, L.; Vikhlinin, A.; van Weeren, R. J.; Murray, S. S.; Arnaud, M.; Pratt, G. W.; Democles, J.; Kraft, R.; Mazzotta, P.; Bohringer, H.; Chon, G.; Giacintucci, S.; Clarke, T. E.; Borgani, S.; David, L.; Douspis, M.; Pointecouteau, E.; Dahle, H.; Brown, S.; Aghanim, N.; Rasia, E.

    2018-02-01

    The main goal of this work is to compare the fraction of cool-core (CC) clusters in X-ray-selected and SZ-selected samples. The first catalog of 189 SZ clusters detected by the Planck mission was released in early 2011 (Planck Collaboration 2011, VIII/88/esz). A Chandra XVP (X-ray Visionary Program--PI: Jones) and HRC Guaranteed Time Observations (PI: Murray) combined to form the Chandra-Planck Legacy Program for Massive Clusters of Galaxies. For each of the 164 ESZ Planck clusters at z<=0.35, we obtained Chandra exposures sufficient to collect at least 10000 source counts. The X-ray sample used here is an extension of the Voevodkin & Vikhlinin (2004ApJ...601..610V) sample. This sample contains 100 clusters and has an effective redshift depth of z<0.3. All have Chandra observations. Of the 100 X-ray-selected clusters, 49 are also in the ESZ sample, and 47 are in the HIFLUGCS (Reiprich & Boehringer 2002ApJ...567..716R) catalog. (2 data files).

  4. M31 in the Chandra Era: A High Definition Movie of a Nearby Galaxy

    Science.gov (United States)

    Kong, Albert; di Stefano, Rosanne

    2009-09-01

    M31 has been a prime targets for all X-ray missions since the first detection in 1974. With its superb spatial resolution, Chandra is unique in resolving dense source regions and detecting faint sources. Since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec. The X-ray skies of M31 not only consist of many transients and variables, globular cluster X-ray sources in M31 are also different from our Milky Way. They are in general more luminous and one of them may even host an intermediate-mass black hole. Supersoft and quasi-soft X-ray sources in M31 are the best kept secret to unlock the nature of the progenitor of Type Ia supernova. In this talk, I will review some of the important Chandra discoveries in M31 in the past 10 years.

  5. Vaporization of comet nuclei: Light curves and life times

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J J [Harvard Univ., Cambridge, MA (USA). Center for Astrophysics; A' Hearn, M F [Maryland Univ., College Park (USA)

    1979-10-01

    The authors have examined the effects of vaporization from the nucleus of a comet and show that a latitude dependence of vaporization can, in some cases, explain asymmetries in commetary light curves. They also find that a non-uniform distribution of solar radiation over a comet can considerably shorten the vaporization lifetime compared to the results normally obtained by assuming that the nuclear surface is isothermal. Independent of any latitude effects, comets with CO/sub 2/-dominated nuclei and with periherlion distances less than 0.5 AU have vaporization lifetimes less than or comparable to their dynamical ejection times. This may explain the observed deficit of comets with small perihelion distances. Similarly comets with CO/sub 2/-dominated nuclei and perihelia near Jupiter's orbit have vaporization lifetimes that are shorter than the time for capture into short-period orbits. They suggest, therefore, that at least some new comets are composed in large part of CO/sub 2/, while only H/sub 2/O-dominated comets, with lower vaporization rates, can survive to be captured into short-period orbits.

  6. Chandra position of IGR J17454-2919 and discovery of a possible NIR counterpart

    DEFF Research Database (Denmark)

    Paizis, A.; Nowak, M.; Chati, S.

    2015-01-01

    On 2014 November 3, we observed the recently discovered INTEGRAL source IGR J17454-2919 (ATels #6530, #6574 and #6602) with Chandra HETGS for 20ks. The J2000.0 Chandra position we obtain is RA: 17 45 27.689 DEC: -29 19 53.83 (90% uncertainty of 0.6") This position (2.4" away from the Swift positi...

  7. Catastrophic Disruption of Comet ISON

    Science.gov (United States)

    Keane, Jacqueline V.; Milam, Stefanie N.; Coulson, Iain M.; Kleyna, Jan T.; Sekanina, Zdenek; Kracht, Rainer; Riesen, Timm-Emmanuel; Meech, Karen J.; Charnley, Steven B.

    2016-01-01

    We report submillimeter 450 and 850 microns dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31-0.08 au prior to perihelion on 2013 November 28 (rh?=?0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60? (greater than 10(exp 5) km in the anti-solar direction. Deconvolution of the November 28.04 850 microns image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing approximately 5.2?×?10(exp 10) kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  8. Hyakutake, Hale-Bopp and the chemistry of comets

    International Nuclear Information System (INIS)

    Bachiller, R.; Planesas, P.

    1997-01-01

    Comets can be regarded as messengers from the primitive solar system which can provide precious pieces of information on the composition of the protosolar nebula. Physical and chemical phenomena within comets (shock waves, photodissociation caused by solar radiation, some endothermic chemical reactions, etc) are of the highest interest and cannot be reproduced at terrestrial laboratories in many cases. The passage of Hyakutake in 1996 and that of Hale-Bopp in 1997 are allowing remarkable progress in the understanding of the physico-chemistry of comets. Observations of such comets can be crucial in the study of the origin of life on Earth. (Author)

  9. Optical Detection of Anomalous Nitrogen in Comets

    Science.gov (United States)

    2003-12-01

    VLT Opens New Window towards Our Origins Summary A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles . The successful entry of UVES into cometary research now opens eagerly awaited opportunities for similiar observations in other, comparatively faint comets. These

  10. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  11. The Perihelion Emission of Comet C/2010 L5 ( WISE )

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, E. A.; Bauer, J. M.; Stevenson, R.; Mainzer, A. K.; Masiero, J.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Fernandez, Y. R. [University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Grav, T. [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395 (United States); Nugent, C. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-03-20

    The only Halley-type comet discovered by the Wide-Field Infrared Survey Explorer ( WISE ), C/2010 L5 ( WISE ), was imaged three times by WISE , and it showed a significant dust tail during the second and third visits (2010 June and July, respectively). We present here an analysis of the data collected by WISE , putting estimates on the comet’s size, dust production rate, gas production (CO+CO{sub 2}) rate, and active fraction. We also present a detailed description of a novel tail-fitting technique that allows the commonly used syndyne–synchrone models to be used analytically, thereby giving more robust results. We find that C/2010 L5's dust tail was likely formed by strong emission, likely in the form of an outburst, occurring when the comet was within a few days of perihelion. Analyses of the June and July data independently agree on this result. The two separate epochs of dust tail analysis independently suggest a strong emission event close to perihelion. The average size of the dust particles in the dust tail increased between the epochs, suggesting that the dust was primarily released in a short period of time, and the smaller dust particles were quickly swept away by solar radiation pressure, leaving the larger particles behind. The difference in CO{sub 2} and dust production rates measured in 2010 June and July is not consistent with “normal” steady-state gas production from a comet at these heliocentric distances, suggesting that much of the detected CO{sub 2} and dust was produced in an episodic event. Together, these conclusions suggest that C/2010 L5 experienced a significant outburst event when the comet was close to perihelion.

  12. The Perihelion Emission of Comet C/2010 L5 ( WISE )

    International Nuclear Information System (INIS)

    Kramer, E. A.; Bauer, J. M.; Stevenson, R.; Mainzer, A. K.; Masiero, J.; Sonnett, S.; Fernandez, Y. R.; Grav, T.; Nugent, C.

    2017-01-01

    The only Halley-type comet discovered by the Wide-Field Infrared Survey Explorer ( WISE ), C/2010 L5 ( WISE ), was imaged three times by WISE , and it showed a significant dust tail during the second and third visits (2010 June and July, respectively). We present here an analysis of the data collected by WISE , putting estimates on the comet’s size, dust production rate, gas production (CO+CO 2 ) rate, and active fraction. We also present a detailed description of a novel tail-fitting technique that allows the commonly used syndyne–synchrone models to be used analytically, thereby giving more robust results. We find that C/2010 L5's dust tail was likely formed by strong emission, likely in the form of an outburst, occurring when the comet was within a few days of perihelion. Analyses of the June and July data independently agree on this result. The two separate epochs of dust tail analysis independently suggest a strong emission event close to perihelion. The average size of the dust particles in the dust tail increased between the epochs, suggesting that the dust was primarily released in a short period of time, and the smaller dust particles were quickly swept away by solar radiation pressure, leaving the larger particles behind. The difference in CO 2 and dust production rates measured in 2010 June and July is not consistent with “normal” steady-state gas production from a comet at these heliocentric distances, suggesting that much of the detected CO 2 and dust was produced in an episodic event. Together, these conclusions suggest that C/2010 L5 experienced a significant outburst event when the comet was close to perihelion.

  13. Chandra "Hears" A Black Hole For The First Time

    Science.gov (United States)

    2003-09-01

    NASA's Chandra X-ray Observatory detected sound waves, for the first time, from a super-massive black hole. The "note" is the deepest ever detected from an object in the universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics. The black hole resides in the Perseus cluster, located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster's central black hole. perseus animation Illustration of Ripples in Perseus "We have observed the prodigious amounts of light and heat created by black holes, now we have detected the sound," said Andrew Fabian of the Institute of Astronomy (IoA) in Cambridge, England, and leader of the study. In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance, because the note is 57 octaves lower than middle-C (by comparison a typical piano contains only about seven octaves). At a frequency over a million, billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the universe. "The Perseus sound waves are much more than just an interesting form of black hole acoustics," said Steve Allen, also of the IoA and a co-investigator in the research. "These sound waves may be the key in figuring out how galaxy clusters, the largest structures in the universe, grow," Allen said. For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays should cool, and the dense central gas should cool the fastest. The pressure in this cool central gas should then fall, causing gas further out to sink in towards the galaxy, forming trillions of

  14. Unveiling the formation and evolution of comets

    Science.gov (United States)

    Lasue, J.; Levasseur-Regourd, A. C.; Botet, R.; Coradini, A.; Desanctis, M. C.; Kofman, W.

    2007-08-01

    Comet nuclei are considered as the most pristine bodies of the solar system and consequently their study sheds an important light on the processes occurring during the initial stages of the solar system formation. The analysis of the porosity and bulk density of such primordial bodies is especially important to understand their capacity to retain volatile components (organics and ices) present in the early solar nebula. Typical tensile strengths deduced for comet nuclei range from below 102N.m-2 from the Deep Impact mission [1] up to 104N.m-2 from the study of comet C/1999 S4 LINEAR breakup [2] and meteoroids [3]. A bulk density of about 350 kg/m3 has been obtained for 9P/Tempel 1 from the Deep Impact mission [4]. Moreover the properties of dust released from the comets strongly confirm such values. Instruments flying-by comet 1P/Halley had discovered the presence of organics, and pointed out the dust low albedo and extremely low density while analyses of Interplanetary Dust Particles collected in the stratosphere and remote spectroscopic observations have indicated that cometary dust consists of an un-equilibrated heterogeneous mixture of organic refractory materials and of amorphous and crystalline silicate minerals [5], as recently confirmed by Stardust [6]. Observations of the solar scattered light, together with elaborate simulations, give an estimation of the mass ratio between silicates and absorbing organics, the size distribution and the structure of the dust particles, suggesting that a fair amount consists in fluffy aggregates built up from submicronic grains [7,8], as recently confirmed by the analysis of dust craters and aerogel tracks on Stardust collector showing for some large particles (up to 100 μm) an extraordinary fluffy structure [9]. Simulations have been developed in our teams to describe the aspects of comet aggregation and evolution that have not been thoroughly explained yet. Particle aggregation simulations taking into account cohesive

  15. Comet 67P Through the Lens of Art

    Science.gov (United States)

    Smirnova, Ekaterina

    2017-04-01

    My proposal is to share my artistic exploration of a comet through the bodily senses, while finding inspiration in scientific data. I will present my artwork as a slideshow, showcasing: large scale paintings, ceramic sculptures, music and interactive augmented reality. The Rosetta mission of the European Space Agency (ESA) to comet 67P/ Churyumov-Gerasimenko is remarkable. The scientific investigation of the comet's composition, atmosphere, dust, vapor, surface and internal structure are crucial to help researchers understand the origin of the solar system and our own planet. Sight: Paintings Rosetta mission discovered that the water on the comet is different from the water on Earth; as measured with the ROSINA-DFMS instrument on Rosetta, water on 67P contains approximately 3 times more hydrogen­deuterium oxide - HDO, than found in Earth's oceans. In the art studio I re-create water that is close in composition to the water on the comet, by concentrating the level of HDO. With this water I paint large scale watermedia paintings, based on the photographs by Rosetta (OSIRIS, Nav. Cam.). Touch: Sculptures While exploring the comet's three-dimensional form, I focus more deeply on the composition of the comet. Stoneware clay and my choice of a glaze both include iron oxide, a common constituent of meteorites and comets. Hearing: Music An audio piece "A Singing Comet", by Manuel Senfft, based on the Rosetta Plasma Consortium data, inspired me to make a musical piece. In collaboration with clarinetist Lee Mottram (Wales) and composer Takuto Fukuda (Japan) we created an electro­acoustic composition in which we tell the story of comets visiting our Solar System, repeating their cycle, curving around the sun and releasing water, carrying away dust to form their tails. Smell In collaboration with The Open University, UK, postcards with a smell of the comet were created, introducing the chemical components of the comet. The smell was recreated by combining several molecules

  16. Migration of Interplanetary Dust and Comets

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation

  17. On the existence of a comet belt beyond Neptune

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1980-01-01

    The possible existence of a comet belt in connection with the origin of the short-period comets is analysed. It is noted that the current theory - that these comets originate as near-parabolic comets captured by Jupiter and the other giant planets - implies an excessive wastage of comets lost in hyperbolic orbits, which is avoided in the present model. The following picture is predicted. Solid conglomerates up to approximately 10 18 g were formed by gravitational instabilities in the belt region (about 35 to 50 AU). A further fragmentation-accretion process led to a power-law mass distribution similar to that observed in the asteroids. Since then, close encounters between members of the belt have provoked the diffusion of some of them with the effect that they have become subject to the strong perturbations of Neptune. Of these a small number pass from one planet to the next inside and end as short-period comets. By means of a Monte Carlo method, the influence of close encounters between belt comets is then studied in relation to the diffusion of their orbits. It is concluded that if such a belt contains members with masses equal to or greater than that of Ceres, the orbital diffusion could proceed fast enough to maintain the number of observed short-period comets in a steady state. (author)

  18. Electronic flight bag (EFB) : 2010 industry survey

    Science.gov (United States)

    2010-09-01

    This document provides an overview of Electronic Flight Bag (EFB) systems and capabilities, as of June 2010. This document updates and replaces the April 2007 EFB Industry Review (Yeh and Chandra, 2007). As with the previous industry survey, the focu...

  19. CATASTROPHIC DISRUPTION OF COMET ISON

    Energy Technology Data Exchange (ETDEWEB)

    Keane, Jacqueline V.; Kleyna, Jan T.; Riesen, Timm-Emmanuel; Meech, Karen J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Milam, Stefanie N.; Charnley, Steven B. [Astrochemistry Laboratory, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States); Coulson, Iain M. [Joint Astronomy Center, 660 North Aohoku Place, Hilo, HI 96720 (United States); Sekanina, Zdenek [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Kracht, Rainer, E-mail: keane@ifa.hawaii.edu [Ostlandring 53, D-25335 Elmshorn, Schleswig-Holstein (Germany)

    2016-11-10

    We report submillimeter 450 and 850 μ m dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31–0.08 au prior to perihelion on 2013 November 28 ( r {sub h} = 0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60″ (>10{sup 5} km) in the anti-solar direction. Deconvolution of the November 28.04 850 μ m image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing ∼5.2 × 10{sup 10} kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  20. Evolution of comets into asteroids

    International Nuclear Information System (INIS)

    Weissman, P.R.; A'hearn, M.F.; Rickman, H.; Mcfadden, L.A.

    1989-01-01

    This paper presents observational evidence, together with recent theoretical developments, supporting the hypothesis that at least some asteroids might be extinct or dormant cometary nuclei. The observations include the discovery of a number of apparent asteroids in chaotic Jupiter-crossing orbits; the IRAS discovery of 1983 TB, an asteroid in the same orbit as the Geminid meteor shower; the apparent low activity levels determined for several short-period comet nuclei including Comet Halley; and observations of possible cometary activity in some earth-crossing asteroids. Theoretical developments include explorations of dynamical mechanisms capable of delivering main-belt asteroids into earth-crossing orbits, and an understanding of possible processes which may affect comets during their long residence in the Oort cloud and lead to the formation of nonvolatile crusts before and after they enter the planetary system. 143 refs

  1. Chandra Observations of M31 and their Implications for its ISM

    Science.gov (United States)

    Primini, F.; Garcia, M.; Murray, S.; Forman, W.; Jones, C.; McClintock, J.

    2000-01-01

    As part of the Chandra X-ray Observatory's Survey/Monitoring Program of M31, we have been regularly observing the bulge amd inner disk of M31 for nearly 1 year, using both the HRC and ACIS Instruments. We present results from our program th it are of interest to the study of the ISM in M31. In particular, spectral analysis of bright, unresolved x-ray sources in the bulge reveals the presence of significant local x-ray extinction (N(sub H) is about 2 x 10(exp 21)/square cm), and we will attempt to map out this extinction, Further, we find that diffuse emission accounts for a significant fraction of the overall x-ray flux from the bulge. Finally, our search for x-ray counterparts to supernova remnants in M31 yields surprisingly few candidates.

  2. Comet showers and Nemesis, the death star

    International Nuclear Information System (INIS)

    Hills, J.G.

    1984-01-01

    The recently proposed hypothesis that the periodic extinctions of terrestrial species are the result of comet showers catalyzed by a hypothetical distant solar companion, Nemesis, a tale of global death by comet bombardment of the earth, is discussed

  3. Comments on comet shapes and aggregation processes

    International Nuclear Information System (INIS)

    Hartmann, W.K.

    1989-01-01

    An important question for a comet mission is whether comet nuclei preserve information clarifying aggregation processes of planetary matter. New observational evidence shows that Trojan asteroids, as a group, display a higher fraction of highly-elongated objects than the belt. More recently evidence has accumulated that comet nuclei, as a group, also display highly-elongated shapes at macro-scale. This evidence comes from the several comets whose nuclear lightcurves or shapes have been well studied. Trojans and comet nuclei share other properties. Both groups have extremely low albedos and reddish-to neutral-black colors typical of asteroids of spectral class D, P, and C. Both groups may have had relatively low collision frequencies. An important problem to resolve with spacecraft imaging is whether these elongated shapes are primordial, or due to evolution of the objects. Two hypotheses that might be tested by a combination of global-scale and close-up imaging from various directions are: (1) The irregular shapes are primordial and related to the fact that these bodies have had lower collision frequencies than belt asteroids; or (2) The irregular shapes may be due to volatile loss

  4. COMET SHOWERS ARE NOT INDUCED BY INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.E.

    1985-11-01

    Encounters with interstellar clouds (IC) have been proposed by Rampino and Stothers as a cause of quasi-periodic intense comet showers leading to earth impacts, in order to explain the periodicity in marine mass extinctions found by Raup and Sepkoski. The model was described further, criticized and defended. The debate has centered on the question of whether the scale height of the clouds is small enough (in comparison to the amplitude of the oscillation of the solar system about the plane of the Galaxy) to produce a modulation in the rate of encounters. We wish to point out another serious, we believe fatal, defect in this model - the tidal fields of ICs are not strong enough to produce intense comet showers leading to earth impacts by bringing comets of the postulated inner Oort cloud into earth crossing orbits, except possibly during very rare encounters with very dense clouds. We will show that encounters with abundant clouds of low density cannot produce comet showers; cloud density N > 10{sup 3} atoms cm{sup -3} is needed to produce an intense comet shower leading to earth impacts. Furthermore, the tidal field of a dense cloud during a distant encounter is too weak to produce such showers. As a consequence, comet showers induced by ICs will be far less frequent than showers caused by passing stars. This conclusion is independent of assumptions about the radial distribution of comets in the inner Oort cloud.

  5. New Application of the Comet Assay

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I.; Dávila-Rodríguez, Martha I.; Fernández, José Luís; López-Fernández, Carmen; Gosálbez, Altea; Gosálvez, Jaime

    2011-01-01

    The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains. PMID:21540337

  6. A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources

    Science.gov (United States)

    Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong

    2018-05-01

    Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.

  7. Comet LINEAR C/1999 S4 - an absolutely well-behaved comet before breakup

    Science.gov (United States)

    Peschke, S. B.; Lisse, C. M.; Fernandez, Y. R.; Ressler, M.; Stickel, M.; Kaminski, C.; Golish, B.

    2000-10-01

    We present results from infrared imaging of comet LINEAR C/1999 S4 on June 17 - 19, 2000 (pre-breakup), using the near-IR camera NSFCAM and the mid-IR camera MIRLIN at the 3m NASA/IRTF. Images and multi-wavelength spectroscopy were obtained in the zJHK'L'MNQ bands, and were used to create a 1.0 - 25 μ m SED of the comet's dust and nucleus. The coma's contribution at each wavelength was modeled using spatial fitting (Fernandez 1999, PhD thesis; Lisse et al. 1999, Icarus 140, 189). The resulting comatic and nuclear SEDs were then modeled using modified Mie theory (Lisse et al. 1998, ApJ 496, 971) and the standard nuclear thermal models (Lebofsky and Spencer 1989, Asteroids II, 128), respectively. We report the resulting dust PSD, mass loss rate, and albedo, as well as the nuclear radius, and we compare these results to those obtained by others from optical data both before and after the comet's breakup in late July 2000.

  8. The shortage of long-period comets in elliptical orbits

    International Nuclear Information System (INIS)

    Everhart, E.

    1979-01-01

    Based on the number of 'new' comets seen on near-parabolic orbits, one can predict the number of comets that should be found on definitely elliptical orbits on their subsequent returns. The author shows that about three out of four of these returning comets are not observed. (Auth.)

  9. 75 FR 7471 - Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of...

    Science.gov (United States)

    2010-02-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2354-10] Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of Complaint February 3, 2010. Take notice that on December 14, 2009, as amended on January 8, 2010, Chandra Coffee and Rabun...

