WorldWideScience

Sample records for chandra cluster cosmology

  1. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    CERN Document Server

    Vikhlinin, A; Burenin, R A; Ebeling, H; Forman, W R; Hornstrup, A; Jones, C; Murray, S S; Nagai, D; Quintana, H; Voevodkin, A

    2008-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of structure based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 36 clusters with =0.55 derived from 400deg^2 ROSAT serendipitous survey and 49 brightest z=~0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Omega_Lambda>0 with a ~5sigma significance, and constrains the dark energy equation of state parameter to w0=-1.14+-0.21, assuming constant w and flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, WMAP, and baryonic aco...

  2. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.;

    2009-01-01

    constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = –0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and...

  3. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.;

    2009-01-01

    of relations between the total cluster mass and its X-ray indicators (TX , M gas, and YX ) based on a subsample of low-z relaxed clusters, and present a first measurement of the evolving LX -M tot relation (with M tot estimated from YX ) obtained from a well defined statistically complete cluster sample......We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration...... at a fixed mass threshold, e.g., by a factor of 5.0 ± 1.2 at M 500 = 2.5 × 1014 h –1 M sun between z = 0 and 0.5. This evolution reflects the growth of density perturbations, and can be used for the cosmological constraints complementing those from the distance-redshift relation....

  4. Reconciling Planck cluster counts and cosmology? Chandra/XMM instrumental calibration and hydrostatic mass bias

    OpenAIRE

    Israel, H.; Schellenberger, G.; Nevalainen, J.; Massey, R; Reiprich, T. H.

    2014-01-01

    The mass of galaxy clusters can be inferred from the temperature of their X-ray emitting gas, $T_{\\mathrm{X}}$. Their masses may be underestimated if it is assumed that the gas is in hydrostatic equilibrium, by an amount $b^{\\mathrm{hyd}}\\sim(20\\pm10)$ % suggested by simulations. We have previously found consistency between a sample of observed \\textit{Chandra} X-ray masses and independent weak lensing measurements. Unfortunately, uncertainties in the instrumental calibration of {\\em Chandra}...

  5. Reconciling Planck cluster counts and cosmology: Chandra/XMM instrumental calibration and hydrostatic mass bias

    CERN Document Server

    Israel, Holger; Nevalainen, Jukka; Massey, Richard; Reiprich, Thomas

    2014-01-01

    The temperature of X-ray emitting gas $T_X$ is often used to infer the total mass of galaxy clusters (under the assumption of hydrostatic equilibrium). Unfortunately, XMM-Newton and Chandra observatories measure inconsistent temperatures for the same gas, due to uncertain instrumental calibration. We translate the relative bias in $T_X$ measurements of Schellenberger et al. (2014) into a bias on inferred mass for a sample of clusters with homogeneous weak lensing (WL) masses, to simultaneously examine the hydrostatic bias and instrument calibration. Israel et al. (2014) found consistent WL and Chandra hydrostatic X-ray masses for a sample of clusters at $z$~0.5 and masses of a few $10^{14}$ $M_{\\odot}$. We find their XMM-Newton masses to be lower by $b^{xcal}=15$-$20$ % than their Chandra masses. At the massive end ($>5\\cdot 10^{14}$ $M_{\\odot}$), the XMM-Newton masses are ~35% lower than the WL masses. Assuming that the true hydrostatic bias is 20 %, as indicated by simulations, our results for the massive e...

  6. XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters . Systematic temperature differences and cosmological impact

    Science.gov (United States)

    Schellenberger, G.; Reiprich, T. H.; Lovisari, L.; Nevalainen, J.; David, L.

    2015-03-01

    Context. Robust X-ray temperature measurements of the intracluster medium (ICM) of galaxy clusters require an accurate energy-dependent effective area calibration. Since the hot gas X-ray emission of galaxy clusters does not vary on relevant timescales, they are excellent cross-calibration targets. Moreover, cosmological constraints from clusters rely on accurate gravitational mass estimates, which in X-rays strongly depend on cluster gas temperature measurements. Therefore, systematic calibration differences may result in biased, instrument-dependent cosmological constraints. This is of special interest in light of the tension between the Planck results of the primary temperature anisotropies of the cosmic microwave background (CMB) and Sunyaev-Zel'dovich-plus-X-ray cluster-count analyses. Aims: We quantify in detail the systematics and uncertainties of the cross-calibration of the effective area between five X-ray instruments, EPIC-MOS1/MOS2/PN onboard XMM-Newton and ACIS-I/S onboard Chandra, and the influence on temperature measurements. Furthermore, we assess the impact of the cross-calibration uncertainties on cosmology. Methods: Using the HIFLUGCS sample, consisting of the 64 X-ray brightest galaxy clusters, we constrain the ICM temperatures through spectral fitting in the same, mostly isothermal regions and compare the different instruments. We use the stacked residual ratio method to evaluate the cross-calibration uncertainties between the instruments as a function of energy. Our work is an extension to a previous one using X-ray clusters by the International Astronomical Consortium for High Energy Calibration (IACHEC) and is carried out in the context of IACHEC. Results: Performing spectral fitting in the full energy band, (0.7-7) keV, as is typical of the analysis of cluster spectra, we find that best-fit temperatures determined with XMM-Newton/EPIC are significantly lower than Chandra/ACIS temperatures. This confirms the previous IACHEC results obtained

  7. XMM-Newton and Chandra Cross Calibration Using HIFLUGCS Galaxy Clusters: Systematic Temperature Differences and Cosmological Impact

    OpenAIRE

    Schellenberger, G.; Reiprich, T. H.; Lovisari, L.; Nevalainen, J.; David, L

    2014-01-01

    Cosmological constraints from clusters rely on accurate gravitational mass estimates, which strongly depend on cluster gas temperature measurements. Therefore, systematic calibration differences may result in biased, instrument-dependent cosmological constraints. This is of special interest in the light of the tension between the Planck results of the primary temperature anisotropies of the CMB and Sunyaev-Zel'dovich plus X-ray cluster counts analyses. We quantify in detail the systematics an...

  8. The galaxy cluster outskirts probed by Chandra

    Science.gov (United States)

    Morandi, Andrea; Sun, Ming; Forman, William; Jones, Christine

    2015-08-01

    Exploring the virialization region of galaxy clusters has recently raised the attention of the scientific community, offering a direct view of structure formation. In this talk, I will present recent results on the physical properties of the intracluster medium in the outer volumes of a sample of 320 clusters (0.056 3 keV) in the Chandra archive, with a total integration time of ~20 Ms. We stacked the emission measure profiles of the clusters to detect a signal out to R_{100}. We then measured the average emission measure, gas density and gas fraction, which scale according to the self-similar model of cluster formation. We observe a steepening of the density profiles beyond R_{500} with slope beta ~ 0.68 at R_{500} and beta ~ 1 at R_{200} and beyond. By tracking the direction of the cosmic filaments where the clusters are embedded, we report that galaxy clusters deviate from spherical symmetry. We also did not find evolution of the gas density with redshift, confirming the self-similar evolution of the gas density. The value of the baryon fraction reaches the cosmic value at R_{200}: however, systematics due to non-thermal pressure support and clumpiness might enhance the measured gas fraction, leading to an actual deficit of the baryon budget with respect to the primordial value). This novel method, the stacking the X-ray signal of cluster outskirts, has the capacity to provide a generational leap forward in our understanding of cluster physics and formation, and the use of clusters as cosmological probes.

  9. Cosmology with X-ray Cluster Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Eric V.

    2007-04-10

    X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g., Chandra X-ray Observatory, XMM-Newton) and next generation (e.g., Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1percent and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)0.03.

  10. Cosmology, Clusters and Calorimeters

    Science.gov (United States)

    Figueroa-Feliciano, Enectali

    2005-01-01

    I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.

  11. Cosmology with clusters of galaxies

    CERN Document Server

    Bahcall, Neta A

    1995-01-01

    Rich clusters of galaxies, the largest virialized systems known, provide a powerful tool for the study of cosmology. Some of the fundamental questions that can be addressed with clusters of galaxies include: how did galaxies and large-scale structure form and evolve? What is the amount, composition and distribution of matter in the universe? I review some of the studies utilizing clusters of galaxies to investigare, among others: - The dark matter on clusters scale and the mean mass-density of the universe; - The large-scale structure of the universe; - The peculiar velocity field on large scales; - The mass-function of groups and clusters of galaxies; - The constraints placed on specific cosmological models using the cluster data.

  12. Cosmology and Astrophysics from Relaxed Galaxy Clusters I: Sample Selection

    CERN Document Server

    Mantz, Adam B; Morris, R Glenn; Schmidt, Robert W; von der Linden, Anja; Urban, Ondrej

    2015-01-01

    This is the first in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here we present a new, automated method for identifying relaxed clusters based on their morphologies in X-ray imaging data. While broadly similar to others in the literature, the morphological quantities that we measure are specifically designed to provide a fair basis for comparison across a range of data quality and cluster redshifts, to be robust against missing data due to point-source masks and gaps between detectors, and to avoid strong assumptions about the cosmological background and cluster masses. Based on three morphological indicators - Symmetry, Peakiness and Alignment - we develop the SPA criterion for relaxation. This analysis was applied to a large sample of cluster observations from the Chandra and ROSAT archives. Of the 361 clusters which received the SPA treatment, 57 (16 per cent) were subsequently found to be relaxed according to our criterion. We compare our me...

  13. Cosmology with cluster surveys

    Indian Academy of Sciences (India)

    Subhabrata Majumdar

    2004-10-01

    Surveys of clusters of galaxies provide us with a powerful probe of the density and nature of the dark energy. The red-shift distribution of detected clusters is highly sensitive to the dark energy equation of state parameter . Upcoming Sunyaev–Zel'dovich (SZ) surveys would provide us large yields of clusters to very high red-shifts. Self-calibration of cluster scaling relations, possible for such a huge sample, would be able to constrain systematic biases on mass estimators. Combining cluster red-shift abundance with limited mass follow-up and cluster mass power spectrum can then give constraints on , as well as on 8 and to a few per cents.

  14. Cosmological simulations of galaxy clusters

    CERN Document Server

    Borgani, Stefano

    2009-01-01

    We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, while we will also discuss numerical predictions on properties of the galaxy population in clusters. Many of the salient observed properties of clusters, such as X-ray scaling relations, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed cool-core structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in th...

  15. XMM-Newton and Chandra Cross Calibration Using HIFLUGCS Galaxy Clusters

    CERN Document Server

    Schellenberger, G; Lovisari, L; Nevalainen, J; David, L

    2014-01-01

    Cosmological constraints from clusters rely on accurate gravitational mass estimates, which strongly depend on cluster gas temperature measurements. Therefore, systematic calibration differences may result in biased, instrument-dependent cosmological constraints. This is of special interest in the light of the tension between the Planck results of the primary temperature anisotropies of the CMB and Sunyaev-Zel'dovich plus X-ray cluster counts analyses. We quantify in detail the systematics and uncertainties of the cross-calibration of the effective area between five X-ray instruments, EPIC-MOS1/MOS2/PN onboard XMM-Newton and ACIS-I/S onboard Chandra, and the influence on temperature measurements. Furthermore, we assess the impact of the cross calibration uncertainties on cosmology. Using the HIFLUGCS sample, consisting of the 64 X-ray brightest galaxy clusters, we constrain the ICM temperatures through spectral fitting in the same, mostly isothermal, regions and compare them. Our work is an extension to a pre...

  16. Chandra Finds Most Distant X-ray Galaxy Cluster

    Science.gov (United States)

    2001-02-01

    The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the

  17. Testing cosmology with galaxy clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    2011-01-01

    cosmology. There will be an emphasis on timely interdisciplinary topics: • critical tests of inflationary cosmology • advances in fundamental cosmology • applications of string theory (AdS/CMT) • particle and string phenomenology • new experimental particle physics results • and cosmological probes such as...

  18. Chandra Observations of the A3266 Galaxy Cluster Merger

    OpenAIRE

    Henriksen, Mark J.; Tittley, Eric R.

    2002-01-01

    Analysis of a 30,000 s X-ray observation of the Abell 3266 galaxy cluster with the ACIS on board the Chandra Observatory has produced several new insights into the cluster merger. The intracluster medium has a non-monotonically decreasing radial abundance profile. We argue that the most plausible origin for the abundance enhancement is unmixed, high abundance subcluster gas from the merger. The enrichment consists of two stages: off-center deposition of a higher abundance material during a su...

  19. Statistical issues in galaxy cluster cosmology

    DEFF Research Database (Denmark)

    Mantz, Adam; Allen, Steven W.; Rapetti Serra, David Angelo

    2013-01-01

    The number and growth of massive galaxy clusters is a sensitive probe of cosmological structure formation and dark energy. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneo...... Science+Business Media New York 2013....

  20. Cosmology and cluster halo scaling relations

    NARCIS (Netherlands)

    Araya-Melo, Pablo A.; van de Weygaert, Rien; Jones, Bernard J. T.

    2009-01-01

    We explore the effects of dark matter and dark energy on the dynamical scaling properties of galaxy clusters. We investigate the cluster Faber-Jackson (FJ), Kormendy and Fundamental Plane (FP) relations between the mass, radius and velocity dispersion of cluster-sized haloes in cosmological N-body s

  1. Searching for bulk motions in the ICM of massive, merging clusters with Chandra CCD data

    CERN Document Server

    Liu, Ang; Tozzi, Paolo; Zhu, Zong-Hong

    2016-01-01

    We search for bulk motions in the Intra Cluster Medium (ICM) of massive clusters showing evidence of an ongoing or a recent major merger, with spatially resolved spectroscopy in {\\sl Chandra} CCD data. We identify a sample of 6 merging clusters with >150 ks {\\sl Chandra} exposure in the redshift range 0.1 1000$ km/s in the ICM of massive merging clusters at 0.1 < z < 0.3. Despite the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, {\\sl Chandra} CCD data constitute a key diagnostic tool complementary to X-ray bolometers onboard future X-ray missions.

  2. Clusters in the Precision Cosmology Era

    CERN Document Server

    Haiman, Z; Holder, G P; Haiman, Zoltan; Mohr, Joseph J.; Holder, Gilbert P.

    2001-01-01

    Over the coming decade, the observational samples available for studies of cluster abundance evolution will increase from tens to hundreds, or possibly to thousands, of clusters. Here we assess the power of future surveys to determine cosmological parameters. We quantify the statistical differences among cosmologies, including the effects of the cosmic equation of state parameter w, in mock cluster catalogs simulating a 12 sq. deg Sunyaev-Zeldovich Effect survey and a deep 10^4 sq. deg X-ray survey. The constraints from clusters are complementary to those from studies of high-redshift Supernovae (SNe), CMB anisotropies, or counts of high-redshift galaxies. Our results indicate that a statistical uncertainty of a few percent on both Omega_m and w can be reached when cluster surveys are used in combination with any of these other datasets.

  3. Statistical Issues in Galaxy Cluster Cosmology

    Science.gov (United States)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  4. Chandra Observations of Dying Radio Sources in Galaxy Clusters

    Science.gov (United States)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-01-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions. We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from

  5. LOFAR, VLA, and Chandra observations of the Toothbrush galaxy cluster

    CERN Document Server

    van Weeren, R J; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Williams, W L; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Hardcastle, M J; Jones, C; Miley, G K; Rafferty, D A; Rudnick, L; Sabater, J; Sarazin, C L; Shimwell, T W; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Dijkema, T J; Ensslin, T; Ferrari, C; Heald, G; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Sridhar, S S; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    We present deep LOFAR observations between 120-181 MHz of the "Toothbrush" (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $\\alpha = -0.8 \\pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $\\alpha \\approx - 2$. The spectral index of the radio halo is remarkably uniform ($\\alpha = -1.16$, with an intrinsic scatter of $\\leq 0.04$). The observed radio relic spectral index gives a Mach number of $\\mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio r...

  6. Distant Massive Clusters and Cosmology

    Science.gov (United States)

    Donahue, Megan

    1999-01-01

    We present a status report of our X-ray study and analysis of a complete sample of distant (z=0.5-0.8), X-ray luminous clusters of galaxies. We have obtained ASCA and ROSAT observations of the five brightest Extended Medium Sensitivity (EMSS) clusters with z > 0.5. We have constructed an observed temperature function for these clusters, and measured iron abundances for all of these clusters. We have developed an analytic expression for the behavior of the mass-temperature relation in a low-density universe. We use this mass-temperature relation together with a Press-Schechter-based model to derive the expected temperature function for different values of Omega-M. We combine this analysis with the observed temperature functions at redshifts from 0 - 0.8 to derive maximum likelihood estimates for the value of Omega-M. We report preliminary results of this analysis.

  7. Cosmological Constraints with Clustering-Based Redshifts

    CERN Document Server

    Kovetz, Ely D; Rahman, Mubdi

    2016-01-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference dataset with known redshifts. Applying this method to the existing SDSS photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation-of-state and on local non-gaussianity parameters. We explore several pertinent issues, including the tradeoff between including more sources versus minimizing the overlap between bins, the shot-noise limitations on binning, and the predicted performance of the method at high redshifts. Remarkably, we find that, once this ...

  8. Cool Core Clusters from Cosmological Simulations

    CERN Document Server

    Rasia, E; Murante, G; Planelles, S; Beck, A M; Biffi, V; Ragone-Figueroa, C; Granato, G L; Steinborn, L K; Dolag, K

    2015-01-01

    We present results obtained from a set of cosmological hydrodynamic simulations of galaxy clusters, aimed at comparing predictions with observational data on the diversity between cool-core and non-cool-core clusters. Our simulations include the effects of stellar and AGN feedback and are based on an improved version of the Smoothed-Particle-Hydrodynamics code GADGET-3, which ameliorates gas mixing and better captures gas-dynamical instabilities by including a suitable artificial thermal diffusion. In this Letter, we focus our analysis on the entropy profiles, our primary diagnostic to classify the degree of cool-coreness of clusters, and on the iron profiles. In keeping with observations, our simulated clusters display a variety of behaviors in entropy profiles: they range from steadily decreasing profiles at small radii, characteristic of cool-core systems, to nearly flat core isentropic profiles, characteristic of non cool-core systems. Using observational criteria to distinguish between the two classes of...

  9. Testing X-ray Measurements of Galaxy Cluster Outskirts with Cosmological Simulations

    CERN Document Server

    Avestruz, Camille; Nagai, Daisuke; Vikhlinin, Alexey

    2014-01-01

    The study of galaxy cluster outskirts has emerged as one of the new frontiers in extragalactic astrophysics and cosmology with the advent of new observations in X-ray and microwave. However, the thermodynamic properties and chemical enrichment of this diffuse and azimuthally asymmetric component of the intra-cluster medium are still not well understood. This work, for the first time, systematically explores potential observational biases in these regions. To assess X-ray measurements of galaxy cluster properties at large radii ($>{R}_{500c}$), we use mock Chandra analyses of cosmological galaxy cluster simulations. The pipeline is identical to that used for Chandra observations, but the biases discussed in this paper are relevant for all X-ray observations outside of ${R}_{500c}$. We find the following from our analysis: (1) filament regions can contribute as much as a factor of 3 to the emission measure, (2) X-ray temperatures and metal abundances from model fitted mock X-ray spectra respectively vary to the...

  10. Chandra Observation of Abell 1142: A Cool-Core Cluster Lacking a Central Brightest Cluster Galaxy?

    CERN Document Server

    Su, Yuanyuan; Gastaldello, Fabio; van Weeren, Reinout

    2016-01-01

    Abell~1142 is a low-mass galaxy cluster at low redshift containing two comparable Brightest Cluster Galaxies (BCG) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters with each containing one BCG. The BCGs are merging at a relative velocity of ~1200 km/s. This ongoing merger may have shock-heated the ICM from ~ 2 keV to above 3 keV, which would explain the anomalous L_X--T_X scaling relation for this system. This merger may have displaced the metal-enriched "cool core" of eith...

  11. Chandra Observation of Abell 1142: A Cool-core Cluster Lacking a Central Brightest Cluster Galaxy?

    Science.gov (United States)

    Su, Yuanyuan; Buote, David A.; Gastaldello, Fabio; van Weeren, Reinout

    2016-04-01

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s-1. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous LX-TX scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  12. UNBIASED CORRECTION RELATIONS FOR GALAXY CLUSTER PROPERTIES DERIVED FROM CHANDRA AND XMM-NEWTON

    International Nuclear Information System (INIS)

    We use a sample of 62 clusters of galaxies to investigate the discrepancies between the gas temperature and total mass within r 500 from XMM-Newton and Chandra data. Comparisons of the properties show that (1) both the de-projected and projected temperatures determined by Chandra are higher than those of XMM-Newton and there is a good linear relationship for the de-projected temperatures: T Chandra = 1.25 × T XMM–0.13. (2) The Chandra mass is much higher than the XMM-Newton mass with a bias of 0.15 and our mass relation is log10 M Chandra = 1.02 × log10 M XMM+0.15. To explore the reasons for the discrepancy in mass, we recalculate the Chandra mass (expressed as MChmo/d) by modifying its temperature with the de-projected temperature relation. The results show that MChmo/d is closer to the XMM-Newton mass with the bias reducing to 0.02. Moreover, MChmo/d are corrected with the r 500 measured by XMM-Newton and the intrinsic scatter is significantly improved with the value reducing from 0.20 to 0.12. These mean that the temperature bias may be the main factor causing the mass bias. Finally, we find that MChmo/d is consistent with the corresponding XMM-Newton mass derived directly from our mass relation at a given Chandra mass. Thus, the de-projected temperature and mass relations can provide unbiased corrections for galaxy cluster properties derived from Chandra and XMM-Newton

  13. High-Resolution Chandra X-ray Imaging and Spectroscopy of the Sigma Orionis Cluster

    OpenAIRE

    Skinner, S.L.; Sokal, K. R.; Cohen, D. H.; Gagne, M.; Owocki, S.P.; Townsend, R. D.

    2008-01-01

    We present results of a 90 ksec Chandra X-ray observation of the young sigma Orionis cluster (age ~3 Myr) obtained with the High Energy Transmission Grating Spectrometer. We use the high resolution grating spectrum and moderate resolution CCD spectrum of the massive central star sigma Ori AB (O9.5V + B0.5V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the p...

  14. Influence of Projection in Cluster Cosmology Studies

    CERN Document Server

    Erickson, Brandon M S; Evrard, August E

    2011-01-01

    Projection tends to skew the mass-observable relation of galaxy clusters by creating a small fraction of severely blended systems, those for which the measured observable property of a cluster is strongly boosted relative to the value of its primary host halo. We examine the bias in cosmological parameter estimates caused by incorrectly assuming a Gaussian (projection-free) mass-observable relation when the true relation is non-Gaussian due to projection. We introduce a mixture model for projection and explore Fisher forecasts for a survey of 5000 sq. deg. to z=1.1 and an equivalent mass threshold of 10^13.7 h^-1 solar masses. Using a blended fraction motivated by optical cluster finding applied to the Millennium Simulation and applying Planck and otherwise weak priors, we find that the biases in Omega_DE and w are significant, being factors of 2.8 and 2.4, respectively, times previous forecast uncertainties. Incorporating eight new degrees of freedom to describe cluster selection with projection increases th...

  15. Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey

    CERN Document Server

    de Haan, T; Bleem, L E; Allen, S W; Applegate, D E; Ashby, M L N; Bautz, M; Bayliss, M; Bocquet, S; Brodwin, M; Carlstrom, J E; Chang, C L; Chiu, I; Cho, H-M; Clocchiatti, A; Crawford, T M; Crites, A T; Desai, S; Dietrich, J P; Dobbs, M A; Doucouliagos, A N; Foley, R J; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Gupta, N; Halverson, N W; Hlavacek-Larrondo, J; Hoekstra, H; Holder, G P; Holzapfel, W L; Hou, Z; Hrubes, J D; Huang, N; Jones, C; Keisler, R; Knox, L; Lee, A T; Leitch, E M; von der Linden, A; Luong-Van, D; Mantz, A; Marrone, D P; McDonald, M; McMahon, J J; Meyer, S S; Mocanu, L M; Mohr, J J; Murray, S S; Padin, S; Pryke, C; Rapetti, D; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Schrabback, T; Shirokoff, E; Song, J; Spieler, H G; Stalder, B; Stanford, S A; Staniszewski, Z; Stark, A A; Story, K T; Stubbs, C W; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zenteno, A

    2016-01-01

    (abridged) We present cosmological constraints obtained from galaxy clusters identified by their Sunyaev-Zel'dovich effect signature in the 2500 square degree South Pole Telescope Sunyaev Zel'dovich survey. We consider the 377 cluster candidates identified at z>0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a LCDM cosmology, where the species-summed neutrino mass has the minimum allowed value (mnu = 0.06 eV) from neutrino oscillation experiments, we combine the cluster data with a prior on H0 and find sigma_8 = 0.797+-0.031 and Omega_m = 0.289+-0.042, with the parameter combination sigma_8(Omega_m/0.27)^0.3 = 0.784...

  16. Primordial binary populations in low-density star clusters as seen by Chandra: globular clusters versus old open clusters

    Science.gov (United States)

    van den Berg, Maureen C.

    2015-08-01

    The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.

  17. Biases on cosmological parameter estimators from galaxy cluster number counts

    CERN Document Server

    Penna-Lima, M; Wuensche, C A

    2013-01-01

    The abundance of galaxy clusters is becoming a standard cosmological probe. In particular, Sunyaev-Zel'dovich (SZ) surveys are promising probes of the Dark Energy (DE) equation of state (eqos), given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objects. In this case, it is not guaranteed that maximum likelihood (ML) estimators of cosmological parameters are unbiased. In this work we study estimators from cluster abundance for some cosmological parameters. We derive an unbinned likelihood for cluster abundance, showing that it is equivalent to the one commonly used in the literature. We use the Monte Carlo (MC) approach to determine the presence of bias using this likelihood and its behavior with both area and depth of the survey, and the number of cosmological parameters fitted simultaneously. Assuming perfect knowledge on mass and redshift, we obtain that some estimators have non negligible biases. For example, the bias ...

  18. Towards combined analysis of the most distant massive galaxy clusters with XMM and Chandra

    Science.gov (United States)

    Bartalucci, I.

    2016-06-01

    We present a detailed study of the gas and dark matter properties of the 5 most massive and distant, z ˜ 1, clusters detected via the Sunyaev-Zel'Dovich effect. These massive objects represent an ideal laboratory to test our models of structure evolution in a mass regime driven mainly by gravity. This work presents a new method to study these objects, where informations coming from XMM-Newton and Chandra instruments are efficiently combined. The combination of Chandra fine spatial resolution and XMM-Newton effective area allows us to efficiently investigate the properties of the Intra Cluster medium in the core and probe cluster outskirts. The resulting combined density profiles are used to fully characterize the thermodynamic and physical properties of the gas. Evolution properties are investigated from comparison with the REXCESS local galaxy cluster sample. In the context of the joint analysis of future Chandra and XMM large programs, we discuss the current limitations of this method and future prospects.

  19. Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey

    Energy Technology Data Exchange (ETDEWEB)

    de Haan, T.; et al.

    2016-03-21

    (abridged) We present cosmological constraints obtained from galaxy clusters identified by their Sunyaev-Zel'dovich effect signature in the 2500 square degree South Pole Telescope Sunyaev Zel'dovich survey. We consider the 377 cluster candidates identified at z>0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a LCDM cosmology, where the species-summed neutrino mass has the minimum allowed value (mnu = 0.06 eV) from neutrino oscillation experiments, we combine the cluster data with a prior on H0 and find sigma_8 = 0.797+-0.031 and Omega_m = 0.289+-0.042, with the parameter combination sigma_8(Omega_m/0.27)^0.3 = 0.784+-0.039. These results are in good agreement with constraints from the CMB from SPT, WMAP, and Planck, as well as with constraints from other cluster datasets. Adding mnu as a free parameter, we find mnu = 0.14+-0.08 eV when combining the SPT cluster data with Planck CMB data and BAO data, consistent with the minimum allowed value. Finally, we consider a cosmology where mnu and N_eff are fixed to the LCDM values, but the dark energy equation of state parameter w is free. Using the SPT cluster data in combination with an H0 prior, we measure w = -1.28+-0.31, a constraint consistent with the LCDM cosmological model and derived from the combination of growth of structure and geometry. When combined with primarily geometrical constraints from Planck CMB, H0, BAO and SNe, adding the SPT cluster data improves the w constraint from the geometrical data alone by 14%, to w = -1.023+-0.042.

  20. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zeldovich Effect

    International Nuclear Information System (INIS)

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives σ8 = 0.851 ± 0.115 and w = -1.14 ± 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find σ8 = 0.821 ± 0.044 and w = -1.05 ± 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give σ8 = 0.802 ± 0.038 and w = -0.98 ± 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  1. THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT

    International Nuclear Information System (INIS)

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected (SZ-selected) galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of nine optically confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 deg2 of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a four-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives σ8 = 0.851 ± 0.115 and w = -1.14 ± 0.35 for a spatially flat wCDM cosmological model with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP seven-year constraints alone. Fixing the scaling relation between the cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find σ8 = 0.821 ± 0.044 and w = -1.05 ± 0.20. These results are consistent with constraints from WMAP7 plus baryon acoustic oscillations plus Type Ia supernova which give σ8 = 0.802 ± 0.038 and w = -0.98 ± 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  2. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W. Bertrand; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Wollack, Ed

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  3. CHANDRA DEEP OBSERVATION OF XDCP J0044.0-2033, A MASSIVE GALAXY CLUSTER AT z > 1.5

    Energy Technology Data Exchange (ETDEWEB)

    Tozzi, P.; Santos, J. S.; Rosati, P. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Jee, M. J. [Department of Physics, University of California, Davis One Shields Avenue, Davis, CA 95616-8677 (United States); Fassbender, R. [INAF-Osservatorio Astronomico di Roma (OAR), via Frascati 33, I-00040 Monte Porzio Catone (Italy); Nastasi, A. [Istitut d' Astrophysique Spatiale, CNRS, Bat. 121, Université Paris-Sud, F-91405 Orsay (France); Forman, W.; Jones, C. [Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138 (United States); Sartoris, B.; Borgani, S. [Università degli Studi di Trieste, Dipartimento di Fisica, Via A.Valerio, 2 I-34127 Trieste (Italy); Boehringer, H. [Max-Planck-Institut fr extraterrestrische Physik Giessenbachstr.1, D-85748 Garching (Germany); Altieri, B. [European Space Astronomy Centre (ESAC), European Space Agency, Apartado de Correos 78, E-28691 Villanueva de la Canada, Madrid (Spain); Pratt, G. W. [CEA Saclay, Service d' Astrophysique, LOrme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette Cedex (France); Nonino, M. [INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste (Italy)

    2015-01-20

    We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z = 1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high-redshift cluster. Extended emission from the intra cluster medium (ICM) is detected at a very high significance level (S/N ∼ 20) on a circular region with a 44'' radius, corresponding to R {sub ext} = 375 kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature kT=6.7{sub −0.9}{sup +1.3} keV, and a iron abundance Z{sub Fe}=0.41{sub −0.26}{sup +0.29}Z{sub Fe{sub ⊙}} (error bars correspond to 1σ). We fit the background-subtracted surface brightness profile with a single β-model out to 44'', finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius R {sub ext} = 375 kpc to be M {sub ICM}(r < R {sub ext}) = (1.48 ± 0.20) × 10{sup 13} M {sub ☉}. Under the assumption of hydrostatic equilibrium and assuming isothermality within R {sub ext}, the total mass is M{sub 2500}=1.23{sub −0.27}{sup +0.46}×10{sup 14} M{sub ⊙} for R{sub 2500}=240{sub −20}{sup +30} kpc. Extrapolating the profile at radii larger than the extraction radius R {sub ext} we find M{sub 500}=3.2{sub −0.6}{sup +0.9}×10{sup 14} M{sub ⊙} for R{sub 500}=562{sub −37}{sup +50} kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift z ∼ 1.6, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 ΛCDM cosmology.

  4. A Chandra Study of Temperature Distributions of the Intracluster Medium in 50 Galaxy Clusters

    Science.gov (United States)

    Zhu, Zhenghao; Xu, Haiguang; Wang, Jingying; Gu, Junhua; Li, Weitian; Hu, Dan; Zhang, Chenhao; Gu, Liyi; An, Tao; Liu, Chengze; Zhang, Zhongli; Zhu, Jie; Wu, Xiang-Ping

    2016-01-01

    To investigate the spatial distribution of the intracluster medium temperature in galaxy clusters in a quantitative way and probe the physics behind it, we analyze the X-ray spectra from a sample of 50 clusters that were observed with the Chandra ACIS instrument over the past 15 years and measure the radial temperature profiles out to 0.45r500. We construct a physical model that takes into consideration the effects of gravitational heating, thermal history (such as radiative cooling, active galactic nucleus feedback, and thermal conduction), and work done via gas compression, and use it to fit the observed temperature profiles by running Bayesian regressions. The results show that in all cases our model provides an acceptable fit at the 68% confidence level. For further validation, we select nine clusters that have been observed with both Chandra (out to ≳0.3r500) and Suzaku (out to ≳1.5r500) and fit their Chandra spectra with our model. We then compare the extrapolation of the best fits with the Suzaku measurements and find that the model profiles agree with the Suzaku results very well in seven clusters. In the remaining two clusters the difference between the model and the observation is possibly caused by local thermal substructures. Our study also implies that for most of the clusters the assumption of hydrostatic equilibrium is safe out to at least 0.5r500 and the non-gravitational interactions between dark matter and its luminous counterparts is consistent with zero.

  5. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    OpenAIRE

    Wu, MH; Hui, CY; Kong, AKH; Tam, PH; Cheng, KS; Dogel, V

    2014-01-01

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index $\\Gamma\\sim1.0$ and plasma temperature $kT\\sim0.2$ keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could...

  6. A Chandra Study of Radial Temperature Profiles of the Intra-Cluster Medium in 50 Galaxy Clusters

    CERN Document Server

    Zhu, Zhenghao; Wang, Jingying; Gu, Junhua; Li, Weitian; Hu, Dan; Zhang, Chenhao; Gu, Liyi; An, Tao; Liu, Chengze; Zhang, Zhongli; Zhu, Jie; Wu, Xiang-Ping

    2015-01-01

    In order to investigate the spatial distribution of the ICM temperature in galaxy clusters in a quantitative way and probe the physics behind, we analyze the X-ray spectra of a sample of 50 galaxy clusters, which were observed with the Chandra ACIS instrument in the past 15 years, and measure the radial temperature profiles out to $0.45r_{500}$. We construct a physical model that takes into account the effects of gravitational heating, thermal history (such as radiative cooling, AGN feedback, and thermal conduction) and work done via gas compression, and use it to fit the observed temperature profiles by running Bayesian regressions. The results show that in all cases our model provides an acceptable fit at the 68% confidence level. To further validate this model we select nine clusters that have been observed with both Chandra (out to $\\gtrsim 0.3r_{500}$) and Suzaku (out to $\\gtrsim 1.5r_{500}$), fit their Chandra spectra with our model, and compare the extrapolation of the best-fits with the Suzaku measure...

  7. Precision Cosmology with Clusters of Galaxies: Insights from Numerical Simulations

    Science.gov (United States)

    Motl, P. M.; Burns, J. O.; Norman, M. L.

    2004-08-01

    Clusters of galaxies have emerged as powerful and complementary probes in contemporary cosmology. However, the simplifying assumptions used to interpret cluster observations (spherical symmetry, isothermality, hydrostatic equilibrium, etc.) are approximations that are valid to only a certain level. Especially in the new era of precision cosmology, where efforts are underway to investigate the nature and evolution of dark energy, it is crucial to calibrate the approximations used to reduce observations of the Sunyaev-Zeldovich effect or X-ray emission in clusters of galaxies. We use high-resolution, cosmological, adaptive mesh refinement simulations to quantify the limiting accuracy and potential bias imposed by common assumptions for observables such as the gravitating mass of clusters and the Hubble constant.

  8. Impact of Chandra calibration uncertainties on galaxy cluster temperatures: application to the Hubble Constant

    CERN Document Server

    Reese, Erik D; Kitayama, Tetsu; Ota, Naomi; Sasaki, Shin; Suto, Yasushi

    2010-01-01

    We perform a uniform, systematic analysis of a sample of 38 X-ray galaxy clusters with three different Chandra calibrations. The temperatures change systematically between calibrations. Cluster temperatures change on average by roughly ~6% for the smallest changes and roughly ~13% for the more extreme changes between calibrations. We explore the effects of the changing cluster spectral properties on Sunyaev-Zel'dovich effect (SZE) and X-ray determinations of the Hubble constant. The Hubble parameter changes by +10% and -13% between the current calibration and two previous Chandra calibrations, indicating that changes in the cluster temperature basically explain the entire change in H_0. Although this work focuses on the difference in spectral properties and resultant Hubble parameters between the calibrations, it is intriguing to note that the newer calibrations favor a lower value of the Hubble constant, H_0 ~ 60 km s-1 Mpc-1, typical of results from SZE/X-ray distances. Both galaxy clusters themselves and t...

  9. 1WGAJ1226.9+3332: a high redshift cluster discovered by Chandra

    OpenAIRE

    Cagnoni, I.; Elvis, M.; Kim, D. -W.; Mazzotta, P.; Huang, J. -S.; Celotti, A.

    2001-01-01

    We report the detection of 1WGAJ1226.9+3332 as an arcminute scale extended X-ray source with the Chandra X-ray Observatory. The Chandra observation and R and K band imaging strongly support the identification of 1WGAJ1226.9+3332 as a high redshift cluster of galaxies, most probably at z=0.85 +- 0.15, with an inferred temperature kT =10 (+4;-3) keV and an unabsorbed luminosity (in a r=120" aperture) of 1.3 (+0.16;-0.14) x 1e45 erg/s (0.5-10 keV). This indication of redshift is also supported b...

  10. A Chandra Study of Radial Temperature Profiles of the Intra-Cluster Medium in 50 Galaxy Clusters

    OpenAIRE

    Zhu, Zhenghao; Xu, Haiguang; Wang, Jingying; Gu, Junhua; Li, Weitian; Hu, Dan; Zhang, Chenhao; Gu, Liyi; An, Tao; Liu, Chengze; Zhang, Zhongli; Zhu, Jie; Wu, Xiang-Ping

    2015-01-01

    In order to investigate the spatial distribution of the ICM temperature in galaxy clusters in a quantitative way and probe the physics behind, we analyze the X-ray spectra of a sample of 50 galaxy clusters, which were observed with the Chandra ACIS instrument in the past 15 years, and measure the radial temperature profiles out to $0.45r_{500}$. We construct a physical model that takes into account the effects of gravitational heating, thermal history (such as radiative cooling, AGN feedback,...

  11. Clusters of galaxies: a fundamental pillar of cosmology

    OpenAIRE

    Castillo-Morales, A.; Schindler, S.

    2003-01-01

    Clusters of galaxies are used in a variety of ways to do cosmology. Some of them are presented here. Their X-ray emitting gas allows us to determine the baryon fraction, dark matter distribution and the matter density $\\Omega_{m}$ of the universe. Another interesting component is relativistic particles whose radio emission provide the measure of the magnetic fields ($\\approx \\mu G$) in the intra-cluster medium (ICM). The observation of distant clusters of galaxies is also important for cosmol...

  12. The outer regions of galaxy clusters: Chandra constraints on the X-ray surface brightness

    CERN Document Server

    Ettori, S

    2008-01-01

    (Abridged version) We study the properties of the X-ray surface brightness profiles in a sample of galaxy clusters that are observed with Chandra and have emission detectable with a signal-to-noise ratio larger than 2 at a radius beyond R500 ~ 0.7 R200. Our study aims at measuring the slopes of the X-ray surface brightness and of the gas density profiles in the outskirts of massive clusters. These constraints are then compared to similar results obtained from observations and numerical simulations of the temperature and dark matter density profiles with the intention to present a consistent picture of the outer regions of galaxy clusters. We extract the surface brightness profiles S_b(r) from X-ray exposures obtained with Chandra of 52 X-ray luminous galaxy clusters at z>0.3. We estimate R200 both using a beta-model to reproduce the surface brightness profile and scaling relations from the literature, showing that the two methods converge to comparable values. We evaluate then the radius, R_S2N, at which the ...

  13. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    Science.gov (United States)

    Walker, S. A.; Sanders, J. S.; Fabian, A. C.

    2016-09-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.

  14. Cosmological analysis of galaxy clusters surveys in X-rays

    International Nuclear Information System (INIS)

    Clusters of galaxies are the most massive objects in equilibrium in our Universe. Their study allows to test cosmological scenarios of structure formation with precision, bringing constraints complementary to those stemming from the cosmological background radiation, supernovae or galaxies. They are identified through the X-ray emission of their heated gas, thus facilitating their mapping at different epochs of the Universe. This report presents two surveys of galaxy clusters detected in X-rays and puts forward a method for their cosmological interpretation. Thanks to its multi-wavelength coverage extending over 10 sq. deg. and after one decade of expertise, the XMM-LSS allows a systematic census of clusters in a large volume of the Universe. In the framework of this survey, the first part of this report describes the techniques developed to the purpose of characterizing the detected objects. A particular emphasis is placed on the most distant ones (z ≥ 1) through the complementarity of observations in X-ray, optical and infrared bands. Then the X-CLASS survey is fully described. Based on XMM archival data, it provides a new catalogue of 800 clusters detected in X-rays. A cosmological analysis of this survey is performed thanks to 'CR-HR' diagrams. This new method self-consistently includes selection effects and scaling relations and provides a means to bypass the computation of individual cluster masses. Propositions are made for applying this method to future surveys as XMM-XXL and eRosita. (author)

  15. Deep Chandra study of the truncated cool core of the Ophiuchus cluster

    CERN Document Server

    Werner, N; Canning, R E A; Allen, S W; King, A L; Sanders, J S; Simionescu, A; Taylor, G B; Morris, R G; Fabian, A C

    2016-01-01

    We present the results of a deep (280 ks) Chandra observation of the Ophiuchus cluster, the second-brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT~1 keV in the core to kT~9 keV at r~30 kpc. Beyond r~30 kpc the intra-cluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing induced cold fronts, with indications for both Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The sloshing is the result of the strongly perturbed gravitational potential in the cluster core, with the central brightest cluster galaxy (BCG) being displaced southward from the global center of mass. The residual image reveals a likely subcluster south of the core at the projected distance of r~280 kpc. The cluster also harbors a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuat...

  16. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    International Nuclear Information System (INIS)

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons

  17. The globular cluster NGC 6388: $XMM$-Newton and $Chandra$ observations

    CERN Document Server

    Nucita, A A; Ingrosso, G; Carpano, S; Guainazzi, M

    2007-01-01

    By studying the optical brightness surface density of the globular cluster NGC 6388, it has been recently proposed that it harbors a central intermediate-mass black hole with mass $\\simeq 5.7\\times 10^3$ M$_{\\odot}$. We expect that the compact object in the center of NGC 6388 emits radiation in the $X$-ray band as a consequence of the accretion from the surrounding matter. We searched for $XMM$-Newton and $Chandra$ observations towards NGC 6388 to test this hypothesis. The $Chandra$ satellite disentangles several point-like $X$-ray sources, probably low mass $X$-ray binaries, well within the core radius of the globular cluster. However, three of them, coinciding with the cluster center of gravity, remain unresolved. Their total luminosity is $L_X^{Obs}\\simeq 2.7\\times 10^{33}$ erg s$^{-1}$. If one of these sources is the $X$-ray counterpart of the intermediate-mass black hole in NGC 6388, the corresponding upper limit on the accretion efficiency, with respect to the Eddington luminosity, is $3\\times 10^{-9}$....

  18. Limitations on Precision Cosmology using Mass Measurements of Galaxy Clusters

    CERN Document Server

    Hallman, E J; Burns, J O; Norman, M L; Hallman, Eric J.; Motl, Patrick M.; Burns, Jack O.; Norman, Michael L.

    2005-01-01

    We critically analyze the role of clusters of galaxies as probes for precision cosmology. Using synthetic observations of numerically simulated clusters viewed through their X-ray emission and thermal Sunyaev-Zeldovich effect (SZE), we reduce the observations to attain measurements of the cluster gas mass. We utilize both parametric models such as the isothermal cluster model and non-parametric models that involve the geometric deprojection of the cluster emission assuming spherical symmetry. We are thus able to quantify the possible sources of uncertainty and systematic bias associated with the common simplifying assumptions used in reducing real cluster observations including isothermality and hydrostatic equilibrium. We find that intrinsic variations in clusters limit the precision of observational gas mass estimation to ~10% to 80% confidence excluding instrumental effects. For the full cluster sample, methods that use SZE profiles out to roughly the virial radius are the most accurate and precise way to ...

  19. A Chandra X-ray Study of Cygnus A - III. The Cluster of Galaxies

    OpenAIRE

    Smith, David A.; Wilson, Andrew S.; Arnaud, Keith A.; Terashima, Yuichi; Young, Andrew J.

    2001-01-01

    The results from a recent Chandra ACIS-S study of the cluster surrounding Cygnus A are presented. We have deprojected the X-ray spectra taken from various elliptical shells in order to derive the run of temperature, density, pressure, and abundance for the ICM as a function of radius. We confirm a drop in temperature of the X-ray emitting gas from $\\sim 8$ keV more than $\\sim 2^{\\prime}$ from the center to $\\simeq 5$ keV some $30^{\\prime\\prime}$ from the center, with the coolest gas immediate...

  20. Evolution of star clusters in a cosmological tidal field

    OpenAIRE

    Rieder, Steven; Ishiyama, Tomoaki; Langelaan, Paul; Makino, Junichiro; McMillan, Stephen L. W.; Zwart, Simon Portegies

    2013-01-01

    We present a method to couple N-body star cluster simulations to a cosmological tidal field, using the Astrophysical Multipurpose Software Environment. We apply this method to star clusters embedded in the CosmoGrid dark matter-only LambdaCDM simulation. Our star clusters are born at z = 10 (corresponding to an age of the Universe of about 500 Myr) by selecting a dark matter particle and initializing a star cluster with 32,000 stars on its location. We then follow the dynamical evolution of t...

  1. Radio relics in a cosmological cluster merger simulation

    OpenAIRE

    Hoeft, Matthias; Brueggen, Marcus; Yepes, Gustavo

    2003-01-01

    Motivated by the discovery of a number of radio relics we investigate the fate of fossil radio plasma during a merger of clusters of galaxies using cosmological smoothed-particle hydrodynamics simulations. Radio relics are extended, steep-spectrum radio sources that do not seem to be associated with a host galaxy. One proposed scenario whereby these relics form is through the compression of fossil radio plasma during a merger between clusters. The ensuing compression of the plasma can lead to...

  2. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    CERN Document Server

    Walker, S A; Fabian, A C

    2016-01-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high energy astrophysics. Here we explore applications of Gaussian Gradient Magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large ...

  3. High-Resolution Chandra X-ray Imaging and Spectroscopy of the Sigma Orionis Cluster

    CERN Document Server

    Skinner, S L; Cohen, D H; Gagné, M; Owocki, S P; Townsend, R D

    2008-01-01

    We present results of a 90 ksec Chandra X-ray observation of the young sigma Orionis cluster (age ~3 Myr) obtained with the High Energy Transmission Grating Spectrometer. We use the high resolution grating spectrum and moderate resolution CCD spectrum of the massive central star sigma Ori AB (O9.5V + B0.5V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the primary CCD (ACIS-S3). All but five have near-IR or optical counterparts and about one-fourth are variable. Notable high-mass stellar detections are sigma Ori AB, the magnetic B star sigma Ori E, and the B5V binary HD 37525. Most of the other detections have properties consistent with lower mass K or M-type stars. We present the first X-ray spectrum of the unusual infrared source IRS1 located 3.3 arc-sec north of sigma Ori AB, which is likely an embedded T Tauri star whose disk/envelope is being photoevaporated by sigma Or...

  4. 1WGAJ1226.9+3332 a high redshift cluster discovered by Chandra

    CERN Document Server

    Cagnoni, I; Kim, D W; Mazzotta, P; Huang, J S; Celotti, A

    2001-01-01

    We report the detection of 1WGAJ1226.9+3332 as an arcminute scale extended X-ray source with the Chandra X-ray Observatory. The Chandra observation and R and K band imaging strongly support the identification of 1WGAJ1226.9+3332 as a high redshift cluster of galaxies, most probably at z=0.85 +- 0.15, with an inferred temperature kT =10 (+4;-3) keV and an unabsorbed luminosity (in a r=120" aperture) of 1.3 (+0.16;-0.14) x 1e45 erg/s (0.5-10 keV). This indication of redshift is also supported by the K and R band imaging, and is in agreement with the spectroscopic redshift of 0.89 found by Ebeling et al. (2001). The surface brightness profile is consistent with a beta-model with beta=0.770 +- 0.025, rc=(18.1 +-0.9)" (corresponding to 101 +- 5 kpc at z=0.89), and S(0)=1.02 +- 0.08 counts/arcsec**2. 1WGAJ1226.9+3332 was selected as an extreme X-ray loud source with FX/FV>60; this selection method, thanks to the large area sampled, seems to be a highly efficient method for finding luminous high z clusters of galaxi...

  5. Chandra X-Ray Observatory Observation of the High-Redshift Cluster MS 1054-0321

    CERN Document Server

    Jeltema, T E; Bautz, M W; Malm, M R; Donahue, M; Garmire, G P; Jeltema, Tesla E.; Canizares, Claude R.; Bautz, Mark W.; Malm, Michael R.; Donahue, Megan; Garmire, Gordon P.