  10. Assessment and reduction of comet assay variation in relation to DNA damage: studies from the European Comet Assay Validation Group

    DEFF Research Database (Denmark)

    Møller, Peter; Möller, Lennart; Godschalk, Roger W L

    2010-01-01

    The alkaline single cell gel electrophoresis (comet) assay has become a widely used method for the detection of DNA damage and repair in cells and tissues. Still, it has been difficult to compare results from different investigators because of differences in assay conditions and because the data...... are reported in different units. The European Comet Assay Validation Group (ECVAG) was established for the purpose of validation of the comet assay with respect to measures of DNA damage formation and its repair. The results from this inter-laboratory validation trail showed a large variation in measured level...... reliability for the measurement of DNA damage by the comet assay but there is still a need for further validation to reduce both assay and inter-laboratory variation....

  11. Comet Shoemaker-Levy 9 meets Jupiter.

    Science.gov (United States)

    Levy, D. H.; Shoemaker, E. M.; Shoemaker, C. S.

    1995-08-01

    The impact of comet D/1993 F2 (Shoemaker-Levy 9) with Jupiter was unforgettable, an event probably not to be repeated for millennia to come. One year later the astronomers who first spotted the comet reflect on their discovery, on the anxious months of anticipation before the collision and on what has been learned since.

  12. Comet West: a view from the HELIOS zodiacal light photometers

    International Nuclear Information System (INIS)

    Benensohn, R.M.; Jackson, B.V.

    1987-01-01

    Comet West passed through perihelion on February 25, 1976. The comet crossed the HELIOS A and B spacecraft zodiacal light photometer fields of view as the spacecraft orbited the Sun, allowing them to record the brightness, polarization, and color of the comet and its surrounding interplanetary medium. Data from the U, B, and V photometers across the tail shows a distinct bluing followed by a slight reddening corresponding to the ion and dust tails, respectively, entering the field of view. The non-Earth perspective of the HELIOS photometers allows a comparison of the tail with Earth observations at the same time. Precise location of the nucleus and tail allow the photometer data to be searched for evidence of the comet bow shock and orbital dust. A brightness bump present in the data before the comet reaches some photometer positions, can be shown to approximately form a parabolic shape Sunward and ahead of the orbital motion of the Comet West nucleus. If this is the comet bow shock or bow compression, then it corresponds to a density enhancement of the ambient medium by 1.5 to 2 times in the vicinity of the comet. The distance of the brightness increase from the nucleus by comparison with Comet Halley implies a neutral gas production rate of approximately 3 times that of Halley

  13. A Search for New Galactic Magnetars in Archival Chandra and XMM-Newton Observations

    Science.gov (United States)

    Muno, M. P.; Gaensler, B. M.; Nechita, A.; Miller, J. M.; Slane, P. O.

    2008-06-01

    We present constraints on the number of Galactic magnetars, which we have established by searching for sources with periodic variability in 506 archival Chandra observations and 441 archival XMM-Newton observations of the Galactic plane (| b| fall within our survey, then there are 59+ 92-32 in the Galaxy. Barely detectable magnetars (LX = 3 × 1033 ergs s-1 and Arms = 15% ) could have been identified throughout ≈0.4% of the spiral arms. The lack of new examples implies that birth rate of magnetars is between 0.003 and 0.06 yr-1. Therefore, the birth rate of magnetars is at least 10% of that for normal radio pulsars, and could exceed that value, unless transient magnetars are active for gtrsim105 yr.

  14. The Rosetta Mission to Comet 67P/ Churyumov-Gerasimenko

    Science.gov (United States)

    Buratti, Bonnie J.

    2017-06-01

    As remnant bodies left over from the formation of the Solar System, comets offer clues to the physical conditions and architecture of the protosolar nebula. The Rosetta spacecraft, which included an orbiter and a lander that were built and managed by the European Space Agency with NASA contributing four instruments and scientific expertise, was the first mission to orbit and study a comet through a perihelion passage. The targeted Jupiter-family comet 67P/ Churyumov-Gerasimenko, is seemingly two distinct planetesimals stuck together. The comet has not melted or been processed substantially, except for its outer layers, which consist of reaccreted dust and a crust of heated, devolatized, and annealed refractory materials and organics. The exceptionally low density (0.53 gm/cc) of 67P/ implies it is a rubble pile. The comet also appears to contain a hierarchy of building blocks: smaller spherically shaped meter-sized bodies can be seen in its interior, and even smaller cm-sized pebbles were imaged by the camera as the spacecraft made a soft crash landing on the comet’s surface on 30 September 2016. The unexpected discovery of molecular oxygen, nitrogen, and hydrogen imply that 67P/ was formed under cold conditions not exceeding 30K. The discovery of many organic compounds, including the amino acid glycine, lends support to the idea that comets, which originate in the Kuiper Belt and the Oort Cloud, brought the building blocks of life to Earth. More laboratory data on organic compounds would help to identify additional organic compounds on the comet. The differences between cometary and terrestrial D/H ratios suggest that comets are not the primary source of terrestrial water, although data on more comets is needed to confirm this result.Besides being primordial objects offering a window into the formation of solar systems, comets are astrophysical laboratories, ejecting dust and charged particles into the plasma comprising the solar wind. Several unusual phenomena

  15. The comet rendezvous asteroid flyby mission

    International Nuclear Information System (INIS)

    Morrison, D.; Neugebauer, M.; Weissman, P.R.

    1989-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission is designed to answer the many questions raised by the Halley missions by exploring a cometary nucleus in detail, following it around its orbit and studying its changing activity as it moves closer to and then away from the Sun. In addition, on its way to rendezvous with the comet, CRAF will fly by a large, primitive class main belt asteroid and will return valuable data for comparison with the comet results. The selected asteroid is 449 Hamburga with a diameter of 88 km and a surface composition of carbonaceous chondrite meteorites. The expected flyby date is January, 1998. The CRAF spacecraft will continue to make measurements in orbit around the cometary nucleus as they both move closer to the Sun, until the dust and gas hazard becomes unsafe. At that point the spacecraft will move in and out between 50 and 2,500 kilometers to study the inner coma and the cometary ionosphere, and to collect dust and gas samples for onboard analysis. Following perihelion, the spacecraft will make a 50,000 km excursion down the comet's tail, further investigating the solar wind interaction with the cometary atmosphere. The spacecraft will return to the vicinity of the nucleus about four months after perihelion to observe the changes that have taken place. If the spacecraft remains healthy and adequate fuel is still onboard, an extended mission to follow the comet nucleus out to aphelion is anticipated

  16. Hummingbird Comet Nucleus Analysis Mission

    Science.gov (United States)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  17. Rocket Detection of Argon in Comet Hale-Bopp

    Science.gov (United States)

    Stern, S. A.; Festou, M. C.; Parker, J. Wm.; Slater, D. C.; Gladstone, G. R.; A'Hearn, M. F.

    1998-12-01

    The EUVS planetary sounding rocket spectrograph was flown on 30.2 March 1997 (UT) from White Sands, New Mexico to observe comet Hale-Bopp in the bandpass from 830--1120 A. At the time of launch the comet was near perihelion, 0.915 AU from the Sun, 1.340 AU from Earth, and traveling at a heliocentric radial velocity of +0.70 km/s. EUVS obtained its primary spectra of the comet at resolution near 12 A, collecting 9340 counts over approximately 330 seconds of integration time. To our knowledge, the resulting dataset is both the most sensitive and the highest spectral resolution probe of a comet in the UV below 1200 A as yet achieved, and contains signatures of both the 1048.2 A and 1066.7 A Ar I resonance lines. These features represent the first-ever detections of any noble gas in a comet. The spectrum also includes significant detections which we tentatively attribute to due to 834 A 0 II, 972 A Lyman gamma, 989 A O I, the 1026 A H I Lyman beta/O I. We will discuss the Ar features, retrieve the Ar column in the coma, and discuss the implications of the total Ar/O abundance ratio in Hale-Bopp for the comet's origin.

  18. Rosetta - a comet ride to solve planetary mysteries

    Science.gov (United States)

    2003-01-01

    Comets are very interesting objects for scientists, since their composition reflects how the Solar System was when it was very young and still 'unfinished', more than 4600 million years ago. Comets have not changed much since then. By orbiting Comet Wirtanen and landing on it, Rosetta will collect essential information to understand the origin and evolution of our Solar System. It will also help discover whether comets contributed to the beginnings of life on Earth. In fact comets are carriers of complex organic molecules, that - delivered to Earth through impacts - perhaps played a role in the origin of living forms. Furthermore, “volatile” light elements carried by comets may have also played an important role in forming the Earth’s oceans and atmopshere. “Rosetta is one of the most challenging missions ever undertaken so far”, says Prof. David Southwood, ESA Director of Science, “No one before attempted a similar mission, unique for its scientific implications as well as for its complex and spectacular interplanetary space manoeuvres”. Before reaching its target in 2011, Rosetta will circle the Sun almost four times on wide loops in the inner Solar System. During its long trek, the spacecraft will have to endure some extreme thermal conditions. Once it is close to Comet Wirtanen, scientists will take it through a delicate braking manoeuvre; then the spacecraft will closely orbit the comet, and gently drop a lander on it. It will be like landing on a small, fast-moving cosmic bullet that still has - at present - an almost unknown 'geography'. An amazing 8-year interplanetary trek Rosetta is a 3-tonne box-type spacecraft about 3 metres high, with two 14-metre long solar panels. It consists of an orbiter and a lander. The lander is approximately 1 metre across and 80 centimetres high. It will be attached to the side of the Rosetta orbiter during the journey to Comet Wirtanen. Rosetta carries 21 experiments in total, 10 of them on the lander. They will

  19. Outbursting comet P/2010 V1 (Ikeya-Murakami): A miniature comet Holmes

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Jewitt, David [Department of Earth, Planetary and Space Sciences, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Hanayama, Hidekazu; Miyaji, Takeshi; Fukushima, Hideo; Watanabe, Jun-ichi [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, Ishigaki, Okinawa 907-0024 (Japan); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, 9 Hokumon, Asahikawa 070-8621 (Japan); Yanagisawa, Kenshi; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asaguchi, Okayama 719-0232 (Japan); Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohta, Kouji [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2014-05-20

    The short-period comet P/2010 V1 (Ikeya-Murakami, hereafter {sup V}1{sup )} was discovered visually by two amateur astronomers. The appearance of the comet was peculiar, consisting of an envelope, a spherical coma near the nucleus and a tail extending in the anti-solar direction. We investigated the brightness and the morphological development of the comet by taking optical images with ground-based telescopes. Our observations show that V1 experienced a large-scale explosion between UT 2010 October 31 and November 3. The color of the comet was consistent with the Sun (g' – R {sub C} = 0.61 ± 0.20, R {sub C} – I {sub C} = 0.20 ± 0.20, and B – R {sub C} = 0.93 ± 0.25), suggesting that dust particles were responsible for the brightening. We used a dynamical model to understand the peculiar morphology, and found that the envelope consisted of small grains (0.3-1 μm) expanding at a maximum speed of 500 ± 40 m s{sup –1}, while the tail and coma were composed of a wider range of dust particle sizes (0.4-570 μm) and expansion speeds 7-390 m s{sup –1}. The total mass of ejecta is ∼5 × 10{sup 8} kg and kinetic energy ∼5 × 10{sup 12} J. These values are much smaller than in the historic outburst of 17P/Holmes in 2007, but the energy per unit mass (1 × 10{sup 4} J kg{sup –1}) is comparable. The energy per unit mass is about 10% of the energy released during the crystallization of amorphous water ice suggesting that crystallization of buried amorphous ice can supply the mass and energy of the outburst ejecta.

  20. The Comet Assay: Tails of the (Unexpected. Use of the comet assay in pharmaceutical development.

    Directory of Open Access Journals (Sweden)

    Bas-jan Van Der Leede

    2015-08-01

    Full Text Available In genotoxicity testing of pharmaceuticals the rodent alkaline comet assay is being increasingly used as a second in vivo assay in addition to the in vivo micronucleus assay to mitigate in vitro positive results as recommended by regulatory guidance. In this presentation we want to give insight into the circumstances in vivo comet assay is deployed in a Genetic Toxicology Department of a pharmaceutical company. As the in vivo comet assay is a salvage assay, it means that some events have occurred in an in vitro assay and that the compound (or metabolite responsible for this signal is potentially deselected for further development. More than often the decision to perform an in vivo comet assay is at a very early stage in development and the first time that the compound will be tested in vivo at high/toxic dose levels. As almost no toxicokinetic data and tissue distribution data are available a careful design with maximizes the chances for successful mitigation is necessary. Decisions on acute or repeated dosing need to be made and arrangements for combining the in vivo comet assay with the in vivo micronucleus assay are to be considered. Often synthesis methods need to be scaled up fast to provide the required amount of compound and information on suitable formulations needs to be in place. As exposure data is crucial for interpretation of results, analytical methods need to be brought in place rapidly. An experienced multi skilled and communicative team needs to be available to deploy successfully this kind of assays at an early stage of development. We will present a few scenarios on study conduct and demonstrate how this assay can make a difference for the further development of a new drug.

  1. Time-dependent injection of Oort Cloud comets into earth-crossing orbits

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Ip, W.H.; Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau, West Germany)

    1987-01-01

    The present consideration of close stellar encounter-induced modulations of the influx rate of Oort Cloud comets notes that comet showers sufficiently intense for emergence in cratering statistics are produced at 80-Myr intervals, on the assumption of an Oort Cloud heavy comet core. Numerical simulations of the time evolution of comet showers or bursts indicate that a long tail of residual shower comets follows the major event with an intensity of about 0.01 of the peak rate after 20-30 Myr, thereby suggesting that residual comet showers are primarily clustered in certain areas of the sky, rendering them observable at virtually any time. 33 references

  2. Dynamical evolution and disintegration of comets

    Science.gov (United States)

    Kresak, L.

    Current concepts of the origin and evolution of comets are reviewed. The place of their formation from which they have been delivered into the Oort reservoir is still an open problem, but the region of the outermost planets appears most probable. The interplay of stellar and planetary perturbations can be traced by model computations which reveal both the general trends and the variety of individual evolutionary paths. The present structure of the system of comets is controlled by the dynamical evolution of its individual members, limited by their physical aging by disintegration. Where the lifetimes are short, as in the Jupiter family of short-period comets, an equilibrium between elimination and replenishment is established. The role of different destructive processes and the resulting survival times are discussed.

  3. Observations of faint comets at McDonald Observatory: 1978-1980

    Science.gov (United States)

    Barker, E. S.; Cochran, A. L.; Rybski, P. M.

    1981-01-01

    Modern observational techniques, developed for spectroscopy and photometry of faint galaxies and quasars, successfully applied to faint comets on the 2.7 m telescope. The periodic comets Van Biesbrock, Ashbrook-Jackson, Schwassmann-Wachmann 1, Tempel 2, Encke, Forbes, Brooks 2, Stephan-Oterma and the new comets Bradfield (19791), Bowell (1980b), Chernis-Petrauskas (1980k) were observed. The comets ranged in magnitude from 10th to 20th magnitude. For comets fainter than 19th magnitude, reflectance spectra at 100A resolution and area photometry were obtained. On comets of 17th or 18th magnitude, spectrometric scans (6A resolution) of the nucleus or inner coma region. On those comets which are brighter than 16th magnitude spatial spectrophotometric (6A resolution) studies of the inner and extended comae were done. An extensive spatial study of the comae of P/Encke and P/Stephen-Oterma, correlated with heliocentric distance is taking place. The observing process used is described and examples of the results obtained to date are discussed.

  4. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  5. The Composition of Comet C/2012 K1 (PanSTARRS) and the Distribution of Primary Volatile Abundances Among Comets

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Nathan X.; Gibb, Erika L. [Department of Physics and Astronomy, University of Missouri-St. Louis, 503 Benton Hall, One University Blvd., St. Louis, MO 63121 (United States); Bonev, Boncho P.; DiSanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas, E-mail: nxrq67@mail.umsl.edu [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Mail Stop 690, Greenbelt, MD 20771 (United States)

    2017-04-01

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C/2012 K1 (PanSTARRS) using the long-slit, high resolution ( λ /Δ λ  ≈ 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H{sub 2}O, HCN, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and CO). Upper limits were derived for C{sub 2}H{sub 2}, NH{sub 3}, and H{sub 2}CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C/2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH{sub 3}OH and C{sub 2}H{sub 6} are enriched while H{sub 2}CO, CH{sub 4}, and possibly C{sub 2}H{sub 2} are depleted. When placed in context with comets observed in the near-infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}) among the comet population. The level of “enrichment” or “depletion” in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.

  6. Disintegration phenomena in Comet West

    Science.gov (United States)

    Sekanina, Z.

    1976-01-01

    Two peculiarities of Comet West, the multiple splitting of the nucleus as seen in telescope observations and the complex structure of the dust tail, are discussed. A method of analysis based on the premise that the observed rate of separation of a fragment from the principal nucleus is determined by the difference in effective solar attraction acting on the bodies is applied to investigate the motion of the four fragments that separated from the nucleus of Comet West. The predicted motion of the fragments is in good agreement with available observations. It is suggested that the 'synchronic' bands of the dust tail consist of tiny fragments from relatively large particles that burst after release from the comet. The unusual orientation of these bands and their high surface brightness relative to the diffuse tail are explained by a sudden increase in the particle acceleration and in the total scattering surface as the result of the disintegration of the larger particles.

  7. Origin of comets - implications for planetary formation

    International Nuclear Information System (INIS)

    Weissman, P.R.; Arizona Univ., Tucson)

    1985-01-01

    Primordial and episodic theories for the origin of comets are discussed. The implications of the former type for the origin of the solar system are considered. Candidate sites for the formation of comets are compared. The possible existence of a massive inner Oort cloud is discussed

  8. Asteroid Family Associations of Main-Belt Comets

    Science.gov (United States)

    Hsieh, Henry H.; Novakovic, Bojan; Kim, Yoonyoung; Brasser, Ramon

    2016-10-01

    We present a population-level analysis of the asteroid family associations of known main-belt comets or main-belt comet candidates (which, to date, have largely just been analyzed on individual bases as they have been discovered). In addition to family associations that have already been reported in the literature, we have identified dynamical relationships between 324P/La Sagra and the Alauda family, P/2015 X6 (PANSTARRS) and the Aeolia family, and P/2016 G1 (PANSTARRS) and the Adeona family. We will discuss the overall implications of these family associations, particularly as they pertain to the hypothesis that members of primitive asteroid family members may be more susceptible to producing observable sublimation-driven dust emission activity, and thus becoming main-belt comets. We will also discuss the significance of other dynamical and physical properties of a family or sub-family as they relate to the likelihood of that family containing one or more currently active main-belt comets.

  9. Learned modesty and the first lady's comet: a commentary on Caroline Herschel (1787) 'An account of a new comet'.

    Science.gov (United States)

    Winterburn, Emily

    2015-04-13

    Long before women were allowed to become Fellows of the Royal Society, or obtain university degrees, one woman managed to get her voice heard, her discovery verified and her achievement celebrated. That woman was Caroline Herschel, who, as this paper will discuss, managed to find ways to fit comet discoveries into her domestic life, and present them in ways that were socially acceptable. Caroline lived in a time when strict rules dictated how women (and men) should behave and present themselves and their work. Caroline understood these rules, and used them carefully as she announced each discovery, starting with this comet which she found in 1786. Caroline discovered her comets at a time when astronomers were mainly concerned with position, identifying where things were and how they were moving. Since her discoveries, research has moved on, as astronomers, using techniques from other fields, and most recently sending experiments into space, have learned more about what comets are and what they can tell us about our solar system. Caroline's paper marks one small, early step in this much bigger journey to understand comets. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  10. The Chandra Source Catalog 2.0: Building The Catalog

    Science.gov (United States)

    Grier, John D.; Plummer, David A.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    To build release 2.0 of the Chandra Source Catalog (CSC2), we require scientific software tools and processing pipelines to evaluate and analyze the data. Additionally, software and hardware infrastructure is needed to coordinate and distribute pipeline execution, manage data i/o, and handle data for Quality Assurance (QA) intervention. We also provide data product staging for archive ingestion.Release 2 utilizes a database driven system used for integration and production. Included are four distinct instances of the Automatic Processing (AP) system (Source Detection, Master Match, Source Properties and Convex Hulls) and a high performance computing (HPC) cluster that is managed to provide efficient catalog processing. In this poster we highlight the internal systems developed to meet the CSC2 challenge.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  11. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    Science.gov (United States)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  12. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    Science.gov (United States)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector

  13. The C-12/C-13 abundance ratio in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Lindholm, E.; Wehinger, P.A.; Peterson, B.A.; Zucconi, J.M.

    1989-01-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system. 107 refs

  14. On the nature of the Halley comet

    International Nuclear Information System (INIS)

    Dobrovol'skij, O.V.; Ioffe, Z.M.

    1987-01-01

    The results of study of the Halley comet by means of the ''Vega'', ''Suisej'', ''Sakigaki'' and ''Jotton'' space probes are presented in the popular form. The form and composition of the comet nucleus, its atmosphere and processes ocurring when moving in the near-the-solar space are described

  15. The Chandra Source Catalog 2.0: Spectral Properties

    Science.gov (United States)

    McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team

    2018-01-01

    The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  16. The exploration of Halley's comet - An example of international cooperation

    Science.gov (United States)

    Rahe, Jurgen H.; Newburn, Ray L., Jr.

    1987-01-01

    The history of international cooperation in studies of comets started with observations in 1577 and 1680, when Tycho Brahe and Newton, respectively, collected position measurements made in different countries to determine the paths of the comets observed. In the fall of 1979, a worldwide Comet Halley watch was proposed. As a result of international cooperation, Comet Halley was explored during its recent appearance from the ground, earth orbit, Venus orbit, interplanetary space, and from within the comet itself. The various activities in space were coordinated by the ESA, the USSR Intercosmos, the Japanese ISAS, and NASA, through the Inter-Agency Consultative Group. The activities of the ground-based observers were coordinated by the International Halley Watch.

  17. Modeling Contamination Migration on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  18. Dynamical evolution and disintegration of comets

    International Nuclear Information System (INIS)

    Kresak, L.

    1982-01-01

    Current concepts of the origin and evolution of comets are reviewed. The place of their formation from which they have been delivered into the Oort reservoir is still an open problem, but the region of the outermost planets appears most probable. The interplay of stellar and planetary perturbations can be traced by model computations which reveal both the general trends and the variety of individual evolutionary paths. The present structure of the system of comets is controlled by the dynamical evolution of its individual members limited by their physical aging by disintegration. Where the lifetimes are short, as in the Jupiter family of short-period comets, an equilibrium between elimination and replenishment is established. The role of different destructive processes and the resulting survival times are discussed. (Auth.)

  19. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, M.; Altwegg, K. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Dishoeck, E. F. van [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Schwehm, G. [ESA (retired) Science Operations Department, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.

  20. Trajectories for spacecraft encounters with Comet Honda-Mrkos-Pajdusakova in 1996

    Science.gov (United States)

    Dunham, David W.; Jen, Shao-Chiang; Farquhar, Robert W.

    1989-01-01

    Early in 1996, the relatively bright short-period Comet Honda-Mrkos-Pajdusakova (HMP) will pass only 0.17 astronomical unit from the earth, providing both an unusually favorable apparition for ground-based observers and an opportunity for a spacecraft to reach Comet HMP on relatively low-energy trajectories. The Japanense Institute of Space and Astronautical Sciences Sakigake spacecraft is expected to fly by Comet HMP on February 3, 1996, after utilizing four earth swingbys to modify its orbit. If the camera on the ESA Giotto spacecraft is inoperable, Giotto may also be sent to Comet HMP. In addition, 1-year earth-return trajectories to Comet HMP are described, along with some that can be extended to encounter Comet Giacobini-Zinner in 1998.

  1. CHANDRA X-RAY DETECTION OF THE ENIGMATIC FIELD STAR BP Psc

    International Nuclear Information System (INIS)

    Kastner, Joel H.; Montez, Rodolfo; Rodriguez, David; Zuckerman, B.; Perrin, Marshall D.; Grosso, Nicolas; Forveille, Thierry; Graham, James R.

    2010-01-01

    BP Psc is a remarkable emission-line field star that is orbited by a dusty disk and drives a parsec-scale system of jets. We report the detection by the Chandra X-ray Observatory of a weak X-ray point source coincident with the centroids of optical/IR and submillimeter continuum emission at BP Psc. As the star's photosphere is obscured throughout the visible and near-infrared, the Chandra X-ray source likely represents the first detection of BP Psc itself. The X-rays most likely originate with magnetic activity at BP Psc and hence can be attributed either to a stellar corona or to star-disk interactions. The log of the ratio of X-ray to bolometric luminosity, log(L X /L bol ), lies in the range -5.8 to -4.2. This is smaller than log(L X /L bol ) ratios typical of low-mass, pre-main sequence stars, but is well within the log(L X /L bol ) range observed for rapidly rotating (FK Com-type) G giant stars. Hence, the Chandra results favor an exotic model wherein the disk/jet system of BP Psc is the result of its very recently engulfing a companion star or a giant planet, as the primary star ascended the giant branch.

  2. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  3. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  4. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    International Nuclear Information System (INIS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  5. On the observed excess of retrograde orbits among long-period comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1981-01-01

    The distribution of orbital inclinations of the observed long-period comets is analysed. An excess of retrograde orbits is found which increases with the perihelion distance, except for the range 1.1 10 3 A U) has the same behaviour as the total sample. It is thus suggested that the excess of retrograde orbits among long-period comets is related to an already existent excess among the incoming new comets (i.e. comets driven into the planetary region by stellar perturbations). Using theoretical considerations and a numerical model it is proposed that an important fraction of the so-called new comets are actually repeating passages through the planetary region. Nearly a half of the new comets with q > 2 A U may be repeating passages. An important consequence of the presence of comets repeating passages among the new ones is the production of an excess of retrograde orbits in the whole sample. (author)

  6. On the relationship between gas and dust in 15 comets: an application to Comet 103P/Hartley 2 target of the NASA EPOXI mission of opportunity

    Science.gov (United States)

    Sanzovo, G. C.; Sanzovo, D. Trevisan; de Almeida, A. A.

    After the success of Deep Impact mission to hit the nucleus of Comet 9P/Tempel 1 with an impactor, the concerns are turned now to the possible reutilization of this dormant flyby spacecraft in the study of another comet, for only about 10% of the cost of the original mission. Comet 103P/Hartley 2 on UT 2010 October 11 is the most attractive target in terms of available fuel at rendezvous and arrival time at the comet. In addition, the comet has a low inclination so that major orbital plane changes in the spacecraft trajectory are unnecessary. In an effort to provide information concerning the planning of this new NASA EPOXI space mission of opportunity, we use in this work, visual magnitudes measurements available from International Comet Quarterly (ICQ) to obtain, applying the Semi-Empirical Method of Visual Magnitudes - SEMVM (de Almeida, Singh, & Huebner 1997), the water production rates (in molecules/s) related to its perihelion passage of 1997. When associated to the water vaporization theory of Delsemme (1982), these rates allowed the acquisition of the minimum dimension for the effective nuclear radius of the comet. The water production rates were then converted into gas production rates (in g/s) so that, with the help of the strong correlation between gas and dust found for 12 periodic comets and 3 non-period comets (Trevisan Sanzovo 2006), we obtained the dust loss rates (in g/s), its behavior with the heliocentric distance and the dust-to-gas ratios in this physically attractive rendezvous target-comet to Deep Impact spacecraft at a closest approach of 700 km.

  7. Halley comet position in structure of the comet origin general scheme

    International Nuclear Information System (INIS)

    Davydov, V.D.

    1988-01-01

    Attempt to explain data on the Halley comet nucleus figure by photographes received from space probes in 1986 was undertaken. Peanut-like nucleus might be formed from two bodies former system under specific conditions. This hypothesis preliminary development is made; solution way for the problem about quantitative characteristics of collision and destruction is found. Quantitative assessments confirm retention possibility of two space icebergs original form after their ''docking'' within relative velocity range up to a few meters per second. Then complex with visible saddle point between two jointed fragments is formed. The hypothesis suggested is well inscribed in the origin general scheme of comets with nucleus different types, and from general scheme one may draw up the most important details to this hypothesis (for example, power mechanism of binary system formation and reasons of its destabilization)

  8. The comet assay: ready for 30 more years.

    Science.gov (United States)

    Møller, Peter

    2018-02-24

    During the last 30 years, the comet assay has become widely used for the measurement of DNA damage and repair in cells and tissues. A landmark achievement was reached in 2016 when the Organization for Economic Co-operation and Development adopted a comet assay guideline for in vivo testing of DNA strand breaks in animals. However, the comet assay has much more to offer than being an assay for testing DNA strand breaks in animal organs. The use of repair enzymes increases the range of DNA lesions that can be detected with the assay. It can also be modified to measure DNA repair activity. Still, despite the long-term use of the assay, there is a need for studies that assess the impact of variation in specific steps of the procedure. This is particularly important for the on-going efforts to decrease the variation between experiments and laboratories. The articles in this Special Issue of Mutagenesis cover important technical issues of the comet assay procedure, nanogenotoxicity and ionising radiation sensitivity on plant cells. The included biomonitoring studies have assessed seasonal variation and certain predictors for the basal level of DNA damage in white blood cells. Lastly, the comet assay has been used in studies on genotoxicity of environmental and occupational exposures in human biomonitoring studies and animal models. Overall, the articles in this Special Issue demonstrate the versatility of the comet assay and they hold promise that the assay is ready for the next 30 years.

  9. Rotation of cometary nuclei: new light curves and an update of the ensemble properties of Jupiter-family comets

    Science.gov (United States)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Lowry, S. C.; Fernández, Y. R.; Tubiana, C.; Fitzsimmons, A.; Hsieh, H. H.

    2017-11-01

    We report new light curves and phase functions for nine Jupiter-family comets (JFCs). They were observed in the period 2004-2015 with various ground telescopes as part of the Survey of Ensemble Physical Properties of Cometary Nuclei as well as during devoted observing campaigns. We add to this a review of the properties of 35 JFCs with previously published rotation properties. The photometric time series were obtained in Bessel R, Harris R and SDSS r΄ filters and were absolutely calibrated using stars from the Pan-STARRS survey. This specially developed method allowed us to combine data sets taken at different epochs and instruments with absolute-calibration uncertainty down to 0.02 mag. We used the resulting time series to improve the rotation periods for comets 14P/Wolf, 47P/Ashbrook-Jackson, 94P/Russell and 110P/Hartley 3 and to determine the rotation rates of comets 93P/Lovas and 162P/Siding Spring for the first time. In addition to this, we determined the phase functions for seven of the examined comets and derived geometric albedos for eight of them. We confirm the known cut-off in bulk densities at ˜0.6 g cm-3 if JFCs are strengthless. Using a model for prolate ellipsoids with typical density and elongations, we conclude that none of the known JFCs requires tensile strength larger than 10-25 Pa to remain stable against rotational instabilities. We find evidence for an increasing linear phase function coefficient with increasing geometric albedo. The median linear phase function coefficient for JFCs is 0.046 mag deg-1 and the median geometric albedo is 4.2 per cent.

  10. TGCat : THE CHANDRA TRANSMISSION GRATING DATA CATALOG AND ARCHIVE

    International Nuclear Information System (INIS)

    Huenemoerder, David P.; Dewey, Daniel; Nowak, Michael A.; Schulz, Norbert S.; Davis, John E.; Houck, John C.; Marshall, Herman L.; Noble, Michael S.; Canizares, Claude R.; Mitschang, Arik; Nichols, Joy S.; Morgan, Doug

    2011-01-01

    The Chandra Transmission Grating Data Archive and Catalog (TGCat) provides easy access to analysis-ready products, specifically, high-resolution X-ray count spectra and their corresponding calibrations. The web interface makes it easy to find observations of a particular object, type of object, or type of observation; to quickly assess the quality and potential usefulness of the spectra from pre-computed summary plots; or to customize a view with an interactive plotter, optionally combining spectra over multiple orders or observations. Data and responses can be downloaded as a package or as individual files, and the query results themselves can be retrieved as ASCII or Virtual Observatory tables. Portable reprocessing scripts used to create the archive and which use the Chandra X-ray Center's (CXC's) software and other publicly available software are also available, facilitating standard or customized reprocessing from Level 1 CXC archival data to spectra and responses with minimal user interaction.

  11. Comet Kohoutek, 1973-1974, A Teachers' Guide with Student Activities.

    Science.gov (United States)

    Chapman, Robert D.

    This teacher's guide provides background information, curriculum source materials, and suggested class activities for class discussion and study. Information related to the discovery of the comet is presented as well as photographic and schematic pictures showing the sky through which the comet travels. Historical data regarding comets of the past…

  12. An analysis of the BVRI colors of 22 active comets

    Science.gov (United States)

    Betzler, A. S.; Almeida, R. S.; Cerqueira, W. J.; Araujo, L. A.; Prazeres, C. J. M.; Jesus, J. N.; Bispo, P. A. S.; Andrade, V. B.; Freitas, Y. A. S.; Betzler, L. B. S.

    2017-08-01

    Our aim was to analyze the variation of Johnson-Kron-Cousins BVRI color indexes of a sample with 22 active comets of various dynamic groups with the time, geometrical, observational and dynamical parameters. We performed photometric observations of 16 comets between 2010 and 2014, using robotic telescopes in three continents. In addition to the sample, we used data of six comets available in the literature. A statistical comparison between the distributions of color indexes was performed using the Kruskal-Wallis H-test. The color indexes of active comets can vary a few tenths up to a magnitude on time scales that range from hours to weeks. Using the B-V colors of the observed comets, we generated a relationship that correlates the cometary visual and CCD magnitudes. We did not identify any relationship between B-V and V-R colors with heliocentric distance and phase angle. The color B-V is correlated with the photometric aperture that can be described by a logarithmic function. We did not identify any differences in the distribution of B-V color among the comets analyzed at a confidence level equal to or greater than 95%. The mean color of active comets are B-R = 1.20 ± 0.24 , B-V = 0.76 ± 0.16 and V-R = 0.42 ± 0.16 . Active comets with V-R colors outside the three standard deviation interval can be considered objects with unusual physical characteristics.

  13. The Rotation Temperature of Methanol in Comet 103P/Hartley 2

    Science.gov (United States)

    Chuang, Yo-Ling; Kuan, Yi-Jehng; Milam, Stefanie; Charnley, Steven B.; Coulson, Iain M.

    2012-01-01

    Considered to be relics from Solar System formation, comets may provide the vital information connecting Solar Nebula and its parent molecular cloud. Study of chemical and physical properties of comets is thus important for our better understanding of the formation of Solar System. In addition, observing organic molecules in comets may provide clues fundamental to our knowledge on the formation of prebiotically important organic molecules in interstellar space, hence, may shed light on the origin of life on the early Earth. Comet 103PIHartley 2 was fIrst discovered in 1986 and had gone through apparitions in 1991, 1997, and 2004 with an orbital period of about 6 years, before its latest return in 2010. 2010 was also a special year for Comet 103PIHartley 2 because of the NASA EPOXI comet-flyby mission.

  14. Silicate emission feature in the spectrum of comet Mueller 1993a

    Science.gov (United States)

    Hanner, Martha S.; Hackwell, John A.; Russell, Ray W.; Lynch, David K.

    1994-01-01

    An 8- to 13-micron spectrum of comet Mueller 1993a, a dynamically new comet, was acquired when the comet was at R = 2 AU. Strong, structured silicate emission is present, closely resembling that seen in Comet P/Halley at smaller R. For the first time in a new comet, the 11.2-micron peak of crystalline olivine was detected, demonstrating that crystalline olivine particles were widespread in the solar nebula. Crystalline olivine particles could have formed in the inner protosolar nebula at temperatures greater than 1200 K; extensive radial mixing would have been required to transport these grains to the region of comet formation. Either there was more radial mixing in the solar nebula than some current theories predict or the olivine grains have a presolar origin.

  15. The persistent coma of Comet P/Schwassmann-Wachmann 1

    International Nuclear Information System (INIS)

    Jewitt, D.

    1990-01-01

    Time-series photometry of Comet P/Schwassmann-Wachmann 1 in both 1987 and 1988 shows that this comet is continually active despite its large heliocentric distance. The observed activity, upon which the famous outbursts of this comet are superposed, may be driven by the sublimation of crystalline water ice at the nucleus surface. A simple model which accounts for both the continuous activity and the sporadic outbursts is suggested. 34 refs

  16. The mass disruption of Jupiter Family comets

    Science.gov (United States)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  17. Comet P/Machholtz and the Quadrantid meteor stream

    International Nuclear Information System (INIS)

    Mcintosh, B.A.

    1990-01-01

    Attention is drawn to the suggestive similarities between the calculated perturbation behavior of Comet P/Machholtz 1986 VIII, on the one hand, and on the other those of the Quadrantid, Delta Aquarid, and Arietid meteor streams. There appears to be adequate evidence for the formation by the Comets P/Machholtz and 1491-I, together with the three meteor streams, of a related complex controlled by Jupiter's gravitational perturbations; there is no comparably compelling information, however, bearing on the questions of parent-offspring or sibling relationships among these comets and meteor streams. 13 refs

  18. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status.

    Science.gov (United States)

    Townsend, Todd A; Parrish, Marcus C; Engelward, Bevin P; Manjanatha, Mugimane G

    2017-08-01

    DNA damage and alterations in global DNA methylation status are associated with multiple human diseases and are frequently correlated with clinically relevant information. Therefore, assessing DNA damage and epigenetic modifications, including DNA methylation, is critical for predicting human exposure risk of pharmacological and biological agents. We previously developed a higher-throughput platform for the single cell gel electrophoresis (comet) assay, CometChip, to assess DNA damage and genotoxic potential. Here, we utilized the methylation-dependent endonuclease, McrBC, to develop a modified alkaline comet assay, "EpiComet," which allows single platform evaluation of genotoxicity and global DNA methylation [5-methylcytosine (5-mC)] status of single-cell populations under user-defined conditions. Further, we leveraged the CometChip platform to create an EpiComet-Chip system capable of performing quantification across simultaneous exposure protocols to enable unprecedented speed and simplicity. This system detected global methylation alterations in response to exposures which included chemotherapeutic and environmental agents. Using EpiComet-Chip on 63 matched samples, we correctly identified single-sample hypermethylation (≥1.5-fold) at 87% (20/23), hypomethylation (≥1.25-fold) at 100% (9/9), with a 4% (2/54) false-negative rate (FNR), and 10% (4/40) false-positive rate (FPR). Using a more stringent threshold to define hypermethylation (≥1.75-fold) allowed us to correctly identify 94% of hypermethylation (17/18), but increased our FPR to 16% (7/45). The successful application of this novel technology will aid hazard identification and risk characterization of FDA-regulated products, while providing utility for investigating epigenetic modes of action of agents in target organs, as the assay is amenable to cultured cells or nucleated cells from any tissue. Environ. Mol. Mutagen. 58:508-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Plasma Waves Associated with Mass-Loaded Comets

    Science.gov (United States)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  20. Action at the Horizon: Chandra/EHT Observations of Sgr A*

    Science.gov (United States)

    Neilsen, Joseph

    2017-09-01

    In April 2017, the Event Horizon Telescope will observe Sgr A* with imaging quality sufficient to resolve the shadow of the black hole, while providing a close-up view of accretion at the horizon. As Sgr A* is a well-known source of X-ray flares, coordinated Chandra/EHT observations offer an incredible opportunity: a chance to observe structures (e.g., hotspots) near the event horizon while tracking their high-energy variability. In anticipation of a follow-up campaign in 2018, we are requesting 4x33 ks Chandra observations of Sgr A* to be coordinated with EHT. This campaign will double our chances of simultaneous flares. We will search for flares and hotspots, provide priors for EHT image reconstruction, and track any activity associated with the closest approach of the massive star S0-2.

  1. Physical Mechanism of Comet Outbursts: The Movie

    Science.gov (United States)

    Hartmann, William K.

    2014-11-01

    During experiments conducted in 1976 at the NASA Ames Research Center’s Vertical Gun Facility (VGF), the author studied low velocity impacts into simulated regolith powders and gravels, in order to examine physics of low-velocity collisions during early solar system planetesimal formation. In one “accidental” experiment, the bucket of powder remained gas-charged during evacuation of the VGF vacuum chamber. The impactor, moving at 5.5 m/s, disturbed the surface, initiating eruptions of dust-charged gas, shooting in jets from multiple vents at speeds up to about 3 m/s, with sporadic venting until 17 seconds after the impact. This experiment was described in [1], which concluded that it simulated comet eruption phenomena. In this hypothesis, a comet nucleus develops a lag deposit of regolith in at least some regions. At a certain distance from the sun, the thermal wave penetrates to an ice-rich depth, causing sublimation. Gas rises into the regolith, collects in pore spaces, and creates a gas-charged powder, as in our experiment. Any surface disturbance, such as a meteoroid, may initiate a temporary eruption, or eventually the gas pressure becomes sufficient to blow off the overburden. Our observed ejection speed would be sufficient to launch dust off of a kilometer-scale comet nucleus.Film (100 frames/s) of the event was obtained, but was partially torn up in a projector. It has recently been reconstituted (Centric Photo Labs, Tucson) and dramatically illustrates various cometary phenomena. Parabolic curtains of erupted material resemble curtains of material photographed from earth in real comet comas, “falling back” under solar wind forces. In retrospect, the mechanism photographed here helps explain:*sporadic eruptions in Comet P/Schwassmann-Wachmann 1 (near-circular orbit at ~6 A.U., where repeated recharge may occur).*sporadic eruptions on “asteroid” 2060 Chiron (which stays beyond 8.5 A.U.). *the thicker dust curtain (and longer eruption?) than

  2. Competitive Memory Training (COMET) for OCD: a self-treatment approach to obsessions.

    Science.gov (United States)

    Schneider, Brooke C; Wittekind, Charlotte E; Talhof, Alina; Korrelboom, Kees; Moritz, Steffen

    2015-01-01

    Competitive Memory Training (COMET) is a cognitive intervention that aims to change the maladaptive cognitive-emotional networks underlying obsessive-compulsive disorder (OCD). COMET has not been previously tried as a self-help intervention. The present study tested the preliminary feasibility, acceptability, and effectiveness of COMET for OCD implemented as a self-help intervention. Sixty-five participants with OCD recruited through online OCD self-help fora completed an online baseline assessment including measures of OCD symptoms, self-esteem, and depression. Participants were randomly assigned to either COMET or a wait-list control group. All participants were approached 4 weeks later to complete an online post-assessment. There was no evidence for a greater decline of OCD symptoms or depression under COMET. When analyses were limited to only those participants who reported reading the entire manual at least once, self-esteem was higher at post-assessment in the COMET group. Although 78.1% of patients in the COMET group rated it as appropriate for self-administration, only 56.5% performed COMET exercises regularly and 26.4% read the entire manual at least once. The feasibility and effectiveness of COMET as a self-help internet intervention for OCD was not supported in this study. Further work is needed to better understand if modifications to our implementation of COMET may yield improved outcomes.

  3. Recommendations for safety testing with the in vivo comet assay.

    Science.gov (United States)

    Vasquez, Marie Z

    2012-08-30

    While the in vivo comet assay increases its role in regulatory safety testing, deliberations about the interpretation of comet data continue. Concerns can arise regarding comet assay publications with limited data from non-blind testing of positive control compounds and using protocols (e.g. dose concentrations, sample times, and tissues) known to give an expected effect. There may be a tendency towards bias when the validation or interpretation of comet assay data is based on results generated by widely accepted but non-validated assays. The greatest advantages of the comet assay are its sensitivity and its ability to detect genotoxicity in tissues and at sample times that could not previously be evaluated. Guidelines for its use and interpretation in safety testing should take these factors into account. Guidelines should be derived from objective review of data generated by blind testing of unknown compounds dosed at non-toxic concentrations and evaluated in a true safety-testing environment, where the experimental design and conclusions must be defensible. However, positive in vivo comet findings with such compounds are rarely submitted to regulatory agencies and this data is typically unavailable for publication due to its proprietary nature. To enhance the development of guidelines for safety testing with the comet assay, and with the permission of several sponsors, this paper presents and discusses relevant data from multiple GLP comet studies conducted blind, with unknown pharmaceuticals and consumer products. Based on these data and the lessons we have learned through the course of conducting these studies, I suggest significant adjustments to the current conventions, and I provide recommendations for interpreting in vivo comet assay results in situations where risk must be evaluated in the absence of carcinogenicity or clinical data. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Improved orbits of two periodic comets: Tsuchinshan 1 and Tsuchinshan 2

    International Nuclear Information System (INIS)

    Szutowicz, S.