    2001-01-01

    We observed MS 1054-0321, the highest redshift cluster of galaxies in the Einstein Medium Sensitivity Survey (EMSS), with the Chandra ACIS-S detector. We find the X-ray temperature of the cluster to be 10.4 +1.7 -1.5 keV, lower than, but statistically consistent with, the temperature inferred previously. This temperature agrees well with the observed velocity dispersion and that found from weak lensing. We are also able to make the first positive identification of an iron line in this cluster and find a value of 0.26 +/- 0.15 for the abundance relative to solar, consistent with early enrichment of the ICM. We confirm significant substructure in the form of two distinct clumps in the X-ray distribution. The eastern clump seems to coincide with the main cluster component. It has a temperature of 10.5 +3.4 -2.1 keV, approximately the same as the average spectral temperature for the whole cluster. The western clump is cooler, with a temperature of 6.7 +1.7 -1.2 and may be a subgroup falling into the cluster. Thou...

  6. A wide Chandra view of the core of the Perseus cluster

    CERN Document Server

    Fabian, A C; Allen, S W; Canning, R E A; Churazov, E; Crawford, C S; Forman, W; GaBany, J; Hlavacek-Larrondo, J; Johnstone, R M; Russell, H R; Reynolds, C S; Salome, P; Taylor, G B; Young, A J

    2011-01-01

    We present new Chandra images of the X-ray emission from the core of the Perseus cluster of galaxies. The total observation time is now 1.4 Ms. New depressions in X-ray surface brightness are discovered to the north of NGC1275, which we interpret as old rising bubbles. They imply that bubbles are long-lived and do not readily breakup when rising in the hot cluster atmosphere. The existence of a 300 kpc long NNW-SSW bubble axis means there cannot be significant transverse large scale flows exceeding 100 km/s. Interesting spatial correlations are seen along that axis in early deep radio maps. A semi-circular cold front about 100 kpc west of the nucleus is seen. It separates an inner disturbed region dominated by the activity of the active nucleus of NGC1275 from the outer region where a subcluster merger dominates.

  7. Evolution of star clusters in a cosmological tidal field

    CERN Document Server

    Rieder, Steven; Langelaan, Paul; Makino, Junichiro; McMillan, Stephen L W; Zwart, Simon Portegies

    2013-01-01

    We present a method to couple N-body star cluster simulations to a cosmological tidal field, using the Astrophysical Multipurpose Software Environment. We apply this method to star clusters embedded in the CosmoGrid dark matter-only LambdaCDM simulation. Our star clusters are born at z = 10 (corresponding to an age of the Universe of about 500 Myr) by selecting a dark matter particle and initializing a star cluster with 32,000 stars on its location. We then follow the dynamical evolution of the star cluster within the cosmological environment. We compare the evolution of star clusters in two Milky-Way size haloes with a different accretion history. The mass loss of the star clusters is continuous irrespective of the tidal history of the host halo, but major merger events tend to increase the rate of mass loss. From the selected two dark matter haloes, the halo that experienced the larger number of mergers tends to drive a smaller mass loss rate from the embedded star clusters, even though the final masses of ...

  8. Constraints on cold dark matter accelerating cosmologies and cluster formation

    International Nuclear Information System (INIS)

    We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Ωm=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields Ω-tildem=0.28±0.01 (1σ), where Ω-tildem is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large-scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual ΛCDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with ΛCDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.

  9. Clusters, Groups, and Filaments in the Chandra Deep Field-South up to Redshift 1

    CERN Document Server

    Dehghan, Siamak

    2013-01-01

    We present a comprehensive structure detection analysis of the 0.3 square degree area of the MUSYC-ACES field which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogues we find 62 over-dense regions up to redshifts of 1, including, clusters, groups and filaments. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalogue of all structures present including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that $80\\%$ of these structures are associated with diffuse, soft-band (0.4 - 1 keV) X-ray emission including $90\\%$ of all objects classified as cluster...

  10. Suzaku, Chandra, and XMM-Newton Analysis of Abell 2204: The Galaxy Cluster Gas Temperature Profile from 10 kpc to 1800 kpc

    CERN Document Server

    Reiprich, T H; Zhang, Y -Y; Sato, K; Ishisaki, Y; Hoshino, A; Ohashi, T; Ota, N; Fujita, Y

    2008-01-01

    Context: Measurements of intracluster gas temperatures out to large radii are important for the use of clusters for precision cosmology and for studies of cluster physics. Previous attempts to measure robust temperatures at cluster virial radii failed. Aims: The goal of this work is to measure the temperature profile of the very relaxed galaxy cluster Abell 2204 out to large radii, possibly reaching the virial radius. Methods: Taking advantage of its low particle background due to its low-Earth orbit, Suzaku data are used to measure the outer temperature profile of Abell 2204. These data are combined with Chandra and XMM-Newton data of the same cluster in order to make the connection to the inner regions, unresolved by Suzaku, and to determine the smearing due to Suzaku's PSF. Results: The temperature profile of Abell 2204 is determined from 10 kpc to 1800 kpc, close to an estimate of r200 (the approximation to the virial radius). The temperature rises steeply from below 4 keV in the very center up to more th...

  11. Cosmology with EMSS Clusters of Galaxies

    Science.gov (United States)

    Donahue, Megan; Voit, G. Mark

    1999-01-01

    We use ASCA observations of the Extended Medium Sensitivity Survey sample of clusters of galaxies to construct the first z = 0.5 - 0.8 cluster temperature function. This distant cluster temperature function, when compared to local z approximately 0 and to a similar moderate redshift (z = 0.3 - 0.4) temperature function strongly constrains the matter density of the universe. Best fits to the distributions of temperatures and redshifts of these cluster samples results in Omega(sub M) = 0.45 +/- 0.1 if Lambda = 0 and Omega = 0.27 +/- 0.1 if Lambda + Omega(sub M) = 1. The uncertainties are 1sigma statistical. We examine the systematics of our approach and find that systematics, stemming mainly from model assumptions and not measurement errors, are about the same size as the statistical uncertainty +/- 0.1. In this poster proceedings, we clarify the issue of a8 as reported in our paper Donahue & Voit (1999), since this was a matter of discussion at the meeting.

  12. CHANDRA OBSERVATION OF A WEAK SHOCK IN THE GALAXY CLUSTER A2556

    International Nuclear Information System (INIS)

    Based on a 21.5 ks Chandra observation of A2556, we identify an edge on the surface brightness profile at about 160 h –171 kpc northeast of the cluster center, and it corresponds to a shock front whose Mach number M is calculated to be 1.25+0.02–0.03. No prominent substructure, such as sub-cluster, is found in either the optical or X-ray band that can be associated with the edge, suggesting that the conventional supersonic motion mechanism may not work in this case. As an alternative solution, we propose that the nonlinear steepening of an acoustic wave, which is induced by the turbulence of the intracluster medium at the core of the cluster, can be used to explain the origin of the shock front. Although nonlinear steepening weak shock is expected to occur frequently in clusters, why it is rarely observed still remains a question that requires further investigation, including both deeper X-ray observation and extensive theoretical studies.

  13. Are there cool-core clusters at high-redshift? Chandra results and prospects with WFXT

    CERN Document Server

    Santos, Joana S; Rosati, Piero

    2010-01-01

    In this contribution we trace the evolution of cool-core clusters out to z~1.3 using high-resolution Chandra data of three representative cluster samples spanning different redshift ranges. Our analysis is based on the measurement of the surface brightness (SB) concentration, c_SB, which strongly anti-correlates with the central cooling time and allows us to characterize the cool-core strength in low S/N data. We confirm a negative evolution in the fraction of cool-core clusters with redshift, in particular for very strong cool-cores. Still, we find evidence for a large population of well formed cool-cores at z ~ 1. This analysis is potentially very effective in constraining the nature and the evolution of the cool-cores, once large samples of high-z clusters will be available. In this respect, we explore the potential of the proposed mission Wide Field X-ray Telescope (WFXT) to address this science case. We conclude that WFXT provides the best trade-off of angular resolution, sensitivity and covered solid an...

  14. MOG Weak Field Approximation: A Modified Gravity Compatible with Chandra X-ray Clusters

    CERN Document Server

    Moffat, J W

    2013-01-01

    We use the covariant Scalar-Vector-Tensor theory of gravity (so-called MOG), in the weak field approximation limit to study the dynamics of clusters of galaxies. The ionized gas density and the temperature profile of the clusters are our observables, which have been measured by the Chandra telescope for the nearby clusters. The MOG effective gravitational potential in the weak field approximation is composed of attractive Newtonian and repulsive Yukawa terms. Two parameters $\\alpha$ and $\\mu$ in the effective potential determine the asymptotic gravitational constant and the mass of the vector field, respectively. These parameters have been fixed by fitting MOG dynamics to the rotation curves of galaxies. Our analysis shows that the internal dynamics of clusters can be well explained within $1\\sigma$ with a virial theorem in the framework of MOG, such that the best fit for the ratio of the dynamical mass to the baryonic mass is: $M_{\\rm dyn}/M_{\\rm b} = 0.98^{+0.02}_{-0.02}$. This result means that MOG is a th...

  15. Galaxy clusters as probes for cosmology and dark matter

    CERN Document Server

    Battistelli, Elia S; de Bernardis, Paolo; Kirillov, Alexander A; Neto, Gastao B Lima; Masi, Silvia; Norgaard-Nielsen, Hans U; Ostermann, Peter; Roman, Matthieu; Rosati, Piero; Rossetti, Mariachiara

    2016-01-01

    In recent years, significant progress has been made in building new galaxy clusters samples, at low and high redshifts, from wide-area surveys, particularly exploiting the Sunyaev--Zel'dovich (SZ) effect. A large effort is underway to identify and characterize these new systems with optical/NIR and X-ray facilities, thus opening new avenues to constraint cosmological models using structure growth and geometrical tests. A census of galaxy clusters sets constraints on reionization mechanisms and epochs, which need to be reconciled with recent limits on the reionization optical depth from cosmic microwave background (CMB) experiments. Future advances in SZ effect measurements will include the possibility to (unambiguously) measure directly the kinematic SZ effect, to build an even larger catalogue of galaxy clusters able to study the high redshift universe, and to make (spatially-)resolved galaxy cluster maps with even spectral capability to (spectrally-)resolve the relativistic corrections of the SZ effect.

  16. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies

    CERN Document Server

    Sanders, J S; Taylor, G B; Russell, H R; Blundell, K M; Canning, R E A; Hlavacek-Larrondo, J; Walker, S A; Grimes, C K

    2016-01-01

    We examine deep Chandra X-ray observations of the Centaurus cluster of galaxies, Abell 3526. Applying a gradient magnitude filter reveals a wealth of structure, from filamentary soft emission on 100pc (0.5 arcsec) scales close to the nucleus to features 10s of kpc in size at larger radii. The cluster contains multiple high-metallicity regions with sharp edges. Relative to an azimuthal average, the deviations of metallicity and surface brightness are correlated, and the temperature is inversely correlated, as expected if the larger scale asymmetries in the cluster are dominated by sloshing motions. Around the western cold front are a series of ~7 kpc 'notches', suggestive of Kelvin-Helmholtz instabilities. The cold front width varies from 4 kpc down to close to the electron mean free path. Inside the front are multiple metallicity blobs on scales of 5-10 kpc, which could have been uplifted by AGN activity, also explaining the central metallicity drop and flat inner metallicity profile. Close to the nucleus are...

  17. Astrophysics and cosmology with galaxy clusters: the WFXT perspective

    CERN Document Server

    Borgani, S; Sartoris, B; Tozzi, P; Giacconi, R

    2010-01-01

    We discuss the central role played by the X-ray study of hot baryons within galaxy clusters to reconstruct the assembly of cosmic structures and to trace the past history of star formation and accretion onto supermassive Black Holes (BHs). We shortly review the progress in this field contributed by the current generation of X-ray telescopes. Then, we focus on the outstanding scientific questions that have been opened by observations carried out in the last years and that represent the legacy of Chandra and XMM: (a) When and how is entropy injected into the inter-galactic medium (IGM)? (b) What is the history of metal enrichment of the IGM? (c) What physical mechanisms determine the presence of cool cores in galaxy clusters? (d) How is the appearance of proto-clusters at z~2 related to the peak of star formation activity and BH accretion? (e) What do galaxy clusters tell us about the nature of primordial density perturbations and on the history of their growth? We show that the most efficient observational str...

  18. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, S.; Johnston-Hollitt, M., E-mail: siamak.dehghan@vuw.ac.nz [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand)

    2014-03-01

    We present a comprehensive structure detection analysis of the 0.3 deg{sup 2} area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc{sup 2} at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M {sub 200} ≥ 4.9 × 10{sup 13} M {sub ☉}) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally

  19. Clusters, Groups, and Filaments in the Chandra Deep Field-South up to Redshift 1

    Science.gov (United States)

    Dehghan, S.; Johnston-Hollitt, M.

    2014-03-01

    We present a comprehensive structure detection analysis of the 0.3 deg2 area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ~10 Mpc2 at z ~ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M 200 >= 4.9 × 1013 M ⊙) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ~= 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally disrupted central galaxies exhibiting

  20. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    International Nuclear Information System (INIS)

    We present a comprehensive structure detection analysis of the 0.3 deg2 area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc2 at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M 200 ≥ 4.9 × 1013 M ☉) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally disrupted central galaxies

  1. Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey

    CERN Document Server

    Sartoris, B; Fedeli, C; Bartlett, J G; Borgani, S; Costanzi, M; Giocoli, C; Moscardini, L; Weller, J; Ascaso, B; Bardelli, S; Maurogordato, S; Viana, P T P

    2015-01-01

    We study the characteristics of the galaxy cluster samples expected from the European Space Agency's Euclid satellite and forecast constraints on cosmological parameters describing a variety of cosmological models. The method used in this paper, based on the Fisher Matrix approach, is the same one used to provide the constraints presented in the Euclid Red Book (Laureijs et al.2011). We describe the analytical approach to compute the selection function of the photometric and spectroscopic cluster surveys. Based on the photometric selection function, we forecast the constraints on a number of cosmological parameter sets corresponding to different extensions of the standard LambdaCDM model. The dynamical evolution of dark energy will be constrained to Delta w_0=0.03 and Delta w_a=0.2 with free curvature Omega_k, resulting in a (w_0,w_a) Figure of Merit (FoM) of 291. Including the Planck CMB covariance matrix improves the constraints to Delta w_0=0.02, Delta w_a=0.07 and a FoM=802. The amplitude of primordial no...

  2. Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS

    CERN Document Server

    Hofmann, F; Nandra, K; Clerc, N; Gaspari, M

    2016-01-01

    In high-resolution X-ray observations of the hot plasma in clusters of galaxies significant structures caused by AGN feedback, mergers, and turbulence can be detected. Many clusters have been observed by Chandra in great depth and at high resolution. Using archival data taken with the Chandra ACIS instrument the aim was to study thermodynamic perturbations of the X-ray emitting plasma and to apply this to better understand the thermodynamic and dynamic state of the intra cluster medium (ICM). We analysed deep observations for a sample of 33 clusters with more than 100 ks of Chandra exposure each at distances between redshift 0.025 and 0.45. The combined exposure of the sample is 8 Ms. Fitting emission models to different regions of the extended X-ray emission we searched for perturbations in density, temperature, pressure, and entropy of the hot plasma. For individual clusters we mapped the thermodynamic properties of the ICM and measured their spread in circular concentric annuli. Comparing the spread of dif...

  3. Weak Lensing by Galaxy Clusters: from Pixels to Cosmology

    International Nuclear Information System (INIS)

    The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J

  4. Weak Lensing by Galaxy Clusters: from Pixels to Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, Daniel [Ludwig Maximilian Univ., Munich (Germany)

    2015-03-11

    The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J

  5. CMB-induced Cluster Polarization as a Cosmological Probe

    CERN Document Server

    Baumann, D; Baumann, Daniel; Cooray, Asantha

    2003-01-01

    Scattering of the temperature anisotropy quadrupole by free electrons in galaxy clusters leads to a secondary polarization signal in the cosmic microwave background (CMB) fluctuations. At low redshifts, the temperature quadrupole contains a significant contribution from the integrated Sachs-Wolfe (ISW) effect associated with the growth of density fluctuations. Using polarization data from a sample of clusters over a wide range in redshift, one can statistically establish the presence of the ISW effect and determine its redshift evolution. Given the strong dependence of the ISW effect on the background cosmology, cluster polarization can eventually be used as a powerful probe of dark energy. As a further application, we also discuss how it might be used to understand the potential lack of power on large scales.

  6. Testing cosmological models using relative mass-redshift abundance of SZ clusters

    OpenAIRE

    Shafieloo, Arman; Smoot, George F.

    2011-01-01

    Recent detection of high-redshift, massive clusters through Sunyaev-Zel'dovich observations has opened up a new way to test cosmological models. It is known that detection of a single supermassive cluster at a very high redshift can rule out many cosmological models all together. However, since dealing with different observational biases makes it difficult to test the likeliness of the data assuming a cosmological model, most of the cluster data (except those with high mass-redshift) stays un...

  7. Next generation cosmology: constraints from the Euclid galaxy cluster survey

    Science.gov (United States)

    Sartoris, B.; Biviano, A.; Fedeli, C.; Bartlett, J. G.; Borgani, S.; Costanzi, M.; Giocoli, C.; Moscardini, L.; Weller, J.; Ascaso, B.; Bardelli, S.; Maurogordato, S.; Viana, P. T. P.

    2016-06-01

    We study the characteristics of the galaxy cluster samples expected from the European Space Agency's Euclid satellite and forecast constraints on parameters describing a variety of cosmological models. In this paper we use the same method of analysis already adopted in the Euclid Red Book, which is based on the Fisher matrix approach. Based on our analytical estimate of the cluster selection function in the photometric Euclid survey, we forecast the constraints on cosmological parameters corresponding to different extensions of the standard Λ cold dark matter model. Using only Euclid clusters, we find that the amplitude of the matter power spectrum will be constrained to Δσ8 = 0.0014 and the mass density parameter to ΔΩm = 0.0011. The dynamical evolution of dark energy will be constrained to Δw0 = 0.03 and Δwa = 0.2 with free curvature Ωk, resulting in a (w0, wa) figure of merit (FoM) of 291. In combination with Planck cosmic microwave background (CMB) constraints, the amplitude of primordial non-Gaussianity will be constrained to ΔfNL ≃ 6.6 for the local shape scenario. The growth factor parameter γ, which signals deviations from general relativity, will be constrained to Δγ = 0.02, and the neutrino density parameter to ΔΩν = 0.0013 (or Δ∑mν = 0.01). Including the Planck CMB covariance matrix improves dark energy constraints to Δw0 = 0.02, Δwa = 0.07, and a FoM = 802. Knowledge of the observable-cluster mass scaling relation is crucial to reach these accuracies. Imaging and spectroscopic capabilities of Euclid will enable internal mass calibration from weak lensing and the dynamics of cluster galaxies, supported by external cluster surveys.

  8. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.

    2011-08-18

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  9. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies

    Science.gov (United States)

    Sanders, J. S.; Fabian, A. C.; Taylor, G. B.; Russell, H. R.; Blundell, K. M.; Canning, R. E. A.; Hlavacek-Larrondo, J.; Walker, S. A.; Grimes, C. K.

    2016-03-01

    We examine deep Chandra X-ray observations of the Centaurus cluster of galaxies, Abell 3526. Applying a gradient magnitude filter reveals a wealth of structure, from filamentary soft emission on 100 pc (0.5 arcsec) scales close to the nucleus to features 10 s of kpc in size at larger radii. The cluster contains multiple high-metallicity regions with sharp edges. Relative to an azimuthal average, the deviations of metallicity and surface brightness are correlated, and the temperature is inversely correlated, as expected if the larger scale asymmetries in the cluster are dominated by sloshing motions. Around the western cold front are a series of ˜7 kpc `notches', suggestive of Kelvin-Helmholtz instabilities. The cold front width varies from 4 kpc down to close to the electron mean free path. Inside the front are multiple metallicity blobs on scales of 5-10 kpc, which could have been uplifted by AGN activity, also explaining the central metallicity drop and flat inner metallicity profile. Close to the nucleus are multiple shocks, including a 1.9-kpc-radius inner shell-like structure and a weak 1.1-1.4 Mach number shock around the central cavities. Within a 10 kpc radius are nine depressions in surface brightness, several of which appear to be associated with radio emission. The shocks and cavities imply that the nucleus has been repeatedly active on 5-10 Myr time-scales, indicating a tight balance between heating and cooling. We confirm the presence of a series of linear quasi-periodic structures. If they are sound waves, the ˜5 kpc spacing implies a period of 6 Myr, similar to the ages of the shocks and cavities. Alternatively, these structures may be Kelvin-Helmholtz instabilities, their associated turbulence or amplified magnetic field layers.

  10. Dark matter and Modified Newtonian Dynamics in a sample of high-redshift galaxy clusters observed with Chandra

    OpenAIRE

    Blaksley, Carl; Bonamente, Massimiliano

    2009-01-01

    We compare the measurement of the gravitational mass of 38 high-redshift galaxy clusters observed by Chandra using Modified Newtonian Dynamics (MOND) and standard Newtonian gravity. Our analysis confirms earlier findings that MOND cannot explain the difference between the baryonic mass and the total mass inferred from the assumption of hydrostatic equilibrium. We also find that the baryon fraction at $r_{2500}$ using MOND is consistent with the Wilkinson Microwave Anisotropy Probe (WMAP) valu...

  11. Galaxy cluster number count data constraints on cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, L. [Universita di Bari, Dipartimento di Fisica, Bari (Italy); Fogli, G.L.; Marrone, A. [Universita di Bari, Dipartimento di Fisica, Bari (Italy); INFN-Sezione di Bari, Bari (Italy); Kahniashvili, T. [Carnegie Mellon University, McWilliams Center for Cosmology and Department of Physics, Pittsburgh, PA (United States); Laurentian University, Department of Physics, Sudbury, ON (Canada); Ilia State University, Abastumani Astrophysical Observatory, Tbilisi (Georgia); Ratra, Bharat [Kansas State University, Department of Physics, Manhattan, KS (United States)

    2012-11-15

    We use data on massive galaxy clusters (M{sub cluster}>8 x 10{sup 14} h{sup -1} M{sub s}un within a comoving radius of R{sub cluster}=1.5h{sup -1} Mpc) in the redshift range 0.05cosmology of the quantities related to cluster physics: the critical density contrast, the growth factor, the mass conversion factor, the virial overdensity, the virial radius and, most importantly, the cluster number count derived from the observational temperature data. We show that, contrary to previous analyses, cluster data alone prefer low values of the amplitude of mass fluctuations, {sigma}{sub 8}{<=}0.69 (1 {sigma} C.L.), and large amounts of nonrelativistic matter, {Omega}{sub m} {>=}0.38 (1 {sigma} C.L.), in slight tension with the {Lambda}CDM concordance cosmological model, though the results are compatible with {Lambda}CDM at 2 {sigma}. In addition, we derive a {sigma}{sub 8} normalization relation, {sigma}{sub 8}{Omega}{sub m}{sup 1/3} = 0.49 {+-} 0.06 (2{sigma} C.L.). Combining cluster data with {sigma}{sub 8}-independent baryon acoustic oscillation observations, cosmic microwave background data, Hubble constant measurements, Hubble parameter determination from passively evolving red galaxies, and magnitude-redshift data of type Ia supernovae, we find {Omega}{sub m} = 0.28{sup +0.03}{sub -0.02} and {sigma}{sub 8} = 0.73{sup +0.03}{sub -0.03}, the former in agreement and the latter being slightly lower than the corresponding values in the concordance cosmological model. We also find H{sub 0} = 69.1{sup +1

  12. Radio and Deep Chandra Observations of the Disturbed Cool Core Cluster Abell 133

    CERN Document Server

    Randall, S W; Nulsen, P E J; Owers, M S; Sarazin, C L; Forman, W R; Murray, S S

    2010-01-01

    We present results based on new Chandra and multi-frequency radio observations of the disturbed cool core cluster Abell 133. The diffuse gas has a complex bird-like morphology, with a plume of emission extending from two symmetric wing-like features, and capped with a filamentary radio relic. X-ray observations indicate the presence of either high temperature gas or non-thermal emission in the region of the relic. We find evidence for a weak elliptical X-ray surface brightness edge surrounding the core, consistent with a sloshing cold front. The plume is consistent with having formed due to uplift by a buoyantly rising radio bubble, now seen as the radio relic. Our results are inconsistent with the previous suggestion that the X-ray wings formed due to the passage of a weak shock through the cool core. We instead conclude that the wings are due to X-ray cavities formed by gas displacement by the radio relic. The central cD galaxy contains two small-scale cold gas clumps that are slightly offset from their opt...

  13. Chandra Imaging of the X-ray Core of the Virgo Cluster

    CERN Document Server

    Young, A J; Mundell, C G

    2002-01-01

    We report sub-arcsecond X-ray imaging spectroscopy of M87 and the core of the Virgo cluster with the Chandra X-ray Observatory. The X-ray morphology shows structure on arcsecond (~100 pc) to ten arcminute (~50 kpc) scales, the most prominent feature being an "arc" running from the east, across the central region of M87 and off to the southwest. A ridge in the radio map, ending in an "ear"-shaped structure, follows the arc to the east, and the radio emission appears to be wrapped around the arc to the southwest. Depressions in the X-ray surface brightness correspond to the inner radio lobes. There are also at least two approximately circular (centered near the nucleus) "edges" in the X-ray brightness distribution, the radii of which are similar to the nuclear distances of the inner radio lobes and intermediate radio ridges. We speculate that these discontinuities may be spherical pulses or "fronts" driven by the same jet activity as is responsible for the radio structure; such pulses are found in recent numeri...

  14. Optically-Selected Cluster Catalogs As a Precision Cosmology Tool

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, Eduardo; /Ohio State U. /Chicago U. /KICP, Chicago; Wechsler, Risa H.; /KICP, Chicago /KIPAC, Menlo Park; Koester, Benjamin P.; /Michigan U. /Chicago U., Astron.; Evrard, August E.; McKay, Timothy A.; /Michigan U.

    2007-03-26

    We introduce a framework for describing the halo selection function of optical cluster finders. We treat the problem as being separable into a term that describes the intrinsic galaxy content of a halo (the Halo Occupation Distribution, or HOD) and a term that captures the effects of projection and selection by the particular cluster finding algorithm. Using mock galaxy catalogs tuned to reproduce the luminosity dependent correlation function and the empirical color-density relation measured in the SDSS, we characterize the maxBCG algorithm applied by Koester et al. to the SDSS galaxy catalog. We define and calibrate measures of completeness and purity for this algorithm, and demonstrate successful recovery of the underlying cosmology and HOD when applied to the mock catalogs. We identify principal components--combinations of cosmology and HOD parameters--that are recovered by survey counts as a function of richness, and demonstrate that percent-level accuracies are possible in the first two components, if the selection function can be understood to {approx} 15% accuracy.

  15. CHANDRA X-RAY OBSERVATIONS OF 12 MILLISECOND PULSARS IN THE GLOBULAR CLUSTER M28

    International Nuclear Information System (INIS)

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the 12 known M28 pulsars. With the exception of PSRs B1821-24 and J1824-2452H, the detected pulsars have relatively soft spectra, with X-ray luminosities 1030-1031 erg s-1 (0.3-8 keV), similar to most recycledpulsars in 47 Tucanae and the field of the Galaxy, implying thermal emission from the pulsar magnetic polar caps. We present the most detailed X-ray spectrum to date of the energetic PSR B1821-24. It is well described by a purely non-thermal spectrum with spectral photon index Γ = 1.23 and luminosity 1.4 x 1033Θ(D/5.5 kpc)2 erg s-1 (0.3-8 keV), where Θ is the fraction of the sky covered by the X-ray emission beam(s). We find no evidence for the previously reported line emission feature around 3.3 keV, most likely as a consequence of improvements in instrument calibration. The X-ray spectrum and pulse profile of PSR B1821-24 suggest that the bulk of unpulsed emission from this pulsar is not of thermal origin, and is likely due to low-level non-thermal magnetospheric radiation, an unresolved pulsar wind nebula, and/or small-angle scattering of the pulsed X-rays by interstellar dust grains. The peculiar binary PSR J1824-2452H shows a relatively hard X-ray spectrum and possible variability at the binary period, indicative of an intrabinary shock formed by interaction between the relativistic pulsar wind and matter from its non-degenerate companion star.

  16. Cosmological Constraints From SDSS MaxBCG Cluster Abundances

    International Nuclear Information System (INIS)

    We perform a maximum likelihood analysis of the cluster abundance measured in the SDSS using the maxBCG cluster finding algorithm. Our analysis is aimed at constraining the power spectrum normalization σ8, and assumes flat cosmologies with a scale invariant spectrum, massless neutrinos, and CMB and supernova priors (Omega)mh2 = 0.128 ± 0.01 and h = 0.72 ± 0.05 respectively. Following the method described in the companion paper Rozo et al. (2007), we derive σ8 = 0.92 ± 0.10 (1σ) after marginalizing over all major systematic uncertainties. We place strong lower limits on the normalization, σ8 > 0.76 (95% CL) (> 0.68 at 99% CL). We also find that our analysis favors relatively low values for the slope of the Halo Occupation Distribution (HOD), α = 0.83 ± 0.06. The uncertainties of these determinations will substantially improve upon completion of an ongoing campaign to estimate dynamical, weak lensing, and X-ray cluster masses in the SDSS maxBCG cluster sample

  17. Chandra ACIS-S Observations of Abell 4059 Signs of Dramatic Interaction Between a Radio Galaxy and a Galaxy Cluster

    CERN Document Server

    Heinz, S; Reynolds, C S; Begelman, M C; Heinz, Sebastian; Choi, Yun-Young; Reynolds, Christopher S; Begelman, Mitchell C.

    2002-01-01

    We present Chandra observations of the galaxy cluster A4059. We find strong evidence that the FR-I radio galaxy PKS 2354-35 at the center of A4059 is inflating cavities with radii ~20 kpc in the intracluster medium, similar to the situation seen in Perseus A and Hydra A. We also find evidence for interaction between the intracluster medium and PKS 2354-35 on small scales in the very center of the cluster. Arguments are presented suggesting that this radio galaxy has faded significantly in radio power (possibly from an FR-II state) over the past 10^8 yrs.

  18. A Chandra Study of the Image Power Spectra of 41 Cool Core and Non-Cool Core Galaxy Clusters

    CERN Document Server

    Zhang, Chenhao; Zhu, Zhenghao; Li, Weitian; Hu, Dan; Wang, Jingying; Gu, Junhua; Gu, Liyi; Zhang, Zhongli; Liu, Chengze; Zhu, Jie; Wu, Xiang-Ping

    2016-01-01

    In this work we propose a new diagnostic to segregate cool core (CC) clusters from non-cool core (NCC) clusters by studying the two-dimensional power spectra of the X-ray images observed with the Chandra X-ray observatory. Our sample contains 41 members ($z=0.01\\sim 0.54$), which are selected from the Chandra archive when a high photon count, an adequate angular resolution, a relatively complete detector coverage, and coincident CC-NCC classifications derived with three traditional diagnostics are simultaneously guaranteed. We find that in the log-log space the derived image power spectra can be well represented by a constant model component at large wavenumbers, while at small wavenumbers a power excess beyond the constant component appears in all clusters, with a clear tendency that the excess is stronger in CC clusters. By introducing a new CC diagnostic parameter, i.e., the power excess index (PEI), we classify the clusters in our sample and compare the results with those obtained with three traditional C...

  19. Chandra measurements of non-thermal X-ray emission from massive, merging, radio-halo clusters

    CERN Document Server

    Million, E T

    2008-01-01

    We report the discovery of spatially-extended, non-thermal or hot, quasi-thermal emission components in Chandra X-ray spectra for five of a sample of seven massive, merging galaxy clusters with powerful radio halos: Abell 665, 2163, 2255, 2319, and 1E0657-56. The emission components can be fitted by power-law models with mean photon indices in the range 1.4 20 keV. A control sample of regular, dynamically relaxed clusters without radio halos but with comparable thermal temperatures and luminosities shows no evidence for similar components in their Chandra spectra. Detailed X-ray spectral mapping reveals the complex thermodynamic states of the radio halo clusters. We report the discovery of a clear, large-scale shock front in Abell 2219. Our deepest observations, of the Bullet Cluster 1E0657-56, demonstrate a spatial correlation between the strongest power law X-ray emission, highest thermal pressure, and brightest 1.34GHz radio halo emission in this cluster. The integrated flux and mean spectral index of the...

  20. X-ray calibration of SZ scaling relations with the ACCEPT catalogue of galaxy clusters observed by Chandra

    CERN Document Server

    Comis, B; Conte, A; Lamagna, L; De Gregori, S

    2011-01-01

    We explore the scaling relation between the flux of the Sunyaev-Zel'dovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue. The analysis is conducted over a sample of 226 objects, examining the relatively small scale corresponding to a cluster overdensity equal to 2500 times the critical density of the background universe, at which the total masses have been calculated exploiting the hydrostatic equilibrium hypothesis. Core entropy (K0) is strongly correlated with the central cooling time, and is therefore used to identify cooling-core (CC) objects in our sample. Our results confirm the self-similarity of the scaling relation between the integrated Comptonization parameter (Y) and the cluster mass, for both CC and NCC (non-cooling-core) clusters. The consistency of our calibration with recent ones has been checked, with further support for Y as a good mass proxy. We also investigate t...

  1. The adhesion model as a field theory for cosmological clustering

    International Nuclear Information System (INIS)

    The adhesion model has been proposed in the past as an improvement of the Zel'dovich approximation, providing a good description of the formation of the cosmic web. We recast the model as a field theory for cosmological large scale structure, adding a stochastic force to account for power generated from very short, highly non-linear scales that is uncorrelated with the initial power spectrum. The dynamics of this Stochastic Adhesion Model (SAM) is reminiscent of the well known Kardar-Parisi-Zhang equation with the difference that the viscosity and the noise spectrum are time dependent. Choosing the viscosity proportional to the growth factor D restricts the form of noise spectrum through a 1-loop renormalization argument. For this choice, the SAM field theory is renormalizable to one loop. We comment on the suitability of this model for describing the non-linear regime of the CDM power spectrum and its utility as a relatively simple approach to cosmological clustering

  2. Modeling color-dependent galaxy clustering in cosmological simulations

    CERN Document Server

    Masaki, Shogo; Yoshida, Naoki

    2013-01-01

    We extend the subhalo abundance matching method to assign galaxy color to subhalos. We separate a luminosity-binned subhalo sample into two groups by a secondary subhalo property which is presumed to be correlated with galaxy color. The two subsamples then represent red and blue galaxy populations. We explore two models for the secondary propertty; subhalo assembly time and local dark matter density around each subhalo. The model predictions for the galaxy two-point correlation functions are compared with the recent results from the Sloan Digital Sky Survey. We show that the observed color dependence of galaxy clustering can be reproduced well by our method applied to cosmological N-body simulations without baryonic components. We then compare the model predictions for the color-dependent galaxy-mass cross correlation functions with the results from gravitational lensing observations. The comparison allows us to distinguish the models, and also to discuss what subhalo property should be used to assign color t...

  3. Cosmological constraints from the evolution of the cluster baryon mass function at z similar to 0.5

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Voevodkin, A.; Mullis, C.R.; VanSpeybroeck, L.; Quintana, H.; McNamara, B.R.; Gioia, I.; Hornstrup, Allan; Henry, J.P.; Forman, W.R.; Jones, C.

    2003-01-01

    We present a new method for deriving cosmological constraints based on the evolution of the baryon mass function of galaxy clusters and implement it using 17 distant clusters from our 160 deg(2) ROSAT survey. The method uses the cluster baryon mass as a proxy for the total mass, thereby avoiding...... the large uncertainties of the M-tot-T or M-tot-L-X relations used in all previous studies. Instead, we rely on a well-founded assumption that the M-b/M-tot ratio is a universal quantity, which should result in a much smaller systematic uncertainty. Taking advantage of direct and accurate Chandra...... measurements of the gas masses for distant clusters, we find strong evolution of the baryon mass function between z > 0.4 and the present. The observed evolution defines a narrow band in the Omega(m)-Lambda plane, Omega(m) + 0.23Lambda = 0.41 +/- 0.10 at 68% confidence, which intersects with constraints from...

  4. Clustering tomography: measuring cosmological distances through angular clustering in thin redshift shells

    Science.gov (United States)

    Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Padilla, Nelson D.; Baugh, Carlton M.

    2014-10-01

    We test the cosmological implications of studying galaxy clustering using a tomographic approach, by computing the galaxy two-point angular correlation function ω(θ) in thin redshift shells using a spectroscopic redshift galaxy survey. The advantages of this procedure are that it is not necessary to assume a fiducial cosmology in order to convert measured angular positions and redshifts into distances, and that it gives several (less accurate) measurements of the angular diameter distance DA(z) instead of only one (more precise) measurement of the effective average distance DV(z), which results in better constraints on the expansion history of the Universe. We test our model for ω(θ) and its covariance matrix against a set of mock galaxy catalogues and show that this technique is able to extract unbiased cosmological constraints. Also, assuming the best-fitting Λ cold dark matter (ΛCDM) cosmology from the cosmic microwave background measurements from the Planck satellite, we forecast the result of applying this tomographic approach to the final Baryon Oscillation Spectroscopic Survey catalogue in combination with Planck for three flat cosmological models, and compare them with the expected results of the isotropic baryon acoustic oscillation (BAO) measurements post-reconstruction on the same galaxy catalogue combined with Planck. While BAOs are more accurate for constraining cosmological parameters for the standard ΛCDM model, the tomographic technique gives better results when we allow the dark energy equation of state wDE to deviate from -1, resulting in a performance similar to BAOs in the case of a constant value of wDE, and a moderate improvement in the case of a time-dependent value of wDE, increasing the value of the figure of merit in the w0-wa plane up to 15 per cent.

  5. The Atacama Cosmology Telescope: ACT-CL J0102-4915 "El Gordo," a Massive Merging Cluster at Redshift 0.87

    Science.gov (United States)

    Menanteau, Felipe; Hughes, John P.; Sifón, Cristóbal; Hilton, Matt; González, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Baker, Andrew J.; Bond, John R.; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Hajian, Amir; Hincks, Adam D.; Kosowsky, Arthur; Marsden, Danica; Marriage, Tobias A.; Moodley, Kavilan; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Reese, Erik D.; Sehgal, Neelima; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Wollack, Edward

    2012-03-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant SZ decrement in a sky survey area of 755 deg2. Our Very Large Telescope (VLT)/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, σgal = 1321 ± 106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T X = 14.5 ± 0.1 keV and 0.5-2.0 keV band luminosity of L X = (2.19 ± 0.11) × 1045 h -2 70 erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y X, and integrated SZ distortion, we estimate a cluster mass of M 200a = (2.16 ± 0.32) × 1015 h -1 70 M ⊙. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6 ± 0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 ± 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high-redshift analog of the famous Bullet cluster. Such a massive cluster at this redshift is rare, although consistent with the standard

  6. THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102–4915 'EL GORDO', A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87

    International Nuclear Information System (INIS)

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102–4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102–4915 as the most significant SZ decrement in a sky survey area of 755 deg2. Our Very Large Telescope (VLT)/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, σgal = 1321 ± 106 km s–1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of TX = 14.5 ± 0.1 keV and 0.5-2.0 keV band luminosity of LX = (2.19 ± 0.11) × 1045 h–270 erg s–1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray YX, and integrated SZ distortion, we estimate a cluster mass of M200a = (2.16 ± 0.32) × 1015 h–170 M☉. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102–4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6 ± 0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 ± 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102–4915 is possibly a high-redshift analog of the famous Bullet cluster. Such a massive cluster at this redshift is rare, although consistent with the standard

  7. Cosmological tests using redshift space clustering in BOSS DR11

    International Nuclear Information System (INIS)

    We analyze the clustering of large scale structure in the Universe in a model independent method, accounting for anisotropic effects along and transverse to the line of sight. A large sample of 690,000 galaxies from The Baryon Oscillation Spectroscopy Survey Data Release 11 are used to determine the Hubble expansion H, angular distance DA, and growth rate GΘ at an effective redshift of z=0.57. After careful bias and convergence studies of the effects from small scale clustering, we find that cutting transverse separations below 40 Mpc/h delivers robust results while smaller scale data leads to a bias due to unmodelled nonlinear and velocity effects. The converged results are in agreement with concordance ΛCDM cosmology, general relativity, and minimal neutrino mass, all within the 68% confidence level. We also present results separately for the northern and southern hemisphere sky, finding a slight tension in the growth rate --- potentially a signature of anisotropic stress, or just covariance with small scale velocities --- but within 68% CL

  8. Cosmological tests using redshift space clustering in BOSS DR11

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Seon; Oh, Minji; Linder, Eric V. [Korea Astronomy and Space Science Institute, Daejeon, 305-348 (Korea, Republic of); Sabiu, Cristiano G. [Korea Institute for Advanced Study, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Okumura, Teppei, E-mail: ysong@kasi.re.kr, E-mail: csabiu@gmail.com, E-mail: teppei.okumura@ipmu.jp, E-mail: minjioh@kasi.re.kr, E-mail: evlinder@lbl.gov [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, Chiba, 277-8582 Japan (Japan)

    2014-12-01

    We analyze the clustering of large scale structure in the Universe in a model independent method, accounting for anisotropic effects along and transverse to the line of sight. A large sample of 690,000 galaxies from The Baryon Oscillation Spectroscopy Survey Data Release 11 are used to determine the Hubble expansion H, angular distance D{sub A}, and growth rate G{sub Θ} at an effective redshift of z=0.57. After careful bias and convergence studies of the effects from small scale clustering, we find that cutting transverse separations below 40 Mpc/h delivers robust results while smaller scale data leads to a bias due to unmodelled nonlinear and velocity effects. The converged results are in agreement with concordance ΛCDM cosmology, general relativity, and minimal neutrino mass, all within the 68% confidence level. We also present results separately for the northern and southern hemisphere sky, finding a slight tension in the growth rate --- potentially a signature of anisotropic stress, or just covariance with small scale velocities --- but within 68% CL.

  9. Cosmological Tests using Redshift Space Clustering in BOSS DR11

    CERN Document Server

    Song, Yong-Seon; Okumura, Teppei; Oh, Minji; Linder, Eric V

    2014-01-01

    We analyze the clustering of large scale structure in the Universe in a model independent method, accounting for anisotropic effects along and transverse to the line of sight. The Baryon Oscillation Spectroscopy Survey Data Release 11 provides a large sample of 690,000 galaxies, allowing determination of the Hubble expansion H, angular distance D_A, and growth rate G_T at an effective redshift of z=0.57. After careful bias and convergence studies of the effects from small scale clustering, we find that cutting transverse separations below 40 Mpc/h delivers robust results while smaller scale data leads to a bias due to unmodelled nonlinear and velocity effects. The converged results are in agreement with concordance LCDM cosmology, general relativity, and minimal neutrino mass, all within the 68% confidence level. We also present results separately for the northern and southern hemisphere sky, finding a slight tension in the growth rate -- potentially a signature of anisotropic stress, or just covariance with ...

  10. Probing cosmological isotropy with Planck Sunyaev-Zeldovich galaxy clusters

    CERN Document Server

    Bengaly,, C A P; Alcaniz, J S; Ferreira, I S

    2015-01-01

    We probe the hypothesis of cosmological isotropy using the Planck Sunyaev-Zeldovich (PSZ) galaxy clusters data set. Our analyses consist on a hemispherical comparison of the clusters angular distribution, searching for a preferred direction in the large-scale structure of the Universe. We obtain a maximal dipolar signal at the direction $(l,b) = (53.44^{\\circ},41.81^{\\circ})$ whose antipode points toward $(l,b) = (233.44^{\\circ},-41.81^{\\circ})$. Interestingly, this antipode is marginally consistent with the anomalous Cold Spot found in the Cosmic Microwave Background, located at $(l,b) \\simeq (209^ {\\circ},-57^ {\\circ})$, which might be possibly aligned with a supervoid at $z \\sim 0.2$ with $\\sim 200 \\; \\mathrm{Mpc/h}$ of radius. The statistical significance of this result is assessed with ensembles of Monte Carlo realisations, finding that only a small number of runs are able to reproduce a close direction to this one, hence rejecting the null hypothesis of such direction being a random fluctuation of the d...

  11. Clustering tomography: measuring cosmological distances through angular clustering in thin redshift shells

    CERN Document Server

    Salazar-Albornoz, Salvador; Padilla, Nelson D; Baugh, Carlton M

    2014-01-01

    We test the cosmological implications of studying galaxy clustering using a tomographic approach, by computing the galaxy two-point angular correlation function $\\omega(\\theta)$ in thin redshift shells using a spectroscopic-redshift galaxy survey. The advantages of this procedure are that it is not necessary to assume a fiducial cosmology in order to convert measured angular positions and redshifts into distances, and that it gives several (less accurate) measurements of the angular diameter distance $D_\\rm{A}(z)$ instead of only one (more precise) measurement of the effective average distance $D_\\rm{V}(z)$, which results in better constraints on the expansion history of the Universe. We test our model for $\\omega(\\theta)$ and its covariance matrix against a set of mock galaxy catalogues and show that this technique is able to extract unbiased cosmological constraints. Also, assuming the best-fit $\\Lambda$CDM cosmology from the cosmic microwave background measurements from the Planck satellite, we forecast th...

  12. Weighted ABC: a new strategy for cluster strong lensing cosmology with simulations

    CERN Document Server

    Killedar, Madhura; Fabjan, Dunja; Dolag, Klaus; Granato, Gian Luigi; Meneghetti, Massimo; Planelles, Susana; Ragone-Figueroa, Cinthia

    2015-01-01

    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with $\\Lambda$CDM cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate using a `weighted' variant of approximate Bayesian computation (ABC), whereby the parameters of the scaling relation between Einstein radii and cluster mass, $\\alpha$ and $\\beta$, are treated as summary statistics. We demonstrate, for the first time, a method of estimating the likelihood of the data under the $\\Lambda$CDM framework, using the X-ray selected $z>0.5$ MACS clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in the calculated likelihood, and consequential ability to compare competing cosmologies, that arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshi...

  13. Age Estimates of Universe: from Globular Clusters to Cosmological Models and Probes

    CERN Document Server

    Fatima, Hira; Rahman, Syed Faisal Ur

    2016-01-01

    We performed the photometric analysis of M2 and M92 globular clusters in g and r bands of SLOAN photometric system. We transformed these g and r bands into BV bands of Johnson-Cousins photometric system and built the color magnitude diagram (CMD). We estimated the age, and metallicity of both the clusters, by fitting Padova isochrones of different age and metallicities onto the CMD. We studied Einstein and de Sitter model, bench mark model, the cosmological parameters by WMAP and Planck surveys. Finally, we compared estimated age of globular clusters to the ages from the cosmological models and cosmological parameters values of WMAP and Planck surveys.

  14. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρk/ρ)2=η12(V1,k/cs)2, where δρ k/ρ is the spectral amplitude of the density perturbations at wavenumber k, V1,k2=Vk2/3 is the mean square component of the velocity field, cs is the sound speed, and η1 is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η1 ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales

  15. Precision cosmology with a combination of wide and deep Sunyaev-Zeldovich cluster surveys

    CERN Document Server

    Khedekar, Satej; Das, Sudeep

    2010-01-01

    We show the advantages of a wedding cake design for Sunyaev-Zel'dovich cluster surveys. We show that by dividing up a cluster survey into a wide and a deep survey, one can essentially recover the cosmological information that would be diluted in a single survey of the same duration due to the uncertainties in our understanding of cluster physics. The parameter degeneracy directions of the deep and wide surveys are slightly different, and combining them breaks these degeneracies effectively. A variable depth survey with a few thousand clusters is as effective at constraining cosmological parameters as a single depth survey with a much larger cluster sample.

  16. THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT

    International Nuclear Information System (INIS)

    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich effect (SZE) from 148 GHz maps over 455 deg2 of sky made with the Atacama Cosmology Telescope (ACT). These maps, coupled with multi-band imaging on 4 m class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts, and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 1014 Msun, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 1015 Msun and the redshift range is 0.167-1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the universe.

  17. The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected Via the Sunyaev-Zel'Dovich Effect

    Science.gov (United States)

    Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, Richard; Das, Supeed; Deshpande, Amruta J.; Devlin, Mark J.; Dicker, Simon; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernandez-Monteagudo, Carlos; Wollack, Ed

    2010-01-01

    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.

  18. Star cluster formation in cosmological simulations. I. properties of young clusters

    CERN Document Server

    Li, Hui; Gnedin, Nickolay Y; Meng, Xi; Semenov, Vadim A; Kravtsov, Andrey V

    2016-01-01

    We present a new implementation of star formation in cosmological simulations, by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift, by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is $\\alpha\\approx 1.8-2$, while the cutoff at high mass scales with the star formation rate. A related trend is a positive correlation between the surface density of star formation rate and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clust...