    1986-01-01

    The observations made during four apparitions of two comets were collected and the orbits of the comets were improved; 86 observations of Comet Tsuchinshan 1 and 50 observations of Comet Tsuchinshan 2 made in the period 1965-1985 were used. The orbit of Comet Tsuchinshan 1 was improved taking into account nongravitational effects in its motion as well as a displacement of the photometric center from the center of mass. The following values of nongravitational parameters and of observational parameter D were obtained: A 1 = 0.75953 x 10 -8 , A 2 0.00375 x 10 -8 , D = 0.34698 x 10 -3 . To link all observations of Comet Tsuchinshan 2 by one system of elements it was sufficient to add observational effects as a displacement of the photometric center from the center of mass. The following value of parameter D was obtained: D = 1.00200 x 10 -3 . The equations of motion of both comets were integrated backwards and forwards till 1992. Ephemerides for their next returns were computed. 6 refs., 5 tabs. (author)

  5. Chandra Captures Venus In A Whole New Light

    Science.gov (United States)

    2001-11-01

    Scientists have captured the first X-ray view of Venus using NASA's Chandra X-ray Observatory. The observations provide new information about the atmosphere of Venus and open a new window for examining Earth's sister planet. Venus in X-rays looks similar to Venus in visible light, but there are important differences. The optically visible Venus is due to the reflection of sunlight and, for the relative positions of Venus, Earth and Sun during these observations, shows a uniform half-crescent that is brightest toward the middle. The X-ray Venus is slightly less than a half-crescent and brighter on the limbs. The differences are due to the processes by which Venus shines in visible and X-ray light. The X-rays from Venus are produced by fluorescence, rather than reflection. Solar X-rays bombard the atmosphere of Venus, knock electrons out of the inner parts of the atoms, and excite the atoms to a higher energy level. The atoms almost immediately return to their lower energy state with the emission of a fluorescent X-ray. A similar process involving ultraviolet light produces the visible light from fluorescent lamps. For Venus, most of the fluorescent X-rays come from oxygen and carbon atoms between 120 and 140 kilometers (74 to 87 miles) above the planet's surface. In contrast, the optical light is reflected from clouds at a height of 50 to 70 kilometers (31 to 43 miles). As a result, Venus' Sun-lit hemisphere appears surrounded by an almost-transparent luminous shell in X-rays. Venus looks brightest at the limb since more luminous material is there. Venus X-ray/Optical Composite of Venus Credit: Xray: NASA/CXC/MPE/K.Dennerl et al., Optical: Konrad Dennerl "This opens up the exciting possibility of using X-ray observations to study regions of the atmosphere of Venus that are difficult to investigate by other means," said Konrad Dennerl of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, leader of an international team of scientists that

  6. Chandra Finds Ghosts Of Eruption In Galaxy Cluster

    Science.gov (United States)

    2002-01-01

    "Ghostly" relics of an ancient eruption that tore through a cluster of galaxies were recently uncovered by NASA's Chandra X-ray Observatory. The discovery implies that galaxy clusters are the sites of enormously energetic and recurring explosions, and may provide an explanation why galaxy clusters behave like giant cosmic magnets. "Chandra's image revealed vast regions in the galaxy cluster Abell 2597 that contain almost no X-ray or radio emission. We call them ghost cavities," said Brian McNamara of Ohio University in Athens today during a press conference at the American Astronomical Society meeting in Washington. "They appear to be remnants of an old explosion where the radio emission has faded away over millions of years." The ghost cavities were likely created by extremely powerful explosions, due to material falling toward a black hole millions of times more massive than the Sun. As the matter swirled around the black hole, located in a galaxy near the center of the cluster, it generated enormous electromagnetic fields that expelled material from the vicinity of the black hole at high speeds. This explosive activity in Abell 2597 created jets of highly energetic particles that cleared out voids in the hot gas. Because they are lighter than the surrounding material, the cavities will eventually push their way to the edge of the cluster, just as air bubbles in water make their way to the surface. Researchers also found evidence that this explosion was not a one-time event. "We detected a small, bright radio source near the center of the cluster that indicates a new explosion has occurred recently," said team member Michael Wise of the Massachusetts Institute of Technology in Cambridge, "so the cycle of eruption is apparently continuing." Though dim, the ghost cavities are not completely empty. They contain a mixture of very hot gas, high-energy particles and magnetic fields -- otherwise the cavities would have collapsed under the pressure of the surrounding hot

  7. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    Science.gov (United States)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  8. Comets Nature, Dynamics, Origin, and their Cosmogonical Relevance

    CERN Document Server

    Fernández, Julio Angel

    2005-01-01

    The book covers the most recent ideas about the nature and dynamics of comets, including a thorough discussion on Oort cloud dynamics which has not received due attention in other books on the subject. It also discusses the most relevant aspects of the physics and chemistry of comet nuclei, highlighting their importance as relics of the protoplanetary disk and, perhaps, as carriers of water and organics that permitted the development of life on Earth. The book contains several tables with useful data, and an ample bibliography covering the most recent work as well as some historical key contributions to the subject. It may be suitable as a textbook for graduate students with some basic knowledge of celestial mechanics and astrophysics, as well as a consult book for comet researchers, or researchers from other related fields willing to start working on comets, or get an updated view of the subject.

  9. THE CHANDRA SOURCE CATALOG

    International Nuclear Information System (INIS)

    Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Harbo, Peter N.; He Xiangqun; Karovska, Margarita; Kashyap, Vinay L.; Davis, John E.; Houck, John C.; Hall, Diane M.

    2010-01-01

    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public Advanced CCD Imaging Spectrometer imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents ∼<30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of ∼<1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a

  10. The Chandra Source Catalog

    Science.gov (United States)

    Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger M.; Hall, Diane M.; Harbo, Peter N.; He, Xiangqun Helen; Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael S.; Van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2010-07-01

    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public Advanced CCD Imaging Spectrometer imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents lsim30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of lsim1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a

  11. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  12. Spiral arms, comets and terrestrial catastrophism

    International Nuclear Information System (INIS)

    Clube, S.V.M.; Napier, W.M.

    1982-01-01

    A review is presented of an hypothesis of terrestrial catastrophism in which comets grow in molecular clouds and are captured by the Sun as it passes through the spiral arms of the Galaxy. Assuming that comets are a major supplier of the Earth-crossing (Appollo) asteroid population, the latter fluctuates correspondingly and leads to episodes of terrestrial bombardment. Changes in the rotational momentum of core and mantle, generated by impacts, lead to episodes of magnetic field reversal and tectonic activity, while surface phenomena lead to ice-ages and mass extinctions. An episodic geophysical history with an interstellar connection is thus implied. If comets in spiral arms are necessary intermediaries in the process of star formation, the theory also has implications relating to early solar system history and galactic chemistry. These aspects are briefly discussed with special reference to the nature of spiral arms. (author)

  13. Mission to a comet that could save earth

    CERN Multimedia

    Utton, T

    2003-01-01

    Scientists are going to attempt to land a probe on the comet Wirtanen. The GBP640million unmanned craft will travel four billion miles before catching up with the comet Wirtanen and launching a robotic lander called Rosetta, on to its surface (1/2 page).

  14. Terrestrial cometary tail and lunar corona induced by small comets: Predictions for Galileo

    International Nuclear Information System (INIS)

    Dessler, A.J.; Sandel, B.R.; Vasyliunas, V.M.

    1990-01-01

    A search for small comets near 1 AU is an objective of the Galileo mission. If small comets are as numerous and behave as has been proposed, two near-Earth signatures of small comets should be observable by the UVS experiment on the Earth flybys of Galileo; (1) a comet-like tail of Earth created by small comets that come close to Earth, break up and vaporize, but just miss the atmosphere and proceed back into interplanetary space, and (2) a corona surrounding the Moon induced by lunar impact of small comets

  15. Searching for the 3.5 keV Line in the Deep Fields with Chandra: The 10 Ms Observations

    Science.gov (United States)

    Cappelluti, Nico; Bulbul, Esra; Foster, Adam; Natarajan, Priyamvada; Urry, Megan C.; Bautz, Mark W.; Civano, Francesca; Miller, Eric; Smith, Randall K.

    2018-02-01

    We report a systematic search for an emission line around 3.5 keV in the spectrum of the cosmic X-ray background using a total of ∼10 Ms Chandra observations toward the COSMOS Legacy and Extended Chandra Deep Field South survey fields. We find marginal evidence of a feature at an energy of ∼3.51 keV with a significance of 2.5–3σ, depending on the choice of statistical treatment. The line intensity is best fit at (8.8 ± 2.9) × 10‑7 ph cm‑2 s‑1 when using a simple Δχ 2 or {10.2}-0.4+0.2× {10}-7 ph cm‑2 s‑1 when Markov chain Monte Carlo is used. Based on our knowledge of Chandra and the reported detection of the line by other instruments, an instrumental origin for the line remains unlikely. We cannot, however, rule out a statistical fluctuation, and in that case our results provide a 3σ upper limit at 1.85 × 10‑6 ph cm‑2 s‑1. We discuss the interpretation of this observed line in terms of the iron line background, S XVI charge exchange, as well as potentially being from sterile neutrino decay. We note that our detection is consistent with previous measurements of this line toward the Galactic center and can be modeled as the result of sterile neutrino decay from the Milky Way for the dark matter distribution modeled as a Navarro–Frenk–White profile. For this case, we estimate a mass m ν ∼ 7.01 keV and a mixing angle sin2(2θ) = (0.83–2.75) × 10‑10. These derived values are in agreement with independent estimates from galaxy clusters, the Galactic center, and M31.

  16. Infrared imaging and photometry of Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    Campins, H.

    1986-01-01

    Infrared images and photometry were obtained to determine the spatial distribution and physical characteristics (temperature, albedo, size distribution, total mass, etc.) of the grains in the coma of Comet GZ. A 10.8 m image of Comet GZ obtained on August 4 represents the first ground-based thermal-infrared image of a Comet. Among the most significant results are: (1) an estimate of the number of grains that the ICE spacecraft must have encountered, which led the plasma wave team to conclude that they could only detect impacts on the antennae and not on the whole body of the ICE spacecraft; (2) the discovery of a population of large grains (radius > 100 micrometer), not observed in most other comets, which formed a curved tail near the nucleus (within 80 arcsec or 34,000 km); and (3) the detection of structure in the spatial distribution in the coma of the particle albedo, which was tentatively attributed to the presence of very fluffy grains which are likely to have multiple internal scattering of incident sunlight. The albedo map of Comet GZ was obtained by combining the 10.8 micrometer image shown with a simultaneous image taken at 0.68 micrometer, a bandpass which isolates the scattered continuum

  17. Catastrophic disruptions as the origin of bilobate comets

    Science.gov (United States)

    Schwartz, Stephen R.; Michel, Patrick; Jutzi, Martin; Marchi, Simone; Zhang, Yun; Richardson, Derek C.

    2018-05-01

    Several comets observed at close range have bilobate shapes1, including comet 67P/Churyumov-Gerasimenko (67P/C-G), which was imaged by the European Space Agency's Rosetta mission2,3. Bilobate comets are thought to be primordial because they are rich in supervolatiles (for example, N2 and CO) and have a low bulk density, which implies that their formation requires a very low-speed accretion of two bodies. However, slow accretion does not only occur during the primordial phase of the Solar System; it can also occur at later epochs as part of the reaccumulation process resulting from the collisional disruption of a larger body4, so this cannot directly constrain the age of bilobate comets. Here, we show by numerical simulation that 67P/C-G and other elongated or bilobate comets can be formed in the wake of catastrophic collisional disruptions of larger bodies while maintaining their volatiles and low density throughout the process. Since this process can occur at any epoch of our Solar System's history, from early on through to the present day5, there is no need for these objects to be formed primordially. These findings indicate that observed prominent geological features, such as pits and stratified surface layers4,5, may not be primordial.

  18. Comet mission hopes to uncover Earth's origins

    CERN Multimedia

    Henderson, M

    2004-01-01

    "A European spacecraft that will hunt down a comet in search of clues to the origin of life on Earth will blast off tomorrow from the Kourou spaceport in French Guiana. The Rosetta probe will take 12 years to catch up with Churyumov-Gerasimenko before becoming the first spacecraft to make a soft, controlled landing on a comet's nucleus" (1 page).

  19. Dynamics of comets: their origin and evolution

    International Nuclear Information System (INIS)

    Carusi, A.; Valsecchi, G.B.

    1985-01-01

    Comets can be considered as remnants of the original population of planetesimals and the study of their origin and dynamical histories can provide insight into the accretion phenomena; the original mass, energy and angular momentum distribution across the solar system; the collisional fragmentation of minor bodies; the impact rates on planets and the nature of impacting bodies. The interaction of comets with other solar system bodies certainly provides one of the best possibilities for a deeper understanding of the dynamics of the whole system, and a challenging test for all theories of celestial mechanics dealing with the gravitational behaviour of multiple-body systems. Comets could also be considered as the last footprints left by the interaction of the protosun and its original galactic environment. (orig.)

  20. Comet Hyakutake to Approach the Earth in Late March 1996

    Science.gov (United States)

    1996-03-01

    Astronomers Prepare for a Rare Event In the early morning of January 31, 1996, Japanese amateur astronomer Yuji Hyakutake made his second comet discovery within five weeks. He found the new comet near the border between the southern constellations of Hydra (The Water-Snake) and Libra (The Scales), amazingly just three degrees from the position where he detected another comet on December 26, 1995. After two weeks of hectic activity among amateur and professional astronomers all over the world, much interesting information has now been gathered about the new comet which has been designated C/1996 B2 (Hyakutake) . In particular, it has been found to move in a near-parabolic orbit that will bring it unusually close to the Earth next month. It is then expected to become bright enough to be seen with the unaided eye and to remain so during several weeks thereafter. Preparations are now made to observe the celestial visitor with a large number of telescopes, on the ground and in space. This event offers a rare opportunity to study the immediate surroundings of a cometary nucleus in detail and the specialists intend to make the most of it. Discovery and orbit Yuji Hyakutake, of profession photoengraver and a well-known amateur astronomer, announced his new discovery without delay, and within 24 hours, it had been sighted by several other observers in Japan and Australia. Experienced comet-watchers described its appearance as `diffuse with central condensation and of magnitude 11-12', i.e. a little more than 100 times fainter than what can be seen with the unaided eye. This brightness is not unusual for a comet discovered by an amateur, although it would probably have been missed, had it been just a little fainter. In the present case, the decisive factors for Hyakutake's success were undoubtedly his very powerful equipment (25 x 150 binoculars) and the advantageous combination of the comet's southern position in the sky and his location in Kagoshima, the southernmost

  1. The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Science.gov (United States)

    Jones, Geraint H.; Knight, Matthew M.; Battams, Karl; Boice, Daniel C.; Brown, John; Giordano, Silvio; Raymond, John; Snodgrass, Colin; Steckloff, Jordan K.; Weissman, Paul; Fitzsimmons, Alan; Lisse, Carey; Opitom, Cyrielle; Birkett, Kimberley S.; Bzowski, Maciej; Decock, Alice; Mann, Ingrid; Ramanjooloo, Yudish; McCauley, Patrick

    2018-02-01

    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun's centre, equal to half of Mercury's perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and

  2. Dynamic Acquisition and Retrieval Tool (DART) for Comet Sample Return : Session: 2.06.Robotic Mobility and Sample Acquisition Systems

    Science.gov (United States)

    Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas; hide

    2013-01-01

    The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen

  3. COMET concept

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Tromm, W.

    1995-01-01

    Studies of the COMET core catcher concept developed for a future PWR have been continued. The concept is based on the spreading of a core melt on a sacrificial layer and its erosion, until a subsequent addition of water from below causes a fragmentation of the melt. A porous solidification of the melt would then admit a complete flooding within a short period. (orig.)

  4. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data

  5. Kelvin-Helmholtz instability in type-1 comet tails and associated phenomena

    International Nuclear Information System (INIS)

    Ershkovich, A.I.

    1980-01-01

    Selected problems of the solar wind - comet tail coupling that are currently accessible to quantitative analysis are reviewed. The model of a comet tail as a plasma cylinder separated by a tangential discontinuity surface from the solar wind is discussed in detail. This model is compatible with the well-known Alfven mechanism of formation of the comet tail. The stability problem of the comet tail boundary (considered as a discontinuity surface) is solved. Under typical conditions a comet tail boundary can undergo the Kelvin-Helmholtz instability. With finite amplitude the stabilizing effect of the magnetic field increases, and waves become stabilized. This model supplies a detailed quantitative description of helical waves observed in type-1 comet tails. A more general model of the tail boundary as a transition layer with a continuous change of the plasma parameters within it is also considered. This theory, in principle, enables us to solve one of the fundamental problems of cometary physics: the magnetic field of the comet tail can be derived from the observations of helical waves. This field turns out to be of the order of the interplanetary field. Various other considerations, discussed in this review also support this conclusion. (orig.)

  6. Application of the DNA comet assay for detection of irradiated meat

    International Nuclear Information System (INIS)

    Kruszewski, M.; Iwanenko, T.; Wojewodzka, M.; Malec-Czechowska, K.; Dancewicz, A. M.; Szot, Z.

    1998-01-01

    Radiation induces damage to the DNA. This damage (fragmentation) can be assessed in the irradiated food using Single Cell Gel Electrophoresis (SCGE), known as DNA comet assay. Fragmentation of DNA may also be caused by improper storage of meat and repeated freezing and thawing. This makes identification of irradiated meat by this assay not reliable enough. In order to know the scale of the processes imitating radiation effects in DNA of the comets, their shape and lengths were examined in both irradiated and unirradiated fresh meat (D = 1.5 or 3.0 kGy) stored at 4 o C or frozen (-21 o ) up to 5 months. Comets formed upon SCGE were stained with DAPI or silver and examined in fluorescent or light microscope. They were divided arbitrarily into 4 classes. Comets of IV class were found quite often in fresh meat stored at 4 o C. In meat samples that were irradiated and stored frozen, comets of class I, II and III were observed. The negative comet test is univocal. Positive comet test, however, needs confirmation. The meat should be subjected to further analysis with other validated methods. (author)

  7. On the formation of meteor showers of comet Halley

    International Nuclear Information System (INIS)

    Babadzhanov, P.B.; Obrubov, J.V.; Pushkarev, A.N.; Hajduk, A.

    1987-01-01

    The orbits of test particles ejected from the nucleus of Halley comet at its perihelion passage in 1910 with different velocities are studied for the next three passages of the comet up to 2134 taking into consideration perturbations from all planets. Some characteristics of the stream formation are presented. The calculations show that the return of the comet to its perihelion cannot produce an immediate influence on the activity of its meteor showers. (author). 2 figs., 1 tab., 13 refs

  8. Prediction of the return of Comet P/Grigg-Skjellerup in 1987

    International Nuclear Information System (INIS)

    Sitarski, G.

    1986-01-01

    Using 82 observations made in the period 1966-1982 during the last four apparitions of the comet, the corrections of orbital elements were determined together with nongravitational parameters A 1 , A 2 and with a parameter D of a displacement of the photometric center from the center of mass of the comet. It was found that a value of the secular acceleration diminished in comparison with such a value before the close approach of the comet Jupiter in 1964; the nongravitational parameters of Style 2 in Marsden's notation now are: A 1 = +0.0371, A 2 = +0.008. To make the best prediction of the comet's return in 1987, the orbit was improved using 67 observations from the last two apparitions of the comet in 1977 and 1982, and taking the constant values of A 1 , A 2 as determined earlier; basing on the latter orbit the ephemeris of the comet for 1987 was computed. 3 refs., 2 tabs. (author)

  9. COMET Multimedia modules and objects in the digital library system

    Science.gov (United States)

    Spangler, T. C.; Lamos, J. P.

    2003-12-01

    Over the past ten years of developing Web- and CD-ROM-based training materials, the Cooperative Program for Operational Meteorology, Education and Training (COMET) has created a unique archive of almost 10,000 multimedia objects and some 50 web based interactive multimedia modules on various aspects of weather and weather forecasting. These objects and modules, containing illustrations, photographs, animations,video sequences, audio files, are potentially a valuable resource for university faculty and students, forecasters, emergency managers, public school educators, and other individuals and groups needing such materials for educational use. The COMET Modules are available on the COMET educational web site http://www.meted.ucar.edu, and the COMET Multimedia Database (MMDB) makes a collection of the multimedia objects available in a searchable online database for viewing and download over the Internet. Some 3200 objects are already available at the MMDB Website: http://archive.comet.ucar.edu/moria/

  10. Characterizing Outbursts and Nucleus Properties of Comet 29P/Schwassmann-Wachmann 1

    Science.gov (United States)

    Fernandez, Yanga

    2015-10-01

    Today's comets are remnant bodies leftover from the era of planet formation in our own Solar System. Therefore characterizing cometary structure and composition can give clues to the thermal, physical, and chemical environment of the protoplanetary disk. However before this long-term 'holy grail' of planetary astronomy can be achieved, we must understand cometary evolution so that we can know how comets have changed since their formation. The phenomenon of cometary activity, where a porous matrix of icy and rocky material turns into the gases and the dust grains we see in a comet's coma, remains a poorly-understood puzzle of short-term cometary evolution. We are in the midst of an ongoing project to understand cometary activity in a particular comet, 29P/Schwassmann-Wachmann 1, by taking advantage of existing imaging datasets that show the comet in outburst. Outbursts are useful for constraining the nucleus's spin state and the location of active areas. We propose here to analyze archival WFPC2 images of comet 29P obtained in March 1996 (Cycle 5, Project 5829), spanning 21 hours, that show the comet in outburst. These data are the highest-resolution imaging of this comet ever obtained while it was in outburst. We will analyze the morphology of the comet's dust coma to constrain properties of the nucleus and of the dust grains themselves. Additionally, we will analyze images taken in May 2000 (Cycle 8, Project 8274) that show the comet at its steady-state level of activity but may also allow us to place further constraints on the nucleus's active regions.

  11. Detection of garlic gamma-irradiated by assay comet

    International Nuclear Information System (INIS)

    Moreno Alvarez, Damaris L.; Miranda, Enrique F. Prieto; Carro, Sandra; Iglesias Enrique, Isora; Matos, Wilberto

    2009-01-01

    The garlic samples were irradiated in a facility with 60 Co sources, at absorbed dose values of 0-0,15 kGy. The detection method utilized for the identification of the irradiated garlic was biological comet assay. The samples were classified post-irradiation several times. The irradiated samples showed high strand breaks of DNA exhibiting comets of several forms, while the not irradiated and lower dose samples showed a behavior like round shape and light comets. Significant differences were found for higher absorbed dose values at 0.06 kGy, this absorbed dose value is corresponding with the applied dose value at this food in order to avoid the germination. (author)

  12. Comets As Objects of High Energy Astrophysics

    Science.gov (United States)

    Ibadov, S.

    2000-10-01

    Strong soft X-ray emission from comet Hyakutake C/1996 B2 was discovered with ROSAT in March 27, 1996 (Lisse et al. 1996, Science 274, 205-209) and the results of a theoretical approach (Ibadov 1990, Icarus 86, 283-288) served as a motive for that observations (Dennerl, Lisse and Truemper 1998, Private Communications). It is now well established that comets emit EUV and X-rays regularly (Dennerl, Englhauser and Truemper 1997, Science 277, 1625-1630; Dennerl 1998, Proc. 16th Int. Conf. Atomic Physics, Windsor, Ontario, Canada). To explain this phenomenon different theoretical models were proposed (Krasnopolsky 1997, Icarus 128, 365-385; Ibadov 1998, Proc. First XMM Workshop, Noordwijk, The Netherlands, and references therein). In the paper the problem of identifying X-ray generation mechanisms in comets will be considered.

  13. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    Science.gov (United States)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  14. Isotopic ratios in outbursting comet C/2015 ER61

    Science.gov (United States)

    Yang, Bin; Hutsemékers, Damien; Shinnaka, Yoshiharu; Opitom, Cyrielle; Manfroid, Jean; Jehin, Emmanuël; Meech, Karen J.; Hainaut, Olivier R.; Keane, Jacqueline V.; Gillon, Michaël

    2018-02-01

    Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0, 0) band and found that 12C/13C = 100 ± 15, 14N/15N = 130 ± 15. In addition, we determined the 14N/15N ratio from four pairs of NH2 isotopolog lines and measured 14N/15N = 140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets.

  15. Comet Halley - Chapter I in cometary exploration

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.

    1986-01-01

    The information gained on the Comet Halley by the international probe studies is presented. The new information includes data on the true size and shape of the cometary nucleus and the mass of its dust grains, the chemical composition of the nucleus, and the characteristics of the bow wave of the comet. The requirements of future missions for solving the many questions that are still open are discussed

  16. The Meteoroid Fluence at Mars Due to Comet Siding Spring

    Science.gov (United States)

    Moorhead, Althea V.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.

  17. Comet assay optimization for assessment of DNA damage due to radiation exposure

    International Nuclear Information System (INIS)

    Dwi Ramadhani; Devita Tetriana; Viria Agesti Suvifan

    2016-01-01

    Comet assay can be used to measure the deoxyribonucleic acid (DNA) damage level caused by ionizing radiation exposure in peripheral blood lymphocytes. The principle of the comet assay is based on the amount of denatured DNA fragments that migrated out of the cell nucleus during electrophoresis. There are several aspects that must be concerned when doing the comet assay. For example the agarose concentration, duration of alkaline incubation, electrophoresis conditions (time, temperature, and voltage gradient), and the measurement parameters that used in analyze the comet. Percentage of DNA in the comet tail (% tail DNA) is strongly recommended as a parameter when analyze the comet because it can be converted to lesions per 106 base pairs (bp) using calibration curve that show relationship between the dose of ionizing radiation and % tail DNA. To obtain an accurate result, the calibration curve must be made and comet should be analyzing using image processing analysis software since it can be increase the precision and reduce the subjectivity of the measurement process. (author)

  18. Comet 2001 Q2

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Kušnirák, Peter; Bouma, R. J.; Raymundo, P. M.

    č. 7687 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. Weird comets and asteroids the strange little worlds of the sun's family

    CERN Document Server

    Seargent, David A J

    2017-01-01

    This book concentrates on some of the odd aspects of comets and asteroids. Strange behavior of comets, such as outbursts and schisms, and how asteroids can temporally act as comets are discussed, together with the possible threat of Centaurs-class objects like the Taurid complex. Recent years have seen the distinction between comets and asteroids become less prominent. Comets in "asteroid" orbits and vice versa have become almost commonplace and a clearer view of the role of small bodies in the formation of the Solar System and their effect on Earth has become apparent. Seargent covers this development in detail by including new data and information from space probes. .

  20. Properties of comet Halley derived from thermal models and astrometric data

    International Nuclear Information System (INIS)

    Hechler, F.W.; Morley, T.A.; Mahr, P.

    1986-01-01

    The motion of a comet nucleus is influenced by outgassing forces. The orbit determination from astrometric data of comet Halley using empiric force and observation bias models and the incorporation of thermal models developed at ESOC into the orbit determination allows to draw some conclusions on the comet Halley dynamics and physics. 21 references

  1. Encounters between degenerate stars and extrasolar comet clouds

    International Nuclear Information System (INIS)

    Pineault, S.; Poisson, E.

    1989-01-01

    Under the assumption that the presence of comet clouds around otherwise normal stars is a common occurrence in the Galaxy, the observational consequences of random penetration encounters between the general Galactic population of degenerate stars and these comet clouds is considered. The only case considered is where the compact stars is a single star. For this scenario, encounters involving neutron stars (NSs) result in impact rates 1000-10,000 times slower than in the model of Tremaine and Zytkow (1986). The rate for white dwarfs (WDs) is larger than the one for NSs by a factor of about 30 times the ratio of the degenerate star number densities. The mean impact rate is significantly increased if the number of comets in a cloud is nearly independent of the mass of the central star. It is concluded that some of the observed gamma-ray bursts may be caused by accretion of comets onto NSs and that this scenario, but with a WD as the accretor, probably contributes to the optical flash background rate. 38 refs

  2. Detectability of Sungrazing Comet Soft X-ray Irradiance

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2007-12-01

    Full Text Available Originating from the Oort cloud, some comets disappear to impact against the Sun or to split up by strong gravitational force. Then they don't go back to the Oort cloud. They are called sungrazing comets. The comets are detected by sublimation of ices and ejection of gas and dust through solar heat close to the Sun. There exists the charge transfer from heavy ions in the solar wind to neutral atoms in the cometary atmosphere by interaction with the solar wind. Cometary atoms would be excited to high electronic levels and their de-excitation would result in X-ray emission, or it would be scattering of solar X-ray emission by very small cometary grains. We calculated the X-ray emission applying the model suggested by Mendis & Flammer (1984 and Cravens (1997. In our estimation, the sungrazing comet whose nucleus size is about 1 km in radius might be detectable within a distance of 3 solar radius from the sun on soft X-ray solar camera.

  3. Detection of garlic gamma-irradiated by assay comet

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Alvarez, Damaris L.; Miranda, Enrique F. Prieto; Carro, Sandra; Iglesias Enrique, Isora; Matos, Wilberto [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Ciudad de La Habana (Cuba)], e-mail: damaris@ceaden.edu.cu

    2009-07-01

    The garlic samples were irradiated in a facility with {sup 60}Co sources, at absorbed dose values of 0-0,15 kGy. The detection method utilized for the identification of the irradiated garlic was biological comet assay. The samples were classified post-irradiation several times. The irradiated samples showed high strand breaks of DNA exhibiting comets of several forms, while the not irradiated and lower dose samples showed a behavior like round shape and light comets. Significant differences were found for higher absorbed dose values at 0.06 kGy, this absorbed dose value is corresponding with the applied dose value at this food in order to avoid the germination. (author)

  4. Chandra: Ten Years of Amazing Science with a Great Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We review briefly review the history of the development of the Chandra X-Ray Observatory, highlighting certain details that many attendees of this Conference might not be aware of. We then present a selection of scientific highlights of the first 10 years of this remarkable and unique mission.

  5. Rationalization of Comet Halley's periods

    Science.gov (United States)

    Belton, Michael J. S.

    1990-01-01

    The sense of long axis orientation of Comet Halley during the Vega 1 encounter must be reversed from that deduced by Sagdeev et al. (1986) in order to harmonize the comet nucleus' Vega/Giotto-observed orientations with periodicities extracted from time-series brightness data. It is also demonstrated that Vega/Giotto observations can be satisfied by either a 2.2- or 3.7-day long-axis free precession period. A novel Fourier algorithm is used to reanalyze five independent data sets; strong evidence is adduced for periods harmonically related to a 7.4-day period. The preferred candidate models for Halley's nuclear rotation are characterized by a long-axis precession period of 3.7 days.

  6. Comet Assay in Cancer Chemoprevention.

    Science.gov (United States)

    Santoro, Raffaela; Ferraiuolo, Maria; Morgano, Gian Paolo; Muti, Paola; Strano, Sabrina

    2016-01-01

    The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks.

  7. Radar observations of Comet Halley

    International Nuclear Information System (INIS)

    Campbell, D.B.; Harmon, J.K.; Shapiro, I.I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity. 33 references

  8. Nustar and Chandra Insight into the Nature of the 3-40 Kev Nuclear Emission in Ngc 253

    Science.gov (United States)

    Lehmer, Bret D.; Wik, Daniel R.; Hornschemeier, Ann E.; Ptak, Andrew; Antoniu, V.; Argo, M.K.; Bechtol, K.; Boggs, S.; Christensen, F.E.; Craig, W.W.; hide

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 kiloelectron volt intensity of the inner approximately 20 arcsec (approximately 400 parsec) nuclear region, as measured by NuSTAR, varied by a factor of approximately 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L (sub 2-10 kiloelectron volt) approximately few × 10 (exp 39) erg per s) point source located approximately 1 arcsec from the dynamical center of the galaxy (within the sigma 3 positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or approximately equal to 3 kiloelectron volts. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (power-law model spectral fit value, N(sub H), approximately equal to 1.6 x 10 (exp 23) per square centimeter) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (Phi is approximately equal to 0.4 arcsec); however, this source was offset from the 2012 source position by approximately 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is much greater than 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 kiloelectron volts) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum

  9. Epithelial cells as alternative human biomatrices for comet assay.

    Science.gov (United States)

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  10. Comets: Role and importance to exobiology

    Science.gov (United States)

    Delsemme, Armand H.

    1992-01-01

    The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.

  11. Asteroids, meteorites, and comets

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Asteroids, Comets, and Meteorites provides students, researchers, and general readers with the most up-to-date information on this fascinating field. From the days of the dinosaurs to our modern environment, this book explores all aspects of these cosmic invaders.

  12. Death of a comet

    CERN Multimedia

    Hawkes, N

    2000-01-01

    The comet Linear dissolved as it made its closest approach to the sun on July 25th. The first stages of its breakup had been witnessed by the Hubble telescope when it threw off a piece of its crust (3 paragraphs).

  13. A HIGH FIDELITY SAMPLE OF COLD FRONT CLUSTERS FROM THE CHANDRA ARCHIVE

    International Nuclear Information System (INIS)

    Owers, Matt S.; Nulsen, Paul E. J.; Markevitch, Maxim; Couch, Warrick J.

    2009-01-01

    This paper presents a sample of 'cold front' clusters selected from the Chandra archive. The clusters are selected based purely on the existence of surface brightness edges in their Chandra images which are modeled as density jumps. A combination of the derived density and temperature jumps across the fronts is used to select nine robust examples of cold front clusters: 1ES0657 - 558, Abell 1201, Abell 1758N, MS1455.0+2232, Abell 2069, Abell 2142, Abell 2163, RXJ1720.1+2638, and Abell 3667. This sample is the subject of an ongoing study aimed at relating cold fronts to cluster merger activity, and understanding how the merging environment affects the cluster constituents. Here, temperature maps are presented along with the Chandra X-ray images. A dichotomy is found in the sample in that there exists a subsample of cold front clusters which are clearly mergers based on their X-ray morphologies, and a second subsample of clusters which harbor cold fronts, but have surprisingly relaxed X-ray morphologies, and minimal evidence for merger activity at other wavelengths. For this second subsample, the existence of a cold front provides the sole evidence for merger activity at X-ray wavelengths. We discuss how cold fronts can provide additional information which may be used to constrain merger histories, and also the possibility of using cold fronts to distinguish major and minor mergers.

  14. Chandra Observations of Tycho's Supernova Remnant U. Hwang , R ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    runaway thermal instabilities in a white dwarf. It was observed for 50 ks with the superb 0.5 resolution mirror on the Chandra X-ray .... emission that comes from ejecta that have propagated to the forward shock. Such a spectrum, taken from a portion of the west rim of the remnant, is shown in the right panel of Fig. 2. The fitted ...

  15. Nonlinear low frequency (LF) waves - Comets and foreshock phenomena

    Science.gov (United States)

    Tsurutani, Bruce T.

    1991-01-01

    A review is conducted of LF wave nonlinear properties at comets and in the earth's foreshock, engaging such compelling questions as why there are no cometary cyclotron waves, the physical mechanism responsible for 'dispersive whiskers', and the character of a general description of linear waves. Attention is given to the nonlinear properties of LF waves, whose development is illustrated by examples of waves and their features at different distances from the comet, as well as by computer simulation results. Also discussed is a curious wave mode detected from Comet Giacobini-Zinner, both at and upstream of the bow shock/wave.

  16. Upstream region, foreshock and bow shock wave at Halley's Comet from plasma electron measurements

    International Nuclear Information System (INIS)

    Anderson, K.A.; Carlson, C.W.; Curtis, D.W.

    1986-01-01

    Halley plasma electron parameters from 2.7 million km from the comet nucleus to the bow shock wave at 1.1 million km and beyond are surveyed. The features of the electron foreshock lying outside the shock to a distance of 230,000 km are described. It is a region of intense solar wind-comet plasma interaction in which energetic electrons are prominent. Several spikes of electrons whose energies extend to 2.5 keV appear in front of the shock. These energetic electrons may be accelerated in the same way electrons are accelerated at the Earth's bow shock to energies of 1 to 10 keV. The direction of the electron bulk flow direction changes abruptly between 1920 and 1922 UT, and the flow speed begins a sharp decline at the same time. It is suggested that the spacecraft entered the bow shock wave between 1920 and 1922 UT. Electron density variations at Halley are very much smaller than those at Giacobini-Zinner

  17. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Henry H. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hainaut, Olivier [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München (Germany); Novaković, Bojan [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Bolin, Bryce [Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, B.P. 4229, F-06304 Nice Cedex 4 (France); Denneau, Larry; Haghighipour, Nader; Kleyna, Jan; Meech, Karen J.; Schunova, Eva; Wainscoat, Richard J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Fitzsimmons, Alan [Astrophysics Research Centre, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Kokotanekova, Rosita; Snodgrass, Colin [Planetary and Space Sciences, Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Lacerda, Pedro [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Micheli, Marco [ESA SSA NEO Coordination Centre, Frascati, RM (Italy); Moskovitz, Nick; Wasserman, Lawrence [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Waszczak, Adam, E-mail: hhsieh@asiaa.sinica.edu.tw [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  18. DNA comet assay for rice seeds treated with low energy electrons ('soft-electrons')

    International Nuclear Information System (INIS)

    Todoriki, Setsuko; Hayashi, Toru

    1999-01-01

    As rice seeds are sometimes contaminated with phytopathogenic organisms such as blast disease fungi and nematodes, a novel non-chemical disinfection method for rice seeds is highly required. In order to develop a disinfection method, the effect of low energy electron ('soft-electrons') on seed DNA was examined by using the neutral comet assay. Rice seeds (whole grain) were treated with electrons of different acceleration voltages (180 kV to 1 MV) at a dose of 5 kGy. Nucleus suspensions were prepared from whole brown rice and subjected to electrophoresis. DNA from un-irradiated (control) seeds relaxed and produced comets with a short tail, most of the comets distributed within the range of comet length between 30 μm to 70 μm. In the case of seeds treated with electrons at acceleration voltages up to 190 kV, cells without seed coats were not damaged and the frequency histograms of comet length showed almost the same pattern as that for control. At acceleration voltages higher than 200 kV, the cells were distributed into two categories; DNA comets with a short tail (with little DNA damages, less than 70 μm in the comet length) and DNA comets with long tails (with sever strand breaks, more than 130 μm in the comet length). The ratios of damaged cells increased with increasing acceleration voltage. The growths of rice seedlings were not affected by the treatment with electrons at up to 200 kV. On the contrary, the cells of gamma-irradiated seed showed small variations in the comet length, and which were depending on radiation dose. The individual cells of gamma-irradiated seeds at 1 kGy showed shorter comet than the damaged cells with soft electron, seed treated with gamma rays (1-5 kGy) did not shoot nor root. (author)

  19. Measurement of plasma and energetic charged particles in the proximity of Halley's comet

    International Nuclear Information System (INIS)

    Erdoes, Geza; Gombosi, Tamas; Kecskemety, Karoly; Somogyi, Antal; Tatrallyay, Mariella; Varga, Andras

    1987-01-01

    The instrumentation aboard the space probe VEGA for the exploration of Halley's comet contained the particle analyzers PLAZMAG and TUENDE-M. PLAZMAG was used for the measurement of the interaction between the low-energy solar plasma and the heavy ions from the comet. From the energy spectra measured near the nucleus of the comet the density distribution of ion groups can also be determined. TUENDE-M recorded the distribution of energetic heavy ions from the comet. The properties of various plasma regions within the 10 million km range from the comet's nucleus are discussed in detail. (R.P.)

  20. Evaluation of irradiation in foods using DNA comet assay

    International Nuclear Information System (INIS)

    Khawar, Affaf; Bhatti, Ijaz Ahmad; Khan, Q.M.; Ali, T.; Khan, A.I.; Asi, M.R.

    2011-01-01

    Comet assay is a rapid, inexpensive and sensitive biological technique to detect DNA damage in food stuffs by irradiation. In this study the Comet assay is applied on foods of plant and animal origins. Samples were irradiated by using 60 Co gamma-radiation source. The applied doses were 2, 6 and 10 kGy for food of plant origin and 0.5, 1 and 2 kGy for meat items. The un-irradiated and irradiated samples were clearly differentiated on the basis of DNA fragmentation. During the electrophoresis study, it was found that in un-irradiated cells DNA remained intact and appeared as Comets without tail whereas in irradiated cells Comets with tails were visible due to stretching of fragmented DNA. Moreover, it was also revealed that the DNA tail length was dose dependent. Dry food stuffs (seeds) showed good results as compared to moist foods (meat, fruits and vegetables) due to the absence of background damage. (author)

  1. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  2. Chandra Observations of Neutron Stars: An Overview

    Science.gov (United States)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  3. Chandra Observation of Polaris: Census of Low-mass Companions

    Science.gov (United States)

    Evans, Nancy Remage; Guinan, Edward; Engle, Scott; Wolk, Scott J.; Schlegel, Eric; Mason, Brian D.; Karovska, Margarita; Spitzbart, Bradley

    2010-05-01

    We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log LX = 28.89 erg s-1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, "C" and "D," are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag. Based on observations made with the NASA Chandra Satellite.

  4. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, Univ. of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space Research and Technology Institute, Akad. G. Bonchev Str., Sofia, 1113 (Bulgaria); Güdel, Manuel [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner, E-mail: stephen.skinner@colorado.edu, E-mail: szhekov@space.bas.bg, E-mail: manuel.guedel@univie.ac.at, E-mail: werner.schmutz@pmodwrc.ch [Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland)

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  5. Asteroid-comet continuum objects in the solar system.

    Science.gov (United States)

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  6. Comet assay as a cold chain control tool

    International Nuclear Information System (INIS)

    Duarte, Renato Cesar

    2009-01-01

    Bearing in mind an ever more demanding market regarding the quality of food, it has been necessary to develop processes that meet the demands of consumers. Within the existing processes the cold chain and irradiation stand out. The cold chain comprises all the stages of conserving food from production, cooling, freezing, storing and transportation to the final consumer. Irradiation, as a means of conserving food, prolongs the shelf life, inhibits budding and reduces pathogenic contamination among other benefits. Is very important the identification of food degradation in function of failure on the processes which they were subjected. The comet assay is a screening test widely studied, considerate fast and with low cost. By the fact of the test identify breaks on the DNA, may be possible use the comet test on the control of cold chain failures that degrade de food. The labels and stamp, do not consider the previous food situation and indicate failures from the moment where they be placed in contact with the product. With the comet assay is possible to check the degradation that has occurred in liver chicken samples until the moment of comet's test realization. (author)

  7. Comet Dust: The Diversity of Primitive Particles and Implications

    Science.gov (United States)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  8. Intermediate-mass black holes in dwarf galaxies out to redshift ˜ 2.4 in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Mezcua, M.; Civano, F.; Marchesi, S.; Suh, H.; Fabbiano, G.; Volonteri, M.

    2018-05-01

    We present a sample of 40 AGN in dwarf galaxies at redshifts z ≲ 2.4. The galaxies are drawn from the Chandra COSMOS-Legacy survey as having stellar masses 107 ≤ M* ≤ 3 × 109 M⊙. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5-10keV ˜ 1039 - 1044 erg s-1. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at z = 2.39 and with L0.5-10keV ˜ 1044 erg s-1. One of the dwarf galaxies has M* = 6.6 × 107 M⊙ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ˜104 - 105 M⊙ and typical Eddington ratios >1%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7. We find that the AGN fraction for 109 < M* ≤ 3 × 109 M⊙ and LX ˜ 1041 - 1042 erg s-1 is ˜0.4% for z ≤ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.