  19. The Atacama Cosmology Telescope: ACT-CL J0102-4215 "El Gordo," a Massive Merging Cluster at Redshift 0.87

    Science.gov (United States)

    Menanteau, Felipe; Hughes, John Pl; Baker, Andrew J.; Sifon, Cristobal; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Hilton, Matt; Das, Sudeep; Spergel, David N.; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T.; Mardsen, Danica; Reese, Erik D.; Dunkley, Joanna; Kosowsky, Arthur; Marriage, Tobias A.; Moodley, Kavilan; Niemack, Michael D.; Sehgal, Neelima; Sievers, Jon

    2011-01-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(gal) +/- 1321 106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(X) = 14:5 +/- 0:1 keV and 0.5 2.0 keV band luminosity of L(X) = (2:19 0:11) 1045 h(exp -2)70erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(X) , and integrated SZ distortion, we estimate a cluster mass of M(200) = (2:16 +/- 0:32) 10(exp 15) h(exp-1) 70M compared to the Sun. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6:6 +/- 0:7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 +/- 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other from which we estimate a merger speed of around 1300 km s(exp -1) for an assumed merger timescale of 1 Gyr. ACTCL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift is rare, although consistent with the standard CDM cosmology in the lower part of its allowed mass range. Massive

  20. Galaxy Clustering & Galaxy-Galaxy Lensing: A Promising Union to Constrain Cosmological Parameters

    OpenAIRE

    Cacciato, Marcello; Bosch, Frank C. van den; More, Surhud; Li, Ran; Mo, H. J.; Yang, Xiaohu

    2008-01-01

    Galaxy clustering and galaxy-galaxy lensing probe the connection between galaxies and their dark matter haloes in complementary ways. On one hand, the halo occupation statistics inferred from the observed clustering properties of galaxies are degenerate with the adopted cosmology. Consequently, different cosmologies imply different mass-to-light ratios for dark matter haloes. On the other hand, galaxy-galaxy lensing yields direct constraints on the actual mass-to-light ratios and it can be us...

  1. A Chandra ACIS Study of the Young Star Cluster Trumpler 15 in Carina and Correlation with Near-infrared Sources

    CERN Document Server

    Wang, Junfeng; Townsley, Leisa K; Broos, Patrick S; Getman, Konstantin V; Wolk, Scott J; Preibisch, Thomas; Stassun, Keivan G; Moffat, Anthony F J; Garmire, Gordon; King, Robert R; McCaughrean, Mark J; Zinnecker, Hans

    2011-01-01

    Using the highest-resolution X-ray observation of the Trumpler 15 star cluster taken by the Chandra X-ray Observatory, we estimate the total size of its stellar population by comparing the X-ray luminosity function of the detected sources to a calibrator cluster, and identify for the first time a significant fraction (~14%) of its individual members. The highest-resolution near-IR observation of Trumpler 15 (taken by the HAWK-I instrument on the VLT) was found to detect most of our X-ray selected sample of cluster members, with a K-excess disk frequency of 3.8+-0.7%. The near-IR data, X-ray luminosity function, and published spectral types of the brightest members support a cluster age estimate (5-10 Myr) that is older than those for the nearby Trumpler 14 and Trumpler 16 clusters, and suggest that high-mass members may have already exploded as supernovae. The morphology of the inner ~0.7 pc core of the cluster is found to be spherical. However, the outer regions (beyond 2 pc) are elongated, forming an `envel...

  2. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zeldovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    Science.gov (United States)

    Reese, Erik; Mroczkowski, Tony; Menateau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hill, J. Collin; Hincks, Adam D.; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent D.; Klein, Jeff; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A.; Marsden, Danica; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R.; Page, Lyman A.; Parker, Lucas; Partridge, Bruce; Wollack, Edward J.

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive ( approximately equals 10(exp 15) Solar M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the approx < 20% level for some fraction of clusters.

  3. THE ATACAMA COSMOLOGY TELESCOPE: HIGH-RESOLUTION SUNYAEV-ZEL'DOVICH ARRAY OBSERVATIONS OF ACT SZE-SELECTED CLUSTERS FROM THE EQUATORIAL STRIP

    International Nuclear Information System (INIS)

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly discovered, massive (≅ 1015 M☉), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point-source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as A2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the ∼< 20% level for some fraction of clusters.

  4. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zel'dovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    Science.gov (United States)

    Reese, Erik D.; Mroczkowski, Tony; Menanteau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hill, J. Colin; Hincks, Adam D.; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent D.; Klein, Jeff; Wollack, Edward J.

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive (10(exp 15) Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the less than = 20% level for some fraction of clusters.

  5. Chandra X-ray Observatory Study of the Orion Nebula Cluster and BN/KL Region

    OpenAIRE

    Garmire, Gordon,; Feigelson, Eric D.; Broos, Patrick; Hillenbrand, Lynne A.; Pravdo, Steven H.; Townsley, Leisa; Tsuboi, Yohko

    2000-01-01

    About 1000 X-ray emitting young pre-main sequence (PMS) stars distributed in mass from 0.05 to 50 solar masses are detected in an image of the Orion Nebula obtained with the Advanced CCD Imaging Spectrometer on board the Chandra X-ray Observatory. This is the richest field of sources ever obtained in X-ray astronomy. ACIS sources include 85-90% of V

  6. The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations

    CERN Document Server

    Zhuravleva, I; Schekochihin, A A; Lau, E T; Nagai, D; Gaspari, M; Allen, S W; Nelson, K; Parrish, I J

    2014-01-01

    We address the problem of evaluating the power spectrum of the velocity field of the ICM using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: $(\\delta\\rho_k/\\rho)^2 = \\eta_1^2 (V_{1,k}/c_s)^2$, where $\\delta\\rho_k/\\rho$ is the spectral amplitude of the density perturbations at wave number $k$, $V_{1,k}^2=V_k^2/3$ is the mean square component of the velocity field, $c_s$ is the sound speed, and $\\eta_1$ is a dimensionless constant of order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find $\\eta_1\\approx 1 \\pm 0.3$. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proporti...

  7. A Chandra X-ray study of the interacting binaries in the old open cluster NGC6791

    CERN Document Server

    Berg, Maureen van den; Tagliaferri, Gianpiero; Belloni, Tomaso; Bedin, Luigi R; Platais, Imants

    2013-01-01

    We present the first X-ray study of NGC6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to Lx ~ 1e30 erg/s (0.3-7 keV). We detect 86 sources within 8 arcmin of the cluster center, including 59 inside the half-mass radius. We identify twenty sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy we confirm the nature of one CV. We discover one new, X-ray variable candidate CV with Balmer and HeII emission lines in its optical spectrum; this is the first X-ray--selected CV confirmed in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC6791 are primordial. We compare the X-ray properties of NGC6791 with those of a few old open (NGC6819, M67) and globular clusters (47Tuc, NGC6397). It is puzzling that the numbe...

  8. Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: The Luminosity-Mass Relation

    CERN Document Server

    Giles, P A; Dahle, H; Bonamente, M; Landry, D; Jones, C; Joy, M; Murray, S S; van der Pyl, N

    2015-01-01

    We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15$\\le$z$\\le$0.3 observed with Chandra. We present the calibration of the Mass-Temperature (MT) relation using hydrostatic mass estimates for the most dynamically relaxed clusters, and use this relation as a mass proxy for the full cluster sample. We find that the slope of the MT relation follows the self-similar expectation, and is consistent with previously published relations. We investigate the luminosity-Mass (LM) relation for the cluster sample, utilising a method to fully account for selection biases. We find that the difference in normalisation of the LM relation with and without accounting for selection effects is $\\approx$2. For a cluster of luminosity 10$^{45}$ erg s$^{-1}$, we find that the mass estimated from the LM relation when we account for selection effects is $\\approx$40% higher compared to the sample LM relation (not accounting for selection effects).

  9. Testing cosmological models using relative mass-redshift abundance of SZ clusters

    CERN Document Server

    Shafieloo, Arman

    2011-01-01

    Recent detection of high-redshift, massive clusters through Sunyaev-Zel'dovich observations has opened up a new way to test cosmological models. It is known that detection of a single supermassive cluster at a very high redshift can rule out many cosmological models all together. However, since dealing with different observational biases makes it difficult to test the likeliness of the data assuming a cosmological model, most of the cluster data (except those with high mass-redshift) stays untouched in confronting cosmological models with cluster observations. We propose here that one can use the relative abundance of the clusters with different masses at different redshifts to test the likeliness of the data in the context of cosmological models. For this purpose we propose a simple parametric form for the efficiency of observing clusters at different mass-redshift and we test if the standard LCDM model can explain the observed abundance of the clusters using this efficiency parameterization. We argue that o...

  10. A CHANDRA X-RAY STUDY OF THE INTERACTING BINARIES IN THE OLD OPEN CLUSTER NGC 6791

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, Maureen [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Verbunt, Frank [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Tagliaferri, Gianpiero; Belloni, Tomaso [INAF/Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy); Bedin, Luigi R. [INAF/Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Platais, Imants, E-mail: M.C.vandenBerg@uva.nl [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2013-06-20

    We present the first X-ray study of NGC 6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to L{sub X} Almost-Equal-To 1 Multiplication-Sign 10{sup 30} erg s{sup -1} (0.3-7 keV). We detect 86 sources within 8' of the cluster center, including 59 inside the half-mass radius. We identify 20 sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy, we confirm the nature of one CV. We discover one new, X-ray variable candidate CV with Balmer and He II emission lines in its optical spectrum; this is the first X-ray-selected CV in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC 6791 are primordial. We compare the X-ray properties of NGC 6791 with those of a few old open (NGC 6819, M 67) and globular clusters (47 Tuc, NGC 6397). It is puzzling that the number of ABs brighter than 1 Multiplication-Sign 10{sup 30} erg s{sup -1} normalized by cluster mass is lower in NGC 6791 than in M 67 by a factor {approx}3-7. CVs, ABs, and sub-subgiants brighter than 1 Multiplication-Sign 10{sup 30} erg s{sup -1} are under-represented per unit mass in the globular clusters compared to the oldest open clusters, and this accounts for the lower total X-ray luminosity per unit mass of the former. This indicates that the net effect of dynamical encounters may be the destruction of even some of the hardest (i.e., X-ray-emitting) binaries.

  11. THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES OF SUNYAEV-ZEL'DOVICH EFFECT CLUSTERS ON THE CELESTIAL EQUATOR ,

    International Nuclear Information System (INIS)

    We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 deg2 centered on the celestial equator, is divided into two regions. The main region uses 270 deg2 of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5 m telescope. We confirm a total of 49 clusters to z ≈ 1.3, of which 22 (all at z > 0.55) are new discoveries. For the second region, the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z ≈ 0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richness and SZ-derived mass. We also present X-ray fluxes and luminosities from the ROSAT All Sky Survey which confirm that this is a massive sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z = 1.1 (photometric), has an integrated XMM-Newton X-ray temperature of kTX = 7.9 ± 1.0 keV and combined mass of M 200a = 8.2+3.3–2.5 × 1014 h –170 M ☉, placing it among the most massive and X-ray-hot clusters known at redshifts beyond z = 1. We also highlight the optically rich cluster ACT-CL J2327.4–0204 (RCS2 2327) at z = 0.705 (spectroscopic) as the most significant detection of the whole equatorial sample with a Chandra-derived mass of M 200a = 1.9+0.6–0.4 × 1015 h –170 M ☉, placing it in the ranks of the most massive known clusters like El Gordo and the Bullet Cluster.

  12. THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES OF SUNYAEV-ZEL'DOVICH EFFECT CLUSTERS ON THE CELESTIAL EQUATOR {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Menanteau, Felipe; Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Sifon, Cristobal; Barrientos, L. Felipe; Duenner, Rolando; Infante, Leopoldo [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Battaglia, Nicholas [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Bond, J. Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Crichton, Devin; Gralla, Megan; Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Dicker, Simon [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban (South Africa); Kosowsky, Arthur [Physics and Astronomy Department, University of Pittsburgh, 100 Allen Hall, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marsden, Danica [Department of Physics, University of California Santa Barbara, CA 93106 (United States); and others

    2013-03-01

    We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 deg{sup 2} centered on the celestial equator, is divided into two regions. The main region uses 270 deg{sup 2} of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5 m telescope. We confirm a total of 49 clusters to z Almost-Equal-To 1.3, of which 22 (all at z > 0.55) are new discoveries. For the second region, the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z Almost-Equal-To 0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richness and SZ-derived mass. We also present X-ray fluxes and luminosities from the ROSAT All Sky Survey which confirm that this is a massive sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z = 1.1 (photometric), has an integrated XMM-Newton X-ray temperature of kT{sub X} = 7.9 {+-} 1.0 keV and combined mass of M {sub 200a} = 8.2{sup +3.3} {sub -2.5} Multiplication-Sign 10{sup 14} h {sup -1} {sub 70} M {sub Sun }, placing it among the most massive and X-ray-hot clusters known at redshifts beyond z = 1. We also highlight the optically rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z = 0.705 (spectroscopic) as the most significant detection of the whole equatorial sample with a Chandra-derived mass of M {sub 200a} = 1.9{sup +0.6} {sub -0.4} Multiplication-Sign 10{sup 15} h {sup -1} {sub 70} M {sub Sun }, placing it in the ranks of the most massive known clusters like El Gordo and the Bullet Cluster.

  13. Chandra X-Ray Spectral Analysis of Cooling Flow Clusters, 2A 0335+096 and Abell 2199

    CERN Document Server

    Kawano, N; Fukazawa, Y; Kawano, Naomi; Ohto, Akimitsu; Fukazawa, Yasushi

    2003-01-01

    We report on a spatially resolved analysis of Chandra X-ray data on a nearby typical cooling flow cluster of galaxies 2A 0335+096, together with A 2199 for a comparison. As recently found in the cores of other clusters, the temperature around the central part of 2A 0335+096 is 1.3--1.5 keV, which is higher than that inferred from the cooling flow picture. Furthermore, the absorption column density is almost constant against the radius in 2A 0335+096; there is no evidence of excess absorption up to 200--250 kpc. This indicates that no significant amount of cold material, which has cooled down, is present. These properties are similar to those of A 2199. Since the cooling time in the central part is much shorter than the age of the clusters, a heating mechanism, which weakens the effect of radiative cooling, is expected to be present in the central part of both clusters of galaxies. Both 2A 0335+096 and A 2199 have radio jets associated with their cD galaxy. We discuss the possibility of heating processes cause...

  14. Precision cosmology with a combination of wide and deep Sunyaev-Zeldovich cluster surveys

    OpenAIRE

    Khedekar, Satej; Majumdar, Subhabrata; Das, Sudeep

    2010-01-01

    We show the advantages of a wedding cake design for Sunyaev-Zel'dovich cluster surveys. We show that by dividing up a cluster survey into a wide and a deep survey, one can essentially recover the cosmological information that would be diluted in a single survey of the same duration due to the uncertainties in our understanding of cluster physics. The parameter degeneracy directions of the deep and wide surveys are slightly different, and combining them breaks these degeneracies effectively. A...

  15. Chandra observation of the cluster environment of a WAT radio source in Abell 1446

    NARCIS (Netherlands)

    E.M. Douglass; E.L. Blanton; T.E. Clarke; C.L. Sarazin; M. Wise

    2008-01-01

    Wide-angle tail (WAT) radio sources are often found in the centers of galaxy clusters where intracluster medium (ICM) ram pressure may bend the lobes into their characteristic C-shape. We examine the low-redshift (z = 0.1035) cluster Abell 1446, host to the WAT radio source 1159+583. The cluster exh

  16. Simultaneous Constraints on Cosmology and Photometric Redshift Bias from Weak Lensing and Galaxy Clustering

    CERN Document Server

    Samuroff, S; Bridle, SL; Zuntz, J; MacCrann, N; Krause, E; Eifler, T; Kirk, D

    2016-01-01

    We investigate the expected cosmological constraints from a combination of weak lensing and large-scale galaxy clustering using realistic redshift distributions. Introducing a systematic bias in the weak lensing redshift distributions (of 0.05 in redshift) produces a $>2\\sigma$ bias in the recovered matter power spectrum amplitude and dark energy equation of state, for preliminary Stage III surveys. We demonstrate that these cosmological errors can be largely removed by marginalising over unknown biases in the assumed weak lensing redshift distributions, if we assume high quality redshift information for the galaxy clustering sample. Furthermore the cosmological constraining power is mostly retained despite removing much of the information on the weak lensing redshift distribution biases. We show that this comes from complementary degeneracy directions between cosmic shear and the combination of galaxy clustering with cross-correlation between shear and galaxy number density. Finally we examine how the self-c...

  17. The Effects of Relativistic Corrections on Cosmological Parameter Estimations from SZE Cluster Surveys

    CERN Document Server

    Fan, Z H

    2003-01-01

    Sunyaev-Zel'dovich Effect (SZE) cluster surveys are anticipated to yield tight constraints on cosmological parameters such as the equation of state of dark energy. In this paper, we study the impact of relativistic corrections of the thermal SZE on the cluster number counts expected from a cosmological model and thus, assuming that other cosmological parameters are known to high accuracies, on the determination of the $w$ parameter and $\\sigma_8$ from a SZE cluster survey, where $w=p/\\rho$ with $p$ the pressure and $\\rho$ the density of dark energy, and $\\sigma_8$ is the rms of the extrapolated linear density fluctuation smoothed over $8\\hbox{Mpc}h^{-1}$. For the purpose of illustrating the effects of relativistic corrections, our analyses mainly focus on $\

  18. COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG

    International Nuclear Information System (INIS)

    We use the abundance and weak-lensing mass measurements of the Sloan Digital Sky Survey maxBCG cluster catalog to simultaneously constrain cosmology and the richness-mass relation of the clusters. Assuming a flat ΛCDM cosmology, we find σ8(Ωm/0.25)0.41 = 0.832 ± 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak-lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness-mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find σ8 = 0.807 ± 0.020 and Ωm = 0.265 ± 0.016, an improvement of nearly a factor of 2 relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically selected cluster samples to produce precision constraints on cosmological parameters.

  19. Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Battye, R; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Melin, J -B; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Roman, M; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Weller, J; White, S D M; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise of six, and is more than a factor of two larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, $1-b$. In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as a third independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of t...

  20. Cosmology

    International Nuclear Information System (INIS)

    An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle

  1. Cosmology

    CERN Document Server

    Rubakov, V A

    2014-01-01

    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.

  2. Testing Modified Dark Matter with Galaxy Clusters: Does Dark Matter know about the Cosmological Constant?

    CERN Document Server

    Edmonds, Doug; Ho, Chi man; Minic, Djordje; Ng, Y Jack; Takeuchi, Tatsu

    2016-01-01

    We discuss the possibility that the cold dark matter mass profiles contain information on the cosmological constant, and that such information constrains the nature of cold dark matter (CDM). We call this approach Modified Dark Matter (MDM). In particular, we examine the ability of MDM to explain the observed mass profiles of 13 galaxy clusters. Using general arguments from gravitational thermodynamics, we provide a theoretical justification for our MDM mass profile and successfully compare it to the NFW mass profiles both on cluster and galactic scales. Our results suggest that indeed the CDM mass profiles contain information about the cosmological constant in a non-trivial way.

  3. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% ± 6% intrinsic scatter at r500WL (the pseudo-pressure YX yields a consistent scatter of 22% ± 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (X does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r500WL; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r2500WL and r500WL, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  4. Chandra Detection of X-ray Emission from Ultra-compact Dwarf Galaxies and Extended Star Clusters

    CERN Document Server

    Hou, Meicun

    2016-01-01

    We have conducted a systematic study of X-ray emission from ultra-compact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival {\\sl Chandra} observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5-8 keV luminosities above $\\sim$$5\\times10^{36} {\\rm~erg~s^{-1}}$ are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, $(3.3\\pm0.8)$\\%, while lower than that of the X-ray-detected GCs [($7.0\\pm0.4)$\\%], is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5-8 keV luminosity...

  5. A method to search for bulk motions in the ICM with {\\sl Chandra} CCD spectra: application to the Bullet cluster

    CERN Document Server

    Liu, Ang; Tozzi, Paolo; Zhu, Zong-Hong

    2015-01-01

    We propose a strategy to search for bulk motions in the intracluster medium (ICM) of merging clusters based on {\\sl Chandra} CCD data. Our goal is to derive robust measurements of the average redshift of projected ICM regions obtained from the centroid of the $K_\\alpha$ line emission. We thoroughly explore the effect of the unknown temperature structure along the line of sight to accurately evaluate the systematic uncertainties on the ICM redshift. We apply our method to the "Bullet cluster" (1E~0657-56). We directly identify 23 independent regions on the basis of the surface brightness contours, and measure the redshift of the ICM averaged along the line of sight in each. We find that the redshift distribution across these regions is marginally inconsistent with the null hypothesis of a constant redshift or no bulk motion in the ICM, at a confidence level of about $2\\, \\sigma$. We tentatively identify the regions most likely affected by bulk motions and find a maximum velocity gradient of about $(46\\pm 13)$ ...

  6. Probing cosmology with weak lensing selected clusters II: Dark energy and f(R) gravity models

    CERN Document Server

    Shirasaki, Masato; Yoshida, Naoki

    2015-01-01

    Ongoing and future wide-field galaxy surveys can be used to locate a number of clusters of galaxies with cosmic shear measurement alone. We study constraints on cosmological models using statistics of weak lensing selected galaxy clusters. We extend our previous theoretical framework to model the statistical properties of clusters in variants of cosmological models as well as in the standard LCDM model. Weak lensing selection of clusters does not rely on the conventional assumption such as the relation between luminosity and mass and/or hydrostatic equilibrium, but a number of observational effects compromise robust identification. We use a large set of realistic mock weak-lensing catalogs as well as analytic models to perform a Fisher analysis and make forecast for constraining two competing cosmological models, wCDM model and f(R) model proposed by Hu & Sawicki, with our lensing statistics. We show that weak lensing selected clusters are excellent probe of cosmology when combined with cosmic shear power...

  7. Analytical model for non-thermal pressure in galaxy clusters II: Comparison with cosmological hydrodynamics simulation

    CERN Document Server

    Shi, Xun; Nelson, Kaylea; Nagai, Daisuke

    2014-01-01

    Turbulent gas motion inside galaxy clusters provides a non-negligible non-thermal pressure support to the intracluster gas. If not corrected, it leads to a systematic bias in the estimation of cluster masses from X-ray and Sunyaev-Zel'dovich (SZ) observations assuming hydrostatic equilibrium, and affects interpretation of measurements of the SZ power spectrum and observations of cluster outskirts from ongoing and upcoming large cluster surveys. Recently, Shi & Komatsu (2014) developed an analytical model for predicting the radius, mass, and redshift dependence of the non-thermal pressure contributed by the kinetic random motions of intracluster gas sourced by the cluster mass growth. In this paper, we compare the predictions of this analytical model to a state-of-the-art cosmological hydrodynamics simulation. As different mass growth histories result in different non-thermal pressure, we perform the comparison on 65 simulated galaxy clusters on a cluster-by-cluster basis. We find an excellent agreement be...

  8. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    OpenAIRE

    Hofmann, F.; Sanders, J. S.; Nandra, K.; Clerc, N; De Gaspari, M.

    2016-01-01

    Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter candidate. We aim at putting constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing-angle in a 7.1 keV sterile neutrino dark matter scenario. For a sample of 33 high-mass clusters of galaxie...

  9. Diffuse stellar components in cosmological simulations: From the outskirts of galaxies to intra cluster light

    Science.gov (United States)

    Dolag, Klaus; Remus, Rhea-Silvia; Teklu, Adelheid F.

    2015-08-01

    Recent, cosmological hydrodynamical simulations can cover very large dynamical ranges in the resolved structures, while following a large variety of physical processes which are important for the formation of galaxies and galaxy clusters. I will present the results from the "Magneticum" set of cosmological simulations with special emphasis on the outer stellar halos of galaxies and galaxy clusters. Our investigations show that -- despite the fact that the galaxies formed in our simulations can clearly be classified into different morphological types -- the outer stellar envelope shows a universal stellar profile, resulting in outer slopes which are very well in agreement with the still rare observational data currently available. For galaxy clusters, we find that despite the fact that the ICL component always shows a clear dynamical seperation from the BCG, the stellar profile in many galaxy clusters is characterized by a single sersic profile, covering the BCG and the ICL, very much in agreement with current, observational results.

  10. A deep Chandra observation of the poor cluster AWM4 - II. The role of the radio jets in enriching the intra-cluster medium

    CERN Document Server

    O'Sullivan, Ewan; David, Laurence P; Vrtilek, Jan M; Raychaudhury, Somak

    2010-01-01

    We use a Chandra observation of the poor cluster AWM4 to map the temperature and abundance of the intra-cluster medium, so as to examine the influence of the central radio galaxy on its environment. While the cluster core is generally enriched to near-solar abundances, we find evidence of super-solar abundances correlated with the radio jets, extending ~35 kpc from the core of the central dominant galaxy NGC 6051 along its minor axis. We conclude that the enriched gas has been transported out of the central galaxy through the action of the radio source. We estimate the excess mass of iron in the entrained gas to be ~1.4x10^6 Msol, and find that this can be produced in the core of NGC 6051 within the timescale of the AGN outburst. The energy required to transport this gas to its current location is ~4.5x10^57 erg, a significant fraction of the estimated total mechanical energy output of the AGN, though this estimate is dependent on the degree of enrichment of the uplifted gas. The larger near-solar abundance r...

  11. Joint Analysis of Cluster Observations: II. Chandra/XMM-Newton X-ray and Weak Lensing Scaling Relations for a Sample of 50 Rich Clusters of Galaxies

    CERN Document Server

    Mahdavi, A; Babul, A; Bildfell, C; Jeltema, T; Henry, J P

    2012-01-01

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15 +/- 6% intrinsic scatter at r500. The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small BCG to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller <10% deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure YX does not discrimi...

  12. Cluster Structure in Cosmological Simulations I: Correlation to Observables, Mass Estimates, and Evolution

    OpenAIRE

    Jeltema, Tesla E.; Hallman, Eric J.; Burns, Jack O.; Motl, Patrick M

    2007-01-01

    We use Enzo, a hybrid Eulerian AMR/N-body code including non-gravitational heating and cooling, to explore the morphology of the X-ray gas in clusters of galaxies and its evolution in current generation cosmological simulations. We employ and compare two observationally motivated structure measures: power ratios and centroid shift. Overall, the structure of our simulated clusters compares remarkably well to low-redshift observations, although some differences remain that may point to incomple...

  13. The formation of the brightest cluster galaxies in cosmological simulations: the case for AGN feedback

    OpenAIRE

    Martizzi, Davide; Teyssier, Romain; Moore, Ben

    2011-01-01

    We use 500 pc resolution cosmological simulations of a Virgo-like galaxy cluster to study the properties of the brightest cluster galaxy (BCG) that forms at the center of the halo. We compared two simulations; one incorporating only supernovae feedback and a second that also includes prescriptions for black hole growth and the resulting AGN feedback from gas accretion. As previous work has shown, with supernovae feedback alone we are unable to reproduce any of the observed properties of massi...

  14. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.;

    2013-01-01

    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev-Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-...

  15. Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses

    CERN Document Server

    Caldwell, C E; Baldry, I K; Collins, C A; Schaye, J; Bird, S

    2016-01-01

    The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmological parameters. A number of recent studies using this probe have claimed tension with the cosmology preferred by the analysis of the Planck primary CMB data, in the sense that there are fewer clusters observed than predicted based on the primary CMB cosmology. One possible resolution to this problem is systematic errors in the absolute halo mass calibration in cluster studies, which is required to convert the standard theoretical prediction (the halo mass function) into counts as a function of the observable (e.g., X-ray luminosity, Sunyaev-Zel'dovich flux, optical richness). Here we propose an alternative strategy, which is to directly compare predicted and observed cluster counts as a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass but, unlike mass, it can also be directly observed, ...

  16. Cosmological interpretation of large X-ray cluster surveys with CR-HR diagrams

    Science.gov (United States)

    Clerc, Nicolas

    2012-09-01

    Large samples of galaxy clusters collected in X-ray observations are able to tightly constrain cosmological scenarios by probing the mass function of large structures and its evolution with time. It is clear now that selection effects, mass observable relation, cosmological model and related uncertainties must be jointly apprehended in order to fully and correctly exploit such surveys. The CR-HR method relies on X-ray observables only -- Count-Rates and Hardness Ratios of clusters in different energy bands -- and thus bypasses the computation of mass for each individual cluster. By modeling the observed sample of cluster properties down to the instrumental level, it self-consistently includes the various model uncertainties. I will show how it can be applied to large cosmological X-ray surveys by presenting forecasts in realistic situations. Then I will present the results we obtained from our large (~90 deg^2), serendipitous XMM-Newton cluster survey, X-CLASS. I will put particular emphasis on cluster X-ray scaling laws, and underline some inconsistencies with recent analyses. I will finally discuss the applicability of this method to a large upcoming survey, namely the eRosita full-sky survey.

  17. Probing cosmology and galaxy cluster structure with the Sunyaev-Zel'dovich decrement versus X-ray temperature scaling relation

    OpenAIRE

    Shang, Cien; Haiman, Zoltan; Verde, Licia

    2009-01-01

    Scaling relations among galaxy cluster observables, which will become available in large future samples of galaxy clusters, could be used to constrain not only cluster structure, but also cosmology. We study the utility of this approach, employing a physically motivated parametric model to describe cluster structure, and applying it to the expected relation between the Sunyaev-Zel'dovich decrement (S_\

  18. The Atacama Cosmology Telescope: ACT-CL J0102-4915 'EL GORDO', A Massive Merging Cluster at Redshift 0.87

    Science.gov (United States)

    Menanteau, Felipe; Hughes, John P.; Sifon, Cristobal; Hilton, Matt; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Baker, Andrew J.; Bond, John R.; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Hajian, Amir; Hincks, Adam D.; Kosowsky, Arthur; Marsden, Danica; Marriage, Tobias A.; Moodley, Kavilan; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Reese, Erik D.; Sehgal, Neelima; Seivers, Jon; Spergel, David N.; Staggs, Suzanne T.; Wollack, Edward

    2012-01-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(sub gal) = 1321+/-106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(sub X) = 14.5+/-1.0 keV and 0.5-2.0 keV band luminosity of L(sub X) = (2.19+/-0.11)×10(sup 45) h(sup -2)(sub 70) erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(sub X), and integrated SZ distortion, we estimate a cluster mass of M(sub 200a) = (2.16+/-0.32)×1015 h(sup -1)(sub 70) solar mass. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6+/-0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22+/-6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift

  19. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94131 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Babul, Arif; Bildfell, Chris [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Jeltema, Tesla [Santa Cruz Institute for Particle Physics, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Henry, J. Patrick [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-04-20

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  20. The abundance of galaxy clusters in MOND: Cosmological simulations with massive neutrinos

    CERN Document Server

    Angus, Garry W

    2011-01-01

    We present a new Particle-Mesh cosmological N-body code for accurately solving the modified Poisson equation of the Quasi Linear formulation of MOND. We generate initial conditions for the Angus (2009) cosmological model, which is identical to LCDM except that the cold dark matter is switched for a single species of thermal sterile neutrinos. We set the initial conditions at z=250 for a (512 Mpc/h)^3 box with 256^3 particles and we evolve them down to z=0. We clearly demonstrate the necessity of MOND for developing the large scale structure in a hot dark matter cosmology and contradict the naive expectation that MOND cannot form galaxy clusters. We find that the correct order of magnitude of X-ray clusters (with T_X > 4.5 keV) can be formed, but that we overpredict the number of very rich clusters and seriously underpredict the number of lower mass clusters. The latter is a shortcoming of the resolution of our simulations, whereas we suggest that the over production of very rich clusters might be prevented by...

  1. Resolving Globular Cluster Formation within a Cosmological Context

    CERN Document Server

    Boley, Aaron C; Read, Justin; Teyssier, Romain

    2009-01-01

    We place constraints on the formation redshifts for blue globular clusters (BGCs), independent of the details of hydrodynamics and population III star formation. We argue that BGCs and stellar halos have a common origin and that simulations of 1 Mpc boxes up to $z\\sim10$ must resolve BGC formation. We present a proof-of-concept simulation that captures the formation of globular-like star clusters.

  2. Cosmological constraints from Sunyaev-Zeldovich cluster counts: An approach to account for missing redshifts

    Energy Technology Data Exchange (ETDEWEB)

    Bonaldi, A.; Battye, R. A.; Brown, M. L., E-mail: anna.bonaldi@manchester.ac.uk [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2014-05-10

    The accumulation of redshifts provides a significant observational bottleneck when using galaxy cluster surveys to constrain cosmological parameters. We propose a simple method to allow the use of samples where there is a fraction of the redshifts that are not known. The simplest assumption is that the missing redshifts are randomly extracted from the catalog, but the method also allows one to take into account known selection effects in the accumulation of redshifts. We quantify the reduction in statistical precision of cosmological parameter constraints as a function of the fraction of missing redshifts for simulated surveys, and also investigate the impact of making an incorrect assumption for the distribution of missing redshifts.

  3. Cosmological constraints from Sunyaev-Zeldovich cluster counts: An approach to account for missing redshifts

    International Nuclear Information System (INIS)

    The accumulation of redshifts provides a significant observational bottleneck when using galaxy cluster surveys to constrain cosmological parameters. We propose a simple method to allow the use of samples where there is a fraction of the redshifts that are not known. The simplest assumption is that the missing redshifts are randomly extracted from the catalog, but the method also allows one to take into account known selection effects in the accumulation of redshifts. We quantify the reduction in statistical precision of cosmological parameter constraints as a function of the fraction of missing redshifts for simulated surveys, and also investigate the impact of making an incorrect assumption for the distribution of missing redshifts.

  4. The LABOCA Survey of the Extended Chandra Deep Field South: Clustering of submillimetre galaxies

    CERN Document Server

    Hickox, Ryan C; Smail, Ian; Myers, A D; Alexander, D M; Swinbank, A M; Danielson, A L R; Stott, J P; Chapman, S C; Coppin, K E K; Dunlop, J S; Gawiser, E; Lutz, D; van der Werf, P; Weiss, A

    2011-01-01

    We present a measurement of the spatial clustering of submillimetre galaxies (SMGs) at z = 1-3. Using data from the 870 micron LESS survey, we employ a novel technique to measure the cross-correlation between SMGs and galaxies, accounting for the full probability distributions for photometric redshifts of the galaxies. From the observed projected two-point cross-correlation function we derive the linear bias and characteristic dark matter (DM) halo masses for the SMGs. We detect clustering in the cross-correlation between SMGs and galaxies at the > 4 sigma level. For the SMG autocorrelation we obtain r_0 = 7.7 (+1.8,-2.3) h^-1 Mpc, and derive a corresponding DM halo mass of log(M_halo [h^-1 M_sun]) = 12.8 (+0.3,-0.5). Based on the evolution of DM haloes derived from simulations, we show that that the z = 0 descendants of SMGs are typically massive (~2-3 L*) elliptical galaxies residing in moderate- to high-mass groups (log(M_halo [h^-1 M_sun]) = 13.3 (+0.3,-0.5). From the observed clustering we estimate an SM...

  5. Cluster Structure in Cosmological Simulations. I. Correlation to Observables, Mass Estimates, and Evolution

    Science.gov (United States)

    Jeltema, Tesla E.; Hallman, Eric J.; Burns, Jack O.; Motl, Patrick M.

    2008-07-01

    We use Enzo, a hybrid Eulerian adaptive mesh refinement/N-body code including nongravitational heating and cooling, to explore the morphology of the X-ray gas in clusters of galaxies and its evolution in current-generation cosmological simulations. We employ and compare two observationally motivated structure measures: power ratios and centroid shift. Overall, the structure of our simulated clusters compares remarkably well to low-redshift observations, although some differences remain that may point to incomplete gas physics. We find no dependence on cluster structure in the mass-observable scaling relations, TX-M and YX-M, when using the true cluster masses. However, estimates of the total mass based on the assumption of hydrostatic equilibrium, as assumed in observational studies, are systematically low. We show that the hydrostatic mass bias strongly correlates with cluster structure and, more weakly, with cluster mass. When the hydrostatic masses are used, the mass-observable scaling relations and gas mass fractions depend significantly on cluster morphology, and the true relations are not recovered even if the most relaxed clusters are used. We show that cluster structure, via the power ratios, can be used to effectively correct the hydrostatic mass estimates and mass scaling relations, suggesting that we can calibrate for this systematic effect in cosmological studies. Similar to observational studies, we find that cluster structure, particularly centroid shift, evolves with redshift. This evolution is mild but will lead to additional errors at high redshift. Projection along the line of sight leads to significant uncertainty in the structure of individual clusters: less than 50% of clusters which appear relaxed in projection based on our structure measures are truly relaxed.

  6. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    CERN Document Server

    Hofmann, F; Nandra, K; Clerc, N; Gaspari, M

    2016-01-01

    Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter candidate. We aim at putting constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing-angle in a 7.1 keV sterile neutrino dark matter scenario. For a sample of 33 high-mass clusters of galaxies we merge all observations from the Chandra data archive. Each cluster has more than 100 ks of combined exposure. The resulting high signal-to-noise spectra are used to constrain the flux of an unidentified line emission at 3.55 keV in the individual spectra and a merged spectrum of all clusters. We obtained very detailed spectra around the 3.55 keV range and limits on an unidentified emission line. Assuming all dark matter were made of 7.1 keV sterile neutrinos the upper limits on the mixing angle are $\\rm{sin^2(2\\Theta...

  7. The Velocity Distribution Function of Galaxy Clusters as a Cosmological Probe

    CERN Document Server

    Ntampaka, M; Cisewski, J; Price, L C

    2016-01-01

    We present a new approach for quantifying the abundance of galaxy clusters and constraining cosmological parameters using dynamical measurements. In the standard method, galaxy line-of-sight (LOS) velocities, $v$, or velocity dispersions are used to infer cluster masses, $M$, in order to quantify the halo mass function (HMF), $dn(M)/d\\log(M)$, which is strongly affected by mass measurement errors. In our new method, the probability distribution of velocities for each cluster in the sample are summed to create a new statistic called the velocity distribution function (VDF), $dn(v)/dv$. The VDF can be measured more directly and precisely than the HMF and it can also be robustly predicted with cosmological simulations which capture the dynamics of subhalos or galaxies. We apply these two methods to mock cluster catalogs and forecast the bias and constraints on the matter density parameter $\\Omega_m$ and the amplitude of matter fluctuations $\\sigma_8$ in flat $\\Lambda$CDM cosmologies. For an example observation o...

  8. Last stand before WMAP: Cosmological parameters from lensing, CMB, and galaxy clustering

    International Nuclear Information System (INIS)

    Cosmic shear measurements have now improved to the point where they deserve to be treated on par with cosmic microwave background (CMB) and galaxy clustering data for cosmological parameter analysis, using the full measured aperture mass variance curve rather than a mere phenomenological parametrization thereof. We perform a detailed 9-parameter analysis of recent lensing [the Red Sequence Cluster Survey (RCS)], CMB (up to Archeops) and galaxy clustering (2dF Collaboration) data, both separately and jointly. CMB and 2dF data are consistent with a simple flat adiabatic scale-invariant model with ΩΛ=0.72±0.09, h2Ωcdm=0.115±0.013, h2Ωb=0.024±0.003, and a hint of reionization around z∼8. Lensing helps further tighten these constraints, but reveals tension regarding the power spectrum normalization: including the RCS survey results raises σ8 significantly and forces other parameters to uncomfortable values. Indeed, σ8 is emerging as the currently most controversial cosmological parameter, and we discuss possible resolutions of this σ8 problem. We also comment on the disturbing fact that many recent analyses (including this one) obtain error bars smaller than the Fisher matrix bound. We produce a CMB power spectrum combining all existing experiments, useful for a 'WMAP versus world' comparison to test how realistic the error estimates have been in the cosmology community. Comparing with the WMAP results shows remarkably good agreement both on the power spectrum and on cosmological parameters, which means that precision cosmology has passed an important test

  9. The Weak Lensing Signal and the Clustering of BOSS Galaxies: Cosmological Constraints

    CERN Document Server

    More, Surhud; Mandelbaum, Rachel; Takada, Masahiro; Spergel, David; Brownstein, Joel; Schneider, Donald P

    2014-01-01

    We perform a joint analysis of the abundance, the clustering and the galaxy-galaxy lensing signal of galaxies from Data Release 11 of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. We fit halo occupation parameters and cosmological parameters ($\\Omega_m$ and $\\sigma_8$) to both of these observables simultaneously, and thus break the degeneracy between galaxy bias and cosmology. The cosmological analysis is the first of its kind to be performed at a redshift as high as 0.53. We present measurements of the clustering signal of galaxies by utilizing various stellar mass threshold samples. The galaxy-galaxy weak lensing signal is obtained by using the shape catalog of background galaxies from the Canada France Hawaii Telescope Legacy Survey, which was made publicly available by the CFHTLenS collaboration, with an area overlap of about 100 deg$^2$. We analyze these measurements in the framework of the halo model. Adopting a flat {\\Lambda}CDM cosmology with priors on $\\Omega_bh^2$, $n_s$ ...

  10. The entropy core in galaxy clusters: numerical and physical effects in cosmological grid simulations

    Science.gov (United States)

    Vazza, F.

    2011-01-01

    A flat distribution of low gas entropy in the core region of galaxy clusters is a feature commonly found in Eulerian cosmological simulations, at variance with most standard simulations of smoothed particle hydrodynamics fashion. From the literature, it is still unclear whether this difference is entirely due to numerical artefacts (e.g. spurious transfer from gravitational energy to thermal energy), physical mechanisms (e.g. enhanced mixing in Eulerian codes) or a mixture of both. This issue is related to many still open lines of research in the characterization of the dynamical evolution of the baryons in galaxy clusters: the origin of the cool-core/non-cool-core bi-modality, the diffusion of metals within galaxy clusters, the interplay between active galactic nuclei (AGN) and the intra-cluster medium, etc. In this work, we aim at constraining to what extent the entropy core is affected by numerical effects, and which are the physical reasons for its production in cosmological runs. To this end, we run a set of 30 high-resolution re-simulations of a ˜3 × 1014 M⊙ h-1 cluster of galaxies with a quiet dynamical history, using modified versions of the cosmological adaptive mesh refinement code ENZO and investigating many possible (physical and numerical) details involved in the production of entropy in simulated galaxy clusters. We report that the occurrence of a flat entropy core in the innermost region of a massive cluster is mainly due to hydrodynamical processes resolved by the numerical code (e.g. shocks and mixing motions) and that additional spurious effects of numerical origin (e.g. artificial heating due to softening effects) affect the size and level of the entropy core only in a minor way. Using Lagrangian tracers we show that the entropy profile of non-radiative simulations is produced by a mechanism of `sorting in entropy' which takes place with regularity during the cluster evolution. The evolution of tracers illustrates that the flat entropy core

  11. Constraining the Cosmological Constant from Large-Scale Redshift-Space Clustering

    OpenAIRE

    Matsubara, Takahiko; Szalay, Alexander S.

    2001-01-01

    We show how the cosmological constant can be estimated from redshift surveys at different redshifts, using maximum-likelihood techniques. The apparent redshift-space clustering on large scales (\\simgt 20 \\himpc) are affected in the radial direction by infall, and curvature influences the apparent correlations in the transverse direction. The relative strengths of the two effects will strongly vary with redshift. Using a simple idealized survey geometry, we compute the smoothed correlation mat...

  12. Cluster Lensing of QSOs as a Probe of LCDM and Dark Energy Cosmologies

    CERN Document Server

    Lopes, A M; Lopes, Ana M.; Miller, Lance

    2004-01-01

    Wide-separation lensed QSOs measure the mass function and evolution of massive galaxy clusters, in a similar way to the cluster mass function deduced from X-ray-selected samples or statistical measurements of the Sunyaev-Zeldovich effect. We compute probabilities of strong lensing of QSOs by galaxy clusters in dark energy cosmologies using semianalytical modelling and explore the sensitivity of the method to various input parameters and assumptions. We highlight the importance of considering both the variation of halo properties with mass, redshift and cosmology and the effect of cosmic scatter in halo concentration. We then investigate the extent to which observational surveys for wide-separation lensed QSOs may be used to measure cosmological parameters such as the fractional matter density Omega_M, the rms linear density fluctuation in spheres of 8 Mpc/h, sigma_8, and the dark energy equation of state parameter w. We find that wide-separation lensed QSOs can measure sigma_8 and Omega_M in an equivalent man...

  13. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    OpenAIRE

    Planck collaboration (incl. M. L. Brown, A. Bonaldi; Noviello, F.

    2014-01-01

    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev-Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Usi...

  14. Precision cosmology with the 2MASS clustering dipole

    CERN Document Server

    Bilicki, Maciej; Hellwing, Wojciech; Jarrett, Thomas; Mamon, Gary

    2012-01-01

    Comparison of peculiar velocities of galaxies with their gravitational accelerations (induced by the density field) is one of the methods to constrain the redshift distortion parameter \\beta=(\\Omega_m^0.55)/b, where \\Omega_m is the non-relativistic matter density parameter and b is the linear bias. In particular, one can use the motion of the Local Group (LG) for that purpose. Its peculiar velocity is known from the dipole component of the cosmic microwave background, whereas its acceleration can be estimated with the use of an all-sky galaxy catalog, from the so-called clustering dipole. At the moment, the biggest dataset of that kind is the Two Micron All Sky Survey Extended Source Catalog (2MASS XSC) containing almost 1 million galaxies and complete up to ~300 Mpc/h. We applied 2MASS data to measure LG acceleration and used two methods to estimate the beta parameter. Both of them yield \\beta~0.4 with an error of several per cent, which is the most precise determination of this parameter from the clustering...

  15. Clusters of Galaxies as Probes for Precision Cosmology: Exploring the Limits using Numerical Simulations

    Science.gov (United States)

    Burns, J. O.; Motl, P. M.; Norman, M. L.; Hallman, E. J.

    2004-12-01

    We critically analyze the role of clusters of galaxies as probes for precision cosmology. Using synthetic observations of simulated clusters viewed through their X-ray emission and thermal Sunyaev-Zeldovich effect (SZE), we reduce the observations to attain measurements of the cluster gas mass and the Hubble constant. We utilize both parametric models such as the isothermal cluster model (and its generalizations to account for varying temperature profiles within the clusters) and non-parametric models that involve the geometric deprojection of the cluster emission assuming spherical symmetry. We are thus able to quantify the possible sources of uncertainty and systematic bias associated with the common simplifying assumptions used in reducing real cluster observations including isothermality and hydrostatic equilibrium. As a specific example, we find that the standard isothermal cluster model yields estimates of the Hubble constant that are systematically biased to low values. When we allow the temperature to vary in space, as in the polytropic cluster model, the X-ray and thermal SZE observations can be combined to produce an unbiased estimator of H0.

  16. Cosmology and Astrophysics from Relaxed Galaxy Clusters V: Consistency with Cold Dark Matter Structure Formation

    CERN Document Server

    Mantz, Adam B; Morris, R Glenn

    2016-01-01

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the Cold Dark Matter (CDM) paradigm. We present constraints on the concentration--mass relation for massive clusters, finding a power-law mass dependence with a slope of $\\kappa_m=-0.16\\pm0.07$, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with $1+z$ of $\\kappa_\\zeta=-0.17\\pm0.26$), with an intrinsic scatter of $\\sigma_{\\ln c}=0.16\\pm0.03$. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically $\\sim50$kpc--1Mpc), and test for departures from the simple Navarro, Frenk & White (NFW...

  17. Cosmology and Astrophysics from Relaxed Galaxy Clusters III: Thermodynamic Profiles and Scaling Relations

    CERN Document Server

    Mantz, Adam B; Morris, R Glenn; Schmidt, Robert W

    2016-01-01

    This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (i.e., massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and center-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behavior of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance, providing the first observati...

  18. Deep XMM and Chandra observations of ClJ1226.9+3332: A detailed X-ray mass analysis of a z=0.89 galaxy cluster

    CERN Document Server

    Maughan, B J; Jones, L R; Van Speybroeck, L

    2006-01-01

    Deep XMM and Chandra observations of ClJ1226.9+3332 at z=0.89 have enabled the most detailed X-ray mass analysis of any such high-redshift galaxy cluster. The XMM temperature profile of the system shows no sign of central cooling, with a hot core and a radially declining profile. A temperature map shows asymmetry with a hot region that appears to be associated with a subclump of galaxies at the cluster redshift, but is not visible in the X-ray surface brightness. This is likely to be result of a merger event in the cluster, but does not appear to significantly affect the overall temperature profile. The XMM temperature profile, and combined Chandra and XMM emissivity profile allowed precise measurements of the global properties of ClJ1226.9+3332; we find kT=10.4+/-0.6keV, Z=0.16+/-0.05\\Zsol, and M=5.2^{+1.0}_{-0.8}x10^{14}Msol. We obtain profiles of the metallicity, entropy, cooling time and gas fraction, and find a high concentration parameter for the total density profile of the system. The global propertie...

  19. The discovery of lensed radio and X-ray sources behind the Frontier Fields cluster MACS J0717.5+3745 with the JVLA and Chandra

    CERN Document Server

    van Weeren, R J; Jones, C; Forman, W R; Andrade-Santos, F; Bonafede, A; Brüggen, M; Bulbul, E; Clarke, T E; Churazov, E; David, L; Dawson, W A; Donahue, M; Goulding, A; Kraft, R P; Mason, B; Merten, J; Mroczkowski, T; Murray, S S; Nulsen, P E J; Rosati, P; Roediger, E; Randall, S W; Sayers, J; Umetsu, K; Vikhlinin, A; Zitrin, A

    2015-01-01

    We report on high-resolution JVLA and Chandra observations of the HST Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0-6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample we find 7 lensed sources with amplification factors larger than $2$. None of these sources are identified as multiply-lensed. Based on the radio luminosities, the majority of these sources are likely star forming galaxies with star formation rates of 10-50 M$_\\odot$ yr$^{-1}$ located at $1 \\lesssim z \\lesssim 2$. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely AGN, given their $2-10$ keV X-ray luminosities of $\\sim 10^{43-44}$ erg s$^{-1}$. From the derived radio luminosity function, we find evidence...

  20. Chandra Observation of the Cluster of Galaxies MS 0839.9+2938 at z=0.194: the Central Excess Iron and SN Ia Enrichment

    OpenAIRE

    Wang, Yu; Xu, Haiguang; Zhang, Zhongli; Xu, Yueheng; Wu, Xiang-Ping; Xue, Sui-Jian; Li, Zongwei

    2005-01-01

    We present the Chandra study of the intermediately distant cluster of galaxies MS 0839.9+2938. By performing both the projected and deprojected spectral analyses, we find that the gas temperature is approximately constant at about 4 keV in 130-444h_70^-1 kpc. In the inner regions, the gas temperature descends towards the center, reaching ~ 0.2. We argue that most of the excess iron should have been contributed by SNe Ia. By utilizing the observed SN Ia rate and stellar mass loss rate, we esti...

  1. Halo mass function: baryon impact, fitting formulae, and implications for cluster cosmology

    Science.gov (United States)

    Bocquet, Sebastian; Saro, Alex; Dolag, Klaus; Mohr, Joseph J.

    2016-03-01

    We use a set of hydrodynamical and dark matter-only (DMonly) simulations to calibrate the halo mass function (HMF). We explore the impact of baryons, propose an improved parametrization for spherical overdensity masses, and identify differences between our DMonly HMF and previously published HMFs. We use the Magneticum simulations, which are well suited because of their accurate treatment of baryons, high resolution, and large cosmological volumes of up to (3818 Mpc)3. Baryonic effects globally decrease the masses of galaxy clusters, which, at a given mass, results in a decrease of their number density. This effect vanishes at high redshift z ˜ 2 and for high masses M200 m ≳ 1014 M⊙. We perform cosmological analyses of three idealized approximations to the cluster surveys by the South Pole Telescope (SPT), Planck, and eROSITA. We pursue two main questions. (1) What is the impact of baryons? - for the SPT-like and the Planck-like samples, the impact of baryons on cosmological results is negligible. In the eROSITA-like case, however, neglecting the baryonic impact leads to an underestimate of Ωm by about 0.01, which is comparable to the expected uncertainty from eROSITA. (2) How does our DMonly HMF compare with previous work? - for the Planck-like sample, results obtained using our DMonly HMF are shifted by Δ(σ8) ≃ Δ(σ8(Ωm/0.27)0.3) ≃ 0.02 with respect to results obtained using the Tinker et al. fit. This suggests that using our HMF would shift results from Planck clusters towards better agreement with cosmic-microwave-background anisotropy measurements. Finally, we discuss biases that can be introduced through inadequate HMF parametrizations that introduce false cosmological sensitivity.

  2. Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters

    International Nuclear Information System (INIS)

    We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes selected using the spherical overdensity (SO) criterion is well reproduced by the fitting formula of Tinker et al. (2008) once the cold dark matter power spectrum is considered instead of the total matter power, as it is usually done. The differences between the two implementations, i.e. using Pcdm(k) instead of Pm(k), are more pronounced for large values of the neutrino masses and in the high end of the halo mass function: in particular, the number of massive haloes is higher when Pcdm(k) is considered rather than Pm(k). As a quantitative application of our findings we consider a Planck-like SZ-clusters survey and show that the differences in predicted number counts can be as large as 30% for ∑mν = 0.4 eV. Finally, we use the Planck-SZ clusters sample, with an approximate likelihood calculation, to derive Planck-like constraints on cosmological parameters. We find that, in a massive neutrino cosmology, our correction to the halo mass function produces a shift in the σ8(Ωm/0.27)γ relation which can be quantified as Δγ ∼ 0.05 and Δγ ∼ 0.14 assuming one (Nν = 1) or three (Nν = 3) degenerate massive neutrino, respectively. The shift results in a lower mean value of σ8 with Δσ8 = 0.01 for Nν = 1 and Δσ8 = 0.02 for Nν = 3, respectively. Such difference, in a cosmology with massive neutrinos, would increase the tension between cluster abundance and Planck CMB measurements

  3. Cosmological Tests Using the Angular Size of Galaxy Clusters

    CERN Document Server

    Wei, Jun-Jie; Melia, Fulvio

    2014-01-01

    We use measurements of the galaxy-cluster angular size versus redshift to test and compare the standard model (LCDM) and the R_h=ct Universe. We show that the latter fits the data with a reduced chi^2_dof=0.786 for a Hubble constant H_0= 72.6 (-3.4+3.8) km/s/Mpc, and H_0 is the sole parameter in this model. By comparison, the optimal flat LCDM model, with two free parameters (including Omega_m=0.50 and H_0=73.9 (-9.5+10.6) km/s/Mpc), fits the angular-size data with a reduced chi^2_dof=0.806. On the basis of their chi^2_dof values alone, both models appear to account for the data very well in spite of the fact that the R_h=ct Universe expands at a constant rate, while LCDM does not. However, because of the different number of free parameters in these models, selection tools, such as the Bayes Information Criterion, favour R_h=ct over LCDM with a likelihood of ~86% versus ~14%. These results impact the question of galaxy growth at large redshifts. Previous work suggested an inconsistency with the underlying cos...

  4. Challenges for Precision Cosmology with X-ray and Sunyaev-Zeldovich Effect Gas Mass Measurements of Galaxy Clusters

    OpenAIRE

    Hallman, Eric J.; Motl, Patrick M; Burns, Jack O.; Michael L. Norman

    2005-01-01

    We critically analyze the measurement of galaxy cluster gas masses, which is central to cosmological studies that rely on the galaxy cluster gas mass fraction. Using synthetic observations of numerically simulated clusters viewed through their X-ray emission and thermal Sunyaev-Zeldovich effect (SZE), we reduce the observations to obtain measurements of the cluster gas mass. We are thus able to quantify the possible sources of uncertainty and systematic bias associated with the common simplif...

  5. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    Science.gov (United States)

    Hofmann, F.; Sanders, J. S.; Nandra, K.; Clerc, N.; Gaspari, M.

    2016-08-01

    Context. Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter (DM) candidate. Aims: We aim to put constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing angle in a 7.1 keV sterile neutrino DM scenario. Methods: For a sample of 33 high-mass clusters of galaxies, we merge all observations from the Chandra data archive. Each cluster has more than 100 ks of combined exposure. The resulting high signal-to-noise spectra are used to constrain the flux of an unidentified line emission at 3.55 keV in the individual spectra and a merged spectrum of all clusters. Results: We obtained very detailed spectra around the 3.55 keV range and limits on an unidentified emission line. Assuming all DM were made of 7.1 keV sterile neutrinos, the upper limits on the mixing angle are sin2(2Θ) < 10.1×10-11 from ACIS-I and < 40.3×10-11 from ACIS-S data at 99.7 per cent confidence level. Conclusions: We do not find evidence for an unidentified emission line at 3.55 keV. The sample extends the list of objects searched for an emission line at 3.55 keV and will help to identify the best targets for future studies of the potential DM decay line with upcoming X-ray observatories like Hitomi (Astro-H), eROSITA, and Athena.

  6. Brightest Cluster Galaxies in Cosmological Simulations with Adaptive Mesh Refinement: Successes and Failures

    CERN Document Server

    Martizzi, Davide; Moore, Ben

    2014-01-01

    A large sample of cosmological hydrodynamical zoom-in simulations with Adaptive Mesh Refinement (AMR) is analysed to study the properties of simulated Brightest Cluster Galaxies (BCGs). Following the formation and evolution of BCGs requires modeling an entire galaxy cluster, because the BCG properties are largely influenced by the state of the gas in the cluster and by interactions and mergers with satellites. BCG evolution is also deeply influenced by the presence of gas heating sources such as Active Galactic Nuclei (AGNs) that prevent catastrophic cooling of large amounts of gas. We show that AGN feedback is one of the most important mechanisms in shaping the properties of BCGs at low redshift by analysing our statistical sample of simulations with and without AGN feedback. When AGN feedback is included BCG masses, sizes, star formation rates and kinematic properties are closer to those of the observed systems. Some small discrepancies are observed only for the most massive BCGs, an effect that might be du...

  7. HST/Acs Weak-Lensing and Chandra X-Ray Studies of the High-Redshift Cluster MS 1054-0321

    CERN Document Server

    Jee, M J; Ford, H C; Blakeslee, J P; Illingworth, G D; Coe, D A; Tran, K V H

    2005-01-01

    We present Hubble Space Telescope/Advanced Camera for Surveys (ACS) weak-lensing and Chandra X-ray analyses of MS 1054-0321 at z=0.83, the most distant and X-ray luminous cluster in the Einstein Extended Medium-Sensitivity Survey (EMSS). The high-resolution mass reconstruction through ACS weak-lensing reveals the complicated dark matter substructure in unprecedented detail, characterized by the three dominant mass clumps with the four or more minor satellite groups within the current ACS field. The direct comparison of the mass map with the Chandra X-ray image shows that the eastern weak-lensing substructure is not present in the X-ray image and, more interestingly, the two X-ray peaks are displaced away from the hypothesized merging direction with respect to the corresponding central and western mass clumps, possibly because of ram pressure. In addition, as observed in our previous weak-lensing study of another high-redshift cluster CL 0152-1357 at z=0.84, the two dark matter clumps of MS 1054-0321 seem to b...

  8. A Chandra X-ray study of the young star cluster NGC 6231: low-mass population and initial mass function

    CERN Document Server

    Damiani, F; Sciortino, S

    2016-01-01

    NGC6231 is a massive young star cluster, near the center of the Sco OB1 association. While its OB members are well studied, its low-mass population has received little attention. We present high-spatial resolution Chandra ACIS-I X-ray data, where we detect 1613 point X-ray sources. Our main aim is to clarify global properties of NGC6231 down to low masses through a detailed membership assessment, and to study the cluster stars' spatial distribution, the origin of their X-ray emission, the cluster age and formation history, and initial mass function. We use X-ray data, complemented by optical/IR data, to establish cluster membership. The spatial distribution of different stellar subgroups also provides highly significant constraints on cluster membership, as does the distribution of X-ray hardness. We perform spectral modeling of group-stacked X-ray source spectra. We find a large cluster population down to ~0.3 Msun (complete to ~1 Msun), with minimal non-member contamination, with a definite age spread (1-8 ...

  9. On finding galaxy clusters with PLANCK and the spherical collapse model in different dark energy cosmologies

    International Nuclear Information System (INIS)

    One of the main objectives of the PLANCK mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and detection pipeline based on spherical multi-frequency matched filters, that was used to study the expected SZ cluster sample of PLANCK. It turned out that realistic samples will comprise 1000 clusters at low rate of contamination, significantly lower than originally anticipated. Driven by wrong estimates of the impact of early dark energy models on structure formation, we studied the spherical collapse model in dark energy model, finding that models with varying equation-of-state have a negligible impact on the structure formation. Yet, the different expansion history for the different models can be detected via volume effects, when counting objects in a known volume. Furthermore, it turned out that the different expansion history strongly affects the angular SZ power spectra for the various models, making them an interesting tool to distinguish and constrain alternative cosmologies. (orig.)

  10. On finding galaxy clusters with PLANCK and the spherical collapse model in different dark energy cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Waizmann, Jean-Claude

    2010-11-24

    One of the main objectives of the PLANCK mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and detection pipeline based on spherical multi-frequency matched filters, that was used to study the expected SZ cluster sample of PLANCK. It turned out that realistic samples will comprise 1000 clusters at low rate of contamination, significantly lower than originally anticipated. Driven by wrong estimates of the impact of early dark energy models on structure formation, we studied the spherical collapse model in dark energy model, finding that models with varying equation-of-state have a negligible impact on the structure formation. Yet, the different expansion history for the different models can be detected via volume effects, when counting objects in a known volume. Furthermore, it turned out that the different expansion history strongly affects the angular SZ power spectra for the various models, making them an interesting tool to distinguish and constrain alternative cosmologies. (orig.)

  11. Cluster Structure in Cosmological Simulations I: Correlation to Observables, Mass Estimates, and Evolution

    CERN Document Server

    Jeltema, Tesla E; Burns, Jack O; Motl, Patrick M

    2007-01-01

    We use Enzo, a hybrid Eulerian AMR/N-body code including non-gravitational heating and cooling, to explore the morphology of the X-ray gas in clusters of galaxies and its evolution in current generation cosmological simulations. We employ and compare two observationally motivated structure measures: power ratios and centroid shift. Overall, the structure of our simulated clusters compares remarkably well to low-redshift observations, although some differences remain that may point to incomplete gas physics. We find no dependence on cluster structure in the mass-observable scaling relations, T_X-M and Y_X-M, when using the true cluster masses. However, estimates of the total mass based on the assumption of hydrostatic equilibrium, as assumed in observational studies, are systematically low. We show that the hydrostatic mass bias strongly correlates with cluster structure and, more weakly, with cluster mass. When the hydrostatic masses are used, the mass-observable scaling relations and gas mass fractions depen...

  12. The Discovery of Lensed Radio and X-Ray Sources behind the Frontier Fields Cluster MACS J0717.5+3745 with the JVLA and Chandra

    Science.gov (United States)

    van Weeren, R. J.; Ogrean, G. A.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Bonafede, A.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Churazov, E.; David, L.; Dawson, W. A.; Donahue, M.; Goulding, A.; Kraft, R. P.; Mason, B.; Merten, J.; Mroczkowski, T.; Murray, S. S.; Nulsen, P. E. J.; Rosati, P.; Roediger, E.; Randall, S. W.; Sayers, J.; Umetsu, K.; Vikhlinin, A.; Zitrin, A.

    2016-02-01

    We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0-6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities, the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10-50 {M}⊙ yr-1 located at 1≲ z≲ 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2-10 keV X-ray luminosities of ˜1043-44 erg s-1. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6\\lt z\\lt 2.0, compared to a z\\lt 0.3 sample. Our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as ˜10 M⊙ yr-1, at the peak of cosmic star formation history.

  13. On finding galaxy clusters with Planck and the spherical collapse model in different Dark Energy cosmologies

    OpenAIRE

    Waizmann, Jean-Claude

    2010-01-01

    One of the main objectives of the Planck mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and dete...

  14. The clustering of galaxy clusters in cosmological models with non-Gaussian initial conditions: Predictions for future surveys

    CERN Document Server

    Fedeli, C; Matarrese, S

    2009-01-01

    We predict the biasing and clustering properties of galaxy clusters that are expected to be observed in the catalogues produced by two forthcoming X-ray and Sunyaev-Zel'dovich effect surveys. We study a set of flat cosmological models where the primordial density probability distribution shows deviations from Gaussianity in agreement with current observational bounds form the background radiation. We consider both local and equilateral shapes for the primordial bispectrum in non-Gaussian models. The two catalogues investigated are those produced by the \\emph{e}ROSITA wide survey and from a survey based on South Pole Telescope observations. It turns out that both the bias and observed power spectrum of galaxy clusters are severely affected in non-Gaussian models with local shape of the primordial bispectrum, especially at large scales. On the other hand, models with equilateral shape of the primordial bispectrum show only a mild effect at all scales, that is difficult to be detected with clustering observation...

  15. Testing the galaxy cluster mass-observable relations at z = 1 with XMM-Newton and Chandra observations of XLSSJ022403.9-041328

    CERN Document Server

    Maughan, B J; Pierre, M; Andreon, S; Birkinshaw, M; Bremer, M N; Pacaud, F; Ponman, T J; Valtchanov, I; Willis, J

    2007-01-01

    We present an analysis of deep XMM-Newton and Chandra observations of the z=1.05 galaxy cluster XLSSJ022403.9-041328 (hereafter XLSSC 029), detected in the XMM-Newton large scale structure survey. Density and temperature profiles of the X-ray emitting gas were used to perform a hydrostatic mass analysis of the system. This allowed us to measure the total mass and gas fraction in the cluster and define overdensity radii R500 and R2500. The global properties of XLSSC 029 were measured within these radii and compared with those of the local population. The gas mass fraction was found to be consistent with local clusters. The mean metal abundance was 0.16 +0.15 -0.14 Zsol, with the cluster core regions excluded, consistent with the predicted and observed evolution. The properties of XLSSC 029 were then used to investigate the position of the cluster on the M-kT, YX-M, and LX-M scaling relations. In all cases the observed properties of XLSSC 029 agreed well with the simple self-similar evolution of the scaling rel...

  16. Age estimates of globular clusters in the Milky Way: constraints on cosmology.

    Science.gov (United States)

    Krauss, Lawrence M; Chaboyer, Brian

    2003-01-01

    Recent observations of stellar globular clusters in the Milky Way Galaxy, combined with revised ranges of parameters in stellar evolution codes and new estimates of the earliest epoch of globular cluster formation, result in a 95% confidence level lower limit on the age of the Universe of 11.2 billion years. This age is inconsistent with the expansion age for a flat Universe for the currently allowed range of the Hubble constant, unless the cosmic equation of state is dominated by a component that violates the strong energy condition. This means that the three fundamental observables in cosmology-the age of the Universe, the distance-redshift relation, and the geometry of the Universe-now independently support the case for a dark energy-dominated Universe. PMID:12511641

  17. The last stand before MAP cosmological parameters from lensing, CMB and galaxy clustering

    CERN Document Server

    Wang, X; Jain, B; Zaldarriaga, M; Wang, Xiaomin; Tegmark, Max; Jain, Bhuvnesh; Zaldarriaga, Matias

    2003-01-01

    Cosmic shear measurements have now improved to the point where they deserve to be treated on par with CMB and galaxy clustering data for cosmological parameter analysis, using the full measured aperture mass variance curve rather than a mere phenomenological parametrization thereof. We perform a detailed 9-parameter analysis of recent lensing (RCS), CMB (up to Archeops) and galaxy clustering (2dF) data, both separately and jointly. CMB and 2dF data are consistent with a simple flat adiabatic scale-invariant model with Omega_Lambda=0.72+/-0.09, omega_cdm=0.115+/- 0.013, omega_b=0.0024+/-0.003, and a hint of reionization around z~8. Lensing helps further tighten these constraints, but reveals tension regarding the power spectrum normalization: including the RCS survey results raises sigma8 significantly and forces other parameters to uncomfortable values. Indeed, sigma8 is emerging as the currently most controversial cosmological parameter, and we discuss possible resolutions of this sigma8 problem. We also com...

  18. The Chandra COSMOS Legacy Survey: Clustering of X-ray selected AGN at 2.9

    CERN Document Server

    Allevato, V; Finoguenov, A; Marchesi, S; Zamorani, G; Hasinger, G; Salvato, M; Miyaji, T; Gilli, R; Cappelluti, N; Brusa, M; Suh, H; Lanzuisi, G; Trakhtenbrot, B; Griffiths, R; Vignali, C; Schawinski, K; Karim, A

    2016-01-01

    We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$\\leq$z$\\leq$5.5 ($\\langle L_{bol} \\rangle \\sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $\\pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$\\sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{\\odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $\\sigma_z$ = 0.052 of our sample at z$\\geq$2.9. Once we integrate the projected 2pcf up to $\\pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and \\textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only...

  19. Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications

    CERN Document Server

    Ho, Shirley; Seo, Hee-Jong; de Putter, Roland; Ross, Ashley J; White, Martin; Padmanabhan, Nikhil; Saito, Shun; Schlegel, David J; Schlafly, Eddie; Seljak, Uros; Hernandez-Monteagudo, Carlos; Sanchez, Ariel G; Percival, Will J; Blanton, Michael; Skibba, Ramin; Schneider, Don; Reid, Beth; Mena, Olga; Viel, Matteo; Eisenstein, Daniel J; Prada, Francisco; Weaver, Benjamin; Bahcall, Neta; Bizyaev, Dimitry; Brewinton, Howard; Brinkman, Jon; da Costa, Luiz Nicolaci; Gott, John R; Malanushenko, Elena; Malanushenko, Viktor; Nichol, Bob; Oravetz, Daniel; Pan, Kaike; Palanque-Delabrouille, Nathalie; Ross, Nicholas P; Simmons, Audrey; de Simoni, Fernando; Snedden, Stephanie; Yeche, Christophe

    2012-01-01

    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 square degrees, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between $z=0.45$ and $z=0.65$, constructed from the SDSS using methods described in Ross et al. (2011). This data-set spans 11,000 square degrees and probes a volume of $3h^{-3} \\rm{Gpc}^3$, making it the largest volume ever used for galaxy clustering measurements. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at 4 redshift slices with an accuracy of ~15% with bin size of delta_l = 10 on scales of the Baryon Acoustic Oscillations (BAO) (at l~40-400). We derive cosmological constraints using the full-shape of the power-spectra. For a flat Lambda CDM model, when combined with Cosmic Microwave Background Wilkinson Microw...

  20. THE ATACAMA COSMOLOGY TELESCOPE (ACT): BEAM PROFILES AND FIRST SZ CLUSTER MAPS

    International Nuclear Information System (INIS)

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.

  1. Cosmological simulations of galaxy clusters with feedback from active galactic nuclei: profiles and scaling relations

    CERN Document Server

    Pike, Simon R; Newton, Richard D A; Thomas, Peter A; Jenkins, Adrian

    2014-01-01

    We present results from a new set of 30 cosmological simulations of galaxy clusters, including the effects of radiative cooling, star formation, supernova feedback, black hole growth and AGN feedback. We first demonstrate that our AGN model is capable of reproducing the observed cluster pressure profile at redshift, z~0, once the AGN heating temperature of the targeted particles is made to scale with the final virial temperature of the halo. This allows the ejected gas to reach larger radii in higher-mass clusters than would be possible had a fixed heating temperature been used. Such a model also successfully reduces the star formation rate in brightest cluster galaxies and broadly reproduces a number of other observational properties at low redshift, including baryon, gas and star fractions; entropy profiles outside the core; and the X-ray luminosity-mass relation. Our results are consistent with the notion that the excess entropy is generated via selective removal of the densest material through radiative c...

  2. The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    Science.gov (United States)

    Hincks, A. D.; Acquaviva, V.; Ade, P. A.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dunkley, J.; Duenner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hajian, A.; Halpern, M.; Hasselfield, M.; Wollack, Ed

    2010-01-01

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz, In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions, This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Ze1'dovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations, We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.

  3. Comparing Cool Cores in the Planck SZ Selected Samples of Clusters of Galaxies with Cool Cores in X-ray Selected Cluster Samples

    Science.gov (United States)

    Jones, Christine; Santos, Felipe A.; Forman, William R.; Kraft, Ralph P.; Lovisari, Lorenzo; Arnaud, Monique; Mazzotta, Pasquale; Van Weeren, Reinout J.; Churazov, Eugene; Ferrari, Chiara; Borgani, Stefano; Chandra-Planck Collaboration

    2016-06-01

    The Planck mission provided a representative sample of clusters of galaxies over the entire sky. With completed Chandra observations of 165 Planck ESZ and cosmology sample clusters at zcore and non-cool core clusters in the Planck-selected clusters with the percentages in X-ray selected cluster samples. We find a significantly smaller percentage of cool core clusters in the Planck sample than in X-ray selected cluster samples. We will discuss the primary reasons for this smaller percentage of cool-core clusters in the Planck-selected cluster sample than in X-ray-selected samples.

  4. Chandra Opens New Line of Investigation on Dark Energy

    Science.gov (United States)

    2004-05-01

    Astronomers have detected and probed dark energy by applying a powerful, new method that uses images of galaxy clusters made by NASA's Chandra X-ray Observatory. The results trace the transition of the expansion of the Universe from a decelerating to an accelerating phase several billion years ago, and give intriguing clues about the nature of dark energy and the fate of the Universe. "Dark energy is perhaps the biggest mystery in physics," said Steve Allen of the Institute of Astronomy (IoA) at the University of Cambridge in England, and leader of the study. "As such, it is extremely important to make an independent test of its existence and properties." Abell 2029 Chandra X-ray Image of Abell 2029 Allen and his colleagues used Chandra to study 26 clusters of galaxies at distances corresponding to light travel times of between one and eight billion years. These data span the time when the Universe slowed from its original expansion, before speeding up again because of the repulsive effect of dark energy. "We're directly seeing that the expansion of the Universe is accelerating by measuring the distances to these galaxy clusters," said Andy Fabian also of the IoA, a co-author on the study. The new Chandra results suggest that the dark energy density does not change quickly with time and may even be constant, consistent with the "cosmological constant" concept first introduced by Albert Einstein. If so, the Universe is expected to continue expanding forever, so that in many billions of years only a tiny fraction of the known galaxies will be observable. More Animations Animation of the "Big Rip" If the dark energy density is constant, more dramatic fates for the Universe would be avoided. These include the "Big Rip," where dark energy increases until galaxies, stars, planets and eventually atoms are eventually torn apart. The "Big Crunch," where the Universe eventually collapses on itself, would also be ruled out. Chandra's probe of dark energy relies on the unique

  5. Cosmology and astrophysics from relaxed galaxy clusters - III. Thermodynamic profiles and scaling relations

    Science.gov (United States)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.; Schmidt, R. W.

    2016-03-01

    This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (i.e. massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and centre-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters using hydrostatic arguments. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behaviour of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance. Our results reinforce the view that simple hydrodynamical models provide a good description of relaxed clusters outside their centres, but that additional heating and cooling processes are important in the inner regions (radii r ≲ 0.5 r2500 ≈ 0.15 r500). The thermodynamic profiles remain regular, with small intrinsic scatter, down to the smallest radii where deprojection is straightforward (˜20 kpc); within this radius, even the most relaxed systems show clear departures from spherical symmetry. Our results suggest that heating and cooling are continuously regulated in a tight feedback loop, allowing the cluster atmosphere to remain stratified on these scales.

  6. Chandra and XMM-Newton observations of the merging cluster of galaxies PLCK G036.7+14.9

    CERN Document Server

    Zhang, B; Jones, C; Andrade-Santos, F; O'Sullivan, E; Dahle, H; Nulsen, P E J; Clarke, T E; Pointecouteau, E; Pratt, G W; Arnaud, M; Vrtilek, J M; Ji, L; van Weeren, R J; Kraft, R P; Kong, X

    2015-01-01

    We present Chandra and XMM-Newton observations of PLCK G036.7+14.9 from the Chandra-Planck Legacy Program. The high resolution X-ray observations reveal two close subclusters, G036N and G036S, which were not resolved by previous ROSAT, optical, or recent Planck observations. We perform detailed imaging and spectral analyses and use a simplified model to study the kinematics of this system. The basic picture is that PLCK G036.7+14.9 is undergoing a major merger (mass ratio close to unity) between the two massive subclusters, with the merger largely along the line-of-sight and probably at an early stage. G036N hosts a small, moderate cool-core, while G036S has at most a very weak cool-core in the central 40 kpc region. The difference in core cooling times is unlikely to be caused by the ongoing merger disrupting a pre-existing cool-core in G036S. G036N also hosts an unresolved radio source in the center, which may be heating the gas if the radio source is extended. The Planck derived mass is higher than the X-r...

  7. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Angular clustering tomography and its cosmological implications

    CERN Document Server

    Salazar-Albornoz, Salvador; Grieb, Jan Niklas; Crocce, Martin; Scoccimarro, Roman; Alam, Shadab; Beutler, Florian; Brownstein, Joel R; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Olmstead, Matthew D; Percival, Will J; Prada, Francisco; Rodríguez-Torres, Sergio; Samushia, Lado; Tinker, Jeremy; Thomas, Daniel; Tojeiro, Rita; Wang, Yuting; Zhao, Gong-bo

    2016-01-01

    We investigate the cosmological implications of studying galaxy clustering using a tomographic approach applied to the final BOSS DR12 galaxy sample, including both auto- and cross-correlation functions between redshift shells. We model the signal of the full shape of the angular correlation function, $\\omega(\\theta)$, in redshift bins using state-of-the-art modelling of non-linearities, bias and redshift-space distortions. We present results on the redshift evolution of the linear bias of BOSS galaxies, which cannot be obtained with traditional methods for galaxy-clustering analysis. We also obtain constraints on cosmological parameters, combining this tomographic analysis with measurements of the cosmic microwave background (CMB) and type Ia supernova (SNIa). We explore a number of cosmological models, including the standard $\\Lambda$CDM model and its most interesting extensions, such as deviations from $w_\\rm{DE} = -1$, non-minimal neutrino masses, spatial curvature and deviations from general relativity u...

  8. The formation of the brightest cluster galaxies in cosmological simulations: the case for active galactic nucleus feedback

    OpenAIRE

    Martizzi, Davide; Teyssier, Romain; Moore, Ben

    2012-01-01

    We use 500 pc resolution cosmological simulations of a Virgo-like galaxy cluster to study the properties of the brightest cluster galaxy (BCG) that forms at the centre of the halo. We compared two simulations; one incorporating only supernova feedback and a second that also includes prescriptions for black hole growth and the resulting active galactic nucleus (AGN) feedback from gas accretion. As previous work has shown, with supernova feedback alone we are unable to reproduce any of the obse...

  9. The cosmological analysis of X-ray cluster surveys - I. A new method for interpreting number counts

    Science.gov (United States)

    Clerc, N.; Pierre, M.; Pacaud, F.; Sadibekova, T.

    2012-07-01

    We present a new method aimed at simplifying the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count rate). The basic principle is that even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modelling. We illustrate the methodology for the case of a 100-deg2XMM survey having a sensitivity of ˜10-14 erg s-1 cm-2 and fit at the same time, the survey selection function, the cluster evolutionary scaling relations and the cosmology; our sole assumption - driven by the limited size of the sample considered in the case study - is that the local cluster scaling relations are known. We devote special attention to the realistic modelling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the count rate and hardness ratio (CR-HR) method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similar to the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but constrains better parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity: this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.

  10. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Barrena, R.; Bartlett, J.G.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Blanchard, A.; Bobin, J.; Bock, J.J.; Bohringer, H.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bourdin, H.; Bridges, M.; Brown, M.L.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, L.Y.; Chiang, H.C.; Chon, G.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Democles, J.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Genova-Santos, R.T.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liddle, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Weller, J.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass $M$ and SZ signal $Y$ calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude $\\sigma_8$ and matter density parameter $\\Omega_{\\mathrm{m}}$ in a flat $\\Lambda$CDM model. We test the robustness of our estimates and find that possible biases in the $Y$--$M$ relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, m...

  11. Stable clustering and the resolution of dissipationless cosmological N-body simulations

    CERN Document Server

    Benhaiem, David; Labini, Francesco Sylos

    2016-01-01

    The determination of the resolution of cosmological N-body simulations, i.e., the range of scales in which quantities measured in them represent accurately the continuum limit, is an important open question. We address it here using scale-free models, for which self-similarity provides a powerful tool to control resolution. Such models also provide a robust testing ground for the so-called stable clustering approximation, which gives simple predictions for them. Studying large N-body simulations of such models with different force smoothing, we find that these two issues are in fact very closely related: our conclusion is that resolution in the non-linear regime extends, in practice, down to the scale at which stable clustering breaks down. Physically the association of the two scales is in fact simple to understand: stable clustering fails to be a good approximation when there are strong interactions of structures (in particular merging) and it is precisely such non-linear processes which are sensitive to fl...

  12. Cosmological parameter estimation from CMB and X-ray cluster after Planck

    International Nuclear Information System (INIS)

    We investigate constraints on cosmological parameters in three 8-parameter models with the summed neutrino mass as a free parameter, by a joint analysis of CCCP X-ray cluster data, the newly released Planck CMB data as well as some external data sets including baryon acoustic oscillation measurements from the 6dFGS, SDSS DR7 and BOSS DR9 surveys, and Hubble Space Telescope H0 measurement. We find that the combined data strongly favor a non-zero neutrino masses at more than 3σ confidence level in these non-vanilla models. Allowing the CMB lensing amplitude AL to vary, we find AL > 1 at 3σ confidence level. For dark energy with a constant equation of state w, we obtain w < −1 at 3σ confidence level. The estimate of the matter power spectrum amplitude σ8 is discrepant with the Planck value at 2σ confidence level, which reflects some tension between X-ray cluster data and Planck data in these non-vanilla models. The tension can be alleviated by adding a 9% systematic shift in the cluster mass function

  13. A Deep and Ultra-deep ISOCAM Cosmological Survey through Gravitationally Lensing Clusters of Galaxies

    CERN Document Server

    Metcalfe, L; McBreen, B; Kneib, J P; Delaney, M; Biviano, A; Kessler, M F; Leech, K J; Okumura, K; Schulz, B; Elbaz, D; Aussel, H

    1999-01-01

    We present imaging results and source counts from an ISOCAM deep and ultra-deep cosmological survey through gravitationally lensing clusters of galaxies at 7 and 15 microns. A total area of about 53 sq.arcmin was covered in maps of three clusters. The lensing increases the sensitivity of the survey. A large number of luminous mid-infrared (MIR) sources were detected behind the lenses, and most could be unambiguously identified with visible counterparts. Thanks to the gravitational amplification, these results include the faintest MIR detections ever recorded, extending source counts to an unprecedented level. The source counts, corrected for cluster contamination and lensing distortion effects, show an excess by a factor of 10 with respect to the prediction of a no-evolution model, as we reported for A2390 alone in Altieri et al. (1999). We confirm the A2390 result that the resolved 7 and 15 microns background radiation intensities are 2 (+/- 0.5) x 10^-9 and 5 (+/- 1) x 10^-9 W/m^2/sr, respectively.

  14. The Atacama Cosmology Telescope: The LABOCA/ACT Survey of Clusters at All Redshifts

    CERN Document Server

    Lindner, Robert R; Baker, Andrew J; Bond, J Richard; Crichton, Devin; Devlin, Mark J; Essinger-Hileman, Thomas; Hilton, Matt; Hincks, Adam D; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Lima, Marcos; Marriage, Tobias A; Menanteau, Felipe; Niemack, Michael D; Page, Lyman A; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, J L; Sifón, Cristóbal; Staggs, Suzanne T; Swetz, Daniel; Weiß, Axel; Wollack, Edward J

    2014-01-01

    We present a multi-wavelength analysis of eleven Sunyaev Zel'dovich effect (SZE)-selected galaxy clusters (ten with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and $500\\,\\rm\\mu m$; SPIRE) on the Herschel Space Observatory. Spatially-resolved 345GHz SZE increments with integrated S/N > 5 are found in six clusters. We compute 2.1GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii $\\theta < \\theta_{2500}$. By extrapolating in frequency, we predict that the combined signals from 2.1GHz-selected radio sources and 345GHz-selected SMGs contaminate the 148GHz SZE decrement signal by ~5% and the 345GHz SZE increment by ~18%. After removing radio source...

  15. Cosmological parameter estimation from CMB and X-ray cluster after Planck

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian-Wei; Cai, Rong-Gen; Guo, Zong-Kuan [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Hu, Bin, E-mail: jwhu@itp.ac.cn, E-mail: cairg@itp.ac.cn, E-mail: guozk@itp.ac.cn, E-mail: hu@lorentz.leidenuniv.nl [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands)

    2014-05-01

    We investigate constraints on cosmological parameters in three 8-parameter models with the summed neutrino mass as a free parameter, by a joint analysis of CCCP X-ray cluster data, the newly released Planck CMB data as well as some external data sets including baryon acoustic oscillation measurements from the 6dFGS, SDSS DR7 and BOSS DR9 surveys, and Hubble Space Telescope H{sub 0} measurement. We find that the combined data strongly favor a non-zero neutrino masses at more than 3σ confidence level in these non-vanilla models. Allowing the CMB lensing amplitude A{sub L} to vary, we find A{sub L} > 1 at 3σ confidence level. For dark energy with a constant equation of state w, we obtain w < −1 at 3σ confidence level. The estimate of the matter power spectrum amplitude σ{sub 8} is discrepant with the Planck value at 2σ confidence level, which reflects some tension between X-ray cluster data and Planck data in these non-vanilla models. The tension can be alleviated by adding a 9% systematic shift in the cluster mass function.

  16. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  17. THE ATACAMA COSMOLOGY TELESCOPE: RELATION BETWEEN GALAXY CLUSTER OPTICAL RICHNESS AND SUNYAEV-ZEL'DOVICH EFFECT

    International Nuclear Information System (INIS)

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 deg2 and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 deg2. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. Such large offsets between gas peaks and BCGs for optically selected cluster samples seem unlikely given that we find the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters to have a much narrower distribution that peaks within 0.2 Mpc. It is possible that other effects are lowering the ACT and Planck signals by the same amount, with offsets between BCGs and SZ peaks explaining the remaining difference between ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain the

  18. The Atacama Cosmology Telescope: Relation Between Galaxy Cluster Optical Richness and Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Addison, Graeme; Battaglia, Nick; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Kosowsky, Arthur; Lin, Yen-Ting; Louis, Thibaut; Marriage, Tobias A.; Marsden, Danica; Menateau, Felipe; Moodley, Kavilan; Wollack, Ed

    2012-01-01

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically-selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 square degrees and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 square degrees. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically-selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically-selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. In contrast, the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters shows a much narrower distribution that peaks within 0.2 Mpc. We conclude that while offsets between BCGs and SZ peaks may be an important component in explaining the discrepancy, it is likely that a combination of factors is responsible for the ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain the difference in measured signals, include a larger percentage of false detections in the

  19. Cosmology from Large Scale Galaxy Clustering and Galaxy-Galaxy Lensing with Dark Energy Survey Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, J.; et al.

    2016-04-26

    We present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 square degree contiguous patch of DES data from the Science Verification (SV) period of observations. Using large scale measurements, we constrain the matter density of the Universe as $\\Omega_m = 0.31 \\pm 0.09$ and the clustering amplitude of the matter power spectrum as $\\sigma_8 = 0.74 +\\pm 0.13$ after marginalizing over seven nuisance parameters and three additional cosmological parameters. This translates into $S_8$ = $\\sigma_8(\\Omega_m/0.3)^{0.16} = 0.74 \\pm 0.12$ for our fiducial lens redshift bin at 0.35 < z < 0.5, while $S_8 = 0.78 \\pm 0.09$ using two bins over the range 0.2 < z < 0.5. We study the robustness of the results under changes in the data vectors, modelling and systematics treatment, including photometric redshift and shear calibration uncertainties, and find consistency in the derived cosmological parameters. We show that our results are consistent with previous cosmological analyses from DES and other data sets and conclude with a joint analysis of DES angular clustering and galaxy-galaxy lensing with Planck CMB data, Baryon Accoustic Oscillations and Supernova type Ia measurements.

  20. The Impact of Galaxy Cluster Mergers on Cosmological Parameter Estimation from Surveys of the Sunyaev-Zel'dovich Effect

    OpenAIRE

    Wik, Daniel R.; Sarazin, Craig L.; Ricker, Paul M.; Randall, Scott W.

    2008-01-01

    Sensitive surveys of the Cosmic Microwave Background will detect thousands of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect. Two SZ observables, the central or maximum and integrated Comptonization parameters y_max and Y, relate in a simple way to the total cluster mass, which allow the construction of mass functions (MFs) that can be used to estimate cosmological parameters such as Omega_M, sigma_8, and the dark energy parameter w. However, clusters form from the mergers of smaller ...

  1. How does our choice of observable influence our estimation of the centre of a galaxy cluster? Insights from cosmological simulations

    Science.gov (United States)

    Cui, Weiguang; Power, Chris; Biffi, Veronica; Borgani, Stefano; Murante, Giuseppe; Fabjan, Dunja; Knebe, Alexander; Lewis, Geraint F.; Poole, Greg B.

    2016-03-01

    Galaxy clusters are an established and powerful test-bed for theories of both galaxy evolution and cosmology. Accurate interpretation of cluster observations often requires robust identification of the location of the centre. Using a statistical sample of clusters drawn from a suite of cosmological simulations in which we have explored a range of galaxy formation models, we investigate how the location of this centre is affected by the choice of observable - stars, hot gas, or the full mass distribution as can be probed by the gravitational potential. We explore several measures of cluster centre: the minimum of the gravitational potential, which would expect to define the centre if the cluster is in dynamical equilibrium; the peak of the density; the centre of brightest cluster galaxy (BCG); and the peak and centroid of X-ray luminosity. We find that the centre of BCG correlates more strongly with the minimum of the gravitational potential than the X-ray defined centres, while active galactic nuclei feedback acts to significantly enhance the offset between the peak X-ray luminosity and minimum gravitational potential. These results highlight the importance of centre identification when interpreting clusters observations, in particular when comparing theoretical predictions and observational data.

  2. Constraints on Scalar-Field Dark Energy from Galaxy Cluster Gas Mass Fraction versus Redshift

    OpenAIRE

    Chen, Gang; Ratra, Bharat

    2004-01-01

    We use the Allen et al. (2004) Chandra measurements of x-ray gas mass fraction of 26 rich clusters to place constraints on the scalar-field dark energy model with inverse power law potential energy density. The constraints are consistent with, and typically more constraining than, those from other cosmological tests, and mildly favor the Einstein cosmological constant limit of the dark energy model.

  3. Adaptive Mesh Refinement Cosmological Simulations of Cosmic Rays in Galaxy Clusters

    Science.gov (United States)

    Skillman, Samuel William

    2013-12-01

    Galaxy clusters are unique astrophysical laboratories that contain many thermal and non-thermal phenomena. In particular, they are hosts to cosmic shocks, which propagate through the intracluster medium as a by-product of structure formation. It is believed that at these shock fronts, magnetic field inhomogeneities in a compressing flow may lead to the acceleration of cosmic ray electrons and ions. These relativistic particles decay and radiate through a variety of mechanisms, and have observational signatures in radio, hard X-ray, and Gamma-ray wavelengths. We begin this dissertation by developing a method to find shocks in cosmological adaptive mesh refinement simulations of structure formation. After describing the evolution of shock properties through cosmic time, we make estimates for the amount of kinetic energy processed and the total number of cosmic ray protons that could be accelerated at these shocks. We then use this method of shock finding and a model for the acceleration of and radio synchrotron emission from cosmic ray electrons to estimate the radio emission properties in large scale structures. By examining the time-evolution of the radio emission with respect to the X-ray emission during a galaxy cluster merger, we find that the relative timing of the enhancements in each are important consequences of the shock dynamics. By calculating the radio emission expected from a given mass galaxy cluster, we make estimates for future large-area radio surveys. Next, we use a state-of-the-art magnetohydrodynamic simulation to follow the electron acceleration in a massive merging galaxy cluster. We use the magnetic field information to calculate not only the total radio emission, but also create radio polarization maps that are compared to recent observations. We find that we can naturally reproduce Mpc-scale radio emission that resemble many of the known double radio relic systems. Finally, motivated by our previous studies, we develop and introduce a

  4. Contributions of the NASA's Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2011-01-01

    NASA's Chandra X-ray Observatory performed its first observations over a decade ago. Chandra's spectacular images and detailed spectra of astrophysical systems ranging from solar system objects to distant galaxies and galaxy clusters have provided information on such diverse topics as the properties of planetary and cometary atmospheres, stellar formation and demise, black hole-galaxy-cluster interactions, and properties of dark matter and dark energy. This presentation highlights some discoveries made with Chandra and briefly discusses future prospects.

  5. Chandra Observation of 3C288 - Reheating the Cool Core of a 3 keV Cluster from a Nuclear Outburst at z = 0.246

    CERN Document Server

    Lal, D V; Forman, W R; Hardcastle, M J; Jones, C; Nulsen, P E J; Evans, D A; Croston, J H; Lee, J C

    2010-01-01

    We present results from a 42 ks Chandra/ACIS-S observation of the transitional FRI/FRII radio galaxy 3C288 at z = 0.246. We detect $\\sim$3 keV gas extending to a radius of $\\sim$0.5 Mpc with a 0.5-2.0 keV luminosity of 6.6 $\\times$ 10$^{43}$ ergs s$^{-1}$, implying that 3C288 lies at the center of a poor cluster. We find multiple surface brightness discontinuities in the gas indicative of either a shock driven by the inflation of the radio lobes or a recent merger event. The temperature across the discontinuities is roughly constant with no signature of a cool core, thus disfavoring either the merger cold-front or sloshing scenarios. We argue therefore that the discontinuities are shocks due to the supersonic inflation of the radio lobes. If they are shocks, the energy of the outburst is $\\sim$10^{60} ergs, or roughly 30% of the thermal energy of the gas within the radius of the shock, assuming that the shocks are part of a front produced by a single outburst. The cooling time of the gas is $\\sim$10^8 yrs, so...

  6. The cosmological Lithium problem outside the Galaxy: the Sagittarius globular cluster M54

    CERN Document Server

    Mucciarelli, A; Bonifacio, P; Monaco, L; Villanova, S

    2014-01-01

    The cosmological Li problem is the observed discrepancy between Li abundance, A(Li), measured in Galactic dwarf, old and metal-poor stars (traditionally assumed to be equal to the initial value A(Li)_0), and that predicted by standard Big Bang Nucleosynthesis calculations (A(Li)_{BBN}). Here we attack the Li problem by considering an alternative diagnostic, namely the surface Li abundance of red giant branch stars that in a colour magnitude diagram populate the region between the completion of the first dredge-up and the red giant branch bump. We obtained high-resolution spectra with the FLAMES facility at the Very Large Telescope for a sample of red giants in the globular cluster M54, belonging to the Sagittarius dwarf galaxy. We obtain A(Li)=+0.93+-0.11 dex, translating -- after taking into account the dilution due to the dredge up-- to initial abundances (A(Li)_0) in the range 2.35--2.29 dex, depending on whether or not atomic diffusion is considered. This is the first measurement of Li in the Sagittarius ...

  7. The SCUBA-2 Cosmology Legacy Survey: The clustering of submillimetre galaxies in the UKIDSS UDS field

    CERN Document Server

    Wilkinson, Aaron; Chen, Chian-Chou; Smail, Ian; Arumugam, Vinodiran; Blain, Andrew; Chapin, Edward L; Chapman, Scott C; Conselice, Christopher J; Cowley, William I; Dunlop, James S; Farrah, Duncan; Geach, James; Hartley, William G; Ivison, Rob J; Maltby, David T; Michałowski, Michał J; Mortlock, Alice; Scott, Douglas; Simpson, Chris; Simpson, James M; van der Werf, Paul; Wild, Vivienne

    2016-01-01

    Submillimetre galaxies (SMGs) are among the most luminous dusty galaxies in the Universe, but their true nature remains unclear; are SMGs the progenitors of the massive elliptical galaxies we see in the local Universe, or are they just a short-lived phase among more typical star-forming galaxies? To explore this problem further, we investigate the clustering of SMGs identified in the SCUBA-2 Cosmology Legacy Survey. We use a catalogue of submillimetre ($850\\mu$m) source identifications derived using a combination of radio counterparts and colour/IR selection to analyse a sample of 914 SMGs in the UKIDSS Ultra Deep Survey (UDS), making this the largest high redshift sample of these galaxies to date. Using angular cross-correlation techniques, we estimate the halo masses for this large sample of SMGs and compare them with passive and star-forming galaxies selected in the same field. We find that SMGs, on average, occupy high-mass dark matter halos (M$_{\\text{halo}} >10^{13}$M$_{\\odot}$) at redshifts $z > 2.5$, ...

  8. Cosmic Ray Protons Accelerated at Cosmological Shocks and Their Impact on Groups and Clusters of Galaxies

    CERN Document Server

    Miniati, F; Kang, H; Jones, T W; Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung

    2001-01-01

    We investigate the production of cosmic ray (CR) protons at cosmological shocks by performing, for the first time, numerical simulations of large scale structure formation that include directly the acceleration, transport and energy losses of the high energy particles. CRs are injected at shocks according to the thermal leakage model and, thereafter, accelerated to a power-law distribution as indicated by the test particle limit of the diffusive shock acceleration theory. The evolution of the CR protons accounts for losses due to adiabatic expansion/compression, Coulomb collisions and inelastic p-p scattering. Our results suggest that CR protons produced at shocks formed in association with the process of large scale structure formation could amount to a substantial fraction of the total pressure in the intra-cluster medium. Their presence should be easily revealed by GLAST through detection of gamma-ray flux from the decay of neutral pions produced in inelastic p-p collisions of such CR protons with nuclei o...

  9. How does our choice of observable influence our estimation of the centre of a galaxy cluster? Insights from cosmological simulations

    CERN Document Server

    Cui, Weiguang; Biffi, Veronica; Borgani, Stefano; Knebe, Alexander; Murante, Giuseppe; Fabjan, Dunja; Lewis, Geraint F; Poole, Greg B

    2015-01-01

    Galaxy clusters are an established and powerful test-bed for theories of both galaxy evolution and cosmology. Accurate interpretation of cluster observations often requires robust identification of the location of the centre. Using a statistical sample of clusters drawn from a suite of cosmological simulations in which we have explored a range of galaxy formation models, we investigate how the location of this centre is affected by the choice of observable - stars, hot gas, or the full mass distribution as can be probed by the gravitational potential. We explore several measures of cluster centre: the minimum of the gravitational potential, which would expect to define the centre if the cluster is in dynamical equilibrium; the peak of the density; the centre of BCG; and the peak and centroid of X-ray luminosity. We find that the centre of BCG correlates more strongly with the minimum of the gravitational potential than the X-ray defined centres, while AGN feedback acts to significantly enhance the offset betw...