  9. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  10. Comet 81P/Wild 2 under a microscope

    Energy Technology Data Exchange (ETDEWEB)

    Brownlee, D; Tsou, P; Aleon, J; Alexander, C; Araki, T; Bajt, S; Baratta, G A; Bastien, R; Bland, P; Bleuet, P; Borg, J; Bradley, J P; Brearley, A; Brenker, F; Brennan, S; Bridges, J C; Browning, N; Brucato, J R; Bullock, E; Burchell, M J; Busemann, H; Butterworth, A; Chaussidon, M; Cheuvront, A; Chi, M; Cintala, M J; Clark, B C; Clemett, S J; Cody, G; Colangeli, L; Cooper, G; Cordier, P; Daghlian, C; Dai, Z R; D' Hendecourt, L; Djouadi, Z; Dominguez, G; Duxbury, T; Dworkin, J P; Ebel, D; Economou, T E; Fairey, S J; Fallon, S; Ferrini, G; Ferroir, T; Fleckenstein, H; Floss, C; Flynn, G; Franchi, I A; Fries, M; Gainsforth, Z; Gallien, J; Genge, M; Gilles, M K; Gillet, P; Gilmour, J; Glavin, D P; Gounelle, M; Grady, M M; Graham, G A; Grant, P G; Green, S F; Grossemy, F; Grossman, L; Grossman, J; Guan, Y; Hagiya, K; Harvey, R; Heck, P; Herzog, G F; Hoppe, P; Horz, F; Huth, J; Hutcheon, I D; Ishii, H; Ito, M; Jacob, D; Jacobsen, C; Jacobsen, S; Joswiak, D; Kearsley, A T; Keller, L; Khodja, H; Kilcoyne, A D; Kissel, J; Krot, A; Langenhorst, F; Lanzirotti, A; Le, L; Leshin, L; Leitner, J; Lemelle, L; Leroux, H; Liu, M; Luening, K; Lyon, I; MacPherson, G; Marcus, M A; Marhas, K; Matrajt, G; Meibom, A; Mennella, V; Messenger, K; Mikouchi, T; Mostefaoui, S; Nakamura, T; Nakano, T; Newville, M; Nittler, L R; Ohnishi, I; Ohsumi, K; Okudaira, K; Papanastassiou, D A; Palma, R; Palumbo, M E; Pepin, R O; Perkins, D; Perronnet, M; Pianetta, P; Rao, W; Rietmeijer, F; Robert, F; Rost, D; Rotundi, A; Ryan, R; Sandford, S A; Schwandt, C S; See, T H; Schlutter, D; Sheffield-Parker, J; Simionovici, A; Simon, S; Sitnitsky, I; Snead, C J; Spencer, M K; Stadermann, F J; Steele, A; Stephan, T; Stroud, R; Susini, J; Sutton, S R; Taheri, M; Taylor, S; Teslich, N; Tomeoka, K; Tomioka, N; Toppani, A; Trigo-Rodriguez, J M; Troadec, D; Tsuchiyama, A; Tuzolino, A J; Tyliszczak, T; Uesugi, K; Velbel, M; Vellenga, J; Vicenzi, E; Vincze, L; Warren, J; Weber, I; Weisberg, M; Westphal, A J; Wirick, S; Wooden, D; Wopenka, B; Wozniakiewicz, P; Wright, I; Yabuta, K; Yano, H; Young, E D; Zare, R N; Zega, T

    2006-10-12

    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales. Stardust was the first mission to return solid samples from a specific astronomical body other than the Moon. The mission, part of the NASA Discovery program, retrieved samples from a comet that is believed to have formed at the outer fringe of the solar nebula, just beyond the most distant planet. The samples, isolated from the planetary region of the solar system for billions of years, provide new insight into the formation of the solar system. The samples provide unprecedented opportunities both to corroborate astronomical (remote sensing) and sample analysis information (ground truth) on a known primitive solar system body and to compare preserved building blocks from the edge of the planetary system with sample-derived and astronomical data for asteroids, small bodies that formed more than an order of magnitude closer to the Sun. The asteroids, parents of most meteorites, formed by accretion of solids in warmer, denser, more collisionally evolved inner regions of the solar nebula where violent nebular events were capable of flash-melting millimeter-sized rocks, whereas comets formed in the coldest, least dense region. The samples collected by Stardust are the first primitive materials from a known body, and as such they provide contextual insight for all primitive meteoritic samples. About 200 investigators

  11. Simultaneous Chandra and NuSTAR Observations of the Highly Obscured AGN Candidate in NGC660.

    Science.gov (United States)

    Annuar, Ady

    2014-09-01

    We are using NuSTAR to undertake a detailed investigation of the obscured AGN population at D<15Mpc. Our latest target is NGC660 where the presence of an AGN has been ambiguous. However, recently it was observed to undergo a radio outburst which reveals a bright continuum source (Argo et al. 2015), coincident with Chandra 2-8 keV emission from one of the three point sources near the nucleus (<5"). This confirms and pinpoints the X-ray position of the AGN. Comparisons of the Chandra flux with the radio emission and other multiwavelength luminosity indicators indicate that the X-ray flux is suppressed, suggesting that it is absorbed by a high column of gas. A NuSTAR observation for this object has been scheduled as part of our program. The requested Chandra observation is essential to unambiguously constrain the AGN and isolate it from other sources at <8 keV. When combined with NuSTAR, we will then be able to accurately characterise the 0.5-30 keV spectrum of the AGN for the first time.

  12. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    Science.gov (United States)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  13. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    Science.gov (United States)

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  14. Extension of the comet method to 2-D hexagonal geometry

    International Nuclear Information System (INIS)

    Connolly, Kevin John; Rahnema, Farzad; Zhang, Dingkang

    2011-01-01

    The capability of the heterogeneous coarse mesh radiation transport (COMET) method developed at Georgia Tech has been expanded. COMET is now able to treat hexagonal geometry in two dimensions, allowing reactor problems to be solved for those next-generation reactors which utilize prismatic block structure and hexagonal lattice geometry in their designs. The COMET method is used to solve whole core reactor analysis problems without resorting to homogenization or low-order transport approximations. The eigenvalue and fission density distribution of the reactor are determined iteratively using response functions. The method has previously proven accurate in solving PWR, BWR, and CANDU eigenvalue problems. In this paper, three simple test cases inspired by high temperature test reactor material cross sections and fuel block geometry are presented. These cases are given not in an attempt to model realistic nuclear power systems, but in order to test the ability of the improved method. Solutions determined by the new hexagonal version of COMET, COMET-Hex, are compared with solutions determined by MCNP5, and the results show the accuracy and efficiency of the improved COMET-Hex method in calculating the eigenvalue and fuel pin fission density in sample full-core problems. COMETHex determines the eigenvalues of these simple problems to an order of within 50 pcm of the reference solutions and all pin fission densities to an average error of 0.2%, and it requires fewer than three minutes to produce these results. (author)

  15. A catalog of observed nuclear magnitudes of Jupiter family comets

    Science.gov (United States)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  16. Spectroscopic Profiles of Comets Garradd and McNaught

    Science.gov (United States)

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2017-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets, as well as determine possible source differences in the coma between the observed radical species. We will present results for several comets, including C/2009 P1 (Garradd) and 260P (McNaught).

  17. Dynamics of landslides on comets of irregular shape

    Science.gov (United States)

    Czechowski, Leszek

    2017-04-01

    Landslides were observed on a few comet's nuclei, e.g. [1], [2]. The mechanism of their origin is not obvious because of very low gravity. According to [2] fluidization and multiphase transport of cometary material could be an explanation. We investigate here motion of the mass on a comet of irregular shape. The mechanism responsible for the low friction is not considered here. In fact, mass motion often occurs without contact with the surface. The motion could be triggered by meteoroids impacts or by the tidal forces. Comets nuclei are believed to be built of soft materials like snow and dust. The landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates a different situation. According to [1]: "thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength". Here we assume that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 1 - 100 MPa, see [3] and [4]. We consider nucleus of the shape of 67P/Churyumov-Gerasimenko with density 470 kg/m3. The impact or tidal forces result in changing of rotation of the comet. In general, the vector of angular velocity will be a subject to nutation that results in changing of centrifugal force, and consequently could be a factor triggering landslides. Note that nucleus' shape does not resemble the shape of surface of constant value of gravitational potential (i.e. 'geoid'). Our numerical models indicate the parts of the nucleus where landslides start and other parts where landslides stop. Of course, the regolith from the first type of regions would be removed to the regions of the second class. The motion of the mass is often complicated because of complicated distribution of the gravity and complicated shape of the nucleus. Acknowledgement: The research is partly supported by Polish National Science Centre

  18. Detection of irradiation treatment of foods using DNA 'comet assay'

    International Nuclear Information System (INIS)

    Khan, Hasan M.; Delincee, Henry

    1998-01-01

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results

  19. Remote comets and related bodies - VJHK colorimetry and surface materials

    Science.gov (United States)

    Hartmann, W. K.; Cruikshank, D. P.; Degewij, J.

    1982-01-01

    VJHK colors for a number of asteroids and eight comets at various solar distances and levels of activity were obtained, and the observations are interpreted in terms of a two-component mixing model in which outer solar system interplanetary bodies are viewed as mixtures of ice and dark carbonaceous-type (RD and C) dirt. It is inferred that the observed comets have comae, and perhaps surfaces, of dirty ice or ice dirt grains colored by an RD-dirt component. This inference is supported by systematics of an 'alpha index' based on VJHK colors and empirically correlated with albedo and ice/dirt ratio. Among comets the alpha index correlates with solar distance in a way that suggests comets emit dirty ice grains which are stable at large solar distance but from which the ice component sublimes and leaves dirt grains at small solar distance.

  20. Outbursts and diamagnetic cavities in comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Voelzke, M. R.

    2018-03-01

    On 2014 August 06 the Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. Since then, the spacecraft accompanied the comet on its journey around the Sun (Glassmeier et al. 2007), until the end of the mission on 2016 September 30. This work tries to understand the possible connections between the 665 reported diamagnetic regions (Goetz et al. 2016), detected from April 2015 to February 2016 around the comet 67P/Churyumov-Gerasimenko, with the fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG), when the heliocentric distance of the comet from the sun varied from 1.8 to 2.4 AU and the 34 reported outbursts (Vincent et al. 2016), detected from July to September 2015, with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras, when the ESA's Rosetta spacecraft changed the cometocentric distance from 155 to 817 km.

  1. MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin; Keane, Jacqueline; Meech, Karen [NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Owen, Tobias; Wainscoat, Richard, E-mail: yangbin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-04-01

    The dynamically new comet C/2011 L4 (Pan-STARRS) is one of the brightest comets observed since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner solar system. A strong absorption band of water ice at 2.0 μm was detected in the near-infrared spectra, obtained with the 8 m Gemini-North and 3 m Infrared Telescope Facility Telescopes. The companion 1.5 μm band of water ice, however, was not observed. Spectral modeling shows that the absence of the 1.5 μm feature can be explained by the presence of sub-micron-sized fine ice grains. No gas lines (i.e., CN, HCN, or CO) were observed pre-perihelion in either the optical or the submillimeter. We derived 3σ upper limits for the CN and CO production rates. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio >4.

  2. IUE observations of the evolution of Comet Wilson (1986l) - comparison with P/Halley

    International Nuclear Information System (INIS)

    Roettger, E.E.; Feldman, P.D.; A'hearn, M.F.; Festou, M.C.; Mcfadden, L.A.

    1989-01-01

    IUE observations of Comet Wilson from September 1986 to November 1987, through perihelion, allow a comparison to be conducted between this 'new' comet and the highly evolved P/Halley, at comparable heliocentric distances. The temporal decreases of both OH and dust in Comet Wilson near perihelion were monotonic and slow, by contrast to Comet Halley's rapid fluctuations. Despite these differences, relative gas abundances were similar within a factor of about 2 for comparable heliocentric and geocentric distances; this indicates that P/Halley's in situ gas measurements may be typical of comets generally. 33 refs

  3. Middle Tier Services Accessing the Chandra X-Ray Center Data Archive

    Science.gov (United States)

    Patz, A.; Harbo, P.; Moran, J.; van Stone, D.; Zografou, P.

    The Chandra Data Archive team at the Chandra X-ray Center has developed middle tier services that are used by both our search and retrieval applications to uniformly access our data repository. Accessible through an HTTP URL interface, these services can be called by our J2EE web application (WebChaser) and our Java Swing application (Chaser), as well as any other HTTP client. Programs can call the services to retrieve observation data such as a single FITS file, a proposal abstract or a detailed report of observation parameters. Having a central interface to the archive, shared by client applications, facilitates code reusability and easier maintenance. These middle tier services have been written in Java and packaged into a single J2EE application called the Search and Retrieval (SR) Services. The package consists of a web application front-end and an Enterprise Java Beans back-end. This paper describes the design and use of the SR Services.

  4. Rapport de frais de 2016-2017 pour Chandra Madramootoo | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Rapport de frais de 2016-2017 pour Chandra Madramootoo. Total des frais de déplacement : CAD$10,750.19. Réunion du Conseil des gouverneurs. 20 mars 2017 au 22 mars 2017. CAD$821.31. Réunion du Conseil des gouverneurs. 20 novembre 2016 au 23 novembre 2016. CAD$907.94. Initiation des nouveaux ...

  5. Romanticism or Reality? An Exploration of Frances Mary Hendry's "Chandra."

    Science.gov (United States)

    Johnson, Jilaine

    This paper singles out a novel written for children about India, "Chandra" (1995) by Frances Mary Hendry, as a powerful and useful novel to present to today's 11 to 14 year old students. The paper contends that the novel allows students to explore and consider different value systems, challenges them to become aware of prejudice and the…

  6. I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission

    Science.gov (United States)

    Dalcher, N.

    2009-04-01

    Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the

  7. Comet Dust: The Diversity of "Primitive" Particles and Implications

    Science.gov (United States)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  8. Spectrophotometry of Dust in Comet Hale-Bopp

    Science.gov (United States)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  9. Use of statistical analysis to validate ecogenotoxicology findings arising from various comet assay components.

    Science.gov (United States)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, Khalid Abdullah; Masoud, Muhammad Shahreef; Mahboob, Shahid

    2018-04-01

    Cirrhinus mrigala, Labeo rohita, and Catla catla are economically important fish for human consumption in Pakistan, but industrial and sewage pollution has drastically reduced their population in the River Chenab. Statistics are an important tool to analyze and interpret comet assay results. The specific aims of the study were to determine the DNA damage in Cirrhinus mrigala, Labeo rohita, and Catla catla due to chemical pollution and to assess the validity of statistical analyses to determine the viability of the comet assay for a possible use with these freshwater fish species as a good indicator of pollution load and habitat degradation. Comet assay results indicated a significant (P comet head diameter, comet tail length, and % DNA damage. Regression analysis and correlation matrices conducted among the parameters of the comet assay affirmed the precision and the legitimacy of the results. The present study, therefore, strongly recommends that genotoxicological studies conduct appropriate analysis of the various components of comet assays to offer better interpretation of the assay data.

  10. Direct imaging and spectrophotometry of Comet P/Tempel 2

    International Nuclear Information System (INIS)

    Boehnhardt, H.; Beisser, K.; Vanysek, V.; Mueller, B.E.A.; Weiss, M.

    1990-01-01

    Both direct imaging and spectrophotometry of Comet P/Tempel 2 during May-November 1988 have led to a nuclear diameter determination of the order of about 10 km. Sekanina's (1987) spin-vector model for this comet is judged capable of qualitatively accounting for both the visual light curve of the comet during this period, which exhibited a steep increase perihelion despite the normal, moderate-decrease perihelion, and an asymmetric extension of the fanlike coma in the solar direction. The late activity onset, the possible constant visual brightness immediately afterward, and the deviation of the fan axis orientation from the predicted value in May 1988, may all furnish additional constraints for P/Tempel 2 nucleus modeling. 24 refs

  11. Blazing a ghostly trail ISON and great comets of the past and future

    CERN Document Server

    Grego, Peter

    2014-01-01

    A special celestial event climaxes towards the end of 2013, the arrival, fresh from the Oort Cloud, of Comet C/2012 S1 (ISON). By all predictions, this comet was set to be one of the most dazzling comets seen in modern history.   Sky watchers will have already been primed for C/2012 (ISON) earlier in 2013 with the apparition of another naked-eye comet, C/2011 L4 (PanSTARRS), and following C/2012 S1 (ISON) there is the prospect of 2012 K1 (PanSTARRS) reaching naked-eye visibility in August 2014. And there will be other bright cometary prospects in the near future, if we take into account the latest predictions.   This book sets the scene for the arrival of Comet C/2012 S1 and those comets following it over the next few years. It explains how sky watchers and amateur astronomers can practically follow comets, observe them, and record them. This is also a guide on how to keep abreast of the latest cometary discoveries and how to use publications, websites, programs, and apps to visualize and plan observations....

  12. Irradiation detection of food by DNA Comet Assay

    International Nuclear Information System (INIS)

    Khan, A.A.; Delincee, H.

    1999-01-01

    Microgel electrophoresis of single cells or nuclei (DNA Comet Assay) has been investigated to detect irradiation treatment of more than 50 food commodities e.g. meats, seafood, cereals, pulses, nuts, fruits and vegetables, and spices. The foodstuffs have been exposed to radiation doses covering the range of potential commercial irradiation for inactivation of pathogenic and spoilage micro-organisms, for insect disinfestation and for shelf-life extension. The Comet Assay is based on detection of DNA fragments presumptive to irradiation. For most of the food items investigated, the assay can be applied successfully for irradiation detection by working out different conditions of the assay. However, with some of the foods difficulties arose due to - lack of discrimination between the irradiated and unirradiated food samples due to the presence of the same kinds of comets in both cases and the total absence of the typical intact cells in unirradiated samples. - Sufficient DNA material was not available from some of the foods. - Insufficient lysis of the cell walls in case of some plant foods. In conclusion, the DNA Comet Assay can help to detect the irradiation treatment of several varieties of foods using low-cost equipment in a short time of analysis. (orig.)

  13. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  14. Triple F - A Comet Nucleus Sample Return Mission

    Science.gov (United States)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  15. Physical activity of the selected nearly isotropic comets with perihelia at large heliocentric distance

    Science.gov (United States)

    Kulyk, I.; Rousselot, P.; Korsun, P. P.; Afanasiev, V. L.; Sergeev, A. V.; Velichko, S. F.

    2018-03-01

    Context. The systematic investigation of comets in a wide range of heliocentric distances can contribute to a better understanding of the physical mechanisms that trigger activity at large distances from the Sun and reveals possible differences in the composition of outer solar system bodies belonging to various dynamical groups. Aims: We seek to analyze the dust environment of the selected nearly isotropic comets with a perihelion distance between 4.5 and 9.1 au, where sublimation of water ice is considered to be negligible. Methods: We present results of multicolor broadband photometric observations for 14 distant active objects conducted between 2008 and 2015 with various telescopes. Images obtained with broadband filters were used to investigate optical colors of the cometary comae and to quantify physical activity of the comet nuclei. Results: The activity level was estimated with Afρ parameters ranging between 95 ± 10 cm and 9600 ± 300 cm. Three returning comets were less active than the dynamically new comets. Dust production rates of the comet nuclei were estimated between 1 and 100 kg s-1 based on some assumptions about the physical properties of dust particles populating comae. The measured colors point out reddening of the continuum for all the comets. The mean values of a normalized reflectivity gradient within the group of the comets amount to 14 ± 2% per 1000 Å and 3 ± 2% per 1000 Å in the BV and VR spectral domains, respectively. The comae of the dynamically new comets, which were observed on their inbound legs, may be slightly redder in the blue spectral interval than comae of the comets observed after the perihelion passages. The dynamically new comets observed both pre- and post-perihelion, seem to have higher production rates post-perihelion than pre-perihelion for similar heliocentric distances.

  16. Role of the Chandra X-Ray Observatory Observations for the Study of Ionized Plasmas

    Science.gov (United States)

    Weisskopf, Martin C.

    2010-01-01

    The Chandra X-Ray Observatory, launched in 1999, is now beginning its 12-th year of operation. Chandra, the X-ray component of NASA s Great Observatory program, continues to operate efficiently, somewhat remarkable considering that the Observatory was designed for three years of operation with a goal of five. The Observatory features X-ray optics with sub-arcsecond angular resolution and a small suite of instruments, including transmission gratings, which allow for high-resolution spectroscopy of point sources. We will detail the capabilities of the Observatory for making such spectroscopic measurements and discuss a number of examples of what has been learned about the astrophysical plasmas capable of producing bright X-ray emission.

  17. Assessment of Genotoxicity of Ionizing radiation using Tradescantia-Comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Ryu, Tae Ho; Hyun, Kyung Man; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Wilhelmova, Nad [Institute of Experimental Botany, Prague (Czech Republic)

    2010-05-15

    Over the last two decades, several new methodologies for the detection of DNA damage have been developed. The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, also called the single cell gel electrophoresis (SCGE) was first introduced by Ostling and Johanson as a microelectrophoretic technique for the direct visualization of DNA damage in individual cells. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Although the genotoxic effects detected by Tradescantia tests cannot be associated with mutagenesis or even carcinogenesis in humans, these bioassays are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay

  18. The kinematics and chemical stratification of the type Ia supernova remnant 0519-69.0 : an XMM-Newton and Chandra study

    NARCIS (Netherlands)

    Kosenko, D.; Helder, E.A.; Vink, J.

    2010-01-01

    We present a detailed analysis of the XMM-Newton and Chandra X-ray data of the young type Ia supernova remnant SNR 0519-69.0, which is situated in the Large Magellanic Cloud. We used data from both the Chandra ACIS and XMM-Newton EPIC MOS instruments, and high resolution X-ray spectra obtained with

  19. Comet C/2001 J1

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Helin, E.; Lawrence, K.; Kotková, Lenka; Tichá, J.; Tichý, M.

    č. 7623 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. COMET- co-ordination and implementation of a pan-European instrument for radioecology - COMET- co-ordination and implementation of a pan-European project for radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, Hildegarde [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Muikku, Maarit [STUK, Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 Helsinki (Finland); Liland, Astrid [NRPA, Norwegian Radiation Protection Authority, Grini Naeringspark 13, Oesteraas, 1332 (Norway); Adam-Guillermin, Christelle [IRSN-Institut de Radioprotection et de Surete Nucleaire, 31, Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses (France); Howard, Brenda [NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2014-07-01

    The EC-FP7 project COMET (June 2013 - May 2017) intends to strengthen the pan-European research initiative on the impact of radiation on man and the environment by facilitating the integration of 'radioecological' research. The COMET consortium currently has thirteen partners; eight from EU member states, two from Norway, two from Ukraine and one from Japan. COMET operates in close association with the FP7-STAR Network of Excellence[1]and the Radioecology Alliance[2], COMET will develop initiatives to encourage organisations from the European (and larger) radioecological research community to join the Radioecology Alliance to help address the priorities identified in the Strategic Research Agenda (SRA) for radioecological research. Capacity, competence and skills in radioecology will thus be strengthened at a pan-European level. Mechanisms for knowledge exchange, dissemination and training will be established to enhance and maintain European capacity, competence and skills in radioecology, partially through an open access web site, topical workshops and training activities. COMET will develop innovative mechanisms for joint programming and implementation of radioecological research. Mechanisms for planning and carrying out joint research activities in radioecology will be developed based on the scientific requirements identified in the SRA and via interaction with a wide range of stakeholders. COMET will strengthen the bridge with other radiation protection and ecological communities. A roadmap and associated implementation plan is being developed in collaboration with the Radioecology Alliance and the allied platforms on low dose risk research (MELODI[3]), and emergency management research (NERIS[4]) and the radioecology community at large who is invited to become associated to the development of roadmap and implementation plan. COMET will initiate innovative research on key needs identified by the radioecology community, the (post) emergency management

  1. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.