  10. Challenges for Precision Cosmology with X-Ray and Sunyaev-Zeldovich Effect Gas Mass Measurements of Galaxy Clusters

    Science.gov (United States)

    Hallman, Eric J.; Motl, Patrick M.; Burns, Jack O.; Norman, Michael L.

    2006-09-01

    We critically analyze the measurement of galaxy cluster gas masses, which is central to cosmological studies that rely on the galaxy cluster gas mass fraction. Using synthetic observations of numerically simulated clusters viewed through their X-ray emission and thermal Sunyaev-Zeldovich effect (SZE), we reduce the observations to obtain measurements of the cluster gas mass. We quantify the possible sources of uncertainty and systematic bias associated with the common simplifying assumptions used in reducing real cluster observations, including isothermality and hydrostatic equilibrium. We find that intrinsic variations in clusters limit the precision of observational gas mass estimation to ~10% to 1 σ confidence, excluding instrumental effects. Gas mass estimates show surprisingly little trending in the scatter as a function of cluster redshift. For the full cluster sample, methods that use SZE profiles out to roughly the virial radius are the simplest, most accurate, and unbiased way to estimate cluster mass. X-ray methods are systematically more precise mass estimators than are SZE methods if merger and cool-core systems are removed, but slightly overestimate (5%-10%) the cluster gas mass on average. We find that cool-core clusters in our samples are particularly poor candidates for observational mass estimation, even when excluding emission from the core region. The effects of cooling in the cluster gas alter the radial profile of the X-ray and SZE surface brightness even outside the cool-core region. Finally, we find that methods using a universal temperature profile estimate cluster masses to higher precision than those assuming isothermality.

  11. A CHANDRA X-RAY ANALYSIS OF ABELL 1664: COOLING, FEEDBACK, AND STAR FORMATION IN THE CENTRAL CLUSTER GALAXY

    International Nuclear Information System (INIS)

    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of ∼ 23 M sun yr-1. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5 x 108 yr and entropy of 10.4 keV cm2 are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, 'barlike' X-ray structure whose mass is comparable to the mass of molecular hydrogen, ∼1010 M sun in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of BIrzan et al. to show that the active galactic nucleus (AGN) is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low state of an AGN feedback cycle that regulates the rates of cooling and star formation. Modeling the emission as a single-temperature plasma, we find that the metallicity peaks 100 kpc from the X-ray center, resulting in a central metallicity dip. However, a multi-temperature cooling flow model improves the fit to the X-ray emission and is able to recover the expected, centrally peaked metallicity profile.

  12. IDCS J1426.5+3508: Cosmological implications of a massive, strong lensing cluster at Z = 1.75

    CERN Document Server

    Gonzalez, Anthony H; Brodwin, Mark; Fedeli, Cosimo; Dey, Arjun; Eisenhardt, Peter R M; Mancone, Conor; Stern, Daniel; Zeimann, Greg

    2012-01-01

    The galaxy cluster IDCS J1426.5+3508 at z = 1.75 is the most massive galaxy cluster yet discovered at z > 1.4 and the first cluster at this epoch for which the Sunyaev-Zel'Dovich effect has been observed. In this paper we report on the discovery with HST imaging of a giant arc associated with this cluster. The curvature of the arc suggests that the lensing mass is nearly coincident with the brightest cluster galaxy, and the color is consistent with the arc being a star-forming galaxy. We compare the constraint on M200 based upon strong lensing with Sunyaev-Zel'Dovich results, finding that the two are consistent if the redshift of the arc is z > 3. Finally, we explore the cosmological implications of this system, considering the likelihood of the existence of a strongly lensing galaxy cluster at this epoch in an LCDM universe. While the existence of the cluster itself can potentially be accomodated if one considers the entire volume covered at this redshift by all current high-redshift cluster surveys, the exi...

  13. The Atacama Cosmology Telescope: Sunyaev-Zel'dovich-Selected Galaxy Clusters AT 148 GHz in the 2008 Survey

    Science.gov (United States)

    Marriage, Tobias A.; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W. Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Moseley, Harvey; Wollack, Ed

    2011-01-01

    We report on 23 clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 deg (exp 2) map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL 10102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure, The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6 x 10(exp 14) solar masses referenced to the cluster volume characterized by 500 times the critical density. The Compton gamma-X-ray luminosity mass comparison for the 11 best-detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws,

  14. THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV-ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY

    International Nuclear Information System (INIS)

    We report on 23 clusters detected blindly as Sunyaev-ZEL'DOVICH (SZ) decrements in a 148 GHz, 455 deg2 map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6 x 1014 solar masses referenced to the cluster volume characterized by 500 times the critical density. The Compton y-X-ray luminosity mass comparison for the 11 best-detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.

  15. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample

    CERN Document Server

    Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Vecchia, Claudio Dalla; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J; Eisenstein, Daniel J; Percival, Will J; Vargas-Magana, Mariana; Tinker, Jeremy L; Tojeiro, Rita; Brownstein, Joel R; Maraston, Claudia; Nichol, Robert C; Olmstead, Matthew D; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo

    2016-01-01

    We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new FFT-based estimators, we measure the power spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full shape clustering measurements in combination with CMB and SN Ia data. Assuming a {\\Lambda}CDM cosmology, we constra...

  16. Cosmological constraints from the evolution of the cluster baryon mass function at z similar to 0.5

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Voevodkin, A.; Mullis, C.R.;

    2003-01-01

    the large uncertainties of the M-tot-T or M-tot-L-X relations used in all previous studies. Instead, we rely on a well-founded assumption that the M-b/M-tot ratio is a universal quantity, which should result in a much smaller systematic uncertainty. Taking advantage of direct and accurate Chandra...... measurements of the gas masses for distant clusters, we find strong evolution of the baryon mass function between z > 0.4 and the present. The observed evolution defines a narrow band in the Omega(m)-Lambda plane, Omega(m) + 0.23Lambda = 0.41 +/- 0.10 at 68% confidence, which intersects with constraints from...

  17. SOUTHERN COSMOLOGY SURVEY. I. OPTICAL CLUSTER DETECTIONS AND PREDICTIONS FOR THE SOUTHERN COMMON-AREA MILLIMETER-WAVE EXPERIMENTS

    International Nuclear Information System (INIS)

    We present first results from the Southern Cosmology Survey, a new multiwavelength survey of the southern sky coordinated with the Atacama Cosmology Telescope (ACT), a recently commissioned ground-based millimeter (mm)-band cosmic microwave background (CMB) experiment. This article presents full analysis of archival optical multiband imaging data covering an 8 deg.2 region near right ascension 23 hr and declination -55 deg., obtained by the Blanco 4 m telescope and Mosaic-II camera in late 2005. We describe the pipeline we have developed to process this large data volume, obtain accurate photometric redshifts, and detect optical clusters. Our cluster finding process uses the combination of a matched spatial filter, photometric redshift probability distributions, and richness estimation. We present photometric redshifts, richness estimates, luminosities, and masses for eight new optically selected clusters with mass greater than 3 x 1014 M sun at redshifts out to 0.7. We also present estimates for the expected Sunyaev-Zel'dovich effect (SZE) signal from these clusters as specific predictions for upcoming observations by ACT, the South Pole Telescope and Atacama Pathfinder Experiment.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the configuration-space clustering wedges

    CERN Document Server

    Sanchez, Ariel G; Crocce, Martin; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; DallaVecchia, Claudio; Lippich, Martha; Beutler, Florian; Brownstein, Joel R; Chuang, Chia-Hsun; Eisenstein, Daniel J; Kitaura, Francisco-Shu; Olmstead, Matthew D; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Ross, Ashley J; Samushia, Lado; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Wang, Yuting; Zhao, Gong-Bo

    2016-01-01

    We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, galaxy bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales $s \\gtrsim 20\\,h^{-1}{\\rm Mpc}$. We combined the galaxy clustering information from BOSS with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the $\\Lambda$CDM cosmological model. In particular, these data sets can constrain the dark energy equation of state parameter to $w_{\\rm DE}=-0.996\\pm0.042$ when assumed time-independent, the curvature of the Universe to $\\Omega_{k}=-0.0007\\pm 0.0030$ and the sum of the neutrino masses to $\\sum m_{\

  19. The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data

    Energy Technology Data Exchange (ETDEWEB)

    Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, 4041 (South Africa); Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Addison, Graeme E.; Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Barrientos, L. Felipe; Dünner, Rolando [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Battaglia, Nicholas [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Battistelli, Elia S. [Department of Physics, University of Rome ' ' La Sapienza' ' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Bond, J. Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford, OX1 3RH (United Kingdom); Fowler, Joseph W., E-mail: mhasse@astro.princeton.edu, E-mail: hiltonm@ukzn.ac.za, E-mail: marriage@pha.jhu.edu [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others

    2013-07-01

    We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey on the celestial equator. With this addition, the ACT collaboration has reported a total of 91 optically confirmed, SZ detected clusters. The 504 square degree survey region includes 270 square degrees of overlap with SDSS Stripe 82, permitting the confirmation of SZ cluster candidates in deep archival optical data. The subsample of 48 clusters within Stripe 82 is estimated to be 90% complete for M{sub 500c} > 4.5 × 10{sup 14}M{sub s}un and redshifts 0.15 < z < 0.8. While a full suite of matched filters is used to detect the clusters, the sample is studied further through a ''Profile Based Amplitude Analysis'' using a statistic derived from a single filter at a fixed θ{sub 500} = 5.'9 angular scale. This new approach incorporates the cluster redshift along with prior information on the cluster pressure profile to fix the relationship between the cluster characteristic size (R{sub 500}) and the integrated Compton parameter (Y{sub 500}). We adopt a one-parameter family of ''Universal Pressure Profiles'' (UPP) with associated scaling laws, derived from X-ray measurements of nearby clusters, as a baseline model. Three additional models of cluster physics are used to investigate a range of scaling relations beyond the UPP prescription. Assuming a concordance cosmology, the UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters with complete optical follow-up is used to obtain cosmological constraints. We demonstrate, using fixed scaling relations, how the constraints depend on the assumed gas model if only SZ measurements are used, and

  20. 12 YEARS OF X-RAY VARIABILITY IN M31 GLOBULAR CLUSTERS, INCLUDING 8 BLACK HOLE CANDIDATES, AS SEEN BY CHANDRA

    International Nuclear Information System (INIS)

    We examined 134 Chandra observations of the population of X-ray sources associated with globular clusters (GCs) in the central region of M31. These are expected to be X-ray binary systems (XBs), consisting of a neutron star or black hole accreting material from a close companion. We created long-term light curves for these sources, correcting for background, interstellar absorption, and instrumental effects. We tested for variability by examining the goodness of fit for the best-fit constant intensity. We also created structure functions (SFs) for every object in our sample, the first time this technique has been applied to XBs. We found significant variability in 28 out of 34 GCs and GC candidates; the other 6 sources had 0.3-10 keV luminosities fainter than ∼2 × 1036 erg s–1, limiting our ability to detect similar variability. The SFs of XBs with 0.3-10 keV luminosities ∼2-50 × 1036 erg s–1 generally showed considerably more variability than the published ensemble SF of active galactic nuclei (AGNs). Our brightest XBs were mostly consistent with the AGN SF; however, their 2-10 keV fluxes could be matched by <1 AGN per square degree. These encouraging results suggest that examining the long-term light curves of other X-ray sources in the field may provide an important distinction between X-ray binaries and background galaxies, as the X-ray emission spectra from these two classes of X-ray sources are similar. Additionally, we identify 3 new black hole candidates (BHCs) using additional XMM-Newton data, bringing the total number of M31 GC BHCs to 9, with 8 covered in this survey.

  1. The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey

    CERN Document Server

    Marriage, T A; Ade, P A R; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S R; Doriese, W B; Dunkley, J; Dunner, R; Essinger-Hileman, T; Fisher, R P; Fowler, J W; Hajian, A; Halpern, M; Hasselfield, M; Hern'andez-Monteagudo, C; Hilton, G C; Hilton, M; Hincks, A D; Hlozek, R; Huffenberger, K M; Hughes, D H; Hughes, J P; Infante, L; Irwin, K D; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y -T; Lupton, R H; Marsden, D; Martocci, K; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Quintana, H; Reese, E D; Reid, B; Sehgal, N; Sherwin, B D; Sievers, J; Spergel, D N; Staggs, S T; Swetz, D S; Switzer, E R; Thornton, R; Trac, H; Tucker, C; Warne, R; Wilson, G; Wollack, E; Zhao, Y

    2010-01-01

    We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass co...

  2. Cosmic Ray Electrons in Groups and Clusters of Galaxies Primary and Secondary Populations from a Numerical Cosmological Simulation

    CERN Document Server

    Miniati, F; Kang, H; Ryu, D; Miniati, Francesco; Kang, Hyesung; Ryu, Dongsu

    2001-01-01

    We study the generation and distribution of high energy electrons in cosmic environment and their observational consequences by carrying out the first cosmological simulation that includes directly cosmic ray (CR) particles. Starting from cosmological initial conditions we follow the evolution of primary and secondary electrons (CRE), CR ions (CRI) and a passive magnetic field. CRIs and primary CREs are injected and accelerated at large scale structure shocks. Secondary CREs are continuously generated through inelastic p-p collisions. We include spatial transport, adiabatic expansion/compression, Coulomb collisions, bremsstrahlung, synchrotron (SE)and inverse Compton (IC) emission. We find that, from the perspective of cosmic shock energy and acceleration efficiency, the few detections of hard X-ray radiation excess could be explained in the framework of IC emission of primary CREs in clusters undergoing high accretion/merger phase. Instead, IC emission from both primary and secondary CREs accounts at most fo...

  3. The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data

    International Nuclear Information System (INIS)

    We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey on the celestial equator. With this addition, the ACT collaboration has reported a total of 91 optically confirmed, SZ detected clusters. The 504 square degree survey region includes 270 square degrees of overlap with SDSS Stripe 82, permitting the confirmation of SZ cluster candidates in deep archival optical data. The subsample of 48 clusters within Stripe 82 is estimated to be 90% complete for M500c > 4.5 × 1014Msun and redshifts 0.15 500 = 5.'9 angular scale. This new approach incorporates the cluster redshift along with prior information on the cluster pressure profile to fix the relationship between the cluster characteristic size (R500) and the integrated Compton parameter (Y500). We adopt a one-parameter family of ''Universal Pressure Profiles'' (UPP) with associated scaling laws, derived from X-ray measurements of nearby clusters, as a baseline model. Three additional models of cluster physics are used to investigate a range of scaling relations beyond the UPP prescription. Assuming a concordance cosmology, the UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters with complete optical follow-up is used to obtain cosmological constraints. We demonstrate, using fixed scaling relations, how the constraints depend on the assumed gas model if only SZ measurements are used, and show that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements, which are based on galaxy velocity dispersions and

  4. THE ATACAMA COSMOLOGY TELESCOPE: DETECTION OF SUNYAEV-ZEL'DOVICH DECREMENT IN GROUPS AND CLUSTERS ASSOCIATED WITH LUMINOUS RED GALAXIES

    International Nuclear Information System (INIS)

    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope. The LRG sample is divided by luminosity into four bins, and estimates for the central SZ temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y200 and clustering properties to relate the galaxy luminosity to halo mass. We also use a relation between brightest cluster galaxy luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be around 1014 Msun.

  5. Modelling injection and feedback of Cosmic Rays in grid-based cosmological simulations: effects on cluster outskirts

    CERN Document Server

    Vazza, F; Gheller, C; Brunetti, G

    2012-01-01

    We present a numerical scheme, implemented in the cosmological adaptive mesh refinement code ENZO, to model the injection of Cosmic Ray (CR) particles at shocks, their advection and their dynamical feedback on thermal baryonic gas. We give a description of the algorithms and show their tests against analytical and idealized one-dimensional problems. Our implementation is able to track the injection of CR energy, the spatial advection of CR energy and its feedback on the thermal gas in run-time. This method is applied to study CR acceleration and evolution in cosmological volumes, with both fixed and variable mesh resolution. We compare the properties of galaxy clusters with and without CRs, for a sample of high-resolution clusters with different dynamical states. At variance with similar simulations based on Smoothed Particles Hydrodynamics, we report that the inclusion of CR feedback in our method decreases the central gas density in clusters, thus reducing the X-ray and Sunyaev-Zeldovich effect from the clu...

  6. The Impact of Galaxy Cluster Mergers on Cosmological Parameter Estimation from Surveys of the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Wik, Daniel R.; Sarazin, Craig L.; Ricker, Paul M.; Randall, Scott W.

    2008-06-01

    Sensitive surveys of the cosmic microwave background will detect thousands of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect. Two SZ observables, the central or maximum and integrated Comptonization parameters ymax and Y, relate in a simple way to the total cluster mass, which allows the construction of mass functions (MFs) that can be used to estimate cosmological parameters such as ΩM, σ8, and the dark energy parameter w. However, clusters form from the mergers of smaller structures, events that can disrupt the equilibrium of intracluster gas on which SZ- M relations rely. From a set of N-body/hydrodynamical simulations of binary cluster mergers, we calculate the evolution of Y and ymax over the course of merger events and find that both parameters are transiently "boosted," primarily during the first core passage. We then use a semianalytic technique developed by Randall et al. to estimate the effect of merger boosts on the distribution functions YF and yF of Y and ymax, respectively, via cluster merger histories determined from extended Press-Schechter (PS) merger trees. We find that boosts do not induce an overall systematic effect on YFs, and the values of ΩM, σ8, and w were returned to within 2% of values expected from the nonboosted YFs. The boosted yFs are significantly biased, however, causing ΩM to be underestimated by 15%-45%, σ8 to be overestimated by 10%-25%, and w to be pushed to more negative values by 25%-45%. We confirm that the integrated SZ effect, Y, is far more robust to mergers than ymax, as previously reported by Motl et al. and similarly found for the X-ray equivalent YX, and we conclude that Y is the superior choice for constraining cosmological parameters.

  7. The Chandra X-Ray Optics

    CERN Document Server

    Weisskopf, Martin C

    2011-01-01

    Significant advances in science always take place when the state of the art in instrumentation improves dramatically. NASA's Chandra X-Ray Observatory represents such an advance. Launched in July of 1999, Chandra is an observatory designed to study the x-ray emission from all categories of astronomical objects --- from comets, planets, and normal stars to quasars, galaxies, and clusters of galaxies. At the heart of this observatory is the precision X-Ray optic that has been vital for Chandra's outstanding success and which features an angular resolution improved by an order of magnitude compared to its forerunners. The Chandra mission is now entering its 13-th year of operation. Given that the Observatory was designed for a minimum of 3 years of operation testifies to its robust and carefully thought out design. We review the design and construction of the remarkable telescope, present examples of its usage for astronomy and astrophysics, and speculate upon the future.

  8. Deep $Chandra$ observations of the NGC 4472 globular cluster black hole XMMU 122939.7+075333: Short term variability from the first globular cluster black hole binary

    OpenAIRE

    Joseph, Tana D.; Maccarone, Thomas J; Kraft, Ralph P.; Sivakoff, Gregory R.

    2014-01-01

    In this paper we discuss the luminosity modulations and spectral analysis results of the recent deep observations of XMMU 122939.7+075333, the first black hole discovered in a globular cluster. The source has been detected many times, typically with L$_X$ > 10$^{39}$ erg s$^{-1}$, but in a 2010 observation had faded to L$_X$ ~ 10$^{38}$ erg s$^{-1}$. In our 2011 observations, it has rebrightened to L$_X$ ~ 2x10$^{39}$ erg s$^{-1}$. This significant increase in luminosity over a a relatively s...

  9. The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect

    CERN Document Server

    Hilton, Matt; Sifón, Cristóbal; Baker, Andrew J; Barrientos, L Felipe; Battaglia, Nicholas; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J; Gralla, Megan; Hajian, Amir; Hincks, Adam D; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Mike R; Page, Lyman A; Reese, Erik D; Sievers, Jon; Spergel, David N; Wollack, Edward J

    2013-01-01

    We present a first measurement of the stellar mass component of galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 um and 4.5 um photometry from the Spitzer Space Telescope. Our sample consists of 14 clusters detected by the Atacama Cosmology Telescope (ACT), which span the redshift range 0.27 < z < 1.07 (median z = 0.50), and have dynamical mass measurements, accurate to about 30 per cent, with median M500 = 6.9 x 10^{14} MSun. We measure the 3.6 um and 4.5 um galaxy luminosity functions, finding the characteristic magnitude (m*) and faint-end slope (alpha) to be similar to those for IR-selected cluster samples. We perform the first measurements of the scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy (BCG) stellar mass and total cluster stellar mass (M500star). We find a significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} DA^2 Y500 ~ M*^{1.2 +/- 0.6}), although we are not able to obtain a strong constraint on the slope of the relation...

  10. The Atacama Cosmology Telescope: Physical Properties of Sunyaev-Zel'dovich Effect Clusters on the Celestial Equator

    CERN Document Server

    Menanteau, Felipe; Barrientos, L Felipe; Battaglia, Nicholas; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J; Dünner, Rolando; Gralla, Megan; Hajian, Amir; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D; Hughes, John P; Infante, Leopoldo; Kosowsky, Arthur; Marriage, Tobias A; Marsden, Danica; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Schmitt, Benjamin L; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Switzer, Eric; Wollack, Edward J

    2012-01-01

    We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich Effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 square degrees centered on the celestial equator, is divided into two regions. The main region uses 270 square degrees of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5-meter telescope. We confirm a total of 49 clusters to z~1.3, of which 22 (all at z>0.55) are new discoveries. For the second region the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z~0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richne...

  11. The Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca M.; Marchesi, Stefano; Elvis, Martin; Urry, C. Megan; Comastri, Andrea; Suh, Hyewon

    2016-01-01

    In this talk, I will present the 4016 sources sample of the Chandra COSMOS Legacy survey, a 4.6 Ms Chandra survey on the COSMOS field. We have multiwavelength information for 97% of the sources, including photometric and spectroscopic redshifts, and we can therefore study, in a statistical and complete way, the physical properties for all the sample including host galaxies properties. I will focus on the z>3 sample, the largest X-ray selected sample in this range of redshift on a contiguous field, presenting the space density and the clustering analysis using this sample, with a particular focus on how our results can put constraints on the predictions of both phenomenological and physical models of black hole and galaxy growth.

  12. The Atacama Cosmology Telescope: Detection or Sunyaev-Zel'Dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    Science.gov (United States)

    Hand, Nick; Appel, John William; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Irwin, Kent D.; Klein, Jeff; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A.; Marsden, Danica; McLaren, Mike; Wollack, Ed

    2010-01-01

    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y(sub 200) and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between BCG luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be in the range approx.10(exp 13) - 10(exp 14)/h Stellar Mass, a lower range than has been previously probed.

  13. Cosmology from large scale galaxy clustering and galaxy-galaxy lensing with Dark Energy Survey Science Verification data

    CERN Document Server

    Kwan, Juliana; Clampitt, Joseph; Blazek, Jonathan; Crocce, Martin; Jain, Bhuvnesh; Zuntz, Joe; Amara, Adam; Becker, Matthew; Bernstein, Gary; Bonnett, Christopher; DeRose, Joseph; Dodelson, Scott; Eifler, Tim; Gaztanaga, Enrique; Giannantonio, Tommaso; Gruen, Daniel; Hartley, Will; Kacprzak, Tomasz; Kirk, Donnacha; Krause, Elisabeth; MacCrann, Niall; Miquel, Ramon; Park, Youngsoo; Ross, Ashley; Rozo, Eduardo; Rykoff, Eli; Sheldon, Erin; Troxel, Michael A; Wechsler, Risa; Abbott, Tim; Abdalla, Filipe; Allam, Sahar; Benoit-Lévy, Aurélien; Brooks, David; Burke, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos; D'Andrea, Chris; da Costa, Luiz; Desai, Shantanu; Diehl, H Thomas; Dietrich, Jörg; Doel, Peter; Evrard, August; Fernandez, Enrique; Finley, David; Flaugher, Brenna; Fosalba, Pablo; Frieman, Josh; Gerdes, David; Gruendl, Robert; Gutierrez, Gaston; Honscheid, Klaus; James, David; Jarvis, Mike; Kuehn, Kyler; Lahav, Ofer; Lima, Marcos; Maia, Marcio; Marshall, Jennifer; Martini, Paul; Melchior, Peter; Mohr, Joe; Nichol, Robert; Nord, Brian; Plazas, Andres; Reil, Kevin; Romer, Kathy; Roodman, Aaron; Sanchez, Eusebio; Scarpine, Vic; Sevilla, Ignacio; Smith, R Chris; Soares-Santos, Marcelle; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly; Tarle, Gregory; Thomas, Daniel; Vikram, Vinu; Walker, Alistair

    2016-01-01

    We present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 square degree contiguous patch of DES data from the Science Verification (SV) period of observations. Using large scale measurements, we constrain the matter density of the Universe as Omega_m = 0.31 +/- 0.09 and the clustering amplitude of the matter power spectrum as sigma_8 = 0.74 +/- 0.13 after marginalizing over seven nuisance parameters and three additional cosmological parameters. This translates into S_8 = sigma_8(Omega_m/0.3)^{0.16} = 0.74 +/- 0.12 for our fiducial lens redshift bin at 0.35

  14. VizieR Online Data Catalog: HIFLUGCS XMM/Chandra cross-calibration (Schellenberger+, 2015)

    Science.gov (United States)

    Schellenberger, G.; Reiprich, T. H.; Lovisari, L.; Nevalainen, J.; David, L.

    2015-06-01

    Robust X-ray temperature measurements of the intracluster medium (ICM) of galaxy clusters require an accurate energy-dependent effective area calibration. Since the hot gas X-ray emission of galaxy clusters does not vary on relevant timescales, they are excellent cross-calibration targets. Moreover, cosmological constraints from clusters rely on accurate gravitational mass estimates, which in X-rays strongly depend on cluster gas temperature measurements. Therefore, systematic calibration differences may result in biased, instrument-dependent cosmological constraints. This is of special interest in light of the tension between the Planck results of the primary temperature anisotropies of the cosmic microwave background (CMB) and Sunyaev-Zel'dovich-plus-X-ray cluster-count analyses. We quantify in detail the systematics and uncertainties of the cross-calibration of the effective area between five X-ray instruments, EPIC-MOS1/MOS2/PN onboard XMM-Newton and ACIS-I/S onboard Chandra, and the influence on temperature measurements. Furthermore, we assess the impact of the cross-calibration uncertainties on cosmology. Using the HIFLUGCS sample, consisting of the 64 X-ray brightest galaxy clusters, we constrain the ICM temperatures through spectral fitting in the same, mostly isothermal regions and compare the different instruments. We use the stacked residual ratio method to evaluate the cross-calibration uncertainties between the instruments as a function of energy. Our work is an extension to a previous one using X-ray clusters by the International Astronomical Consortium for High Energy Calibration (IACHEC) and is carried out in the context of IACHEC. Performing spectral fitting in the full energy band, (0.7-7)keV, as is typical of the analysis of cluster spectra, we find that best-fit temperatures determined with XMM-Newton/EPIC are significantly lower than Chandra/ACIS temperatures. This confirms the previous IACHEC results obtained with older calibrations with high

  15. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  16. The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees

    Science.gov (United States)

    Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; Wollack, Edward J.

    2016-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  17. The Impact of Galaxy Cluster Mergers on Cosmological Parameter Estimation from Surveys of the Sunyaev-Zel'dovich Effect

    CERN Document Server

    Wik, Daniel R; Ricker, Paul M; Randall, Scott W

    2008-01-01

    Sensitive surveys of the Cosmic Microwave Background will detect thousands of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect. Two SZ observables, the central or maximum and integrated Comptonization parameters y_max and Y, relate in a simple way to the total cluster mass, which allow the construction of mass functions (MFs) that can be used to estimate cosmological parameters such as Omega_M, sigma_8, and the dark energy parameter w. However, clusters form from the mergers of smaller structures, events that can disrupt the equilibrium of intracluster gas upon which SZ-M relations rely. From a set of N-body/hydrodynamical simulations of binary cluster mergers, we calculate the evolution of Y and y_max over the course of merger events and find that both parameters are transiently "boosted," primarily during the first core passage. We then use a semi-analytic technique developed by Randall et al. (2002) to estimate the effect of merger boosts on the distribution functions YF and yF of Y and y_max, respec...

  18. The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data

    CERN Document Server

    Hasselfield, Matthew; Marriage, Tobias A; Addison, Graeme E; Barrientos, L Felipe; Battaglia, Nick; Battistelli, Elia S; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J; Dicker, Simon R; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W; Gralla, Megan B; Hajian, Amir; Halpern, Mark; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Kosowsky, Arthur; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Sifón, Cristóbal; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Wollack, Edward J

    2013-01-01

    [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \\theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to break the degeneracy between the cluster extent (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A complete, high signal ...

  19. The Atacama Cosmology Telescope: Dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees

    CERN Document Server

    Sifón, Cristóbal; Menanteau, Felipe; Hasselfield, Matthew; Barrientos, L Felipe; Bond, J Richard; Crichton, Devin; Devlin, Mark J; Dünner, Rolando; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Kosowsky, Arthur; Marsden, Danica; Marriage, Tobias A; Moodley, Kavilan; Niemack, Michael D; Page, Lyman A; Spergel, David N; Staggs, Suzanne T; Trac, Hy; Wollack, Edward J

    2015-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses $M_{200}$ are in the range $(1-15)\\times10^{14}M_\\odot$. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray obse...

  20. Cluster of galaxies & Cosmology |Planck Intermediate Results on XMM-Newton validation programme for new Planck clusters

    Science.gov (United States)

    Democles, Jessica

    2012-09-01

    We present the final results from the XMM-Newton validation follow-up of new Planck cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high- z regime and testing RASS flags as indicators of candidate reliability. 14 new clusters were detected by XMM-Newton, 10 single clusters and 2 double systems. Redshifts from X-ray spectroscopy lie in the range 0.2 to 0.9, with six clusters at z>0.5. Estimated M500 ranges from 2.5 x 10^14 to 8 x10^14 Msun. We discuss our results in the context of the full XMM validation programme, in which 51 new clusters have been detected. This includes 4 double and 2 triple systems, some of which are chance projections on the sky of clusters at different redshifts. Association with a source from the RASS-Bright Source Catalogue is a robust indicator of candidate reliability, whereas association with a source from the RASS-Faint Source Catalogue does not guarantee that the SZ candidate is a bona fide cluster. Most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication of a real cluster. The full sample indicates a Planck sensitivity threshold of Y500 4 x 10^{-4} arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this level. The corresponding mass threshold depends on redshift. Systems with M500 > 5 x 10^14 Msun at z>0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples, with no indication of evolution. Compared to X-ray selected clusters, the new SZ clusters are underluminous on average for their mass, at all redshifts.

  1. Cosmic Ray Protons Accelerated at Cosmological Shocks and Their Impact on Groups and Clusters of Galaxies

    OpenAIRE

    Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung; Jones, T. W.

    2001-01-01

    We investigate the production of cosmic ray (CR) protons at cosmological shocks by performing, for the first time, numerical simulations of large scale structure formation that include directly the acceleration, transport and energy losses of the high energy particles. CRs are injected at shocks according to the thermal leakage model and, thereafter, accelerated to a power-law distribution as indicated by the test particle limit of the diffusive shock acceleration theory. The evolution of the...

  2. Iterative Maps with Hierarchical Clustering for the Observed Scales of Astrophysical and Cosmological Structures

    OpenAIRE

    Capozziello, S.; Martino, S; De Siena, S.; Guerra, F.; Illuminati, F.

    2000-01-01

    We derive, in order of magnitude, the observed astrophysical and cosmological scales in the Universe, from neutron stars to superclusters of galaxies, up to, asymptotically, the observed radius of the Universe. This result is obtained by introducing a recursive scheme of alternating hierachical mechanisms of three-dimensional and two-dimensional close packings of gravitationally interacting objects. The iterative scheme yields a rapidly converging geometric sequence, which can be described as...

  3. \\Omega_0 and \\lambda_0 from galaxy and quasar clustering: cosmic virial theorem and cosmological redshift-space distortion

    OpenAIRE

    Suto, Yasushi

    1996-01-01

    I discuss two cosmological tests to determine the cosmological density parameter \\Omega_0 the cosmological constant \\lambda_0, which make use of the anisotropy of the two-point correlation functions due to the peculiar velocity field and the cosmological redshift-space distortion.

  4. The dynamical state of the galaxy cluster: Theoretical insights from cosmological simulations

    OpenAIRE

    Cui, Weiguang; Power, Chris; Borgani, Stefano; Knebe, Alexander; Lewis, Geraint F.; Murante, Giuseppe; Poole, Greg B.

    2016-01-01

    Following the work of Cui et al. (2016b, hereafter Paper I), we investigate the dynamical state of the galaxy clusters from the theoretical point of view. After extending to vrial radius $R_{vir}$, we reselect out 123 clusters with $\\log(M_{DM, vir}) \\le 14.5$ from the galaxy cluster samples in Paper I, here DM indicate the dark-matter-only run. These clusters from the two hydro-dynamical runs are matched to the dark-matter-only run using the unique dark matter particle ID. We investigate 4 i...

  5. THE ATACAMA COSMOLOGY TELESCOPE: RELATION BETWEEN GALAXY CLUSTER OPTICAL RICHNESS AND SUNYAEV-ZEL'DOVICH EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Neelima; Hlozek, Renee [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Addison, Graeme; Dunkley, Joanna; Louis, Thibaut [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Battaglia, Nick [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Battistelli, Elia S. [Department of Physics, University of Rome ' La Sapienza' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Bond, J. Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Gralla, Megan [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [Centre for Astronomy and Particle Theory, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Hughes, John P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Lin, Yen-Ting [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); and others

    2013-04-10

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 deg{sup 2} and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 deg{sup 2}. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. Such large offsets between gas peaks and BCGs for optically selected cluster samples seem unlikely given that we find the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters to have a much narrower distribution that peaks within 0.2 Mpc. It is possible that other effects are lowering the ACT and Planck signals by the same amount, with offsets between BCGs and SZ peaks explaining the remaining difference between ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not

  6. The dynamical state of the galaxy cluster: Theoretical insights from cosmological simulations

    CERN Document Server

    Cui, Weiguang; Borgani, Stefano; Knebe, Alexander; Lewis, Geraint F; Murante, Giuseppe; Poole, Greg B

    2016-01-01

    Following the work of Cui et al. (2016b, hereafter Paper I), we investigate the dynamical state of the galaxy clusters from the theoretical point of view. After extending to vrial radius $R_{vir}$, we reselect out 123 clusters with $\\log(M_{DM, vir}) \\le 14.5$ from the galaxy cluster samples in Paper I, here DM indicate the dark-matter-only run. These clusters from the two hydro-dynamical runs are matched to the dark-matter-only run using the unique dark matter particle ID. We investigate 4 independent parameters, which are normally used to classify the cluster dynamical state. We find that the virial ratio $\\eta$ from both hydro-dynamical runs is $\\sim$ 10 per cent lower than from the dark-matter-only run; there is no clear bimodal distribution between the relaxed and un-relaxed clusters for all investigated parameters. Further, using the velocity dispersion deviation parameter $\\zeta$ , which is defined as the ratio between cluster velocity dispersion $\\sigma$ and the theoretical prediction $\\sigma_t = \\sqr...

  7. Gravitational Clustering in Redshift Space: Non-Gaussian Tail of the Cosmological Density Distribution Function

    CERN Document Server

    Bagla, J S; Ray, Suryadeep

    2006-01-01

    We study the non-Gaussian tail of the probability distribution function of density in cosmological N-Body simulations for a variety of initial conditions. We compare the behaviour of the non-Gaussian tail in the real space with that in the redshift space. The form of the PDF in redshift space is of great significance as galaxy surveys probe this and not the real space analogue predicted using theoretical models. We model the non-Gaussian tail using the halo model. In the weakly non-linear regime the moments of counts in cells in the redshift space approach the values expected from perturbation theory for moments in real space. We show that redshift space distortions in the non-linear regime dominate over signatures of initial conditions or the cosmological background. We illustrate this using Skewness and higher moments of counts in cells, as well as using the form of the non-Gaussian tail of the distribution function. We find that at scales smaller than the scale of non-linearity the differences in Skewness,...

  8. ACCRETION SHOCKS IN CLUSTERS OF GALAXIES AND THEIR SZ SIGNATURE FROM COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Cold dark matter (CDM) hierarchical structure formation models predict the existence of large-scale accretion shocks between the virial and turnaround radii of clusters of galaxies. Kocsis et al. suggest that the Sunyaev-Zel'dovich signal associated with such shocks might be observable with the next generation radio interferometer, ALMA (Atacama Large Millimeter Array). We study the three-dimensional distribution of accretion shocks around individual clusters of galaxies drawn from adaptive mesh refinement (AMR) and smoothed particle hydrodynamics simulations of ΛCDM (dark energy dominated CDM) models. In relaxed clusters, we find two distinct sets of shocks. One set ('virial shocks'), with Mach numbers of 2.5-4, is located at radii 0.9-1.3 R vir, where R vir is the spherical infall estimate of the virial radius, covering about 40%-50% of the total surface area around clusters at these radii. Another set of stronger shocks (external shocks) is located farther out, at about 3 R vir, with large Mach numbers (∼100), covering about 40%-60% of the surface area. We simulate SZ surface brightness maps of relaxed massive galaxy clusters drawn from high-resolution AMR runs, and conclude that ALMA should be capable of detecting the virial shocks in massive clusters of galaxies. More simulations are needed to improve estimates of astrophysical noise and to determine optimal observational strategies.

  9. Cosmological Constraints from the Large Scale Weak Lensing of SDSS MaxBCG Clusters

    CERN Document Server

    Zu, Ying; Rozo, Eduardo; Sheldon, Erin S; Tinker, Jeremy L; Becker, Matthew R

    2012-01-01

    We derive constraints on the matter density \\Om and the amplitude of matter clustering \\sig8 from measurements of large scale weak lensing (projected separation R=5-30\\hmpc) by clusters in the Sloan Digital Sky Survey MaxBCG catalog. The weak lensing signal is proportional to the product of \\Om and the cluster-mass correlation function \\xicm. With the relation between optical richness and cluster mass constrained by the observed cluster number counts, the predicted lensing signal increases with increasing \\Om or \\sig8, with mild additional dependence on the assumed scatter between richness and mass. The dependence of the signal on scale and richness partly breaks the degeneracies among these parameters. We incorporate external priors on the richness-mass scatter from comparisons to X-ray data and on the shape of the matter power spectrum from galaxy clustering, and we test our adopted model for \\xicm against N-body simulations. Using a Bayesian approach with minimal restrictive priors, we find \\sig8(\\Om/0.325...

  10. Subaru weak-lensing measurement of a z = 0.81 cluster discovered by the Atacama Cosmology Telescope Survey

    CERN Document Server

    Miyatake, Hironao; Takada, Masahiro; Mandelbaum, Rachel; Mineo, Sogo; Aihara, Hiroaki; Spergel, David N; Bickerton, Steven J; Bond, J Richard; Hajian, Amir; Hilton, Matt; Hincks, Adam D; Hughes, John P; Infante, Leopoldo; Lin, Yen-Ting; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Miyazaki, Satoshi; Moodley, Kavilan; Niemack, Michael D; Oguri, Masamune; Price, Paul A; Reese, Erik D; Sifon, Cristobal; Wollack, Edward J; Yasuda, Naoki

    2013-01-01

    We present a Subaru weak lensing measurement of ACT-CL J0022.2-0036, one of the most luminous, high-redshift (z=0.81) Sunyaev-Zel'dovich (SZ) clusters discovered in the 268 deg^2 equatorial region survey of the Atacama Cosmology Telescope. For the weak lensing analysis using i'-band images, we use a model-fitting (Gauss-Laguerre shapelet) method to measure shapes of galaxy images, where we fit galaxy images in different exposures simultaneously to obtain best-fit ellipticities taking into account the different PSFs in each exposure. We also take into account the astrometric distortion effect on galaxy images by performing the model fitting in the world coordinate system. To select background galaxies behind the cluster at z=0.81, we use photometric redshift (photo-z) estimates for every galaxy derived from the co-added images of multi-passband Br'i'z'Y, with PSF matching/homogenization. After a photo-z cut for background galaxy selection, we detect the tangential weak lensing distortion signal with a total si...

  11. Cluster Radio Halos at the crossroads between astrophysics and cosmology in the SKA era

    CERN Document Server

    Cassano, R; Brunetti, G; Brüggen, M; Clarke, T; Dallacasa, D; Dolag, K; Ettori, S; Giacintucci, S; Giocoli, C; Gitti, M; Johnston-Hollitt, M; Kale, R; Markevitch, M; Norris, R; Pandey-Pommier, M; Pratt, G W; Röttgering, H; Venturi, T

    2014-01-01

    Giant Radio Halos (RH) are diffuse, Mpc-sized, synchrotron radio sources observed in a fraction of merging galaxy clusters. The current scenario for the origin of RHs assumes that turbulence generated during cluster mergers re-accelerates pre-existing fossil and/or secondary electrons in the intra-cluster-medium (ICM) to the energies necessary to produce the observed radio emission. Moreover, more relaxed clusters could host diffuse "off state" halos produced by secondary electrons. In this Chapter we use Monte Carlo simulations, that combine turbulent-acceleration physics and the generation of secondaries in the ICM, to calculate the occurrence of RHs in the Universe, their spectral properties and connection with properties of the hosting clusters. Predictions for SKA1 surveys are presented at low (100-300 MHz) and mid (1-2 GHz) frequencies assuming the expected sensitivities and spatial resolutions of SKA1. SKA1 will step into an unexplored territory allowing us to study the formation and evolution of RHs i...

  12. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  13. The XMM-LSS cluster sample and its cosmological applications. Prospects for the XMM next decade

    CERN Document Server

    Pierre, M; Melin, J B; consortium, the XMM-LSS

    2007-01-01

    The well defined selection function of the XMM-LSS survey enables a simultaneous modelling of the observed cluster number counts and of the evolution of the L-T relation. We present results pertaining to the first 5 deg2 for a well controlled sample comprising 30 objects: they are compatible with the WMAP3 parameter set along with cluster self-similar evolution. Extending such a survey to 200 deg2 would (1) allow discriminating between the major scenarios of the cluster L-T evolution and (2) provide a unique self-sufficient determination of sigma8 and Gamma with an accuracy of ~ 5% and 10% respectively, when adding mass information from weak lensing and S-Z observations.

  14. A New Independent Limit on the Cosmological Constant/Dark Energy from the Relativistic Bending of Light by Galaxies and Clusters of Galaxies

    CERN Document Server

    Ishak, Mustapha; Dossett, Jason; Moldenhauer, Jacob; Allison, Chris

    2007-01-01

    We derive new limits on the value of the cosmological constant, $\\Lambda$, based on the Einstein bending of light by systems where the lens is a distant galaxy or a cluster of galaxies. We use an amended lens equation in which the contribution of $\\Lambda$ to the Einstein deflection angle is taken into account and use observations of Einstein radii around several lens systems. Interestingly, we find that the contribution of the cosmological constant to the bending angle can be as big as 27% of the magnitude of the first-order term in the deflection angle and a few orders of magnitude larger than the second-order term. We use these observations of bending-angles to derive limits on the value of $\\Lambda$ and find them to be competitive with the value determined from cosmology.

  15. An X-Ray Flux-Limited Sample of Galaxy Clusters: Physical Properties and Cosmological Implications

    Science.gov (United States)

    Reiprich, Thomas H.

    2001-07-01

    An X-ray selected and X-ray flux-limited sample comprising the 63 X-ray brightest galaxy clusters in the sky (excluding the galactic band, called HIFLUGCS) has been constructed based on the ROSAT All-Sky Survey. The flux limit has been set at 2x10^-11 erg/s/cm^2 in the energy band 0.1-2.4 keV. It has been shown that a high completeness is indicated by several tests. Due to the high flux limit this sample can be used for a variety of applications requiring a statistical cluster sample without any corrections to the effective survey volume. Mainly high quality pointed observations have been used to determine fluxes and physical cluster parameters. It has been shown that a tight correlation exists between the X-ray luminosity and the gravitational mass using HIFLUGCS and an extended sample of 106 galaxy clusters. The relation and its scatter have been quantified using different fitting methods. A comparison to theoretical and numerical predictions shows an overall agreement. This relation may be directly applied in large X-ray cluster surveys or dark matter simulations for conversions between X-ray luminosity and gravitating mass. Data from the performance verification phase of the recently launched X-ray satellite observatory XMM-Newton on the galaxy cluster Abell 1835 has been analyzed, in order to test the assumption of isothermality of the cluster gas in the outer parts applied throughout the work. It has been found that the measured outer temperature profile is consistent with being isothermal. In the inner regions a clear drop of the temperature by a factor of two has been found. Physical properties of the cluster sample have been studied by analyzing relations between different cluster parameters. The overall properties are well understood but in detail deviations from simple expectations have been found. It has been found that the gas mass fraction (fgas) does not vary as a function of intracluster gas temperature. For galaxy groups (kTx < 2 keV), however, a

  16. The SCUBA-2 cosmology legacy survey: Ultraluminous star-forming galaxies in a z = 1.6 cluster

    International Nuclear Information System (INIS)

    We analyze new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z = 1.62 cluster, Cl 0218.3–0510, which lies in the UKIRT Infrared Deep Sky Survey/Ultra-Deep Survey field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star-formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities ≳1012 L ☉ and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit ALMA submillimeter continuum observations, which cover one of these sources, to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalized sense) than clusters at z ∼ 0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z = 1.6, MH ∼ –23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present day that are less luminous than the descendants of those galaxies that were already passive at z ∼ 1.6 (MH ∼ –20.5 and MH ∼ –21.5, respectively, at z ∼ 0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z = 1.6 and that in Cl 0218.3–0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure.

  17. Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion $\\sigma_v$ and X-ray $Y_\\textrm{X}$ Measurements

    CERN Document Server

    Bocquet, S; Mohr, J J; Aird, K A; Ashby, M L N; Bautz, M; Bayliss, M; Bazin, G; Benson, B A; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Chiu, I; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; Desai, S; de Haan, T; Dietrich, J P; Dobbs, M A; Foley, R J; Forman, W R; Gangkofner, D; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Hennig, C; Hlavacek-Larrondo, J; Holder, G P; Holzapfel, W L; Hrubes, J D; Jones, C; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Marrone, D P; McDonald, M; McMahon, J J; Meyer, S S; Mocanu, L; Murray, S S; Padin, S; Pryke, C; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Saliwanchik, B R; Sayre, J T; Schaffer, K K; Shirokoff, E; Spieler, H G; Stalder, B; Stanford, S A; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2014-01-01

    We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion ($\\sigma_v$) and 16 X-ray Yx measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. The calibrations using $\\sigma_v$ and Yx are consistent at the $0.6\\sigma$ level, with the $\\sigma_v$ calibration preferring ~16% higher masses. We use the full cluster dataset to measure $\\sigma_8(\\Omega_ m/0.27)^{0.3}=0.809\\pm0.036$. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino masses is $\\sum m_\

  18. Constraints on Dark Energy, Observable-mass Scaling Relations, Neutrino Properties and Gravity from Galaxy Clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    Using a data set of 238 cluster detections drawn from the ROSAT All-Sky Survey and X-ray follow-up observations from the Chandra X-ray Observatory and/or ROSAT for 94 of those clusters we obtain tight constraints on dark energy, both luminosity-mass and temperature-mass scaling relations, neutrino...... properties and gravity. I will present the novel statistical framework we employed to self-consistently and simultaneously constrain cosmology and observable-mass scaling relations accounting for survey biases, parameter covariances and systematic uncertainties. Allowing the dark energy equation of state...... and the linear growth index to take any constant values, we find no evidence for departures from the standard cosmological paradigm – General Relativity plus a cosmological constant and cold dark matter. I will review in detail our results and demonstrate the power of X-ray cluster studies to constrain both...

  19. Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

    Science.gov (United States)

    Battaglia, N.; Leauthaud, A.; Miyatake, H.; Hasselfield, M.; Gralla, M. B.; Allison, R.; Bond, J. R.; Calabrese, E.; Crichton, D.; Devlin, M. J.; Dunkley, J.; Dünner, R.; Erben, T.; Ferrara, S.; Halpern, M.; Hilton, M.; Hill, J. C.; Hincks, A. D.; Hložek, R.; Huffenberger, K. M.; Hughes, J. P.; Kneib, J. P.; Kosowsky, A.; Makler, M.; Marriage, T. A.; Menanteau, F.; Miller, L.; Moodley, K.; Moraes, B.; Niemack, M. D.; Page, L.; Shan, H.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Sifón, C.; Spergel, D. N.; Staggs, S. T.; Taylor, J. E.; Thornton, R.; van Waerbeke, L.; Wollack, E. J.

    2016-08-01

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×1014 Msolar, consistent with the tSZ mass estimate of (4.70±1.0) ×1014 Msolar which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  20. The effects of assembly bias on cosmological inference from galaxy-galaxy lensing and galaxy clusters

    CERN Document Server

    McEwen, Joseph E

    2016-01-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function $\\langle N_\\text{cen}(M_\\text{min}) \\rangle$ for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We intro...

  1. Clustering, Cosmology and a New Era of Black Hole Demographics: The Conditional Luminosity Function of AGNs

    Science.gov (United States)

    Ballantyne, David R.

    2016-04-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of AGN evolution stretching back to z˜5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function - all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is demonstrated at z ≈0 and 0.9, and clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z. The results support the idea that there are at least two different modes of AGN triggering: one, at high luminosity, that only occurs in high mass, highly biased haloes, and one that can occur over a wide range of halo masses and leads to luminosities that are correlated with halo mass. This latter mode dominates at z<0.9. The CLFs for Type 2 and Type 1 AGNs are also constrained at z ≈0, and we find evidence that unobscured quasars are more likely to be found in higher mass halos than obscured quasars. Thus, the AGN unification model seems to fail at quasar luminosities.

  2. Iterative Maps with Hierarchical Clustering for the Observed Scales of Astrophysical and Cosmological Structures

    CERN Document Server

    Capozziello, S; De Siena, S; Guerra, F; Illuminati, F

    2000-01-01

    We derive, in order of magnitude, the observed astrophysical and cosmologicalscales in the Universe, from neutron stars to superclusters of galaxies, up to,asymptotically, the observed radius of the Universe. This result is obtained byintroducing a recursive scheme of alternating hierachical mechanisms ofthree-dimensional and two-dimensional close packings of gravitationallyinteracting objects. The iterative scheme yields a rapidly converging geometricsequence, which can be described as a hierarchical clustering of aggregates,having the observed radius of the Universe as its fixed point.

  3. nIFTy Cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics

    CERN Document Server

    Chuang, Chia-Hsun; Prada, Francisco; Munari, Emiliano; Avila, Santiago; Izard, Albert; Kitaura, Francisco-Shu; Manera, Marc; Monaco, Pierluigi; Murray, Steven; Knebe, Alexander; Scoccola, Claudia G; Yepes, Gustavo; Garcia-Bellido, Juan; Marin, Felipe A; Muller, Volker; Skibba, Ramin; Crocce, Martin; Fosalba, Pablo; Gottlober, Stefan; Klypin, Anatoly A; Power, Chris; Tao, Charling; Turchaninov, Victor

    2014-01-01

    We present a comparison of major methodologies of fast generating mock halo or galaxy catalogues. The comparison is done for two-point and the three-point clustering statistics. The reference catalogues are drawn from the BigMultiDark N-body simulation. Both friend-of-friends (including distinct halos only) and spherical overdensity (including distinct halos and subhalos) catalogs have been used with the typical number density of a large-volume galaxy surveys. We demonstrate that a proper biasing model is essential for reproducing the power spectrum at quasilinear and even smaller scales. With respect to various clustering statistics a methodology based on perturbation theory and a realistic biasing model leads to very good agreement with N-body simulations. However, for the quadrupole of the correlation function or the power spectrum, only the method based on semi-N-body simulation could reach high accuracy (1% level) at small scales, i.e., r0.15 h/Mpc. For those methods that only produce distinct haloes, a ...

  4. Weak-Lensing Mass Calibration of the Atacama Cosmology Telescope Equatorial Sunyaev-Zeldovich Cluster Sample with the Canada-France-Hawaii Telescope Stripe 82 Survey

    CERN Document Server

    Battaglia, N; Miyatake, H; Hasselfield, M; Gralla, M B; Allison, R; Bond, J R; Calabrese, E; Crichton, D; Devlin, M J; Dunkley, J; Dünner, R; Erben, T; Ferrara, S; Halpern, M; Hilton, M; Hill, J C; Hincks, A D; Hložek, R; Huffenberger, K M; Hughes, J P; Kneib, J P; Kosowsky, A; Makler, M; Marriage, T A; Menanteau, F; Miller, L; Moodley, K; Moraes, B; Niemack, M D; Page, L; Shan, H; Sehgal, N; Sherwin, B D; Sievers, J L; Sifón, C; Spergel, D N; Staggs, S T; Taylor, J; Thornton, R; van Waerbeke, L; Wollack, E J

    2015-01-01

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). The average weak lensing mass is $\\left(4.8\\pm0.8\\right)\\,\\times10^{14}\\,\\mathrm{M}_\\odot$, consistent with the tSZ mass estimate of $\\left(4.70\\pm1.0\\right)\\,\\times10^{14}\\,\\mathrm{M}_\\odot$ which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously neglected.

  5. Efficient calculation of cosmological neutrino clustering with both linear and non-linear gravity

    CERN Document Server

    Archidiacono, Maria

    2015-01-01

    We study in detail how neutrino perturbations can be followed in linear theory by using only terms up to $l=2$ in the Boltzmann hierarchy. We provide a new approximation to the third moment and demonstrate that the neutrino power spectrum can be calculated to a precision of better than $\\sim$ 5% for masses up to $\\sim$ 1 eV. The matter and CMB power spectra can be calculated far more precisely and typically at least a factor of a few better than with existing approximations. We then proceed to study how the neutrino power spectrum can be reliably calculated even in the presence of non-linear gravitational clustering by using the full non-linear gravitational potential derived from semi-analytic methods based on $N$-body simulations in the Boltzmann evolution hierarchy. Our results agree extremely well with results derived from $N$-body simulations.

  6. Joint analysis of X-ray and Sunyaev Zel'dovich observations of galaxy clusters using an analytic model of the intra-cluster medium

    CERN Document Server

    Hasler, Nicole; Bonamente, Massimiliano; Carlstrom, John E; Culverhouse, Thomas L; Gralla, Megan; Greer, Christopher; Hawkins, David; Hennessy, Ryan; Joy, Marshall; Kolodziejczak, Jeffery; Lamb, James W; Landry, David; Leitch, Erik M; Mantz, Adam; Marrone, Daniel P; Miller, Amber; Mroczkowski, Tony; Muchovej, Stephen; Plagge, Thomas; Pryke, Clem; Woody, David

    2012-01-01

    We perform a joint analysis of X-ray and Sunyaev Zel'dovich (SZ) effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, Abell 2631 and Abell 2204.

  7. A cosmological view of extreme mass-ratio inspirals in nuclear star clusters

    CERN Document Server

    Mapelli, M; Vecchio, A; Graham, Alister W; Gualandris, A

    2012-01-01

    There is increasing evidence that many galaxies host both a nuclear star cluster (NC) and a super-massive black hole (SMBH). Their coexistence is particularly prevalent in spheroids with stellar mass 10^8-10^10 solar masses. We study the possibility that a stellar-mass black hole (BH) hosted by a NC inspirals and merges with the central SMBH. Due to the high stellar density in NCs, extreme mass-ratio inspirals (EMRIs) of BHs onto SMBHs in NCs may be important sources of gravitational waves (GWs). We consider sensitivity curves for three different space-based GW laser interferometric mission concepts: the Laser Interferometer Space Antenna (LISA), the New Gravitational wave Observatory (NGO) and the DECi-hertz Interferometer Gravitational wave Observatory (DECIGO). We predict that, under the most optimistic assumptions, LISA and DECIGO will detect up to thousands of EMRIs in NCs per year, while NGO will observe up to tens of EMRIs per year. We explore how a number of factors may affect the predicted rates. In ...

  8. The First Chandra Field

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; /NASA, Marshall; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Cameron, Robert A.; /Harvard-Smithsonian Ctr. Astrophys. /SLAC; Gandhi,; Foellmi, Cedric; /European Southern Obs., Chile; Elsner, Ronald F.; /NASA, Marshall; Patel, Sandeep K.; /USRA, Huntsville; Wu, Kinwah; /Mullard Space Sci. Lab.; O' Dell, Stephen; /NASA, Marshall

    2005-09-09

    Before the official first-light images, the Chandra X-ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ''Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a Type-1 (unobscured) active galactic nucleus (AGN) at a redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the Eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive ({ge} 10{sup 9} M{sub {circle_dot}}) black hole, accreting at a rate approaching its Eddington limit.

  9. Cosmological constraints from the cluster contribution to the power spectrum of the soft X-ray background. New evidence for a low sigma_8

    CERN Document Server

    Diego-Rodriguez, J M; Silk, J; Barcons, X; Voges, W

    2003-01-01

    We use the X-ray power spectrum of the ROSAT all-sky survey in the R6 band (approximately 0.9-1.3 keV) to set an upper limit on the galaxy cluster power spectrum. The cluster power spectrum is modelled with a minimum number of robust assumptions regarding the structure of the clusters. The power spectrum of ROSAT sets an upper limit on the Omega_m-sigma_8 plane which excludes all the models with sigma_8 above sigma_8 = 0.5/(Omega_m^0.38) in a flat LCDM universe. We discuss the possible sources of systematic errors in our conclusions, mainly dominated by the assumed L_x-T relation. Alternatively, this relation could be constrained by using the X-ray power spectrum, if the cosmological model is known. Our conclusions suggest that only models with a low value of sigma_8 (sigma_8 < 0.8 for Omega_m = 0.3) may be compatible with our upper limit. We also find that models predicting lower luminosities in galaxy clusters are favoured. Reconciling our cosmological constraints with these arising by other methods migh...

  10. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. III. MEASUREMENT BIASES AND COSMOLOGICAL EVOLUTION OF GAS AND STELLAR MASS FRACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, N. [Department of Physics, McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States); Bond, J. R. [Canadian Institute for Theoretical Astrophysics, 60 St George, Toronto ON, M5S 3H8 (Canada); Pfrommer, C. [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Sievers, J. L., E-mail: christoph.pfrommer@h-its.org [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States)

    2013-11-10

    Gas masses tightly correlate with the virial masses of galaxy clusters, allowing for a precise determination of cosmological parameters by means of X-ray surveys. However, the gas mass fractions (f{sub gas}) at the virial radius (R{sub 200}) derived from recent Suzaku observations are considerably larger than the cosmic mean, calling into question the accuracy of cosmological parameters. Here, we use a large suite of cosmological hydrodynamical simulations to study measurement biases of f{sub gas}. We employ different variants of simulated physics, including radiative gas physics, star formation, and thermal feedback by active galactic nuclei, which we show is able to arrest overcooling and to result in constant stellar mass fractions for redshifts z < 1. Computing the mass profiles in 48 angular cones, we find anisotropic gas and total mass distributions that imply an angular variance of f{sub gas} at the level of 30%. This anisotropy originates from the recent formation epoch of clusters and from the strong internal baryon-to-dark-matter density bias. In the most extreme cones, f{sub gas} can be biased high by a factor of two at R{sub 200} in massive clusters (M{sub 200} ∼ 10{sup 15} M{sub ☉}), thereby providing an explanation for high f{sub gas} measurements by Suzaku. While projection lowers this factor, there are other measurement biases that may (partially) compensate. At R{sub 200}, f{sub gas} is biased high by 20% when assuming hydrostatic equilibrium masses, i.e., neglecting the kinetic pressure, and by another ∼10%-20% due to the presence of density clumping. At larger radii, both measurement biases increase dramatically. While the cluster sample variance of the true f{sub gas} decreases to a level of 5% at R{sub 200}, the sample variance that includes both measurement biases remains fairly constant at the level of 10%-20%. The constant redshift evolution of f{sub gas} within R{sub 500} for massive clusters is encouraging for using gas masses to

  11. LoCuSS: Testing hydrostatic equilibrium in galaxy clusters

    Science.gov (United States)

    Smith, G. P.; Mazzotta, P.; Okabe, N.; Ziparo, F.; Mulroy, S. L.; Babul, A.; Finoguenov, A.; McCarthy, I. G.; Lieu, M.; Bahé, Y. M.; Bourdin, H.; Evrard, A. E.; Futamase, T.; Haines, C. P.; Jauzac, M.; Marrone, D. P.; Martino, R.; May, P. E.; Taylor, J. E.; Umetsu, K.

    2016-02-01

    We test the assumption of hydrostatic equilibrium in an X-ray luminosity selected sample of 50 galaxy clusters at 0.15 sub-4 per cent, and our hydrostatic measurements of the same achieve excellent agreement between XMM-Newton and Chandra. The mean ratio of X-ray to lensing mass for these 50 clusters is β_X= 0.95± 0.05, and for the 44 clusters also detected by Planck, the mean ratio of Planck mass estimate to LoCuSS lensing mass is β_P= 0.95± 0.04. Based on a careful like-for-like analysis, we find that LoCuSS, the Canadian Cluster Comparison Project, and Weighing the Giants agree on β_P ≃ 0.9-0.95 at 0.15 Planck cosmology results from the cosmic microwave background and galaxy cluster counts.

  12. Morphology parameters: substructure identification in X-ray galaxy clusters

    CERN Document Server

    Parekh, Viral; Ferrari, Chiara; Angus, Garry; Holwerda, Benne

    2014-01-01

    In recent years multi-wavelength observations have shown the presence of substructures related to merging events in a high fraction of galaxy clusters. Clusters can be roughly grouped into two categories -- relaxed and non-relaxed -- and a proper characterisation of the dynamical state of these systems is of crucial importance both for astrophysical and cosmological studies. In this paper we investigate the use of a number of morphological parameters (Gini, $M_{20}$, Concentration, Asymmetry, Smoothness, Ellipticity and Gini of the second order moment, $G_{M}$) introduced to automatically classify clusters as relaxed or dynamically disturbed systems. We apply our method to a sample of clusters at different redshifts extracted from the {\\it Chandra} archive and we investigate possible correlations between morphological parameters and other X-ray gas properties. We conclude that a combination of the adopted parameters is a very useful tool to properly characterise the X-ray cluster morphology. According to our ...

  13. Cosmic Ray Electrons in Groups and Clusters of Galaxies: Primary and Secondary Populations from a Numerical Cosmological Simulation

    OpenAIRE

    Miniati, Francesco; Jones, T. W.; Kang, Hyesung; Ryu, Dongsu

    2001-01-01

    We study the generation and distribution of high energy electrons in cosmic environment and their observational consequences by carrying out the first cosmological simulation that includes directly cosmic ray (CR) particles. Starting from cosmological initial conditions we follow the evolution of primary and secondary electrons (CRE), CR ions (CRI) and a passive magnetic field. CRIs and primary CREs are injected and accelerated at large scale structure shocks. Secondary CREs are continuously ...

  14. The Chandra Bibliography Database

    Science.gov (United States)

    Rots, A. H.; Winkelman, S. L.; Paltani, S.; Blecksmith, S. E.; Bright, J. D.

    2004-07-01

    Early in the mission, the Chandra Data Archive started the development of a bibliography database, tracking publications in refereed journals and on-line conference proceedings that are based on Chandra observations, allowing our users to link directly to articles in the ADS from our archive, and to link to the relevant data in the archive from the ADS entries. Subsequently, we have been working closely with the ADS and other data centers, in the context of the ADEC-ITWG, on standardizing the literature-data linking. We have also extended our bibliography database to include all Chandra-related articles and we are also keeping track of the number of citations of each paper. Obviously, in addition to providing valuable services to our users, this database allows us to extract a wide variety of statistical information. The project comprises five components: the bibliography database-proper, a maintenance database, an interactive maintenance tool, a user browsing interface, and a web services component for exchanging information with the ADS. All of these elements are nearly mission-independent and we intend make the package as a whole available for use by other data centers. The capabilities thus provided represent support for an essential component of the Virtual Observatory.

  15. The Evolution of Structure in X-ray Clusters of Galaxies

    CERN Document Server

    Jeltema, T E; Bautz, M W; Buote, D A; Jeltema, Tesla E.; Canizares, Claude R.; Bautz, Mark W.; Buote, David A.

    2005-01-01

    Using Chandra archival data, we quantify the evolution of cluster morphology with redshift. Clusters form and grow through mergers with other clusters and groups, and the amount of substructure in clusters in the present epoch and how quickly it evolves with redshift depend on the underlying cosmology. Our sample includes 40 X-ray selected, luminous clusters from the Chandra archive, and we quantify cluster morphology using the power ratio method (Buote & Tsai 1995). The power ratios are constructed from the moments of the X-ray surface brightness and are related to a cluster's dynamical state. We find that, as expected qualitatively from hierarchical models of structure formation, high-redshift clusters have more substructure and are dynamically more active than low-redshift clusters. Specifically, the clusters with z>0.5 have significantly higher average third and fourth order power ratios than the lower redshift clusters. Of the power ratios, $P_3/P_0$ is the most unambiguous indicator of an asymmetric...

  16. THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS ,

    International Nuclear Information System (INIS)

    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg2 area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R ∼ 700-800) spectra and redshifts for ≈60 member galaxies on average per cluster. The dynamical masses M200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M200c≅12×1014 h70-1 Msun with a lower limit M200c≅6×1014 h70-1 Msun, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y0-tilde, the central Compton parameter y0, and the integrated Compton signal Y200c, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (∼< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ∼50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations

  17. Chandra Catches Cannibal Galaxy in the Act

    Science.gov (United States)

    2000-07-01

    NASA's Chandra X-ray Observatory image of Perseus A provides new insight into how this supergiant galaxy has grown by cannibalizing other galaxies and gas in the vicinity. For the first time astronomers see an X-ray shadow cast by a smaller galaxy as its gas is being stripped away by the enormous galaxy. The research was reported by Professor Andrew Fabian of the Institute of Astronomy, Cambridge, England on June 7 at the 196th National Meeting of the American Astronomical Society, in Rochester, NY. Other members of the research team are Jeremy Sanders, Stefano Ettori, Steve Allen, Carolin Crawford, Kazushi Iwasawa, and Roderick Johnstone of the Institute of Astronomy, Gregory Taylor on the National Radio Astronomy Observatory, Socorro, NM, and Patrick Ogle of the Massachusetts Institute of Technology, Cambridge, MA. Perseus A, or NGC 1275, is in the center of a large galaxy cluster 320 million light years from Earth. The cluster, which contains thousands of galaxies and enough gas to make thousands more, is one of the largest gravitationally bound objects in the universe. Over the eons, Perseus A has accumulated hundreds of billions of stars to become one of the most massive known galaxies as gas and galaxies have been pulled inward by gravity. The Chandra observation shows a region of hot gas that extends over several hundred thousand light years. The gas in the outer portion of the cluster has a temperature of 70 million degrees. The cluster gas cools gradually and settles toward the center of the cluster. A galaxy with "only" about 20 billion stars is falling into Perseus A (located at two o'clock from the center of the image) and appears as a small dark patch due to absorption of X rays by cool gas in the infalling galaxy. Another larger hole seen further out is thought to be due to a bubble of high-energy particles ejected in an explosion from Perseus A hundreds of millions of years ago. These outbursts are presumably fueled by matter releasing tremendous

  18. Probing dark energy via galaxy cluster outskirts

    CERN Document Server

    Morandi, Andrea

    2016-01-01

    We present a Bayesian approach to combine $Planck$ data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters ($0.056 3$ keV) observed with $Chandra$. We exploited the high-level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependency of the gas fraction. This cosmological test, in combination with $Planck$+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-$w$ model, we have $w=-1.010\\pm0.030$ and $\\Omega_m=0.311\\pm0.014$, while for a time-evolving equation of state of dark energy $w(z)$ we have $\\Omega_m=0.308\\pm 0.017$, $w_0=-0.993\\pm0.046$ and $w_a=-0.123\\pm0.400$. Constraints on the cosmology are further improved by adding priors on the gas f...

  19. Higher-Order Calculations of Light Deflection and the Contribution of the Cosmological Constant to Einstein Radii around Clusters of Galaxies

    Science.gov (United States)

    Dossett, Jason; Ishak, M.; Rindler, W.; Moldenhauer, J.; Allison, C.

    2008-05-01

    Recently, Rindler and Ishak (2007) made a breakthrough in the field of gravitational lensing showing that a cosmological constant, Λ, will indeed contribute to the bending angle of light by a concentric mass, in fact, by decreasing it. Then Ishak et al. (2007) showed that the effect can be applied to observations of Einstein radii around clusters of galaxies. We present here various higher-order calculations and results for the bending angle and the Lambda contribution. Surprisingly, we find that the Lambda term is the next largest term after the Einstein first-order term for many cluster lens systems. For those lens systems, the Lambda contribution is larger than the second-order term and may be the next targeted term by future high precision experiments.

  20. The BMW-Chandra Serendipitous Source Catalog

    Science.gov (United States)

    Romano, P.; Campana, S.; Mignani, R. P.; Moretti, A.; Mottini, M.; Panzera, M. R.; Tagliaferri, G.

    2004-08-01

    We present the BMW-Chandra source catalog drawn from all Chandra ACIS-I pointed observations with an exposure time in excess of 10 ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterize point-like as well as extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings, and do not require a non-automated analysis. This makes our catalog the largest compilation of Chandra sources to date. The 0.5--10 keV absorption corrected fluxes of these sources range from ˜ 3× 10-16 to 9×10-12 erg cm-2 s-1 with a median of 7× 10-15 erg cm-2 s-1. The catalog consists of count rates and relative errors in three energy bands (total, 0.5--7 keV; soft, 0.5--2 keV; and hard band, 2--7 keV), and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate of the extension of the source which we refined with a σ -clipping method. We report on the main properties of the sources in our catalog, such as sky coverage ( ˜ 8 deg2 at a limiting flux of ˜ 10-13 erg cm-2 s-1) and cosmological log N--log S for a subset at high Galactic latitude (∣ b ∣ > 20o) for a flux as low as ˜ 1.5 × 10-15 erg cm-2 s-1. Support for this work was provided by the Italian MIUR.

  1. Deep Chandra, HST-COS, and Megacam Observations of the Phoenix Cluster: Extreme Star Formation and AGN Feedback on Hundred Kiloparsec Scales

    CERN Document Server

    McDonald, M; van Weeren, R J; Applegate, D E; Bayliss, M; Bautz, M W; Benson, B A; Carlstrom, J E; Bleem, L E; Chatzikos, M; Edge, A C; Fabian, A C; Garmire, G P; Hlavacek-Larrondo, J; Jones-Forman, C; Mantz, A B; Miller, E D; Stalder, B; Veilleux, S; Zuhone, J A

    2015-01-01

    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously-undetected filaments of star formation, extending to radii of ~50-100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2x10^9 Msun)), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 +/- 50 Msun/yr. We report a strong detection of OVI(1032,1038) which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 Msun/yr) from the cooling intracluster medium. We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are amongst the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2-7 x10^45 erg/s. We provide evidence that the AGN inflating these cavities may have only recently transitioned from "quasar-mode" to "radio-mode", and may currently be insufficient to completely offset ...

  2. Current Issues in Cosmology

    International Nuclear Information System (INIS)

    These colloquium proceedings will be valuable, the blurb says, for graduate students and researchers in cosmology and theoretical astrophysics. Specifically, the book 'looks at both the strengths and weaknesses of the current big bang model in explaining certain puzzling data' and gives a 'comprehensive coverage of the expanding field of cosmology'. The reality is rather different. Conference proceedings rarely compare in value with a solid monograph or good review articles, and Current Issues in Cosmology is no exception. The colloquium was convened by the two editors, who have both long harboured doubts about the big bang, and was held in Paris in June 2004. The proceedings contain 19 presented papers and relatively brief summary comments by four panel speakers. The questions and answers at the end of each talk and a general discussion at the end were recorded and transcribed but contain little of interest. The nature of the colloquium is indicated by panellist Francesco Bertola's comment: 'While in the 1950s it was possible to speak of rival theories in cosmology, now the big-bang picture has no strong rivals. This is confirmed by the fact that out of 1500 members of the IAU Division VIII (Galaxies and the Universe) only a dozen, although bright people, devote their time to the heterodox views.' This was largely a platform for them to give their views. At least half of the dozen, all the 'usual suspects', were present: Geoffery and Margaret Burbidge, Jayant Narlikar, Halton Arp, Chandra Wickramasinghe and, in spirit only but playing a role somewhat like the ghost of Hamlet's father, the late Fred Hoyle. Doubters presented 12 of the 19 papers. Orthodoxy should certainly be challenged and the sociology of science questioned, but I found two main problems with this book. The papers putting the orthodox view are too short, even perfunctory. The most that a serious graduate student would get out of them is a reference to a far better review article or book on modern

  3. Current Issues in Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, J B [Department of Physics and Astronomy, University of Rochester (United States)

    2007-02-07

    These colloquium proceedings will be valuable, the blurb says, for graduate students and researchers in cosmology and theoretical astrophysics. Specifically, the book 'looks at both the strengths and weaknesses of the current big bang model in explaining certain puzzling data' and gives a 'comprehensive coverage of the expanding field of cosmology'. The reality is rather different. Conference proceedings rarely compare in value with a solid monograph or good review articles, and Current Issues in Cosmology is no exception. The colloquium was convened by the two editors, who have both long harboured doubts about the big bang, and was held in Paris in June 2004. The proceedings contain 19 presented papers and relatively brief summary comments by four panel speakers. The questions and answers at the end of each talk and a general discussion at the end were recorded and transcribed but contain little of interest. The nature of the colloquium is indicated by panellist Francesco Bertola's comment: 'While in the 1950s it was possible to speak of rival theories in cosmology, now the big-bang picture has no strong rivals. This is confirmed by the fact that out of 1500 members of the IAU Division VIII (Galaxies and the Universe) only a dozen, although bright people, devote their time to the heterodox views.' This was largely a platform for them to give their views. At least half of the dozen, all the 'usual suspects', were present: Geoffery and Margaret Burbidge, Jayant Narlikar, Halton Arp, Chandra Wickramasinghe and, in spirit only but playing a role somewhat like the ghost of Hamlet's father, the late Fred Hoyle. Doubters presented 12 of the 19 papers. Orthodoxy should certainly be challenged and the sociology of science questioned, but I found two main problems with this book. The papers putting the orthodox view are too short, even perfunctory. The most that a serious graduate student would get out of them is a reference

  4. Joint Analysis of X-Ray and Sunyaev-Zel'Dovich Observations of Galaxy Clusters Using an Analytic Model of the Intracluster Medium

    Science.gov (United States)

    Hasler, Nicole; Bulbul, Esra; Bonamente, Massimiliano; Carlstrom, John E.; Culverhouse, Thomas L.; Gralla, Megan; Greer, Christopher; Lamb, James W.; Hawkins, David; Hennessy, Ryan; Joy, Marshall; Kolodziejczak, Jeffrey; Landry, David; Leitch, Erik M.; Mantz, Adam; Marrone, Daniel P.; Miller, Amber; Mroczkowski, Tony; Muchovej, Stephen; Plagge, Thomas; Pryke, Clem; Woody, David

    2012-01-01

    We perform a joint analysis of X-ray and Sunyaev-Zel'dovich effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, A2631 and A2204.

  5. Cosmological Hydrodynamics on a Moving Mesh

    Science.gov (United States)

    Hernquist, Lars

    several NASA missions. Our simulations will allow a detailed comparison of observed CHANDRA X-ray groups and clusters with state-of-the-art theoretical models. Scaling relations and their evolution with redshift can constrain the processes occurring in cluster centers. At higher energies, data from the FERMI gamma-ray satellite combined with our simulated data set will permit us to estimate the non- thermal pressure support in clusters due to cosmic rays. Another science goal of FERMI is the search for annihilation radiation produced by dark matter. The high resolution of our proposed calculations gives us the capability of making predictions for the annihilation signature from large-scale structure. Our proposed work is also relevant to upcoming missions like the James Webb Space Telescope (JWST). With our scheme, we will study the morphological evolution of galaxies in a full cosmological setting for the first time. JWST is specifically designed to observe the high redshift structure of emerging galaxies and their subsequent evolution. Our simulations will thus provide an indispensable tool for understanding JWST observations. We will make our simulations available to the community, accessible through a web-based interface, including the simulation data as well as galaxy catalogs, images, and videos generated during the course of the calculations. This will be the first time that such a dataset, drawn from a hydrodynamical model of the Universe, will be made public. As we anticipate that our simulations will have numerous applications in addition to those listed above, this will ensure that our work will have the greatest possible impact by fostering research on diverse problems related to the formation of galaxies and larger-scale structures.

  6. THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Sifon, Cristobal; Barrientos, L. Felipe; Gonzalez, Jorge; Infante, Leopoldo; Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Menanteau, Felipe; Hughes, John P.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Battaglia, Nick; Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); and others

    2013-07-20

    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg{sup 2} area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R {approx} 700-800) spectra and redshifts for Almost-Equal-To 60 member galaxies on average per cluster. The dynamical masses M{sub 200c} of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M{sub 200c}{approx_equal}12 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun} with a lower limit M{sub 200c}{approx_equal}6 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun}, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y{sub 0}-tilde, the central Compton parameter y{sub 0}, and the integrated Compton signal Y{sub 200c}, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter ({approx}< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that {approx}50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.

  7. Brane Cosmology

    OpenAIRE

    Papantonopoulos, E.

    2002-01-01

    The aim of these lectures is to give a brief introduction to brane cosmology. After introducing some basic geometrical notions, we discuss the cosmology of a brane universe with matter localized on the brane. Then we introduce an intrinsic curvature scalar term in the bulk action, and analyze the cosmology of this induced gravity. Finally we present the cosmology of a moving brane in the background of other branes, and as a particular example, we discuss the cosmological evolution of a test b...

  8. Gravitational clustering of galaxies: Derivation of two-point galaxy correlation function using statistical mechanics of cosmological many-body problem

    Science.gov (United States)

    Ahmad, Farooq; Malik, Manzoor A.; Bhat, M. Maqbool

    2016-07-01

    We derive the spatial pair correlation function in gravitational clustering for extended structure of galaxies (e.g. galaxies with halos) by using statistical mechanics of cosmological many-body problem. Our results indicate that in the limit of point masses (ɛ=0) the two-point correlation function varies as inverse square of relative separation of two galaxies. The effect of softening parameter `ɛ' on the pair correlation function is also studied and results indicate that two-point correlation function is affected by the softening parameter when the distance between galaxies is small. However, for larger distance between galaxies, the two-point correlation function is not affected at all. The correlation length r0 derived by our method depends on the random dispersion velocities functions and we apply our results to obtain the correlation length r0 for such systems which again agrees with the data of N-body simulations and observations.

  9. The Case for a Hierarchical Cosmology

    Science.gov (United States)

    Vaucouleurs, G. de

    1970-01-01

    The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)

  10. CLASH-X: A Comparison of Lensing and X-ray Techniques for Measuring the Mass Profiles of Galaxy Clusters

    CERN Document Server

    Donahue, Megan; Mahdavi, Andisheh; Umetsu, Keiichi; Ettori, Stefano; Merten, Julian; Postman, Marc; Hoffer, Aaron; Baldi, Alessandro; Coe, Dan; Czakon, Nicole; Bartelmann, Mattias; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Ford, Holland; Gastaldello, Fabio; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Koekemoer, Anton; Kelson, Daniel; Lahav, Ofer; Lemze, Doron; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A; Nonino, Mario; Rosati, Piero; Sayers, Jack; Seitz, Stella; Van der Wel, Arjen; Zheng, Wei; Zitrin, Adi

    2014-01-01

    We present profiles of temperature, gas mass, and hydrostatic mass estimated from X-ray observations of CLASH clusters. We compare measurements from XMM and Chandra and compare both sets to CLASH gravitational lensing mass profiles. We find that Chandra and XMM measurements of electron density and enclosed gas mass as functions of radius are nearly identical, indicating that any differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature estimates. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another at ~100 kpc radii but XMM temperatures systematically decline relative to Chandra temperatures as the radius of the temperature measurement increases. One plausible reason for this trend is large-angle scattering of soft X-ray photons in excess of that amount expected from the standard XMM PSF correction. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent c...

  11. Neutrino Astrophysics And Cosmology

    CERN Document Server

    Abazajian, Kevork N

    2001-01-01

    Although physical cosmology is becoming a field rich in data, the theoretical basis for several aspects of standard cosmological models are spectacularly devoid of firm foundations. On the other hand, the standard model of particle physics has successfully described an enormous quantity of experimental data, with one exception lying in the neutrino sector from observations of the atmospheric neutrino flux. This dissertation intersects both fields, as an interplay of the problems confronting theoretical cosmology and the tremendous success of the standard model of particle physics. And, in return, the successes of the standard cosmology may give insights into new particle physics, particularly neutrino physics. In this interplay, this dissertation studies the production of sterile neutrino dark matter in the early universe, constraints on this scenario, including radiative decays in galactic clusters. The effects of nonthermal neutrinos resulting from neutrino transformation on big bang nucleosynthesis are stu...

  12. Predicting Chandra CCD Degradation with the Chandra Radiation Model

    Science.gov (United States)

    Minow, Joseph I.; Blackwell, William C.; DePasquale, Joseph M.; Grant, Catherine E.; O'Dell, Stephen L.; Plucinsky, Paul P.; Schwartz, Daniel A.; Spitzbart, Bradley D.; Wolk, Scott J.

    2008-01-01

    Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This

  13. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

    CERN Document Server

    Alam, Shadab; Bailey, Stephen; Beutler, Florian; Bizyaev, Dmitry; Blazek, Jonathan A; Bolton, Adam S; Brownstein, Joel R; Burden, Angela; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Escoffier, Stephanie; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Ho, Shirley; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Malanushenko, Elena; Malanushenko, Viktor; Maraston, Claudia; McBride, Cameron K; Nichol, Robert C; Olmstead, Matthew D; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M; Reid, Beth A; Rodríguez-Torres, Sergio A; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Saito, Shun; Salazar-Albornoz, Salvador; Samushia, Lado; Satpathy, Siddharth; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Simmons, Audrey; Slosar, Anže; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magaña, Mariana Vargas; Vazquez, Jose Alberto; Verde, Licia; Wake, David A; Wang, Yuting; Weinberg, David H; White, Martin; Wood-Vasey, W Michael; Yèche, Christophe; Zehavi, Idit; Zhai, Zhongxu; Zhao, Gong-Bo

    2016-01-01

    We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{\\sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one m...

  14. Weak lensing study of 16 DAFT/FADA clusters: Substructures and filaments

    Science.gov (United States)

    Martinet, Nicolas; Clowe, Douglas; Durret, Florence; Adami, Christophe; Acebrón, Ana; Hernandez-García, Lorena; Márquez, Isabel; Guennou, Loic; Sarron, Florian; Ulmer, Mel

    2016-05-01

    While our current cosmological model places galaxy clusters at the nodes of a filament network (the cosmic web), we still struggle to detect these filaments at high redshifts. We perform a weak lensing study for a sample of 16 massive, medium-high redshift (0.4 Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The study is also based on archive data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. This research made use of data obtained from the Chandra Data Archive provided by the Chandra X-ray Center (CXC) and data obtained from the XMM-Newton Data Archive provided by the XMM-Newton Science Archive (XSA).

  15. Clustering, Cosmology and a New Era of Black Hole Demographics -- I. The Conditional Luminosity Function of Active Galactic Nuclei

    CERN Document Server

    Ballantyne, D R

    2016-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to $z \\sim 5$. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, this paper presents a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific $z$. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function -- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method ...

  16. The dark halo of the Hydra I galaxy cluster: core, cusp, cosmological? Dynamics of NGC 3311 and its globular cluster system

    CERN Document Server

    Richtler, T; Misgeld, I; Hilker, M; Hau, G K T; Romanowsky, A J; Schuberth, Y; Spolaor, M

    2011-01-01

    NGC 3311 is the central cD galaxy of the Hydra I cluster. We use globular clusters around NGC 3311, combined with kinematical data of the galaxy itself, to investigate the dark matter distribution in the central region of Hydra I. Radial velocities of 118 bright globular clusters, based on VLT/VIMOS mask spectroscopy, are used to calculate velocity dispersions which are well defined out to 100 kpc. NGC 3311 is the most distant galaxy for which this kind of study has been performed. We also determine velocity dispersions of the stellar component from long slit spectroscopy out to 20 kpc. Moreover, we present a new photometric model for NGC 3311 in the V-band. We search for a dark halo which in the context of a spherical Jeans model. We also compare the radial velocity distributions of globular clusters and planetary nebulae. The projected stellar velocity dispersion rises from 185 km/s to 350 km/s at a radius of 20 kpc. The globular cluster dispersion rises as well from 500 km/s at 10 kpc to about 800 km/s at ...

  17. Braneworld Cosmology

    OpenAIRE

    Cline, James M.

    2007-01-01

    A brief review of the field of braneworld cosmology, from its inception with the large extra dimension scenario, to aspects of cosmology in warped extra dimensions, including the RS-I and RS-II models, braneworld inflation, the Goldberger-Wise mechanism, mirage cosmology, the radion-induced phase transition in RS-I, possible gravity wave signals, and the DGP model.

  18. LoCuSS: Calibrating Mass-Observables Scaling Relations for Cluster Cosmology with Subaru Weak Lensing Observations

    CERN Document Server

    Okabe, Nobuhiro; Finoguenov, Alexis; Takada, Masahiro; Smith, Graham P; Umetsu, Keiichi; Futamase, Toshifumi

    2010-01-01

    (Abridged) We present a joint weak-lensing/X-ray study of galaxy cluster mass-observable scaling relations, motivated by the critical importance of accurate calibration of mass proxies for future X-ray missions, including eROSITA. We use a sample of 12 clusters at z\\simeq0.2 that we have observed with Subaru and XMM-Newton to construct relationships between the weak-lensing mass (M), and three X-ray observables: gas temperature (T), gas mass (Mgas), and quasi-integrated gas pressure (Yx) at overdensities of \\Delta=2500, 1000, and 500 with respect to the critical density. We find that Mgas at \\Delta\\le1000 appears to be the most promising mass proxy of the three, because it has the lowest intrinsic scatter in mass at fixed observable: \\sigma _lnM\\simeq0.1, independent of cluster dynamical state. The scatter in mass at fixed T and Yx is a factor of \\sim2-3 larger than at fixed Mgas, which are indicative of the structural segregation that we find in the M-T and M-Yx relationships. Undisturbed clusters are found ...

  19. EIS Data on the Chandra Deep Field South Released

    Science.gov (United States)

    2001-03-01

    The purpose of this note is to announce that the ESO Imaging Survey programme has released a full set of optical/infrared data covering the socalled Chandra Deep Field South (CDF-S) rapidly becoming a favoured target for cosmological studies in the southern hemisphere. The field was originally selected for deep X-ray observations with Chandra and XMM. The former have already been completed producing the deepest high-resolution X-ray image ever taken with a total integration time of one million seconds. The data obtained by EIS include J and Ks infrared observations of an area of 0.1 square degree nearly matching the Chandra image down to JAB ~ 23.4 and KAB ~ 22.6 and UU'BVRI optical observations over 0.25 square degree, matching the XMM field of view, reaching 5 s limiting magnitudes of U'AB = 26.0, UAB = 25.7, BAB = 26.4, VAB = 25.4, RA B = 25.5 and IA B = 24.7 mag, as measured within a 2 ´ FWHM aperture.

  20. Modern Cosmology

    CERN Document Server

    Zhang Yuan Zhong

    2002-01-01

    This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...

  1. Continuum Theory (CT):. Its Particle-Tied Aether Yields a Continuous Auto-creation, Non-expanding Cosmology and New Light on Galaxy Evolution and Clusters

    Science.gov (United States)

    Osmaston, Miles F.

    2013-09-01

    shrinkage, with mass annihilation and emission of a GRB. Of special interest, relative to the arm's-length nature of BigBang cosmology, is that continuous auto-creation (CAC) cosmology is in principle available near-by for direct study and the development of strong observational constraints. In the context of (1), the very low metallicity (Pop II) of globular (star) clusters abundantly present in the haloes of galaxies points to them being (infallen?) local concentrations of quite young auto-creation. In that case the `blue straggler' stars more recently formed in their core regions may be our youngest examples of ongoing auto-creation. In summary, CT offers a much more directly observable Universe, with no Big Bang, CDM, or Dark Energy, and a CMB that records the true temperature of intergalactic space along the path taken by the radiation. Its closely cavity-radiation character arises from the random aether's transmission-related opacity (Olbers' Paradox) of the infinite CT Universe. Fundamentally, the aether's random motion constitutes all-penetrating random electromagnetic excitation at the atomic scale that may offer the accommodation between classical physics and stochastic quantum electrodynamics so long obstructed by Relativity Theory.

  2. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples

    CERN Document Server

    Sanchez, Ariel G; Kazin, Eyal A; Aubourg, Eric; Beutler, Florian; Brinkmann, Jon; Brownstein, Joel R; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Ho, Shirley; Honscheid, Klaus; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Percival, Will J; Ross, Ashley J; Samushia, Lado; Schlegel, David J; Schneider, Donald P; Skibba, Ramin; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Wake, David A; Weaver, Benjamin A; White, Martin; Zehavi, Idit

    2013-01-01

    We explore the cosmological implications of the angle-averaged correlation function, xi(s), and the clustering wedges, xi_perp(s) and xi_para(s), of the LOWZ and CMASS galaxy samples from Data Release 10 and 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard LCDM model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Omega_k = 0.0010 +- 0.0029, the total neutrino mass to Sum m_nu < 0.23 eV (95% confidence level), the effective number of relativistic species to N_eff=3.31 +- 0.27, and the dark energy equation of state to w_DE = -1.051 +- 0.076. These limits are further improved by adding information from type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state,...

  3. Quantum cosmology

    International Nuclear Information System (INIS)

    This paper is devoted to 100 years after the birth of A.A. Friedman. The discovery of the class of the non-stationary cosmological solutions is the greatest scientific achievement of this man. Friedman's cosmological models lie in the foundation of the modern relativistic cosmology. It follows from the astronomical observations that the large scale structure and evolution of the Universe fit well to the predictions of these models. Friedman's work has raised, for the first time, the problem of multiplicity of cosmological solutions, the problem of selecting of one of them by comparison with the constantly improving observations. Classical (non-quantum) theoretical cosmology deals with a whole space of cosmological solutions. Under investigation are the most general properties of these solutions as well as the initial and boundary conditions which, in agreement with the observations, could lead to the set of solutions most adequately describing the observed world

  4. Cosmological constraints on ghost dark energy in the Brans-Dicke theory by using MCMC approach

    Science.gov (United States)

    Alavirad, Hamzeh; Sheykhi, Ahmad

    2014-06-01

    By using a Markov Chain Monte Carlo simulation, we investigate cosmological constraints on the ghost dark energy (GDE) model in the framework of the Brans-Dicke (BD) theory. A combination of the latest observational data of the cosmic microwave background radiation data from seven-year WMAP, the baryon acoustic oscillation data form the SDSS, the supernovae type Ia data from the Union2 and the X-ray gas mass fraction data from the Chandra X-ray observations of the largest relaxed galaxy clusters are used to perform constraints on GDE in the BD cosmology. In this paper, we consider both flat and non-flat universes together with interaction between dark matter and dark energy. The main cosmological parameters are obtained as: Ωbh2=0.0223-0.0013+0.0016, Ωch2=0.1149-0.0104+0.0088 and Ωk=0.0005-0.0073+0.0025. In addition, the Brans-Dicke parameter ω is estimated as 1/ω≃0.002.

  5. Cosmological Constraints on Ghost Dark Energy in the Brans-Dicke Theory by Using MCMC Approach

    CERN Document Server

    Alavirad, Hamzeh

    2014-01-01

    By using a Markov Chain Monte Carlo simulation, we investigate cosmological constraints on the ghost dark energy (GDE) model in the framework of the Brans-Dicke (BD) theory. A combination of the latest observational data of the cosmic microwave background radiation data from seven-year WMAP, the baryon acoustic oscillation data form the SDSS, the supernovae type Ia data from the Union2 and the X-ray gas mass fraction data from the Chandra X-ray observations of the largest relaxed galaxy clusters are used to perform constraints on GDE in the BD cosmology. In this paper, we consider both flat and non-flat universes together with interaction between dark matter and dark energy. The main cosmological parameters are obtained as: $\\Omega_{\\rm b}h^2= 0.0223^{+0.0016}_{-0.0013}$, $\\Omega_{\\rm c}h^2=0.1149^{+0.0088}_{-0.0104}$ and $\\Omega_{\\rm k}=0.0005^{+0.0025}_{-0.0073}$. In addition, the Brans-Dicke parameter $\\omega$ is estimated as $1/\\omega\\simeq 0.002$.

  6. Cosmological constraints on ghost dark energy in the Brans–Dicke theory by using MCMC approach

    International Nuclear Information System (INIS)

    By using a Markov Chain Monte Carlo simulation, we investigate cosmological constraints on the ghost dark energy (GDE) model in the framework of the Brans–Dicke (BD) theory. A combination of the latest observational data of the cosmic microwave background radiation data from seven-year WMAP, the baryon acoustic oscillation data form the SDSS, the supernovae type Ia data from the Union2 and the X-ray gas mass fraction data from the Chandra X-ray observations of the largest relaxed galaxy clusters are used to perform constraints on GDE in the BD cosmology. In this paper, we consider both flat and non-flat universes together with interaction between dark matter and dark energy. The main cosmological parameters are obtained as: Ωbh2=0.0223−0.0013+0.0016, Ωch2=0.1149−0.0104+0.0088 and Ωk=0.0005−0.0073+0.0025. In addition, the Brans–Dicke parameter ω is estimated as 1/ω≃0.002

  7. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    black holes," said co-investigator Richard Bower of Durham University. "This might help us explain the source of these incredible jets that we see stretching for enormous distances across space." One significant connection consequence of powerful, black-hole jets in galaxies in the centers of galaxy clusters is that they can pump enormous amounts of energy into their environments, and heat the gas around them. This heating prevents the gas from cooling, and affects the rate at which new stars form, thereby limiting the size of the central galaxy. Understanding the details of this fundamental feedback loop between supermassive black holes and the formation of the most massive galaxies remains an important goal in astrophysics. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  8. Investigating the cores of fossil systems with Chandra

    OpenAIRE

    Bharadwaj, V.; Reiprich, T. H.; Sanders, J.S.; Schellenberger, G.

    2015-01-01

    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with th...

  9. Chandra Observation of Abell 2065: An Unequal Mass Merger?

    CERN Document Server

    Chatzikos, M; Sarazin, C L; Chatzikos, Marios; Sarazin, Craig L.

    2006-01-01

    We present an analysis of a 41 ks Chandra observation of the merging cluster Abell 2065 with the ACIS-I detector. Previous observations with ROSAT and ASCA provided evidence for an ongoing merger, but also suggested that there were two surviving cooling cores, which were associated with the two cD galaxies in the center of the cluster. The Chandra observation reveals only one X-ray surface brightness peak, which is associated with the more luminous, southern cD galaxy. The gas related with that peak is cool and displaced slightly from the position of the cD. The data suggest that this cool material has formed a cold front. On the other hand, in the higher spatial resolution Chandra image, the second feature to the north is not associated with the northern cD; rather, it appears to be a trail of gas behind the main cD. We argue that only one of the two cooling cores has survived the merger, although it is possible that the northern cD may not have possessed a cool core prior to the merger. We use the cool core...

  10. Large Scale Clustering of Sloan Digital Sky Survey Quasars: Impact of the Baryon Density and the Cosmological Constant

    CERN Document Server

    Yahata, K; Kayo, I; Matsubara, T; Connolly, A; Vanden Berk, Daniel E; Sheth, R; Szapudi, I; Anderson, S F; Bahcall, Neta A; Brinkmann, J; Csabai, I; Fan, X; Loveday, J; York, A S; Yahata, Kazuhiro; Suto, Yasushi; Kayo, Issha; Matsubara, Takahiko; Connolly, Andrew; Berk, Daniel Vanden; Sheth, Ravi; Szapudi, Istvan; Anderson, Scott F.; Bahcall, Neta; Brinkmann, Jon; Csabai, Istvan; Fan, Xiaohui; Loveday, Jon; York, Alexander S. Szalay and Donald

    2004-01-01

    We report the first result of the clustering analysis of Sloan Digital Sky Survey (SDSS) quasars. We compute the two-point correlation function (2PCF) of SDSS quasars in redshift space at $10h^{-1}{\\rm Mpc} < s < 1h^{-1}{\\rm Gpc}$, with particular attention to its baryonic signature. Our sample consists of 20303 quasars extracted from the SDSS Data Release 3 (DR3). The redshift range of the sample is $0.16 \\le z \\le 2.24$ and the reddening-corrected $i$-band apparent magnitude range is $15.0 \\le m_{i,{\\rm rc}} \\le 19.1$. Due to the relatively low number density of the quasar sample, the bump in the power spectrum due to the baryon density, $\\Omega_{\\rm b}$, is not clearly visible. The effect of the baryon density is, however, to shift the zero-crossing scale $s_{\\rm zero}$ of the 2PCF. The sensitivity of the zero crossing to the baryon density makes it an interesting alternate measure of the baryonic signature. Assuming a scale-independent linear bias and the spatially flat universe, i.e., $\\Omega_{\\rm ...

  11. Magnetic Bubbles in Galaxy Clusters

    OpenAIRE

    McNamara, B. R.

    2003-01-01

    I discuss Chandra X-ray Observatory measurements of cavities in galaxy clusters and their implications for heating the intracluster gas. The emerging paradigm for cooling flows has important implications for understanding self-regulated galaxy formation.

  12. Highlights and discoveries from the Chandra X-ray Observatory.

    Science.gov (United States)

    Tananbaum, H; Weisskopf, M C; Tucker, W; Wilkes, B; Edmonds, P

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy. PMID:24913425

  13. SHORT GAMMA-RAY BURSTS FROM DYNAMICALLY ASSEMBLED COMPACT BINARIES IN GLOBULAR CLUSTERS: PATHWAYS, RATES, HYDRODYNAMICS, AND COSMOLOGICAL SETTING

    International Nuclear Information System (INIS)

    We present a detailed assessment of the various dynamical pathways leading to the coalescence of compact objects in globular clusters (GCs) and Short Gamma-ray Burst (SGRB) production. We consider primordial binaries, dynamically formed binaries (through tidal two-body and three-body exchange interactions), and direct impacts of compact objects (WD/NS/BH). Here, we show that if the primordial binary fraction is small, close encounters dominate the production rate of coalescing compact systems. We find that the two dominant channels are the interaction of field neutron stars (NSs) with dynamically formed binaries and two-body encounters. Under such conditions, we estimate the redshift distribution and host galaxy demographics of SGRB progenitors, and find that GCs can provide a significant contribution to the overall observed rate. Regarding the newly identified channel of close stellar encounters involving WD/NS/BH, we have carried out precise modeling of the hydrodynamical evolution, giving us a detailed description of the resulting merged system. Our calculations show that there is in principle no problem in accounting for the global energy budget of a typical SGRB. The particulars of each encounter, however, are variable in several aspects and can lead to interesting diversity. First and most importantly, the characteristics of the encounter are highly dependent on the impact parameter. This is in contrast to the merger scenario, where the masses of the compact objects dictate a typical length and luminosity scale for SGRB activity. Second, the nature of the compact star itself can produce very different outcomes. Finally, the presence of tidal tails in which material will fall back onto the central object at a later time is a robust feature of the present set of calculations. The mass involved in these structures is considerably larger than for binary mergers. It is thus possible to account generically in this scenario for a prompt episode of energy release, as

  14. The Blanco Cosmology Survey: Data Reduction, Calibration and Photometric Redshift Estimation to Four Distant Galaxy Clusters Discovered by the South Pole Telescope

    Science.gov (United States)

    Ngeow, Chow Choong; Mohr, J.; Zenteno, A.; Data Management, DES; BCS; SPT Collaborations

    2009-01-01

    The Blanco Cosmology Survey (BCS) is designed to enable a study of the cosmic acceleration using multiple techniques. To date, BCS has acquired Sloan griz band imaging data from 60 nights (15 nights per year from 2005 to 2008) using the Blanco 4m Telescope located at CTIO. The astronomical imaging data taken from this survey have been processed on high performance computer TeraGrid platforms at NCSA, using the automated Dark Energy Survey (DES) data management (DM) system. The DES DM system includes (1) middlewares for controlling and managing the processing jobs, and serve as an application container encapsulating the scientific codes; and (2) DES archive, which includes filesystem nodes, a relational database and a data access framework, to support the pipeline processing, data storage and scientific analyzes. Photometric solution module (PSM) were run on photometric nights to determine the zeropoints (ZP) and other photometric solutions. We remapped and coadded the images that lie within the pre-defined coadd tiles in the sky. When running the coaddition pipeline, we determined the ZP for each images using the photometric ZP from PSM, the magnitude offsets between overlapping images, and the sky brightness ratio for CCDs within a given exposure. We also applied aperture correction and color-term correction to the coadded catalogs. Satisfactory photometric and astrometric precision were achieved. These enabled initial estimation of photometric redshifts using ANNz codes, trained from 5000 galaxies with spectroscopic redshifts. RMS in the photometric redshifts ranges from 0.05 to 0.1 in sigma_z/(1+z) for redshift extended to z=1. We used the BCS data to optically confirm and estimate redshifts for four of the highest S/N galaxy clusters discovered with the South Pole Telescope using the Sunyaev-Zel'dovich Effect.

  15. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  16. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  17. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Signs of neutrino mass in current cosmological datasets

    OpenAIRE

    Beutler, Florian; Saito, Shun; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Percival, Will J.; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Samushia, Lado; Sanchez, Ariel G.; Seo, Hee-Jong; Tinker, Jeremy L.; Wagner, Christian; Weaver, Benjamin A.

    2014-01-01

    We investigate the cosmological implications of the latest growth of structure measurement from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 with particular focus on the sum of the neutrino masses, $\\sum m_{\

  18. Cosmological singularity

    CERN Document Server

    Belinski, V

    2009-01-01

    The talk at international conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk, Belarus, April 2009. The talk represents a review of the old results and contemporary development on the problem of cosmological singularity.

  19. Neutrino cosmology

    International Nuclear Information System (INIS)

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  20. Cosmology Solved?

    CERN Document Server

    Turner, M S

    1998-01-01

    For two decades the hot big-bang model as been referred to as the standard cosmology -- and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter; it can extend our understanding of the Universe back to 10^-32 sec. There is now prima facie evidence for the two basic tenets of this new paradigm: flat Universe and scale-invariant spectrum of Gaussian density perturbations, and an avalanche of telling cosmological observations is coming. If inflation + cold dark matter is correct, then there are new, fundamental questions to be answered, most notably the nature of the dark energy that seems to account for 60% of the critical density and how inflation fits into a unified theory of the forces and particles. These are exciting times in cosmology!

  1. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  2. Cosmological Perturbations

    Science.gov (United States)

    Lesgourges, J.

    2013-08-01

    We present a self-contained summary of the theory of linear cosmological perturbations. We emphasize the effect of the six parameters of the minimal cosmological model, first, on the spectrum of Cosmic Microwave Background temperature anisotropies, and second, on the linear matter power spectrum. We briefly review at the end the possible impact of a few non-minimal dark matter and dark energy models.

  3. CosmicPy: Interactive cosmology computations

    Science.gov (United States)

    Lanusse, Francois; Rassat, Anais; Starck, Jean-Luc

    2016-01-01

    CosmicPy performs simple and interactive cosmology computations for forecasting cosmological parameters constraints; it computes tomographic and 3D Spherical Fourier-Bessel power spectra as well as Fisher matrices for galaxy clustering. Written in Python, it relies on a fast C++ implementation of Fourier-Bessel related computations, and requires NumPy, SciPy, and Matplotlib.

  4. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    CERN Document Server

    Yang, Y; Cowie, L L; Mushotzky, R F

    2006-01-01

    We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg^2 and reach a depth of 3x10^-15 c.g.s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in comoving coordinates, averaged over the redshift range of 0.1cosmology with \\Omega_{\\Lambda} = 0.73, \\Omega_{M} = 0.27, and H_0 = 0.71. The correlation function for the CLASXS field over scales of 3 Mpc

  5. Chandra Observations of Neutron Stars -- An Overview

    OpenAIRE

    Weisskopf, M. C.

    2002-01-01

    We present a brief review of Chandra observations of neutron stars, with a concentration on neutron stars in supernova remnants. The early Chandra results clearly demonstrate how critical the angular resolution has been in order to separate the neutron star emission from the surrounding nebulosity.

  6. Maximising the mileage from the Chandra podcasts

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.

    2008-06-01

    NASA's Chandra X-ray Observatory captures X-ray images and measures spectra of many highenergy cosmic phenomena. There is a constant challenge to devise new and appropriate means to bring these potentially esoteric science results and concepts in a digestible way to the public. One of the ideas to address this challenge became the Chandra podcast.

  7. LoCuSS: Testing hydrostatic equilibrium in galaxy clusters

    CERN Document Server

    Smith, G P; Okabe, N; Ziparo, F; Mulroy, S L; Babul, A; Finoguenov, A; McCarthy, I G; Lieu, M; Bahe, Y; Bourdin, H; Evrard, A E; Futamase, T; Haines, C P; Jauzac, M; Marrone, D P; Martino, R; May, P E; Taylor, J E; Umetsu, K

    2015-01-01

    We test the assumption of hydrostatic equilibrium in an X-ray luminosity selected sample of 50 galaxy clusters at $0.15Cluster Substructure Survey (LoCuSS). Our weak-lensing measurements of $M_{500}$ control systematic biases to sub-4 per cent, and our hydrostatic measurements of the same achieve excellent agreement between XMM-Newton and Chandra. The mean ratio of X-ray to lensing mass for these 50 clusters is $\\beta_{\\rm X}=0.95\\pm0.05$, and for the 44 clusters also detected by Planck, the mean ratio of Planck mass estimate to LoCuSS lensing mass is $\\beta_{\\rm P}=0.95\\pm0.04$. Based on a careful like-for-like analysis, we find that LoCuSS, the Canadian Cluster Comparison Project (CCCP), and Weighing the Giants (WtG) agree on $\\beta_{\\rm P}\\simeq0.9-0.95$ at $0.15cosmology results from the cosmic microwave background and galaxy cluster counts.

  8. Chandra "Hears" A Black Hole For The First Time

    Science.gov (United States)

    2003-09-01

    NASA's Chandra X-ray Observatory detected sound waves, for the first time, from a super-massive black hole. The "note" is the deepest ever detected from an object in the universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics. The black hole resides in the Perseus cluster, located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster's central black hole. perseus animation Illustration of Ripples in Perseus "We have observed the prodigious amounts of light and heat created by black holes, now we have detected the sound," said Andrew Fabian of the Institute of Astronomy (IoA) in Cambridge, England, and leader of the study. In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance, because the note is 57 octaves lower than middle-C (by comparison a typical piano contains only about seven octaves). At a frequency over a million, billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the universe. "The Perseus sound waves are much more than just an interesting form of black hole acoustics," said Steve Allen, also of the IoA and a co-investigator in the research. "These sound waves may be the key in figuring out how galaxy clusters, the largest structures in the universe, grow," Allen said. For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays should cool, and the dense central gas should cool the fastest. The pressure in this cool central gas should then fall, causing gas further out to sink in towards the galaxy, forming trillions of

  9. MPS/CAS Partner Group on Cosmology

    Institute of Scientific and Technical Information of China (English)

    Jing Yipeng; Gerhard B(o)rner

    2004-01-01

    @@ The Partner Group does research in cosmology, focussing on the quantitative modeling of the structure and evolution of galaxies and galaxy clusters, the pattern of galaxies and of larger structures.

  10. Chandra mapping of the cosmic web converging on the virialization region of Abell 1795

    Science.gov (United States)

    Vikhlinin, Alexey

    2014-09-01

    Detailed observations of the "cosmic melting pot" in the virialization zone of rich galaxy clusters are a fairly new territory for the physics of clusters and the intergalactic medium. The first step has been taken with a deep Chandra study of A133, which has provided a uniquely detailed picture of the Cosmic Web converging onto the cluster virial radius and demonstrated that Chandra can probe to fainter surface brightness levels than any other X-ray observatory now operating. Many of the results from the A133 observation are potentially game-changers for our understanding of the virialization region and its proper modeling. We now need to follow this up with a similarly deep observation of at least one more cluster.

  11. Primordial cosmology

    Science.gov (United States)

    Montani, Giovanni

    1. Historical picture. 1.1. The concept of universe through the centuries. 1.2. The XIX century knowledge. 1.3. Birth of scientific cosmology. 1.4. The genesis of the hot big bang model. 1.5. Guidelines to the literature -- 2. Fundamental tools. 2.1. Einstein equations. 2.2. Matter fields. 2.3. Hamiltonian formulation of the dynamics. 2.4. Synchronous reference system. 2.5. Tetradic formalism. 2.6. Gauge-like formulation of GR. 2.7. Singularity theorems. 2.8. Guidelines to the literature -- 3. The structure and dynamics of the isotropic universe. 3.1. The RW geometry. 3.2. The FRW cosmology. 3.3. Dissipative cosmologies. 3.4. Inhomogeneous fluctuations in the universe. 3.5. General relativistic perturbation theory. 3.6. The Lemaitre-Tolmann-Bondi spherical solution. 3.7. Guidelines to the literature -- 4. Features of the observed universe. 4.1. Current status: The concordance model. 4.2. The large-scale structure. 4.3. The acceleration of the universe. 4.4. The cosmic microwave background. 4.5. Guidelines to the literature -- 5. The theory of inflation. 5.1. The shortcomings of the standard cosmology. 5.2. The inflationary paradigm. 5.3. Presence of a self-interacting scalar field. 5.4. Inflationary dynamics. 5.5. Solution to the shortcomings of the standard cosmology. 5.6. General features. 5.7. Possible explanations for the present acceleration of the universe. 5.8. Guidelines to the literature -- 6. Inhomogeneous quasi-isotropic cosmologies. 6.1. Quasi-isotropic solution. 6.2. The presence of ultrarelativistic matter. 6.3. The role of a massless scalar field. 6.4. The role of an electromagnetic field. 6.5. Quasi-isotropic inflation. 6.6. Quasi-isotropic viscous solution. 6.7. Guidelines to the literature -- 7. Homogeneous universes. 7.1. Homogeneous cosmological models. 7.2. Kasner solution. 7.3. The dynamics of the Bianchi models. 7.4. Bianchi types VIII and IX models. 7.5. Dynamical systems approach. 7.6. Multidimensional homogeneous universes. 7.7. Guidelines

  12. Dimensionless cosmology

    CERN Document Server

    Narimani, Ali; Scott, Douglas

    2011-01-01

    Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...

  13. Weak lensing study of 16 DAFT/FADA clusters: Substructures and filaments

    Science.gov (United States)

    Martinet, Nicolas; Clowe, Douglas; Durret, Florence; Adami, Christophe; Acebrón, Ana; Hernandez-García, Lorena; Márquez, Isabel; Guennou, Loic; Sarron, Florian; Ulmer, Mel

    2016-05-01

    While our current cosmological model places galaxy clusters at the nodes of a filament network (the cosmic web), we still struggle to detect these filaments at high redshifts. We perform a weak lensing study for a sample of 16 massive, medium-high redshift (0.4 data, we study cluster environment, adding information from galaxy density maps at the cluster redshift and from X-ray images when available. We find that clusters show a large variety of weak lensing maps at large scales and that they may all be embedded in filamentary structures at megaparsec scale. We classify these clusters in three categories according to the smoothness of their weak lensing contours and to the amount of substructures: relaxed (~7%), past mergers (~21.5%), and recent or present mergers (~71.5%). The fraction of clusters undergoing merging events observationally supports the hierarchical scenario of cluster growth, and implies that massive clusters are strongly evolving at the studied redshifts. Finally, we report the detection of unusually elongated structures in CLJ0152, MACSJ0454, MACSJ0717, A851, BMW1226, MACSJ1621, and MS1621. This study is based on observations obtained with MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The study is also based on archive data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. This research made use of data obtained from the Chandra Data Archive provided by the Chandra X-ray Center (CXC) and data obtained from the XMM-Newton Data Archive provided by the XMM-Newton Science Archive (XSA).

  14. The Survival and Destruction of Galactic X-ray Coronae in Groups and Clusters

    Science.gov (United States)

    Vijayaraghavan, Rukmani; Milton Ricker, Paul

    2015-08-01

    The discovery of long-lived, ubiquitous, hot galactic coronae in groups and clusters by Chandra poses a challenge to our understanding of galactic ISM survival in harsh environments. These coronae are unique probes of ICM and ISM microphysics, since their survival depends on a delicate balance between external ICM physical processes that can alternatively destroy or replenish these coronae and internal galactic physics that can replenish them. In this talk, I present MHD simulations of the evolution of hot coronae of cosmological populations of galaxies in group and cluster environments. I summarize the effects of external ICM phenomena, like tidal and ram pressure stripping, shielding by magnetic fields, and thermal conduction on the survival of these coronae. I also present synthetic X-ray observations which I use to motivate a stacking analysis on combined optical and X-ray surveys to quantify the effect of the local environment on galactic coronae.

  15. Mirage cosmology

    International Nuclear Information System (INIS)

    A brane universe moving in a curved higher dimensional bulk space is considered. The motion induces a cosmological evolution on the universe brane that is indistinguishable from a similar one induced by matter density on the brane. The phenomenological implications of such an idea are discussed. Various mirage energy densities are found, corresponding to dilute matter driving the cosmological expansion, many having superluminal properties vertical bar w vertical bar >1 or violating the positive energy condition. It is shown that energy density due to the world-volume fields is nicely incorporated into the picture. It is also pointed out that the initial singularity problem is naturally resolved in this context. (author)

  16. Cosmological magnetogenesis

    International Nuclear Information System (INIS)

    Observations indicate the presence of a magnetic field at galactic and cosmological scales. However, the origin of these magnetic fields is not well understood. There is enough motivation to look into the primordial origin of magnetic field, which essentially requires the breaking of conformal invariance of Maxwell's theory. Several mechanisms to generate primordial magnetic field have been proposed. A brief overview of those models has been presented. Central problem of the models within inflationary paradigm has been addressed. Possibilities to generate primordial magnetic field beyond inflationary framework are mentioned. A toy model for bouncing cosmology has been presented to understand the idea of magnetogenesis in such models

  17. Viscous Cosmology

    CERN Document Server

    Barbosa, C M S; Piattella, O F; Velten, H E S; Zimdahl, W

    2015-01-01

    We discuss the possibility to implement a viscous cosmological model, attributing to the dark matter component a behaviour described by bulk viscosity. Since bulk viscosity implies negative pressure, this rises the possibility to unify the dark sector. At the same time, the presence of dissipative effects may alleviate the so called small scale problems in the $\\Lambda$CDM model. While the unified viscous description for the dark sector does not lead to consistent results, the non-linear behaviour indeed improves the situation with respect to the standard cosmological model.

  18. Axion Cosmology

    OpenAIRE

    Ringwald, A.

    2012-01-01

    In this master's thesis we study the cosmological consequences of the new scalar field, the axion, that appears in the U(1)_PQ extension of the standard model of particle physics. We start by presenting some essential fragments of the standard model of Big Bang cosmology, that are needed when we describe the evolution of the axion field in the early Universe. We also review the basics of phase transitions in the early Universe, and go through the creation and evolution of the topological defe...

  19. The Swift AGN and Cluster Survey

    Science.gov (United States)

    Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.; Nugent, Jenna

    2016-01-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding X-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. We examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z ˜ 1 for massive clusters. In the second paper, we use Sloan Digital Sky Survey (SDSS) DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these

  20. CLASH-X: A comparison of lensing and X-ray techniques for measuring the mass profiles of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Donahue, Megan; Voit, G. Mark; Hoffer, Aaron; Baldi, Alessandro [Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824 (United States); Mahdavi, Andisheh [San Francisco State University, San Francisco, CA 94132 (United States); Umetsu, Keiichi; Czakon, Nicole [Institute of Astronomy and Astrophysics, Academia Sinica, Roosevelt Road, Taipei 10617, Taiwan (China); Ettori, Stefano [INFN, Sezione di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Merten, Julian [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Postman, Marc; Coe, Dan; Bradley, Larry [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bartelmann, Mattias [Universität Heidelberg, Zentrum für Astronomie, Philosophenweg 12, D-69120 Heidelberg (Germany); Benitez, Narciso [Instituto de Astrofisica de Andalucia (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Bouwens, Rychard [Leiden Observatories, Niels Bohrweb 2, NL-2333 CA Leiden (Netherlands); Broadhurst, Tom [Department of Theoretical Physics, University of the Basque Country, E-48080 Bilbao (Spain); Ford, Holland [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Gastaldello, Fabio [INAF-IASF, via Bassini 15, I-20133 Milan (Italy); Grillo, Claudio [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Infante, Leopoldo, E-mail: donahue@pa.msu.edu [Dept Astronomía-Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, 22 Santiago (Chile); and others

    2014-10-20

    We present profiles of temperature, gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH Hubble Space Telescope and Subaru Telescope lensing data. Radial profiles of Chandra and XMM measurements of electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature measurements. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another at ∼100-200 kpc radii, but XMM temperatures systematically decline relative to Chandra temperatures at larger radii. The angular dependence of the discrepancy suggests that additional investigation on systematics such as the XMM point-spread function correction, vignetting, and off-axis responses is yet required. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. We argue that comparisons of circular-velocity profiles are the most robust way to assess mass bias. Ratios of Chandra hydrostatic equilibrium (HSE) mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the weak-lensing (WL) and SaWLens data are different. As an example, the weighted-mean value at 0.5 Mpc is (b) = 0.12 for the WL comparison and (b) = –0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias value rising to (b) ≳ 0.3 at ∼1 Mpc for the WL comparison and (b) ≈ 0.25 for the SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value ≈1/8 times the total

  1. Axion Cosmology

    CERN Document Server

    Marsh, David J E

    2015-01-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also extraordinarily well-motivated within high energy physics, and so axion cosmology offers us a unique view onto these theories. I present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via the CMB and structure formation up to the present-day Universe. I briefly review the motivation and models for axions in particle physics and string theory. The primary focus is on the population of ultralight axions created via vacuum realignment, and its role as a dark matter (DM) candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute l...

  2. Cosmological inflation

    CERN Document Server

    Enqvist, K

    2012-01-01

    The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperature fluctuations of the cosmic microwave background.

  3. Exploring Cosmology with Supernovae

    DEFF Research Database (Denmark)

    Li, Xue

    -SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB...... distributions of a cluster of galaxies. We also theoretically deduce time delay. The second Section is dedicated to SN. Progenitor models of different types of SNe are investigated. SNe Ia and their application as standard candles are discussed....

  4. Chandra Observations of SNR RCW 103

    OpenAIRE

    Frank, Kari A.; Burrows, David N.; Park, Sangwook

    2015-01-01

    We analyze three Chandra observations, with a combined exposure time of 99 ks, of the Galactic supernova remnant RCW 103, a young supernova remnant, previously with no clear detection of metal-rich ejecta. Based on our imaging and spectral analyses of these deep Chandra data, we find evidence for metal-rich ejecta emission scattered throughout the remnant. X-ray emission from the shocked ejecta is generally weak, and the shocked circumstellar medium (CSM) is a largely dominant component acros...

  5. Composition of the Chandra ACIS contaminant

    OpenAIRE

    Marshall, Herman L.; Tennant, Allyn; Grant, Catherine E.; Hitchcock, Adam P.; O'Dell, Steve; Plucinsky, Paul P.

    2003-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also dete...

  6. Axion cosmology

    Science.gov (United States)

    Marsh, David J. E.

    2016-07-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected

  7. The Evolution of Cluster Substructure

    CERN Document Server

    Jeltema, T E; Bautz, M W; Buote, D A; Jeltema, Tesla E.; Canizares, Claude R.; Bautz, Mark W.; Buote, David A.

    2003-01-01

    Using Chandra archival data, we have begun a study to quantify the evolution of cluster morphology with redshift. To quantify cluster morphology, we use the power ratio method developed by Buote and Tsai (1995). Power ratios are constructed from moments of the two-dimensional gravitational potential and are, therefore, related to a cluster's dynamical state. Our sample will include around 50 clusters from the Chandra archive with redshifts between 0.11 and 1.1. These clusters were selected from two fairly complete flux-limited X-ray surveys (the ROSAT Bright Cluster Sample and the Einstein Medium Sensitivity Survey), and additional high-redshift clusters were selected from recent ROSAT flux-limited surveys. Here we present preliminary results from the first 15 clusters in this sample. Of these, eight have redshifts below 0.5, and seven have redshifts above 0.5.

  8. Investigating the cores of fossil systems with Chandra

    Science.gov (United States)

    Bharadwaj, V.; Reiprich, T. H.; Sanders, J. S.; Schellenberger, G.

    2016-01-01

    Aims: We aim to systematically investigate the cores of a sample of fossil galaxy groups and clusters ("fossil systems"), using Chandra data, to see what hints they can offer about the properties of the intracluster medium in these particular objects. Methods: We chose a sample of 17 fossil systems from literature with archival Chandra data and determined the cool-core fraction for fossils via three observable diagnostics, namely the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG) separation, and the X-ray peak/emission weighted centre separation. We also investigated the X-ray emission coincident with the brightest cluster galaxy (BCG) to detect the presence of potential thermal coronae. A deprojection analysis was performed for fossils with zBCG unlike coronae observed for some other clusters. Fossils lack universal temperature profiles, with some low-temperature objects generally not showing features that are expected for ostensibly relaxed objects with a cool-core. The entropy profiles of the z< 0.05 fossil systems can be described well by a power law with shallower indices than what is expected for pure gravitational processes. Finally, the fossils LX - T relation shows indications of an elevated normalisation with respect to other groups, which seems to persist even after factoring in selection effects. Conclusions: We interpret these results within the context of the formation and evolution of fossils, and speculate that non-gravitational heating, and AGN feedback in particular, could have had an impact on the ICM properties of these systems.

  9. The Cluster Wind from Local Massive Star Clusters

    OpenAIRE

    Stevens, Ian R.; Hartwell, Joanna M.

    2003-01-01

    Results of a study of the theoretically predicted and observed X-ray properties of local massive star clusters are presented, with a focus on understanding the mass and energy flow from these clusters into the ISM via a cluster wind. A simple theoretical model, based on the work of Chevalier & Clegg (1985), is used to predict the theoretical cluster properties, and these are compared to those obtained from recent Chandra observations. The model includes the effect of lower energy transfer eff...

  10. Biased total mass of cool core galaxy clusters by Sunyaev-Zel'dovich Effect measurements

    CERN Document Server

    Conte, A; Comis, B; Lamagna, L; De Gregori, S

    2010-01-01

    The Sunyaev Zel'dovich (SZ) effect is one of the most powerful cosmological tools to investigate the large-scale Universe, in which clusters of galaxies are the most interesting target. The great advantage of the SZ effect of being redshift independent, in contrast with visible and X-ray observations, allows to directly estimate cluster total mass from the integrated comptonization parameter Y, even for faraway clusters. However, the lack of a complete knowledge of the Intra-Cluster gas (ICg) physics can affect the results. Taking into account self-similar temperature and density profiles of the ICg, we study how different ICg morphologies can affect the cluster total mass estimation. Due to the large percentage of cool core (CC) clusters, we analyze this class starting with a limited sample of eight objects, observed by Chandra. We simulate SZ observations of these clusters through X-ray derived information, and re-analyze the mock SZ data with the simplistic assumption for the ICg of an isothermal beta mode...

  11. Cosmological wormholes

    CERN Document Server

    Kirillov, A A

    2015-01-01

    We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.

  12. Cosmological wormholes

    Science.gov (United States)

    Kirillov, A. A.; Savelova, E. P.

    2016-05-01

    We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.

  13. Laser Cosmology

    OpenAIRE

    Chen, Pisin

    2014-01-01

    Recent years have seen tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena re...

  14. Extended Cosmologies

    CERN Document Server

    Capozziello, S; Fatibene, L; Ferraris, M; Garruto, S

    2016-01-01

    We shall discuss cosmological models in extended theories of gravitation. We shall define a surface, called the model surface, in the space of observable parameters which characterises families of theories. We also show how this surface can be used to compare with observations. The model surface can potentially be used to falsify whole families of models instead reasoning on a single model basis as it is usually done by best fit arguments with observations.

  15. Dionysian cosmology

    CERN Document Server

    Neves, J C S

    2015-01-01

    In the Nietzschean philosophy, the concept of force from physics is important to build one of its main concepts: the will to power. The concept of force, which Nietzsche found out in the Classical Mechanics, almost disappears in the physics of the XX century with the Quantum Field Theory and General Relativity. Is the Nietzschean world as contending forces, a Dionysian cosmology, possible in the current science?

  16. Chandra Observatory Uncovers Hot Stars In The Making

    Science.gov (United States)

    2000-11-01

    Cambridge, Mass.--In resolving the hot core of one of the Earth's closest and most massive star-forming regions, the Chandra X-ray Observatory showed that almost all the young stars' temperatures are more extreme than expected. Orion Trapezium JPEG, TIFF, PS The Orion Trapezium as observed on October 31st UT 05:47:21 1999. The colors represent energy, where blue and white indicate very high energies and therefore exterme temperatures. The size of the X-ray source in the image also reflects its brightness, i.e. more bright sources appear larger in size. The is an artifact caused by the limiting blur of the telescope optics. The projected diameter of the field of view is about 80 light days. Credit: NASA/MIT Orion Trapezium JPEG, TIFF, PS The Orion Trapezium as observed on November 24th UT 05:37:54 1999. The colors represent energy, where blue and white indicate very high energies and therefore exterme temperatures. The size of the X-ray source in the image also reflects its brightness, i.e. more bright sources appear larger in size. The is an artifact caused by the limiting blur of the telescope optics. The projected diameter of the field of view is about 80 light days. Credit: NASA/MIT The Orion Trapezium Cluster, only a few hundred thousand years old, offers a prime view into a stellar nursery. Its X-ray sources detected by Chandra include several externally illuminated protoplanetary disks ("proplyds") and several very massive stars, which burn so fast that they will die before the low mass stars even fully mature. One of the major highlights of the Chandra observations are identification of proplyds as X-ray point source in the near vicinity of the most massive star in the Trapezium. Previous observations did not have the ability to separate the contributions of the different objects. "We've seen high temperatures in stars before, but what clearly surprised us was that nearly all the stars we see appear at rather extreme temperatures in X-rays, independent of

  17. Morphology parameters: substructure identification in X-ray galaxy clusters

    Science.gov (United States)

    Parekh, Viral; van der Heyden, Kurt; Ferrari, Chiara; Angus, Garry; Holwerda, Benne

    2015-03-01

    Context. In recent years multi-wavelength observations have shown the presence of substructures related to merging events in a large proportion of galaxy clusters. Clusters can be roughly grouped into two categories - relaxed and non-relaxed - and a proper characterisation of the dynamical state of these systems is crucial for both astrophysical and cosmological studies. Aims: In this paper we investigate the use of a number of morphological parameters (Gini, M20, concentration, asymmetry, smoothness, ellipticity, and Gini of the second-order moment, GM) introduced to automatically classify clusters as relaxed or dynamically disturbed systems. Methods: We apply our method to a sample of clusters at different redshifts extracted from the Chandra archive and investigate possible correlations between morphological parameters and other X-ray gas properties. Results: We conclude that a combination of the adopted parameters is a very useful tool for properly characterising the X-ray cluster morphology. According to our results, three parameters - Gini, M20, and concentration - are very promising for identifying cluster mergers. The Gini coefficient is a particularly powerful tool, especially at high redshift, because it is independent of the choice of the position of the cluster centre. We find that high Gini (>0.65), high concentration (>1.55), and low M20 (-1.4) characterise dynamically perturbed systems. We also estimate the X-ray cluster morphological parameters in the case of radio loud clusters. Since they are in excellent agreement with previous analyses we confirm that diffuse intracluster radio sources are associated with major mergers. Appendix A is available in electronic form at http://www.aanda.org

  18. The Chandra Carina Complex Project View of Trumpler 16

    CERN Document Server

    Wolk, Scott J; Getman, Konstantin V; Feigelson, Eric D; Preibisch, Thomas; Townsley, Leisa K; Wang, Junfeng; Stassun, Keivan G; King, Robert R; McCaughrean, Mark J; Moffat, Anthony F J; Zinnecker, Hans

    2011-01-01

    Trumpler 16 is a well--known rich star cluster containing the eruptive supergiant $\\eta$ Carin\\ae\\ and located in the Carina star-forming complex. In the context of the Chandra Carina Complex Project, we study Trumpler 16 using new and archival X-ray data. A revised X-ray source list of the Trumpler 16 region contains 1232 X-ray sources including 1187 likely Carina members. These are matched to 1047 near-infrared counterparts detected by the HAWK-I instrument at the VLT allowing for better selection of cluster members. The cluster is irregular in shape. Although it is roughly circular, there is a high degree of sub-clustering, no noticeable central concentration and an extension to the southeast. The high--mass stars show neither evidence of mass segregation nor evidence of strong differential extinction. The derived power-law slope of the X-ray luminosity function for Trumpler 16 reveals a much steeper function than the Orion Nebula Cluster implying different ratio of solar- to higher-mass stars. We estimate...

  19. Cluster Lenses

    CERN Document Server

    Kneib, Jean-Paul; 10.1007/s00159-011-0047-3

    2012-01-01

    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining...

  20. How much can we learn from a merging cold front cluster? Insights from X-ray temperature and radio maps of A3667

    International Nuclear Information System (INIS)

    The galaxy cluster A3667 is an ideal laboratory to study the plasma processes in the intracluster medium. High-resolution Chandra X-ray observations show a cold front in A3667. At radio wavelengths, A3667 reveals a double radio-relic feature in the outskirts of the cluster. These suggest multiple merger events in this cluster. In this paper, we analyze the substantial archival X-ray observations of A3667 from the Chandra X-ray Observatory and compare these with existing radio observations as well as state-of-the-art adaptive mesh refinement MHD cosmological simulations using Enzo. We have used two temperature map making techniques, weighted Voronoi tessellation and adaptive circular binning, to produce the high-resolution and largest field-of-view temperature maps of A3667. These high-fidelity temperature maps allow us to study the X-ray shocks in the cluster using a new two-dimensional shock-finding algorithm. We have also estimated the Mach numbers from the shocks inferred from previous ATCA radio observations. The combined shock statistics from the X-ray and radio data are in agreement with the shock statistics in a simulated MHD cluster. We have also studied the profiles of the thermodynamic properties across the cold front using ∼447 ks from the combined Chandra observations on A3667. Our results show that the stability of the cold front in A3667 can be attributed to the suppression of the thermal conduction across the cold front by a factor of ∼100-700 compared to the classical Spitzer value.

  1. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  2. Religion, theology and cosmology

    Directory of Open Access Journals (Sweden)

    John T. Fitzgerald

    2013-10-01

    Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.

  3. Rastall cosmology

    CERN Document Server

    Fabris, J C; Rodrigues, D C; Batista, C E M; Daouda, M H

    2012-01-01

    We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity, which is based on a modification of the usual matter conservation law. We show that, besides its application to the generalized Chaplygin gas model, other cosmological models based on Rastall's theory have many interesting and unexpected new features.

  4. Scaling Cosmology

    OpenAIRE

    Zimdahl, Winfried; Pavón, Diego

    2002-01-01

    We show that with the help of a suitable coupling between dark energy and cold dark matter it is possible to reproduce any scaling solution $\\rho _{X}\\propto \\rho_{M}a^{\\xi}$, where $\\rho_{X}$ and $\\rho_{M}$ are the densities of dark energy and dark matter, respectively. We demonstrate how the case $\\xi = 1$ alleviates the coincidence problem. Future observations of supernovae at high redshift as well as quasar pairs which are planned to discriminate between different cosmological models will...

  5. Chemical cosmology

    CERN Document Server

    Boeyens, Jan CA

    2010-01-01

    The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp

  6. Astrophysical cosmology

    Science.gov (United States)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  7. Cosmological panspermia

    Science.gov (United States)

    Wickramasinghe, N. C.; Hoyle, Fred

    1998-07-01

    The central regions of galaxies could provide the most promising venues for the large-scale synthesis of prebiotic molecules by Miller-Urey type processes.Exploding supermassive stars would produce the basic chemical elements necessary to form molecules in high-density mass flows under near-thermodynamic conditions. Such molecules are then acted upon by X-rays in a manner that simulates the conditions required for Miller-Urey type processing. The Miller-Urey molecular products could initially lead to the origination and dispersal of microbial life on a cosmological scale. Thereafter the continuing production of such molecules would serve as the feedstock of life.

  8. Cosmological networks

    International Nuclear Information System (INIS)

    Networks often represent systems that do not have a long history of study in traditional fields of physics; albeit, there are some notable exceptions, such as energy landscapes and quantum gravity. Here, we consider networks that naturally arise in cosmology. Nodes in these networks are stationary observers uniformly distributed in an expanding open Friedmann–Lemaître–Robertson–Walker universe with any scale factor and two observers are connected if one can causally influence the other. We show that these networks are growing Lorentz-invariant graphs with power-law distributions of node degrees. These networks encode maximum information about the observable universe available to a given observer. (paper)

  9. Magnetohydrodynamic cosmologies

    International Nuclear Information System (INIS)

    We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)

  10. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681

  11. Cosmological tests of modified gravity

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  12. Cosmology with a time dependent cosmological constant

    International Nuclear Information System (INIS)

    In the context of the scalar-tensor theories we consider cosmological models with a time dependent cosmological constant. Several toy models are obtained among them there are solutions without singularity and accelerating. (Author)

  13. Particles and cosmology

    International Nuclear Information System (INIS)

    When the common ground between particle physics, astrophysics and cosmology started to become a developing area, the Institute for Nuclear Research (INR) of the Russian Academy of Sciences had the foresight in 1981 to institute the Baksan Schools on Particles and Cosmology. This now traditional event, held biannually in the Baksan Valley, has gone on to attract international participation. The site is close to the INR Baksan Neutrino Observatory with its underground and surface installations, including the SAGE gallium solar neutrino detector, the Underground Scintillation Telescope, and the 'Carpet' extensive air shower array. Participation is mainly from experimentalists working in non accelerator particle physics and particle astrophysics. The most recent School, held from April 21 to 28, began with an opening address by INR Director V. A. Matveev. J.Frieman reviewed standard big bang cosmology, emphasizing how the recent COBE results and the observations of large scale galaxy clustering fit into a standard cosmology framework. For inflationary cosmology, he showed how different models may be tested through their predictions for large-scale galactic structure and for cosmic microwave background anisotropy. A.Stebbins presented details of the large scale distribution of galaxies which, combined with velocity information and microwave background anisotropy data, provide strong constraints on theories of the origin of primordial inhomogeneities. Inflation requires, and theories of the large scale structure strongly favour the critical value for the cosmic mass density, while, as D.Seckel explained in his lecture on nucleosynthesis and abundances of the light elements, the baryon contribution to this density has to be tens of times smaller. A general review on the observational evidence for dark matter, dark matter particle candidates and the strategy of dark matter searches was given by I. Tkachev, who stressed the gravitational microlensing MACHO

  14. Catching a Galactic Football: Chandra Examines Cygnus A

    Science.gov (United States)

    2000-11-01

    falling into the Cygnus A galaxy. However, the two jets powered by the nuclear black hole in this galaxy push this gas outward, like a balloon being inflated by a tank of gas. Cygnus A is not alone in its galactic neighborhood, but is a member of a large cluster containing many galaxies. Extremely hot (tens of millions of degrees Celsius) gas is spread between the galaxies. Although it has a very low density, this gas provides enough resistance to slow down the outward advancement of the particle jets from Cygnus A. At the ends of the jets, astronomers find bright areas of radio and X-ray emission known as "hot spots." Scientists believe that fast atomic particles and magnetic fields from the jets spill out into the region, providing pressure that continuously inflates the cavity. In a paper accepted by the Astrophysical Journal Letters, Wilson, Young and Shopbell discuss how the Chandra observations resolve a long-standing puzzle about the hot spots at the ends of the jets. By analyzing the X-ray emission of the hot spots, the astronomers have measured the strength of the magnetic field associated with them. "The radio data themselves cannot determine the strength of the magnetic field, a limitation that has inhibited progress in our understanding of cosmic radio sources for 50 years," said Wilson. "Combination of the Chandra X-ray and the radio data allows a quite precise measurement of the field strength." The Chandra observation of Cygnus A was made with the ACIS on May 21, 2000, for over nine hours. The ACIS X-ray camera was developed for NASA by Pennsylvania State University and MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. This research was supported by the Chandra project at the NASA Marshall Space Flight Center. Images associated with this

  15. Chandra Sees Shape of Universe During Formative, Adolescent Years

    Science.gov (United States)

    2003-03-01

    Scientists using NASA's Chandra X-ray Observatory have taken a snapshot of the adolescent universe from about five billion years ago when the familiar web-like structure of galaxy chains and voids first emerged. The observation reveals distant and massive galaxies dotting the sky, clustered together under the gravitational attraction of deep, unseen pockets of dark matter. This provides important clues of how the universe matured from its chaotic beginnings to its elegant structure we see today. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. "Piece by piece, we are assembling a photo album of the universe through the ages," said Yuxuan Yang, a doctorate candidate at the University of Maryland, College Park, who conducted the analysis. "Last month we saw a picture of the infant universe taken with the Wilkinson Microwave Anisotropy Probe. Now we can add a snapshot of its adolescence." The Chandra observation traced a patch of sky known as the Lockman Hole in the constellation Ursa Major (containing the Big Dipper). Chandra saw a rich density of active galaxies, seven times denser than what has been detected in previous optical and radio surveys at similar distances. This provides the clearest picture yet at the large-scale structure of the universe at such distances (and age), according to Dr. Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who led the observation. Lockman Hole JPEG, TIFF, PS An image that has been "blurred" to allow better view of the structures outlined by the X-ray sources. The color represents the spectra of the AGN. The red color indicates the sources on average radiates at longer wavelength while green and blue colors indicates the sources radiates at shorter wavelength. The Green and blue regions appear to form a wall, or shows more lumpiness than the "red" sources. If one could capture the

  16. H$_{0}$ and odds on cosmology

    CERN Document Server

    Jaffe, A

    1995-01-01

    Recent observations by the Hubble Space Telescope of Cepheids in the Virgo cluster imply a Hubble Constant H_0=80\\pm17\\ km/sec/Mpc. We attempt to clarify some issues of interpretation of these results for determining the global cosmological parameters \\Omega and \\Lambda. Using the formalism of Bayesian model comparison, the data suggest a universe with a nonzero cosmological constant \\Lambda>0, but vanishing curvature: \\Omega+\\Lambda=1.

  17. Fermionic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, L P; Forte, M [Physics Department, UBA, 1428 Buenos Aires (Argentina); Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L, E-mail: kremer@fisica.ufpr.br, E-mail: devecchi@fisica.ufpr.br, E-mail: chimento@df.uba.ar [Physics Department, UFPR, 81531-990 Curitiba (Brazil)

    2011-07-08

    In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.

  18. Fermionic cosmologies

    International Nuclear Information System (INIS)

    In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.

  19. Cosmological Parameters and Black Holes

    CERN Document Server

    Harun-al-Rashid, S M

    2002-01-01

    This work is related to different questions within cosmology. The principal idea herein is to develop cosmological knowledge making use of the analyses of observational data in order to find the values of the matter density Omega_m and vacuum energy density Omega_Lambda. Data fitting is carried out using two statistical methods, chi^2 and maximum likelihood. The data analysis exhibits that a low density and flat Universe is strongly favoured. Applying the Omega_m value found for clusters of galaxies, we demonstrate that clusters have very little room for baryonic dark matter. An upper limit to the small but non-negligible sum of baryonic dark matter and galaxy mass can be estimated, requiring the use of special statistics. A Toroidal Black Hole (TBH) study, in contrast to the Spherical Black Hole (SBH), shows that the TBH can be used as an important tool in explaining AGN phenomena.

  20. Newtonian cosmology - Problems of cosmological didactics

    Energy Technology Data Exchange (ETDEWEB)

    Skarzynski, E.

    1983-03-01

    The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.

  1. THE CHEMICAL SIGNATURE OF A RELIC STAR CLUSTER IN THE SEXTANS DWARF SPHEROIDAL GALAXY—IMPLICATIONS FOR NEAR-FIELD COSMOLOGY

    International Nuclear Information System (INIS)

    We present tentative evidence for the existence of a dissolved star cluster at [Fe/H] = –2.7 in the Sextans dwarf spheroidal galaxy. We use the technique of chemical tagging to identify stars that are highly clustered in a multi-dimensional chemical abundance space (C-space). In a sample of six stars, three, possibly four, stars are identified as potential cluster stars. The initial stellar mass of the parent cluster is estimated from two independent observations to be M*,init=1.9+1.5-0.9(1.6+1.2-0.8)×105 Msun, assuming a Salpeter (Kroupa) initial mass function. If corroborated by follow-up spectroscopy, this star cluster is the most metal-poor system identified to date. Chemical signatures of remnant clusters in dwarf galaxies like Sextans provide us with a very powerful probe to the high-redshift universe. From available observational data, we argue that the average star cluster mass in the majority of the newly discovered ultra-faint dwarf galaxies was notably lower than it is in the Galaxy today and possibly lower than in the more luminous, classical dwarf spheroidal galaxies. Furthermore, the mean cumulative metallicity function of the dwarf spheroidals falls below that of the ultra-faints, which increases with increasing metallicity as predicted from our stochastic chemical evolution model. These two findings, together with a possible difference in the ([Mg/Fe]) ratio suggest that the ultra-faint dwarf galaxy population, or a significant fraction thereof, and the dwarf spheroidal population were formed in different environments and would thus be distinct in origin.

  2. THE CHEMICAL SIGNATURE OF A RELIC STAR CLUSTER IN THE SEXTANS DWARF SPHEROIDAL GALAXY-IMPLICATIONS FOR NEAR-FIELD COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Torgny [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Freeman, Ken C. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611 (Australia); Silk, Joe, E-mail: torgny.karlsson@physics.uu.se [Physics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-11-10

    We present tentative evidence for the existence of a dissolved star cluster at [Fe/H] = -2.7 in the Sextans dwarf spheroidal galaxy. We use the technique of chemical tagging to identify stars that are highly clustered in a multi-dimensional chemical abundance space (C-space). In a sample of six stars, three, possibly four, stars are identified as potential cluster stars. The initial stellar mass of the parent cluster is estimated from two independent observations to be M{sub *,init}=1.9{sup +1.5}{sub -0.9}(1.6{sup +1.2}{sub -0.8}) Multiplication-Sign 10{sup 5} M{sub sun}, assuming a Salpeter (Kroupa) initial mass function. If corroborated by follow-up spectroscopy, this star cluster is the most metal-poor system identified to date. Chemical signatures of remnant clusters in dwarf galaxies like Sextans provide us with a very powerful probe to the high-redshift universe. From available observational data, we argue that the average star cluster mass in the majority of the newly discovered ultra-faint dwarf galaxies was notably lower than it is in the Galaxy today and possibly lower than in the more luminous, classical dwarf spheroidal galaxies. Furthermore, the mean cumulative metallicity function of the dwarf spheroidals falls below that of the ultra-faints, which increases with increasing metallicity as predicted from our stochastic chemical evolution model. These two findings, together with a possible difference in the ([Mg/Fe]) ratio suggest that the ultra-faint dwarf galaxy population, or a significant fraction thereof, and the dwarf spheroidal population were formed in different environments and would thus be distinct in origin.

  3. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    Science.gov (United States)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  4. The Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Carroll Sean M.

    2001-01-01

    Full Text Available This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero vacuum energy.

  5. M31 in the Chandra Era: A High Definition Movie of a Nearby Galaxy

    Science.gov (United States)

    Kong, Albert; di Stefano, Rosanne

    2009-09-01

    M31 has been a prime targets for all X-ray missions since the first detection in 1974. With its superb spatial resolution, Chandra is unique in resolving dense source regions and detecting faint sources. Since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec. The X-ray skies of M31 not only consist of many transients and variables, globular cluster X-ray sources in M31 are also different from our Milky Way. They are in general more luminous and one of them may even host an intermediate-mass black hole. Supersoft and quasi-soft X-ray sources in M31 are the best kept secret to unlock the nature of the progenitor of Type Ia supernova. In this talk, I will review some of the important Chandra discoveries in M31 in the past 10 years.

  6. Inhomogeneous Cosmology Redux

    CERN Document Server

    Moffat, J W

    2016-01-01

    An alternative to the postulate of dark energy required to explain the accelerated expansion of the universe is to adopt an inhomogeneous cosmological model to explain the supernovae data without dark energy. We adopt a void cosmology model, based on the inhomogeneous Lema\\^{i}tre-Tolman-Bondi solution of Einstein's field equations. The model can resolve observational anomalies in the $\\Lambda CDM$ model, such as the discrepancy between the locally measured value of the Hubble constant, $H_0=73.24\\pm 1.74\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$, and the $H_0=66.93\\pm 0.62\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$ determined by the Planck satellite data and the $\\Lambda CDM$ model, and the lithium $^{7}{\\rm Li}$ problem, which is a $5\\sigma$ mismatch between the theoretical prediction for the $^{7}{\\rm Li}$ from big bang nucleosynthesis and the value that we observe locally today at $z=0$. The void model can also resolve the tension between the number of massive clusters derived from the Sunyaev-Zel'dovich eff...

  7. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    Science.gov (United States)

    2005-08-01

    facing away from Earth's space satellites. Another Chandra discovery -- gleaned from the deepest X-ray observation of any star cluster -- offered insights on Earth's survival in its infancy. Chandra s focus was the Orion Nebula, which contains at least 1,400 young stars, 30 that are prototypes of the early sun. Using Chandra, scientists learned these young stars produce violent X-ray flares much more frequently and energetically than anything seen today from our 4.6 billion-year-old sun. This implies super-flares torched our young solar system and likely affected the planet-forming disk around the early sun -- enhancing the survival chances of Earth. Space is a harsh environment with extreme temperatures, harmful radiation and none of the protection offered by Earth s atmosphere, said Chandra Program Manager Keith Hefner of the Marshall Center. "Ironically, the fact that our atmosphere absorbs harmful X-rays is the very reason for Chandra s existence. Getting outside the absorbing atmosphere of the Earth requires space-based observatories, and viewing the universe in multiple wavelengths is necessary to fully study cosmic events. Chandra s continued outstanding performance after six years of operation under such harsh conditions is evidence that it is, indeed, an engineering marvel." In its sixth year, Chandra also continued to build on its growing list of discoveries involving black holes. This included finding the most powerful eruption seen in the universe, generated by a supermassive black hole growing at a remarkable rate. The eruption -- which has lasted for 100 million years and is still going -- has generated the energy equivalent to hundreds of millions of gamma-ray bursts. This discovery illustrated the enormous appetite of large black holes, and the profound impact they have on their surroundings. Other recent discoveries include confirming the existence of weight limits for supermassive black holes, finding evidence for a swarm of black holes near the

  8. On an Alternative Cosmology

    OpenAIRE

    Vankov, A.

    1998-01-01

    The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.

  9. Testing hydrostatic equilibrium in galaxy cluster ms 2137

    CERN Document Server

    Chiu, I-Non; Chen, Pisin

    2012-01-01

    We test the assumption of strict hydrostatic equilibrium in galaxy cluster MS2137.3-2353 (MS 2137) using the latest CHANDRA X-ray observations and results from a combined strong and weak lensing analysis based on optical observations. We deproject the two-dimensional X-ray surface brightness and mass surface density maps assuming spherical and spheroidal dark matter distributions. We find a significant, 40%-50%, contribution from non-thermal pressure in the core assuming a spherical model. This non-thermal pressure support is similar to what was found by Molnar et al. (2010) using a sample of massive relaxed clusters drawn from high resolution cosmological simulations. We have studied hydrostatic equilibrium in MS 2137 under the assumption of elliptical cluster geometry adopting prolate models for the dark matter density distribution with different axis ratios. Our results suggest that the main effect of ellipticity (compared to spherical models) is to decrease the non-thermal pressure support required for eq...

  10. The Three-Point Correlation Function in Cosmology

    OpenAIRE

    Takada, Masahiro; Jain, Bhuvnesh

    2002-01-01

    With the advent of high-quality surveys in cosmology the full three-point correlation function will be a valuable statistic for describing structure formation models. It contains information on cosmological parameters and detailed halo properties that cannot be extracted from the two-point correlation function. We use the halo clustering model to analytically calculate the three-point correlation function (3PCF) for general cosmological fields. We present detailed results for the configuratio...

  11. Chandra Observations of Supernova 1987A

    CERN Document Server

    Park, Sangwook; Garmire, Gordon P; McCray, Richard; Racusin, Judith L; Zhekov, Svetozar A

    2007-01-01

    We have been monitoring Supernova (SN) 1987A with {\\it Chandra X-Ray Observatory} since 1999. We present a review of previous results from our {\\it Chandra} observations, and some preliminary results from new {\\it Chandra} data obtained in 2006 and 2007. High resolution imaging and spectroscopic studies of SN 1987A with {\\it Chandra} reveal that X-ray emission of SN 1987A originates from the hot gas heated by interaction of the blast wave with the ring-like dense circumstellar medium (CSM) that was produced by the massive progenitor's equatorial stellar winds before the SN explosion. The blast wave is now sweeping through dense CSM all around the inner ring, and thus SN 1987A is rapidly brightening in soft X-rays. At the age of 20 yr (as of 2007 January), X-ray luminosity of SN 1987A is $L_{\\rm X}$ $\\sim$ 2.4 $\\times$ 10$^{36}$ ergs s$^{-1}$ in the 0.5$-$10 keV band. X-ray emission is described by two-component plane shock model with electron temperatures of $kT$ $\\sim$ 0.3 and 2 keV. As the shock front inter...

  12. Galaxy clustering constraints on deviations from Newtonian gravity at cosmological scales II: Perturbative and numerical analyses of power spectrum and bispectrum

    OpenAIRE

    Shirata, Akihito; Suto, Yasushi; Hikage, Chiaki; Shiromizu, Tetsuya; Yoshida, Naoki

    2007-01-01

    We explore observational constraints on possible deviations from Newtonian gravity by means of large-scale clustering of galaxies. We measure the power spectrum and the bispectrum of Sloan Digital Sky Survey galaxies and compare the result with predictions in an empirical model of modified gravity. Our model assumes an additional Yukawa-like term with two parameters that characterize the amplitude and the length scale of the modified gravity. The model predictions are calculated using two met...

  13. Cosmology and particle physics

    International Nuclear Information System (INIS)

    The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology

  14. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    science theme. "Since it was first observedthirty-seven years ago, understanding the source of the X-ray background has been the Holy Grail of X-ray astronomy. Now, it is within reach." Drs. Cowie and Barger are searching for the optical counterparts to the newly discovered X-ray sources with the powerful Keck telescope atop Mauna Kea in hopes of determining their distance. However, these sources are very faint optically: They show up as a dim blue smudge or not at all. Further observations with the Hubble Space Telescope or Keck will be extremely difficult, and the power of the Next Generation Space Telescope and Constellation-X may be required to fully understand these sources. Resolution of the X-ray background relied on a 27.7-hour Chandra observation using the Advanced CCD Imaging Spectrometer (ACIS) in early December 1999, and also utilized data from the Japan-U.S. Advanced Satellite for Cosmology and Astrophysics (ASCA). The Chandra team has also reproduced the ROSAT lower-energy X-ray background observation with a factor of 2-5 times the resolution and sensitivity. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/bg/index.html AND http://chandra.nasa.gov The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  15. The Evolution of Cluster Substructure with Redshift

    CERN Document Server

    Jeltema, T E; Bautz, M W; Buote, D A; Jeltema, Tesla E.; Canizares, Claude R.; Bautz, Mark W.; Buote, David A.

    2003-01-01

    Using Chandra archival data, we quantify the evolution of cluster morphology with redshift. To quantify cluster morphology, we use the power ratio method developed by Buote and Tsai (1995). Power ratios are constructed from moments of the two-dimensional gravitational potential and are, therefore, related to a cluster's dynamical state. Our sample will include 40 clusters from the Chandra archive with redshifts between 0.11 and 0.89. These clusters were selected from two fairly complete flux-limited X-ray surveys (the ROSAT Bright Cluster Sample and the Einstein Medium Sensitivity Survey), and additional high-redshift clusters were selected from recent ROSAT flux-limited surveys. Here we present preliminary results from the first 28 clusters in this sample. Of these, 16 have redshifts below 0.5, and 12 have redshifts above 0.5.

  16. X-ray Mass Profiles from Chandra Galaxy Atlas

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra

    2016-04-01

    We present preliminary results of a Chandra/XMM-Newton joint analysis on a sample of three Early Type Galaxies (ETGs, namely NGC4649, NGC4636 and NGC5846). X-ray observations of the hot ISM is used to measure the total enclosed mass assuming hydrostatic equilibrium, and compasion with mass distributions obtained through optical kinematics data of globular clusters and planetary nebulae yields informations about disturbances in the ISM distribution due to nuclear activity, merging history, etc. Our analysis makes use of the Chandra Galaxy Atlas (CGA) data products - exploiting the unmatched spatial resolution of the ACIS detectors to reveal fine ISM features and disturbances in the inner galactic regions - and XMM-Newton data - relying on the large field of view of EPIC detector to extend the mass profiles to larger radii. We then measured the mass profiles in various pie sectors to separate different gas features (e.g., discontinuity and extended tail) and compared them with GCs/PNe based mass profiles. The X-ray mass profiles of NGC4649 show a generally relaxed morphology and, in agreement with previous analysis, the comparison with the optical mass profiles shows a significant deviations on parsec scale likely due to non-thermal pressure linked to nuclear activity. In significantly disturbed cases (NGC4648 and NGC5846) where we found discontinuities and extended tails, we found that the mass profiles are over-estimated toward the compressed discontinuity and under-estimated toward the extended tails, similar to inflow and outflow cases. These preliminary results are promising toward an extended analysis of the whole CGA sample in order to study the distribution of gas temperature and metal abundances in the ISM, and to investigate scaling relations between ETG global quantities like ISM temperature, luminosity and total mass.

  17. A DEEP CHANDRA VIEW OF THE NGC 404 CENTRAL ENGINE

    International Nuclear Information System (INIS)

    We present the results of a 100 ks Chandra observation of the NGC 404 nuclear region. The long exposure and excellent spatial resolution of Chandra have enabled us to critically examine the nuclear environment of NGC 404, which is known to host a nuclear star cluster and potentially an intermediate-mass black hole (IMBH; on the order of a few times 105 Msun). We find two distinct X-ray sources: a hard, central point source coincident with the optical and radio centers of the galaxy, and a soft extended region that is coincident with areas of high Hα emission and likely recent star formation. When we fit the 0.3-8 keV spectra of each region separately, we find the hard nuclear point source to be dominated by a power law (Γ = 1.88), while the soft off-nuclear region is best fit by a thermal plasma model (kT = 0.67 keV). We therefore find evidence for both a power-law component and hot gas in the nuclear region of NGC 404. We estimate the 2-10 keV luminosity to be 1.3+0.8-0.5 x 1037 erg s-1. A low level of diffuse X-ray emission was detected out to ∼15'' (∼0.2 kpc) from the nucleus. We compare our results to the observed relationships between power-law photon index and Eddington ratio for both X-ray binaries and low-luminosity active galaxies and find NGC 404 to be consistent with other low-luminosity active galaxies. We therefore favor the conclusion that NGC 404 harbors an IMBH accreting at a very low level.

  18. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  19. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  20. Dark matter and cosmology

    International Nuclear Information System (INIS)

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed

  1. White Dwarfs Cosmological and Galactic Probes

    CERN Document Server

    Sion, Edward M; Vennes, Stéphane

    2005-01-01

    The emphasis on white dwarf stars and cosmology arises from the most recent advances in cosmological and galactic structure research in which white dwarf stars are playing a very prominent role. Examples are Type Ia supernovae (i.e. white dwarf supernovae), the origin and evolution of the universe, the age of the galactic disk, cosmochronology using white dwarfs in globular clusters and galactic clusters, and the physics of accretion onto compact (very dense) stars. As an assisting guide to the reader, we have included, by invitation, comprehensive review articles in each of the four major areas of the book, white dwarf supernovae, cosmology, accretion physics and galactic structure. The reviews include introductory material that they build upon. The book is suitable and most useful to advanced undergraduates, graduate students and scientific professionals (e.g. astronomers, astrophysicists, cosmologists, physicists).

  2. Cosmological Evolution of Linear Bias

    CERN Document Server

    Basilakos, S; Basilakos, Spyros; Plionis, Manolis

    2000-01-01

    Using linear perturbation theory and the Friedmann-Lemaitre solutions of the cosmological field equations, we derive analytically a second-order differential equation for the evolution of the linear bias factor, b(z), between the background matter and a mass-tracer fluctuation field. We find b(z) to be a strongly dependent function of redshift in all cosmological models. Comparing our analytical solution with the semi-analytic model of Mo & White, which utilises the Press-Schechter formalism and the gravitationally induced evolution of clustering, we find an extremely good agreement even at large redshifts, once we normalize to the same bias value at two different epochs, one of which is the present. Furthermore, our analytic b(z) function agrees well with the outcome of N-body simulations even up to large redshifts.

  3. Cosmological magnetic fields

    Indian Academy of Sciences (India)

    Roy Maartens

    2000-10-01

    Magnetic fields are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman- systems. In principle, these fields could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic fields aims not only to quantify these effects on large-scale structure and the CMB, but also to answer one of the outstanding puzzles of modern cosmology: when and how do magnetic fields originate? They are either primordial, i.e. created before the onset of structure formation, or they are generated during the process of structure formation itself.

  4. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10-4 solar mass can cause large amplifications. (author)

  5. Composition of the Chandra ACIS contaminant

    CERN Document Server

    Marshall, H L; Grant, C E; Hitchcock, A P; O'Dell, S; Plucinsky, P P; Marshall, Herman L.; Tennant, Allyn; Grant, Catherine E.; Hitchcock, Adam P.; Dell, Steve O'; Plucinsky, Paul P.

    2003-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also detectable. Excluding H, we find that C, O, and F comprise >80%, 7%, and 7% of the contaminant by number, respectively. Nitrogen is less than 3% of the contaminant. We will assess various candidates for the contaminating material and investigate the growth of the layer with time. For example, the detailed structure of the C-K absorption edge provides information about the bonding structure of the compound, eliminating aromatic hydrocarbons as the contaminating material.

  6. An introduction to cosmology

    CERN Document Server

    Kunze, Kerstin E

    2016-01-01

    Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.

  7. Friedman's cosmological views

    International Nuclear Information System (INIS)

    Two Friedman's cosmological papers (1922, 1924) and his own interpretation of the obtained results are briefly reviewed. Discussion follows of Friedman's role in the early development of relativistic cosmology. 18 refs. (author)

  8. Unimodular-Mimetic Cosmology

    CERN Document Server

    Nojiri, S; Oikonomou, V K

    2016-01-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...

  9. Radio signature of cosmological structure formation shocks

    OpenAIRE

    Hoeft, Matthias; Brueggen, Marcus

    2006-01-01

    In the course of the formation of cosmological structures, large shock waves are generated in the intra-cluster medium. In analogy to processes in supernova remnants, these shock waves may generate a significant population of relativistic electrons which, in turn, produce observable synchrotron emission. The extended radio relics found at the periphery of several clusters and possibly also a fraction of radio halo emission may have this origin. Here we derive an analytic expression for (i) th...

  10. Early Results from Swift AGN and Cluster Survey

    Science.gov (United States)

    Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.

    2016-04-01

    The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster

  11. Statistical Characterization of the Chandra Source Catalog

    CERN Document Server

    Primini, Francis A; Davis, John E; Nowak, Michael A; Evans, Ian N; Glotfelty, Kenny J; Anderson, Craig S; Bonaventura, Nina R; Chen, Judy C; Doe, Stephen M; Evans, Janet D; Fabbiano, Giuseppina; Galle, Elizabeth C; Gibbs, Danny G; Grier, John D; Hain, Roger M; Hall, Diane M; Harbo, Peter N; Xiangqun,; He,; Karovska, Margarita; Kashyap, Vinay L; Lauer, Jennifer; McCollough, Michael L; McDowell, Jonathan C; Miller, Joseph B; Mitschang, Arik W; Morgan, Douglas L; Mossman, Amy E; Nichols, Joy S; Plummer, David A; Refsdal, Brian L; Rots, Arnold H; Siemiginowska, Aneta; Sundheim, Beth A; Tibbetts, Michael S; Van Stone, David W; Winkelman, Sherry L; Zografou, Panagoula

    2011-01-01

    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of ~0.75% of the entire sky, using data from ~3,900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data-set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other, large Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and e...

  12. Cosmological Black Holes

    OpenAIRE

    Stornaiolo, Cosimo

    2001-01-01

    In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...

  13. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2015-01-01

    The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.

  14. Particle physics and cosmology

    International Nuclear Information System (INIS)

    During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe

  15. Challenges for Inflationary Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2004-01-01

    Inflationary cosmology has provided a predictive and phenomenologically very successful scenario for early universe cosmology. Attempts to implement inflation using scalar fields, however, lead to models with serious conceptual problems. I will discuss some of the problems, explain why string theory could provide solutions to a subset of these problems, and give a brief overview of ``string gas cosmology'', one of the approaches to merge string theory and early universe cosmology.

  16. Some aspects of symmetrical relativistic cosmology

    International Nuclear Information System (INIS)

    A qualitative study of the cosmological model of Omnes is presented, as well as some numerical results. Studies are made in a chronological or historical way involving several subjects like matter and anti-matter emulsions, density of galactic clusters, the annihilation problem, quasars, etc. One solution for the matter diffusion equation is presented

  17. Investigating the cores of fossil systems with Chandra

    CERN Document Server

    Bharadwaj, V; Sanders, J S; Schellenberger, G

    2016-01-01

    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with the BCG to detect the presence of potential thermal coronae. A deprojection analysis was performed for z < 0.05 fossils to obtain cooling time and entropy profiles, and to resolve subtle temperature structures. We investigated the Lx-T relation for fossils from the 400d catalogue to see if the scaling relation deviates from that of other groups. Most fossils are identified as cool-core objects via at least two cool-core diagnostics. All fossils have their dominant elliptical galaxy within 50 kpc of the X-ray peak, and mo...

  18. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  19. The Case Against Cosmology

    CERN Document Server

    Disney, M J

    2000-01-01

    It is argued that some of the recent claims for cosmology are grossly overblown. Cosmology rests on a very small database: it suffers from many fundamental difficulties as a science (if it is a science at all) whilst observations of distant phenomena are difficult to make and harder to interpret. It is suggested that cosmological inferences should be tentatively made and sceptically received.

  20. Summary of cosmology workshop

    Indian Academy of Sciences (India)

    Tarun Sandeep

    2004-10-01

    Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.

  1. A scientific case for future X-ray Astronomy: Galaxy Clusters at high redshifts

    CERN Document Server

    Tozzi, Paolo

    2013-01-01

    Clusters of galaxies at high redshift (z>1) are vitally important to understand the evolution of the large scale structure of the Universe, the processes shaping galaxy populations and the cycle of the cosmic baryons, and to constrain cosmological parameters. After 13 years of operation of the Chandra and XMM-Newton satellites, the discovery and characterization of distant X-ray clusters is proceeding at a slow pace, due to the low solid angle covered so far, and the time-expensive observations needed to physically characterize their intracluster medium (ICM). At present, we know that at z>1 many massive clusters are fully virialized, their ICM is already enriched with metals, strong cool cores are already in place, and significant star formation is ongoing in their most massive galaxies, at least at z>1.4. Clearly, the assembly of a large and well characterized sample of high-z X-ray clusters is a major goal for the future. We argue that the only means to achieve this is a survey-optimized X-ray mission capa...

  2. Efficient exploration of cosmology dependence in the EFT of LSS

    CERN Document Server

    Cataneo, Matteo; Senatore, Leonardo

    2016-01-01

    The most effective use of data from current and upcoming large scale structure~(LSS) and CMB observations requires the ability to predict the clustering of LSS with very high precision. The Effective Field Theory of Large Scale Structure (EFTofLSS) provides an instrument for performing analytical computations of LSS observables with the required precision in the mildly nonlinear regime. In this paper, we develop efficient implementations of these computations that allow for an exploration of their dependence on cosmological parameters. They are based on two ideas. First, once an observable has been computed with high precision for a reference cosmology, for a new cosmology the same can be easily obtained with comparable precision just by adding the difference in that observable, evaluated with much less precision. Second, most cosmologies of interest are sufficiently close to the Planck best-fit cosmology that observables can be obtained from a Taylor expansion around the reference cosmology. These ideas are ...

  3. Radio Relics in Cosmological Simulations

    Indian Academy of Sciences (India)

    M. Hoeft; S. E. Nuza; S. Gottlöber; R. J. van Weeren; H. J. A. Röttgering; M. Brüggen

    2011-12-01

    Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.

  4. The pre-merger impact velocity of the binary cluster A1750 from X-ray, lensing, and hydrodynamical simulations

    International Nuclear Information System (INIS)

    Since the discovery of the 'Bullet Cluster', several similar cases have been uncovered that suggest relative velocities well beyond the tail of high speed collisions predicted by the concordance ΛCDM model. However, quantifying such post-merger events with hydrodynamical models requires a wide coverage of possible initial conditions. Here, we show that it is simpler to interpret pre-merger cases, such as A1750, where the gas between the colliding clusters is modestly affected, so that the initial conditions are clear. We analyze publicly available Chandra data confirming a significant increase in the projected X-ray temperature between the two cluster centers in A1750 consistent with our expectations for a merging cluster. We model this system with a self-consistent hydrodynamical simulation of dark matter and gas using the FLASH code. Our simulations reproduce well the X-ray data and the measured redshift difference between the two clusters in the phase before the first core passage viewed at an intermediate projection angle. The deprojected initial relative velocity derived using our model is 1460 km s–1, which is considerably higher than the predicted mean impact velocity for simulated massive haloes derived by recent ΛCDM cosmological simulations, but is within the allowed range. Our simulations demonstrate that such systems can be identified using a multi-wavelength approach and numerical simulations, for which the statistical distribution of relative impact velocities may provide a definitive examination of a broad range of dark matter scenarios.

  5. A Chandra Observation of Abell 13: Investigating the Origin of the Radio Relic

    CERN Document Server

    Juett, Adrienne M; Clarke, Tracy E; Andernach, Heinz; Ehle, Matthias; Fujita, Yutaka; Kempner, Joshua C; Roy, Alan L; Rudnick, Lawrence; Slee, O Bruce

    2007-01-01

    We present results from the Chandra X-ray observation of Abell 13, a galaxy cluster that contains an unusual noncentral radio source, also known as a radio relic. This is the first pointed X-ray observation of Abell 13, providing a more sensitive study of the properties of the X-ray gas. The X-ray emission from Abell 13 is extended to the northwest of the X-ray peak and shows substructure indicative of a recent merger event. The cluster X-ray emission is centered on the bright galaxy H of Slee et al. 2001. We find no evidence for a cooling flow in the cluster. A knot of excess X-ray emission is coincident with the other bright elliptical galaxy F. This knot of emission has properties similar to the enhanced emission associated with the large galaxies in the Coma cluster. With these Chandra data we are able to compare the properties of the hot X-ray gas with those of the radio relic from VLA data, to study the interaction of the X-ray gas with the radio emitting electrons. Our results suggest that the radio re...

  6. Philosophical Roots of Cosmology

    Science.gov (United States)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  7. Clustering, Cosmology and a New Era of Black Hole Demographics -- II. The Conditional Luminosity Functions of Type 2 and Type 1 Active Galactic Nuclei

    CERN Document Server

    Ballantyne, D R

    2016-01-01

    The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line-of-sight into the central engine. If this model is correct than there should be no difference in many of the properties of AGN host galaxies (e.g., the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the Conditional Luminosity Function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at $z\\approx ...

  8. Lithium and sodium in the globular cluster M4. A Main Sequence star with Li compatible with the cosmological value: nature or nurture?

    CERN Document Server

    Monaco, L; Bonifacio, P; Caffau, E; Geisler, D; Marconi, G; Momany, Y; Ludwig, H -G

    2011-01-01

    Context. The abundance inhomogeneities of light elements observed in Globular Clusters (GCs), and notably the ubiquitous Na-O anti-correlation, are generally interpreted as evidence that GCs comprise several generations of stars. There is an on-going debate as to the nature of the stars which produce the inhomogeneous elements, and investigating the behavior of several elements is a way to shed new light on this problem. Aims. We aim at investigating the Li-Na anti-correlation in the GC M 4, which is known to have a well defined Na-O anti-correlation. Methods. We obtained moderate resolution (R=17 000-18 700) spectra for 91 main sequence (MS)/sub-giant branch stars of M 4 with the Giraffe spectrograph at the FLAMES/VLT ESO facility. Using model atmospheres analysis we measured lithium and sodium abundances. Results. We detect a well defined Li-Na anti-correlation among un-evolved MS stars, albeit with a shallow slope d(A(Li))/d(A(Na)) - 0.2. One star in the sample, # 37934, shows the remarkably high lithium a...

  9. Galaxy clustering constraints on deviations from Newtonian gravity at cosmological scales. II. Perturbative and numerical analyses of power spectrum and bispectrum

    International Nuclear Information System (INIS)

    We explore observational constraints on possible deviations from Newtonian gravity by means of large-scale clustering of galaxies. We measure the power spectrum and the bispectrum of Sloan Digital Sky Survey galaxies and compare the result with predictions in an empirical model of modified gravity. Our model assumes an additional Yukawa-like term with two parameters that characterize the amplitude and the length scale of the modified gravity. The model predictions are calculated using two methods; second-order perturbation theory and direct N-body simulations. These methods allow us to study nonlinear evolution of large-scale structure. Using the simulation results, we find that perturbation theory provides reliable estimates for the power spectrum and the bispectrum in the modified Newtonian model. We also construct mock galaxy catalogs from the simulations, and derive constraints on the amplitude and the length scale of deviations from Newtonian gravity. The resulting constraints from the power spectrum are consistent with those obtained in our earlier, indicating the validity of the previous empirical modeling of gravitational nonlinearity in the modified Newtonian model. If linear biasing is adopted, the bispectrum of the Sloan Digital Sky Survey galaxies yields constraints very similar to those from the power spectrum. If we allow for the nonlinear biasing instead, we find that the ratio of the quadratic to linear biasing coefficients, b2/b1, should satisfy -0.252/b1-1 Mpc and -0.192/b1-1 Mpc in the modified Newtonian model

  10. Cosmological acceleration. Dark energy or modified gravity?

    International Nuclear Information System (INIS)

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  11. High energy physics and cosmology

    International Nuclear Information System (INIS)

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  12. Cosmology with photometric redshift surveys

    CERN Document Server

    Blake, C; Blake, Chris; Bridle, Sarah

    2004-01-01

    We explore the utility of future photometric redshift imaging surveys for delineating the large-scale structure of the Universe, and assess the resulting constraints on the cosmological model. We perform two complementary types of analysis: (1) We quantify the statistical confidence and accuracy with which such surveys will be able to detect and measure characteristic features in the clustering power spectrum such as the acoustic oscillations and the turnover, in a model-independent fashion. For example, we show that a 10000 sq deg imaging survey with depth r = 22.5 and photometric redshift accuracy dz/(1+z) = 0.03 will detect the acoustic oscillations with 99.9% confidence, measuring the associated cosmological scale with 2% precision. Such a survey will also detect the turnover with 95% confidence, determining the corresponding scale with 20% accuracy. (2) By assuming a Lambda-CDM cosmology we calculate the confidence with which a non-zero baryon fraction can be deduced from such future surveys. After margi...

  13. Inflation and cosmological parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, J.

    2007-05-15

    In this work, we focus on two aspects of cosmological data analysis: inference of parameter values and the search for new effects in the inflationary sector. Constraints on cosmological parameters are commonly derived under the assumption of a minimal model. We point out that this procedure systematically underestimates errors and possibly biases estimates, due to overly restrictive assumptions. In a more conservative approach, we analyse cosmological data using a more general eleven-parameter model. We find that regions of the parameter space that were previously thought ruled out are still compatible with the data; the bounds on individual parameters are relaxed by up to a factor of two, compared to the results for the minimal six-parameter model. Moreover, we analyse a class of inflation models, in which the slow roll conditions are briefly violated, due to a step in the potential. We show that the presence of a step generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clustering data. We do not find conclusive evidence for a step in the potential and derive strong bounds on quantities that parameterise the step. (orig.)

  14. The ELAIS Deep X-ray Survey I Chandra Source Catalogue and First Results

    CERN Document Server

    Manners, J C; Almaini, O; Willott, C J; González-Solares, E A; Lawrence, A; Mann, R G; Pérez-Fournon, I; Dunlop, J S; McMahon, R G; Oliver, S J; Rowan-Robinson, M; Serjeant, S

    2003-01-01

    We present an analysis of two deep (75 ks) Chandra observations of the European Large Area ISO Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well studied regions with extensive multi-wavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to 2 soft extended sources, which are found to be associated with galaxy clusters. An overdensity of sources is found in N1 with 30% more sources than N2, which we attribute to large-scale structure. A similar variance is seen between other deep Chandra surveys. The log(N) - log(S) relations reveal an increasing fraction of hard sources at fainter fluxes. A similar trend is seen with the number of galaxy-like optical counterparts increasing towards fainter fluxes, consistent with the emergence of a population of obscured sources.

  15. Local Experiments See Cosmologically Varying Constants

    CERN Document Server

    Shaw, D J; Barrow, John D.; Shaw, Douglas J.

    2006-01-01

    We describe a rigorous construction, using matched asymptotic expansions, which establishes under very general conditions that local terrestrial and solar-system experiments will measure the effects of varying `constants' of Nature occurring on cosmological scales to computable precision. In particular, `constants' driven by scalar fields will still be found to evolve in time when observed within virialised structures like clusters, galaxies, and planetary systems. This provides a justification for combining cosmological and terrestrial constraints on the possible time variation of many assumed `constants' of Nature, including the fine structure constant and Newton's gravitation constant.

  16. Swift J1644+57: Chandra observations

    Science.gov (United States)

    Levan, A. J.; Tanvir, N. R.

    2012-11-01

    We observed the X-ray counterpart to the candidate relativistic tidal disruption event Swift J1644+57 (Levan et al. 2011 Science, 333 199; Bloom et al. 2011 Science 333 202; Burrows et al. 2011 Nature 476 421; Zauderer et al. 2011 Nature 476 425) with the Chandra X-ray Observatory, beginning on 26 November 2012 at 10:25 UT. A total integration of 24.7 ks was obtained, and the object was placed at the default position on the ACIS S3 chip.

  17. Chandra Associates Pulsar and Historic Supernova

    Science.gov (United States)

    2001-01-01

    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar

  18. Extending Cosmology: The Metric Approach

    OpenAIRE

    Mendoza, Sergio

    2012-01-01

    Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

  19. Chandra X-ray observation of the HII region Gum 31 in the Carina Nebula complex

    CERN Document Server

    Preibisch, T; Townsley, L; Broos, P; Ratzka, T

    2014-01-01

    (abridged) We used the Chandra observatory to perform a deep (70 ksec) X-ray observation of the Gum 31 region and detected 679 X-ray point sources. This extends and complements the X-ray survey of the central Carina nebula regions performed in the Chandra Carina Complex Project. Using deep near-infrared images from our recent VISTA survey of the Carina nebula complex, our Spitzer point-source catalog, and optical archive data, we identify counterparts for 75% of these X-ray sources. Their spatial distribution shows two major concentrations, the central cluster NGC 3324 and a partly embedded cluster in the southern rim of the HII region, but majority of X-ray sources constitute a rather homogeneously distributed population of young stars. Our color-magnitude diagram analysis suggests ages of ~1-2 Myr for the two clusters, whereas the distributed population shows a wider age range up to ~10 Myr. We also identify previously unknown companions to two of the three O-type members of NGC 3324 and detect diffuse X-ra...

  20. Probing The New Cosmology

    CERN Document Server

    Zentner, A R

    2003-01-01

    Improvements in observational techniques have transformed cosmology into a field inundated with ever-expanding, high-quality data sets and driven cosmology toward a standard model where the classic cosmological parameters are accurately measured. I briefly discuss some of the methods used to determine cosmological parameters, particularly primordial nucleosynthesis, the magnitude- redshift relation of supernovae, and cosmic microwave background anisotropy. I demonstrate how cosmological data can be used to complement particle physics and constrain extensions to the Standard Model. Specifically, I present bounds on light particle species and the properties of unstable, weakly-interacting, massive particles. Despite the myriad successes of the emerging standard cosmological model, unanswered questions linger. Numerical simulations of structure formation predict galactic central densities that are considerably higher than observed. They also reveal hundreds of satellites orbiting Milky Way-like galaxies while th...

  1. Cosmological models and stability

    CERN Document Server

    Andersson, Lars

    2013-01-01

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiri Bicak at this conference Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed...

  2. Newtonian and Relativistic Cosmologies

    CERN Document Server

    Green, Stephen R

    2011-01-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic FLRW cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed, which allows for such nonlinearity at small scales. We propose a relatively straightforward "dictionary"---which is exact at the linearized level---that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our "order...

  3. HDE 245059: A Weak-Lined T Tauri Binary Revealed by Chandra and Keck

    OpenAIRE

    Saavedra, C. Baldovin; Audard, M.; Duchêne, G.; Güdel, M.; Skinner, S.L.; Paerels, F. B. S.; Ghez, A.; McCabe, C.

    2009-01-01

    We present the Chandra High Energy Transmission Grating Spectrometer (HETGS) and Keck observations of HDE 245059, a young weak-lined T Tauri star (WTTS), member of the pre-main sequence group in the Lambda Orionis Cluster. Our high spatial resolution, near-infrared observations with Keck reveal that HDE 245059 a binary separated by 0.87". Based on this new information we have obtained an estimate of the masses of the binary components; 3M_{sun} and 2.5M_{sun} for the north and south component...

  4. When Worlds Collide: Chandra Observes Titanic Merger

    Science.gov (United States)

    2002-04-01

    NASA's Chandra X-ray Observatory has provided the best X-ray image yet of two Milky Way-like galaxies in the midst of a head-on collision. Since all galaxies - including our own - may have undergone mergers, this provides insight into how the universe came to look as it does today. Astronomers believe the mega-merger in the galaxy known as Arp 220 triggered the formation of huge numbers of new stars, sent shock waves rumbling through intergalactic space, and could possibly lead to the formation of a supermassive black hole in the center of the new conglomerate galaxy. The Chandra data also suggest that merger of these two galaxies began only 10 million years ago, a short time in astronomical terms. "The Chandra observations show that things really get messed up when two galaxies run into each other at full speed," said David Clements of the Imperial College, London, one of the team members involved in the study. "The event affects everything from the formation of massive black holes to the dispersal of heavy elements into the universe." Arp 220 is considered to be a prototype for understanding what conditions were like in the early universe, when massive galaxies and supermassive black holes were presumably formed by numerous galaxy collisions. At a relatively nearby distance of about 250 million light years, Arp 220 is the closest example of an "ultra-luminous" galaxy, one that gives off a trillion times as much radiation as our Sun. The Chandra image shows a bright central region at the waist of a glowing, hour-glass-shaped cloud of multimillion-degree gas. Rushing out of the galaxy at hundreds of thousands of miles per hour, the super-heated as forms a "superwind," thought to be due to explosive activity generated by the formation of hundreds of millions of new stars. Farther out, spanning a distance of 75,000 light years, are giant lobes of hot gas that could be galactic remnants flung into intergalactic space by the early impact of the collision. Whether the

  5. Spectral Analysis of the Chandra Comet Survey

    CERN Document Server

    Bodewits, D; Torney, M; Dryer, M; Lisse, C M; Dennerl, K; Zurbuchen, T H; Wolk, S J; Tielens, A G G M; Hoekstra, R

    2007-01-01

    We present results of the analysis of cometary X-ray spectra with an extended version of our charge exchange emission model (Bodewits et al. 2006). We have applied this model to the sample of 8 comets thus far observed with the Chandra X-ray observatory and ACIS spectrometer in the 300-1000 eV range. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), C/2000 WM1 (LINEAR), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), C/2001 Q4 (NEAT), 9P/2005 (Tempel 1) and 73P/2006-B (Schwassmann-Wachmann 3) and the observations include a broad variety of comets, solar wind environments and observational conditions. The interaction model is based on state selective, velocity dependent charge exchange cross sections and is used to explore how cometary X-ray emission depend on cometary, observational and solar wind characteristics. It is further demonstrated that cometary X-ray spectra mainly reflect the state of the local solar wind. The current sample of Chandra observations was fit using the constrains of ...

  6. Chandra X-Ray Observatory (CXO) Overview

    CERN Document Server

    Weisskopf, M C; Van Speybroeck, L P; O'Dell, S L

    2000-01-01

    The Chandra X-Ray Observatory (CXO), the x-ray component of NASA's Great Observatories, was launched early in the morning of 1999, July 23 by the Space Shuttle Columbia. The Shuttle launch was only the first step in placing the observatory in orbit. After release from the cargo bay, the Inertial Upper Stage performed two firings, and separated from the observatory as planned. Finally, after five firings of Chandra's own Integral Propulsion System--- the last of which took place 15 days after launch--- the observatory was placed in its highly elliptical orbit of 140,000 km apogee and 10,000 km perigee. After activation, the first x-rays focussed by the telescope were observed on 1999, August 12. Beginning with these initial observations one could see that the telescope had survived the launch environment and was operating as expected. The month following the opening of the sunshade door was spent adjusting the focus for each set of instrument configurations, determining the optical axis, calibrating the star c...

  7. Chandra mission scheduling on-orbit experience

    Science.gov (United States)

    Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David

    2008-07-01

    Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.

  8. Composition of the Chandra ACIS Contaminant

    Science.gov (United States)

    Marshall, Herman; Tennant, Allyn; Grant, Catherine; Hitchcock, Adam; ODell, Steve; Plucinsky, Paul

    2003-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also detectable. We can place stringent limits on nitrogen and high Z elements such as AI, Si, and Mg. Not including H, we find that C, O, and F comprise less than 80%, 7%, and 7% of the contaminant by number, respectively, Nitrogen is less than 3% of the contaminant. We will assess various candidates for the contaminating material and the time dependence. For example, the detailed structure of the absorption edges provides information about the bonding structure of the compound, eliminating aromatic hydrocarbons as the contaminating material.

  9. Chandra Observations of SNR RCW 103

    CERN Document Server

    Frank, Kari A; Park, Sangwook

    2015-01-01

    We analyze three Chandra observations, with a combined exposure time of 99 ks, of the Galactic supernova remnant RCW 103, a young supernova remnant, previously with no clear detection of metal-rich ejecta. Based on our imaging and spectral analyses of these deep Chandra data, we find evidence for metal-rich ejecta emission scattered throughout the remnant. X-ray emission from the shocked ejecta is generally weak, and the shocked circumstellar medium (CSM) is a largely dominant component across the entire remnant. The CSM component shows abundances of ~0.5 solar, while Ne, Mg, Si, S, and Fe abundances of the ejecta are up to a few times solar. Comparison of these ejecta abundances with yields from supernova nucleosynthesis models suggests, together with the existence of a central neutron star, a progenitor mass of ~18-20 M$_\\odot$, though the Fe/Si ratios are larger than predicted. The shocked CSM emission suggests a progenitor with high mass-loss rate and subsolar metallicity.

  10. Cosmology and particle physics

    International Nuclear Information System (INIS)

    This paper comprises the contents of four lectures in which the author illustrates the two-way nature of the interplay between the fields of cosmology and particle physics by focusing on several specifics: a review of the standard cosmology, concentrating on primordial nucleosynthesis; baryogenesis; monopoles; and the case in which a very early first-order phase transition associated with spontaneous symmetry breaking has the potential to explain some very fundamental cosmological facts

  11. MOND and Cosmology

    OpenAIRE

    Sanders, R. H.

    2005-01-01

    I review various ideas on MOND cosmology and structure formation beginning with non-relativistic models in analogy with Newtonian cosmology. I discuss relativistic MOND cosmology in the context of Bekenstein's theory and propose an alternative biscalar effective theory of MOND in which the acceleration parameter is identified with the cosmic time derivative of a matter coupling scalar field. Cosmic CDM appears in this theory as scalar field oscillations of the auxiliary "coupling strength" fi...

  12. Cosmology and time

    Directory of Open Access Journals (Sweden)

    Balbi Amedeo

    2013-09-01

    Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.

  13. The relation between mass and concentration in X-ray galaxy clusters at high redshift

    CERN Document Server

    Amodeo, Stefania; Capasso, Raffaella; Sereno, Mauro

    2016-01-01

    Galaxy clusters are the most recent, gravitationally-bound products of the hierarchical mass accretion over cosmological scales. How the mass is concentrated is predicted to correlate with the total mass in the cluster's halo, with systems at higher mass being less concentrated at given redshift and for any given mass, systems with lower concentration are found at higher redshifts. Through a spatial and spectral X-ray analysis, we reconstruct the total mass profile of 47 galaxy clusters observed with Chandra in the redshift range $0.40.4$, and is well suited to provide the first constraint on the concentration--mass relation at $z>0.7$ from X-ray analysis. Under the assumptions that the distribution of the X-ray emitting gas is spherically symmetric and in hydrostatic equilibrium, we combine the deprojected gas density and spectral temperature profiles through the hydrostatic equilibrium equation to recover the parameters that describe a NFW total mass distribution. The comparison with results from weak lensi...

  14. Grand unified models and cosmology

    OpenAIRE

    Jeannerot, Rachel

    2006-01-01

    The cosmological consequences of particle physics grand unified theories (GUTs) are studied. Cosmological models are implemented in realistic particle physics models. Models consistent from both particle physics and cosmological considerations are selected. (...)

  15. Ram Pressure Stripping of Hot Coronal Gas from Group and Cluster Galaxies and the Detectability of Surviving X-ray Coronae

    CERN Document Server

    Vijayaraghavan, Rukmani

    2015-01-01

    Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium (ICM), as shown by observations of X-ray and HI galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in group environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that $\\sim 1 - 4$ kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations ...

  16. Chandra Captures Flare From Brown Dwarf

    Science.gov (United States)

    2000-07-01

    The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars. Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'" Chandra LP 944-20 X-ray Image Press Image and Caption The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team. Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning." LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is

  17. The velocity field in MOND cosmology

    Science.gov (United States)

    Candlish, G. N.

    2016-08-01

    The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAYMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAYMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to Λcold dark matter, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard ΛCDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAYMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field is likely an unavoidable consequence of the gravitational modification implemented in MOND, and may represent a clear observational signature of such a modification. It is further suggested that such a signal may be clearest in intermediate-density regions such as cluster outskirts and filaments.

  18. Cosmological measurements with general relativistic galaxy correlations

    Science.gov (United States)

    Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  19. Astroparticle physics and cosmology

    International Nuclear Information System (INIS)

    In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, γ-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology

  20. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  1. Particle physics and cosmology

    International Nuclear Information System (INIS)

    The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).

  2. Large N Cosmology

    Science.gov (United States)

    Hawking, S. W.

    2001-09-01

    The large N approximation should hold in cosmology even at the origin of the universe. I use ADS-CFT to calculate the effective action and obtain a cosmological model in which inflation is driven by the trace anomaly. Despite having ghosts, this model can agree with observations.

  3. String Cosmology: A Review

    OpenAIRE

    McAllister, Liam; Silverstein, Eva

    2007-01-01

    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.

  4. Horava-Lifshitz cosmology

    OpenAIRE

    Kiritsis, Elias; Kofinas, Georgios

    2009-01-01

    The cosmological equations suggested by the non-relativistic renormalizable gravitational theory proposed by Ho\\v{r}ava are considered. It is pointed out that the early universe cosmology has features that may give an alternative to inflation and the theory may be able to escape singularities.

  5. The most massive MaxBCG clusters

    Science.gov (United States)

    Murray, Stephen

    2014-09-01

    Great progress on galaxy clusters has been made in the last several years with SZ and optical surveys. Some new puzzles also emerged and one of them is the mismatch between the stacked Planck SZ fluxes and the model expectations for the MaxBCG clusters. While previous studies regarding this puzzle require the calibration of the true mass and the standard pressure template, we bypass the intermediate steps to directly compare the pressure content derived from the X-ray data with the SZ flux, for massive MaxBCG clusters. This proposal requests Chandra data for 3 clusters to complete a sample of 12 most massive MaxBCG clusters observed with either XMM or Chandra. The results will shed light on the mismatch puzzle and constrain the important scaling relations like Y_X - N_200 and Y_X - Y_SZ.

  6. Preferred axis in cosmology

    CERN Document Server

    Zhao, Wen

    2016-01-01

    The foundation of modern cosmology relies on the so-called cosmological principle which states an homogeneous and isotropic distribution of matter in the universe on large scales. However, recent observations, such as the temperature anisotropy of the cosmic microwave background (CMB) radiation, the motion of galaxies in the universe, the polarization of quasars and the acceleration of the cosmic expansion, indicate preferred directions in the sky. If these directions have a cosmological origin, the cosmological principle would be violated, and modern cosmology should be reconsidered. In this paper, by considering the preferred axis in the CMB parity violation, we find that it coincides with the preferred axes in CMB quadrupole and CMB octopole, and they all align with the direction of the CMB kinematic dipole. In addition, the preferred directions in the velocity flows, quasar alignment, anisotropy of the cosmic acceleration, the handedness of spiral galaxies, and the angular distribution of the fine-structu...

  7. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2002-01-01

    Introduction to Cosmology provides a rare combination of a solid foundation of the core physical concepts of cosmology and the most recent astronomical observations. The book is designed for advanced undergraduates or beginning graduate students and assumes no prior knowledge of general relativity. An emphasis is placed on developing the readers' physical insight rather than losing them with complex math. An approachable writing style and wealth of fresh and imaginative analogies from "everyday" physics are used to make the concepts of cosmology more accessible. The book is unique in that it not only includes recent major developments in cosmology, like the cosmological constant and accelerating universe, but also anticipates key developments expected in the next few years, such as detailed results on the cosmic microwave background.

  8. A Taste of Cosmology

    CERN Document Server

    Verde, L

    2013-01-01

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.

  9. A taste of cosmology

    International Nuclear Information System (INIS)

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be toa rigorous in derivations, nor to give a full historical overview. The idea is to provide a 'taste' of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school web site: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/. (author)

  10. BMS in Cosmology

    CERN Document Server

    Kehagias, Alex

    2016-01-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to both scalar and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic d...

  11. Cosmology and particle physics

    Science.gov (United States)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  12. The BMW-Chandra Serendipitous Source Catalogue

    Science.gov (United States)

    Romano, P.; Campana, S.; Mignani, R. P.; Moretti, A.; Panzera, M. R.; Tagliaferri, G.

    We present the BMW-Chandra Source Catalogue drawn from all Chandra ACIS-I pointed observations with an exposure time in excess of 10 ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by \\citep{Lazzatiea99} and \\citep{Campanaea99}, which can characterize point-like as well as extended sources, we identified 21325 sources which were visually inspected and verified. Among them, 16758 are not associated with the targets of the pointings and are considered certain; they have a 0.5-10 keV absorption corrected flux distribution median of ˜ 7 × 10-15 erg cm-2 s-1. The catalogue consists of source positions, count rates, extensions and relative errors in three energy bands (total, 0.5-7 keV; soft, 0.5-2 keV; and hard band, 2-7 keV), as well as the additional information drawn from the headers of the original files. We also extracted source counts in four additional energy bands, (0.5-1.0 keV, 1.0-2.0 keV, 2.0-4.0 keV and 4.0-7.0 keV). We compute the sky coverage in the soft and hard bands. The complete catalogue provides a sky coverage in the soft band (0.5-2 keV, S/N =3) of ˜ 8 deg2 at a limiting flux of ˜ 10-13 erg cm-2 s-1, and ˜ 2 deg2 at a limiting flux of ˜ 10-15 erg cm-2 s-1. http://www.merate.mi.astro.it/~xanadu/BMC/bmc_home.html

  13. Galaxy Bias in Quintessence Cosmological Models

    CERN Document Server

    Basilakos, S

    2003-01-01

    We derive the evolution of the linear bias factor, $b(z)$, in cosmological models driven by an exotic fluid with an equation of state: $p_{x}=w\\rho_{x}$, where $-1\\le w<0$ (quintessence). Our aim is to put constrains on different cosmological and biasing models by combining the recent observational clustering results of optical ({\\em 2dF}) galaxies (Hawkings et al.) with those predicted by the models. We find that our bias model when fitted to the {\\em 2dF} clustering results predicts different bias evolution for different values of $w$. The models that provide the weak biasing ($b_{\\circ} \\sim 1.1$) of optical galaxies found in many recent observational studies are flat, $\\Omega_{\\rm m}=0.3$ with $w\\le -0.9$. These models however, predict a weak redshift evolution of $b(z)$, not corroborated by N-body simulations.

  14. Consistency of Hitomi, XMM-Newton and Chandra 3.5 keV data from Perseus

    OpenAIRE

    Conlon, Joseph P; Day, Francesca; Jennings , Nicholas; Krippendorf, Sven; Rummel, Markus

    2016-01-01

    Hitomi observations of Perseus with the Soft X-ray Spectrometer (SXS) provide a high-resolution look at the 3.5 keV feature reported by multiple groups in the Perseus cluster. The Hitomi spectrum -- which involves the sum of diffuse cluster emission and the point-like central Active Galactic Nucleus (AGN) -- does not show any excess at $E \\sim 3.5 {\\rm keV}$, giving an apparent inconsistency with previous observations of excess diffuse emission. We point out that 2009 Chandra data reveals a s...

  15. Using supercluster geometry as a cosmological probe

    CERN Document Server

    Basilakos, S; Plionis, M

    2001-01-01

    We study the properties of superclusters detected in the Abell/ACO cluster catalogue. We identify the superclusters utilizing the `friend-of-friend' procedure, and then determine supercluster shapes by using the differential geometry approach. We find that the dominant supercluster morphological feature is filamentariness. We compare our Abell/ACO supercluster results with the corresponding ones generated from two different CDM cosmological models in order to investigate statistically which of the latter models best reproduces the observational results.

  16. Gravitational Renormalization Group Flow, Astrophysics and Cosmology

    CERN Document Server

    Moffat, J W

    2015-01-01

    A modified gravitational theory is developed in which the gravitational coupling constants $G$ and $Q$ and the effective mass $m_\\phi$ of a repulsive vector field run with momentum scale $k$ or length scale $\\ell =1/k$, according to a renormalization group flow. The theory can explain cosmological early universe data with a dark hidden photon and late time galaxy and cluster dynamics without dark matter. The theory agrees with solar system and binary pulsar observations.

  17. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Haro, Jaime, E-mail: jaime.haro@upc.edu [Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.

  18. Chandra Studies of the X-ray gas properties of fossil systems

    Science.gov (United States)

    Qin, Zhen-Zhen

    2016-03-01

    We study ten galaxy groups and clusters suggested in the literature to be “fossil systems (FSs)” based on Chandra observations. According to the M500 - T and LX - T relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the fgas, 2500 - T relation and find that the FSs exhibit the same trend as ordinary systems. The gas densities of FSs within 0.1r200 are ˜ 10-3 cm-3, which is the same order of magnitude as galaxy clusters. The entropies within 01r200 (S0.1r200) of FSs are systematically lower than those inordinary galaxy groups, which is consistent with previous reports, but we find their S0.1r200 - T relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk and White model in (0.1 - 1)r200, and the relation between scale radius rs and characteristic mass density δc indicates self-similarity of dark matter halos of FSs. The ranges of rs and δc for FSs are also close to those of galaxy clusters. Therefore, FSs share more common characteristics with galaxy clusters. The special birth place of the FS makes it a distinct type of galaxy system.

  19. Chandra Observation of the Interaction of the Radio Source and Cooling Core in Abell 2063

    CERN Document Server

    Kanov, K N; Hicks, A K; Kanov, Kalin N.; Sarazin, Craig L.; Hicks, Amalia K.

    2006-01-01

    We present the results of a Chandra observation of the cooling core cluster Abell 2063. Spectral analysis shows that there is cool gas (2 keV) associated with the cluster core, which is more than a factor of 2 cooler than the outer cluster gas (4.1 keV). There also is spectral evidence for a weak cooling flow, Mdot ~ 20 Msun/yr. The cluster exhibits a complex structure in the center that consists of several bright knots of emission, a depression in the emission to the north of the center of the cluster, and a shell of emission surrounding it. The depression in the X-ray emission is coincident with the position of the north-eastern radio lobe of the radio source associated with the cluster-central galaxy. The shell surrounding this region appears to be hotter, which may be the result of a shock that has been driven into the gas by the radio source. The power output of the radio source appears to be sufficient to offset the cooling flow, and heating of the gas through shocks is a possible explanation of how the...

  20. BMS in cosmology

    Science.gov (United States)

    Kehagias, A.; Riotto, A.

    2016-05-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.