    Science.gov (United States)

    Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by

  2. A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625

    Science.gov (United States)

    Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.

    2004-06-01

    We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.

  3. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  4. Early Chandra X-ray Observations of Eta Carinae

    OpenAIRE

    Seward, F. D.; Butt, Y. M.; Karovska, M.; Schlegel, A. Prestwich. E. M.; Corcoran, M.

    2001-01-01

    Sub-arcsecond resolution Chandra observations of Eta Carinae reveal a 40 arcsec X 70 arcsec ring or partial shell of X-ray emission surrounding an unresolved, bright, central source. The spectrum of the central source is strongly absorbed and can be fit with a high-temperature thermal continuum and emission lines. The surrounding shell is well outside the optical/IR bipolar nebula and is coincident with the Outer Shell of Eta Carinae. The X-ray spectrum of the Shell is much softer than that o...

  5. Halley's Comet: A Bibliography.

    Science.gov (United States)

    Freitag, Ruth S., Comp.

    Included in this bibliography are over 3,200 references to publications on Halley's Comet, its history, orbital motion, and physical characteristics, meteor streams associated with it, preparations for space missions to study it in 1986, and popular reaction to its appearances. Also cited are a few papers that, although they devote little…

  6. The comet assay: assessment of in vitro and in vivo DNA damage.

    Science.gov (United States)

    Bajpayee, Mahima; Kumar, Ashutosh; Dhawan, Alok

    2013-01-01

    Rapid industrialization and pursuance of a better life have led to an increase in the amount of chemicals in the environment, which are deleterious to human health. Pesticides, automobile exhausts, and new chemical entities all add to air pollution and have an adverse effect on all living organisms including humans. Sensitive test systems are thus required for accurate hazard identification and risk assessment. The Comet assay has been used widely as a simple, rapid, and sensitive tool for assessment of DNA damage in single cells from both in vitro and in vivo sources as well as in humans. Already, the in vivo comet assay has gained importance as the preferred test for assessing DNA damage in animals for some international regulatory guidelines. The advantages of the in vivo comet assay are its ability to detect DNA damage in any tissue, despite having non-proliferating cells, and its sensitivity to detect genotoxicity. The recommendations from the international workshops held for the comet assay have resulted in establishment of guidelines. The in vitro comet assay conducted in cultured cells and cell lines can be used for screening large number of compounds and at very low concentrations. The in vitro assay has also been automated to provide a high-throughput screening method for new chemical entities, as well as environmental samples. This chapter details the in vitro comet assay using the 96-well plate and in vivo comet assay in multiple organs of the mouse.

  7. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?

    Science.gov (United States)

    Karlsson, Hanna L; Di Bucchianico, Sebastiano; Collins, Andrew R; Dusinska, Maria

    2015-03-01

    The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods. © 2014 Wiley Periodicals, Inc.

  8. The Disruption and Demise of Periodic Comet Shoemaker-Levy 9

    Science.gov (United States)

    Asphaug, Erik; Benz, Willy; Cuzzi, Jeffrey (Technical Monitor)

    1994-01-01

    The impact of the fragmented comet Shoemaker-Levy 9 (SL9) into Jupiter this July promises to change our understanding of the outer solar system. More than twenty mountain-sized conglomerates of ice and rock will hit the atmosphere at approx. 50 km/s over the course of a week beginning July 16, releasing approx. 10(exp 4) to 10(exp8) megatons of energy per burst, and providing unique and perhaps pivotal clues to the properties of comets and the physics of massive atmospheres. Because the fragments will strike the far side of Jupiter, data acquisition, analysis and interpretation will be quite sensitive to the actual size and energy of the fragments. We therefore examine an event which took place two summers ago, unnoticed and unobserved: the disruption of SL9 into a "string of pearls' as it passed within the Roche limit at perijove. We first demonstrate, on the basis of timescales of tidal interaction, that the comet could not have broken into 20+ fragments through a hierarchy of brittle fracture events. Next, noting that the tidal stress was too weak to have even fragmented an uncompressed mass of freshly fallen snow, we run models for a strengthless comet held together only by self-gravity. We explore the initial size, density, and rotation. We conclude that a 4 km diameter comet (smaller if a prograde rotator) of density approx. 0.5 g/cu cm disrupts and disperses into a chain of fragments similar to Shoemaker-Levy 9, whether we begin with 21, 85, 169, 700 or 2000 sub-grains. Gravitational reaccumulation is evidently the answer, and there is no need to invoke the presence of 21 "cometesimals" as the subscale of the comet. To explain how a comet can be weaker than uncompacted snow, we show that the ring-plane crossing prior to perijove could have caused total damage. Finally, we compute the tidal stress on impactors as they approach Jupiter this July. Objects of various density are moderately distorted but not disrupted by the time they strike the planet.

  9. Colour, albedo and nucleus size of Halley's comet

    Science.gov (United States)

    Cruikshank, D. P.; Tholen, D. J.; Hartmann, W. K.

    1985-01-01

    Photometry of Halley's comet in the B, J, V, and K broadband filters during a time when the coma was very weak and presumed to contribute negligibly to the broadband photometry is reported. The V-J and J-K colors suggest that the color of the nucleus of Halley's comet is similar to that of the D-type asteroids, which in turn suggests that the surface of the nucleus has an albedo less than 0.1.

  10. Reference cells and ploidy in the comet assay

    Directory of Open Access Journals (Sweden)

    Gunnar eBrunborg

    2015-02-01

    Full Text Available In the comet assay, single cells are analyzed with respect to their level of DNA damage. Discrimination of the individual cell or cell type based on DNA content, with concomitant scoring of the DNA damage, is useful since this may allow analysis of mixtures of cells. Different cells can then be characterized based on their ploidy, cell cycle stage, or genome size. We here describe two applications of such a cell type-specific comet assay: (i Testicular cell suspensions, analyzed on the basis of their ploidy during spermatogenesis; and (ii reference cells in the form of fish erythrocytes which can be included as internal standards to correct for inter-assay variations. With standard fluorochromes used in the comet assay, the total staining signal from each cell – whether damaged or undamaged – was found to be associated with the cell’s DNA content. Analysis of the fluorescence intensity of single cells is straightforward since these data are available in scoring systems based on image analysis. The analysis of testicular cell suspensions provides information on cell type specific composition, susceptibility to genotoxicants, and DNA repair. Internal reference cells, either untreated or carrying defined numbers of lesions induced by ionizing radiation, are useful for investigation of experimental factors that can cause variation in comet assay results, and for routine inclusion in experiments to facilitate standardization of methods and comparison of comet assay data obtained in different experiments or in different laboratories. They can also be used - in combination with a reference curve - to quantify the DNA lesions induced by a certain treatment. Fish cells of a range of genome sizes, both greater and smaller than human, are suitable for this purpose and they are inexpensive.

  11. Comet Dust After Deep Impact

    Science.gov (United States)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  12. Hyperactivity and Dust Composition of Comet 103P/Hartley 2 During the EPOXI Encounter

    Science.gov (United States)

    Harker, David E.; Woodward, Charles E.; Kelley, Michael S. P.; Wooden, Diane H.

    2018-05-01

    Short-period comet 103P/Hartley 2 (103P) was the flyby target of the Deep Impact eXtended Investigation on 2010 November 4 UT. This comet has a small hyperactive nucleus, i.e., it has a high water production rate for its surface area. The underlying cause of the hyperactivity is unknown; the relative abundances of volatiles in the coma of 103P are not unusual. However, the dust properties of this comet have not been fully explored. We present four epochs of mid-infrared spectra and images of comet 103P observed from Gemini-South +T-ReCS on 2010 November 5, 7, 21 and December 13 UT, near and after the spacecraft encounter. Comet 103P exhibited a weak 10 μm emission feature ≃1.14 ± 0.01 above the underlying local 10 μm continuum. Thermal dust grain modeling of the spectra shows the grain composition (mineralogy) was dominated by amorphous carbon and amorphous pyroxene with evidence for Mg-rich crystalline olivine. The grain size has a peak grain radius range of a peak ∼ 0.5–0.9 μm. On average, the crystalline silicate mass fraction is ≃0.24, fairly typical of other short-period comets. In contrast, the silicate-to-carbon ratio of ≃0.48–0.64 is lower compared to other short-period comets, which indicates that the flux measured in the 10 μm region of 103P was dominated by amorphous carbon grains. We conclude that the hyperactivity in comet 103P is not revealing dust properties similar to the small grains seen with the Deep Impact experiment on comet 9P/Tempel 1 or from comet C/1995 O1 (Hale–Bopp).

  13. Comets, Charisma, and Celebrity: Reflections on Their Deep Impact

    Science.gov (United States)

    Olson, R. J. M.; Pasachoff, J. M.

    In celebration of the Deep Impact Mission, this essay explores the influence of comets on the arts and sciences since the beginning of recorded time. Through images, ranging from the sublime to the humorous, it probes the reasons why comets are among the most charismatic visual spectacles in the universe and why, even as scientific missions unmask their mysteries, they remain iconic symbols and harbingers of change.

  14. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  15. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2007-01-01

    Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth's Biosphere. However; the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the Biosphere may extend far into the Cosmos. Recent space observations have found the nuclei of comets to have very low albedos (approx.0.03) and. these jet-black surfaces become very hot (T approx. 400 K) near perihelion. This paper reviews recent observational data-on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous-microfossils embedded' in freshly. fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. These forms are consistent in size and morphologies with known morphotypes of all five orders of Cyanobacteriaceae: Energy Dispersive X-ray Spectroscopy (EDS) elemental data shows that the meteoritic forms have anomalous C/O; C/N; and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological

  16. Evaluating In Vitro DNA Damage Using Comet Assay.

    Science.gov (United States)

    Lu, Yanxin; Liu, Yang; Yang, Chunzhang

    2017-10-11

    DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.

  17. The cyanogen band of Comet Halley

    Science.gov (United States)

    Tatum, J. B.; Campbell, E. C.

    The results of improved whole disk solar irradiance spectrum calculations performed for projected Halley's Comet heliocentric radial velocity and distance are provided. The computations were carried out to account for Doppler effects in the Fraunhofer lines of rotational excitation bands of violet CN emissions from the comet in its encounters with solar radiation. The calculations spanned every half-day for 200 days before and after perihelion. The 801 computer images of the expected intensities were photographed in sequence to form an animated film paced by background music from Liszt's Second Hungarian Rhapsody. The results are intended for accounting for spectral changes observed due to Doppler effects induced by changing velocity and distance, rather than physical mechanisms of the emitting processes.

  18. Groundbased investigation of comet 67p/churyumov- gerasimenko, target of the spacecraft Mission Rosetta

    Science.gov (United States)

    de Almeida, A. A.; Trevisan Sanzovo, D.; Sanzovo, G. C.; Boczko, R.; Miguel Torres, R.

    In this work, we make a comparative study of Comet 67P/Churyumov-Gerasimenko, target of Mission Rosetta, with Comets 1P/Halley and Hyakutake(C/1996 B2). Water and gas) release rates are derived from visual magnitudes (mv), determined mostly by amateur astronomers, and listed in several issues of International Comet Quarterly(ICQ). We make a systematic and uniform analysis of continuum fluxes obtained at visual wavelengths and, using the framework of photometric theory of Newburn & Spinrad (1985, 1989), we estimate dust release rates, qd (in g/s), effective particle sizes, a (in micron), and dust-to-gas mass ratios, for this important sample of comets. We also determine the color excess of the dust particles, CE, relative to the Sun at wavelength ranges 477.0-524.0 nm in the 1996 return of Comet 67P/Churyumov-Gerasimenko, and 365.0-484.5 nm for Comets 1P/Halley and C/1996 B2.

  19. Melt cooling by bottom flooding. The COMET core-catcher concept

    International Nuclear Information System (INIS)

    Foit, Jerzy Jan; Alsmeyer, Hans; Tromm, Walter; Buerger, Manfred; Journeau, Christophe

    2009-01-01

    The COMET concept has been developed to cool an ex-vessel corium melt in case of a hypothetical severe accident leading to vessel melt-through. After erosion of a sacrificial concrete layer the melt is passively flooded by bottom injection of coolant water. The open porosities and large surface that are generated during melt solidification form a porous permeable structure that is permanently filled with the evaporating water and thus allows an efficient short-term as well as long-term removal of the decay heat. The advantages of this concept are the fast cool-down and complete solidification of the melt within less than one hour typically. This stops further release of fission products from the corium. A drawback may be the fast release of steam during the quenching process. Several experimental series have been performed by FZK (Germany) to test and optimise the functionality of the different variants of the COMET concept. Thermite generated melts of iron and aluminium oxide were used. The large scale COMET-H test series with sustained inductive heating includes nine experiments performed with an array of water injection channels embedded in a sacrificial concrete layer. Variation of the water inlet pressure and melt height showed that melts up to 50 cm height can be safely cooled with an overpressure of the coolant water of 0.2 bar. The CometPC concept is based on cooling by flooding the melt from the bottom through layers of porous, water filled concrete. The third variant of the COMET design, CometPCA, uses a layer of porous, water filled concrete CometPCA from which flow channels protrude into the layer of sacrificial concrete. This modified concept combines the advantages of the original COMET concept with flow channels and the high resistance of a water-filled porous concrete layer against downward melt attack. Four large scale CometPCA experiments (FZK, Germany) have demonstrated an efficient cooling of melts up to 50 cm height using the recommended water

  20. Comet coma sample return instrument

    Science.gov (United States)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  1. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    Science.gov (United States)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  2. Preliminary results of the Vega-1 and Vega-2 space probes rendezvous with the Halley comet

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Preliminary results of the Halley comet investigation using the Vega-1 and Vega-2 space probes which passed on the 6th and 9th of March, 1986 the comet nucleus at a distance of 9000 and 8200 respectively, are presented. The comet nucleus appeared to be one of the darkest bodies of the Solar system: its albedo is just about 4%. The IR spectrum analysis has shown, that water and carbon dioxide appear to be the main components of the comet material. Mass analysis points out to the presence in the comet dust of iron, oxygen and silicon. It is ascertained, that about 30 t of water vapors and about 5-10 t of dust are evaporated from the comet nucleus surface in one second. Solar wind interaction with the comet streched atmosphere was investigated

  3. Further characterization of benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects.

    Science.gov (United States)

    Bausinger, Julia; Schütz, Petra; Piberger, Ann Liza; Speit, Günter

    2016-03-01

    The present study aims to further characterize benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects. Therefore, we measured DNA effects by the comet assay and adduct levels by high-performance liquid chromatography (HPLC) in human lymphocytes and A549 cells exposed to (±)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(±)-anti-BPDE] or (+)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(+)-anti-BPDE]. Both, the racemic form and (+)-anti-BPDE, which is the most relevant metabolite with regard to mutagenicity and carcinogenicity, induced DNA migration in cultured lymphocytes in the same range of concentrations to a similar extent in the alkaline comet assay after exposure for 2h. Nevertheless, (+)-anti-BPDE induced significantly enhanced DNA migration after 16 and 18h post-cultivation which was not seen in response to (±)-anti-BPDE. Combination of the comet assay with the Fpg (formamidopyrimidine-DNA glycosylase) protein did not enhance BPDE-induced effects and thus indicated the absence of Fpg-sensitive sites (oxidized purines, N7-guanine adducts, AP-sites). The aphidicolin (APC)-modified comet assay suggested significant excision repair activity of cultured lymphocytes during the first 18h of culture after a 2 h-exposure to BPDE. In contrast to these repair-related effects measured by the comet assay, HPLC analysis of stable adducts did not reveal any significant removal of (+)-anti-BPDE-induced adducts from lymphocytes during the first 22h of culture. On the other hand, HPLC measurements indicated that A549 cells repaired about 70% of (+)-anti-BPDE-induced DNA-adducts within 22h of release. However, various experiments with the APC-modified comet assay did not indicate significant repair activity during this period in A549 cells. The conflicting results obtained with the comet assay and the HPLC-based adduct analysis question the real cause for BPDE-induced DNA migration in the comet assay and the reliability of the APC-modified comet assay for the

  4. Comet C/2017 K2 (PANSTARRS): Dynamically Old or New?

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-04-01

    At discovery time, C/2017 K2 (PANSTARRS) was the second most distant inbound active comet ever observed. It has been argued that this object is in the process of crossing the inner Solar System for the first time, but other authors have concluded that it is dynamically old. We have performed full N-body simulations for 3 Myr into the past using the latest public orbit determination for this object and most of them, 67%, are consistent with a bound and dynamically old Oort cloud comet, but about 29% of the studied orbits are compatible with an interstellar origin. Our independent calculations strongly suggest that C/2017 K2 is not a dynamically new Oort cloud comet.

  5. Encounter of the Ulysses Spacecraft with the Ion Tail of Comet McNaught

    Science.gov (United States)

    Neugebauer, M.; Gloeckler, G.; Gosling, J. T.; Rees, A.; Skoug, R.; Goldstein, B. E.; Armstrong, T. P.; Combi, M. R.; Makinen, T.; McComas, D. J.; hide

    2007-01-01

    Comet McNaught was the brightest comet observed from Earth in the last 40 years. For a period of five days in early 2007 February, four instruments on the Ulysses spacecraft directly measured cometary ions and key properties of the interaction of the comet's ion tail with the high-speed solar wind from the polar regions of the Sun. Because of the record-breaking duration of the encounter, the data are unusually comprehensive. O3(+) ions were detected for the first time in a comet tail, coexisting with singly charged molecular ions with masses in the range 28-35 amu. The presence of magnetic turbulence and of ions with energies up to approximately 200 keV indicate that at a distance of approximately 1.6 AU from the comet nucleus, the ion tail McNaught had not yet reached equilibrium with the surrounding solar wind.

  6. Model for the coma of Comet Halley, based on the Astron ultraviolet spectrophotometry

    International Nuclear Information System (INIS)

    Boiarchuk, A.A.; Grinin, V.P.; Petrov, P.P.; Sheikhet, A.I.; Zvereva, A.M.

    1986-01-01

    The development of a model of the Comet Halley coma from spectral and photometric data is described. Spectra in the 1500-3500 A range and photometric scans at the 3085 A and 2190 A in the (0-0) band of the OH and CO(+) molecules were obtained by the UV telescope of the satellite Astron on December 3, 13, and 23, 1985. Surface-brightness profiles of the coma in the (0-0) band of OH, NH, and CS molecules are derived. The source and formation of these molecules, the lifetime of their radicals, the radial velocity of their parent molecules, and the water-molecule sublimation rate are computed and examined. The basic characteristics of the comet observed from the UV data are compared to the properties of other comets. It is observed that Comet Halley is similar to other large short-period comets. 29 references

  7. A note on the possible origin of comets in an interstellar gas cloud

    International Nuclear Information System (INIS)

    Yabushita, S.; Hasegawa, I.

    1978-01-01

    A possible origin of comets in an interstellar gas cloud is discussed in relation to the two recent results on cometary research. First, among 200 long-period comets whose original incoming orbits were recently calculated, seven have definitely and 14 have probably negative values of 1/a, where 1/a is twice the binding energy (positive a corresponds to an elliptic orbit) with respect to the solar system barycentre. Second, it has been shown how an aggregate of dust grains embedded in an icy matrix of gaseous compounds could form in an interstellar gas cloud, which could be identified with the icy nucleus of a comet. Again, of about 20 comets whose original 1/a values are negative, seven are transformed into future elliptic orbits by planetary perturbation. Thus, a comet which originated in an interstellar cloud could be captured by the solar system

  8. The Chandra Source Catalog 2.0: Estimating Source Fluxes

    Science.gov (United States)

    Primini, Francis Anthony; Allen, Christopher E.; Miller, Joseph; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The Second Chandra Source Catalog (CSC2.0) will provide information on approximately 316,000 point or compact extended x-ray sources, derived from over 10,000 ACIS and HRC-I imaging observations available in the public archive at the end of 2014. As in the previous catalog release (CSC1.1), fluxes for these sources will be determined separately from source detection, using a Bayesian formalism that accounts for background, spatial resolution effects, and contamination from nearby sources. However, the CSC2.0 procedure differs from that used in CSC1.1 in three important aspects. First, for sources in crowded regions in which photometric apertures overlap, fluxes are determined jointly, using an extension of the CSC1.1 algorithm, as discussed in Primini & Kashyap (2014ApJ...796…24P). Second, an MCMC procedure is used to estimate marginalized posterior probability distributions for source fluxes. Finally, for sources observed in multiple observations, a Bayesian Blocks algorithm (Scargle, et al. 2013ApJ...764..167S) is used to group observations into blocks of constant source flux.In this poster we present details of the CSC2.0 photometry algorithms and illustrate their performance in actual CSC2.0 datasets.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  9. The global morphology of the solar wind interaction with comet Churyumov-Gerasimenko

    International Nuclear Information System (INIS)

    Mendis, D. A.; Horányi, M.

    2014-01-01

    The forthcoming Rosetta-Philae mission to comet 67P/Churyumov-Gerasimenko provides a novel opportunity to observe the variable nature of the solar wind interaction with a comet over an extended range of heliocentric distance. We use a simple analytical one-dimensional MHD model to estimate the sizes of the two most prominent features in the global structure of the solar wind interaction with a comet. When the heliocentric distance of the comet reaches d ≤ 1.51 AU, we expect a sharp shock to be observed, whose size would increase monotonically as the comet approaches the Sun, reaching a value ≅ 15, 000 km at perihelion (d ≅ 1.29 AU). Upstream of the shock, we expect the velocity-space distribution of the picked up cometary ions to be essentially gyrotropic. A well-defined ionopause is predicted when d ≤1.61 AU, though its size is expected to be only ≅25 km at perihelion, and it is expected to be susceptible to the 'flute' instability due to its small size. Consequently, we expect the magnetic field to penetrate all the way to the surface of the nucleus. We conclude with a brief discussion of the response of the comet's plasma environment to fast temporal variations in the solar wind.

  10. Spectrophotometry of seventeen comets. II - The continuum

    Science.gov (United States)

    Newburn, R. L., Jr.; Spinrad, H.

    1985-01-01

    One-hundred-twenty IDS scans of the continua in 17 comets are analyzed to determine dust production rates and color as a function of heliocentric distance. Improved theory indicates that the dust loading of gas typically varies between 0.05 and 0.3 by mass (assuming a geometric albedo of 0.05 and oxygen expansion at 1 km/s) except during outbursts, when it rises much higher. P/Encke near perihelion falls much lower yet, to 0.004 or less. Dust loading is not always constant as a function of time in a given comet. Dust color is typically reddish, as has often been noted before.

  11. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Miyanoshita, Akihiro; Imamura, Taro; Todoriki, Setsuko

    2012-01-01

    We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60 Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratio<0.1 category, the lowest grade. This finding was observed consistently throughout the 7-day post-irradiation period. We suggest that the Ratio values of individual cells can be used as an index of irradiation history and conclude that the DNA comet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history. - Highlights: ► We investigated the DNA comet assay to verify the irradiation of pests. ► Ratio and Tail Moment were higher in irradiated groups than in the control group. ► The DNA comet assay can be used to identify irradiation history.

  12. Detection of the 3.4- and 2.8-micron emission features in Comet Bradfield (1987s)

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Tokunaga, A.T.; Knacke, R.F.; Owen, T.C.; Mumma, M.J.

    1990-01-01

    Comet Bradfield's 3.4-micron C-H emission feature at 3.4 microns, as well as the emission feature near 2.8 microns, exhibit spectral shapes similar to those noted in Comets Halley and Wilson; the derived abundances of the C-H bonds in all three comets are also comparable (within water production rate uncertainties). These data support the hypothesis that the species responsible for the 3.4- and 2.8-micron features may be common to all comets. Beyond this, the widely differing ages of the three comets suggest that the 3.4-micron feature-emitting organics are not the product of surface irradiation processes after the comets' formation. 25 refs

  13. Comet 169P/NEAT(=2002EX12): More Dead Than Alive

    Science.gov (United States)

    Kasuga, T.; Balam, D. D.; Wiegert, P. A.

    2011-10-01

    The Jupiter family comet 169P/NEAT (previously known as asteroid 2002 EX12) has a dynamical association with the ?-Capriconid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission at ˜ 4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of disintegration of the parent at every return.

  14. The use of comet assay in plant toxicology: recent advances

    Directory of Open Access Journals (Sweden)

    Conceição LV Santos

    2015-06-01

    Full Text Available The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g. Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage.

  15. The use of comet assay in plant toxicology: recent advances

    Science.gov (United States)

    Santos, Conceição L. V.; Pourrut, Bertrand; Ferreira de Oliveira, José M. P.

    2015-01-01

    The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g., Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage. PMID:26175750

  16. Global moedeling of comets: nucleus, neutral and ionized coma of comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen. Preparations for the ROSETTA radio science investigations

    International Nuclear Information System (INIS)

    Oertzen, J. von

    2003-01-01

    Models of the thermal behaviour of a cometary nucleus, the evolution of the neutral gas coma, the ionized cometary coma and of the interaction of the cometary plasma with the solar wind are studied in this work. The general aim is to develop a global model of the comet and its environment in order to characterize the physical conditions around comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen with respect to the heliocentric distance. The model of the heat diffusion within the cometary nucleus is one-dimensional. A grid of one-dimensional models is distributed over the nucleus in order to determine the temperature distribution and the sublimation characteristics of the comet on the whole surface of the comet. A heat balance equation is applied as boundary condition on the surface. Many parameters that have to be accounted for in a heat diffusion model are not precisely known to date. The variation of these parameters within reasonable limits yields a wide range of possible results. The heat diffusion within the cometary nucleus is derived from an energy conservation equation that includes heat conduction through the porous cometary material and heat convection due to the transport of latent heat by the gas phase within the nucleus. Model results are evaluated by a comparison of modeled and observed global gas production rates. Exemplary maps of the local temperature distribution and local sublimation rates at particular heliocentric distances are also provided. The neutral gas coma of the comet is modeled with a hydrodynamic approximation. The acceleration of the spacecraft due to the gas mass flux is evaluated with the model results. The ionized coma of a comet can also have an effect on the carrier signal. A one-dimensional model of the plasma density at the comet-sun axis is developed. The assumption of photochemical equilibrium is not necessarily justified within the coma of weak outgassing comets. The continuity equation of the plasma density has to be solved

  17. Fluorescence Excitation Models of Ammonia and Amidogen Radical (NH2) in Comets: Application to Comet C/2004 Q2 (Machholz)

    Science.gov (United States)

    Kawakita, Hideyo; Mumma, Michael J.

    2011-01-01

    Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 m wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 micron wavelength region. On the other hand, the amidogen radical (NH2 -- a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 micron wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH3 lines, the mixing ratio of NH3/H2O is 0.46% +/- 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH2 observations (0.31% -- 0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH3 could be the sole parent of NH2 in this comet.

  18. FLUORESCENCE EXCITATION MODELS OF AMMONIA AND AMIDOGEN RADICAL (NH2) IN COMETS: APPLICATION TO COMET C/2004 Q2 (MACHHOLZ)

    International Nuclear Information System (INIS)

    Kawakita, Hideyo; Mumma, Michael J.

    2011-01-01

    Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 μm wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 μm wavelength region. On the other hand, the amidogen radical (NH 2 -a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 μm wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH 3 lines, the mixing ratio of NH 3 /H 2 O is 0.46% ± 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH 2 observations (0.31%-0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH 3 could be the sole parent of NH 2 in this comet.

  19. Comet Halley, parameter study I

    International Nuclear Information System (INIS)

    Huebner, W.F.; Fikani, M.M.

    1982-06-01

    To aid in defining a mission to comet P/Halley, its inner coma is simulated by a computer program that models time-dependent chemical reactions in a radially and isentropically expanding gas, taking into account attenuation of solar ultraviolet radiation in the subsolar direction. Column density predictions are based on intelligently selected combinations of poorly known values for nucleus parameters that include size, visual albedo, and infrared emissivity. Only one chemical composition and a minor modification of it are considered here; the dust-to-gas ratio in this model is zero. Although the somewhat optimistically volatile composition chosen here favors a smaller nucleus, a mean nuclear radius of only 0.5 km is unlikely. No significant increase of molecular column density is predicted by this model as a spacecraft approaches, once it is less than a few 10 4 km from the nucleus. Predictions are made for various heliocentric distances of interest for comet missions and for ground observations

  20. Comet Halley: nucleus and jets

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Avanesov, G.A.; Barinov, I.V.

    1986-06-01

    The VEGA-1 and VEGA-2 spacecrafts made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper results of the onboard imaging experiment are discussed. The nucleus of the comet was clearly identifyable as an irregularly shaped object with overall dimensions of (16+-1)x(8+-1)x(8+-1) km. The nucleus rotates around its axis which is nearly perpendicular to the orbital plane, with a period of 53+-2 hours. Its albedo is only 0.04+-002. Most of the jet features observed during the second fly-by were spatially reconstructed. These sources form a quasi-linear structure on the surface. The dust above the surface is shown to be optically thin except certain specific dust jets. Brightness features on the surface are clearly seen. Correlating the data with other measurements it is concluded that the dirty snow-ball model probably has to be revised. (author)

  1. EPOXI: Comet 103p/Hartley 2 Observations from a Worldwide Campaign

    Science.gov (United States)

    Meech, K. J.; Hearn, M. F. A.; Bauer, J. M.; Bonev, B. P.; Charnley, S. B.; DiSanti, M. A.; Gersch, A.; Immler, S. M.; Kaluna, H. M.; Keane, J. V.; hide

    2011-01-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales. at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P (Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was approximately 16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  2. EPOXI: COMET 103P/HARTLEY 2 OBSERVATIONS FROM A WORLDWIDE CAMPAIGN

    International Nuclear Information System (INIS)

    Meech, K. J.; A'Hearn, M. F.; Bodewits, D.; Adams, J. A.; Bacci, P.; Bai, J.; Barrera, L.; Battelino, M.; Bauer, J. M.; Becklin, E.; Bhatt, B.; Biver, N.; Bockelee-Morvan, D.; Boehnhardt, H.; Boissier, J.; Bonev, B. P.; Borghini, W.; Brucato, J. R.; Bryssinck, E.; Buie, M. W.

    2011-01-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ∼16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO 2 -driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  3. Chandra X-ray Data Analysis in Educational Environments

    Science.gov (United States)

    Matilsky, T.; Etkina, E.; Lestition, K.; Mandel, E.; Joye, W.

    2004-12-01

    Recent progress in both software and remote connectivity capabilities have made it possible for authentic data analysis tasks to be presented in a wide range of educational venues. No longer are precollege teachers and students, and interested members of the public limited by their lack of access to the scientific workstations and UNIX-based imaging and analytical software used by the research community. Through a suite of programs that couples a simplified graphical user interface using the "DS9" imaging software with a "virtual observatory" capability that processes the analytical algorithms used by X-ray astronomers, we can access archived Chandra observations and generate images, as well as light curves, energy spectra, power spectra and other common examples of science tasks. The system connects to a remote UNIX server, but the user may be sited on a PC or Mac platform. Furthermore, the use of VNC (a remote desktop display environment) allows a teacher to view, comment on and debug any analysis task in real time, from anywhere in the world, and across any computer platform. This makes these programs especially useful in distance learning settings. We have developed, tested and used these capabilities in a wide variety of educational arenas, from 4 week intensive courses in X-ray astronomy research techniques for precollege students and teachers, to one day teacher enrichment workshops, to modules of classroom activities suitable for precollege grade levels, using a variety of cosmic X-ray sources. Examples using archived Chandra observations will be presented demonstrating the flexibility and usefulness of these resources.

  4. The Photometric lightcurve of Comet 1P/Halley

    Science.gov (United States)

    Bair, Allison N.; Schleicher, David G.

    2014-11-01

    Comet 1P/Halley is considered an important object for a number of reasons. Not only is it the first-identified and brightest periodic comet, being the only periodic comet visible to the naked eye at every apparition, but in 1986 Halley became the first comet to be imaged by fly-by spacecraft. The NASA-funded International Halley Watch (IHW) directly supported the spacecraft by providing narrowband filters for groundbased photometric observations, and until the arrival of Hale-Bopp (1995 O1), Halley was the subject of the largest groundbased observational campaign in history. Following considerable controversy regarding its rotation period, it was eventually determined to be in complex rotation -- the first comet to be so identified. While the overall brightness variations of the coma repeated with a period of about 7.4 days, the detailed period and shape of the lightcurve constantly evolved. The determination of the specific characteristics of each of the two components of its non-principal axis rotational state has remained elusive.To resolve this situation we have now incorporated all of the narrowband photometry, taken by 21 telescopes from around the world and submitted to the IHW archive, to create the most complete homogeneous lightcurve possible. Using measurements of three gas species and the dust, the lightcurve was investigated and found to alternate between a double- and triple-peaked shape, with no single feature being present throughout the entire duration of our dataset (316 days). The apparent period as a function of time was extracted and seen to vary in a step-wise manner between 7.27 and 7.60 days. Taken together, these results were used to produce a synthetic lightcurve revealing Halley's behavior even when no data were available. Details of this and other results, to be used to constrain future detailed modeling, will be presented. This research is supported by NASA's Planetary Atmospheres Program.

  5. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    Science.gov (United States)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    2013-10-01

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  6. Cryopreservation of human blood for alkaline and Fpg-modified comet assay.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2016-01-01

    The Comet assay is a reproducible and sensitive assay for the detection of DNA damage in eukaryotic cells and tissues. Incorporation of lesion specific, oxidative DNA damage repair enzymes (for example, Fpg, OGG1 and EndoIII) in the standard alkaline Comet assay procedure allows for the detection and measurement of oxidative DNA damage. The Comet assay using white blood cells (WBC) has proven useful in monitoring DNA damage from environmental agents in humans. However, it is often impractical to performance Comet assay immediately after blood sampling. Thus, storage of blood sample is required. In this study, we developed and tested a simple storage method for very small amount of whole blood for standard and Fpg-modified modified Comet assay. Whole blood was stored in RPMI 1640 media containing 10% FBS, 10% DMSO and 1 mM deferoxamine at a sample to media ratio of 1:50. Samples were stored at -20 °C and -80 °C for 1, 7, 14 and 28 days. Isolated lymphocytes from the same subjects were also stored under the same conditions for comparison. Direct DNA strand breakage and oxidative DNA damage in WBC and lymphocytes were analyzed using standard and Fpg-modified alkaline Comet assay and compared with freshly analyzed samples. No significant changes in either direct DNA strand breakage or oxidative DNA damage was seen in WBC and lymphocytes stored at -20 °C for 1 and 7 days compared to fresh samples. However, significant increases in both direct and oxidative DNA damage were seen in samples stored at -20 °C for 14 and 28 days. No changes in direct and oxidative DNA damage were observed in WBC and lymphocytes stored at -80 °C for up to 28 days. These results identified the proper storage conditions for storing whole blood or isolated lymphocytes to evaluate direct and oxidative DNA damage using standard and Fpg-modified alkaline Comet assay.

  7. Comet P/2004 F3 (NEAT)

    Czech Academy of Sciences Publication Activity Database

    Tichá, J.; Tichý, M.; Kušnirák, Peter

    -, č. 8313 (2004), s. 1 ISSN 0081-0304 R&D Projects: GA AV ČR IAA3003204 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  8. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    Science.gov (United States)

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840

  9. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    Science.gov (United States)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  10. The software development process at the Chandra X-ray Center

    Science.gov (United States)

    Evans, Janet D.; Evans, Ian N.; Fabbiano, Giuseppina

    2008-08-01

    Software development for the Chandra X-ray Center Data System began in the mid 1990's, and the waterfall model of development was mandated by our documents. Although we initially tried this approach, we found that a process with elements of the spiral model worked better in our science-based environment. High-level science requirements are usually established by scientists, and provided to the software development group. We follow with review and refinement of those requirements prior to the design phase. Design reviews are conducted for substantial projects within the development team, and include scientists whenever appropriate. Development follows agreed upon schedules that include several internal releases of the task before completion. Feedback from science testing early in the process helps to identify and resolve misunderstandings present in the detailed requirements, and allows review of intangible requirements. The development process includes specific testing of requirements, developer and user documentation, and support after deployment to operations or to users. We discuss the process we follow at the Chandra X-ray Center (CXC) to develop software and support operations. We review the role of the science and development staff from conception to release of software, and some lessons learned from managing CXC software development for over a decade.

  11. Monitoring of CH Cyg requested for Chandra and HST observations

    Science.gov (United States)

    Waagen, Elizabeth O.

    2012-03-01

    Dr. Margarita Karovska, Harvard-Smithsonian Center for Astrophysics, has requested visual and photometric observations of the symbiotic variable CH Cyg in preparation for and support of Chandra and HST observations scheduled for later in March 2012. Dr. Karovska's observations will be a followup investigation of the central region of CH Cyg and its jet that was discovered a couple of years ago. AAVSO observations are requested in order to monitor the state of the system and correlate with the satellite observations. Visual observations and CCD/PEP observations in all bands - U through J and H - are requested. Daily observations now through April 2012 and high-speed photometry through March would be appreciated. CH Cyg is currently at visual magnitude 7.7. Halpha, OIII region, and optical spectroscopy are also requested. More details on the exact dates and times of the satellite observations will be announced when they become available, but daily monitoring should begin now. [HST observations scheduled for 2012 March 18; Chandra delayed some days due to X-class solar flare of 2012 March 7.] Coordinates: RA 19 24 33.07 Dec. +50 14 29.1 (J2000.0). Finder charts may be created and data from the AAVSO International Database may be viewed, plotted, or downloaded (www.aavso.org).

  12. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and Eparallel formation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs

  13. Comet C/2004 P1 (NEAT)

    Czech Academy of Sciences Publication Activity Database

    Tichá, J.; Tichý, M.; Kušnirák, Peter

    -, č. 8383 (2004), s. 1 ISSN 0081-0304 R&D Projects: GA AV ČR IAA3003204 Institutional research plan: CEZ:AV0Z1003909 Keywords : new comet * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  14. The Comet assay in insects--Status, prospects and benefits for science.

    Science.gov (United States)

    Augustyniak, Maria; Gladysz, Marcin; Dziewięcka, Marta

    2016-01-01

    The Comet assay has been recently adapted to investigate DNA damage in insects. The first reports of its use in Drosophila melanogaster appeared in 2002. Since then, the interest in the application of the Comet assay to studies of insects has been rapidly increasing. Many authors see substantial potential in the use of the Comet assay in D. melanogaster for medical toxicology studies. This application could allow the testing of drugs and result in an understanding of the mechanisms of action of toxins, which could significantly influence the limited research that has been performed on vertebrates. The possible perspectives and benefits for science are considered in this review. In the last decade, the use of the Comet assay has been described in insects other than D. melanogaster. Specifically, methods to prepare a cell suspension from insect tissues, which is a difficult task, were analyzed and compared in detail. Furthermore, attention was paid to any differences and modifications in the research protocols, such as the buffer composition and electrophoresis conditions. Various scientific fields in addition to toxicological and ecotoxicological research were considered. We expect the Comet assay to be used in environmental risk assessments and to improve our understanding of many important phenomena of insect life, such as metamorphosis, molting, diapause and quiescence. The use of this method to study species that are of key importance to humans, such as pests and beneficial insects, appears to be highly probable and very promising. The use of the Comet assay for DNA stability testing in insects will most likely rapidly increase in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. C/2013 R1 (Lovejoy) at IR wavelengths and the variability of CO abundances among Oort Cloud comets

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A. [Goddard Center for Astrobiology, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States); Keane, J. V.; Meech, K. J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Blake, G. A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gibb, E. L., E-mail: lucas.paganini@nasa.gov [Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States)

    2014-08-20

    We report production rates, rotational temperatures, and related parameters for gases in C/2013 R1 (Lovejoy) using the Near InfraRed SPECtrometer at the Keck Observatory, on six UT dates spanning heliocentric distances (R{sub h} ) that decreased from 1.35 AU to 1.16 AU (pre-perihelion). We quantified nine gaseous species (H{sub 2}O, OH*, CO, CH{sub 4}, HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, NH{sub 3}, and NH{sub 2}) and obtained upper limits for two others (C{sub 2}H{sub 2} and H{sub 2}CO). Compared with organics-normal comets, our results reveal highly enriched CO, (at most) slightly enriched CH{sub 3}OH, C{sub 2}H{sub 6}, and HCN, and CH{sub 4} consistent with {sup n}ormal{sup ,} yet depleted, NH{sub 3}, C{sub 2}H{sub 2}, and H{sub 2}CO. Rotational temperatures increased from ∼50 K to ∼70 K with decreasing R{sub h} , following a power law in R{sub h} of –2.0 ± 0.2, while the water production rate increased from 1.0 to 3.9 × 10{sup 28} molecules s{sup –1}, following a power law in R{sub h} of –4.7 ± 0.9. The ortho-para ratio for H{sub 2}O was 3.01 ± 0.49, corresponding to spin temperatures (T {sub spin}) ≥ 29 K (at the 1σ level). The observed spatial profiles for these emissions showed complex structures, possibly tied to nucleus rotation, although the cadence of our observations limits any definitive conclusions. The retrieved CO abundance in Lovejoy is more than twice the median value for comets in our IR survey, suggesting this comet is enriched in CO. We discuss the enriched value for CO in comet C/2013 R1 in terms of the variability of CO among Oort Cloud comets.

  16. X-ray and extreme ultraviolet emission from comets

    Science.gov (United States)

    Lisse, C. M.; Cravens, T. E.; Dennerl, K.

    The discovery of high energy X-ray emission in 1996 from C/1996 B2 (Hyakutake) has created a surprising new class of X-ray emitting objects. The original discovery (Lisse et al., 1996) and subsequent detection of X-rays from 17 other comets (Table 1) have shown that the very soft (E < 1 keV) emission is due to an interaction between the solar wind and the comet's atmosphere, and that X-ray emission is a fundamental property of comets. Theoretical and observational work has demonstrated that charge exchange collisions of highly charged solar wind ions with cometary neutral species is the best explanation for the emission. Now a rapidly changing and expanding field, the study of cometary X-ray emission appears to be able to lead us to a better understanding of a number of physical phenomena: the nature of the cometary coma, other sources of X-ray emission in the solar system, the structure of the solar wind in the heliosphere, and the source of the local soft X-ray background.

  17. The evolution of comets and the detectability of Extra-Solar Oort Clouds

    International Nuclear Information System (INIS)

    Stern, S.A.

    1989-01-01

    According the standard theory, comets are natural products of solar system formation, ejected to the Oort Cloud by gravitational scattering events during the epoch of giant planet formation. Stored far from the Sun for billions of years, comets almost certainly contain a record of the events which occurred during (and perhaps even before) the epoch of planetary formation. Two themes are examined of the evolutionary processes that affect comets in the Oort Cloud, and a search for evidence of Extra-Solar Oort Clouds (ESOCs). With regard to cometary evolution in the Oort Cloud, it was found that luminous O stars and supernovae have heated the surface layers of all comets on numerous occasions to 20 to 30 K and perhaps once to 50 K. Interstellar medium (ISM) interactions blow small grains out of the Oort Clouds, and erode the upper few hundred g/cu cm of material from cometary surfaces. The findings presented contradict the standard view that comets do not undergo physical change in the Oort Cloud. A logical consequence of the intimate connection between the Oort Cloud and our planetary system is that the detection of comet clouds around other stars would strongly indicate the sites of extant extra-solar planetary systems. A search was conducted for infrared IR emission from debris in ESOCs. After examining 17 stars using the Infrared Astronomical Satellite data base, only upper limits on ESOC emission could be set

  18. Detection of irradiation treatment of foods using DNA 'comet assay'

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Hasan M.; Delincee, Henry

    1998-06-01

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results.

  19. Encounter with comet Halley

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.

    1989-01-01

    This paper reports on an international armada of six spacecraft which encountered the comet Halley and performed in-situ measurements. These encounters led to the discovery of a number of cometary plasma physics phenomena. Another important result was that a value for the average density of the cometary nucleus could be estimated, which is found to be compatible with snow ball models for the nucleus

  20. Comet C/2001 A1 (Linear)

    Czech Academy of Sciences Publication Activity Database

    Blythe, M.; Dawson, M.; Kornos, L.; Koleny, P.; Kotková, Lenka; Tichá, J.; Tichý, M.

    č. 7561 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics