WorldWideScience

Sample records for chandra acis survey

  1. INNOVATIONS IN THE ANALYSIS OF CHANDRA-ACIS OBSERVATIONS

    International Nuclear Information System (INIS)

    Broos, Patrick S.; Townsley, Leisa K.; Feigelson, Eric D.; Getman, Konstantin V.; Garmire, Gordon P.; Bauer, Franz E.

    2010-01-01

    As members of the instrument team for the Advanced CCD Imaging Spectrometer (ACIS) on NASA's Chandra X-ray Observatory and as Chandra General Observers, we have developed a wide variety of data analysis methods that we believe are useful to the Chandra community, and have constructed a significant body of publicly available software (the ACIS Extract package) addressing important ACIS data and science analysis tasks. This paper seeks to describe these data analysis methods for two purposes: to document the data analysis work performed in our own science projects and to help other ACIS observers judge whether these methods may be useful in their own projects (regardless of what tools and procedures they choose to implement those methods). The ACIS data analysis recommendations we offer here address much of the workflow in a typical ACIS project, including data preparation, point source detection via both wavelet decomposition and image reconstruction, masking point sources, identification of diffuse structures, event extraction for both point and diffuse sources, merging extractions from multiple observations, nonparametric broadband photometry, analysis of low-count spectra, and automation of these tasks. Many of the innovations presented here arise from several, often interwoven, complications that are found in many Chandra projects: large numbers of point sources (hundreds to several thousand), faint point sources, misaligned multiple observations of an astronomical field, point source crowding, and scientifically relevant diffuse emission.

  2. A medium-deep Chandra and Subaru survey of the 13-h XMM/ROSAT deep survey area

    Science.gov (United States)

    McHardy, I. M.; Gunn, K. F.; Newsam, A. M.; Mason, K. O.; Page, M. J.; Takata, T.; Sekiguchi, K.; Sasseen, T.; Cordova, F.; Jones, L. R.; Loaring, N.

    2003-07-01

    We present the results of a Chandra ACIS-I survey of a high-latitude region at 13 h +38° which was earlier observed with ROSAT and which has recently been observed by XMM-Newton for 200 ks. XMM-Newton will provide good-quality X-ray spectra for over 200 sources with fluxes around the knee of the log N/ log S, which are responsible for the bulk of the X-ray background. The main aim of the Chandra observations is to provide arcsecond, or better, positions, and hence reliable identifications, for the XMM-Newton sources. The ACIS-I observations were arranged in a mosaic of four 30-ks pointings, covering almost all of the 15-arcmin radius XMM-Newton/ROSAT field. We detect 214 Chandra sources above a Cash likelihood statistic of 25, which approximates to 5σ significance, to a limiting flux of ~1.3 × 10-15 erg cm-2 s-1 (0.5-7 keV). Optical counterparts are derived from a Subaru SuprimeCam image reaching to R~ 27. The very large majority of the Chandra sources have an optical counterpart, with the distribution peaking at 23 high LX/Lopt ratios, implying absorption at moderate redshift. Comparison with the earlier ROSAT survey shows that the accuracy of the ROSAT positions agrees very well with the predictions from simulations by McHardy et al. and that the large majority of the identifications were correct.

  3. Chandra ACIS Sub-pixel Resolution

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.

    2011-05-01

    We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy

  4. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Qiu, Yanli; Liu, Jifeng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Bregman, Joel N., E-mail: songw@bao.ac.cn, E-mail: jfliu@bao.ac.cn [University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-20

    Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.

  5. The Chandra Source Catalog 2.0: Calibrations

    Science.gov (United States)

    Graessle, Dale E.; Evans, Ian N.; Rots, Arnold H.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    Among the many enhancements implemented for the release of Chandra Source Catalog (CSC) 2.0 are improvements in the processing calibration database (CalDB). We have included a thorough overhaul of the CalDB software used in the processing. The software system upgrade, called "CalDB version 4," allows for a more rational and consistent specification of flight configurations and calibration boundary conditions. Numerous improvements in the specific calibrations applied have also been added. Chandra's radiometric and detector response calibrations vary considerably with time, detector operating temperature, and position on the detector. The CalDB has been enhanced to provide the best calibrations possible to each observation over the fifteen-year period included in CSC 2.0. Calibration updates include an improved ACIS contamination model, as well as updated time-varying gain (i.e., photon energy) and quantum efficiency maps for ACIS and HRC-I. Additionally, improved corrections for the ACIS quantum efficiency losses due to CCD charge transfer inefficiency (CTI) have been added for each of the ten ACIS detectors. These CTI corrections are now time and temperature-dependent, allowing ACIS to maintain a 0.3% energy calibration accuracy over the 0.5-7.0 keV range for any ACIS source in the catalog. Radiometric calibration (effective area) accuracy is estimated at ~4% over that range. We include a few examples where improvements in the Chandra CalDB allow for improved data reduction and modeling for the new CSC.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  6. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES: THE SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng, E-mail: jfliu@bao.ac.cn, E-mail: songw@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D {sub 25} isophotes of 1110 galaxies, and 7504 sources are located between the D {sub 25} and 2 D {sub 25} isophotes of 910 galaxies. Contamination analysis with the log N –log S relation indicates that 51.3% of objects within 2 D {sub 25} isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 10{sup 37}, 10{sup 38}, and 10{sup 39} erg s{sup −1}, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov–Smirnov (K–S) criterion ( P {sub K–S} < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (∼2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to

  7. Modeling Contamination Migration on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  8. Statistical Characterization of the Chandra Source Catalog

    Science.gov (United States)

    Primini, Francis A.; Houck, John C.; Davis, John E.; Nowak, Michael A.; Evans, Ian N.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Hall, Diane M.; Harbo, Peter N.; He, Xiangqun Helen; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael S.; Van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2011-06-01

    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of 0.75% of the entire sky, using data from ~3900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other large Chandra catalogs, such as the ChaMP Point Source Catalog or the 2 Mega-second Deep Field Surveys, while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point-source populations.

  9. A DEEP CHANDRA ACIS STUDY OF NGC 4151. III. THE LINE EMISSION AND SPECTRAL ANALYSIS OF THE IONIZATION CONE

    International Nuclear Information System (INIS)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-01-01

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L 0.3-2 k eV ∼ 10 40 erg s –1 ) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] λ5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be ∼ ☉ yr –1 at 130 pc and the kinematic power of the ionized outflow is 1.7 × 10 41 erg s –1 , approximately 0.3% of the bolometric luminosity of the active nucleus in NGC 4151.

  10. STATISTICAL CHARACTERIZATION OF THE CHANDRA SOURCE CATALOG

    International Nuclear Information System (INIS)

    Primini, Francis A.; Evans, Ian N.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Harbo, Peter N.; He Xiangqun; Karovska, Margarita; Houck, John C.; Davis, John E.; Nowak, Michael A.; Hall, Diane M.

    2011-01-01

    The first release of the Chandra Source Catalog (CSC) contains ∼95,000 X-ray sources in a total area of 0.75% of the entire sky, using data from ∼3900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other large Chandra catalogs, such as the ChaMP Point Source Catalog or the 2 Mega-second Deep Field Surveys, while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point-source populations.

  11. Modeling Contamination Migration on the Chandra X-ray Observatory - II

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.

    2013-01-01

    During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.

  12. The First Chandra Field

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; /NASA, Marshall; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Cameron, Robert A.; /Harvard-Smithsonian Ctr. Astrophys. /SLAC; Gandhi,; Foellmi, Cedric; /European Southern Obs., Chile; Elsner, Ronald F.; /NASA, Marshall; Patel, Sandeep K.; /USRA, Huntsville; Wu, Kinwah; /Mullard Space Sci. Lab.; O' Dell, Stephen; /NASA, Marshall

    2005-09-09

    Before the official first-light images, the Chandra X-ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ''Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a Type-1 (unobscured) active galactic nucleus (AGN) at a redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the Eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive ({ge} 10{sup 9} M{sub {circle_dot}}) black hole, accreting at a rate approaching its Eddington limit.

  13. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data

  14. An In-depth Chandra ACIS View Of The Circumnuclear Region Of NGC 4151: The Jet, The Biconical Outflow, And A Leaky Torus

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-05-01

    We report on the imaging analysis of 200 ks Chandra ACIS-S observations of the nearby Seyfert 1 galaxy NGC 4151. Structured soft X-ray emission is observed to extend from 30 pc to 1.5 kpc. We find strong evidence for jet-gas cloud interaction in the inner 150 pc region, confirming our previous HRC results. Self-consistent photoionization models provide good descriptions of the spectra of the optical bi-cone, supporting the dominant role of nuclear photoionization. Presence of both low and high ionization spectral components and extended emission in the X-ray image perpendicular to the bi-cone indicates leakage of nuclear ionization. Using spatially resolved features, we estimate the kinematic power of the outflow in NGC 4151 to be 0.3% of its bolometric luminosity. This work is supported by NASA grant GO8-9101X and GO1-12009X.

  15. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    Science.gov (United States)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector

  16. Modeling Contamination Migration on the Chandra X-Ray Observatory - III

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.

    2015-01-01

    During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations

  17. A Deep Chandra ACIS Study of NGC 4151. III. The Line Emission and Spectral Analysis of the Ionization Cone

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-11-01

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L 0.3-2 keV ~ 1040 erg s-1) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] λ5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be lsim12% of the extended emission. Presence of both low- and high-ionization spectral components and extended emission in the X-ray image perpendicular to the bicone indicates leakage of nuclear ionization, likely filtered through warm absorbers, instead of being blocked by a continuous obscuring torus. The ratios of [O III]/soft X-ray flux are approximately constant (~15) for the 1.5 kpc radius spanned by these measurements, indicating similar relative contributions from the low- and high-ionization gas phases at different radial distances from the nucleus. If the [O III] and X-ray emission arise from a single photoionized medium, this further implies an outflow with a wind-like density profile. Using spatially resolved X-ray features, we estimate that the mass outflow rate in NGC 4151 is ~2 M ⊙ yr-1 at 130 pc and the kinematic power of the ionized outflow is 1.7 × 1041 erg s-1, approximately 0.3% of the bolometric luminosity of the active nucleus in NGC 4151.

  18. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  19. A Deep Chandra ACIS Study of NGC 4151. I. The X-ray Morphology of the 3 kpc Diameter Circum-nuclear Region and Relation to the Cold Interstellar Medium

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-03-01

    We report on the imaging analysis of ~200 ks sub-arcsecond resolution Chandra Advanced CCD Imaging Spectrometer (ACIS-S) observations of the nearby Seyfert 1 galaxy NGC 4151. Bright, structured soft X-ray emission is observed to extend from 30 pc to 1.3 kpc in the southwest from the nucleus, much farther than seen in earlier X-ray studies. The terminus of the northeastern X-ray emission is spatially coincident with a CO gas lane, where the outflow likely encounters dense gas in the host galactic disk. X-ray emission is also detected outside the boundaries of the ionization cone, which indicates that the gas there is not completely shielded from the nuclear continuum, as would be the case for a molecular torus collimating the bicone. In the central r < 200 pc region, the subpixel processing of the ACIS data recovers the morphological details on scales of <30 pc (<0farcs5) first discovered in Chandra High Resolution Camera images. The X-ray emission is more absorbed toward the boundaries of the ionization cone, as well as perpendicular to the bicone along the direction of a putative torus in NGC 4151. The innermost region where X-ray emission shows the highest hardness ratio is spatially coincident with the near-infrared-resolved H2 emission and dusty spirals we find in an Hubble Space Telescope V - H color image. The agreement between the observed H2 line flux and the value predicted from X-ray-irradiated molecular cloud models supports photo-excitation by X-rays from the active nucleus as the origin of the H2 line, although contribution from UV fluorescence or collisional excitation cannot be ruled out with current data. The discrepancy between the mass of cold molecular gas inferred from recent CO and near-infrared H2 observations may be explained by the anomalous CO abundance in this X-ray-dominated region. The total H2 mass derived from the X-ray observation agrees with the recent measurement by Storchi-Bergmann et al.

  20. The kinematics and chemical stratification of the type Ia supernova remnant 0519-69.0 : an XMM-Newton and Chandra study

    NARCIS (Netherlands)

    Kosenko, D.; Helder, E.A.; Vink, J.

    2010-01-01

    We present a detailed analysis of the XMM-Newton and Chandra X-ray data of the young type Ia supernova remnant SNR 0519-69.0, which is situated in the Large Magellanic Cloud. We used data from both the Chandra ACIS and XMM-Newton EPIC MOS instruments, and high resolution X-ray spectra obtained with

  1. The Chandra Source Catalog: X-ray Aperture Photometry

    Science.gov (United States)

    Kashyap, Vinay; Primini, F. A.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, I. N.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) represents a reanalysis of the entire ACIS and HRC imaging observations over the 9-year Chandra mission. We describe here the method by which fluxes are measured for detected sources. Source detection is carried out on a uniform basis, using the CIAO tool wavdetect. Source fluxes are estimated post-facto using a Bayesian method that accounts for background, spatial resolution effects, and contamination from nearby sources. We use gamma-function prior distributions, which could be either non-informative, or in case there exist previous observations of the same source, strongly informative. The current implementation is however limited to non-informative priors. The resulting posterior probability density functions allow us to report the flux and a robust credible range on it.

  2. CHANDRA OBSERVATION OF THE TeV SOURCE HESS J1834-087

    International Nuclear Information System (INIS)

    Misanovic, Zdenka; Kargaltsev, Oleg; Pavlov, George G.

    2011-01-01

    Chandra ACIS observed the field of the extended TeV source HESS J1834-087 for 47 ks. A previous XMM-Newton EPIC observation of the same field revealed a point-like source (XMMU J183435.3-084443) and an offset region of faint extended emission. In the low-resolution, binned EPIC images the two appear to be connected. However, the high-resolution Chandra ACIS images do not support the alleged connection. In these images, XMMU J183435.3-084443 is resolved into a point source, CXOU J183434.9-084443 (L 0.5-8keV ≅ 2.3 x 10 33 erg s -1 , for a distance of 4 kpc; photon index Γ ≅ 1.1), and a compact (∼ 0.5-8keV ≅ 4.1 x 10 33 erg s -1 , Γ ≅ 2.7). The nature of the nebula is uncertain. We discuss a dust scattering halo and a pulsar-wind nebula as possible interpretations. Based on our analysis of the X-ray data, we re-evaluate the previously suggested interpretations of HESS J1834-087 and discuss a possible connection to the Fermi Large Area Telescope source 1FGL J1834.3-0842c. We also obtained an upper limit of 3 x 10 -14 erg cm -2 s -1 on the unabsorbed flux of the SGR J1833-0832 (in quiescence), which happened to be in the ACIS field of view.

  3. Chandra Finds X-ray Star Bonanza in the Orion Nebula

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic

  4. Chandra Source Catalog: Background Determination and Source Detection

    Science.gov (United States)

    McCollough, Michael L.; Rots, A. H.; Primini, F. A.; Evans, I. N.; Glotfelty, K. J.; Hain, R.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-01-01

    The Chandra Source Catalog (CSC) is a major project in which all of the pointed imaging observations taken by the Chandra X-Ray Observatory will used to generate the most extensive X-ray source catalog produced to date. Early in the development of the CSC it was recognized that the ability to estimate local background levels in an automated fashion would be critical for essential CSC tasks such as source detection, photometry, sensitivity estimates, and source characterization. We present a discussion of how such background maps are created directly from the Chandra data and how they are used in source detection. The general background for Chandra observations is rather smoothly varying, containing only low spatial frequency components. However, in the case of ACIS data, a high spatial frequency component is added that is due to the readout streaks of the CCD chips. We discuss how these components can be estimated reliably using the Chandra data and what limitations and caveats should be considered in their use. We will discuss the source detection algorithm used for the CSC and the effects of the background images on the detection results. We will also touch on some the Catalog Inclusion and Quality Assurance criteria applied to the source detection results. This work is supported by NASA contract NAS8-03060 (CXC).

  5. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  6. The Chandra Source Catalog: Background Determination and Source Detection

    Science.gov (United States)

    McCollough, Michael; Rots, Arnold; Primini, Francis A.; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Danny G. Gibbs, II; Grier, John D.; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The Chandra Source Catalog (CSC) is a major project in which all of the pointed imaging observations taken by the Chandra X-Ray Observatory are used to generate one of the most extensive X-ray source catalog produced to date. Early in the development of the CSC it was recognized that the ability to estimate local background levels in an automated fashion would be critical for essential CSC tasks such as source detection, photometry, sensitivity estimates, and source characterization. We present a discussion of how such background maps are created directly from the Chandra data and how they are used in source detection. The general background for Chandra observations is rather smoothly varying, containing only low spatial frequency components. However, in the case of ACIS data, a high spatial frequency component is added that is due to the readout streaks of the CCD chips. We discuss how these components can be estimated reliably using the Chandra data and what limitations and caveats should be considered in their use. We will discuss the source detection algorithm used for the CSC and the effects of the background images on the detection results. We will also touch on some the Catalog Inclusion and Quality Assurance criteria applied to the source detection results. This work is supported by NASA contract NAS8-03060 (CXC).

  7. Chandra Observations of M31 and their Implications for its ISM

    Science.gov (United States)

    Primini, F.; Garcia, M.; Murray, S.; Forman, W.; Jones, C.; McClintock, J.

    2000-01-01

    As part of the Chandra X-ray Observatory's Survey/Monitoring Program of M31, we have been regularly observing the bulge amd inner disk of M31 for nearly 1 year, using both the HRC and ACIS Instruments. We present results from our program th it are of interest to the study of the ISM in M31. In particular, spectral analysis of bright, unresolved x-ray sources in the bulge reveals the presence of significant local x-ray extinction (N(sub H) is about 2 x 10(exp 21)/square cm), and we will attempt to map out this extinction, Further, we find that diffuse emission accounts for a significant fraction of the overall x-ray flux from the bulge. Finally, our search for x-ray counterparts to supernova remnants in M31 yields surprisingly few candidates.

  8. CHEERS Results on Mrk 573: A Study of Deep Chandra Observations

    Science.gov (United States)

    Paggi, Alessandro; Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita

    2012-09-01

    We present results on Mrk 573 obtained as part of the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS). Previous studies showed that this source features a biconical emission in the soft X-ray band closely related to the narrow-line region as mapped by the [O III] emission line and the radio emission, though on a smaller scale; we investigate the properties of soft X-ray emission from this source with new deep Chandra observations. Making use of the subpixel resolution of the Chandra/ACIS image and point-spread function deconvolution, we resolve and study substructures in each ionizing cone. The two cone spectra are fitted with a photoionization model, showing a mildly photoionized phase diffused over the bicone. Thermal collisional gas at about ~1.1 keV and ~0.8 keV appears to be located between the nucleus and the "knots" resolved in radio observations, and between the "arcs" resolved in the optical images, respectively; this can be interpreted in terms of shock interaction with the host galactic plane. The nucleus shows a significant flux decrease across the observations indicating variability of the active galactic nucleus (AGN), with the nuclear region featuring a higher ionization parameter with respect to the bicone region. The long exposure allows us to find extended emission up to ~7 kpc from the nucleus along the bicone axis. Significant emission is also detected in the direction perpendicular to the ionizing cones, disagreeing with the fully obscuring torus prescribed in the AGN unified model and suggesting instead the presence of a clumpy structure.

  9. Chandra Survey of Nearby Galaxies: The Catalog

    Energy Technology Data Exchange (ETDEWEB)

    She, Rui; Feng, Hua [Department of Engineering Physics and Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100087 (China)

    2017-02-01

    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 10{sup 37} erg s{sup −1} on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  10. VARIABILITY OF OPTICAL COUNTERPARTS IN THE CHANDRA GALACTIC BULGE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Britt, C. T.; Hynes, R. I.; Johnson, C. B.; Baldwin, A.; Collazzi, A.; Gossen, L. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Jonker, P. G.; Torres, M. A. P. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Nelemans, G. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Maccarone, T. [Department of Physics, Texas Tech University, Box 41051, Science Building, Lubbock, TX 79409-1051 (United States); Steeghs, D.; Greiss, S. [Astronomy and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Heinke, C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Bassa, C. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Villar, A. [Department of Physics, Massachussettes Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Gabb, M. [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2014-09-01

    We present optical light curves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey (GBS). Using data from the Mosaic-II instrument on the Blanco 4 m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ∼2 hr to 8 days over the 3/4 of the X-ray survey containing sources from the initial GBS catalog. Among the light curve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. Eighty-seven percent of X-ray sources have at least one potential optical counterpart. Twenty-seven percent of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.

  11. Chandra Captures Venus In A Whole New Light

    Science.gov (United States)

    2001-11-01

    conducted the research. The Chandra observation of Venus was also a technological tour de force. The angular separation of Venus from the Sun, as seen from Earth, never exceeds 48 degrees. This relative proximity has prevented star trackers and cameras on other X-ray astronomy satellites from locking onto guide stars and pointing steadily in the direction of Venus to perform such an observation. Venus was observed on Jan. 10, 2001, with the Advanced CCD Imaging Spectrometer (ACIS) detector plus the Low Energy Transmission Grating and on Jan. 13, 2001, with the ACIS alone. Other members of the team were Vadim Burwitz and Jakob Engelhauser, Max Planck Institute; Carey Lisse, University of Maryland, College Park; and Scott Wolk, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. These results were presented at this week's "New Visions of X-ray universe in the XMM-Newton and Chandra Era" symposium in Noordwijk, Netherlands. The Low Energy Transmission Grating was built by the Space Research Organization of the Netherlands and the Max Planck Institute, and the ACIS instrument was developed for NASA by The Pennsylvania State University, University Park, and the Massachusetts Institute of Technology (MIT), Cambridge. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  12. Chandra Maps Vital Elements From Supernova

    Science.gov (United States)

    1999-12-01

    that our planet Earth and indeed even humanity itself is part of this vast cosmic cycle." The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on August 19, 1999. ACIS was built by Pennsylvania State University, and the Massachusetts Institute of Technology, Cambridge, MA. Press: Fact Sheet (08/99) To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  13. The Chandra Source Catalog: Spectral Properties

    Science.gov (United States)

    Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).

  14. The NuSTAR Extragalactic Surveys: Initial Results and Catalog from the Extended Chandra Deep Field South

    DEFF Research Database (Denmark)

    Mullaney, J. R.; Del-Moro, A.; Aird, J.

    2015-01-01

    We present the initial results and the source catalog from the Nuclear Spectroscopic Telescope Array (NuSTAR) survey of the Extended Chandra Deep Field South (hereafter, ECDFS)—currently the deepest contiguous component of the NuSTAR extragalactic survey program. The survey covers the full ≈30......V fluxes) span the range L10 40 keV (0.7 300) 10 erg s» - ´ 43 1 -- ,sampling below the “knee” of the X-ray luminosity function out to z ~ 0.8-1. Finally, we identify oneNuSTAR source that has neither a Chandra nor an XMM-Newton counterpart, but that shows evidence of nuclearactivity at infrared...

  15. Chandra Discovers X-ray Source at the Center of Our Galaxy

    Science.gov (United States)

    2000-01-01

    observations," Baganoff said. If Sagittarius A* is powered by a supermassive black hole, astronomers expected that there would be a lot of matter to suck up in a crowded place like the galactic center. The faintness of the source may indicate a dearth of matter floating toward the black hole or it may indicate that the environment of the black hole is for some reason rejecting most of the infalling material. Chandra's Powerful Vision Optical telescopes such as the Hubble Space Telescope cannot see the center of our galaxy, which is enshrouded in thick clouds of dust and gas in the plane of the galaxy. However, hot gas and charged particles moving at nearly the speed of light produce X-rays that penetrate this shroud. Only a few months after its launch, Chandra accomplished what no other optical or X-ray satellite was able to do: separate the emissions from the surrounding hot gas and nearby compact sources that prevented other satellites from detecting this new X-ray source. Mark Morris of the University of California at Los Angeles, who has studied this region intensely for 20 years, called Chandra's data "a gold mine" for astronomers. "With more observing time on Chandra in the next two or three years, we will be able to build up a spectrum that will allow us to rule out various classes of objects and either emission," Baganoff said. "If we show that the emission is from a supermassive black hole, we will then be set to begin a detailed study of the X-ray emission from the nearest analog of a quasar or active galactic nucleus." Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, was conceived and developed for NASA by Penn State University and MIT under the leadership of Penn State Professor Gordon Garmire. Related Press Press Room: Sagittarius A* Press Release (06 Jan 03) Press Room: Galactic Center (Survey) Press Release (09 Jan 02) To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0204/index

  16. Chandra Captures Flare From Brown Dwarf

    Science.gov (United States)

    2000-07-01

    only 16 light years from Earth. The absence of X-rays from LP 944-20 during the non-flaring period is in itself a significant result. It sets the lowest limit on steady X-ray power produced by a brown dwarf, and shows that the million degree Celsius upper atmospheres, or coronas, cease to exist as the surface temperature of a brown dwarf cools below about 2500 degrees Celsius. "This is an important confirmation of the trend that hot gas in the atmospheres of lower mass stars is produced only in flares," said Professor Lars Bildsten of the University of California, Santa Barbara, also a member of the team. Brown dwarfs have too little mass to sustain significant nuclear reactions in their cores. Their primary source of energy is the release of gravitational energy as they slowly contract. They are very dim ­ less than a tenth of a percent as luminous as the Sun -- and of great interest to astronomers because they are poorly understood and probably a very common class of objects that are intermediate between normal stars and giant planets. The 12-hour observation of LP 944-20 was made on December 15, 1999, using the Advanced CCD Imaging Spectrometer (ACIS). The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above.

  17. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    International Nuclear Information System (INIS)

    Marchesi, S.; Civano, F.; Urry, C. M.; Elvis, M.; Salvato, M.; Brusa, M.; Lanzuisi, G.; Vignali, C.; Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N.; Hasinger, G.; Miyaji, T.; Treister, E.; Allevato, V.; Finoguenov, A.; Cardamone, C.; Griffiths, R. E.; Karim, A.

    2016-01-01

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg 2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction

  18. A Full Year's Chandra Exposure on Sloan Digital Sky Survey Quasars from the Chandra Multiwavelength Project

    Science.gov (United States)

    Green, Paul J.; Aldcroft, T. L.; Richards, G. T.; Barkhouse, W. A.; Constantin, A.; Haggard, D.; Karovska, M.; Kim, D.-W.; Kim, M.; Vikhlinin, A.; Anderson, S. F.; Mossman, A.; Kashyap, V.; Myers, A. D.; Silverman, J. D.; Wilkes, B. J.; Tananbaum, H.

    2009-01-01

    We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project. Our highest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.2 3, substantially expanding the known sample. We find no evidence for evolution out to z ~ 5 for either the X-ray photon index Γ or for the ratio of optical/UV to X-ray flux αox. About 10% of detected QSOs show best-fit intrinsic absorbing columns greater than 1022 cm-2, but the fraction might reach ~1/3 if most nondetections are absorbed. We confirm a significant correlation between αox and optical luminosity, but it flattens or disappears for fainter (MB gsim -23) active galactic nucleus (AGN) alone. We report significant hardening of Γ both toward higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in nonthermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and AGN. For uniformly selected subsamples of narrow-line Seyfert 1s and narrow absorption line QSOs, we find no evidence for unusual distributions of either αox or Γ.

  19. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Brusa, M.; Lanzuisi, G.; Vignali, C. [Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Allevato, V.; Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Cardamone, C. [Department of Science, Wheelock College, Boston, MA 02215 (United States); Griffiths, R. E. [Physics and Astronomy Dept., Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Karim, A. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2016-01-20

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.

  20. When Worlds Collide: Chandra Observes Titanic Merger

    Science.gov (United States)

    2002-04-01

    lobes will continue to expand into space or fall back into Arp 220 is unknown. The center of Arp 220 is of particular interest. Chandra observations allowed astronomers to pinpoint an X-ray source at the exact location of the nucleus of one of the pre-merger galaxies. Another fainter X-ray source nearby may coincide with the nucleus of the other galaxy remnant. The X-ray power output of these point-like sources is greater than expected for stellar black holes accreting from companion stars. The authors suggest that these sources could be due to supermassive black holes at the centers of the merging galaxies. These two remnant sources are relatively weak, and provide strong evidence to support the theory that the extraordinary luminosity of Arp 220 - about a hundred times that of our Milky Way galaxy - is due to the rapid rate of star formation and not to an active, supermassive black hole in the center. However, in a few hundred million years, this balance of power may change. The two massive black holes could merge to produce a central supermassive black hole. This new arrangement could cause much more gas to fall into the central black hole, creating a power source equal to or greater than that due to star formation. "The unusual concentration of X-ray sources in the very center of Arp 220 suggests that we could be observing the early stages of the creation of a supermassive black hole and the eventual rise to power of an active galactic nucleus," said Jonathan McDowell of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, another member of the team studying Arp 220. Clements and McDowell were joined on this research by an international group of researchers from the United States, United Kingdom and Spain. Chandra observed Arp 220 on June 24, 2000, for approximately 56,000 seconds using the Advanced CCD Imaging Spectrometer (ACIS) instrument. ACIS was developed for NASA by Pennsylvania State University, University Park, PA, and the Massachusetts Institute

  1. M Stars in the TW Hydra Association: A Chandra Large Program Survey

    Science.gov (United States)

    Punzi, Kristina; Kastner, Joel; Principe, David; Stelzer, Beate; Gorti, Uma; Pascucci, Illaria; Argiroffi, Costanza

    2018-01-01

    We have conducted a Cycle 18 Chandra Large Program survey of very cool members of the $\\sim$ 8 Myr-old TW Hydra Association (TWA) to extend our previous study of the potential connections between M star disks and X-rays (Kastner et al. 2016, AJ, 152, 3) to the extreme low-mass end of the stellar initial mass function. The spectral types of our targets extend down to the M/L borderline. Thus we can further investigate the potential connection between the intense X-ray emission from young, low-mass stars and the lifetimes of their circumstellar planet-forming discs, as well as better constrain the age at which coronal activity declines for stellar masses approaching the H-burning limit of $\\sim$ 0.08 M$_{\\odot}$. We present preliminary results from the Cycle 18 survey, including X-ray detection statistics and measurements of relative X-ray luminosities and coronal (X-ray) temperatures for those TWA stars detected by Chandra. This research is supported by SAO/CXC grant GO7-18002A and NASA Astrophysics Data Analysis program grants NNX12AH37G and NNX16AG13G to RIT.

  2. Chandra Observation of Polaris: Census of Low-mass Companions

    Science.gov (United States)

    Evans, Nancy Remage; Guinan, Edward; Engle, Scott; Wolk, Scott J.; Schlegel, Eric; Mason, Brian D.; Karovska, Margarita; Spitzbart, Bradley

    2010-05-01

    We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log LX = 28.89 erg s-1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, "C" and "D," are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag. Based on observations made with the NASA Chandra Satellite.

  3. The Chandra Source Catalog: Statistical Characterization

    Science.gov (United States)

    Primini, Francis A.; Nowak, M. A.; Houck, J. C.; Davis, J. E.; Glotfelty, K. J.; Karovska, M.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Evans, I. N.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) will ultimately contain more than ˜250000 x-ray sources in a total area of ˜1% of the entire sky, using data from ˜10000 separate ACIS and HRC observations of a multitude of different types of x-ray sources (see Evans et al. this conference). In order to maximize the scientific benefit of such a large, heterogeneous dataset, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Our Characterization efforts include both extensive simulations of blank-sky and point source datasets, and detailed comparisons of CSC results with those of other x-ray and optical catalogs. We present here a summary of our characterization results for CSC Release 1 and preliminary plans for future releases. This work is supported by NASA contract NAS8-03060 (CXC).

  4. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    -energy X-ray background, showing that it arose in very faraway galaxies with extremely bright cores, called quasars or Active Galactic Nuclei (AGN). The Chandra team sampled a region of the sky about one-fifth the angular area of a full moon and resolved about 80 percent of the more-energetic X-ray background into discrete sources. Stretched across the entire sky, this would account for approximately 70 million sources, most of which would be identified with galaxies. Their analysis confirms that a significant fraction of the X-ray background cannot be due to diffuse radiation from hot, intergalactic gas. Combined X-ray and optical observations showed that nearly one third of the sources are galaxies whose cores are very bright in X rays yet emit virtually no optical light from the core. The observation suggests that these "veiled galactic nuclei" galaxies may number in the tens of millions over the whole sky. They almost certainly harbor a massive black hole at their core that produces X rays as the gas is pulled toward it at nearly the speed of light. Their bright X-ray cores place these galaxies in the AGN family. Because these numerous AGN are bright in X rays, but optically dim, the Chandra observation implies that optical surveys of AGN are very incomplete. A second new class of objects, comprising approximately one-third of the background, is assumed to be "ultra-faint galaxies." Mushotzky said that these sources may emit little or no optical light, either because the dust around the galaxy blocks the light totally or because the optical light is eventually absorbed by relatively cool gas during its long journey across the universe. In the latter scenario, Mushotzky said that these sources would have a redshift of 6 or higher, meaning that they are well over 14 billion light years away and thus the earliest, most distant objects ever identified. "This is a very exciting discovery," said Dr. Alan Bunner, Director of NASA's Structure and Evolution of the universe

  5. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  6. The End of Days -- Chandra Catches X-ray Glow From Supernova

    Science.gov (United States)

    1999-12-01

    operations team replanned the telescope's observation activities and by Monday morning, and by Monday morning, Chandra was pointed at the supernova and observed it for about nine hours. Lewin, who had been awarded the rights to Chandra's first observation of a nearby supernova, was ecstatic. "This is a unique chance that we have been hoping for!!!!" he wrote in an e-mail to Tananbaum. "I was impressed by how rapid the Chandra response was, " said Kirshner. "Supernovae expand quickly and cool quickly, so each day we delay observing the supernova it has changed irretrievably," Filippenko said. "We caught this really early, only a day or two after the explosion. We were lucky." The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on November 1 and 2, and 11 and 12, 1999 in two separate observations that lasted approximately nine hours each. ACIS was built by Pennsylvania State University, University Park. and MIT. To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. This image will be available on NASA Video File which airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight Eastern Time. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/sn1999em/ or via links in: http://chandra.harvard.edu

  7. Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra

    Science.gov (United States)

    Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.

    2010-05-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  8. REVISITING THE SHORT-TERM X-RAY SPECTRAL VARIABILITY OF NGC 4151 WITH CHANDRA

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.; Risaliti, G.

    2010-01-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ∼200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 x 10 -11 erg s -1 cm -2 and 10 -10 erg s -1 cm -2 (L 2-10 k eV ∼ 1.3-2.1 x 10 42 erg s -1 ). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ∼ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ∼ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ∼ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA 'long look' observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ∼ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M BH ∼4.6x10 7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r ∼< 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  9. Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star

    Science.gov (United States)

    2000-01-01

    studying these supernova remnants for decades, but now we're getting the kind of information we need to really test the theories," said Canizares. "Understanding supernovas helps us to learn about the processes that formed chemical elements like those which are found on Earth and are necessary for life," said Flanagan. Most of the oxygen in the universe, for example, is synthesized in the interiors of relatively few massive stars like the one being studied here. When they explode, they expel the newly manufactured elements which become part of the raw material for new stars and planets. The amount of oxygen in the E0102-72 ring is enough for thousands of solar systems. By measuring the expansion velocity of the ring, the team can estimate the amount of energy liberated in the explosion. The expansion energy would be enough to power the Sun for 3 billion years. The ring has more complex structure and motion than can be explained by current simplified theories, suggesting complexity in the explosion itself or in the surrounding interstellar matter. The supernova remnant also provides a laboratory for atomic physics. The observations show how the atoms in the expelled matter behave when heated to such high temperatures. The images reveal the progressive stripping of electrons from the atoms after the super-sonic shock wave has passed. The Chandra observation was taken using the HETG in conjunction with the Advanced CCD Imaging Spectrometer (ACIS) on September 28 and October 10, 1999. ACIS was built by Pennsylvania State University, University Park, and the Massachusetts Institute of Technology, Cambridge. To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0015/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science

  10. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    Science.gov (United States)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  11. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Plucinsky, Paul P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Haberl, Frank [Max-Planck-Institut für extraterrestrische Physik, Giessenbach straße, D-85748 Garching (Germany); Sasaki, Manami [Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg (Germany); Laycock, Silas, E-mail: jaesub@head.cfa.harvard.edu [Department of Physics, University of Massachusetts Lowell, MA 01854 (United States)

    2017-09-20

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} erg s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).

  12. The Chandra Source Catalog 2.0: Spectral Properties

    Science.gov (United States)

    McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team

    2018-01-01

    The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  13. Chandra Observations of Pluto's Escaping Atmosphere in Support of the New Horizons Mission

    Science.gov (United States)

    McNutt, Ralph, Jr.

    2013-09-01

    Current models of Pluto's extended N2+CH4 atmosphere are still very uncertain, causing numerous difficulties in optimizing the New Horizons fast flyby operations plan for the dwarf planet. Applying knowledge gained from studying cometary X-ray emission, Chandra ACIS-S photometric imaging of X-rays produced by CXE between the solar wind and Pluto's atmosphere will address both the run of atmospheric density and the interaction of the solar wind with the extended Plutonian atmosphere. Determining the atmosphere's extent and amount of free molecular escape will aid the atmospheric sounding measurements of the NH ALICE instrument, while determining the x-ray luminosity will help the NH PEPSI instrument characterize the solar wind particle environment.

  14. The Chandra Source Catalog 2.0: Estimating Source Fluxes

    Science.gov (United States)

    Primini, Francis Anthony; Allen, Christopher E.; Miller, Joseph; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The Second Chandra Source Catalog (CSC2.0) will provide information on approximately 316,000 point or compact extended x-ray sources, derived from over 10,000 ACIS and HRC-I imaging observations available in the public archive at the end of 2014. As in the previous catalog release (CSC1.1), fluxes for these sources will be determined separately from source detection, using a Bayesian formalism that accounts for background, spatial resolution effects, and contamination from nearby sources. However, the CSC2.0 procedure differs from that used in CSC1.1 in three important aspects. First, for sources in crowded regions in which photometric apertures overlap, fluxes are determined jointly, using an extension of the CSC1.1 algorithm, as discussed in Primini & Kashyap (2014ApJ...796…24P). Second, an MCMC procedure is used to estimate marginalized posterior probability distributions for source fluxes. Finally, for sources observed in multiple observations, a Bayesian Blocks algorithm (Scargle, et al. 2013ApJ...764..167S) is used to group observations into blocks of constant source flux.In this poster we present details of the CSC2.0 photometry algorithms and illustrate their performance in actual CSC2.0 datasets.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  15. A DEEP CHANDRA ACIS STUDY OF NGC 4151. I. THE X-RAY MORPHOLOGY OF THE 3 kpc DIAMETER CIRCUM-NUCLEAR REGION AND RELATION TO THE COLD INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-01-01

    We report on the imaging analysis of ∼200 ks sub-arcsecond resolution Chandra Advanced CCD Imaging Spectrometer (ACIS-S) observations of the nearby Seyfert 1 galaxy NGC 4151. Bright, structured soft X-ray emission is observed to extend from 30 pc to 1.3 kpc in the southwest from the nucleus, much farther than seen in earlier X-ray studies. The terminus of the northeastern X-ray emission is spatially coincident with a CO gas lane, where the outflow likely encounters dense gas in the host galactic disk. X-ray emission is also detected outside the boundaries of the ionization cone, which indicates that the gas there is not completely shielded from the nuclear continuum, as would be the case for a molecular torus collimating the bicone. In the central r 2 emission and dusty spirals we find in an Hubble Space Telescope V - H color image. The agreement between the observed H 2 line flux and the value predicted from X-ray-irradiated molecular cloud models supports photo-excitation by X-rays from the active nucleus as the origin of the H 2 line, although contribution from UV fluorescence or collisional excitation cannot be ruled out with current data. The discrepancy between the mass of cold molecular gas inferred from recent CO and near-infrared H 2 observations may be explained by the anomalous CO abundance in this X-ray-dominated region. The total H 2 mass derived from the X-ray observation agrees with the recent measurement by Storchi-Bergmann et al.

  16. The Chandra Source Catalog: Algorithms

    Science.gov (United States)

    McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.

  17. Frameworks for ACI: Animals as Stakeholders in the Design Process

    OpenAIRE

    North, Steve; Mancini, Clara

    2016-01-01

    Animal-computer interaction (ACI) is an emerging discipline concerned with studying the relationship between animals and technology, designing interactive technology to support animals, and developing methodologies that can enable animals to participate in the design process as legitimate stakeholders. By welcoming animals to the design table, ACI is delineating new frontiers for interaction design. However, if co-designing HCI artifacts is already fraught with misunderstanding, how might ACI...

  18. Chandra Observations of a Collisionally and Optically Thin Charge Exchange System - Comet 2P/Encke 2003

    Science.gov (United States)

    Christian, D. J.; Lisse, C. M.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Hoekstra, R.; Makinen, J. T. T.; Weaver, H. A.

    2004-11-01

    The highly favorable perigee passage of the x-ray bright comet 2P/Encke in late 2003 provided an excellent opportunity to use Chandra's high spatial, spectral, and temporal resolution to study cometary x-ray emission in the low neutral target density, low x-ray flux regime. The 1997 ROSAT/EUVE observations of Encke (Lisse et al. 1999) and the nucleus rotation studies of Luu and Jewitt (1990, most likely rotation period = 15 hours) suggested a simple Chandra experiment - continuous ACIS-S observations of Encke over 15 hours during the time of its closest approach to Earth. Here we report initial results from our X-ray observations. X-ray emission from comet Encke was found only in a small, asymmetric region between 1500 km - 40,000 km from the nucleus. The Encke ACIS-S3 200 -- 1000 eV spectrum shows many of the same x-ray emission lines previously observed from comets (C+5, O+6,O+7), including confirmation of several emission lines in the 800 to 1000 eV range. However, the Encke spectrum shows very different line ratios in the 200 - 700 eV range than any previous comet. A lightcurve with peak-to-peak amplitude of 20% and period 11.7 hours was found over the 15 hour observing period. Comparing the observations to contemporaneous measurements of the coma and solar wind made by other means, we find the combination of a low density, collisionally thin (to charge exchange) coma and a post-massive X-flare, high temperature, moderate density solar wind can explain our unusual Encke x-ray observations.

  19. CHANDRA OBSERVATIONS OF COMETS C/2012 S1 (ISON) AND C/2011 L4 (PanSTARRS)

    Energy Technology Data Exchange (ETDEWEB)

    Snios, Bradford; Kharchenko, Vasili [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Wolk, Scott J. [Chandra X-Ray Observatory Center, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dennerl, Konrad [Max-Planck-Institut für extraterrestrische Physik, D-85748 Garching (Germany); Combi, Michael R. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-02-20

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31–November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17–23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comet's emission spectrum from first principles accordingly. Our model agrees with the observational spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophysical plasma interaction and SW composition. In addition, we observe potential soft X-ray emissions via ACIS around 0.2 keV from both comets that are correlated in intensity to the hard X-ray emissions between 0.4–1.0 keV. We fit our CX model to these emissions, but our lack of a unique solution at low energies makes it impossible to conclude if they are cometary CX in origin. Finally, we discuss probable emission mechanism sources for the soft X-rays and explore new opportunities these findings present in understanding cometary emission processes via Chandra.

  20. Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16

    Science.gov (United States)

    Roberts, T. P.; Colbert, E. J. M.

    2003-06-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  1. CHANDRA OBSERVATIONS OF A 1.9 kpc SEPARATION DOUBLE X-RAY SOURCE IN A CANDIDATE DUAL ACTIVE GALACTIC NUCLEUS GALAXY AT z = 0.16

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Pooley, David; Gerke, Brian F.; Madejski, Greg M.

    2011-01-01

    We report Chandra observations of a double X-ray source in the z = 0.1569 galaxy SDSS J171544.05+600835.7. The galaxy was initially identified as a dual active galactic nucleus (AGN) candidate based on the double-peaked [O III] λ5007 emission lines, with a line-of-sight velocity separation of 350 km s -1 , in its Sloan Digital Sky Survey spectrum. We used the Kast Spectrograph at Lick Observatory to obtain two long-slit spectra of the galaxy at two different position angles, which reveal that the two Type 2 AGN emission components have not only a velocity offset, but also a projected spatial offset of 1.9 h -1 70 kpc on the sky. Chandra/ACIS observations of two X-ray sources with the same spatial offset and orientation as the optical emission suggest that the galaxy most likely contains Compton-thick dual AGNs, although the observations could also be explained by AGN jets. Deeper X-ray observations that reveal Fe K lines, if present, would distinguish between the two scenarios. The observations of a double X-ray source in SDSS J171544.05+600835.7 are a proof of concept for a new, systematic detection method that selects promising dual AGN candidates from ground-based spectroscopy that exhibits both velocity and spatial offsets in the AGN emission features.

  2. The All-Wavelength Extended Groth Strip International Survey(AEGIS) Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.; Guhathakurta, P.; Konidaris, N.P.; Newman, J.A.; Ashby, M.L.N.; Biggs, A.D.; Barmby, P.; Bundy, K.; Chapman, S.C.; Coil,A.L.; Conselice, C.J.; Cooper, M.C.; Croton, D.J.; Eisenhardt, P.R.M.; Ellis, R.S.; Faber, S.M.; Fang, T.; Fazio, G.G.; Georgakakis, A.; Gerke,B.F.; Goss, W.M.; Gwyn, S.; Harker, J.; Hopkins, A.M.; Huang, J.-S.; Ivison, R.J.; Kassin, S.A.; Kirby, E.N.; Koekemoer, A.M.; Koo, D.C.; Laird, E.S.; Le Floc' h, E.; Lin, L.; Lotz, J.M.; Marshall, P.J.; Martin,D.C.; Metevier, A.J.; Moustakas, L.A.; Nandra, K.; Noeske, K.G.; Papovich, C.; Phillips, A.C.; Rich,R. M.; Rieke, G.H.; Rigopoulou, D.; Salim, S.; Schiminovich, D.; Simard, L.; Smail, I.; Small,T.A.; Weiner,B.J.; Willmer, C.N.A.; Willner, S.P.; Wilson, G.; Wright, E.L.; Yan, R.

    2006-10-13

    In this the first of a series of Letters, we present a description of the panchromatic data sets that have been acquired in the Extended Groth Strip region of the sky. Our survey, the All-wavelength Extended Groth Strip International Survey (AEGIS), is intended to study the physical properties and evolutionary processes of galaxies at z{approx}1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray (0.5-10 keV), GALEX ultraviolet (1200-2500 Angstroms), CFHT/MegaCam Legacy Survey optical (3600-9000 Angstroms), CFHT/CFH12K optical (4500-9000 Angstroms), Hubble Space Telescope/ACS optical (4400-8500 Angstroms), Palomar/WIRC near-infrared (1.2-2.2 {micro}m), Spitzer/IRAC mid-infrared (3.6-8.0 {micro}m), Spitzer/MIPS far-infrared (24-70 {micro}m), and VLA radio continuum (6-20 cm). In addition, this region of the sky has been targeted for extensive spectroscopy using the DEIMOS spectrograph on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.

  3. A CHANDRA STUDY OF TEMPERATURE DISTRIBUTIONS OF THE INTRACLUSTER MEDIUM IN 50 GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhenghao; Xu, Haiguang; Li, Weitian; Hu, Dan; Zhang, Chenhao; Liu, Chengze [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240 (China); Wang, Jingying; Gu, Junhua; Wu, Xiang-Ping [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Beijing 100012 (China); Gu, Liyi [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); An, Tao [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhongli [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany); Zhu, Jie, E-mail: clsn@sjtu.edu.cn, E-mail: hgxu@sjtu.edu.cn [Department of Electronic Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240 (China)

    2016-01-10

    To investigate the spatial distribution of the intracluster medium temperature in galaxy clusters in a quantitative way and probe the physics behind it, we analyze the X-ray spectra from a sample of 50 clusters that were observed with the Chandra ACIS instrument over the past 15 years and measure the radial temperature profiles out to 0.45r{sub 500}. We construct a physical model that takes into consideration the effects of gravitational heating, thermal history (such as radiative cooling, active galactic nucleus feedback, and thermal conduction), and work done via gas compression, and use it to fit the observed temperature profiles by running Bayesian regressions. The results show that in all cases our model provides an acceptable fit at the 68% confidence level. For further validation, we select nine clusters that have been observed with both Chandra (out to ≳0.3r{sub 500}) and Suzaku (out to ≳1.5r{sub 500}) and fit their Chandra spectra with our model. We then compare the extrapolation of the best fits with the Suzaku measurements and find that the model profiles agree with the Suzaku results very well in seven clusters. In the remaining two clusters the difference between the model and the observation is possibly caused by local thermal substructures. Our study also implies that for most of the clusters the assumption of hydrostatic equilibrium is safe out to at least 0.5r{sub 500} and the non-gravitational interactions between dark matter and its luminous counterparts is consistent with zero.

  4. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    International Nuclear Information System (INIS)

    Miller, B. P.; Brandt, W. N.; Garmire, G. P.; Gibson, R. R.; Shemmer, O.

    2009-01-01

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  5. Successful enrichment of the ubiquitous freshwater acI Actinobacteria.

    Science.gov (United States)

    Garcia, Sarahi L; McMahon, Katherine D; Grossart, Hans-Peter; Warnecke, Falk

    2014-02-01

    Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. A review on the technical basis for ACI 349 code revision to anchorage criteria

    International Nuclear Information System (INIS)

    Lee, N. H.; You, S. H.

    1999-01-01

    Anchors are widely used to attach structural and nonstructural elements to concrete in nuclear power plant construction. Anchorage to concrete in nuclear-related structure plant has been designed per ACI 349-90 Appendix B. However, a new criteria for anchorage based on the concrete capacity design(CCD) approach is ready for publication under the normal publication procedures by ACI 349 Code Committee. Both design procedures(ACI 349-90 and ACI 349-New) show rather different concrete capacities. Earlier comparable studies show that the CCD method is a more reliable predictor of concrete breakout than the 45-degree cone method(ACI 349-90), hence the CCD method adopted by ACI 349-New Code has been recommended. The philosophy of the current code is to design ductile fastenings, which requires a limit to guard against brittle concrete failure. On the other hand, the new code requires calculations for the concrete breakout strength, pullout strength, side-face blowout strength of fastener in tension, and concrete breakout strength, pryout strength of fastener in shear. Therefore, the new code can accurately predict the concrete failure capacity for different behavior of the anchorage system. In this review, the provisions of ACI 349-90 and ACI 349-New are compared to show the major differences with emphasis on the concrete breakout capacity

  7. Cywilizacja łacińska: ekspansja-dominacja-kryzys

    OpenAIRE

    Kubiaczyk, Filip; Sareło, Zbigniew; Jakóbczyk, Stanisław; Kaźmierczak, Marek; Ciesielski, Mieszko; Kornacka-Sareło, Katarzyna; Kubiaczyk, Monika; Gaj, Beata; Gnyś-Nidecka, Małgorzata

    2016-01-01

    Cywilizacja łacińska. Ekspansja-dominacja-kryzys Abstrakt Teksty zebrane w niniejszym tomie skupiają się na problemie przyczyn kryzysu cywilizacji zachodniej, zwłaszcza jej tradycji łacińskiej, z różnych perspektyw badawczych (historycznej, filozoficznej, filologicznej i kulturoznawczej). To zróżnicowane podejście znalazło wyraz w odmiennym formułowaniu podejmowanych zagadnień i przyjętej metodologii, jak i użytej terminologii w odniesieniu do analizowanej kategorii. Pojęcia cywilizac...

  8. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication

  9. CHANDRA OBSERVATION OF POLARIS: CENSUS OF LOW-MASS COMPANIONS

    International Nuclear Information System (INIS)

    Remage Evans, Nancy; Wolk, Scott J.; Karovska, Margarita; Spitzbart, Bradley; Guinan, Edward; Engle, Scott; Schlegel, Eric; Mason, Brian D.

    2010-01-01

    We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log L X = 28.89 erg s -1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, 'C' and 'D', are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag.

  10. An X-ray and infrared survey of the Lynds 1228 cloud core

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Rebull, Luisa [Spitzer Science Center/Caltech, M/S 220-6, 1200 East California Blvd., Pasadena, CA 91125 (United States); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: rebull@ipac.caltech.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2014-04-01

    The nearby Lynds 1228 (L1228) dark cloud at a distance of ∼200 pc is known to harbor several young stars including the driving sources of the giant HH 199 and HH 200 Herbig-Haro (HH) outflows. L1228 has previously been studied at optical, infrared, and radio wavelengths but not in X-rays. We present results of a sensitive 37 ks Chandra ACIS-I X-ray observation of the L1228 core region. Chandra detected 60 X-ray sources, most of which are faint (<40 counts) and non-variable. Infrared counterparts were identified for 53 of the 60 X-ray sources using archival data from the Two Micron All-Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer. Object classes were assigned using mid-IR colors for those objects with complete photometry, most of which were found to have colors consistent with extragalactic background sources. Seven young stellar object candidates were identified including the class I protostar HH 200-IRS which was detected as a faint hard X-ray source. No X-ray emission was detected from the luminous protostar HH 199-IRS. We summarize the X-ray and infrared properties of the detected sources and provide IR spectral energy distribution modeling of high-interest objects including the protostars driving the HH outflows.

  11. Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx

    Science.gov (United States)

    Ptak, Andrew

    2018-01-01

    Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.

  12. DNA index determination with Automated Cellular Imaging System (ACIS in Barrett's esophagus: Comparison with CAS 200

    Directory of Open Access Journals (Sweden)

    Klein Michael

    2005-08-01

    Full Text Available Abstract Background For solid tumors, image cytometry has been shown to be more sensitive for diagnosing DNA content abnormalities (aneuploidy than flow cytometry. Image cytometry has often been performed using the semi-automated CAS 200 system. Recently, an Automated Cellular Imaging System (ACIS was introduced to determine DNA content (DNA index, but it has not been validated. Methods Using the CAS 200 system and ACIS, we compared the DNA index (DI obtained from the same archived formalin-fixed and paraffin embedded tissue samples from Barrett's esophagus related lesions, including samples with specialized intestinal metaplasia without dysplasia, low-grade dysplasia, high-grade dysplasia and adenocarcinoma. Results Although there was a very good correlation between the DI values determined by ACIS and CAS 200, the former was 25% more sensitive in detecting aneuploidy. ACIS yielded a mean DI value 18% higher than that obtained by CAS 200 (p t test. In addition, the average time required to perform a DNA ploidy analysis was shorter with the ACIS (30–40 min than with the CAS 200 (40–70 min. Results obtained by ACIS gave excellent inter-and intra-observer variability (coefficient of correlation >0.9 for both, p Conclusion Compared with the CAS 200, the ACIS is a more sensitive and less time consuming technique for determining DNA ploidy. Results obtained by ACIS are also highly reproducible.

  13. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.

    Science.gov (United States)

    Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D

    2014-12-01

    Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.

  14. Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory

    Science.gov (United States)

    2002-10-01

    has successfully distinguished dark matter from MOND. The researchers also found that the Chandra data fit predictions of the cold dark matter theories, according to which dark matter consists of slowly moving particles, which interact with each other and "normal" matter only through gravity. Other forms of dark matter, such as self-interacting dark matter, and cold molecular dark matter, are not consistent with the observation in that they require a dark matter halo that is too round or too flat, respectively. "Chandra's ability to precisely identify and locate the point-like sources contaminating the diffuse emission in the X-ray image was absolutely essential," said Buote. "Only then could we make accurate measurements of the shape and orientation of the X-ray image contours." The conclusion from the Chandra data that NGC 720 possesses a dark matter halo assumes that the hot gas cloud has not been unduly disturbed by collisions or mergers with other galaxies in the last 100 million years. The lack of evidence of such activity indicates that this assumption is valid. Chandra observed NGC 720, which is about 80 million light years from Earth, for 11 hours with the Advanced CCD Imaging Spectrometer (ACIS). Other members of the team include Tesla Jeltema and Claude Canizares of Massachusetts Institute of Technology (MIT) in Cambridge, and Gordon Garmire of Pennsylvania State University in University Park. Penn State and MIT developed the instrument for NASA. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  15. CHANDRA OBSERVATIONS OF 3C RADIO SOURCES WITH z < 0.3. II. COMPLETING THE SNAPSHOT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Tremblay, G. R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Muenchen (Germany); Harris, D. E.; O' Dea, C. P. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kharb, P.; Axon, D. [Department of Physics, Rochester Institute of Technology, Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Balmaverde, B.; Capetti, A. [INAF-Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Baum, S. A. [Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Chiaberge, M.; Macchetto, F. D.; Sparks, W. [Space Telescope Science Institute, 3700 San Martine Drive, Baltimore, MD 21218 (United States); Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Giovannini, G. [INAF-Istituto di Radioastronomia di Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Grandi, P.; Torresi, E. [INAF-IASF-Istituto di Astrofisica Spaziale e fisica Cosmica di Bologna, Via P. Gobetti 101, I-40129 Bologna (Italy); Risaliti, G. [INAF-Osservatorio Astronomico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-15

    We report on the second round of Chandra observations of the 3C snapshot survey developed to observe the complete sample of 3C radio sources with z < 0.3 for 8 ks each. In the first paper, we illustrated the basic data reduction and analysis procedures performed for the 30 sources of the 3C sample observed during Chandra Cycle 9, while here we present the data for the remaining 27 sources observed during Cycle 12. We measured the X-ray intensity of the nuclei and of any radio hot spots and jet features with associated X-ray emission. X-ray fluxes in three energy bands, i.e., soft, medium, and hard, for all the sources analyzed are also reported. For the stronger nuclei, we also applied the standard spectral analysis, which provides the best-fit values of the X-ray spectral index and absorbing column density. In addition, a detailed analysis of bright X-ray nuclei that could be affected by pile-up has been performed. X-ray emission was detected for all the nuclei of the radio sources in our sample except for 3C 319. Among the current sample, there are two compact steep spectrum radio sources, two broad-line radio galaxies, and one wide angle tail radio galaxy, 3C 89, hosted in a cluster of galaxies clearly visible in our Chandra snapshot observation. In addition, we also detected soft X-ray emission arising from the galaxy cluster surrounding 3C 196.1. Finally, X-ray emission from hot spots has been found in three FR II radio sources and, in the case of 3C 459, we also report the detection of X-ray emission associated with the eastern radio lobe as well as X-ray emission cospatial with radio jets in 3C 29 and 3C 402.

  16. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.

    2009-01-01

    function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...

  17. The All-wavelength Extended Groth Strip International Survey (AEGIS) Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.; Guhathakurta, P.; Konidaris, N.; Newman, J.A.; Ashby, M.L.N.; Biggs, A.D.; Barmby, P.; Bundy, K.; Chapman, S.; Coil, A.L.; Conselice, C.; Cooper, M.; Croton,; Eisenhardt, P.; Ellis, R.; Faber, S.; Fang, T.; Fazio, G.G.; Georgakakis, A.; Gerke, B.; Goss, W.M.; /UC, Berkeley, Astron. Dept. /Lick Observ. /LBL, Berkeley

    2006-07-21

    In this the first of a series of ''Letters'', we present a description of the panchromatic data sets that have been acquired in the Extended Groth Strip region of the sky. Our survey, the All-wavelength Extended Groth Strip International Survey (AEGIS), is intended to study the physical properties and evolutionary processes of galaxies at z {approx} 1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS{sup 30} X-ray (0.5-10 keV), GALEX{sup 31} ultraviolet (1200-2500 A), CFHT/MegaCam Legacy Survey{sup 32} optical (3600-9000 {angstrom}), CFHT/CFH12K optical (4500-9000 {angstrom}), Hubble Space Telescope/ACS{sup 33} optical (4400-8500 {angstrom}), Palomar/WIRC{sup 34} near-infrared (1.2-2.2 {micro}m), Spitzer/IRAC{sup 35} mid-infrared (3.6-8.0 {micro}m), Spitzer/MIPS far-infrared (24-70 {micro}m), and VLA{sup 36} radio continuum (6-20 cm). In addition, this region of the sky has been targeted for extensive spectroscopy using the DEIMOS spectrograph on the Keck II 10 m telescope{sup 37}. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.

  18. Tamoxifen induces regression of estradiol-induced mammary cancer in ACI.COP-Ept2 rat model

    OpenAIRE

    Ruhlen, Rachel L.; Willbrand, Dana M.; Besch-Williford, Cynthia L.; Ma, Lixin; Shull, James D.; Sauter, Edward R.

    2008-01-01

    The ACI rat is a unique model of human breast cancer in that mammary cancers are induced by estrogen without carcinogens, irradiation, xenografts or transgenic manipulations. We sought to characterize mammary cancers in a congenic variant of the ACI rat, the ACI.COP-Ept2. All rats with estradiol implants developed mammary cancers in 5–7 months. Rats bearing estradiol-induced mammary cancers were treated with tamoxifen for three weeks. Tamoxifen reduced tumor mass, measured by magnetic resonan...

  19. Chandra Finds Ghosts Of Eruption In Galaxy Cluster

    Science.gov (United States)

    2002-01-01

    gas. "Ghost cavities may be the vessels that transport magnetic fields generated in a disk surrounding a giant black hole to the cluster gas that is spread over a region a billion times larger," said McNamara. If dozens of these cavities were created over the life of the cluster, they could explain the surprisingly strong magnetic field of the multimillion-degree gas that pervades the cluster. Galaxy clusters are the largest known gravitationally bound structures in the universe. Hundreds of galaxies swarm in giant reservoirs of multimillion-degree gas that radiates most of its energy in X-rays. Over the course of billions of years some of the gas should cool and sink toward a galaxy in the center of the cluster where it could trigger an outburst in the vicinity of the central massive black hole. Chandra observed Abell 2597 on July 28, 2000,for 40,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS) instrument. Pennsylvania State University, University Park, and MIT developed the instrument for NASA. In addition to a group of astronomers from the Space Telescope Science Institute, Baltimore, and the University of Virginia, Charlottesville, the team included: Paul Nulsen, University of Wollagong, Australia; Larry David, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Chris Carilli, National Radio Astronomy Observatory, Socorro, N.M.; and Craig Sarazin, University of Virginia. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  20. VizieR Online Data Catalog: AEGIS-X Deep survey of EGS (AEGIS-XD) (Nandra+, 2015)

    Science.gov (United States)

    Nandra, K.; Laird, E. S.; Aird, J. A.; Salvato, M.; Georgakakis, A.; Barro, G.; Perez-Gonzalez, P. G.; Barmby, P.; Chary, R.-R.; Coil, A.; Cooper, M. C.; Davis, M.; Dickinson, M.; Faber, S. M.; Fazio, G. G.; Guhathakurta, P.; Gwyn, S.; Hsu, L.-T.; Huang, J.-S.; Ivison, R. J.; Koo, D. C.; Newman, J. A.; Rangel, C.; Yamada, T.; Willmer, C.

    2015-11-01

    The new AEGIS-XD Chandra data were taken at three nominal pointing positions, which we have designated AEGIS-1, AEGIS-2, and AEGIS-3. These observations were all taken in the time period 2007 December 11 to 2009 June 26 using the ACIS-I instrument. The centers of the 3 AEGIS fields correspond fairly closely to those of the EGS-3, EGS-4, and EGS-5 fields of Laird+, 2009, J/ApJS/180/102 (5 data files).

  1. An evaluation of ACI 349 code for design of the fastening system at nuclear power plant

    International Nuclear Information System (INIS)

    Jang, J.-B.; Suh, Y.-P.; Lee, J.-R.

    2005-01-01

    ACI 349 Code, revised on 2001, is only available for the anchor with diameter not exceeding 2 in. and tensile embedment not exceeding 25 in. in depth. So, ACI 349 Code can't be applied to the design of the large sized anchor with diameter exceeding 2 in. and tensile embedment exceeding 25 in. in depth which fastens the SG, RV, RCP, PZR, etc. at containment building. Therefore, an application of ACI 349 Code was investigated for the design of the small and large sized anchors under tensile load using the numerical analysis model which was developed on a basis of the various test data of cast-in-place anchor in this study. In conclusion, it is proved that ACI 349 Code is available for the design of the small and large sized cast-in-place anchor. (authors)

  2. Second Chandra Instrument Activated August 28

    Science.gov (United States)

    1999-08-01

    Cambridge, MA--NASA's Chandra X-ray Observatory opened a new era in astronomy Saturday, August 28, by making the most precise measurements ever recorded of the energy output from the 10 million degree corona of a star. Last weekend's observations came after the successful activation of an instrument developed by MIT that will allow a one-thousand-fold improvement in the capability to measure X-ray spectra from space. The new measurements, made with the High Energy Transmission Grating Spectrometer, join spectacular images taken last week by Chandra of the aftermath of a gigantic stellar explosion. The spectrometer is one of four key instruments aboard Chandra, and the second to be activated. The others will be turned on over the next two weeks. The spectrometer activated yesterday spreads the X-rays from Chandra's mirrors into a spectrum, much as a prism spreads light into its colors. The spectrum then can be read by Chandra's imaging detectors like a kind of cosmic bar code from which scientists can deduce the chemical composition and temperature of the corona. A corona is a region of hot gas and magnetic loops that extend hundreds of thousands of miles above the star's visible surface and is best studied with X-rays. "The success of the new spectrometer is definitely a major milestone for modern astronomy," said MIT Professor Claude R. Canizares, principal investigator for the instrument and associate director of the Chandra X-ray Observatory Center (CXC). "Within the first hour we had obtained the best X-ray spectrum ever recorded for a celestial source. We can already see unexpected features that will teach us new things about stars and about matter at high temperatures." The spectrometer measured X-rays from the star Capella, which is 40 light years away in the constellation Auriga. Capella is actually two stars orbiting one another and possibly interacting in ways that pump extra heat into the corona, which appears more active than that of the Sun. How a star

  3. Chandra Independently Determines Hubble Constant

    Science.gov (United States)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  4. CHANDRA DEEP OBSERVATION OF XDCP J0044.0-2033, A MASSIVE GALAXY CLUSTER AT z > 1.5

    Energy Technology Data Exchange (ETDEWEB)

    Tozzi, P.; Santos, J. S.; Rosati, P. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Jee, M. J. [Department of Physics, University of California, Davis One Shields Avenue, Davis, CA 95616-8677 (United States); Fassbender, R. [INAF-Osservatorio Astronomico di Roma (OAR), via Frascati 33, I-00040 Monte Porzio Catone (Italy); Nastasi, A. [Istitut d' Astrophysique Spatiale, CNRS, Bat. 121, Université Paris-Sud, F-91405 Orsay (France); Forman, W.; Jones, C. [Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138 (United States); Sartoris, B.; Borgani, S. [Università degli Studi di Trieste, Dipartimento di Fisica, Via A.Valerio, 2 I-34127 Trieste (Italy); Boehringer, H. [Max-Planck-Institut fr extraterrestrische Physik Giessenbachstr.1, D-85748 Garching (Germany); Altieri, B. [European Space Astronomy Centre (ESAC), European Space Agency, Apartado de Correos 78, E-28691 Villanueva de la Canada, Madrid (Spain); Pratt, G. W. [CEA Saclay, Service d' Astrophysique, LOrme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette Cedex (France); Nonino, M. [INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste (Italy)

    2015-01-20

    We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z = 1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high-redshift cluster. Extended emission from the intra cluster medium (ICM) is detected at a very high significance level (S/N ∼ 20) on a circular region with a 44'' radius, corresponding to R {sub ext} = 375 kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature kT=6.7{sub −0.9}{sup +1.3} keV, and a iron abundance Z{sub Fe}=0.41{sub −0.26}{sup +0.29}Z{sub Fe{sub ⊙}} (error bars correspond to 1σ). We fit the background-subtracted surface brightness profile with a single β-model out to 44'', finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius R {sub ext} = 375 kpc to be M {sub ICM}(r < R {sub ext}) = (1.48 ± 0.20) × 10{sup 13} M {sub ☉}. Under the assumption of hydrostatic equilibrium and assuming isothermality within R {sub ext}, the total mass is M{sub 2500}=1.23{sub −0.27}{sup +0.46}×10{sup 14} M{sub ⊙} for R{sub 2500}=240{sub −20}{sup +30} kpc. Extrapolating the profile at radii larger than the extraction radius R {sub ext} we find M{sub 500}=3.2{sub −0.6}{sup +0.9}×10{sup 14} M{sub ⊙} for R{sub 500}=562{sub −37}{sup +50} kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift z ∼ 1.6, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 ΛCDM cosmology.

  5. A High-definition View Of The Circum-nuclear Regions In Nearby Seyferts With Chandra And HST

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-09-01

    To improve our understanding of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS), which aims to examine feedback in action in much greater detail than at high redshift. Findings from Chandra studies of the circum-nuclear region in the archetypal Seyfert 1 galaxy NGC 4151 will be discussed in detail. Exploiting Chandra's highest possible resolution, we find evidence for X-ray emission from interaction between radio outflow and the optical narrow-line region clouds, in addition to the emission from photoionized gas.

  6. Animal-Computer Interaction (ACI) : An analysis, a perspective, and guidelines

    NARCIS (Netherlands)

    van den Broek, E.L.

    2016-01-01

    Animal-Computer Interaction (ACI)’s founding elements are discussed in relation to its overarching discipline Human-Computer Interaction (HCI). Its basic dimensions are identified: agent, computing machinery, and interaction, and their levels of processing: perceptual, cognitive, and affective.

  7. THE CHANDRA VARIABLE GUIDE STAR CATALOG

    International Nuclear Information System (INIS)

    Nichols, Joy S.; Lauer, Jennifer L.; Morgan, Douglas L.; Sundheim, Beth A.; Henden, Arne A.; Huenemoerder, David P.; Martin, Eric

    2010-01-01

    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 A range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are

  8. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  9. Tamoxifen induces regression of estradiol-induced mammary cancer in the ACI.COP-Ept2 rat model.

    Science.gov (United States)

    Ruhlen, Rachel L; Willbrand, Dana M; Besch-Williford, Cynthia L; Ma, Lixin; Shull, James D; Sauter, Edward R

    2009-10-01

    The ACI rat is a unique model of human breast cancer in that mammary cancers are induced by estrogen without carcinogens, irradiation, xenografts or transgenic manipulations. We sought to characterize mammary cancers in a congenic variant of the ACI rat, the ACI.COP-Ept2. All rats with estradiol implants developed mammary cancers in 5-7 months. Rats bearing estradiol-induced mammary cancers were treated with tamoxifen for three weeks. Tamoxifen reduced tumor mass, measured by magnetic resonance imaging, by 89%. Tumors expressed estrogen receptors (ER), progesterone receptor (PR), and Erbb2. ERalpha and PR were overexpressed in tumor compared to adjacent non-tumor mammary gland. Thus, this model is highly relevant to hormone responsive human breast cancers.

  10. THE CHANDRA SURVEY OF EXTRAGALACTIC SOURCES IN THE 3CR CATALOG: X-RAY EMISSION FROM NUCLEI, JETS, AND HOTSPOTS IN THE CHANDRA ARCHIVAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Harris, D. E.; Paggi, A.; Wilkes, B. J.; Kuraszkiewicz, J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Liuzzo, E.; Orienti, M.; Paladino, R. [Istituto di Radioastronomia, INAF, via Gobetti 101, I-40129, Bologna (Italy); Tremblay, G. R. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Baum, S. A.; O’Dea, C. P. [University of Manitoba, Dept of Physics and Astronomy, Winnipeg, MB R3T 2N2 (Canada)

    2015-09-15

    As part of our program to build a complete radio and X-ray database of all Third Cambridge catalog extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have already been published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the Very Large Array archive. For about 1/3 of the sources in the selected sample, a comparison between the Chandra and radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium for 15 galaxy clusters.

  11. ASA's Chandra Neon Discovery Solves Solar Paradox

    Science.gov (United States)

    2005-07-01

    NASA's Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works. "We use the sun to test how well we understand stars and, to some extent, the rest of the universe," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But in order to understand the sun, we need to know exactly what it is made of," he added. It is not well known how much neon the sun contains. This is critical information for creating theoretical models of the sun. Neon atoms, along with carbon, oxygen and nitrogen, play an important role in how quickly energy flows from nuclear reactions in the sun's core to its edge, where it then radiates into space. Chandra X-ray Spectrum of II Pegasi Chandra X-ray Spectrum of II Pegasi The rate of this energy flow determines the location and size of a crucial stellar region called the convection zone. The zone extends from near the sun's surface inward approximately 125,000 miles. The zone is where the gas undergoes a rolling, convective motion much like the unstable air in a thunderstorm. "This turbulent gas has an extremely important job, because nearly all of the energy emitted at the surface of the sun is transported there by convection," Drake said. The accepted amount of neon in the sun has led to a paradox. The predicted location and size of the solar convection zone disagree with those deduced from solar oscillations. Solar oscillations is a technique astronomers previously relied on to probe the sun's interior. Several scientists have noted the problem could be fixed if the abundance of neon is in fact about three times larger than currently accepted. Attempts to measure the precise amount of neon in the Sun have been frustrated by a quirk of nature; neon atoms in the Sun give off no signatures in visible light. However, in a gas

  12. The Chandra X-ray Observatory PSF Library

    Science.gov (United States)

    Karovska, M.; Beikman, S. J.; Elvis, M. S.; Flanagan, J. M.; Gaetz, T.; Glotfelty, K. J.; Jerius, D.; McDowell, J. C.; Rots, A. H.

    Pre-flight and on-orbit calibration of the Chandra X-Ray Observatory provided a unique base for developing detailed models of the optics and detectors. Using these models we have produced a set of simulations of the Chandra point spread function (PSF) which is available to the users via PSF library files. We describe here how the PSF models are generated and the design and content of the Chandra PSF library files.

  13. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NARCIS (Netherlands)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric

  14. Chandra Sees Shape of Universe During Formative, Adolescent Years

    Science.gov (United States)

    2003-03-01

    Scientists using NASA's Chandra X-ray Observatory have taken a snapshot of the adolescent universe from about five billion years ago when the familiar web-like structure of galaxy chains and voids first emerged. The observation reveals distant and massive galaxies dotting the sky, clustered together under the gravitational attraction of deep, unseen pockets of dark matter. This provides important clues of how the universe matured from its chaotic beginnings to its elegant structure we see today. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. "Piece by piece, we are assembling a photo album of the universe through the ages," said Yuxuan Yang, a doctorate candidate at the University of Maryland, College Park, who conducted the analysis. "Last month we saw a picture of the infant universe taken with the Wilkinson Microwave Anisotropy Probe. Now we can add a snapshot of its adolescence." The Chandra observation traced a patch of sky known as the Lockman Hole in the constellation Ursa Major (containing the Big Dipper). Chandra saw a rich density of active galaxies, seven times denser than what has been detected in previous optical and radio surveys at similar distances. This provides the clearest picture yet at the large-scale structure of the universe at such distances (and age), according to Dr. Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who led the observation. Lockman Hole JPEG, TIFF, PS An image that has been "blurred" to allow better view of the structures outlined by the X-ray sources. The color represents the spectra of the AGN. The red color indicates the sources on average radiates at longer wavelength while green and blue colors indicates the sources radiates at shorter wavelength. The Green and blue regions appear to form a wall, or shows more lumpiness than the "red" sources. If one could capture the

  15. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  16. Chandra and the VLT Jointly Investigate the Cosmic X-Ray Background

    Science.gov (United States)

    2001-03-01

    in three different wavebands. PR Photo 09b/01 : A VLT/FORS1 spectrum of a 'Type II Quasar' discovered during this programme. The 'Chandra Deep Field South' and the X-Ray Background ESO PR Photo 09a/01 ESO PR Photo 09a/01 [Preview - JPEG: 400 x 183 pix - 76k] [Normal - JPEG: 800 x 366 pix - 208k] [Hires - JPEG: 3000 x 1453 pix - 1.4M] Caption : PR Photo 09a/01 shows optical/infrared images in three wavebands ('Blue', 'Red', 'Infrared') from ESO telescopes of the Type II Quasar CXOCDFS J033229.9 -275106 (at the centre), one of the distant X-ray sources identified in the Chandra Deep Field South (CDFS) area during the present study. Technical information about these photos is available below. The 'Chandra Deep Field South (CDFS)' is a small sky area in the southern constellation Fornax (The Oven). It measures about 16 arcmin across, or roughly half the diameter of the full moon. There is unusually little gas and dust within the Milky Way in this direction and observations towards the distant Universe within this field thus profit from an particularly clear view. That is exactly why this sky area was selected by an international team of astronomers [1] to carry out an ultra-deep survey of X-ray sources with the orbiting Chandra X-Ray Observatory . In order to detect the faintest possible sources, NASA's satellite telescope looked in this direction during an unprecedented total of almost 1 million seconds of exposure time (11.5 days). The main scientific goal of this survey is to understand the nature and evolution of the elusive sources that make up the 'X-ray background' . This diffuse glare in the X-ray sky was discovered by Riccardo Giacconi and his collaborators during a pioneering rocket experiment in 1962. The excellent imaging quality of Chandra (the angular resolution is about 1 arcsec) makes it possible to do extremely deep exposures without encountering problems introduced by the "confusion effect". This refers to the overlapping of images of sources that are

  17. The role of Chandra in ten years from now and for the next few decades of astrophysical research

    Science.gov (United States)

    D'Abrusco, Raffaele; Becker, Glenn E.; McCollough, Michael L.; Rots, Arnold H.; Thong, Sinh A.; Van Stone, David; Winkelman, Sherry

    2018-06-01

    For almost twenty years, Chandra has advanced our understanding of the X-ray Universe by allowing astronomers to peer into a previously unexplored region of the high-energy observational parameters space. Thanks to its longevity,the mission has accumulated a large, unique body of observations whose legacy value, already tangible at this point, will only increase with time, and whose long-lasting influence extends well beyond the energy interval probed by Chandra. The Chandra archive, through the extensive characterization of the links between observations and literature, has measured the impact of Chandra on the astrophysical literature at a high level of granularity, providing striking evidence of how deeply and widely Chandra has impacted the advancement of both high-energy astrophysics and astronomical research from a multi-wavelength perspective. In this talk, based on the missions that have been submitted for recommendation at the next decadal survey and the possible outcomes of the evaluation process, I will discuss how Chandra archival data can be used to anticipate the projected scientific success and long-lasting effects of a X-ray mission like Lynx or, differently, how they will become instrumental to maximize the scientific output of a new generation of facilities that will observe in different energies. I will argue that, in either scenario, the centrality of Chandra will extend well after the final demise of the mission, and its data will continue serving the community in many different ways for the foreseeable future.

  18. Macdonald difference operators and Harish-Chandra series

    NARCIS (Netherlands)

    Letzter, G.; Stokman, J.V.

    2008-01-01

    We analyse the centralizer of the Macdonald difference operator in an appropriate algebra of Weyl group invariant difference operators. We show that it coincides with Cherednik's commuting algebra of difference operators via an analog of the Harish-Chandra isomorphism. Analogs of Harish-Chandra

  19. Chandra Images Provide New Vision of Cosmic Explosions

    Science.gov (United States)

    1999-09-01

    Images from NASA's Chandra X-ray Observatory released today reveal previously unobserved features in the remnants of three different supernova explosions. Two of the remnants G21.5-0.9 and PSR 0540-69 show dramatic details of the prodigious production of energetic particles by a rapidly rotating, highly magnetized neutron star, as well as the enormous shell structures produced by the explosions. The image of the third remnant, E0102-72, reveals puzzling spoke-like structures in its interior. G21.5-0.9, in the constellation of Scutum, is about 16,000 light years (1 light year = 6 trillion miles) from Earth. Chandra's image shows a bright nebula surrounded by a much larger diffuse cloud. Inside the inner nebula is a bright central source that is thought to be a rapidly rotating highly magnetized neutron star. A rotating neutron star acts like a powerful generator, creating intense electric voltages that accelerate electrons to speeds close to the speed of light. The total output of this generator is greater than a thousand suns. The fluffy appearance of the central nebula is thought to be due to magnetic field lines which constrain the motions of the high-energy electrons. "It's a remarkable image," said Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics. "Neither the inner core nor the outer shell has ever been seen before." "It is as though we have a set of Russian dolls, with structures embedded within structures," said Professor Gordon Garmire of Penn State University, and principal investigator of the Advanced CCD Imaging Spectrometer, the X-ray camera that was used to make two of the images. NASA's project scientist, Dr. Martin Weisskopf of the Marshall Space Flight Center said, "Chandra's capability to provide surprises and insights continues." PSR 0540-69 PSR 0540-69 The existence of a rotating neutron star, or pulsar, in the center of G21.5-0.9 is inferred from the appearance of the nebula and the energy distribution of X-rays and radio

  20. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Observations of the bright side of the Moon with NASA's Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed. "We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., at a press conference at the "Four Years with Chandra" symposium in Huntsville, Alabama. "We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area," continued Drake. "It's the next best thing to being there, and it's very fast and cost-effective." The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra. According to the currently popular "giant impact" theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth's mantle, Drake and his colleagues plan to help test the giant impact hypothesis. "One early result," quipped Drake, "is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon." Illustration of Earth's Geocorona Illustration of Earth's Geocorona The same

  1. Chandra Sees Wealth Of Black Holes In Star-Forming Galaxies

    Science.gov (United States)

    2001-06-01

    -like galaxy as we watch. In NGC 253, Chandra may have found the causal connection between starburst activity and quasars." Chandra detected variability and a relatively large ratio of high- to low-energy X-rays in these sources - two characteristics of superheated gas falling into black holes. When combined with extreme luminosities, this tells astronomers that some of these objects must have masses many times greater than ordinary stellar black holes, if they radiate energy uniformly in all directions. Scenarios for the formation of such "intermediate-mass" black holes include the direct collapse of a single, massive cloud of gas into a black hole, or the coalescence of a cluster of stellar black holes, but no uniformly accepted model exists. M82-True Color Image True Color Image of M82 Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption An alternative possibility, mentioned by Giuseppina Fabbiano of the Harvard-Smithsonian team, is that the X-rays from such highly luminous sources are beamed toward us -- perhaps by a funnel formed by the infalling matter. This would imply that the mass of the underlying black hole is only about ten times the mass of the Sun, in line with the known black hole sources in our galaxy. In this event, they would represent a short-lived but common stage in the evolution of black holes in close binary star systems. Long-term monitoring of the very luminous X-ray sources should distinguish between these possibilities. Andrew Ptak, led a team from Carnegie-Mellon University in Pittsburgh, PA, and Penn State University, University Park, PA, that used Chandra data to survey 37 galaxies. Ptak’s team found that 25 percent of galaxies, which were chosen for their suspected central supermassive black holes and areas of star formation, had these very luminous X-ray sources. The team plans to expand their survey with Chandra to assess the probability of finding these very bright X-ray sources in other types of galaxies. NASA's Marshall Space Flight

  2. THE CHANDRA COSMOS-LEGACY SURVEY: THE z > 3 SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Shankar, F. [Department of Physics and Astronomy, University of Southampton, Highfield, SO17 1BJ (United Kingdom); Comastri, A.; Lanzuisi, G.; Vignali, C.; Zamorani, G.; Brusa, M.; Gilli, R. [INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna (Italy); Elvis, M. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Trakhtenbrot, B.; Schawinski, K. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Allevato, V. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Fiore, F. [INAF–Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monte Porzio Catone (Italy); Griffiths, R. [Physics and Astronomy Department, Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile)

    2016-08-20

    We present the largest high-redshift (3 < z < 6.85) sample of X-ray-selected active galactic nuclei (AGNs) on a contiguous field, using sources detected in the Chandra COSMOS-Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift and the other 87 with photometric redshift (z {sub phot}). In this work, we treat z {sub phot} as a probability-weighted sum of contributions, adding to our sample the contribution of sources with z {sub phot} < 3 but z {sub phot} probability distribution >0 at z > 3. We compute the number counts in the observed 0.5–2 keV band, finding a decline in the number of sources at z > 3 and constraining phenomenological models of the X-ray background. We compute the AGN space density at z > 3 in two different luminosity bins. At higher luminosities (log L (2–10 keV) > 44.1 erg s{sup −1}), the space density declines exponentially, dropping by a factor of ∼20 from z ∼ 3 to z ∼ 6. The observed decline is ∼80% steeper at lower luminosities (43.55 erg s{sup −1} < logL(2–10 keV) < 44.1 erg s{sup −1}) from z ∼ 3 to z ∼ 4.5. We study the space density evolution dividing our sample into optically classified Type 1 and Type 2 AGNs. At log L (2–10 keV) > 44.1 erg s{sup −1}, unobscured and obscured objects may have different evolution with redshift, with the obscured component being three times higher at z ∼ 5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGNs. These models significantly overpredict the number of expected AGNs at log L (2–10 keV) > 44.1 erg s{sup −1} with respect to our data.

  3. Venkataraman, Prof. Chandra

    Indian Academy of Sciences (India)

    Elected: 2018 Section: Earth & Planetary Sciences. Venkataraman, Prof. Chandra Ph.D. (Univ. Calif., Los Angeles), FNAE, FNASc. Date of birth: 3 June 1963. Specialization: Aerosol Science & Engineering, Environmental & Climate Science, Atmospheric Science Address: Department of Chemical Engineering, Indian ...

  4. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  5. Chandra Discovers Cosmic Cannonball

    Science.gov (United States)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  6. CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS

    International Nuclear Information System (INIS)

    Vikhlinin, A.; Forman, W. R.; Jones, C.; Murray, S. S.; Kravtsov, A. V.; Burenin, R. A.; Voevodkin, A.; Ebeling, H.; Hornstrup, A.; Nagai, D.; Quintana, H.

    2009-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with (z) = 0.55 derived from 400 deg 2 ROSAT serendipitous survey and 49 brightest z ∼ 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Ω Λ > 0 with a ∼5σ significance, and constrains the dark energy equation-of-state parameter to w 0 = -1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = -0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos Σm ν M h and σ 8 from the low-redshift cluster mass function.

  7. Nirab Chandra Adhikary

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nirab Chandra Adhikary. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1613-1624. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process · Bhabesh Kumar Nath Aziz Khan ...

  8. subhas chandra saha

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. SUBHAS CHANDRA SAHA. Articles written in Sadhana. Volume 41 Issue 5 May 2016 pp 549-559. A comparative study of multiple regression analysis and back propagation neural network approaches on plain carbon steel in submerged-arc welding · ABHIJIT SARKAR PRASENJIT DEY R N ...

  9. The Chandra HRC View of the Subarcsecond Structures in the Nuclear Region of NGC 1068

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido

    2012-09-01

    We have obtained a high spatial resolution X-ray image of the nucleus of NGC 1068 using the High Resolution Camera (HRC-I) on board the Chandra X-ray Observatory, which provides an unprecedented view of the innermost 1 arcsec radius region of this galaxy. The HRC image resolves the narrow-line region into X-ray emission clumps matching bright emission-line clouds in the HST [OIII] λ5007 images and allows comparison with subarcsecond-scale radio jet for the first time. Two distinct X-ray knots are revealed at 1.3-1.4 arcsec northeast and southwest of the nucleus. Based on the combined X-ray, [O III], and radio continuum morphology, we identify the locations of intense radio jet-cloud interaction. The [O III] to soft X-ray ratios show that some of these clouds are strongly affected by shock heating, whereas in other locations the jet simply thrusts through with no signs of strong interaction. This is further strengthened by the presence of a kT ~ 1 keV collisionally ionized component in the ACIS spectrum of a shock-heated cloud HST-G. We estimate that the kinematic luminosity of the jet-driven shocks is 6 × 1038 erg s-1, a negligible fraction (10-4) of the estimated total jet power.

  10. The Chandra Source Catalog : Automated Source Correlation

    Science.gov (United States)

    Hain, Roger; Evans, I. N.; Evans, J. D.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-01-01

    Chandra Source Catalog (CSC) master source pipeline processing seeks to automatically detect sources and compute their properties. Since Chandra is a pointed mission and not a sky survey, different sky regions are observed for a different number of times at varying orientations, resolutions, and other heterogeneous conditions. While this provides an opportunity to collect data from a potentially large number of observing passes, it also creates challenges in determining the best way to combine different detection results for the most accurate characterization of the detected sources. The CSC master source pipeline correlates data from multiple observations by updating existing cataloged source information with new data from the same sky region as they become available. This process sometimes leads to relatively straightforward conclusions, such as when single sources from two observations are similar in size and position. Other observation results require more logic to combine, such as one observation finding a single, large source and another identifying multiple, smaller sources at the same position. We present examples of different overlapping source detections processed in the current version of the CSC master source pipeline. We explain how they are resolved into entries in the master source database, and examine the challenges of computing source properties for the same source detected multiple times. Future enhancements are also discussed. This work is supported by NASA contract NAS8-03060 (CXC).

  11. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  12. Simultaneous Chandra/Swift Observations of the RT Cru Symbiotic System

    Science.gov (United States)

    Kashyap, Vinay; Kennea, J. A.; Karovska, M.; Calibration, Chandra

    2013-04-01

    The symbiotic star RT Cru was observed simultaneously by the Chandra/HRC-I and Swift/XRT in Dec 2012. The observations were carried out as part of a program to calibrate the Chandra PSF. The Chandra light curve shows a number of brightenings by factors of 2, with strong indications of a softening of the spectrum at these times. Swift observations cover a brief part of the Chandra light curve, and the intensities over this duration are tightly correlated. The Swift spectral data confirm the anticorrelation between intensity and spectral hardness. However, there are differences in the correlations at different periods that are not understood. We report on our analysis of the data, with emphasis on the spectral modeling at different times and intensity levels, and discuss the implications of the results on the emission mechanisms on symbiotic stars. We also report our inferences on the structure and energy dependence of the Chandra PSF anomaly, and on the high-energy cross-calibration between the HRC-I and XRT. This work is supported by the NASA contract NAS8-03060 to the Chandra X-ray Center.

  13. Deep 20-GHz survey of the Chandra Deep Field South and SDSS Stripe 82: source catalogue and spectral properties

    Science.gov (United States)

    Franzen, Thomas M. O.; Sadler, Elaine M.; Chhetri, Rajan; Ekers, Ronald D.; Mahony, Elizabeth K.; Murphy, Tara; Norris, Ray P.; Waldram, Elizabeth M.; Whittam, Imogen H.

    2014-04-01

    We present a source catalogue and first results from a deep, blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array, with follow-up observations at 5.5, 9 and 18 GHz. The Australia Telescope 20 GHz (AT20G) deep pilot survey covers a total area of 5 deg2 in the Chandra Deep Field South and in Stripe 82 of the Sloan Digital Sky Survey. We estimate the survey to be 90 per cent complete above 2.5 mJy. Of the 85 sources detected, 55 per cent have steep spectra (α _{1.4}^{20} law spectra between 1.4 and 18 GHz, while the spectral indices of the flat- or inverted-spectrum sources tend to steepen with frequency. Among the 18 inverted-spectrum (α _{1.4}^{20} ≥ 0.0) sources, 10 have clearly defined peaks in their spectra with α _{1.4}^{5.5} > 0.15 and α 9^{18} Cambridge and Tenth Cambridge surveys: there is a shift towards a steeper-spectrum population when going from ˜1 Jy to ˜5 mJy, which is followed by a shift back towards a flatter-spectrum population below ˜5 mJy. The 5-GHz source-count model by Jackson & Wall, which only includes contributions from FRI and FRII sources, and star-forming galaxies, does not reproduce the observed flattening of the flat-spectrum counts below ˜5 mJy. It is therefore possible that another population of sources is contributing to this effect.

  14. The Chandra Source Catalog: Storage and Interfaces

    Science.gov (United States)

    van Stone, David; Harbo, Peter N.; Tibbetts, Michael S.; Zografou, Panagoula; Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Winkelman, Sherry L.

    2009-09-01

    The Chandra Source Catalog (CSC) is part of the Chandra Data Archive (CDA) at the Chandra X-ray Center. The catalog contains source properties and associated data objects such as images, spectra, and lightcurves. The source properties are stored in relational databases and the data objects are stored in files with their metadata stored in databases. The CDA supports different versions of the catalog: multiple fixed release versions and a live database version. There are several interfaces to the catalog: CSCview, a graphical interface for building and submitting queries and for retrieving data objects; a command-line interface for property and source searches using ADQL; and VO-compliant services discoverable though the VO registry. This poster describes the structure of the catalog and provides an overview of the interfaces.

  15. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    Science.gov (United States)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  16. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Mense, Sarah M.; Bhat, Nimee K.; Putty, Sandeep; Guthiel, William A.; Remotti, Fabrizio; Bhat, Hari K.

    2010-01-01

    Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17β-estradiol (E 2 ). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E 2 -induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E 2 pellets, co-exposure to quercetin did not protect rats from E 2 -induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E 2 -treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E 2 group relative to those in the E 2 group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F 2α (8-iso-PGF 2α ) levels as a marker of oxidant stress showed that quercetin did not decrease E 2 -induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E 2 -induced oxidant stress and may exacerbate breast carcinogenesis in E 2 -treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E 2 and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E 2 and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E 2 -induced

  17. Chandra ACIS-S imaging spectroscopy of anomalously faint X-ray emission from Comet 103P/Hartley 2 during the EPOXI encounter

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Dennerl, K.; Bodewits, D.; Combi, M. R.; Lepri, S. T.; Zurbuchen, T. H.; Li, J. Y.; Dello-Russo, N.; Belton, M. J. S.; Knight, M. M.

    2013-02-01

    We present results from the Chandra X-ray Observatory's characterization of the X-ray emission from Comet 103P/Hartley 2, in support of NASA's Deep Impact Extended close flyby of the comet on 04 November 2010. The comet was observed 4 times for a total on target time of ˜60 ks between the 17th of October and 16th of November 2010, with two of the visits occurring during the EPOXI close approach on 04 November and 05 November 2010. X-ray emission from 103P was qualitatively similar to that observed for collisionally thin Comets 2P/Encke (Lisse, C.M. et al. [2005]. Astrophys. J. 635, 1329-1347) and 9P/Tempel 1 (Lisse, C.M. et al. [2007]. Icarus 190, 391-405). Emission morphology offset sunward but asymmetrical from the nucleus and emission lines produced by charge exchange between highly stripped C, N, and O solar wind minor ions and coma neutral gas species were found. The comet was very under-luminous in the X-ray at all times, representing the 3rd faintest comet ever detected (LX = 1.1 ± 0.3 × 1014 erg s-1). The coma was collisionally thin to the solar wind at all times, allowing solar wind ions to flow into the inner coma and interact with the densest neutral coma gas. Localization of the X-ray emission in the regions of the major rotating gas jets was observed, consistent with the major source of cometary neutral gas species being icy coma dust particles. Variable spectral features due to changing solar wind flux densities and charge states were also seen. Modeling of the Chandra observations from the first three visits using observed gas production rates and ACE solar wind ion fluxes with a charge exchange mechanism for the emission is consistent with the temporal and spectral behavior expected for a slow, hot wind typical of low latitude emission from the solar corona interacting with the comet's neutral coma. The X-ray emission during the 4th visit on 16 November 2010 is similar to the unusual behavior seen for Comet 17P/Holmes in 2007 (Christian, D.J. et

  18. Chance and Chandra

    Indian Academy of Sciences (India)

    with inverse-square interparticle forces. The roles of ... ness fluctuations in the star fields of the Milky Way [1] and one on the inference of the distribution ... Chandra, however, argued for a cut-off at the mean interparticle distance, D ... the root of the difficulty with large impact parameters lies in the insistence upon Markovian.

  19. NASA's Chandra Reveals Origin of Key Cosmic Explosions

    Science.gov (United States)

    2010-02-01

    brightness. Because these two scenarios would generate different amounts of X-ray emission, Gilfanov and Bogdan used Chandra to observe five nearby elliptical galaxies and the central region of the Andromeda galaxy. A Type 1a supernova caused by accreting material produces significant X- ray emission prior to the explosion. A supernova from a merger of two white dwarfs, on the other hand, would create significantly less X-ray emission than the accretion scenario. The scientists found the observed X-ray emission was a factor of 30 to 50 times smaller than expected from the accretion scenario, effectively ruling it out. This implies that white dwarf mergers dominate in these galaxies. An open question remains whether these white dwarf mergers are the primary catalyst for Type Ia supernovae in spiral galaxies. Further studies are required to know if supernovae in spiral galaxies are caused by mergers or a mixture of the two processes. Another intriguing consequence of this result is that a pair of white dwarfs is relatively hard to spot, even with the best telescopes. "To many astrophysicists, the merger scenario seemed to be less likely because too few double-white-dwarf systems appeared to exist," said Gilfanov. "Now this path to supernovae will have to be investigated in more detail." In addition to the X-rays observed with Chandra, other data critical for this result came from NASA's Spitzer Space Telescope and the ground-based, infrared Two Micron All Sky Survey. The infrared brightness of the galaxies allowed the team to estimate how many supernovae should occur. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  20. Chandra Sees Remarkable Eclipse of Black Hole

    Science.gov (United States)

    2007-04-01

    A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365

  1. Budhani, Dr Ramesh Chandra

    Indian Academy of Sciences (India)

    Budhani, Dr Ramesh Chandra Ph.D. (IIT, Delhi), FNASc, FNA. Date of birth: 3 February 1955. Specialization: Renewable Energy, Nanoscale Systems, Experimental Condensed Matter Physics, Superconductivity and Magnetism Address: Department of Physics, Lasers & Photonics, Indian Institute of Technology, Kanpur 208 ...

  2. CIAO: CHANDRA/X-RAY DATA ANALYSIS FOR EVERYONE

    Science.gov (United States)

    McDowell, Jonathan; CIAO Team

    2018-01-01

    Eighteen years after the launch of Chandra, the archive is full of scientifically rich data and new observations continue. Improvements in recent years to the data analysis package CIAO (Chandra Interactive Analysis of Observations) and its extensive accompanying documentation make it easier for astronomers without a specialist background in high energy astrophysics to take advantage of this resource.The CXC supports hundreds of CIAO users around the world at all levels of training from high school and undergraduate students to the most experienced X-ray astronomers. In general, we strive to provide a software system which is easy for beginners, yet powerful for advanced users.Chandra data cover a range of instrument configurations and types of target (pointlike, extended and moving), requiring a flexible data analysis system. In addition to CIAO tools using the familiar FTOOLS/IRAF-style parameter interface, CIAO includes applications such as the Sherpa fitting engine which provide access to the data via Python scripting.In this poster we point prospective (and existing!) users to the high level Python scripts now provided to reprocess Chandra or other X-ray mission data, determine source fluxes and upper limits, and estimate backgrounds; and to the latest documentation including the CIAO Gallery, a new entry point featuring the system's different capabilities.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  3. Discovery of the third transient X-ray binary in the galactic globular cluster Terzan 5

    Energy Technology Data Exchange (ETDEWEB)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Altamirano, Diego; Wijnands, Rudy [Astronomical Institute " Anton Pannekoek," University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Homan, Jeroen [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Pooley, David [Department of Physics, Sam Houston State University, Huntsville, TX 77341 (United States); Degenaar, Nathalie, E-mail: bahramia@ualberta.ca [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2014-01-10

    We report and study the outburst of a new transient X-ray binary (XRB) in Terzan 5, the third detected in this globular cluster, Swift J174805.3-244637 or Terzan 5 X-3. We find clear spectral hardening in Swift/XRT data during the outburst rise to the hard state, thanks to our early coverage (starting at L{sub X} ∼ 4 × 10{sup 34} erg s{sup –1}) of the outburst. This hardening appears to be due to the decline in relative strength of a soft thermal component from the surface of the neutron star (NS) during the rise. We identify a Type I X-ray burst in Swift/XRT data with a long (16 s) decay time, indicative of hydrogen burning on the surface of the NS. We use Swift/BAT, MAXI/GSC, Chandra/ACIS, and Swift/XRT data to study the spectral changes during the outburst, identifying a clear hard-to-soft state transition. We use a Chandra/ACIS observation during outburst to identify the transient's position. Seven archival Chandra/ACIS observations show evidence for variations in Terzan 5 X-3's nonthermal component but not the thermal component during quiescence. The inferred long-term time-averaged mass accretion rate, from the quiescent thermal luminosity, suggests that if this outburst is typical and only slow cooling processes are active in the NS core, such outbursts should recur every ∼10 yr.

  4. Lakhotia, Prof. Subhash Chandra

    Indian Academy of Sciences (India)

    Elected: 1994 Section: Animal Sciences. Lakhotia, Prof. Subhash Chandra Ph.D. (Calcutta), FNA, FNASc. Date of birth: 4 October 1945. Specialization: Ayurvedic Biology, Cytogenetics, Gene Expression, Stress Biology and Molecular Biology Address: INSA Senior Scientist, Department of Zoology, Banaras Hindu University ...

  5. Impact of ACI-ASME code on design and construction of nuclear containment structures

    International Nuclear Information System (INIS)

    Reedy, R.F.

    1978-01-01

    The effect of the ACI-ASME code for design and construction of concrete containment structures on the nuclear and concrete industries is examined. Topics covered include purpose of the code, general requirements, responsibilities and duties, design and construction specifications, quality assurance, inspection, the liner, and stamping

  6. The Chandra Source Catalog: Processing and Infrastructure

    Science.gov (United States)

    Evans, Janet; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Hall, Diane M.; Miller, Joseph B.; Plummer, David A.; Zografou, Panagoula; Primini, Francis A.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    Chandra Source Catalog processing recalibrates each observation using the latest available calibration data, and employs a wavelet-based source detection algorithm to identify all the X-ray sources in the field of view. Source properties are then extracted from each detected source that is a candidate for inclusion in the catalog. Catalog processing is completed by matching sources across multiple observations, merging common detections, and applying quality assurance checks. The Chandra Source Catalog processing system shares a common processing infrastructure and utilizes much of the functionality that is built into the Standard Data Processing (SDP) pipeline system that provides calibrated Chandra data to end-users. Other key components of the catalog processing system have been assembled from the portable CIAO data analysis package. Minimal new software tool development has been required to support the science algorithms needed for catalog production. Since processing pipelines must be instantiated for each detected source, the number of pipelines that are run during catalog construction is a factor of order 100 times larger than for SDP. The increased computational load, and inherent parallel nature of the processing, is handled by distributing the workload across a multi-node Beowulf cluster. Modifications to the SDP automated processing application to support catalog processing, and extensions to Chandra Data Archive software to ingest and retrieve catalog products, complete the upgrades to the infrastructure to support catalog processing.

  7. Thakur, Dr Vikram Chandra

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1991 Section: Earth & Planetary Sciences. Thakur, Dr Vikram Chandra Ph.D. (London). Date of birth: 15 January 1940. Specialization: Structural Geology, Tectonics of Himalayan Geology and Active Tectonics Address: 9/12 (Lane 9), Ashirwad Eclave, Dehra Dun 248 001, ...

  8. Chaturvedi, Prof. Umesh Chandra

    Indian Academy of Sciences (India)

    Chaturvedi, Prof. Umesh Chandra M.D. (Lucknow), FRC Path. (London), FAMS, FNA, FNASc, FAAM(USA). Date of birth: 2 March 1939. Specialization: Medical Microbiology, Virology and Immunology Address: 201, Annapurna Apartments, No. 1, Bishop Rocky Street, Faizabad Road, Lucknow 226 007, U.P.. Contact:

  9. Standardization of skin cleansing in vivo: part I. Development of an Automated Cleansing Device (ACiD).

    Science.gov (United States)

    Sonsmann, F K; Strunk, M; Gediga, K; John, C; Schliemann, S; Seyfarth, F; Elsner, P; Diepgen, T L; Kutz, G; John, S M

    2014-05-01

    To date, there are no legally binding requirements concerning product testing in cosmetics. This leads to various manufacturer-specific test methods and absent transparent information on skin cleansing products. A standardized in vivo test procedure for assessment of cleansing efficacy and corresponding barrier impairment by the cleaning process is needed, especially in the occupational context where repeated hand washing procedures may be performed at short intervals. For the standardization of the cleansing procedure, an Automated Cleansing Device (ACiD) was designed and evaluated. Different smooth washing surfaces of the equipment for ACiD (incl. goat hair, felt, felt covered with nitrile caps) were evaluated regarding their skin compatibility. ACiD allows an automated, fully standardized skin washing procedure. Felt covered with nitrile as washing surface of the rotating washing units leads to a homogenous cleansing result and does not cause detectable skin irritation, neither clinically nor as assessed by skin bioengineering methods (transepidermal water loss, chromametry). Automated Cleansing Device may be useful for standardized evaluation of the cleansing effectiveness and parallel assessment of the corresponding irritancy potential of industrial skin cleansers. This will allow objectifying efficacy and safety of industrial skin cleansers, thus enabling market transparency and facilitating rational choice of products. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. THE CHANDRA HRC VIEW OF THE SUBARCSECOND STRUCTURES IN THE NUCLEAR REGION OF NGC 1068

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junfeng; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido, E-mail: juwang@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-09-10

    We have obtained a high spatial resolution X-ray image of the nucleus of NGC 1068 using the High Resolution Camera (HRC-I) on board the Chandra X-ray Observatory, which provides an unprecedented view of the innermost 1 arcsec radius region of this galaxy. The HRC image resolves the narrow-line region into X-ray emission clumps matching bright emission-line clouds in the HST [OIII] {lambda}5007 images and allows comparison with subarcsecond-scale radio jet for the first time. Two distinct X-ray knots are revealed at 1.3-1.4 arcsec northeast and southwest of the nucleus. Based on the combined X-ray, [O III], and radio continuum morphology, we identify the locations of intense radio jet-cloud interaction. The [O III] to soft X-ray ratios show that some of these clouds are strongly affected by shock heating, whereas in other locations the jet simply thrusts through with no signs of strong interaction. This is further strengthened by the presence of a kT {approx} 1 keV collisionally ionized component in the ACIS spectrum of a shock-heated cloud HST-G. We estimate that the kinematic luminosity of the jet-driven shocks is 6 Multiplication-Sign 10{sup 38} erg s{sup -1}, a negligible fraction (10{sup -4}) of the estimated total jet power.

  11. THE CHANDRA HRC VIEW OF THE SUBARCSECOND STRUCTURES IN THE NUCLEAR REGION OF NGC 1068

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido

    2012-01-01

    We have obtained a high spatial resolution X-ray image of the nucleus of NGC 1068 using the High Resolution Camera (HRC-I) on board the Chandra X-ray Observatory, which provides an unprecedented view of the innermost 1 arcsec radius region of this galaxy. The HRC image resolves the narrow-line region into X-ray emission clumps matching bright emission-line clouds in the HST [OIII] λ5007 images and allows comparison with subarcsecond-scale radio jet for the first time. Two distinct X-ray knots are revealed at 1.3-1.4 arcsec northeast and southwest of the nucleus. Based on the combined X-ray, [O III], and radio continuum morphology, we identify the locations of intense radio jet-cloud interaction. The [O III] to soft X-ray ratios show that some of these clouds are strongly affected by shock heating, whereas in other locations the jet simply thrusts through with no signs of strong interaction. This is further strengthened by the presence of a kT ∼ 1 keV collisionally ionized component in the ACIS spectrum of a shock-heated cloud HST-G. We estimate that the kinematic luminosity of the jet-driven shocks is 6 × 10 38 erg s –1 , a negligible fraction (10 –4 ) of the estimated total jet power.

  12. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    Science.gov (United States)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  13. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    Science.gov (United States)

    2000-11-01

    CCD Imaging Spectrometer (ACIS) was used as a camera to record the X-ray spectral data, which computers processed and plotted onto a graph, revealing the P Cygni signature. Specific elements, such as silicon or iron, emit specific X-ray wavelengths, revealing their presence in the emitting material to astronomers. Before the observation with Chandra, astronomers knew the force of gravity in an X-ray binary system strips material off the surface of the normal star and then pulls this material toward the surface of the super-dense neutron star, forming a relatively flat spiraling cloud of gas called an accretion disk. The detailed Chandra data revealed, in addition, that the radiation and rotational forces in the Circinus X-1 disk are blasting some of the inward-spiraling gas back out into space in a powerful wind, which creates the P Cygni lines in the object's spectrum. P Cygni profiles carry much diagnostic information that is hard to obtain in other ways--such as how fast the wind is moving, how much material it contains, how dense it is, and its chemical composition. "The wind coming out of Circinus X-1 is composed of gas that contains highly ionized atoms of silicon, neon, iron, magnesium, and sulfur, and its peak observed velocity is about 4.5 million miles per hour--so fast it would cross the entire radius of the Earth in about three seconds," Brandt reports. The astronomers used Doppler techniques that detect positive velocities from material moving away from Earth, with signals shifted toward the red end of the spectrum, and negative velocities from material that is coming toward Earth, with signals shifted toward the blue end of the spectrum. "We learned these two stars clearly interact dramatically with each other while this wind is blowing outward at high velocity, which appears to be causing certain properties of the wind to change over time," Schulz says. The researchers produced a time-lapse movie of one of their spectra, which is available on the World

  14. DETECTION OF VERY LOW-FREQUENCY, QUASI-PERIODIC OSCILLATIONS IN THE 2015 OUTBURST OF V404 CYGNI

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, D. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Younes, G.; Kouveliotou, C. [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Ingram, A.; Van der Klis, M. [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Bachetti, M. [INAF/Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy); Sánchez-Fernández, C.; Kuulkers, E. [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, E-28691 Villanueva de la Cañada, Madrid (Spain); Chenevez, J. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327-328, DK-2800 Lyngby (Denmark); Motta, S. [University of Oxford, Department of Physics, Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 43537 (Israel); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Tomsick, J. A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Walton, D. J., E-mail: daniela.huppenkothen@nyu.edu [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    In 2015 June, the black hole X-ray binary (BHXRB) V404 Cygni went into outburst for the first time since 1989. Here, we present a comprehensive search for quasi-periodic oscillations (QPOs) of V404 Cygni during its recent outburst, utilizing data from six instruments on board five different X-ray missions: Swift /XRT, Fermi /GBM, Chandra /ACIS, INTEGRAL ’s IBIS/ISGRI and JEM-X, and NuSTAR . We report the detection of a QPO at 18 mHz simultaneously with both Fermi /GBM and Swift /XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital inclination. Additionally, we find a duo of QPOs in a Chandra /ACIS observation at 73 mHz and 1.03 Hz, as well as a QPO at 136 mHz in a single Swift /XRT observation that can be interpreted as standard Type-C QPOs. Aside from the detected QPOs, there is significant structure in the broadband power, with a strong feature observable in the Chandra observations between 0.1 and 1 Hz. We discuss our results in the context of current models for QPO formation.

  15. Chandra Early Type Galaxy Atals

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer; McCollough, Michael; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa Dil; Trinchieri, Ginevra

    2017-08-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion, stripping and star formation and its quenching. We have systematically analyzed the archival Chandra data of ~100 ETGs to study the hot ISM. We produce the uniformly derived data products with spatially resolved spectral information and will make them accessible via a public web site. With 2D spectral infomation, we further discuss gas morphology, scaling relations, X-ray based mass profiles and their implications related to various physical mechanisms (e.g., stellar and AGN feedback).

  16. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  17. Cosmological constraints from Chandra observations of galaxy clusters.

    Science.gov (United States)

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  18. Optical colours of AGN in the Extended Chandra Deep Field South: Obscured black holes in early type galaxies

    OpenAIRE

    Rovilos, E.; Georgantopoulos, I.

    2007-01-01

    We investigate the optical colours of X-ray sources from the Extended Chandra Deep Field South (ECDFS) using photometry from the COMBO-17 survey, aiming to explore AGN - galaxy feedback models. The X-ray sources populate both the ``blue'' and the ``red sequence'' on the colour-magnitude diagram. However, sources in the ``red sequence'' appear systematically more obscured. HST imaging from the GEMS survey demonstrates that the nucleus does not affect significantly the observed colours, and the...

  19. Chandra Discovers Light Echo from the Milky Way's Black Hole

    Science.gov (United States)

    2007-01-01

    Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center. A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra. Variability in Chandra Images of Light Echo Variability in Chandra Images of Light Echo "This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction." Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra. Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past. Illustrations of Light Echo Illustrations of Light Echo Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays. "This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick

  20. CHANDRA OBSERVATIONS OF SN 1987A: THE SOFT X-RAY LIGHT CURVE REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Helder, E. A.; Broos, P. S.; Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Dewey, D. [MIT Kavli Institute, Cambridge, MA 02139 (United States); Dwek, E. [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McCray, R. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Park, S. [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States); Racusin, J. L. [NASA, Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Zhekov, S. A. [Space Research and Technology Institute, Akad. G. Bonchev str., bl.1, Sofia 1113 (Bulgaria)

    2013-02-10

    We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by {approx}6 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2} per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.

  1. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  2. X-ray Outburst in Mira A

    OpenAIRE

    Karovska, M.; Schlegel, E.; Hack, W.; Wood, B.

    2005-01-01

    We report here the Chandra ACIS-S detection of a bright soft X-ray transient in the Mira AB interacting symbiotic-like binary. We resolved the system for the first time in the X-rays. Using Chandra and HST images we determined that the unprecedented outburst is likely associated with the cool AGB star (Mira A), the prototype of Mira-type variables. X-rays have never before been detected from an AGB star, and the recent activity signals that the system is undergoing dramatic changes. The total...

  3. Black Hole Paradox Solved By NASA's Chandra

    Science.gov (United States)

    2006-06-01

    Black holes are lighting up the Universe, and now astronomers may finally know how. New data from NASA's Chandra X-ray Observatory show for the first time that powerful magnetic fields are the key to these brilliant and startling light shows. It is estimated that up to a quarter of the total radiation in the Universe emitted since the Big Bang comes from material falling towards supermassive black holes, including those powering quasars, the brightest known objects. For decades, scientists have struggled to understand how black holes, the darkest objects in the Universe, can be responsible for such prodigious amounts of radiation. Animation of a Black Hole Pulling Matter from Companion Star Animation of a Black Hole Pulling Matter from Companion Star New X-ray data from Chandra give the first clear explanation for what drives this process: magnetic fields. Chandra observed a black hole system in our galaxy, known as GRO J1655-40 (J1655, for short), where a black hole was pulling material from a companion star into a disk. "By intergalactic standards J1655 is in our backyard, so we can use it as a scale model to understand how all black holes work, including the monsters found in quasars," said Jon M. Miller of the University of Michigan, Ann Arbor, whose paper on these results appears in this week's issue of Nature. Gravity alone is not enough to cause gas in a disk around a black hole to lose energy and fall onto the black hole at the rates required by observations. The gas must lose some of its orbital angular momentum, either through friction or a wind, before it can spiral inward. Without such effects, matter could remain in orbit around a black hole for a very long time. Illustration of Magnetic Fields in GRO J1655-40 Illustration of Magnetic Fields in GRO J1655-40 Scientists have long thought that magnetic turbulence could generate friction in a gaseous disk and drive a wind from the disk that carries angular momentum outward allowing the gas to fall inward

  4. NARROW-LINE X-RAY-SELECTED GALAXIES IN THE CHANDRA -COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Pons, E.; Watson, M. G. [University of Leicester, Leicester (United Kingdom); Elvis, M.; Civano, F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2016-04-20

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg{sup 2} of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10{sup −16} erg cm{sup −2} s{sup −1} in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra -COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of this sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ 3727, [Ne iii] λ 3869, H β , [O iii] λλ 4959, 5007, H α , and [N ii] λλ 6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.

  5. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  6. Chandra Adds to Story of the Way We Were

    Science.gov (United States)

    2003-05-01

    Data from NASA's Chandra X-ray Observatory have enabled astronomers to use a new way to determine if a young star is surrounded by a planet-forming disk like our early Sun. These results suggest that disks around young stars can evolve rapidly to form planets, or they can be disrupted by close encounters with other stars. Chandra observed two young star systems, TW Hydrae and HD 98800, both of which are in the TW Hydrae Association, a loose cluster of 10 million-year-old stars. Observations at infrared and other wavelengths have shown that several stars in the TW Hydrae Association are surrounded by disks of dust and gas. At a distance of about 180 light years from Earth, these systems are among the nearest analogs to the early solar nebula from which Earth formed. "X-rays give us an excellent new way to probe the disks around stars," said Joel Kastner of the Rochester Institute of Technology in Rochester, NY during a press conference today in Nashville, Tenn. at a meeting of the American Astronomical Society. "They can tell us whether a disk is very near to its parent star and dumping matter onto it, or whether such activity has ceased to be important. In the latter case, presumably the disk has been assimilated into larger bodies - perhaps planets--or disrupted." TW Hydrae and HD 98800A Chandra 0th Order Image of HD98800 Kastner and his colleagues found examples of each type of behavior in their study. One star, TW Hydrae, namesake of the TW Hydrae Association, exhibited features in its X-ray spectrum that provide strong, new evidence that matter is accreting onto the star from a circumstellar disk. They concluded that matter is guided by the star's magnetic field onto one or more hot spots on the surface of the star. In contrast, Chandra observations of the young multiple star system HD 98800 revealed that its brightest star, HD 98800A, is producing X-rays much as the Sun does, from a hot upper atmosphere or corona. HD 98800 is a complex multiple-star system

  7. Patel, Prof. Chandra Kumar Naranbhai

    Indian Academy of Sciences (India)

    Elected: 1995 Honorary. Patel, Prof. Chandra Kumar Naranbhai. Date of birth: 2 July 1938. Address: President & CEO, Pranalytica Inc., 1101, Colorado Avenue, Santa Monica, CA 90401, U.S.A.. Contact: Office: (+1-310) 458 0808. Residence: (+1-310) 471 6505. Fax: (+1-310) 458 0171. Email: patel@pranalytica.com.

  8. Chandra High Resolution Imaging of NGC 1365 and NGC 4151

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.

    2010-07-01

    We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.

  9. An Archival Chandra and XMM-Newton Survey of Type 2 Quasars

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy; Zakamska, Nadia L.

    2013-01-01

    In order to investigate obscuration in high-luminosity type 2 active galactic nuclei (AGNs), we analyzed Chandra and XMM-Newton archival observations for 71 type 2 quasars detected at 0.05 100 eV in the rest frame) and we detect this line in the other sources through a joint fit (spectral stacking). The correlation between the Fe K alpha and [O III] fluxes and the inverse correlation of the equivalent width of the Fe Ka line with the ratio of hard X-ray and [O III] fluxes is consistent with previous results for lower luminosity Seyfert 2 galaxies. We conclude that obscuration is the cause of the weak hard X-ray emission rather than intrinsically low X-ray luminosities. We find that about half of the population of optically selected type 2 quasars are likely to be Compton thick. We also find no evidence that the amount of X-ray obscuration depends on the AGN luminosity (over a range of more than three orders of magnitude in luminosity).

  10. Patel, Prof. Chandra Kumar Naranbhai

    Indian Academy of Sciences (India)

    Patel, Prof. Chandra Kumar Naranbhai. Date of birth: 2 July 1938. Address: President & CEO, Pranalytica Inc., 1101, Colorado Avenue, Santa Monica, CA 90401, U.S.A.. Contact: Office: (+1-310) 458 0808. Residence: (+1-310) 471 6505. Fax: (+1-310) 458 0171. Email: patel@pranalytica.com. YouTube · Twitter · Facebook ...

  11. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group "Tissue Regeneration" of the German Society of Orthopaedic Surgery and Traumatology (DGOU)].

    Science.gov (United States)

    Niemeyer, P; Andereya, S; Angele, P; Ateschrang, A; Aurich, M; Baumann, M; Behrens, P; Bosch, U; Erggelet, C; Fickert, S; Fritz, J; Gebhard, H; Gelse, K; Günther, D; Hoburg, A; Kasten, P; Kolombe, T; Madry, H; Marlovits, S; Meenen, N M; Müller, P E; Nöth, U; Petersen, J P; Pietschmann, M; Richter, W; Rolauffs, B; Rhunau, K; Schewe, B; Steinert, A; Steinwachs, M R; Welsch, G H; Zinser, W; Albrecht, D

    2013-02-01

    Autologous chondrocyte transplantation/implantation (ACT/ACI) is an established and recognised procedure for the treatment of localised full-thickness cartilage defects of the knee. The present review of the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU) describes the biology and function of healthy articular cartilage, the present state of knowledge concerning potential consequences of primary cartilage lesions and the suitable indication for ACI. Based on current evidence, an indication for ACI is given for symptomatic cartilage defects starting from defect sizes of more than 3-4 cm2; in the case of young and active sports patients at 2.5 cm2. Advanced degenerative joint disease is the single most important contraindication. The review gives a concise overview on important scientific background, the results of clinical studies and discusses advantages and disadvantages of ACI. Georg Thieme Verlag KG Stuttgart · New York.

  12. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.

    2009-01-01

    We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration of relati...... at a fixed mass threshold, e.g., by a factor of 5.0 ± 1.2 at M 500 = 2.5 × 1014 h –1 M sun between z = 0 and 0.5. This evolution reflects the growth of density perturbations, and can be used for the cosmological constraints complementing those from the distance-redshift relation....

  13. Chandra Source Catalog: User Interface

    Science.gov (United States)

    Bonaventura, Nina; Evans, Ian N.; Rots, Arnold H.; Tibbetts, Michael S.; van Stone, David W.; Zografou, Panagoula; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Helen; Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Winkelman, Sherry L.

    2009-09-01

    The Chandra Source Catalog (CSC) is intended to be the definitive catalog of all X-ray sources detected by Chandra. For each source, the CSC provides positions and multi-band fluxes, as well as derived spatial, spectral, and temporal source properties. Full-field and source region data products are also available, including images, photon event lists, light curves, and spectra. The Chandra X-ray Center CSC website (http://cxc.harvard.edu/csc/) is the place to visit for high-level descriptions of each source property and data product included in the catalog, along with other useful information, such as step-by-step catalog tutorials, answers to FAQs, and a thorough summary of the catalog statistical characterization. Eight categories of detailed catalog documents may be accessed from the navigation bar on most of the 50+ CSC pages; these categories are: About the Catalog, Creating the Catalog, Using the Catalog, Catalog Columns, Column Descriptions, Documents, Conferences, and Useful Links. There are also prominent links to CSCview, the CSC data access GUI, and related help documentation, as well as a tutorial for using the new CSC/Google Earth interface. Catalog source properties are presented in seven scientific categories, within two table views: the Master Source and Source Observations tables. Each X-ray source has one ``master source'' entry and one or more ``source observation'' entries, the details of which are documented on the CSC ``Catalog Columns'' pages. The master source properties represent the best estimates of the properties of a source; these are extensively described on the following pages of the website: Position and Position Errors, Source Flags, Source Extent and Errors, Source Fluxes, Source Significance, Spectral Properties, and Source Variability. The eight tutorials (``threads'') available on the website serve as a collective guide for accessing, understanding, and manipulating the source properties and data products provided by the catalog.

  14. Chandra Source Catalog: User Interfaces

    Science.gov (United States)

    Bonaventura, Nina; Evans, I. N.; Harbo, P. N.; Rots, A. H.; Tibbetts, M. S.; Van Stone, D. W.; Zografou, P.; Anderson, C. S.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Glotfelty, K. J.; Grier, J. D.; Hain, R.; Hall, D. M.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Winkelman, S. L.

    2010-03-01

    The CSCview data mining interface is available for browsing the Chandra Source Catalog (CSC) and downloading tables of quality-assured source properties and data products. Once the desired source properties and search criteria are entered into the CSCview query form, the resulting source matches are returned in a table along with the values of the requested source properties for each source. (The catalog can be searched on any source property, not just position.) At this point, the table of search results may be saved to a text file, and the available data products for each source may be downloaded. CSCview save files are output in RDB-like and VOTable format. The available CSC data products include event files, spectra, lightcurves, and images, all of which are processed with the CIAO software. CSC data may also be accessed non-interactively with Unix command-line tools such as cURL and Wget, using ADQL 2.0 query syntax. In fact, CSCview features a separate ADQL query form for those who wish to specify this type of query within the GUI. Several interfaces are available for learning if a source is included in the catalog (in addition to CSCview): 1) the CSC interface to Sky in Google Earth shows the footprint of each Chandra observation on the sky, along with the CSC footprint for comparison (CSC source properties are also accessible when a source within a Chandra field-of-view is clicked); 2) the CSC Limiting Sensitivity online tool indicates if a source at an input celestial location was too faint for detection; 3) an IVOA Simple Cone Search interface locates all CSC sources within a specified radius of an R.A. and Dec.; and 4) the CSC-SDSS cross-match service returns the list of sources common to the CSC and SDSS, either all such sources or a subset based on search criteria.

  15. THE X-RAY PROPERTIES OF THE OPTICALLY BRIGHTEST MINI-BAL QUASARS FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Comins, M. L.; Garmire, Gordon P.; Schneider, Donald P.; Gibson, Robert R.; Shemmer, Ohad

    2010-01-01

    We have compiled a sample of 14 of the optically brightest radio-quiet quasars (m i ≤ 17.5 and z ≥ 1.9) in the Sloan Digital Sky Survey Data Release 5 quasar catalog that have C IV mini-broad absorption lines (mini-BALs) present in their spectra. X-ray data for 12 of the objects were obtained via a Chandra snapshot survey using ACIS-S, while data for the other two quasars were obtained from archival XMM-Newton observations. Joint X-ray spectral analysis shows that the mini-BAL quasars have a similar average power-law photon index (Γ ∼ 1.9) and level of intrinsic absorption (N H ∼ 21 cm -2 ) as non-BMB (neither BAL nor mini-BAL) quasars. Mini-BAL quasars are more similar to non-BMB quasars than to BAL quasars in their distribution of relative X-ray brightness (assessed with Δα ox ). Relative colors indicate mild dust reddening in the optical spectra of mini-BAL quasars. Significant correlations between Δα ox and UV absorption properties are confirmed for a sample of 56 sources combining mini-BAL and BAL quasars with high signal-to-noise ratio rest-frame UV spectra, which generally supports models in which X-ray absorption is important in enabling driving of the UV absorption-line wind. We also propose alternative parameterizations of the UV absorption properties of mini-BAL and BAL quasars, which may better describe the broad absorption troughs in some respects.

  16. THE PLERIONIC SUPERNOVA REMNANT G21.5-0.9 POWERED BY PSR J1833-1034: NEW SPECTROSCOPIC AND IMAGING RESULTS REVEALED WITH THE CHANDRA X-RAY OBSERVATORY

    International Nuclear Information System (INIS)

    Matheson, Heather; Safi-Harb, Samar

    2010-01-01

    In 1999, the Chandra X-ray Observatory revealed a 150'' radius halo surrounding the 40'' radius pulsar wind nebula (PWN) G21.5-0.9. A 2005 imaging study of G21.5-0.9 showed that the halo is limb-brightened and suggested that this feature is a candidate for the long-sought supernova remnant (SNR) shell. We present a spectral analysis of SNR G21.5-0.9, using the longest effective observation to date (578.6 ks with the Advanced CCD Imaging Spectrometer (ACIS) and 278.4 ks with the High-Resolution Camera (HRC)) to study unresolved questions about the spectral nature of remnant features, such as the limb brightening of the X-ray halo and the bright knot in the northern part of the halo. The Chandra analysis favors the non-thermal interpretation of the limb. Its spectrum is fit well with a power-law model with a photon index Γ = 2.13 (1.94-2.33) and a luminosity of L x (0.5-8 keV) = (2.3 ± 0.6) x 10 33 erg s -1 (at an assumed distance of 5.0 kpc). An srcut model was also used to fit the spectrum between the radio and X-ray energies. While the absence of a shell in the radio still prohibits constraining the spectrum at radio wavelengths, we assume a range of spectral indices to infer the 1 GHz flux density and the rolloff frequency of the synchrotron spectrum in X-rays and find that the maximum energy to which electrons are accelerated at the shock ranges from ∼60 to 130 TeV (B/10 μG) -1/2 , where B is the magnetic field in units of μG. For the northern knot, we constrain previous models and find that a two-component power-law (or srcut) + pshock model provides an adequate fit, with the pshock model requiring a very low ionization timescale and solar abundances for Mg and Si. Our spectroscopic study of PSR J1833-1034, the highly energetic pulsar powering G21.5-0.9, shows that its spectrum is dominated by hard non-thermal X-ray emission with some evidence of a thermal component that represents ∼9% of the observed non-thermal emission and that suggests non

  17. Stellar Forensics with Striking Image from Chandra

    Science.gov (United States)

    2007-10-01

    A spectacular new image shows how complex a star's afterlife can be. By studying the details of this image made from a long observation by NASA's Chandra X-ray Observatory, astronomers can better understand how some stars die and disperse elements like oxygen into the next generation of stars and planets. At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen. The image shows a rapidly expanding, intricately structured, debris field that contains, along with oxygen, other elements such as neon and silicon that were forged in the star before it exploded. Hard X-ray Image of G292.0+1.8 Hard X-ray Image of G292.0+1.8 "We are finding that, just like snowflakes, each supernova remnant is complicated and beautiful in its own way," said Sangwook Park of Penn State who led the work, released in conjunction with the "8 Years of Chandra" symposium in Huntsville, Ala. The new, deep Chandra image - equaling nearly 6 days worth of observing time - shows an incredibly complex structure. Understanding the details of G292.0+1.8 is especially important because astronomers have considered it to be a "textbook" case of a supernova created by the death of a massive star. Chandra X-ray Image of G292.0+1.8 Chandra X-ray Image of G292.0+1.8 By mapping the distribution of X-rays in different energy bands, the Chandra image traces the distribution of chemical elements ejected in the supernova. The results imply that the explosion was not symmetrical. For example, blue (silicon and sulfur) and green (magnesium) are seen strongly in the upper right, while yellow and orange (oxygen) dominate the lower left. These elements light up at different temperatures, indicating that the temperature is higher in the upper right portion of G292.0+1.8. Slightly below and to the left of the center of G292.0+1.8 is a pulsar, a dense, rapidly rotating neutron star that remained behind after the original star

  18. Harish-Chandra Research Institute, Allahabad

    Indian Academy of Sciences (India)

    The Harish-Chandra Research Institute (known as the Mehta Research Institute of Math- ematics and Mathematical Physics until October 2000) came into existence in 1975, with a donation of some land and Rs. 40 lakhs from the B S Mehta Trust in Calcutta. With the aim of converting it into a top-class research Institute in ...

  19. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    Science.gov (United States)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  20. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    bright active galaxies, often referred to as Active Galactic Nuclei, or AGN. Many astronomers think that all galaxies have central, supermassive black holes, yet only a small percent show activity. What is needed to power the AGN is fuel in the form of a nearby reservoir of gas and dust. Galaxy clusters contain hundreds to thousands of galaxies. They are the largest known structures in the universe and serve as a microcosm for the mechanics of the Universe at large. The galaxies in clusters are often old, reddish elliptically shaped galaxies, distinct from blue, spiral galaxies like our own. These old galaxies also do not have many young stars. The theory now in question is that as galaxies enter into clusters at high speeds, they are stripped of their interstellar gas, much as a strong wind strips leaves from a tree. Galaxies may also collide with one another and use up all of their gas in one huge burst of star formation triggered by this interaction. These processes remove most, if not all, of the gas that isn't locked up in stars. As they no longer have the raw material to form new stars, the stellar population slowly gets old and the Galaxy appears red. No gas is left to fuel an AGN. Previous surveys of galaxy clusters with optical telescopes have found that about only one percent of the galaxies in a cluster have AGN. This latest Chandra observation if typical, however, bumps the count up to about 5 percent. The team found six red galaxies with high X-ray activity during a nearly 14-hour Chandra observation of a galaxy cluster named Abell 2104, over 700 million light years from Earth. Based on previous optical surveys, only one was expected. "If we relied on optical data alone, we would have missed these hidden monsters," said co-author Dr. John Mulchaey. Only one of the six AGN, in fact, had the optical spectral properties typical of AGN activity. "The presence of these AGN indicate that supermassive black holes have somehow retained a fuel source, despite the

  1. The very soft X-ray spectrum of the double pulsar system J0737-3039

    NARCIS (Netherlands)

    Possenti, A.; Rea, N.; McLaughlin, M.A.; Camilo, F.; Kramer, M.; Burgay, M.; Joshi, B.C.; Lyne, A.G.

    2008-01-01

    We present the results of an 80 ks Chandra ACIS-S observation of the double pulsar system J0737-3039. Furthermore, we report on spectral, spatial and timing analysis of the combined X-ray observations performed so far for this system. Fitting a total of similar to 1100 photons, we show that the

  2. Searches for 3.5 keV Absorption Features in Cluster AGN Spectra

    Science.gov (United States)

    Conlon, Joseph P.

    2018-06-01

    We investigate possible evidence for a spectral dip around 3.5 keV in central cluster AGNs, motivated by previous results for archival Chandra observations of the Perseus cluster and the general interest in novel spectral features around 3.5 keV that may arise from dark matter physics. We use two deep Chandra observations of the Perseus and Virgo clusters that have recently been made public. In both cases, mild improvements in the fit (Δχ2 = 4.2 and Δχ2 = 2.5) are found by including such a dip at 3.5 keV into the spectrum. A comparable result (Δχ2 = 6.5) is found re-analysing archival on-axis Chandra ACIS-S observations of the centre of the Perseus cluster.

  3. Ten Years of Chandra

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We celebrated the 10-th anniversary of the Launch of the Chandra X-ray Observatory on July 13, 2009. During these 10 years data from this Great Observatory have had a profound impact on 21st century astrophysics. With its unrivaled capability to produce sub-arcsecond images, the Observatory has enabled astronomers to make new discoveries in topics as diverse as comets and cosmology. We shall review some of the highlights, discuss the current status, and future plans.

  4. Co-infection of Acipenserid herpesvirus 2 (AciHV-2) and Streptococcus iniae in cultured white sturgeon Acipenser transmontanus.

    Science.gov (United States)

    Soto, Esteban; Richey, Christine; Stevens, Brittany; Yun, Susan; Kenelty, Kirsten; Reichley, Stephen; Griffin, Matt; Kurobe, Tomofumi; Camus, Al

    2017-03-30

    A mortality event in cultured white sturgeon Acipenser transmontanus (Richardson, 1836) sub-adults was investigated. After transfer between farms, high mortality was observed in fish, associated with back arching, abnormal swimming, and ulcerative skin lesions. Necropsy of moribund individuals revealed hemorrhagic ascites and petechial hemorrhages in the coelomic peritoneum and serosa of internal organs. Acipenserid herpesvirus 2 (AciHV-2) was isolated from external tissue samples, then identified and genotyped by sequencing of the terminase and polymerase genes. In addition, Streptococcus iniae was recovered from internal organs of affected fish. Histologic changes were limited to interstitial hematopoietic areas of the kidney and consisted of small foci of necrosis accompanied by fibrin deposition, minimal inflammatory response, and small numbers of bacterial cocci compatible with streptococci. Identity was confirmed by partial sequencing of the 16S rRNA, rpoB, and gyrB genes. Genetic fingerprinting demonstrated a genetic profile distinct from S. iniae isolates recovered from previous outbreaks in wild and cultured fish in North America, South America, and the Caribbean. Although the isolates were resistant to white sturgeon complement in serum killing assays, in vivo challenges failed to fulfill Koch's postulates. However, the clinical presentation, coupled with consistent recovery of S. iniae and AciHV-2 from moribund fish, suggests viral and bacterial co-infection were the proximate cause of death. To our knowledge, this represents the first report of AciHV-2 and S. iniae co-infection in cultured white sturgeon.

  5. The Role of Project Science in the Chandra X-Ray Observatory

    Science.gov (United States)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  6. CTIO, ROSAT HRI, and Chandra ACIS Observations of the Archetypical Mixed-morphology Supernova Remnant W28 (G6.4–0.1)

    International Nuclear Information System (INIS)

    Pannuti, Thomas G.; Kosakowski, Alekzander R.; Ernst, Sonny; Rho, Jeonghee; Kargaltsev, Oleg; Rangelov, Blagoy; Hare, Jeremy; Winkler, P. Frank; Keohane, Jonathan W.

    2017-01-01

    We present a joint analysis of optical emission-line and X-ray observations of the archetypical Galactic mixed-morphology supernova remnant (MMSNR) W28 (G6.4–0.1). MMSNRs comprise a class of sources whose shell-like radio morphology contrasts with a filled center in X-rays; the origin of these contrasting morphologies remains uncertain. Our CTIO images reveal enhanced [S ii] emission relative to H α along the northern and eastern rims of W28. Hydroxyl (OH) masers are detected along these same rims, supporting prior studies suggesting that W28 is interacting with molecular clouds at these locations, as observed for several other MMSNRs. Our ROSAT HRI mosaic of W28 provides almost complete coverage of the supernova remnant (SNR). The X-ray and radio emission is generally anti-correlated, except for the luminous northeastern rim, which is prominent in both bands. Our Chandra observation sampled the X-ray-luminous central diffuse emission. Spectra extracted from the bright central peak and from nearby annular regions are best fit with two overionized recombining plasma models. We also find that while the X-ray emission from the central peak is dominated by swept-up material, that from the surrounding regions shows evidence for oxygen-rich ejecta, suggesting that W28 was produced by a massive progenitor. We also analyze the X-ray properties of two X-ray sources (CXOU J175857.55−233400.3 and 3XMM J180058.5–232735) projected into the interior of W28 and conclude that neither is a neutron star associated with the SNR. The former is likely to be a foreground cataclysmic variable or a quiescent low-mass X-ray-binary, while the latter is likely to be a coronally active main-sequence star.

  7. CTIO, ROSAT HRI, and Chandra ACIS Observations of the Archetypical Mixed-morphology Supernova Remnant W28 (G6.4–0.1)

    Energy Technology Data Exchange (ETDEWEB)

    Pannuti, Thomas G.; Kosakowski, Alekzander R.; Ernst, Sonny [Space Science Center, Department of Earth and Space Sciences, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Kargaltsev, Oleg; Rangelov, Blagoy; Hare, Jeremy [Department of Physics, 214 Samson Hall, George Washington University, Washington, D.C. 20052 (United States); Winkler, P. Frank [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Keohane, Jonathan W., E-mail: t.pannuti@moreheadstate.edu, E-mail: jrho@seti.org, E-mail: jrho@sofia.usra.edu, E-mail: kargaltsev@gwu.edu, E-mail: alekzanderkos@ou.edu, E-mail: winkler@middlebury.edu, E-mail: jkeohane@hsc.edu [Department of Physics and Astronomy, Hampden-Sydney College, Hampden-Sydney, VA 23943 (United States)

    2017-04-10

    We present a joint analysis of optical emission-line and X-ray observations of the archetypical Galactic mixed-morphology supernova remnant (MMSNR) W28 (G6.4–0.1). MMSNRs comprise a class of sources whose shell-like radio morphology contrasts with a filled center in X-rays; the origin of these contrasting morphologies remains uncertain. Our CTIO images reveal enhanced [S ii] emission relative to H α along the northern and eastern rims of W28. Hydroxyl (OH) masers are detected along these same rims, supporting prior studies suggesting that W28 is interacting with molecular clouds at these locations, as observed for several other MMSNRs. Our ROSAT HRI mosaic of W28 provides almost complete coverage of the supernova remnant (SNR). The X-ray and radio emission is generally anti-correlated, except for the luminous northeastern rim, which is prominent in both bands. Our Chandra observation sampled the X-ray-luminous central diffuse emission. Spectra extracted from the bright central peak and from nearby annular regions are best fit with two overionized recombining plasma models. We also find that while the X-ray emission from the central peak is dominated by swept-up material, that from the surrounding regions shows evidence for oxygen-rich ejecta, suggesting that W28 was produced by a massive progenitor. We also analyze the X-ray properties of two X-ray sources (CXOU J175857.55−233400.3 and 3XMM J180058.5–232735) projected into the interior of W28 and conclude that neither is a neutron star associated with the SNR. The former is likely to be a foreground cataclysmic variable or a quiescent low-mass X-ray-binary, while the latter is likely to be a coronally active main-sequence star.

  8. 4th IEEE/ACIS International Conference on Computer and Information Science

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 14th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2015) which was held on June 28 – July 1, 2015 in Las Vegas, USA. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them.

  9. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  10. Chandra X-ray Center Science Data Systems Regression Testing of CIAO

    Science.gov (United States)

    Lee, N. P.; Karovska, M.; Galle, E. C.; Bonaventura, N. R.

    2011-07-01

    The Chandra Interactive Analysis of Observations (CIAO) is a software system developed for the analysis of Chandra X-ray Observatory observations. An important component of a successful CIAO release is the repeated testing of the tools across various platforms to ensure consistent and scientifically valid results. We describe the procedures of the scientific regression testing of CIAO and the enhancements made to the testing system to increase the efficiency of run time and result validation.

  11. Invited Review Article: The Chandra X-ray Observatory

    Science.gov (United States)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  12. Detection of Very Low-Frequency Quasi-Periodic Oscillations in the 2015 Outburst of V404 Cygni

    DEFF Research Database (Denmark)

    Huppenkothen, D.; Younes, G.; Ingram, A.

    2016-01-01

    -ray missions: Swift/XRT, Fermi/GBM, Chandra/ACIS, INTEGRAL's IBIS/ISGRI and JEM-X, and NuSTAR. We report the detection of a QPO at 18 mHz simultaneously with both Fermi/GBM and Swift/XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital...

  13. The Chandra Source Catalog 2.0: Interfaces

    Science.gov (United States)

    D'Abrusco, Raffaele; Zografou, Panagoula; Tibbetts, Michael; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Van Stone, David W.

    2018-01-01

    Easy-to-use, powerful public interfaces to access the wealth of information contained in any modern, complex astronomical catalog are fundamental to encourage its usage. In this poster,I present the public interfaces of the second Chandra Source Catalog (CSC2). CSC2 is the most comprehensive catalog of X-ray sources detected by Chandra, thanks to the inclusion of Chandra observations public through the end of 2014 and to methodological advancements. CSC2 provides measured properties for a large number of sources that sample the X-ray sky at fainter levels than the previous versions of the CSC, thanks to the stacking of single overlapping observations within 1’ before source detection. Sources from stacks are then crossmatched, if multiple stacks cover the same area of the sky, to create a list of unique, optimal CSC2 sources. The properties of sources detected in each single stack and each single observation are also measured. The layered structure of the CSC2 catalog is mirrored in the organization of the CSC2 database, consisting of three tables containing all properties for the unique stacked sources (“Master Source”), single stack sources (“Stack Source”) and sources in any single observation (“Observation Source”). These tables contain estimates of the position, flags, extent, significances, fluxes, spectral properties and variability (and associated errors) for all classes of sources. The CSC2 also includes source region and full-field data products for all master sources, stack sources and observation sources: images, photon event lists, light curves and spectra.CSCview, the main interface to the CSC2 source properties and data products, is a GUI tool that allows to build queries based on the values of all properties contained in CSC2 tables, query the catalog, inspect the returned table of source properties, browse and download the associated data products. I will also introduce the suite of command-line interfaces to CSC2 that can be used in

  14. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  15. Acharya Prafulla Chandra at the College of Science

    Indian Academy of Sciences (India)

    and by his remarkable book, 'History of Hindu Chemistry'. His activities progressed ... chemistry journals in England, Germany and America. Prafulla. Chandra ... Presidency College in 1889, he wrote an illustrated zoology primer for children.

  16. NASA Chandra X-ray Observatory Selected as Editor's Choice in 2000 Discover Magazine Awards for Technological Innovation

    Science.gov (United States)

    2000-06-01

    The Chandra X-ray Observatory, NASA's newest and most powerful X-ray space telescope, has been selected as the winner of the Editor's Choice category of the 2000 Discover Magazine Awards for Technological Innovation. The team of government, industry, university and research institutions that designed, built and deployed Chandra for NASA's Marshall Space Flight Center, Huntsville, Ala, will be formally recognized June 24 at a gala awards celebration at Epcot at the Walt Disney World Resort in Orlando, Fl. Dr. Harvey Tananbaum, director of the Smithsonian Astrophysical Observatory's Chandra X-ray Science Center, Cambridge, Mass., which conducts the Chandra science mission for NASA, will receive the award on behalf of the team. "Chandra has opened a new window for astronomers into the universe of high-energy cosmic events such as pulsars, supernova remnants and black holes," said Tananbaum. "We're now able to create spectacularly detailed images of celestial phenomena whose mere existence we could only hypothesize before." Among Chandra's most significant discoveries to date, he lists the detection of a giant ring around the heart of the Crab Nebula, details of the shock wave created by an exploding star and resolution of the high-energy X-ray "glow" in the universe into millions of specific light sources. "The successful launch, deployment and on-orbit operations of NASA's Chandra X-ray Observatory is a testament to the solid partnership between TRW, NASA and the science community that has been enabling NASA's most important space science missions for the past 40 years," said Timothy W. Hannemann, executive vice president and general manager, TRW Space & Electronics Group. "The extraordinary images that Chandra is delivering daily speaks loudly not only to the quality of the science instruments on board, but also to the engineering talents and dedication to mission success exhibited by every member of NASA's Chandra mission team." Chandra, named in honor of Nobel

  17. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    Science.gov (United States)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  18. Chandra Looks Over a Cosmic Four-Leaf Clover

    Science.gov (United States)

    2004-07-01

    A careful analysis of observations by NASA's Chandra X-ray Observatory of a rare quadruple quasar has uncovered evidence that possibly a single star in a foreground galaxy magnified X-rays coming from the quasar. This discovery gives astronomers a new and extremely precise probe of the gas flow around the supermassive black hole that powers the quasar. "If our interpretation is correct, then we are seeing details around this black hole that are 50,000 times smaller than either the Hubble Space Telescope or Chandra could see under ordinary circumstances," said George Chartas of Penn State University in University Park, and lead author of a recent article on the Cloverleaf quasar in The Astrophysical Journal. The Cloverleaf quasar is a single object about 11 billion light years from Earth that appears as four images produced by a process known as gravitational lensing. If one or more galaxies lie along the line of sight to a more distant quasar, the gravitational field of the intervening galaxies can bend and magnify the light from the quasar and produce multiple images of it. The four images of the Cloverleaf quasar have been produced by one or more intervening galaxies. Cloverleaf Quasar Chandra X-ray Image of the Cloverleaf quasar One of the images (A), in the Cloverleaf is brighter than the others in both optical and X-ray light. Chartas and his colleagues found the relative brightness of this image was greater in X-ray than in optical light. The X-rays from iron atoms were also enhanced relative to X-rays at lower energies. Since the amount of brightening due to gravitational lensing does not vary with the wavelength, this means that an additional object has magnified the X-rays. The increased magnification of the X-ray light can be explained by gravitational microlensing, an effect which has been used to search for compact stars and planets in our galaxy. Microlensing occurs when a star or a multiple star system passes in front of light from a background object

  19. APC implementation in Chandra Asri - ethylene plant

    Science.gov (United States)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  20. Distant Galaxies, Black Holes and Other Celestial Phenomena: NASA's Chandra X-ray Observatory Marks Four Years of Discovery Firsts

    Science.gov (United States)

    2003-09-01

    Launched in 1999, NASA's Chandra X-ray Observatory promised to be one of the world's most powerful tools to better understand the structure and evolution of the universe - and it has lived up to expectations. "In four short years, Chandra has achieved numerous scientific firsts, revealing new details on all categories of astronomical objects including distant galaxies, planets, black holes and stars," said Chandra project scientist Dr. Martin C. Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "In the last year alone, Chandra has generated the most sensitive or 'deepest' X-ray exposure ever made, shed new light on the planet Mars, and made several new discoveries involving supermassive black holes," added Weisskopf, who has dedicated nearly 30 years to the Chandra program. The deepest X-ray exposure, Chandra Deep Field North, captured for 23 days an area of the sky one-fifth the size of the full moon. Even though the faintest sources detected produced only one X-ray photon every four days, Chandra found more than 600 X-ray sources -- most of them supermassive black holes in galaxy centers. If the number of black holes seen in that area of the sky were typical, 300 million supermassive black holes would be detectable over the whole sky. In our own solar system, another Chandra image offered scientists their first look at X-rays from Mars . Not only did Chandra detect X-rays in the sparse upper atmosphere 750 miles above the planet, it also offered evidence for a faint halo of X-rays extending out 4,350 miles above the Martian surface. "In its fourth year of operation, Chandra continues to prove itself an engineering marvel," said Chandra Program Manager Keith Hefner at NASA's Marshall Center. "At its highest point, it travels one-third of the way to the Moon, yet it consistently delivers breathtaking results gleaned from millions, sometimes billions, of light years away." Some of Chandra's most intriguing discoveries involved black holes

  1. The Chandra X-ray Observatory data processing system

    Science.gov (United States)

    Evans, Ian; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Janet; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Plummer, David; Zografou, Panagoula

    2006-06-01

    Raw data from the Chandra X-ray Observatory are processed by a set of standard data processing pipelines to create scientifically useful data products appropriate for further analysis by end users. Fully automated pipelines read the dumped raw telemetry byte stream from the spacecraft and perform the common reductions and calibrations necessary to remove spacecraft and instrumental signatures and convert the data into physically meaningful quantities that can be further analyzed by observers. The resulting data products are subject to automated validation to ensure correct pipeline processing and verify that the spacecraft configuration and scheduling matched the observers request and any constraints. In addition, pipeline processing monitors science and engineering data for anomalous indications and trending, and triggers alerts if appropriate. Data products are ingested and stored in the Chandra Data Archive, where they are made available for downloading by users. In this paper, we describe the architecture of the data processing system, including the scientific algorithms that are applied to the data, and interfaces to other subsystems. We place particular emphasis on the impacts of design choices on system integrity and maintainability. We review areas where algorithmic improvements or changes in instrument characteristics have required significant enhancements, and the mechanisms used to effect these changes while assuring continued scientific integrity and robustness. We discuss major enhancements to the data processing system that are currently being developed to automate production of the Chandra Source Catalog.

  2. TGCat, The Chandra Transmission Grating Catalog and Archive: Systems, Design and Accessibility

    OpenAIRE

    Mitschang, Arik W.; Huenemoerder, David P.; Nichols, Joy S.

    2009-01-01

    The recently released Chandra Transmission Grating Catalog and Archive, TGCat, presents a fully dynamic on-line catalog allowing users to browse and categorize Chandra gratings observations quickly and easily, generate custom plots of resulting response corrected spectra on-line without the need for special software and to download analysis ready products from multiple observations in one convenient operation. TGCat has been registered as a VO resource with the NVO providing direct access to ...

  3. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    International Nuclear Information System (INIS)

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Fiore, F.; Mainieri, V.; Capak, P.; Caputi, K.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ Δz/(1+z spec ) ∼0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg 2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  4. Jet Power and Black Hole Assortment Revealed in New Chandra Image

    Science.gov (United States)

    2008-01-01

    A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle

  5. The Cosmic History of Black Hole Accretion from Chandra X-ray Stacking

    Science.gov (United States)

    Treister, Ezequiel; Urry, C.; Schawinski, K.; Lee, N.; Natarajan, P.; Volonteri, M.; Sanders, D. B.

    2012-05-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are black holes growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. We take advantage of the rich multi-wavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Msec Chandra observations (the deepest X-ray data to date), in order to measure the amount of black hole accretion as a function of cosmic history, from z 0 to z 6. We obtain stacked rest-frame X-ray spectra for samples of galaxies binned in terms of their IR luminosity, stellar mass and other galaxy properties. We find that the AGN fraction and their typical luminosities, and thus black hole accretion rates, increase with IR luminosity and stellar mass. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We find evidence for a strong connection between significant black hole growth events and major galaxy mergers from z 0 to z 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. E.T. and K.S. gratefully acknowledges the support provided by NASA through Chandra Postdoctoral Fellowship Award Numbers PF8-90055 and PF9-00069, respectively issued by the Chandra X-ray Observatory Center. E.T. also thanks support by NASA through Chandra Award SP1-12005X Center of Excellence in Astrophysics and Associated Technologies (PFB 06). C. M. Urry acknowledges support from NSF Grants AST-0407295, AST-0449678, AST-0807570, and Yale University.

  6. VizieR Online Data Catalog: Cool-core clusters with Chandra obs. (Andrade-Santos+, 2017)

    Science.gov (United States)

    Andrade-Santos, F.; Jones, C.; Forman, W. R.; Lovisari, L.; Vikhlinin, A.; van Weeren, R. J.; Murray, S. S.; Arnaud, M.; Pratt, G. W.; Democles, J.; Kraft, R.; Mazzotta, P.; Bohringer, H.; Chon, G.; Giacintucci, S.; Clarke, T. E.; Borgani, S.; David, L.; Douspis, M.; Pointecouteau, E.; Dahle, H.; Brown, S.; Aghanim, N.; Rasia, E.

    2018-02-01

    The main goal of this work is to compare the fraction of cool-core (CC) clusters in X-ray-selected and SZ-selected samples. The first catalog of 189 SZ clusters detected by the Planck mission was released in early 2011 (Planck Collaboration 2011, VIII/88/esz). A Chandra XVP (X-ray Visionary Program--PI: Jones) and HRC Guaranteed Time Observations (PI: Murray) combined to form the Chandra-Planck Legacy Program for Massive Clusters of Galaxies. For each of the 164 ESZ Planck clusters at z<=0.35, we obtained Chandra exposures sufficient to collect at least 10000 source counts. The X-ray sample used here is an extension of the Voevodkin & Vikhlinin (2004ApJ...601..610V) sample. This sample contains 100 clusters and has an effective redshift depth of z<0.3. All have Chandra observations. Of the 100 X-ray-selected clusters, 49 are also in the ESZ sample, and 47 are in the HIFLUGCS (Reiprich & Boehringer 2002ApJ...567..716R) catalog. (2 data files).

  7. M31 in the Chandra Era: A High Definition Movie of a Nearby Galaxy

    Science.gov (United States)

    Kong, Albert; di Stefano, Rosanne

    2009-09-01

    M31 has been a prime targets for all X-ray missions since the first detection in 1974. With its superb spatial resolution, Chandra is unique in resolving dense source regions and detecting faint sources. Since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec. The X-ray skies of M31 not only consist of many transients and variables, globular cluster X-ray sources in M31 are also different from our Milky Way. They are in general more luminous and one of them may even host an intermediate-mass black hole. Supersoft and quasi-soft X-ray sources in M31 are the best kept secret to unlock the nature of the progenitor of Type Ia supernova. In this talk, I will review some of the important Chandra discoveries in M31 in the past 10 years.

  8. Chandra position of IGR J17454-2919 and discovery of a possible NIR counterpart

    DEFF Research Database (Denmark)

    Paizis, A.; Nowak, M.; Chati, S.

    2015-01-01

    On 2014 November 3, we observed the recently discovered INTEGRAL source IGR J17454-2919 (ATels #6530, #6574 and #6602) with Chandra HETGS for 20ks. The J2000.0 Chandra position we obtain is RA: 17 45 27.689 DEC: -29 19 53.83 (90% uncertainty of 0.6") This position (2.4" away from the Swift positi...

  9. SYSTEMATIC UNCERTAINTIES IN THE SPECTROSCOPIC MEASUREMENTS OF NEUTRON STAR MASSES AND RADII FROM THERMONUCLEAR X-RAY BURSTS. III. ABSOLUTE FLUX CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Güver, Tolga [Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, Istanbul (Turkey); Özel, Feryal; Psaltis, Dimitrios [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Marshall, Herman [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Guainazzi, Matteo [European Space Astronomy Centre of ESA, P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Díaz-Trigo, Maria [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-09-20

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826–238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE /PCA as well as by XMM-Newton EPIC-pn and RXTE /PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE /PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE /PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.

  10. Chandra "Hears" A Black Hole For The First Time

    Science.gov (United States)

    2003-09-01

    NASA's Chandra X-ray Observatory detected sound waves, for the first time, from a super-massive black hole. The "note" is the deepest ever detected from an object in the universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics. The black hole resides in the Perseus cluster, located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster's central black hole. perseus animation Illustration of Ripples in Perseus "We have observed the prodigious amounts of light and heat created by black holes, now we have detected the sound," said Andrew Fabian of the Institute of Astronomy (IoA) in Cambridge, England, and leader of the study. In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance, because the note is 57 octaves lower than middle-C (by comparison a typical piano contains only about seven octaves). At a frequency over a million, billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the universe. "The Perseus sound waves are much more than just an interesting form of black hole acoustics," said Steve Allen, also of the IoA and a co-investigator in the research. "These sound waves may be the key in figuring out how galaxy clusters, the largest structures in the universe, grow," Allen said. For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays should cool, and the dense central gas should cool the fastest. The pressure in this cool central gas should then fall, causing gas further out to sink in towards the galaxy, forming trillions of

  11. Electronic flight bag (EFB) : 2010 industry survey

    Science.gov (United States)

    2010-09-01

    This document provides an overview of Electronic Flight Bag (EFB) systems and capabilities, as of June 2010. This document updates and replaces the April 2007 EFB Industry Review (Yeh and Chandra, 2007). As with the previous industry survey, the focu...

  12. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    Science.gov (United States)

    Laycock, Silas

    We propose to expand the scope of our successful project providing a multi-satellite library of X-ray Pulsar observations to the community. The library provides high-level products, activity monitoring, pulse-profiles, phased event files, spectra, and a unique pulse-profile modeling interface. The library's scientific footprint will expand in 4 key directions: (1) Update, by processing all new XMM-Newton and Chandra observations (2015-2017) of X-ray Binary Pulsars in the Magellanic Clouds. (2) Expand, by including all archival Suzaku, Swift and NuStar observations, and including Galactic pulsars. (3) Improve, by offering innovative data products that provide deeper insight. (4) Advance, by implementing a new generation of physically motivated emission and pulse-profile models. The library currently includes some 2000 individual RXTE-PCA, 200 Chandra ACIS-I, and 120 XMM-PN observations of the SMC spanning 15 years, creating an unrivaled record of pulsar temporal behavior. In Phase-2, additional observations of SMC pulsars will be added: 221 Chandra (ACIS-S and ACIS-I), 22 XMM-PN, 142 XMM-MOS, 92 Suzaku, 25 NuSTAR, and >10,000 Swift; leveraging our pipeline and analysis techniques already developed. With the addition of 7 Galactic pulsars each having many hundred multisatellite observations, these datasets cover the entire range of variability timescales and accretion regimes. We will model the pulse-profiles using state of the art techniques to parameterize their morphology and obtain the distribution of offsets between magnetic and spin axes, and create samples of profiles under specific accretion modes (whether pencil-beam or fan-beam dominated). These products are needed for the next generation of advances in neutron star theory and modeling. The long-duration of the dataset and “whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X

  13. A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources

    Science.gov (United States)

    Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong

    2018-05-01

    Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.

  14. 75 FR 7471 - Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of...

    Science.gov (United States)

    2010-02-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2354-10] Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of Complaint February 3, 2010. Take notice that on December 14, 2009, as amended on January 8, 2010, Chandra Coffee and Rabun...

  15. A Search for New Galactic Magnetars in Archival Chandra and XMM-Newton Observations

    Science.gov (United States)

    Muno, M. P.; Gaensler, B. M.; Nechita, A.; Miller, J. M.; Slane, P. O.

    2008-06-01

    We present constraints on the number of Galactic magnetars, which we have established by searching for sources with periodic variability in 506 archival Chandra observations and 441 archival XMM-Newton observations of the Galactic plane (| b| fall within our survey, then there are 59+ 92-32 in the Galaxy. Barely detectable magnetars (LX = 3 × 1033 ergs s-1 and Arms = 15% ) could have been identified throughout ≈0.4% of the spiral arms. The lack of new examples implies that birth rate of magnetars is between 0.003 and 0.06 yr-1. Therefore, the birth rate of magnetars is at least 10% of that for normal radio pulsars, and could exceed that value, unless transient magnetars are active for gtrsim105 yr.

  16. The Chandra Source Catalog 2.0: Building The Catalog

    Science.gov (United States)

    Grier, John D.; Plummer, David A.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    To build release 2.0 of the Chandra Source Catalog (CSC2), we require scientific software tools and processing pipelines to evaluate and analyze the data. Additionally, software and hardware infrastructure is needed to coordinate and distribute pipeline execution, manage data i/o, and handle data for Quality Assurance (QA) intervention. We also provide data product staging for archive ingestion.Release 2 utilizes a database driven system used for integration and production. Included are four distinct instances of the Automatic Processing (AP) system (Source Detection, Master Match, Source Properties and Convex Hulls) and a high performance computing (HPC) cluster that is managed to provide efficient catalog processing. In this poster we highlight the internal systems developed to meet the CSC2 challenge.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  17. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    Science.gov (United States)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  18. An HST Survey of Intermediate Luminosity X-ray Objects

    Science.gov (United States)

    Roye, E. W.; Colbert, E. J. M.; Heckman, T.; Ptak, R. F.; van der Marel, R. P.

    2003-03-01

    We searched for optical counterparts to 54 Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs) using HST WFPC2 archive data, and have uncovered a high yield of intriguing possible correlations. A total of 124 IXOs were identified from searching all of the Chandra ACIS archival galaxy data as of July 17, 2002. Archival WFPC2 data were available for 54 of these IXOs. The optical data utilized in this study consisted of 121 HST WFPC2 associations (stacked images). We will discuss the various methods used to register the HST WFPC2 images with the Chandra X-ray images. Our preliminary analysis indicates that 37 ( ˜70%) of the 54 IXOs have at least one 4 sigma counterpart within 1" of the IXO position, and ˜25% have unique counterparts (mostly in elliptical galaxies). The detection limit of the counterparts was typically 24-25 magnitudes in B, V, and R. The absolute magnitudes of many of the found counterparts appeared to correspond roughly to either the expected magnitudes for globular clusters, or the expected magnitudes for the brightest stars. Initial results illustrate that of the 37 IXOs with counterparts, 25 ( ˜70%) were in spiral, irregular, and merger galaxies, where the counterparts were often diffuse or clump-like sources. The counterparts found in elliptical galaxies were primarily single luminous point-sources, most likely globular clusters. We will discuss the results of color analysis for fields where counterparts in multiple bands exist, particularly for cases where a single counterpart is found. A preliminary finding in elliptical galaxies is that globular clusters associated with IXOs tend to be red, suggesting that IXOs are not found in metal-poor globular clusters.

  19. CHANDRA X-RAY DETECTION OF THE ENIGMATIC FIELD STAR BP Psc

    International Nuclear Information System (INIS)

    Kastner, Joel H.; Montez, Rodolfo; Rodriguez, David; Zuckerman, B.; Perrin, Marshall D.; Grosso, Nicolas; Forveille, Thierry; Graham, James R.

    2010-01-01

    BP Psc is a remarkable emission-line field star that is orbited by a dusty disk and drives a parsec-scale system of jets. We report the detection by the Chandra X-ray Observatory of a weak X-ray point source coincident with the centroids of optical/IR and submillimeter continuum emission at BP Psc. As the star's photosphere is obscured throughout the visible and near-infrared, the Chandra X-ray source likely represents the first detection of BP Psc itself. The X-rays most likely originate with magnetic activity at BP Psc and hence can be attributed either to a stellar corona or to star-disk interactions. The log of the ratio of X-ray to bolometric luminosity, log(L X /L bol ), lies in the range -5.8 to -4.2. This is smaller than log(L X /L bol ) ratios typical of low-mass, pre-main sequence stars, but is well within the log(L X /L bol ) range observed for rapidly rotating (FK Com-type) G giant stars. Hence, the Chandra results favor an exotic model wherein the disk/jet system of BP Psc is the result of its very recently engulfing a companion star or a giant planet, as the primary star ascended the giant branch.

  20. 12th ACIS/IEEE International Conference on Computer Science and Information Science

    CERN Document Server

    2013-01-01

    This edited book presents scientific results of the 12th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2013) which was held on June 16-20, 2013 in Toki Messe, Niigata, Japan. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them The conference organizers selected the best 20 papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review.    

  1. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  2. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  3. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    International Nuclear Information System (INIS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  4. TGCat : THE CHANDRA TRANSMISSION GRATING DATA CATALOG AND ARCHIVE

    International Nuclear Information System (INIS)

    Huenemoerder, David P.; Dewey, Daniel; Nowak, Michael A.; Schulz, Norbert S.; Davis, John E.; Houck, John C.; Marshall, Herman L.; Noble, Michael S.; Canizares, Claude R.; Mitschang, Arik; Nichols, Joy S.; Morgan, Doug

    2011-01-01

    The Chandra Transmission Grating Data Archive and Catalog (TGCat) provides easy access to analysis-ready products, specifically, high-resolution X-ray count spectra and their corresponding calibrations. The web interface makes it easy to find observations of a particular object, type of object, or type of observation; to quickly assess the quality and potential usefulness of the spectra from pre-computed summary plots; or to customize a view with an interactive plotter, optionally combining spectra over multiple orders or observations. Data and responses can be downloaded as a package or as individual files, and the query results themselves can be retrieved as ASCII or Virtual Observatory tables. Portable reprocessing scripts used to create the archive and which use the Chandra X-ray Center's (CXC's) software and other publicly available software are also available, facilitating standard or customized reprocessing from Level 1 CXC archival data to spectra and responses with minimal user interaction.

  5. Action at the Horizon: Chandra/EHT Observations of Sgr A*

    Science.gov (United States)

    Neilsen, Joseph

    2017-09-01

    In April 2017, the Event Horizon Telescope will observe Sgr A* with imaging quality sufficient to resolve the shadow of the black hole, while providing a close-up view of accretion at the horizon. As Sgr A* is a well-known source of X-ray flares, coordinated Chandra/EHT observations offer an incredible opportunity: a chance to observe structures (e.g., hotspots) near the event horizon while tracking their high-energy variability. In anticipation of a follow-up campaign in 2018, we are requesting 4x33 ks Chandra observations of Sgr A* to be coordinated with EHT. This campaign will double our chances of simultaneous flares. We will search for flares and hotspots, provide priors for EHT image reconstruction, and track any activity associated with the closest approach of the massive star S0-2.

  6. VizieR Online Data Catalog: The Chandra Source Catalog, Release 1.1 (Evans+ 2012)

    Science.gov (United States)

    Evans, I. N.; Primini, F. A.; Glotfelty, C. S.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G.; Grier, J. D.; Hain, R. M.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Kashyap, V. L.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Mossman, A. E.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2014-01-01

    This version of the catalog is release 1.1. It includes the information contained in release 1.0.1, plus point and compact source data extracted from HRC imaging observations, and catch-up ACIS observations released publicly prior to the end of 2009. (1 data file).

  7. THE CHANDRA SOURCE CATALOG

    International Nuclear Information System (INIS)

    Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Harbo, Peter N.; He Xiangqun; Karovska, Margarita; Kashyap, Vinay L.; Davis, John E.; Houck, John C.; Hall, Diane M.

    2010-01-01

    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public Advanced CCD Imaging Spectrometer imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents ∼<30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of ∼<1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a

  8. The Chandra Source Catalog

    Science.gov (United States)

    Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger M.; Hall, Diane M.; Harbo, Peter N.; He, Xiangqun Helen; Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael S.; Van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2010-07-01

    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public Advanced CCD Imaging Spectrometer imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents lsim30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of lsim1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a

  9. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  10. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.

    Science.gov (United States)

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell

    2000-06-20

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  11. 3th IEEE/ACIS International Conference on Computer and Information Science

    CERN Document Server

    2015-01-01

    This edited book presents scientific results of the 13th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2014) which was held on June 4-6, 2014 in Taiyuan, China. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference.  The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 14 of the conference’s most promis...

  12. Searching for the 3.5 keV Line in the Deep Fields with Chandra: The 10 Ms Observations

    Science.gov (United States)

    Cappelluti, Nico; Bulbul, Esra; Foster, Adam; Natarajan, Priyamvada; Urry, Megan C.; Bautz, Mark W.; Civano, Francesca; Miller, Eric; Smith, Randall K.

    2018-02-01

    We report a systematic search for an emission line around 3.5 keV in the spectrum of the cosmic X-ray background using a total of ∼10 Ms Chandra observations toward the COSMOS Legacy and Extended Chandra Deep Field South survey fields. We find marginal evidence of a feature at an energy of ∼3.51 keV with a significance of 2.5–3σ, depending on the choice of statistical treatment. The line intensity is best fit at (8.8 ± 2.9) × 10‑7 ph cm‑2 s‑1 when using a simple Δχ 2 or {10.2}-0.4+0.2× {10}-7 ph cm‑2 s‑1 when Markov chain Monte Carlo is used. Based on our knowledge of Chandra and the reported detection of the line by other instruments, an instrumental origin for the line remains unlikely. We cannot, however, rule out a statistical fluctuation, and in that case our results provide a 3σ upper limit at 1.85 × 10‑6 ph cm‑2 s‑1. We discuss the interpretation of this observed line in terms of the iron line background, S XVI charge exchange, as well as potentially being from sterile neutrino decay. We note that our detection is consistent with previous measurements of this line toward the Galactic center and can be modeled as the result of sterile neutrino decay from the Milky Way for the dark matter distribution modeled as a Navarro–Frenk–White profile. For this case, we estimate a mass m ν ∼ 7.01 keV and a mixing angle sin2(2θ) = (0.83–2.75) × 10‑10. These derived values are in agreement with independent estimates from galaxy clusters, the Galactic center, and M31.

  13. Effects of weaning by surrogate mothers (ACI) on tumor development in SD rats treated with methylnitrosourea (MNU) and/or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG).

    Science.gov (United States)

    Shiraki, Katsuhisa; Lu, Huimei; Ishimura, Yoshimasa; Kashiwabara, Shoji; Uesaka, Toshihiro; Katoh, Osamu; Watanabe, Hiromitsu

    2002-09-01

    In this experiment, methylnitrosourea (MNU) was administered, followed by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), to assess effects of surrogate mothering on tumor. One or two day old male SD pups were treated with or without 30 mg/kg body weight of MNU and nursed by SD or ACI surrogate mothers for 5 weeks. When 6-weeks-old they were then treated with 100 ppm MNNG or tap water for 16 weeks. The tumor incidence in the MNNG alone group was significantly lower than with MNU alone or MNU+MNNG (p surrogate mothers after treatment with MNU was increased as compared with the SD mother group. Cumulative development of tumors in the ACI surrogate mother group was also delayed (p mother's milk.

  14. Chandra: Ten Years of Amazing Science with a Great Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We review briefly review the history of the development of the Chandra X-Ray Observatory, highlighting certain details that many attendees of this Conference might not be aware of. We then present a selection of scientific highlights of the first 10 years of this remarkable and unique mission.

  15. Nustar and Chandra Insight into the Nature of the 3-40 Kev Nuclear Emission in Ngc 253

    Science.gov (United States)

    Lehmer, Bret D.; Wik, Daniel R.; Hornschemeier, Ann E.; Ptak, Andrew; Antoniu, V.; Argo, M.K.; Bechtol, K.; Boggs, S.; Christensen, F.E.; Craig, W.W.; hide

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 kiloelectron volt intensity of the inner approximately 20 arcsec (approximately 400 parsec) nuclear region, as measured by NuSTAR, varied by a factor of approximately 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L (sub 2-10 kiloelectron volt) approximately few × 10 (exp 39) erg per s) point source located approximately 1 arcsec from the dynamical center of the galaxy (within the sigma 3 positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or approximately equal to 3 kiloelectron volts. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (power-law model spectral fit value, N(sub H), approximately equal to 1.6 x 10 (exp 23) per square centimeter) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (Phi is approximately equal to 0.4 arcsec); however, this source was offset from the 2012 source position by approximately 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is much greater than 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 kiloelectron volts) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum

  16. A HIGH FIDELITY SAMPLE OF COLD FRONT CLUSTERS FROM THE CHANDRA ARCHIVE

    International Nuclear Information System (INIS)

    Owers, Matt S.; Nulsen, Paul E. J.; Markevitch, Maxim; Couch, Warrick J.

    2009-01-01

    This paper presents a sample of 'cold front' clusters selected from the Chandra archive. The clusters are selected based purely on the existence of surface brightness edges in their Chandra images which are modeled as density jumps. A combination of the derived density and temperature jumps across the fronts is used to select nine robust examples of cold front clusters: 1ES0657 - 558, Abell 1201, Abell 1758N, MS1455.0+2232, Abell 2069, Abell 2142, Abell 2163, RXJ1720.1+2638, and Abell 3667. This sample is the subject of an ongoing study aimed at relating cold fronts to cluster merger activity, and understanding how the merging environment affects the cluster constituents. Here, temperature maps are presented along with the Chandra X-ray images. A dichotomy is found in the sample in that there exists a subsample of cold front clusters which are clearly mergers based on their X-ray morphologies, and a second subsample of clusters which harbor cold fronts, but have surprisingly relaxed X-ray morphologies, and minimal evidence for merger activity at other wavelengths. For this second subsample, the existence of a cold front provides the sole evidence for merger activity at X-ray wavelengths. We discuss how cold fronts can provide additional information which may be used to constrain merger histories, and also the possibility of using cold fronts to distinguish major and minor mergers.

  17. Chandra Observations of Tycho's Supernova Remnant U. Hwang , R ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    runaway thermal instabilities in a white dwarf. It was observed for 50 ks with the superb 0.5 resolution mirror on the Chandra X-ray .... emission that comes from ejecta that have propagated to the forward shock. Such a spectrum, taken from a portion of the west rim of the remnant, is shown in the right panel of Fig. 2. The fitted ...

  18. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  19. Chandra Observations of Neutron Stars: An Overview

    Science.gov (United States)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  20. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, Univ. of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space Research and Technology Institute, Akad. G. Bonchev Str., Sofia, 1113 (Bulgaria); Güdel, Manuel [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner, E-mail: stephen.skinner@colorado.edu, E-mail: szhekov@space.bas.bg, E-mail: manuel.guedel@univie.ac.at, E-mail: werner.schmutz@pmodwrc.ch [Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland)

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  1. Intermediate-mass black holes in dwarf galaxies out to redshift ˜ 2.4 in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Mezcua, M.; Civano, F.; Marchesi, S.; Suh, H.; Fabbiano, G.; Volonteri, M.

    2018-05-01

    We present a sample of 40 AGN in dwarf galaxies at redshifts z ≲ 2.4. The galaxies are drawn from the Chandra COSMOS-Legacy survey as having stellar masses 107 ≤ M* ≤ 3 × 109 M⊙. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5-10keV ˜ 1039 - 1044 erg s-1. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at z = 2.39 and with L0.5-10keV ˜ 1044 erg s-1. One of the dwarf galaxies has M* = 6.6 × 107 M⊙ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ˜104 - 105 M⊙ and typical Eddington ratios >1%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7. We find that the AGN fraction for 109 < M* ≤ 3 × 109 M⊙ and LX ˜ 1041 - 1042 erg s-1 is ˜0.4% for z ≤ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.

  2. 14th ACIS/IEEE International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    Studies in Computational Intelligence : Volume 492

    2013-01-01

    This edited book presents scientific results of the 14th ACIS/IEEE International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2013), held in Honolulu, Hawaii, USA on July 1-3, 2013. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the 17 outstanding papers from those papers accepted for presentation at the conference.  

  3. 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    2015-01-01

    This edited book presents scientific results of 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2014) held on June 30 – July 2, 2014 in Las Vegas Nevada, USA. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the 13 outstanding papers from those papers accepted for presentation at the conference.

  4. Simultaneous Chandra and NuSTAR Observations of the Highly Obscured AGN Candidate in NGC660.

    Science.gov (United States)

    Annuar, Ady

    2014-09-01

    We are using NuSTAR to undertake a detailed investigation of the obscured AGN population at D<15Mpc. Our latest target is NGC660 where the presence of an AGN has been ambiguous. However, recently it was observed to undergo a radio outburst which reveals a bright continuum source (Argo et al. 2015), coincident with Chandra 2-8 keV emission from one of the three point sources near the nucleus (<5"). This confirms and pinpoints the X-ray position of the AGN. Comparisons of the Chandra flux with the radio emission and other multiwavelength luminosity indicators indicate that the X-ray flux is suppressed, suggesting that it is absorbed by a high column of gas. A NuSTAR observation for this object has been scheduled as part of our program. The requested Chandra observation is essential to unambiguously constrain the AGN and isolate it from other sources at <8 keV. When combined with NuSTAR, we will then be able to accurately characterise the 0.5-30 keV spectrum of the AGN for the first time.

  5. Middle Tier Services Accessing the Chandra X-Ray Center Data Archive

    Science.gov (United States)

    Patz, A.; Harbo, P.; Moran, J.; van Stone, D.; Zografou, P.

    The Chandra Data Archive team at the Chandra X-ray Center has developed middle tier services that are used by both our search and retrieval applications to uniformly access our data repository. Accessible through an HTTP URL interface, these services can be called by our J2EE web application (WebChaser) and our Java Swing application (Chaser), as well as any other HTTP client. Programs can call the services to retrieve observation data such as a single FITS file, a proposal abstract or a detailed report of observation parameters. Having a central interface to the archive, shared by client applications, facilitates code reusability and easier maintenance. These middle tier services have been written in Java and packaged into a single J2EE application called the Search and Retrieval (SR) Services. The package consists of a web application front-end and an Enterprise Java Beans back-end. This paper describes the design and use of the SR Services.

  6. Rapport de frais de 2016-2017 pour Chandra Madramootoo | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Rapport de frais de 2016-2017 pour Chandra Madramootoo. Total des frais de déplacement : CAD$10,750.19. Réunion du Conseil des gouverneurs. 20 mars 2017 au 22 mars 2017. CAD$821.31. Réunion du Conseil des gouverneurs. 20 novembre 2016 au 23 novembre 2016. CAD$907.94. Initiation des nouveaux ...

  7. Romanticism or Reality? An Exploration of Frances Mary Hendry's "Chandra."

    Science.gov (United States)

    Johnson, Jilaine

    This paper singles out a novel written for children about India, "Chandra" (1995) by Frances Mary Hendry, as a powerful and useful novel to present to today's 11 to 14 year old students. The paper contends that the novel allows students to explore and consider different value systems, challenges them to become aware of prejudice and the…

  8. Role of the Chandra X-Ray Observatory Observations for the Study of Ionized Plasmas

    Science.gov (United States)

    Weisskopf, Martin C.

    2010-01-01

    The Chandra X-Ray Observatory, launched in 1999, is now beginning its 12-th year of operation. Chandra, the X-ray component of NASA s Great Observatory program, continues to operate efficiently, somewhat remarkable considering that the Observatory was designed for three years of operation with a goal of five. The Observatory features X-ray optics with sub-arcsecond angular resolution and a small suite of instruments, including transmission gratings, which allow for high-resolution spectroscopy of point sources. We will detail the capabilities of the Observatory for making such spectroscopic measurements and discuss a number of examples of what has been learned about the astrophysical plasmas capable of producing bright X-ray emission.

  9. A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625

    Science.gov (United States)

    Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.

    2004-06-01

    We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.

  10. 6th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 16th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2015) which was held on June 1 – 3, 2015 in Takamatsu, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them.

  11. 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    SNPD 2016

    2016-01-01

    This edited book presents scientific results of the 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2016) which was held on May 30 - June 1, 2016 in Shanghai, China. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them.

  12. Early Chandra X-ray Observations of Eta Carinae

    OpenAIRE

    Seward, F. D.; Butt, Y. M.; Karovska, M.; Schlegel, A. Prestwich. E. M.; Corcoran, M.

    2001-01-01

    Sub-arcsecond resolution Chandra observations of Eta Carinae reveal a 40 arcsec X 70 arcsec ring or partial shell of X-ray emission surrounding an unresolved, bright, central source. The spectrum of the central source is strongly absorbed and can be fit with a high-temperature thermal continuum and emission lines. The surrounding shell is well outside the optical/IR bipolar nebula and is coincident with the Outer Shell of Eta Carinae. The X-ray spectrum of the Shell is much softer than that o...

  13. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr

    Science.gov (United States)

    Karovska, Margarita

    2016-09-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.

  14. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  15. Chandra X-ray Data Analysis in Educational Environments

    Science.gov (United States)

    Matilsky, T.; Etkina, E.; Lestition, K.; Mandel, E.; Joye, W.

    2004-12-01

    Recent progress in both software and remote connectivity capabilities have made it possible for authentic data analysis tasks to be presented in a wide range of educational venues. No longer are precollege teachers and students, and interested members of the public limited by their lack of access to the scientific workstations and UNIX-based imaging and analytical software used by the research community. Through a suite of programs that couples a simplified graphical user interface using the "DS9" imaging software with a "virtual observatory" capability that processes the analytical algorithms used by X-ray astronomers, we can access archived Chandra observations and generate images, as well as light curves, energy spectra, power spectra and other common examples of science tasks. The system connects to a remote UNIX server, but the user may be sited on a PC or Mac platform. Furthermore, the use of VNC (a remote desktop display environment) allows a teacher to view, comment on and debug any analysis task in real time, from anywhere in the world, and across any computer platform. This makes these programs especially useful in distance learning settings. We have developed, tested and used these capabilities in a wide variety of educational arenas, from 4 week intensive courses in X-ray astronomy research techniques for precollege students and teachers, to one day teacher enrichment workshops, to modules of classroom activities suitable for precollege grade levels, using a variety of cosmic X-ray sources. Examples using archived Chandra observations will be presented demonstrating the flexibility and usefulness of these resources.

  16. Interstellar Abundances Toward X Per, Revisited

    Science.gov (United States)

    Valencic, Lynne A.; Smith, Randall K.

    2014-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of 0, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  17. The software development process at the Chandra X-ray Center

    Science.gov (United States)

    Evans, Janet D.; Evans, Ian N.; Fabbiano, Giuseppina

    2008-08-01

    Software development for the Chandra X-ray Center Data System began in the mid 1990's, and the waterfall model of development was mandated by our documents. Although we initially tried this approach, we found that a process with elements of the spiral model worked better in our science-based environment. High-level science requirements are usually established by scientists, and provided to the software development group. We follow with review and refinement of those requirements prior to the design phase. Design reviews are conducted for substantial projects within the development team, and include scientists whenever appropriate. Development follows agreed upon schedules that include several internal releases of the task before completion. Feedback from science testing early in the process helps to identify and resolve misunderstandings present in the detailed requirements, and allows review of intangible requirements. The development process includes specific testing of requirements, developer and user documentation, and support after deployment to operations or to users. We discuss the process we follow at the Chandra X-ray Center (CXC) to develop software and support operations. We review the role of the science and development staff from conception to release of software, and some lessons learned from managing CXC software development for over a decade.

  18. Monitoring of CH Cyg requested for Chandra and HST observations

    Science.gov (United States)

    Waagen, Elizabeth O.

    2012-03-01

    Dr. Margarita Karovska, Harvard-Smithsonian Center for Astrophysics, has requested visual and photometric observations of the symbiotic variable CH Cyg in preparation for and support of Chandra and HST observations scheduled for later in March 2012. Dr. Karovska's observations will be a followup investigation of the central region of CH Cyg and its jet that was discovered a couple of years ago. AAVSO observations are requested in order to monitor the state of the system and correlate with the satellite observations. Visual observations and CCD/PEP observations in all bands - U through J and H - are requested. Daily observations now through April 2012 and high-speed photometry through March would be appreciated. CH Cyg is currently at visual magnitude 7.7. Halpha, OIII region, and optical spectroscopy are also requested. More details on the exact dates and times of the satellite observations will be announced when they become available, but daily monitoring should begin now. [HST observations scheduled for 2012 March 18; Chandra delayed some days due to X-class solar flare of 2012 March 7.] Coordinates: RA 19 24 33.07 Dec. +50 14 29.1 (J2000.0). Finder charts may be created and data from the AAVSO International Database may be viewed, plotted, or downloaded (www.aavso.org).

  19. Outburst in Mira AB?

    Science.gov (United States)

    Karovska, Margarita

    2003-09-01

    The nearby system Mira AB composed of an aging AGB star (Mira A) and a WD companion (Mira B) offers a unique laboratory for studying wind accretion processes, a poorly understood phenomenon in many sources. Recent Chandra ACIS-S Obs.(70ks on 12/6/03; PI.M.Karovska) resolved for the first time the components (~0.6") in X-rays, and detected a new bright soft source (A. This is the first detection of X-rays from an AGB star. This source was not detected by ROSAT in 1993 or recently by XMM 8/03 (AAS/03,J.Kastner), and could be a transient phenomenon. Model fitting shows that the soft X-ray emission is likely several emission lines, rather then a continuum; with ACIS spectral resolution we cannot resolve or identify these lines. We propose a 40ks LETG+HRC-S obs. to identify the lines and determine the emission mechanism.

  20. Initial Performance of the Aspect System on the Chandra Observatory: Post-Facto Aspect Reconstruction

    Science.gov (United States)

    Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.

    2000-01-01

    The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.

  1. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  2. Spectral and Temporal Properties of the Ultra-Luminous X-Ray Pulsar in M82 from 15 Years of Chandra Observations and Analysis of the Pulsed Emission Using NuSTAR

    Science.gov (United States)

    Brightman, Murray; Harrison, Fiona; Walton, Dominic J.; Fuerst, Felis; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2016-01-01

    The recent discovery by Bachetti et al. of a pulsar in M82 that can reach luminosities of up to 10(exp 40) erg s(exp -1), a factor of approximately 100 times the Eddington luminosity for a 1.4 solar mass compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.58 keV X-ray emission from this source from 15 years of Chandra observations. We analyze 19 ACIS observations where the point-spread function (PSF) of the pulsar is not contaminated by nearby sources. We fit the Chandra spectra of the pulsar with a power-law model and a disk blackbody model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where four observations have a pile-up fraction of 10, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (LX greater than 10(exp 39) erg s(exp -1) is equal to gamma 1.33 +/-.0.15. For the disk blackbody model, the average temperature is T(sub in) 3.24 +/- 0.65 keV, the spectral shape being consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cutoff, where gamma is equal to 0.6 +/- 0.3 and E(sub C) is equal to 14(exp +5) (sub -3)) keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9

  3. The Chandra Source Catalog 2.0: Combining Data for Processing (or How I learned 17 different words for "group")

    Science.gov (United States)

    Hain, Roger; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The Second Chandra Source Catalog (CSC2.0) combines data at multiple stages to improve detection efficiency, enhance source region identification, and match observations of the same celestial source taken with significantly different point spread functions on Chandra's detectors. The need to group data for different reasons at different times in processing results in a hierarchy of groups to which individual sources belong. Source data are initially identified as belonging to each Chandra observation ID and number (an "obsid"). Data from each obsid whose pointings are within sixty arcseconds of each other are reprojected to the same aspect reference coordinates and grouped into stacks. Detection is performed on all data in the same stack, and individual sources are identified. Finer source position and region data are determined by further processing sources whose photons may be commingled together, grouping such sources into bundles. Individual stacks which overlap to any extent are grouped into ensembles, and all stacks in the same ensemble are later processed together to identify master sources and determine their properties.We discuss the basis for the various methods of combining data for processing and precisely define how the groups are determined. We also investigate some of the issues related to grouping data and discuss what options exist and how groups have evolved from prior releases.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  4. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    International Nuclear Information System (INIS)

    Van Weeren, R. J.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Pearce, Connor J. J.; David, L.; Kraft, R. P.; Nulsen, P. E. J.; Ogrean, G. A.; Bonafede, A.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Churazov, E.; Dawson, W. A.; Donahue, M.; Goulding, A.; Mason, B.; Merten, J.; Mroczkowski, T.

    2017-01-01

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ∼0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.

  5. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    Energy Technology Data Exchange (ETDEWEB)

    Van Weeren, R. J.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Pearce, Connor J. J.; David, L.; Kraft, R. P.; Nulsen, P. E. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ogrean, G. A. [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Bonafede, A.; Brüggen, M. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Bulbul, E. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Clarke, T. E. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375 (United States); Churazov, E. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); Dawson, W. A. [Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA 94550 (United States); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Goulding, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Mason, B. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Merten, J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Mroczkowski, T., E-mail: rvanweeren@cfa.harvard.edu [ESO—European Organization for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); and others

    2017-02-01

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ∼0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.

  6. Chandra Phase-resolved Spectroscopy of the High Magnetic Field Pulsar B1509−58

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chin-Ping; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Takata, J. [School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei (China); Shannon, R. M. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Johnston, S., E-mail: cphu@hku.hk, E-mail: ncy@bohr.physics.hku.hk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia)

    2017-04-01

    We report on a timing and spectral analysis of the young, high magnetic field rotation-powered pulsar (RPP) B1509−58 using Chandra continuous-clocking mode observation. The pulsar’s X-ray light curve can be fit by the two Gaussian components and the pulsed fraction shows moderate energy dependence over the Chandra band. The pulsed X-ray spectrum is well described by a power law with a photon index 1.16(4), which is harder than the values measured with RXTE /PCA and NuSTAR . This result supports the log-parabolic model for the broadband X-ray spectrum. With the unprecedented angular resolution of Chandra , we clearly identified off-pulse X-ray emission from the pulsar, and its spectrum is best fit by a power law plus blackbody model. The latter component has a temperature of ∼0.14 keV with a bolometric luminosity comparable to the luminosities of other young and high magnetic field RPPs, and it lies between the temperature of magnetars and typical RPPs. In addition, we found that the nonthermal X-ray emission of PSR B1509−58 is significantly softer in the off-pulse phase than in the pulsed phase, with the photon index varying between 1.0 and 1.8 and anticorrelated with the flux. This is similar to the behavior of three other young pulsars. We interpreted it as different contributions of pair-creation processes at different altitudes from the neutron star surface according to the outer-gap model.

  7. EMISSION LINES BETWEEN 1 AND 2 keV IN COMETARY X-RAY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Ian; Christian, Damian J. [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330 (United States); Bodewits, Dennis [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Dennerl, Konrad [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, D-85741 Garching Germany (Germany); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723 (United States); Wolk, Scott J., E-mail: ian.ewing.794@my.csun.edu, E-mail: daman.christian@csun.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-01-20

    We present the detection of new cometary X-ray emission lines in the 1.0-2.0 keV range using a sample of comets observed with the Chandra X-Ray Observatory and ACIS spectrometer. We have selected five comets from the Chandra sample with good signal-to-noise spectra. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), and C/2008 8P (Tuttle). We modeled the spectra with an extended version of our solar wind charge exchange (SWCX) emission model. Above 1 keV, we find Ikeya-Zhang to have strong emission lines at 1340 and 1850 eV which we identify as being created by SWCX lines of Mg XI and Si XIII, respectively, and weaker emission lines at 1470, 1600, and 1950 eV formed by SWCX of Mg XII, Mg XI, and Si XIV, respectively. The Mg XI and XII and Si XIII and XIV lines are detected at a significant level for the other comets in our sample (LS4, MH, Encke, 8P), and these lines promise additional diagnostics to be included in SWCX models. The silicon lines in the 1700-2000 eV range are detected for all comets, but with the rising background and decreasing cometary emission, we caution that these detections need further confirmation with higher resolution instruments.

  8. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    Science.gov (United States)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; hide

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  9. Chandra resolves the T Tauri binary system RW Aur

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2014-06-20

    RW Aur is a multiple T Tauri system consisting of an early-K type primary (A) and a K5 companion (B) at a separation of 1.''4. RW Aur A drives a bipolar optical jet that is well characterized optically. We present results of a sensitive Chandra observation whose primary objective was to search for evidence of soft extended X-ray emission along the jet, as has been seen for a few other nearby T Tauri stars. The binary is clearly resolved by Chandra and both stars are detected as X-ray sources. The X-ray spectra of both stars reveal evidence for cool and hot plasma. Surprisingly, the X-ray luminosity of the less-massive secondary is at least twice that of the primary and is variable. The disparity is attributed to the primary whose X-ray luminosity is at the low end of the range for classical T Tauri stars of similar mass based on established correlations. Deconvolved soft-band images show evidence for slight outward elongation of the source structure of RW Aur A along the blueshifted jet axis inside the central arcsecond. In addition, a faint X-ray emission peak is present on the redshifted axis at an offset of 1.''2 ± 0.''2 from the star. Deprojected jet speeds determined from previous optical studies are too low to explain this faint emission peak as shock-heated jet plasma. Thus, unless flow speeds in the redshifted jet have been underestimated, other mechanisms such as magnetic jet heating may be involved.

  10. A Multiwavelength Exploration of the Grand Design Spiral M83: Diffuse X-ray Emission

    Science.gov (United States)

    Kuntz, K. D.; Long, K. S.; Blair, W. P.; Plucinsky, P. P.; Soria, R.; Winkler, P. F.

    2013-01-01

    We have obtained a series of deep X-ray images of the nearby galaxy M83, with a total exposure 729 ksec with the Chandra ACIS-S array. Since the bulk of the X-ray emitting disk falls within the BI chip, these observations allow a detailed study of the soft diffuse emission in the disk. Most of the diffuse emission is related to star-formation regions and must be powered by supernovae and stellar winds, though the amount of emission due to identifiable SNR is only a few percent. The relation between the spectral shape and surface brightness that was seen in M101 suggests that the properties of the X-ray emission in spiral disks are shaped by the local hot gas production rate (traced by the local star-formation rate) or the disk mid-plane pressure, but it is unclear which physical mechanism dominates. To illuminate this problem, we will compare M83 with the previous Chandra studies of M101 and M33.

  11. Hemp farming development and socioeconomic position of Bačka: Example of Odžaci

    Directory of Open Access Journals (Sweden)

    Stojanović Vladimir

    2016-01-01

    Full Text Available Hemp is a very important agricultural crop for Bačka region. For centuries, hemp had been grown in this area and it had a crucial importance not only for the agriculture, but for the industry and trade of this region as well. From uncultivated, poorly inhabited and underdeveloped area in 18th century, Bačka made its way to a promising region in which agriculture and industry represent the backbone of the economic development. Significant number of colonial settlements from 18th century and colonization period during rule of Austro-Hungarian empress Maria Theresa recognized growing hemp as their main opportunities to prosper. Later on, in these settlements, the small manufactories for hemp processing were built which eventually had grown into larger factories for hemp fabric production. The town of Odžaci was one of these settlements. From a small colonial settlement, it became one of the important industrial centres in Bačka region.

  12. CHANDRA HIGH-ENERGY TRANSMISSION GRATING SPECTRUM OF AE AQUARII

    International Nuclear Information System (INIS)

    Mauche, Christopher W.

    2009-01-01

    The nova-like cataclysmic binary AE Aqr, which is currently understood to be a former supersoft X-ray binary and current magnetic propeller, was observed for over two binary orbits (78 ks) in 2005 August with the High-Energy Transmission Grating (HETG) on board the Chandra X-ray Observatory. The long, uninterrupted Chandra observation provides a wealth of details concerning the X-ray emission of AE Aqr, many of which are new and unique to the HETG. First, the X-ray spectrum is that of an optically thin multi-temperature thermal plasma; the X-ray emission lines are broad, with widths that increase with the line energy from σ ∼ 1 eV (510 km s -1 ) for O VIII to σ ∼ 5.5 eV (820 km s -1 ) for Si XIV; the X-ray spectrum is reasonably well fit by a plasma model with a Gaussian emission measure distribution that peaks at log T(K) = 7.16, has a width σ = 0.48, an Fe abundance equal to 0.44 times solar, and other metal (primarily Ne, Mg, and Si) abundances equal to 0.76 times solar; and for a distance d = 100 pc, the total emission measure EM = 8.0 x 10 53 cm -3 and the 0.5-10 keV luminosity L X = 1.1 x 10 31 erg s -1 . Second, based on the f/(i + r) flux ratios of the forbidden (f), intercombination (i), and recombination (r) lines of the Heα triplets of N VI, O VII, and Ne IX measured by Itoh et al. in the XMM-Newton Reflection Grating Spectrometer spectrum and those of O VII, Ne IX, Mg XI, and Si XIII in the Chandra HETG spectrum, either the electron density of the plasma increases with temperature by over three orders of magnitude, from n e ∼ 6 x 10 10 cm -3 for N VI [log T(K) ∼ 6] to n e ∼ 1 x 10 14 cm -3 for Si XIII [log T(K) ∼ 7], and/or the plasma is significantly affected by photoexcitation. Third, the radial velocity of the X-ray emission lines varies on the white dwarf spin phase, with two oscillations per spin cycle and an amplitude K ∼ 160 km s -1 . These results appear to be inconsistent with the recent models of Itoh et al., Ikhsanov, and

  13. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk ...

    Indian Academy of Sciences (India)

    component, another power-law ( = 2.45 ± 0.07) for the soft component and a narrow Gaussian fitted to the Fe Kα line (EW∼48 eV) (see Fig. 2). The common model for Seyfert 2 and the above models cannot be well-fitted with the Chandra spectra. Residuals in terms of sigma show significant excess in 2–4 KeV and over 8 ...

  14. CHANDRA AND SUZAKU OBSERVATIONS OF THE Be/X-RAY STAR HD110432

    International Nuclear Information System (INIS)

    Torrejón, J. M.; Schulz, N. S.; Nowak, M. A.

    2012-01-01

    We present an analysis of a pointed 141 ks Chandra high-resolution transmission gratings observation of the Be X-ray emitting star HD110432, a prominent member of the γ Cas analogs. This observation represents the first high-resolution spectrum taken for this source as well as the longest uninterrupted observation of any γ Cas analog. The Chandra light curve shows a high variability but its analysis fails to detect any coherent periodicity up to a frequency of 0.05 Hz. Hardness ratio versus intensity analyses demonstrate that the relative contributions of the [1.5-3] Å, [3-6] Å, and [6-16] Å energy bands to the total flux change rapidly in the short term. The analysis of the Chandra High Energy Transmission Grating (HETG) spectrum shows that, to correctly describe the spectrum, three model components are needed. Two of those components are optically thin thermal plasmas of different temperatures (kT ≈ 8-9 and 0.2-0.3 keV, respectively) described by the models vmekal or bvapec. The Fe abundance in each of these two components appears equal within the errors and is slightly subsolar with Z ≈ 0.75 Z ☉ . The bvapec model better describes the Fe L transitions, although it cannot fit well the Na XI Lyα line at 10.02 Å, which appears to be overabundant. Two different models seem to describe well the third component. One possibility is a third hot optically thin thermal plasma at kT = 16-21 keV with an Fe abundance Z ≈ 0.3 Z ☉ , definitely smaller than for the other two thermal components. Furthermore, the bvapec model describes well the Fe K shell transitions because it accounts for the turbulence broadening of the Fe XXV and Fe XXVI lines with a v turb ≈ 1200 km s –1 . These two lines, contributed mainly by the hot thermal plasma, are significantly wider than the Fe Kα line whose FWHM ☉ , and a very hot second plasma with kT ≈ 33 keV or, alternatively, a power law with photon index of Γ = 1.58. In either case, each one of the two components

  15. STAR FORMATION IN THE CHANDRA DEEP FIELD SOUTH: OBSERVATIONS CONFRONT SIMULATIONS

    International Nuclear Information System (INIS)

    Damen, Maaike; Franx, Marijn; Foerster Schreiber, Natascha M.; Labbe, Ivo; Toft, Sune; Van Dokkum, Pieter G.; Wuyts, Stijn

    2009-01-01

    We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the Chandra Deep Field South. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z ∼ 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z>0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semianalytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance, conversions to SFR, and shape of the initial mass function. We find that none of these can solve the discrepancy completely. We conclude that the models need to be adapted to produce the steep increase in growth rate between redshift z = 0 and z = 1.

  16. A LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH-SUBMILLIMETER PROPERTIES OF NEAR-INFRARED SELECTED GALAXIES

    International Nuclear Information System (INIS)

    Greve, T. R.; Walter, F.; Bell, E. F.; Dannerbauer, H.; Rix, H.-W.; Schinnerer, E.; Weiss, A.; Kovacs, A.; Smail, I.; Coppin, K. E. K.; Alexander, D.; Zheng, X. Z.; Knudsen, K. K.; Bertoldi, F.; De Breuck, C.; Dickinson, M.; Gawiser, E.; Lutz, D.; Brandt, N.; Chapman, S. C.

    2010-01-01

    Using the 330 hr ESO-MPG 870 μm survey of the Extended Chandra Deep Field South (ECDF-S) obtained with the Large Apex BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX), we have carried out a stacking analysis at submillimeter (submm) wavelengths of a sample of 8266 near-infra-red (near-IR) selected (K vega ≤ 20) galaxies, including 893 BzK galaxies, 1253 extremely red objects (EROs), and 737 distant red galaxies (DRGs), selected from the Multi-wavelength Survey by Yale-Chile (MUSYC). We measure average 870 μm fluxes of 0.22 ± 0.01 mJy (22.0σ), 0.48 ± 0.04 mJy (12.0σ), 0.39 ± 0.03 mJy (13.0σ), and 0.43 ± 0.04 mJy (10.8σ) for the K vega ≤ 20, BzK, ERO, and DRG samples, respectively. For the BzK, ERO, and DRG sub-samples, which overlap to some degree and are likely to be at z ≅ 1-2, this implies an average far-IR luminosity of ∼(1-5) x 10 11 L sun and star formation rate (SFR) of ∼20-90 M sun . Splitting the BzK galaxies into star-forming (sBzK) and passive (pBzK) galaxies, the former is significantly detected (0.50 ± 0.04 mJy, 12.5σ) while the latter is only marginally detected (0.34 ± 0.10 mJy, 3.4σ), thus confirming that the sBzK and pBzK criteria to some extent select obscured, star-forming, and truly passive galaxies, respectively. The K vega ≤ 20 galaxies are found to contribute 7.27 ± 0.34 Jy deg -2 (16.5% ± 5.7%) to the 870 μm extragalactic background light (EBL). sBzK and pBzK galaxies contribute 1.49 ± 0.22 Jy deg -2 (3.4% ± 1.3%) and 0.20 ± 0.14 Jy deg -2 (0.5% ± 0.3%) to the EBL. We present the first delineation of the average submm signal from the K vega ≤ 20 selected galaxies and their contribution to the submm EBL as a function of (photometric) redshift, and find a decline in the average submm signal (and therefore IR luminosity and SFR) by a factor ∼2-3 from z ∼ 2 to z ∼ 0. This is in line with a cosmic star formation history in which the star formation activity in galaxies increases

  17. Soy isoflavone exposure through all life stages accelerates 17β-estradiol-induced mammary tumor onset and growth, yet reduces tumor burden, in ACI rats.

    Science.gov (United States)

    Möller, Frank Josef; Pemp, Daniela; Soukup, Sebastian T; Wende, Kathleen; Zhang, Xiajie; Zierau, Oliver; Muders, Michael H; Bosland, Maarten C; Kulling, Sabine E; Lehmann, Leane; Vollmer, Günter

    2016-08-01

    There is an ongoing debate whether the intake of soy-derived isoflavones (sISO) mediates beneficial or adverse effects with regard to breast cancer risk. Therefore, we investigated whether nutritional exposure to a sISO-enriched diet from conception until adulthood impacts on 17β-estradiol (E2)-induced carcinogenesis in the rat mammary gland (MG). August-Copenhagen-Irish (ACI) rats were exposed to dietary sISO from conception until postnatal day 285. Silastic tubes containing E2 were used to induce MG tumorigenesis. Body weight, food intake, and tumor growth were recorded weekly. At necropsy, the number, position, size, and weight of each tumor were determined. Plasma samples underwent sISO analysis, and the morphology of MG was analyzed. Tumor incidence and multiplicity were reduced by 20 and 56 %, respectively, in the sISO-exposed rats compared to the control rats. Time-to-tumor onset was shortened from 25 to 20 weeks, and larger tumors developed in the sISO-exposed rats. The histological phenotype of the MG tumors was independent of the sISO diet received, and it included both comedo and cribriform phenotypes. Morphological analyses of the whole-mounted MGs also showed no diet-dependent differences. Lifelong exposure to sISO reduced the overall incidence of MG carcinomas in ACI rats, although the time-to-tumor was significantly shortened.

  18. A Chandra Study of Supernova Remnants in the Large and Small Magellanic Clouds

    Science.gov (United States)

    Schenck, Andrew Corey

    2017-08-01

    In the first part of this thesis we measure the interstellar abundances for the elements O, Ne, Mg, Si, and Fe in the Large Magellanic Cloud (LMC), based on the observational data of sixteen supernova remnants (SNRs) in the LMC as available in the public archive of the Chandra X-ray Observatory (Chandra). We find lower abundances than previous measurements based on a similar method using data obtained with the Advanced Satellite for Astrophysics and Cosmology (ASCA). We discuss the origins of the discrepancy between our Chandra and the previous ASCA measurements. We conclude that our measurements are generally more reliable than the ASCA results thanks to the high-resolution imaging spectroscopy with our Chandra data, although there remain some systematic uncertainties due to the use of different spectral modelings between the previous work and ours. We also discuss our results in comparison with the LMC abundance measurements based on optical observations of stars. The second part of this thesis is a detailed study of a core-collapse SNR B0049-73.6 in the Small Magellanic Cloud (SMC). Based on our deep Chandra observation, we detect metal-rich ejecta features extending out to the outermost boundary of B0049-73.6, which were not seen in the previous data. We find that the central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast the Si-rich material is highly structured. These results suggest that B0049-73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a 13-15M. progenitor. We reveal that the central ring-like (in projection) ejecta nebula extends to ˜9 pc from the SNR center. This suggests that the contact discontinuity (CD) may be located at a further

  19. Multiple Merging Events in the Double Cluster A3128/A3125

    Science.gov (United States)

    Rose, James A.; Gaba, Alejandro E.; Christiansen, Wayne A.; Davis, David S.; Caldwell, Nelson; Hunstead, Richard W.; Johnston-Hollitt, Melanie

    2002-03-01

    Multifiber spectroscopy has been obtained for 335 galaxies in the field of the double cluster A3128/A3125, using the 2dF multifiber positioner on the Anglo-Australian Telescope. When combined with previously published results, a total of 532 objects in the double cluster now have known redshifts. We have also obtained a 20 ks Chandra ACIS-I image of the central 16'×16' of A3128 and radio imaging of the cluster with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array. The spatial/kinematic distribution of redshifts in the field of A3128/A3125, when combined with the Chandra ACIS-I image of A3128, reveals a variety of substructures present in the galaxy distribution and in the hot intracluster medium (ICM). The most striking large-scale feature in the galaxy distribution is a relatively underpopulated redshift zone ~4000 km s-1 on either side of the mean cluster velocity at ~17,500 km s-1. We attribute this depletion zone to the effect of the extensive Horologium-Reticulum (H-R) supercluster, within which A3128/A3125 is embedded. In addition to this large-scale feature, numerous smaller groups of galaxies can be identified, particularly within the underpopulated region within +/-4000 km s-1 of the mean cluster redshift. Because of the large gravitational influence of the H-R supercluster, these groups arrive at A3128 with a high infall velocity, well in excess of the local sound speed. Two of these groups appear as elongated filaments in position-velocity diagrams, indicating that they are tidally distended groups that have been disrupted after a close passage through A3128. In fact, A3125 itself appears to be in such a postpassage condition. We have identified a primary northeast-southwest merger axis connecting A3128 with A3125, along which the filaments are also oriented. In addition, the Chandra image reveals that the X-ray emission is split into two components, each with very small core radii, that are separated by ~1 Mpc

  20. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST

    Science.gov (United States)

    Weisskopf, Martin C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.

  1. Astronomical Surveys and Big Data

    Directory of Open Access Journals (Sweden)

    Mickaelian Areg M.

    2016-03-01

    Full Text Available Recent all-sky and large-area astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from γ-rays to radio waves, are reviewed, including such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and POSS II-based catalogues (APM, MAPS, USNO, GSC in the optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio range, and many others, as well as the most important surveys giving optical images (DSS I and II, SDSS, etc., proper motions (Tycho, USNO, Gaia, variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS, and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA. An overall understanding of the coverage along the whole wavelength range and comparisons between various surveys are given: galaxy redshift surveys, QSO/AGN, radio, Galactic structure, and Dark Energy surveys. Astronomy has entered the Big Data era, with Astrophysical Virtual Observatories and Computational Astrophysics playing an important role in using and analyzing big data for new discoveries.

  2. Chandra's Observations of Jupiter's X-Ray Aurora During Juno Upstream and Apojove Intervals

    Science.gov (United States)

    Jackman, C.M.; Dunn, W.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.

    2017-01-01

    The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove (expected close to the magnetopause). We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 kiloseconds for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.

  3. Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    Science.gov (United States)

    Botteon, A.; Gastaldello, F.; Brunetti, G.

    2018-06-01

    A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have Mdiverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.

  4. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    Science.gov (United States)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  5. Analytic parameter dependence of Harish-Chandra modules for real reductive Lie groups - a family affair

    NARCIS (Netherlands)

    van der Noort, V.

    2009-01-01

    This thesis is written in the subfield of mathematics known as representation theory of real reductive Lie groups. Let G be a Lie group in the Harish-Chandra class with maximal compact subgroup K and Lie algebra g. Let Omega be a connected complex manifold. By a family of G-representations

  6. Initial application of a ACI-rat model of hepatocellular carcinoma in the experiments of interventional therapy

    International Nuclear Information System (INIS)

    Qian Jun; Feng Gansheng

    2003-01-01

    Objective: To evaluate the therapeutic efficiency of various methods of interventional therapy in the ACI-rat model of hepatocellular carcinoma, and to assess the value of this model in the experiments of interventional therapy. Methods: The subcapsular implantation of a solid Morris Hepatoma 3924A (1 mm 3 ) in the livers was carried out in 58 male ACI-rats. 13 days after the implantation, the tumor volume (V 1 ) was measured by using magnetic resonance tomography (MRT). After laparotomy and retrograde placement of catheter into the gastroduodenal artery (14 d), the following protocols of interventional therapy were performed: (A) Mitomycin C (n = 4); (B) Degradable starch microspheres (DSM) (n = 4); (C) Lipiodol (n = 5); (D) Ligation (n = 4); (E) Mitomycin C + DSM (n = 4); (F) Mitomycin C + ligation (n = 5); (G) Mitomycin C + Lipiodol (n = 5); (H) DSM + ligation (n = 4); (I) Lipiodol + ligation (n = 4); (J) Mitomycin C + Poly-lactide-coglycollide-microspheres (Plcg) (n = 4); (K) Mitomycin C + Lipiodol + ligation (n = 4); (L) Mitomycin C + DSM + ligation (n = 4); (M) 0.9% NaCl (control group, n = 7). 13 days after these therapies the change of the tumor volume (V 2 ) was determined by MRT again. Results: The rate of implantation was 100%. V 2 /V 1 was 4.50 in group A, 12.73 in group B, 15.84 in group C, 10.17 in group D, 90.20 in group E, 7.16 in group F, 4.08 in group G, 3.45 in group H, 9.99 in group I, 2.86 in group J, 3.76 in group K, 7.71 in group L, and 27.12 in group M, respectively. Compared to the control group, groups A, G, H, J and K showed significant reduced tumor growth (χ 2 = 5.238, 8.571, 5.238, 5.238, 5.238, P = 0.045, 0.008, 0.045, 0.045, 0.045) in the period of observation, whereas the other groups showed no statistical significant differences by the tumor growth [χ 2 = 1.016(B), 3.086(C), 1.016(D), 2.213(E), 3.086(F), 1.061(I), 1.061(L), P = 0.348 (B), 0.121 (C), 0.348 (D), 0.199 (E), 0.121 (F), 0.348 (I), 0.348(L)]. Conclusion: This model of

  7. PENGARUH PEMERIKSAAN INTERN TERHADAP EFEKTIVITAS PENGENDALIAN INTERN ATAS PERSEDIAAN BAHAN BAKU PADA PT. CHANDRA ASRI PETROCHEMICAL JAKARTA

    Directory of Open Access Journals (Sweden)

    Andi Riyanto

    2016-03-01

      Keyword : Raw Material Inventory, Internal Control, Internal Auditing.   Abstrak - PT. Chandra Asri Petrochemical adalah perusahaan petrokimia terbesar dan terintegrasi secara vertikal di Indonesia. Tujuan penelitian ini adalah untuk mengetahui pengaruh pemeriksaan intern terhadap efektivitas pengendalian intern atas persediaan bahan baku pada PT. Chandra Asri Petrochemical. Metode yang digunakan adalah metode deskriptif analitis dengan pendekatan kuantitatif. Populasi berjumlah 27 pegawai dan semua populasi digunakan sebagai sampel dengan teknik sampling jenuh. Dari perhitungan uji statistik menggunakan aplikasi SPSS versi 20, diperoleh nilai thitung untuk variabel pemeriksaan intern adalah 5,799 dengan df = 24 pada signifikansi (α 0,05, diperoleh ttabel sebesar 2,064, maka keputusan uji yang diambil adalah H0 ditolak. Artinya bahwa pemeriksaan intern berpengaruh signifikan terhadap efektivitas pengendalian intern atas persediaan bahan baku.   Kata Kunci : Pemeriksaan Intern, Pengendalian Intern, Persediaan Bahan Baku.

  8. The puzzling detection of x-rays from Pluto by Chandra

    Science.gov (United States)

    Lisse, C. M.; McNutt, R. L.; Wolk, S. J.; Bagenal, F.; Stern, S. A.; Gladstone, G. R.; Cravens, T. E.; Hill, M. E.; Kollmann, P.; Weaver, H. A.; Strobel, D. F.; Elliott, H. A.; McComas, D. J.; Binzel, R. P.; Snios, B. T.; Bhardwaj, A.; Chutjian, A.; Young, L. A.; Olkin, C. B.; Ennico, K. A.

    2017-05-01

    Using Chandra ACIS-S, we have obtained low-resolution imaging X-ray spectrophotometry of the Pluto system in support of the New Horizons flyby on 14 July 2015. Observations were obtained in a trial ;seed; campaign conducted in one visit on 24 Feb 2014, and a follow-up campaign conducted soon after the New Horizons flyby that consisted of 3 visits spanning 26 Jul to 03 Aug 2015. In a total of 174 ksec of on-target time, in the 0.31 to 0.60 keV passband, we measured 8 total photons in a co-moving 11 × 11 pixel2 box (the 90% flux aperture determined by observations of fixed background sources in the field) measuring ∼121,000 × 121,000 km2 (or ∼100 × 100 RPluto) at Pluto. No photons were detected from 0.60 to 1.0 keV in this box during the same exposures. Allowing for background, we find a net signal of 6.8 counts and a statistical noise level of 1.2 counts, for a detection of Pluto in this passband at > 99.95% confidence. The Pluto photons do not have the spectral shape of the background, are coincident with a 90% flux aperture co-moving with Pluto, and are not confused with any background source, so we consider them as sourced from the Pluto system. The mean 0.31 - 0.60 keV X-ray power from Pluto is 200 +200/-100 MW, in the middle range of X-ray power levels seen for other known Solar System emission sources: auroral precipitation, solar X-ray scattering, and charge exchange (CXE) between solar wind (SW) ions and atmospheric neutrals. We eliminate auroral effects as a source, as Pluto has no known magnetic field and the New Horizons Alice UV spectrometer detected no airglow from Pluto during the flyby. Nano-scale atmospheric haze particles could lead to enhanced resonant scattering of solar X-rays from Pluto, but the energy signature of the detected photons does not match the solar spectrum and estimates of Pluto's scattered X-ray emission are 2 to 3 orders of magnitude below the 3.9 ± 0.7 × 10-5cps found in our observations. Charge-exchange-driven emission

  9. CHANDRA OBSERVATIONS OF THE HIGH-MAGNETIC-FIELD RADIO PULSAR J1718-3718

    International Nuclear Information System (INIS)

    Zhu, W. W.; Kaspi, V. M.; Ng, C.-Y.; McLaughlin, M. A.; Pavlov, G. G.; Manchester, R. N.; Gaensler, B. M.; Woods, P. M.

    2011-01-01

    High-magnetic-field pulsars represent an important class of objects for studying the relationship between magnetars and radio pulsars. Here we report on four Chandra observations of the high-magnetic-field pulsar J1718-3718 (B = 7.4 x 10 13 G) taken in 2009 as well as a reanalysis of 2002 Chandra observations of the region. We also report an improved radio position for this pulsar based on ATCA observations. We detect X-ray pulsations at the pulsar's period in the 2009 data, with a pulsed fraction of 52% ± 13% in the 0.8-2.0 keV band. We find that the X-ray pulse is aligned with the radio pulse. The data from 2002 and 2009 show consistent spectra and fluxes: a merged overall spectrum is well fit by a blackbody of temperature 186 +19 -18 eV, slightly higher than predicted by standard cooling models; however, the best-fit neutron star atmosphere model is consistent with standard cooling. We find the bolometric luminosity L ∞ bb = 4 +5 -2 x 10 32 erg s -1 ∼0.3 E-dot for a distance of 4.5 kpc. We compile measurements of the temperatures of all X-ray-detected high-B pulsars as well as those of low-B radio pulsars and find evidence for the former being hotter on average than the latter.

  10. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-01-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ∼5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P ∼> 3 x 10 24 W Hz -1 ) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ∼30% of the sample and ∼60% of all AGNs, and outnumbering radio-loud AGNs at ∼< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  11. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic System R AQR

    Science.gov (United States)

    Karovska, Margarita

    2016-10-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and multiwavelength (UV-Optical) HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of the multi-scale components of the powerful jet; from the vicinity of the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond, and especially of the recently discovered new component of the inner jet (likely due to recent ejection of material). Our main goal is to gain new insight on early jet formation and propagation, including jet kinematics and precession.

  12. Chandra Observations of the Deep Impact Encounter with Comet 9P/Tempel 1

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Hoekstra, R.; Makinen, T.; Schultz, P. H.; Weaver, H. A.

    2005-08-01

    On July 4, 2005 NASA's discovery mission Deep Impact (hereafter DI) will send a 375 kg impactor into the nucleus of comet 9P/Tempel 1 at 10.2 km/s relative velocity. In the x-ray, the DI experiment allows for a controlled test of the charge exchange (CXE) emission mechanism that drives cometary x-ray emission (Lisse et al. 2001, Kharchenko and Dalgarno 2001, Krasnopolsky et al.2002). Previous ROSAT and Chandra observations studied cometary x-ray emission as the solar wind changed but the cometary emission remained constant. Here, at a precise time, a fresh amount of neutral material will be injected into a finite volume of the extended atmosphere, or coma, of the comet. This new material will directly increase the emission measure for the comet, passing from the collisionally thick to the collisionally thin regions of emission over the course of days. The DI experiment also allows for a direct search for prompt x-rays created by hyper-velocity impact processes, such as was seen by ROSAT during the impact of the K-fragment of comet D/Shoemaker-Levy 9 on Jupiter (Waite et al. 1995). We report here on the first results of of the Chandra observations of the Deep Impact encounter.

  13. AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey

    Science.gov (United States)

    Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John

    2017-11-01

    Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).

  14. Using the Chandra Source-Finding Algorithm to Automatically Identify Solar X-ray Bright Points

    Science.gov (United States)

    Adams, Mitzi L.; Tennant, A.; Cirtain, J. M.

    2009-01-01

    This poster details a technique of bright point identification that is used to find sources in Chandra X-ray data. The algorithm, part of a program called LEXTRCT, searches for regions of a given size that are above a minimum signal to noise ratio. The algorithm allows selected pixels to be excluded from the source-finding, thus allowing exclusion of saturated pixels (from flares and/or active regions). For Chandra data the noise is determined by photon counting statistics, whereas solar telescopes typically integrate a flux. Thus the calculated signal-to-noise ratio is incorrect, but we find we can scale the number to get reasonable results. For example, Nakakubo and Hara (1998) find 297 bright points in a September 11, 1996 Yohkoh image; with judicious selection of signal-to-noise ratio, our algorithm finds 300 sources. To further assess the efficacy of the algorithm, we analyze a SOHO/EIT image (195 Angstroms) and compare results with those published in the literature (McIntosh and Gurman, 2005). Finally, we analyze three sets of data from Hinode, representing different parts of the decline to minimum of the solar cycle.

  15. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    Science.gov (United States)

    Xiang, Jingen

    X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N

  16. Accreting Compact Object at the Center of the Supernova Remnant RCW 103.

    Science.gov (United States)

    Sanwal, D.; Garmire, G. P.; Garmire, A.; Pavlov, G. G.; Mignani, R.

    2002-05-01

    We observed the radio-quiet central compact object of the supernova remnant RCW 103 with the Chandra ACIS during 13.8 hours on 2002 March 3, when the source was in high state, with a time-averaged flux of 8*E-12 erg cm-2 s-1 in the 0.5--8.0 keV band. The complex light curve of the source shows a period of about 6.4 hours and two partial eclipses or dips per period, separated by 180o in phase. The variability of the source proves that it is powered by accretion, likely from a low-mass companion in a binary system. Deep near-IR observations of the source with VLT suggest a potential counterpart of the compact object about 2'' from the nominal Chandra position. The magnitudes of the potential counterpart are J ≈ 22.3, H ≈ 19.6, and Ks ≈ 18.5, with an uncertainty of about 0.5 mag. We will discuss possible interpretations of the observational results. This work was partially supported by NASA grants NAS8-01128 and NAG5-10865.

  17. The Origin of the Extra-nuclear X-ray Emission in the Seyfert Galaxy NGC 2992

    Science.gov (United States)

    Colbert, E. J. M.; Strickland, D. K.; Veilleux, S.; Weaver, K. A.

    2004-12-01

    We present an analysis of a Chandra ACIS observation of the edge-on Seyfert galaxy NGC 2992. We find extended X-ray emission with Lx(total) in excess of 10**40 erg/s. The brightest nebula is positioned a few 100 pc from the X-ray core, and is spatially coincident with optical line and radio emission. This emission nebula may be energized by the AGN, as opposed to a nuclear starburst. The expected kpc-scale X-ray emission due to a starburst-driven wind is larger than a few 10**39 erg/s, and we present large-scale X-ray emission that may be associated with such an outflow. The extra-nuclear emission has a very soft spectrum. Chandra and XMM spectra of the total nuclear region show a very prominent ``soft excess'' below 2-3 keV. We shall discuss the spectral properties of this soft excess, and will compare with the results from the spatial analysis, and with AGN and starburst models for extranuclear X-ray nebulae.

  18. A PUBLIC, K-SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC)

    International Nuclear Information System (INIS)

    Taylor, Edward N.; Franx, Marijn; Quadri, Ryan F.; Damen, Maaike; Hildebrandt, Hendrik; Van Dokkum, Pieter G.; Herrera, David; Gawiser, Eric; Bell, Eric F.; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Gonzalez-Perez, Violeta; Hall, Patrick B.; Kriek, Mariska; Labbe, Ivo; Lira, Paulina; Maza, Jose; Rudnick, Gregory; Treister, Ezequiel

    2009-01-01

    We present a new, K-selected, optical-to-near infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community. 22 Imaging and spectroscopy data and catalogs are freely available through the MUSYC Public Data Release webpage: http://www.astro.yale.edu/MUSYC/. The data set is founded on publicly available imaging, supplemented by original z'JK imaging data collected as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from UU 38 BVRIz'JK imaging covering the full 1/2 x 1/2 square circ of the ECDFS, plus H-band photometry for approximately 80% of the field. The 5σ flux limit for point sources is K (AB) tot = 22.0. This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75 85%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and rest-frame photometry derived from the 10-band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1σ) photometric redshift accuracy of Δz/(1 + z) = 0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating rest-frame photometry from observed spectral energy distributions, dubbed InterRest. 23 InterRest is available via http://www.strw.leidenuniv.nl/~ent/InterRest. Documentation and a complete walkthrough can be found at the same address.

  19. Effects of Weaning by Surrogate Mothers (ACI) on Tumor Development in SD Rats Treatedwith Methylnitrosourea (MNU) and/or N-Methyl-N-nitro-N-nitrosoguanidine (MNNG)

    OpenAIRE

    Shiraki, Katsuhisa; Lu, Huimei; Ishimura, Yoshimasa; Kashiwabara, Shoji; Uesaka, Toshihiro; Katoh, Osamu; Watanabe, Hiromitsu

    2002-01-01

    In this experiment, MNU was administered, followed by MNNG, to assess effects ofsurrogate mothering on tumor. One or two day old male SD pups were treated with or without30mg/kg body weight of methylnitrosourea (MNU) and nursed by SD or ACI surrogate mothersfor 5 weeks. When 6-weeks-old they were then treated with 100ppmN-methyl-N-nitro-N-nitrosoguanidine (MNNG) or tap water for 16 weeks. The tumor incidencein the MNNG alone group was significantly lower than with MNU alone or MNU+MNNG (p

  20. A NuSTAR survey of nearby ultraluminous infrared galaxies

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Rigby, Jane R.; Stern, Daniel

    2015-01-01

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously......] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths....

  1. X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Ajello, M. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Comastri, A. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Cusumano, G.; Parola, V. La; Segreto, A., E-mail: smarche@clemson.edu [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2017-02-10

    We present the combined Chandra and Swift -BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog. We selected nearby ( z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3–10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3–150 keV energy range allows us to determine that all the objects are significantly obscured, with N{sub H} ≥ 10{sup 23} cm{sup −2} at a >99% confidence level. Moreover, one to three sources are candidate Compton-thick Active Galactic Nuclei (CT-AGNs; i.e., N{sub H}≥10{sup 24} cm{sup −2}). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.

  2. Chandra and RXTE studies of the X-ray/gamma-ray millisecond pulsar PSR J0218+4232

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Stappers, B.W.

    2004-01-01

    We report on high-resolution spatial and timing observations of the millisecond pulsar PSR J0218+4232 performed with the Chandra X-ray Observatory (CXO) and the Rossi X-ray Timing Explorer (RXTE). With these observations we were able to study: (a) the possible spatial extent at X-ray energies of the

  3. A Chandra grating observation of the dusty Wolf-Rayet star WR 48a

    Energy Technology Data Exchange (ETDEWEB)

    Zhekov, Svetozar A. [Space Research and Technology Institute, Akad. G. Bonchev Str., bl.1, Sofia 1113 (Bulgaria); Gagné, Marc [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Skinner, Stephen L., E-mail: szhekov@space.bas.bg, E-mail: mgagne@wcupa.edu, E-mail: stephen.skinner@colorado.edu [CASA, University of Colorado, Boulder, CO 80309 (United States)

    2014-04-10

    We present results of a Chandra High-Energy Transmission Grating (HETG) observation of the carbon-rich Wolf-Rayet (WR) star WR 48a. These are the first high-resolution spectra of this object in X-ray. Blueshifted centroids of the spectral lines of ∼ – 360 km s{sup –1} and line widths of 1000-1500 km s{sup –1} (FWHM) were deduced from the analysis of the line profiles of strong emission lines. The forbidden line of Si XIII is strong and not suppressed, indicating that the rarified 10-30 MK plasma forms far from strong sources of far-ultraviolet emission, most likely in a wind collision zone. Global spectral modeling showed that the X-ray spectrum of WR 48a suffered higher absorption in the 2012 October Chandra observation compared with a previous 2008 January XMM-Newton observation. The emission measure of the hot plasma in WR 48a decreased by a factor ∼3 over the same period of time. The most likely physical picture that emerges from the analysis of the available X-ray data is that of colliding stellar winds in a wide binary system with an elliptical orbit. We propose that the unseen secondary star in the system is another WR star or perhaps a luminous blue variable.

  4. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    Science.gov (United States)

    2000-06-01

    electromagnetic forces created by magnetized gas swirling toward a black hole. Although most of the material falls into the black hole, some can be ejected at extremely high speeds. Magnetic fields spun out by these forces can extend over vast distances and may help explain the narrowness of the jet. The Chandra observation of Pictor A was made on January 18, 2000 for eight hours using the Advanced CCD Imaging Spectrometer (ACIS). The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above. This image will be available on NASA Video File which airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight Eastern Time. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz.

  5. The Close AGN Reference Survey (CARS)

    Science.gov (United States)

    Husemann, B.; Tremblay, G.; Davis, T.; Busch, G.; McElroy, R.; Neumann, J.; Urrutia, T.; Krumpe, M.; Scharwächter, J.; Powell, M.; Perez-Torres, M.; The CARS Team

    2017-09-01

    The role of active galactic nuclei (AGN) in the evolution of galaxies remains a mystery. The energy released by these accreting supermassive black holes can vastly exceed the entire binding energy of their host galaxies, yet it remains unclear how this energy is dissipated throughout the galaxy, and how that might couple to the galaxy's evolution. The Close AGN Reference Survey (CARS) is a multi-wavelength survey of a representative sample of luminous Type I AGN at redshifts 0.01 connection. These AGN are more luminous than very nearby AGN but are still close enough for spatially resolved mapping at sub-kpc scales with various state- of-the art facilities and instruments, such as VLT-MUSE, ALMA, JVLA, Chandra, SOFIA, and many more. In this article we showcase the power of CARS with examples of a multi-phase AGN outflow, diverse views on star formation activity and a unique changing-look AGN. CARS will provide an essential low-redshift reference sample for ongoing and forthcoming AGN surveys at high redshift.

  6. Nustar and Chandra insight into the nature of the 3-40 kev nuclear emission in NGC 253

    DEFF Research Database (Denmark)

    Lehmer, B. D.; Wik, D. R.; Hornschemeier, A. E.

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array ( NuSTAR ) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 keV intensity of the inner ~ 20 arcsec ( ~ 400 pc) nuclear region...

  7. Simultaneous NuSTAR/Chandra Observations of The Bursting Pulsar GRO J1744-28 During Its Third Reactivation

    DEFF Research Database (Denmark)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60...

  8. A cluster in a crowded environment: XMM-Newton and Chandra observations of A3558

    Science.gov (United States)

    Rossetti, M.; Ghizzardi, S.; Molendi, S.; Finoguenov, A.

    2007-03-01

    Combining XMM-Newton and Chandra data, we have performed a detailed study of Abell 3558. Our analysis shows that its dynamical history is more complicated than previously thought. We have found some traits typical of cool core clusters (surface brightness peaked at the center, peaked metal abundance profile) and others that are more common in merging clusters, like deviations from spherical symmetry in the thermodynamic quantities of the ICM. This last result has been achieved with a new technique for deriving temperature maps from images. We have also detected a cold front and, with the combined use of XMM-Newton and Chandra, we have characterized its properties, such as the speed and the metal abundance profile across the edge. This cold front is probably due to the sloshing of the core, induced by the perturbation of the gravitational potential associated with a past merger. The hydrodynamic processes related to this perturbation have presumably produced a tail of lower entropy, higher pressure and metal rich ICM, which extends behind the cold front for~500 kpc. The unique characteristics of A3558 are probably due to the very peculiar environment in which it is located: the core of the Shapley supercluster. Appendices A and B are only available in electronic form at http://www.aanda.org

  9. Solar wind charge exchange emission in the Chandra deep field north

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D.; Wargelin, Bradford J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koutroumpa, Dimitra [LATMOS/IPSL, CNRS, Université Versailles Saint Quentin, 11 Boulevard d' Alembert, F-78280, Guyancourt (France)

    2013-12-10

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s{sup –1} cm{sup –2} sr{sup –1} (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  10. Solar wind charge exchange emission in the Chandra deep field north

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Wargelin, Bradford J.; Koutroumpa, Dimitra

    2013-01-01

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s –1 cm –2 sr –1 (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  11. The Chandra Deep Field South as a test case for Global Multi Conjugate Adaptive Optics

    Science.gov (United States)

    Portaluri, E.; Viotto, V.; Ragazzoni, R.; Gullieuszik, M.; Bergomi, M.; Greggio, D.; Biondi, F.; Dima, M.; Magrin, D.; Farinato, J.

    2017-04-01

    The era of the next generation of giant telescopes requires not only the advent of new technologies but also the development of novel methods, in order to exploit fully the extraordinary potential they are built for. Global Multi Conjugate Adaptive Optics (GMCAO) pursues this approach, with the goal of achieving good performance over a field of view of a few arcmin and an increase in sky coverage. In this article, we show the gain offered by this technique to an astrophysical application, such as the photometric survey strategy applied to the Chandra Deep Field South as a case study. We simulated a close-to-real observation of a 500 × 500 arcsec2 extragalactic deep field with a 40-m class telescope that implements GMCAO. We analysed mock K-band images of 6000 high-redshift (up to z = 2.75) galaxies therein as if they were real to recover the initial input parameters. We attained 94.5 per cent completeness for source detection with SEXTRACTOR. We also measured the morphological parameters of all the sources with the two-dimensional fitting tools GALFIT. The agreement we found between recovered and intrinsic parameters demonstrates GMCAO as a reliable approach to assist extremely large telescope (ELT) observations of extragalactic interest.

  12. The mystery of the "Kite" radio source in Abell 2626: Insights from new Chandra observations

    Science.gov (United States)

    Ignesti, A.; Gitti, M.; Brunetti, G.; O'Sullivan, E.; Sarazin, C.; Wong, K.

    2018-03-01

    Context. We present the results of a new Chandra study of the galaxy cluster Abell 2626. The radio emission of the cluster shows a complex system of four symmetric arcs without known correlations with the thermal X-ray emission. The mirror symmetry of the radio arcs toward the center and the presence of two optical cores in the central galaxy suggested that they may be created by pairs of precessing radio jets powered by dual active galactic nuclei (AGNs) inside the core dominant galaxy. However, previous observations failed to observe the second jetted AGN and the spectral trend due to radiative age along the radio arcs, thus challenging this interpretation. Aim. The new Chandra observation had several scientific objectives, including the search for the second AGN that would support the jet precession model. We focus here on the detailed study of the local properties of the thermal and non-thermal emission in the proximity of the radio arcs, in order to obtain further insights into their origin. Methods: We performed a standard data reduction of the Chandra dataset deriving the radial profiles of temperature, density, pressure and cooling time of the intra-cluster medium. We further analyzed the two-dimensional (2D) distribution of the gas temperature, discovering that the south-western junction of the radio arcs surrounds the cool core of the cluster. Results: We studied the X-ray surface brightness and spectral profiles across the junction, finding a cold front spatially coincident with the radio arcs. This may suggest a connection between the sloshing of the thermal gas and the nature of the radio filaments, raising new scenarios for their origin. A tantalizing possibility is that the radio arcs trace the projection of a complex surface connecting the sites where electrons are most efficiently reaccelerated by the turbulence that is generated by the gas sloshing. In this case, diffuse emission embedded by the arcs and with extremely steep spectrum should be

  13. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    Science.gov (United States)

    Kaspi, Victoria

    2011-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO13, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  14. The Origin and Distribution of Heavy Elements in HCG 62

    Science.gov (United States)

    Vrtilek, Jan; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present recent data on the compact group HCG 62 taken with AXAF CCD Imaging Spectrometer-S (ACIS-S) on Chandra. The sparseness of groups and their relatively simple dynamical history allow the properties of the Intergalatic Medium (IGM) to be more directly related to galaxy evolution than may be possible in clusters, and their lower gas temperatures produce strong lines from a broader range of elements than is the case in hotter clusters. This observation exploits the high X-ray brightness of HCG 62 to determine accurately the abundances of heavy elements as a function of position in the group, to test whether abundance variations are associated with individual galaxies, and to trace the origin of the enrichment.

  15. Simultaneous NuSTAR/Chandra Observations of the Bursting Pulsar GRO J1744-28 During its Third Reactivation

    Science.gov (United States)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.; Tomsick, J. A.; Tennant, A.; Finger, M. H.; Furst, F.; Pottschmidt, K.; Bhalerao, V.; Boggs, S. E.; hide

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 x 10(exp 7) cm, which translates to a surface dipole field B approximately 9 x 10(exp 10) G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  16. SIMULTANEOUS NuSTAR/CHANDRA OBSERVATIONS OF THE BURSTING PULSAR GRO J1744-28 DURING ITS THIRD REACTIVATION

    Energy Technology Data Exchange (ETDEWEB)

    Younes, G.; Finger, M. H. [Universities Space Research Association, 6767 Old Madison Pike, Suite 450, Huntsville, AL 35806 (United States); Kouveliotou, C.; Tennant, A. [Astrophysics Office, ZP 12, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Grefenstette, B. W.; Fürst, F. [Cahill Center for Astrophysics, 1216 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Tomsick, J. A.; Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Pottschmidt, K. [Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Bhalerao, V. [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boirin, L. [Observatoire Astronomique de Strasbourg, 11 Rue de l' Université, F-67000 Strasbourg (France); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Degenaar, N. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gandhi, P. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); and others

    2015-05-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)–Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5–70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 × 10{sup 7} cm, which translates to a surface dipole field B ≈ 9 × 10{sup 10} G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe xxv and Fe xxvi emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  17. A Search for Optical Counterparts of Chandra Sources in Omega Centauri using ACS

    Science.gov (United States)

    Haggard, D.; Fuller, A. D.; Dorfman, J. L.; Cool, A. M.; Anderson, J.; Edmonds, P. D.; Davies, M. B.

    2002-12-01

    The globular cluster Omega Centauri, with its high mass and large, moderate density core, is of interest both for its population of primordial binaries and for the large number of tidal-capture and/or exchange-collision binaries it may harbor. We have obtained a 3x3 mosaic of Wide Field Camera pointings with HST's Advanced Camera for Surveys, covering a 10'x10' field out to the cluster's half-mass radius. Containing ~1.7 million detected stars, the resulting mosaic represents the most complete image of Omega Cen yet obtained. Here we report preliminary findings of a search in these data for optical counterparts to more than 100 faint X-ray sources (Lx ~ 2 x 1030 - 5 x 1032 erg-s-1) detected in our prior study of Omega Cen using the Chandra X-ray Observatory. Cluster X-ray sources are likely to consist primarily of accreting binary stars and close detached binaries with active coronae. Significant numbers of active galaxies in the background are also expected to be present. Using B, R, and H-alpha images, we are searching for optical counterparts that are H-alpha-bright and blue, as signatures of accretion in cataclysmic variables and/or quiescent low-mass X-ray binaries. Active binaries (e.g., BY Draconis stars) may appear as weaker H-alpha emitters lying on or slightly redward of the main sequence. This work is supported by NASA grant GO-9442 from the Space Telescope Science Institute.

  18. Intraday X-Ray Variability of QSOs/AGN Using the Chandra Archives

    Science.gov (United States)

    Tartamella, C.; Busche, J.

    2005-05-01

    X-ray variability is a common characteristic of Active Galactic Nuclei (AGN), and it can be used to probe the nuclear region at short time scales. Quantitative analysis of this variability has been difficult due to low signal-to-noise ratios and short time baselines, but serendipitous Chandra data acquired within the last six years have opened the door to such analysis. Cross-correlation of the Chandra archives with QSO/AGN catalogs on NASA's HEASARC website (e.g. Veron, Sloan) yields a sample of 50+ objects that satisfy the following criteria: absolute magnitude M≤ -22.5, proper time baselines greater than 2 hours, and count rates leading to 10% error bars for 8+ flux points on the light curve. The sample includes a range of red-shifts, magnitudes, and type (e.g. radio loud, radio quiet), and hence may yield empirical clues about luminosity or evolutionary trends. As a beginning of such analysis, we present 11 light curves for 9 objects for which the exposure time was greater than 10 hours. The variability was analyzed using three different statistical methods. The Kolmogorov-Smirnov (KS) test proved to be impractical because of the unavoidably small number of data points and the simplistic nature of the test. A χ2 test indicated in most cases that there were significant departures from constant brightness (as expected). Autocorrelation plots were also generated for each light curve. With more work and a larger sample size, these plots can be used to identify any trends in the lightcurve such as whether the variability is stochastic or periodic in nature. This test was useful even with the small number of datapoints available. In future work, more sophisticated analyses based on Fourier series, power density spectra, or wavelets are likely to yield more meaningful and useful results.

  19. The HELLAS2XMM survey. IV. Optical identifications and the evolution of the accretion luminosity in the Universe

    Science.gov (United States)

    Fiore, F.; Brusa, M.; Cocchia, F.; Baldi, A.; Carangelo, N.; Ciliegi, P.; Comastri, A.; La Franca, F.; Maiolino, R.; Matt, G.; Molendi, S.; Mignoli, M.; Perola, G. C.; Severgnini, P.; Vignali, C.

    2003-10-01

    We present results from the photometric and spectroscopic identification of 122 X-ray sources recently discovered by XMM-Newton in the 2-10 keV band (the HELLAS2XMM 1dF sample). Their flux cover the range 8*E-15-4*E-13 erg cm-2 s-1 and the total area surveyed is 0.9 square degrees. One of the most interesting results (which is found also in deeper sourveys) is that about 20% of the hard X-ray selected sources have an X-ray to optical flux ratio (X/O) ten times or more higher than that of optically selected AGN. Unlike the faint sources found in the ultra-deep Chandra and XMM-Newton surveys, which reach X-ray (and optical) fluxes more than one order of magnitude lower than the HELLAS2XMM survey sources, many of the extreme X/O sources in our sample have Rprotect la25 and are therefore accessible to optical spectroscopy. We report the identification of 13 sources with X/Oprotect ga10 (to be compared with 9 sources known from the deeper, pencil-beam surveys). Eight of them are narrow line QSO (seemingly the extension to very high luminosity of the type 2 Seyfert galaxies), four are broad line QSO. The results from our survey are also used to make reliable predictions about the luminosity of the sources not yet spectroscopically identified, both in our sample and in deeper Chandra and XMM-Newton samples. We then use a combined sample of 317 hard X-ray selected sources (HELLAS2XMM 1dF, Chandra Deep Field North 1Msec, Chandra SSA13 and XMM-Newton Lockman Hole flux limited samples), 221 with measured redshifts, to evaluate the cosmological evolution of the hard X-ray source's number and luminosity densities. Looking backward in time, the low luminosity sources (log L2-10 keV=43-44 erg s-1) increase in number at a much slower rate than the very high luminosity sources (log L2-10 keV >44.5 erg s-1), reaching a maximum around z=1 and then levelling off beyond z=2. This translates into an accretion driven luminosity density which is dominated by sources with log L2-10 keV 44

  20. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    Science.gov (United States)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high

  1. Chandra, NuSTAR and NICER Observations of MAXI J1535-571

    Science.gov (United States)

    Neilsen, Joseph; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Miller, Jon M.; Pasham, Dheeraj; Remillard, Ron; Steiner, Jack; Uttley, Phil

    2018-01-01

    In September 2017, MAXI detected an outburst of a previously-unknown transient, MAXI J1535-571. Subsequent radio and X-ray monitoring indicated that the source is a strong black hole candidate. We began a series of monitoring observations with Chandra HETGS, NuSTAR, and NICER to track the evolution of the outburst. Together, these three observatories represent an incredible opportunity to study the geometry of the accretion flow (via continuum spectroscopy), its variation with accretion state (via spectral variability), and any associated outflows or mass ejections (via line spectroscopy). We will present our analysis of this bright outburst and discuss the physics of accretion and ejection in this new black hole candidate.

  2. A CHANDRA OBSERVATION OF SNR 0540 - 697

    International Nuclear Information System (INIS)

    Seward, F. D.; Williams, R. M.; Chu, Y.-H.; Gruendl, R. A.; Dickel, J. R.

    2010-01-01

    This paper describes a Chandra observation of SNR 0540 - 697 within the H II complex N159 in the Large Magellanic Cloud (LMC). Scattering from the nearby bright source LMC X-1, which obscures the western edge of the remnant, has been removed. Larger than previously believed, the 2.'0 x 2.'8 remnant is defined by optical filaments and two lobes of X-ray emission. A band of intervening material absorbs X-rays from the central part of the remnant. The N Lobe of the remnant is relatively bright and well defined, while emission from the S Lobe is much weaker. There is structure within the N Lobe but no clear X-ray emission from an outer shell indicating a shock in the interstellar medium. The X-ray spectrum is thermal with emission lines from Fe, Mg, and Si. The observed temperature and luminosity of the hot gas are 0.6 keV and 6 x 10 35 erg s -1 , respectively. These are consistent with characteristics expected for older remnants. There is also diffuse thermal X-ray emission north of N159 extending into N160, evidence for a larger remnant or bubble.

  3. Searching for faint AGN in the CDFS: an X-ray (Chandra) vs optical variability (HST) comparison.

    Science.gov (United States)

    Georgantopoulos, I.; Pouliasis, E.; Bonanos, A.; Sokolovsky, K.; Yang, M.; Hatzidimitriou, D.; Bellas, I.; Gavras, P.; Spetsieri, Z.

    2017-10-01

    X-ray surveys are believed to be the most efficient way to detect AGN. Recently though, optical variability studies are claimed to probe even fainter AGN. We are presenting results from an HST study aimed to identify Active Galactic Nuclei (AGN) through optical variability selection in the CDFS.. This work is part of the 'Hubble Catalogue of Variables'project of ESA that aims to identify variable sources in the Hubble Source Catalogue.' In particular, we used Hubble Space Telescope (HST) z-band images taken over 5 epochs and performed aperture photometry to derive the lightcurves of the sources. Two statistical methods (standard deviation & interquartile range) resulting in a final sample of 175 variable AGN candidates, having removed the artifacts by visual inspection and known stars and supernovae. The fact that the majority of the sources are extended and variable indicates AGN activity. We compare the efficiency of the method by comparing with the 7Ms Chandra detections. Our work shows that the optical variability probes AGN at comparable redshifts but at deeper optical magnitudes. Our candidate AGN (non detected in X-rays) have luminosities of L_x<6×10^{40} erg/sec at z˜0.7 suggesting that these are associated with low luminosity Seyferts and LINERS.

  4. HST/ACS IMAGING OF OMEGA CENTAURI: OPTICAL COUNTERPARTS OF CHANDRA X-RAY SOURCES

    International Nuclear Information System (INIS)

    Cool, Adrienne M.; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Haggard, Daryl; Anderson, Jay

    2013-01-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central ∼10' × 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ∼40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M 625 =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in ω Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in ω to Cen 20, the largest number yet known in any globular cluster.

  5. HST/ACS Imaging of Omega Centauri: Optical Counterparts of Chandra X-Ray Sources

    Science.gov (United States)

    Cool, Adrienne M.; Haggard, Daryl; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Anderson, Jay

    2013-02-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central ~10' × 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M 625 =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in ω Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in ω to Cen 20, the largest number yet known in any globular cluster.

  6. Op. No A4495 Columbia, STS-93 Chandra - Breakfast, Suiting, and Walkout

    Science.gov (United States)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows the astronauts after breakfast getting into spacesuits, walking out to board the bus, and boarding the bus prior to launch.

  7. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    Science.gov (United States)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  8. Role Strain in Collegiate Athletic Training Approved Clinical Instructors

    Science.gov (United States)

    Henning, Jolene M; Weidner, Thomas G

    2008-01-01

    Context: Certified athletic trainers who serve as Approved Clinical Instructors (ACIs) in the collegiate setting are balancing various roles (eg, patient care and related administrative tasks, clinical education). Whether this balancing act is associated with role strain in athletic trainers has not been examined. Objective: To examine the degree of, and contributing factors (eg, socialization experiences, professional and employment demographics, job congruency) to, role strain in collegiate ACIs. Design: Cross-sectional survey design. Setting: Geographically stratified random sample of ACIs affiliated with accredited athletic training education programs at National Collegiate Athletic Association (NCAA) Division I, II, and III institutions. Patients or Other Participants: 118 collegiate ACIs (47 head athletic trainers, 45 assistant athletic trainers, 26 graduate assistant athletic trainers). Main Outcome Measure(s): The Athletic Training ACI Role Strain Inventory, which measures total degree of role strain, 7 subscales of role strain, socialization experiences, professional and employment characteristics, and congruency in job responsibilities. Results: A total of 49% (n  =  58) of the participants experienced a moderate to high degree of role strain. Role Overload was the highest contributing subscale to total role strain. No differences were noted between total role strain and role occupant groups, NCAA division, or sex. Graduate assistant athletic trainers experienced a greater degree of role incompetence than head athletic trainers did (P  =  .001). Division II ACIs reported a greater degree of inter-role conflict than those in Division I (P  =  .02). Female ACIs reported a greater degree of role incompetence than male ACIs (P  =  .01). Those ACIs who stated that the ACI training provided by their institution did not adequately prepare them for the role as an ACI experienced greater role strain (P < .001). Conclusions: The ACIs in the

  9. THE NATURE OF THE BRIGHT ULX X-2 IN NGC 3921: A CHANDRA POSITION AND HST CANDIDATE COUNTERPART

    Energy Technology Data Exchange (ETDEWEB)

    Jonker, P. G.; Heida, M.; Torres, M. A. P.; Ratti, E. M. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Miller-Jones, J. C. A. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Fabian, A. C.; Walton, D. J. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Miniutti, G. [Centro de Astrobiologia (CSIC-INTA), Departamento de Astrofisica, ESA, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Roberts, T. P., E-mail: p.jonker@sron.nl [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-10-10

    We report on Chandra observations of the bright ultraluminous X-ray (ULX) source in NGC 3921. Previous XMM-Newton observations reported in the literature show the presence of a bright ULX at a 0.5-10 keV luminosity of 2 Multiplication-Sign 10{sup 40} erg s{sup -1}. Our Chandra observation finds the source at a lower luminosity of Almost-Equal-To 8 Multiplication-Sign 10{sup 39} erg s{sup -1}; furthermore, we provide a Chandra position of the ULX accurate to 0.''7 at 90% confidence. The X-ray variability makes it unlikely that the high luminosity is caused by several separate X-ray sources. In three epochs of archival Hubble Space Telescope observations, we find a candidate counterpart to the ULX. There is direct evidence for variability between the two epochs of WFPC2 F814W observations with the observation obtained in 2000 showing a brighter source. Furthermore, converting the 1994 F336W and 2000 F300W WFPC2 and the 2010 F336W WFC3 observations to the Johnson U-band filter assuming a spectral type of O7I, we find evidence for a brightening of the U-band light in 2000. Using the higher resolution WFC3 observations, we resolve the candidate counterpart into two sources of similar color. We discuss the nature of the ULX and the probable association with the optical counterpart(s). Finally, we investigate a potential new explanation for some (bright) ULXs as the decaying stages of flares caused by the tidal disruption of a star by a recoiled supermassive black hole. However, we find that there should be at most only one of such systems within z = 0.08.

  10. Synergistic effect of radiation on N-2-fluorenylacetamide-induced hepatocarcinogenesis in male ACI/N rats

    International Nuclear Information System (INIS)

    Mori, Hideki; Iwata, Hitoshi; Morishita, Yukio; Mori, Yoshio; Ohno, Takatoshi; Tanaka, Takuji; Sasaki, Shunsaku.

    1990-01-01

    The effect of radiation on chemical hepatocarcinogenesis was examined in 3 groups of male ACI/N rats. In Group I, 21 rats received dietary administration of N-2-fluorenylacetamide (FAA) (0.02%) for 16 weeks. Six of the rats were killed at the cessation of FAA exposure. The remaining rats were then given the basal diet until termination (32 weeks). In Group II, 16 rats were given FAA for 16 weeks. The animals were then given radiation (whole body; 3 Gy) and kept on the diet for the subsequent 16 weeks. Thirteen rats of Group III were kept on the basal diet throughout the experiment. They received radiation for 16 weeks after the start of the experiment. Liver tumors were obtained in Groups I and II. The multiplicity of the neoplastic nodules or hepatocellular carcinomas of Group II (6.5±2.5 or 1.4±0.9) was significantly greater than that of Group I (2.9±1.7 or 0.3±0.4, respectively) (p<0.001). Furthermore, the incidence of hepatocellular carcinoma of Group II (13/16) was also significantly higher than that of Group I (4/15) (p<0.003). The results clearly indicate a synergistic effect of radiation with FAA on the hepatocarcinogenesis. The effect of radiation in this rat model appeared to be on the early progression of the carcinogenesis. (author)

  11. IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Rafferty, D. A.; Schneider, D. P.; Brusa, M.; Alexander, D. M.; Lehmer, B. D.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Mainieri, V.; Silverman, J. D.; Vignali, C.

    2010-01-01

    We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ∼2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ∼ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ∼10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ∼ 1% and an outlier [with |

  12. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    International Nuclear Information System (INIS)

    Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.

    2012-01-01

    We present here the results from new Very Long Baseline Array (VLBA) observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 Uppasala General Catalog (UGC) Fanaroff-Riley type I (FRI) radio galaxies. New Chandra data of two sources, viz., UGC 00408 and UGC 08433, are combined with the Chandra archival data of 13 sources. The 5 GHz observations of 10 'core-jet' sources are polarization-sensitive, while the 1.6 GHz observations constitute second-epoch total intensity observations of nine 'core-only' sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field 'shearing' due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity I ν falls with distance d from the core, following the relation, I ν ∝d a , where a is typically ∼ – 1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity 'dimming,' two limiting cases are considered: (1) the jet has a constant speed on parsec scales and is expanding gradually such that the jet radius r∝d 0 .4 ; this expansion is, however, unobservable in the laterally unresolved jets at 5 GHz, and (2) the jet is cylindrical and is accelerating on parsec scales. Accelerating parsec-scale jets are consistent with the phenomenon of 'magnetic driving' in Poynting-flux-dominated jets. While slow jet expansion as predicted by case (1) is indeed observed in a few sources from the literature that are resolved laterally, on scales of tens or hundreds of parsecs, case (2) cannot be ruled out in the present data, provided the jets become conical on scales larger than those probed by VLBA. Chandra observations of 15 UGC FRIs detect X-ray jets in 9 of them. The high frequency of occurrence of X

  13. Chandra's Darkest Bright Star: not so Dark after All?

    Science.gov (United States)

    Ayres, Thomas R.

    2008-11-01

    The Chandra High Resolution camera (HRC) has obtained numerous short exposures of the ultraviolet (UV)-bright star Vega (α Lyrae; HD 172167: A0 V), to calibrate the response of the detector to out-of-band (non-X-ray) radiation. A new analysis uncovered a stronger "blue leak" in the imaging section (HRC-I) than reported in an earlier study of Vega based on a subset of the pointings. The higher count rate—a factor of nearly 2 above prelaunch estimates—raised the possibility that genuine coronal X-rays might lurk among the out-of-band events. Exploiting the broader point-spread function of the UV leak compared with soft X-rays identified an excess of counts centered on the target, technically at 3σ significance. A number of uncertainties, however, prevent a clear declaration of a Vegan corona. A more secure result would be within reach of a deep uninterrupted HRC-I pointing.

  14. A Deep X-ray Search for the Putative IMBH in Omega Centauri

    Science.gov (United States)

    Haggard, Daryl; Cool, A.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Van Der Marel, R. P.; Anderson, J.

    2013-04-01

    Omega Centauri, the Milky Way's most massive and enigmatic old stellar cluster, offers a treasure trove of astronomical discovery and controversy, including debate about the existence of an intermediate mass black hole (IMBH) buried in the cluster's core. We report preliminary results of deep 290 ksec) Chandra ACIS-I imaging of Omega Cen, which reveals no X-ray source at the cluster center reported by Anderson and van der Marel (2010), or at any other proposed center for the cluster. We discuss the significance of this new X-ray limit for the possible presence of an IMBH in Omega Cen. We also briefly describe our multiwavelength imaging and spectroscopic campaigns, which probe Omega Cen's binary populations, and the light they shed on the cluster's dynamical history.

  15. THE X-RAY FLUX DISTRIBUTION OF SAGITTARIUS A* AS SEEN BY CHANDRA

    International Nuclear Information System (INIS)

    Neilsen, J.; Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute, Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands))" >Markoff, S.; Nowak, M. A.; Baganoff, F. K.; Dexter, J.; Witzel, G.; Barrière, N.; Li, Y.; Degenaar, N.; Fragile, P. C.; Gammie, C.; Goldwurm, A.; Grosso, N.; Haggard, D.

    2015-01-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-Ray Observatory's 3 Ms Sgr A* X-ray Visionary Project in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q = (5.24 ± 0.08) × 10 –3  counts s –1 , and a variable component, represented by a power law process (dN/dF∝F –ξ , ξ=1.92 −0.02 +0.03 ). This slope matches our recently reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of 1.8 −0.6 +0.8 ×10 −14  erg s –1  cm –2 and a shape parameter σ = 2.4 ± 0.2, but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ∼10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism

  16. INVESTIGATING THE OPTICAL COUNTERPART CANDIDATES OF FOUR INTEGRAL SOURCES LOCALIZED WITH CHANDRA

    International Nuclear Information System (INIS)

    Özbey Arabacı, Mehtap; Kalemci, Emrah; Tomsick, John A.; Bodaghee, Arash; Halpern, Jules; Chaty, Sylvain; Rodriguez, Jerome; Rahoui, Farid

    2012-01-01

    We report on the optical spectroscopic follow-up observations of the candidate counterparts to four INTEGRAL sources: IGR J04069+5042, IGR J06552–1146, IGR J21188+4901, and IGR J22014+6034. The candidate counterparts were determined with Chandra, and the optical observations were performed with 1.5 m RTT-150 telescope (TÜBİTAK National Observatory, Antalya, Turkey) and 2.4 m Hiltner Telescope (MDM Observatory, Kitt Peak, Arizona). Our spectroscopic results show that one of the two candidates of IGR J04069+5042 and the one observed for IGR J06552–1146 could be active late-type stars in RS CVn systems. However, according to the likelihood analysis based on Chandra and INTEGRAL, two optically weaker sources in the INTEGRAL error circle of IGR J06552–1146 have higher probabilities to be the actual counterpart. The candidate counterparts of IGR J21188+4901 are classified as an active M-type star and a late-type star. Among the optical spectra of four candidates of IGR J22014+6034, two show Hα emission lines, one is a late-type star, and the other is an M type. The likelihood analysis favors a candidate with no distinguishing features in the optical spectrum. Two of the candidates classified as M-type dwarfs, are similar to some IGR candidates claimed to be symbiotic stars. However, some of the prominent features of symbiotic systems are missing in our spectra, and their NIR colors are not consistent with those expected for giants. We consider the IR colors of all IGR candidates claimed to be symbiotic systems and find that low-resolution optical spectrum may not be enough for conclusive identification.

  17. THE X-RAY FLUX DISTRIBUTION OF SAGITTARIUS A* AS SEEN BY CHANDRA

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, J. [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Markoff, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Nowak, M. A.; Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Dexter, J. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720-3411 (United States); Witzel, G. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Barrière, N. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Li, Y. [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Degenaar, N. [Institute of Astronomy, University of Cambridge, Cambridge, CB3 OHA (United Kingdom); Fragile, P. C. [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States); Gammie, C. [Department of Astronomy, University of Illinois Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Goldwurm, A. [AstroParticule et Cosmologie (APC), Université Paris 7 Denis Diderot, F-75205 Paris cedex 13 (France); Grosso, N. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Haggard, D., E-mail: jneilsen@space.mit.edu [Department of Physics and Astronomy, AC# 2244, Amherst College, Amherst, MA 01002 (United States)

    2015-02-01

    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-Ray Observatory's 3 Ms Sgr A* X-ray Visionary Project in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q = (5.24 ± 0.08) × 10{sup –3} counts s{sup –1}, and a variable component, represented by a power law process (dN/dF∝F {sup –ξ}, ξ=1.92{sub −0.02}{sup +0.03}). This slope matches our recently reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of 1.8{sub −0.6}{sup +0.8}×10{sup −14} erg s{sup –1} cm{sup –2} and a shape parameter σ = 2.4 ± 0.2, but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ∼10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism.

  18. X-RAY AND RADIO OBSERVATIONS OF THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    Energy Technology Data Exchange (ETDEWEB)

    Montes, V. A.; Hofner, P.; Anderson, C.; Rosero, V. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States)

    2015-08-15

    We present results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6 cm continuum observations of the IRAS 20126+4104 massive star-forming region. We detect 150 X-ray sources within the 17′ × 17′ ACIS-I field, and a total of 13 radio sources within the 9.′2 primary beam at 4.9 GHz. Among these observtions are the first 6 cm detections of the central sources reported by Hofner et al., namely, I20N1, I20S, and I20var. A new variable radio source is also reported. Searching the 2MASS archive, we identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-ray sources had 6 cm counterparts. Based on an NIR color–color analysis and on the Besançon simulation of Galactic stellar populations, we estimate that approximately 80 X-ray sources are associated with this massive star-forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from the massive protostar.

  19. Superbubbles Bespeak Toil and Trouble

    Science.gov (United States)

    2000-08-01

    enriched with oxygen, iron and other heavy elements. These expanding bubbles, collide and coalesce to form superbubbles that are five thousand light years in diameter. Earlier data from the Rosat X-ray observatory showed extended patches of X-ray light in the Antennae, but according to Fabbiano, "We didn't know for sure that the superbubbles existed." Now scientists know that in addition to the superbubbles, the Antennae contain dozens of bright point-like sources- neutron stars and black holes-- left behind by the flurry of supernova activity. The X-rays from these sources are generated by gas that is heated to tens of millions of degrees Celsius as it streams from nearby companion stars onto neutron stars or into black holes. The ability to observe the neutron star/black hole sources and the superbubbles in the Antennae will enhance astronomers' understanding of the evolution of galaxies over the eons through the interplay of galaxy collisions, star formation, gravity and supernovas. "What we are witnessing with Chandra is galaxy ecology in action," said Andreas Zezas, "Over tens of millions of years, the superbubbles gradually enrich the galaxy's supply of oxygen and other elements, and may provide the energy needed to trigger the collapse of more clouds to form more stars and more supernovas in a continuing cycle of star birth, death and renewal." The next step will be to pin down the temperature and energy content more exactly, and to determine how much iron and other heavy elements are in the bubbles, and do some statistics based on the number of bubbles to refine the "galactic ecology." Chandra observed the Antennae with the Advanced CCD Imaging Spectrometer (ACIS) for 20 hours on December 1, 1999. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is

  20. Coronal Physics and the Chandra Emission Line Project

    Science.gov (United States)

    Brickhouse, N. S.; Drake, J. J.

    2000-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.

  1. Curcumin Implants, not Curcumin Diet Inhibits Estrogen-Induced Mammary Carcinogenesis in ACI Rats

    Science.gov (United States)

    Bansal, Shyam S.; kausar, Hina; Vadhanam, Manicka V.; Ravoori, Srivani; Pan, Jianmin; Rai, Shesh N.; Gupta, Ramesh C.

    2014-01-01

    Curcumin is widely known for its anti-oxidant, anti-inflammatory and anti-proliferative activities in cell culture studies. However, poor oral bioavailability limited its efficacy in animal and clinical studies. Recently, we developed polymeric curcumin implants that circumvents oral bioavailability issues, and tested their potential against 17β-estradiol (E2)-mediated mammary tumorigenesis. Female ACI rats were administered curcumin either via diet (1,000 ppm) or via polymeric curcumin implants (two 2-cm; 200 mg each; 20% drug load) 4 days prior to grafting a subcutaneous E2 silastic implant (1.2 cm, 9 mg E2). Implants were changed after 4½ months to provide higher curcumin dose at the appearance of palpable tumors. The animals were euthanized after 3 weeks, 3 months and after the tumor incidence reached >80% (~6 months) in control animals. The curcumin administered via implants resulted in significant reduction in both the tumor multiplicity (2±1 vs 5±3; p=0.001) and tumor volume (184±198 mm3 vs 280±141 mm3; p=0.0283); the dietary curcumin, however, was ineffective. Dietary curcumin increased hepatic CYP1A and CYP1B1 activities without any effect on CYP3A4 activity whereas curcumin implants increased both CYP1A and CYP3A4 activities but decreased CYP1B1 activity in presence of E2. Since CYP1A and 3A4 metabolize most of the E2 to its non-carcinogenic 2-OH metabolite and CYP1B1 produces potentially carcinogenic 4-OH metabolite, favorable modulation of these CYPs via systemically delivered curcumin could be one of the potential mechanisms. The analysis of plasma and liver by HPLC showed substantially higher curcumin levels via implants versus the dietary route despite substantially higher dose administered. PMID:24501322

  2. DEEP CHANDRA OBSERVATIONS OF NGC 1404: CLUSTER PLASMA PHYSICS REVEALED BY AN INFALLING EARLY-TYPE GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Randall, Scott W.; Jones, Christine; Machacek, Marie E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Roediger, Elke [E.A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom); Churazov, Eugene, E-mail: yuanyuan.su@cfa.harvard.edu [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany)

    2017-01-01

    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.

  3. A Deep X-ray Survey of the Globular Cluster Omega Centauri

    Science.gov (United States)

    Henleywillis, Simon; Cool, Adrienne M.; Haggard, Daryl; Heinke, Craig; Callanan, Paul; Zhao, Yue

    2018-03-01

    We identify 233 X-ray sources, of which 95 are new, in a 222 ks exposure of Omega Centauri with the Chandra X-ray Observatory's ACIS-I detector. The limiting unabsorbed flux in the core is fX(0.5-6.0 keV) ≃ 3×10-16 erg s-1 cm-2 (Lx ≃ 1×1030 erg s-1 at 5.2 kpc). We estimate that ˜60 ± 20 of these are cluster members, of which ˜30 lie within the core (rc = 155 arcsec), and another ˜30 between 1-2 core radii. We identify four new optical counterparts, for a total of 45 likely identifications. Probable cluster members include 18 cataclysmic variables (CVs) and CV candidates, one quiescent low-mass X-ray binary, four variable stars, and five stars that are either associated with ω Cen's anomalous red giant branch, or are sub-subgiants. We estimate that the cluster contains 40 ± 10 CVs with Lx > 1031 erg s-1, confirming that CVs are underabundant in ω Cen relative to the field. Intrinsic absorption is required to fit X-ray spectra of six of the nine brightest CVs, suggesting magnetic CVs, or high-inclination systems. Though no radio millisecond pulsars (MSPs) are currently known in ω Cen, more than 30 unidentified sources have luminosities and X-ray colours like those of MSPs found in other globular clusters; these could be responsible for the Fermi-detected gamma-ray emission from the cluster. Finally, we identify a CH star as the counterpart to the second-brightest X-ray source in the cluster and argue that it is a symbiotic star. This is the first such giant/white dwarf binary to be identified in a globular cluster.

  4. Identifications and Photometric Redshifts of the 2 Ms Chandra Deep Field-South Sources

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Brusa, M.; Alexander, D. M.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Lehmer, B. D.; Mainieri, V.; Rafferty, D. A.; Schneider, D. P.; Silverman, J. D.; Vignali, C.

    2010-04-01

    We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ≈2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ≈ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ≈10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ≈ 1% and an outlier [with |

  5. Impacts of Chandra X-ray Observatory Public Communications and Engagement

    Science.gov (United States)

    Arcand, Kimberly K.; Watzke, Megan; Lestition, Kathleen; Edmonds, Peter

    2015-01-01

    The Chandra X-ray Observatory Center runs a multifaceted Public Communications & Engagement program encompassing press relations, public engagement, and education. Our goals include reaching a large and diverse audience of national and international scope, establishing direct connections and working relationships with the scientists whose research forms the basis for all products, creating peer-reviewed materials and activities that evolve from an integrated pipeline design and encourage users toward deeper engagement, and developing materials that target underserved audiences such as women, Spanish speakers, and the sight and hearing impaired. This talk will highlight some of the key features of our program, from the high quality curated digital presence to the cycle of research and evaluation that informs our practice at all points of the program creation. We will also discuss the main impacts of the program, from the tens of millions of participants reached through the establishment and sustainability of a network of science 'volunpeers.'

  6. The BUFFALO HST Survey

    Science.gov (United States)

    Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO

    2018-01-01

    Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.

  7. Chandra monitoring of the Galactic Centre magnetar SGR J1745-2900 during the initial 3.5 years of outburst decay

    NARCIS (Netherlands)

    Coti Zelati, F.; Rea, N.; Turolla, R.; Pons, J.A.; Papitto, A.; Esposito, P.; Israel, G.L.; Campana, S.; Zane, S.; Tiengo, A.; Mignani, R.P.; Mereghetti, S.; Baganoff, F.K.; Haggard, D.; Ponti, G.; Torres, D.F.; Borghese, A.; Elfritz, J.

    2017-01-01

    We report on 3.5 yr of Chandra monitoring of the Galactic Centre magnetar SGR J1745−2900 since its outburst onset in 2013 April. The magnetar spin-down has shown at least two episodes of period derivative increases so far, and it has slowed down regularly in the past year or so. We observed a

  8. Biodiversity and Indigenous Uses of Medicinal Plant in the Chandra Prabha Wildlife Sanctuary, Chandauli District, Uttar Pradesh

    OpenAIRE

    Maurya Santosh Kumar; Seth Ankit; Dev Nath Singh Gautam; Singh Anil Kumar

    2015-01-01

    Conventional medicines are very important part of Indian culture. In this study the outcome of two-year study of ethnomedicinal uses of plants in Chandra Prabha Wildlife Sanctuary (CPWLS) and nearby area is reported. Information related to different plants which are used by local community in the treatment of many common diseases and well-being in the area was collected. Data on the use of medicinal plants were collected using structured interview of about 122 participants and thorough observ...

  9. Finding counterparts for all-sky X-ray surveys with NWAY: a Bayesian algorithm for cross-matching multiple catalogues

    Science.gov (United States)

    Salvato, M.; Buchner, J.; Budavári, T.; Dwelly, T.; Merloni, A.; Brusa, M.; Rau, A.; Fotopoulou, S.; Nandra, K.

    2018-02-01

    We release the AllWISE counterparts and Gaia matches to 106 573 and 17 665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b| > 15°. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g. colours, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a Wide-field Infrared Survey Explorer (WISE) colour-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of ∼94.7 per cent (2RXS) and 97.4 per cent (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96 per cent and 99 per cent with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool.

  10. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate Mass Black Hole

    Science.gov (United States)

    Barth, Aaron

    2004-09-01

    POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy is a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses. We request HST ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACIS imaging to investigate the spectral and variability properties of the X-ray emission. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  11. Dynamical Evolution of the Recent Jet in CH Cyg

    Science.gov (United States)

    Karovska, Margarita

    2011-10-01

    We propose to carry out Chandra ACIS-S observations combined with HST/WFC3multi-wavelength imaging of the powerful, multi-component jet which was detectedin 2008 in the nearby symbiotic CH Cyg. CH Cyg is a fascinating system containing an evolved giant and a wind-accreting white dwarf, and it is one of the few symbiotics showing jet activity, especially in X-rays. Our goal is to measure the physical characteristics of the individual jet components, from the central source to the region of interaction with the circumbinary environment, reaching to within a few AU from the source of the jet. We will determine the characteristics of the central source, and of the inner and the outer jet, and the dynamical evolution, including precession, and kinematics of the ejecta.

  12. Comparative Analysis and Variability of the Jovian X-Ray Spectra Detected by the Chandra and XMM-Newton Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Yawei [ORNL; Schultz, David Robert [ORNL; Kharchenko, Vasili A [ORNL; Bhardwaj, Anil [Vikram Sarabhai Space Center, Trivandrum, India; Branduardi-Raymont, Graziella [University College, London; Stancil, Phillip C. [University of Georgia, Athens, GA; Cravens, Thomas E. E. [University of Kansas; Lisse, Carey M. [Johns Hopkins University; Dalgarno, A. [Harvard-Smithsonian Center for Astrophysics

    2010-01-01

    Expanding upon recent work, a more comprehensive spectral model based on charge exchange induced X-ray emission by ions precipitating into the Jovian atmosphere is used to provide new understanding of the polar auroras. In conjunction with the Xspec spectral fitting software, the model is applied to analyze observations from both Chandra and XMM-Newton by systematically varying the initial precipitating ion parameters to obtain the best fit model for the observed spectra. In addition to the oxygen and sulfur ions considered previously, carbon is included to discriminate between solar wind and Jovian magnetospheric ion origins, enabled by the use of extensive databases of both atomic collision cross sections and radiative transitions. On the basis of fits to all the Chandra observations, we find that carbon contributes negligibly to the observed polar X-ray emission suggesting that the highly accelerated precipitating ions are of magnetospheric origin. Most of the XMM-Newton fits also favor this conclusion with one exception that implies a possible carbon contribution. Comparison among all the spectra from these two observatories in light of the inferred initial energies and relative abundances of precipitating ions from the modeling show that they are significantly variable in time (observation date) and space (north and south polar X-ray auroras).

  13. A Deep Chandra Observation of the Centaurus Cluster:Bubbles, Filaments and Edges

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, A.C.

    2005-03-14

    X-ray images and gas temperatures taken from a deep {approx}200 ks Chandra observation of the Centaurus cluster are presented. Multiple inner bubbles and outer semicircular edges are revealed, together with wispy filaments of soft X-ray emitting gas. The frothy central structure and eastern edge are likely due to the central radio source blowing bubbles in the intracluster gas. The semicircular edges to the surface brightness maps 32 kpc to the east and 17.5 kpc to the west are marked by sharp temperature increases and abundance drops. The edges could be due to sloshing motions of the central potential, or are possibly enhanced by earlier radio activity. The high abundance of the innermost gas (about 2.5 times Solar) limits the amount of diffusion and mixing taking place.

  14. VC and ACIS/HOOPS based semi-physical virtual prototype design and motion simulation of 2D scanning mirror

    Science.gov (United States)

    Liu, Xiangyan; Dai, Xiaobing; He, Xudong; Gao, Pengcheng

    2013-10-01

    Image-spectrum integrated instrument is an infrared scanning system which integrates optics, mechanics, electrics and information processing. Not only can it achieve scene imaging, but also it can detect, track and identify targets of interests in the scene through acquiring their spectra. After having a brief introduction to image-spectrum integrated instrument and analyzing how 2D scanning mirror works, this paper built 3D model of 2D scanning mirror and simulated its motion using two PCs basing on VC++ and ACIS/HOOPS. Two PCs communicate with each other through serial ports. One PC serves as host computer, on which controlling software runs, is responsible for loading image sequence, image processing, target detecting, and generating and sending motion commands to scanning mirror. The other serves as slave computer, on which scanning mirror motion simulation software runs, is responsible for receiving motion commands to control scanning mirror to finish corresponding movements. This method proposed in this paper adopted semi-physical virtual prototype technology and used real scene image sequence to control virtual 2D scanning mirror and simulates motion of real 2D scanning mirror. It has no need for real scanning mirror and is of important practical significance for debugging controlling software of 2D scanning mirror.

  15. The Chandra Source Catalog: Source Variability

    Science.gov (United States)

    Nowak, Michael; Rots, A. H.; McCollough, M. L.; Primini, F. A.; Glotfelty, K. J.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Evans, I.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) contains fields of view that have been studied with individual, uninterrupted observations that span integration times ranging from 1 ksec to 160 ksec, and a large number of which have received (multiple) repeat observations days to years later. The CSC thus offers an unprecedented look at the variability of the X-ray sky over a broad range of time scales, and across a wide diversity of variable X-ray sources: stars in the local galactic neighborhood, galactic and extragalactic X-ray binaries, Active Galactic Nuclei, etc. Here we describe the methods used to identify and quantify source variability within a single observation, and the methods used to assess the variability of a source when detected in multiple, individual observations. Three tests are used to detect source variability within a single observation: the Kolmogorov-Smirnov test and its variant, the Kuiper test, and a Bayesian approach originally suggested by Gregory and Loredo. The latter test not only provides an indicator of variability, but is also used to create a best estimate of the variable lightcurve shape. We assess the performance of these tests via simulation of statistically stationary, variable processes with arbitrary input power spectral densities (here we concentrate on results of red noise simulations) at variety of mean count rates and fractional root mean square variabilities relevant to CSC sources. We also assess the false positive rate via simulations of constant sources whose sole source of fluctuation is Poisson noise. We compare these simulations to an assessment of the variability found in real CSC sources, and estimate the variability sensitivities of the CSC.

  16. The Chandra Source Catalog : Google Earth Interface

    Science.gov (United States)

    Glotfelty, Kenny; McLaughlin, W.; Evans, I.; Evans, J.; Anderson, C. S.; Bonaventura, N. R.; Davis, J. E.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, H.; Houck, J. C.; Karovska, M.; Kashyap, V. L.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Mossman, A. E.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Rots, A. R.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) contains multi-resolution, exposure corrected, background subtracted, full-field images that are stored as individual FITS files and as three-color JPEG files. In this poster we discuss how we took these data and were able to, with relatively minimal effort, convert them for use with the Google Earth application in its ``Sky'' mode. We will highlight some of the challenges which include converting the data to the required Mercator projection, reworking the 3-color algorithm for pipeline processing, and ways to reduce the data volume through re-binning, using color-maps, and special Keyhole Markup Language (kml) tags to only load images on-demand. The result is a collection of some 11,000 3-color images that are available for all the individual observation in the CSC Release 1. We also have made available all ˜4000 Field-of-View outlines (with per-chip regions), which turns out are trivial to produce starting with a simple dmlist command. In the first week of release, approximately 40% of the images have been accessed at least once through some 50,000 individual web hits which have served over 4Gb of data to roughly 750 users in 60+ countries. We will also highlight some future directions we are exploring, including real-time catalog access to individual source properties and eventual access to file based products such as FITS images, spectra, and light-curves.

  17. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    Science.gov (United States)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  18. Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    Science.gov (United States)

    Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.

    2017-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.

  19. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bell, E. F.; Bouwens, R.; Cattaneo, A.; Croton, D.; Davé, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg 2 to a depth of 26 AB mag (3σ) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 μm. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 ± 1.0 and 4.4 ± 0.8 nW m –2 sr –1 at 3.6 and 4.5 μm to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  20. The use of portable equipment for the activity concentration index determination of building materials: method validation and survey of building materials on the Belgian market

    International Nuclear Information System (INIS)

    Stals, M.; Verhoeven, S.; Bruggeman, M.; Pellens, V.; Schroeyers, W.; Schreurs, S.

    2014-01-01

    The Euratom BSS requires that in the near future (2015) the building materials for application in dwellings or buildings such as offices or workshops are screened for NORM nuclides. The screening tool is the activity concentration index (ACI). Therefore it is expected that a large number of building materials will be screened for NORM and thus require ACI determination. Nowadays, the proposed standard for determination of building material ACI is a laboratory analyses technique with high purity germanium spectrometry and 21 days equilibrium delay. In this paper, the B-NORM method for determination of building material ACI is assessed as a faster method that can be performed on-site, alternative to the aforementioned standard method. The B-NORM method utilizes a LaBr 3 (Ce) scintillation probe to obtain the spectral data. Commercially available software was applied to comprehensively take into account the factors determining the counting efficiency. The ACI was determined by interpreting the gamma spectrum from 226 Ra and its progeny; 232 Th progeny and 40 K. In order to assess the accuracy of the B-NORM method, a large selection of samples was analyzed by a certified laboratory and the results were compared with the B-NORM results. The results obtained with the B-NORM method were in good correlation with the results obtained by the certified laboratory, indicating that the B-NORM method is an appropriate screening method to assess building material ACI. The B-NORM method was applied to analyze more than 120 building materials on the Belgian market. No building materials that exceed the proposed reference level of 1 mSv/year were encountered. -- Highlights: • Many building materials will have to be tested for NORM activity concentrations. • An on-site NORM analysis method has been developed and validated. • Over 120 building materials on the Belgian market have been analyzed with this method. • The Euratom BSS reference level of 1 mSv/year excess dose will

  1. PROBING WOLF–RAYET WINDS: CHANDRA/HETG X-RAY SPECTRA OF WR 6

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P.; Schulz, N. S. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Hamann, W.-R.; Oskinova, L.; Shenar, T. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Nichols, J. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS 34, Cambridge, MA 02138 (United States); Pollock, A. M. T., E-mail: dph@space.mit.edu, E-mail: ken.gayley@gmail.com, E-mail: wrh@astro.physik.uni-potsdam.de, E-mail: lida@astro.physik.uni-potsdam.de, E-mail: shtomer@astro.physik.uni-potsdam.de, E-mail: ignace@mail.etsu.edu, E-mail: jnichols@cfa.harvard.edu [European Space Agency, ESAC, Apartado 78, E-28691 Villanueva de la Cañada (Spain)

    2015-12-10

    With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.

  2. A VERY DEEP CHANDRA OBSERVATION OF A2052: BUBBLES, SHOCKS, AND SLOSHING

    International Nuclear Information System (INIS)

    Blanton, E. L.; Douglass, E. M.; Randall, S. W.; McNamara, B. R.; Clarke, T. E.; Sarazin, C. L.; McDonald, M.

    2011-01-01

    We present the first results from a very deep (∼650 ks) Chandra X-ray observation of A2052, as well as archival Very Large Array radio observations. The data reveal detailed structure in the inner parts of the cluster, including bubbles evacuated by radio lobes of the active galactic nucleus (AGN), compressed bubble rims, filaments, and loops. Two concentric shocks are seen, and a temperature rise is measured for the innermost one. On larger scales, we report the first detection of an excess surface brightness spiral feature. The spiral has cooler temperatures, lower entropies, and higher abundances than its surroundings, and is likely the result of sloshing gas initiated by a previous cluster-cluster or sub-cluster merger. Initial evidence for previously unseen bubbles at larger radii related to earlier outbursts from the AGN is presented.

  3. Neutron Stars and Black Holes New clues from Chandra and XMM-Newton

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Neutron stars and black holes, the most compact astrophysical objects, have become observable in many different ways during the last few decades. We will first review the phenomenology and properties of neutron stars and black holes (stellar and supermassive) as derived from multiwavelength observatories. Recently much progress has been made by means of the new powerful X-ray observatories Chandra and XMM-Newton which provide a substantial increase in sensitivity as well as spectral and angular resolution compared with previous satellites like ROSAT and ASCA. We shall discuss in more detail two recent topics: (1) The attempts to use X-ray spectroscopy for measuring the radii of neutron stars which depend on the equation of state at supranuclear densities. Have quark stars been detected? (2) The diagnostics of the strong gravity regions around supermassive black holes using X-ray spectroscopy.

  4. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  5. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Science.gov (United States)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  6. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Biggs, A. D.; Ivison, R. J. [European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dannerbauer, H. [Institut für Astrophysik, Universität Wien, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Schinnerer, E.; Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Wardlow, J. L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  7. Contributions of the "Great" X-Ray Observatories (XMM-Newton and Chandra) to Astronomy and Astrophysics

    Science.gov (United States)

    Weisskopf, Martin

    2011-01-01

    NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.

  8. Chandra observations of Jupiter's X-ray Aurora during Juno upstream and apojove intervals

    Science.gov (United States)

    Dunn, W.; Jackman, C. M.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.; Kammer, J.

    2017-12-01

    The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove. These campaigns were planned following the Juno orbit correction to capitalise on the opportunity to image the X-ray emission while Juno was orbiting close to the expected position of the magnetopause. Previous work has suggested that the auroral X-ray emissions map close to the magnetopause boundary [e.g. Vogt et al., 2015; Kimura et al., 2016; Dunn et al., 2016] and thus in situ spacecraft coverage in this region combined with remote observation of the X-rays afford the chance to constrain the drivers of these energetic emissions and determine if they originate on open or closed field lines. We aim to examine possible drivers of X-ray emission including reconnection and the Kelvin-Helmholtz instability and to explore the role of the solar wind in controlling the emissions. We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 ks for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.

  9. Hot Galactic Arms Point To Vicious Cycle

    Science.gov (United States)

    2001-12-01

    usually observed in connection with galactic outbursts. "It may be that we are seeing an early stage of the cycle before the radio source has turned on," said team member William Forman also of the Harvard-Smithsonian Center for Astrophysics. "Or, it could be a new type of outburst that is not accompanied by strong radio emission." Other members of the team included Alexey Vikhlinin, Maxim Markevitch, Laurence David, Aryeh Warmflash, all of the CfA, and Paul Nulsen of the University of Wollongong in Australia. Chandra observed NGC 4636, an elliptical galaxy in the constellation Virgo some 50 million light years from Earth, with the Advanced CCD Imaging Spectrometer (ACIS) on Dec. 4-5, 1999 for 11,000 sec, and Jan. 26-27, 2000 for 53,000 seconds as part of a program led by Richard Mushotzky of NASA's Goddard Space Flight Center to study X-ray emission from elliptical galaxies. The ACIS instrument was developed for NASA by Pennsylvania State University, University Park, and Massachusetts Institute of Technology, Cambridge. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  10. Chandra Takes on Heavy Jets and Massive Winds in 4U 1630-47

    Science.gov (United States)

    Neilsen, Joey

    2014-11-01

    Recently, Díaz Trigo et al. reported the discovery of relativistic baryons in a jet in XMM/ATCA observations of the 2012 outburst of the black hole 4U 1630-47. We present a search for a similarly massive jet earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. Despite a detection of radio emission with ATCA, we find no evidence of a heavy jet in the X-ray spectrum, with tight upper limits on the relativistic emission lines seen by Díaz Trigo eight months later. Instead, we find deep absorption lines from a massive, highly ionized disk wind, whose properties can be probed with detailed photoionization models. We explore several scenarios to explain the two modes of massive outflow in this remarkable black hole system.

  11. X-ray/ultraviolet observing campaign of the Markarian 279 active galactic nucleus outflow: a close look at the absorbing/emitting gas with Chandra-LETGS

    NARCIS (Netherlands)

    Costantini, E.; Kaastra, J.S.; Arav, N.; Kriss, G.A.; Steenbrugge, K.C.; Gabel, J.R.; Verbunt, F.W.M.; Behar, E.; Gaskell, C. Martin; Korista, K.T.; Proga, D.; Kim Quijano, J.; Scott, J.E.; Klimek, E.S.; Hedrick, C.H.

    2007-01-01

    We present a Chandra-LETGS observation of the Seyfert 1 galaxy Mrk 279. This observation was simultaneous with HST-STIS and FUSE observations, in the context of a multiwavelength study of this source. The data also allow for the presence of intermediate ionization components. The distribution of the

  12. The Chandra Source Catalog: Source Properties and Data Products

    Science.gov (United States)

    Rots, Arnold; Evans, Ian N.; Glotfelty, Kenny J.; Primini, Francis A.; Zografou, Panagoula; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    The Chandra Source Catalog (CSC) is breaking new ground in several areas. There are two aspects that are of particular interest to the users: its evolution and its contents. The CSC will be a living catalog that becomes richer, bigger, and better in time while still remembering its state at each point in time. This means that users will be able to take full advantage of new additions to the catalog, while retaining the ability to back-track and return to what was extracted in the past. The CSC sheds the limitations of flat-table catalogs. Its sources will be characterized by a large number of properties, as usual, but each source will also be associated with its own specific data products, allowing users to perform mini custom analysis on the sources. Source properties fall in the spatial (position, extent), photometric (fluxes, count rates), spectral (hardness ratios, standard spectral fits), and temporal (variability probabilities) domains, and are all accompanied by error estimates. Data products cover the same coordinate space and include event lists, images, spectra, and light curves. In addition, the catalog contains data products covering complete observations: event lists, background images, exposure maps, etc. This work is supported by NASA contract NAS8-03060 (CXC).

  13. CHANDRA IDENTIFICATION OF 26 NEW BLACK HOLE CANDIDATES IN THE CENTRAL REGION OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.; Garcia, M. R.; Murray, S. S. [Harvard-Smithsonian Center for Astrophysics (CFA), Cambridge, MA 02138 (United States)

    2013-06-20

    We have previously identified 10 M31 black hole candidates (BHCs) in M31 from their X-ray properties alone. They exhibit ''hard state'' emission spectra that are seen at luminosities {approx}<10% Eddington in X-ray binaries (XBs) containing a neutron star (NS) or black hole, at luminosities that significantly exceed the NS threshold. Nine of these are associated with globular clusters (GCs); hence, these are most likely low mass X-ray binaries; eight are included in this survey. We have recently discovered that analysis of the long term 0.5-4.5 keV variability of XBs via structure functions allows us to separate XBs from active galactic nuclei, even though the emission spectra are often similar; this has enabled us to search for BHCs outside of GCs. We have identified 26 new BHCs (12 strong, 14 plausible) within 20' of the M31 nucleus (M31*), using 152 Chandra observations spaced over {approx}13 yr; some of our classifications were enhanced with XMM-Newton observations. Of these, seven appear within 100'' of M31*; this supports the theory suggesting that this region experiences enhanced XB production via dynamical processes similar to those seen in GCs. We have found a parameter space where our BHCs are separated from Galactic NS binaries: we show that modeling a simulated hard state spectrum with a disk blackbody + blackbody model yields parameters that lie outside the space occupied by NS binaries that are modeled this way. The probability that our BHCs all lie within the NS parameter space is {approx}3 Multiplication-Sign 10{sup -29}.

  14. Cometary X-rays - the View After the First Chandra Cycle

    Science.gov (United States)

    Lisse, Carey M.

    2001-09-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et al. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998, Lisse et al. 1999) have shown that the very soft (best fit thermal bremsstrahlung model kT 0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission, including new results from Chandra and XMM. As-observed morphologies, spectra, and light curves will be discussed. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma, the structure of the solar wind in the heliosphere, and the source of the local soft x-ray background. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  15. The Chandra M10l Megasecond: Diffuse Emission

    Science.gov (United States)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  16. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Bertoldi, F.; Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße, D-85748 Garching bei München (Germany); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Da Cunha, E.; Hodge, J. A.; Schinnerer, E. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K. [Department of Earth and Space Science, Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden); Poggianti, B. M., E-mail: j.m.simpson@dur.ac.uk [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  17. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    International Nuclear Information System (INIS)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.

    2014-01-01

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z phot = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z phot = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M * = (8 ± 1) × 10 10 M ☉ , although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M H distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  18. Investigating source confusion in PMN J1603-4904

    Science.gov (United States)

    Krauß, F.; Kreter, M.; Müller, C.; Markowitz, A.; Böck, M.; Burnett, T.; Dauser, T.; Kadler, M.; Kreikenbohm, A.; Ojha, R.; Wilms, J.

    2018-02-01

    PMN J1603-4904 is a likely member of the rare class of γ-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi Gamma-ray Space Telescope Large Area Telescope (Fermi-LAT) γ-ray source has been associated with this young galaxy in the LAT catalogs. We have obtained Chandra observations of the source to consider the possibility of source confusion due to the relatively large positional uncertainty of Fermi-LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi-LAT data, which includes an improved localization analysis of eight years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ-ray bright young radio galaxy.

  19. Gas Sloshing and Radio Galaxy Dynamics in the Core of the 3C 449 Group

    Science.gov (United States)

    Lal, Dharam V.; Kraft, Ralph P.; Randall, Scott W.; Forman, William R.; Nulsen, Paul E.; Roediger, Elke; ZuHone, John A.; Hardcastle, Martin J.; Jones, Christine; Croston, Judith H.

    2013-01-01

    We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last 1.3-1.6 Gyr. Both the northern and southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge.We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. and are confirmed in our deep observation.

  20. Survey of Experience Using Reinforced Concrete in Floating Marine Structures.

    Science.gov (United States)

    1983-01-01

    analyzed in several steps. The load history can be simulated by .. using load increments and independent load vectors . 4.31 NTH is not only active in...NILSEN, N., " FEILD TEST OF REINFORCEMENT CORROSION IN CONCRETE", PERFORMANCE OF CONCRETE IN MARINE ENVIRONMENT, ACI SPECIAL PUBLICATION SP-65, 1980. 136

  1. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, E. M. H.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Dogiel, V. A., E-mail: cyhui@cnu.ac.kr [I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute of Physics, Leninskii pr. 53, 119991 Moscow (Russian Federation)

    2014-06-20

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons.

  2. ON THE EXPANSION RATE, AGE, AND DISTANCE OF THE SUPERNOVA REMNANT G266.2–1.2 (Vela Jr.)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G. E. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, NE83-557, Cambridge, MA 02139 (United States); Chow, K. [Weston High School, 444 Wellesley Street, Weston, MA 02493 (United States); DeLaney, T. [Department of Physics and Engineering, West Virginia Wesleyan College, Box 112, 59 College Avenue, Buckhannon, WV 26201 (United States); Filipović, M. D. [University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797 (Australia); Houck, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pannuti, T. G. [Space Science Center, Department of Earth and Space Sciences, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States); Stage, M. D., E-mail: gea@space.mit.edu, E-mail: kc71135@gmail.com, E-mail: delaney_t@wvwc.edu, E-mail: m.filipovic@uws.edu.au, E-mail: jhouck@cfa.harvard.edu, E-mail: t.pannuti@moreheadstate.edu, E-mail: mikstage@astro.umass.edu [Department of Astronomy, University of Massachusetts, LGRT-B 619E, 710 North Pleasant Street, Amherst, MA 01003-9305 (United States)

    2015-01-10

    An analysis of Chandra ACIS data for two relatively bright and narrow portions of the northwestern rim of G266.2–1.2 (a.k.a. RX J0852.0-4622 or Vela Jr.) reveal evidence of a radial displacement of 2.40 ± 0.56 arcsec between 2003 and 2008. The corresponding expansion rate (0.42 ± 0.10 arcsec yr{sup –1} or 13.6% ± 4.2% kyr{sup –1}) is about half the rate reported for an analysis of XMM-Newton data from a similar, but not identical, portion of the rim over a similar, but not identical, time interval (0.84 ± 0.23 arcsec yr{sup –1}). If the Chandra rate is representative of the remnant as a whole, then the results of a hydrodynamic analysis suggest that G266.2–1.2 is between 2.4 and 5.1 kyr old if it is expanding into a uniform ambient medium (whether or not it was produced by a Type Ia or Type II event). If the remnant is expanding into the material shed by a steady stellar wind, then the age could be as much as 50% higher. The Chandra expansion rate and a requirement that the shock speed be greater than or equal to 1000 km s{sup –1} yields a lower limit on the distance of 0.5 kpc. An analysis of previously published distance estimates and constraints suggests G266.2–1.2 is no further than 1.0 kpc. This range of distances is consistent with the distance to the nearer of two groups of material in the Vela Molecular Ridge (0.7 ± 0.2 kpc) and to the Vel OB1 association (0.8 kpc)

  3. A Joint Chandra and Swift View of the 2015 X-ray Dust-scattering Echo of V404 Cygni

    Science.gov (United States)

    Heinz, S.; Corrales, L.; Smith, R.; Brandt, W. N.; Jonker, P. G.; Plotkin, R. M.; Neilsen, J.

    2016-07-01

    We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using a stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray light curve of the 2015 June outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8. By deconvolving the intensity profiles with the reconstructed outburst light curve, we show that the rings correspond to eight separate dust concentrations with precise distance determinations. We further show that the column density of the clouds varies significantly across the field of view, with the centroid of most of the clouds shifted toward the Galactic plane, relative to the position of V404 Cyg, invalidating the assumption of uniform cloud column typically made in attempts to constrain dust properties from light echoes. We present a new XSPEC spectral dust-scattering model that calculates the differential dust-scattering cross section for a range of commonly used dust distributions and compositions and use it to jointly fit the entire set of Swift echo data. We find that a standard Mathis-Rumpl-Nordsieck model provides an adequate fit to the ensemble of echo data. The fit is improved by allowing steeper dust distributions, and models with simple silicate and graphite grains are preferred over models with more complex composition.

  4. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    Science.gov (United States)

    Swartz, Douglas A.; Weisskopf, M. C.; Zavlin, V.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; van der Horst, A.; Yukita, M.

    2013-04-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXO J061705.3+222127, in the supernova remnant IC443 confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by a pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The observations further reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic; there is no evidence for a strong bow shock and the ring, presumably formed at a wind termination shock, is not distorted by motion through the ambient medium.

  5. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    Science.gov (United States)

    Swartz, D. A.; Weisskopf, M. C.; Zavlin, V. E.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; O'Dell, S. L.; vanderHorst, A J.; Yukita, M.

    2013-01-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222117, in the supernova remnant IC443 reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by the pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest (or, equivalently, flow of ambient medium to the northeast), appears to be subsonic; there is no evidence for a strong bow shock, and the circular ring is not distorted by motion through the ambient medium.

  6. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  7. Monitoring Chandra Observations of the Quasi-persistent Neutron Star X-Ray Transient MXB 1659-29 in Quiescence: The Cooling Curve of the Heated Neutron Star Crust

    NARCIS (Netherlands)

    Wijnands, R.A.D.; Homan, J.; Miller, J.M.; Lewin, W.H.G.

    2004-01-01

    We have observed the quasi-persistent neutron star X-ray transient and eclipsing binary MXB 1659-29 in quiescence on three occasions with Chandra. The purpose of our observations was to monitor the quiescent behavior of the source after its last prolonged (~2.5 yr) outburst that ended in 2001

  8. An X-ray Expansion and Proper Motion Study of the Magellanic Cloud Supernova Remnant J0509-6731 with the Chandra X-ray Observatory

    Science.gov (United States)

    Roper, Quentin; Filipovi, Miroslav; Allen, Glenn E.; Sano, Hidetoshi; Park, Laurence; Pannuti, Thomas G.; Sasaki, Manami; Haberl, Frank; Kavanagh, Patrick J.; Yamane, Yumiko; Yoshiike, Satoshi; Fujii, Kosuke; Fukui, Yasuo; Seitenzahl, Ivo R.

    2018-05-01

    Using archival Chandra data consisting of a total of 78.46 ksec over two epochs seven years apart, we have measured the expansion of the young (˜400 years old) type Ia Large Magellanic Cloud supernova remnant (SNR) J0509-6731. In addition, we use radial brightness profile matching to detect proper-motion expansion of this SNR, and estimate an speed of 7 500±1 700 km s-1. This is one of the only proper motion studies of extragalactic SNRs expansion that is able to derive an expansion velocity, and one of only two such studies of an extragalactic SNR to yield positive results in the X-rays. We find that this expansion velocity is consistent with an optical expansion study on this object. In addition, we examine the medium into which the SNR is expanding by examining the CO and neutral H I gas using radio data obtained from Mopra, the Australia Telescope Compact Array and Parkes radio telescopes. We also briefly compare this result with a recent radio survey, and find that our results predict a radio spectral index α of -0.67±0.07. This value is consistent with high frequency radio observations of MCSNR J0509-6731.

  9. Chandra and XMM-Newton observations of the low-luminosity X-ray pulsators SAX J1324.4−6200 and SAX J1452.8−5949

    NARCIS (Netherlands)

    Kaur, R.; Wijnands, R.; Patruno, A.; Testa, V.; Israel, G.; Degenaar, N.; Paul, B.; Kumar, B.

    2009-01-01

    We present results from our Chandra and XMM-Newton observations of two low-luminosity X-ray pulsators SAX J1324.4-6200 and SAX J1452.8-5949 which have spin periods of 172 and 437 s, respectively. The XMM-Newton spectra for both sources can be fitted well with a simple power-law model of photon

  10. Cometary X-ray Emission: the View After the First Chandra Observations

    Science.gov (United States)

    Lisse, C. M.

    2002-01-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et al. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998, Lisse et al. 1999) have shown that the very soft (best fit thermal bremsstrahlung model kT ~ 0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission, including new results from Chandra and XMM. As-observed morphologies, spectra, and light curves will be discussed. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma, the structure of the solar wind in the heliosphere, and the source of the local soft x-ray background. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  11. Growth characteristics and imaging properties of the morris hepatoma 3924a in ACI rats: A suitable model for transarterial chemoembolization

    International Nuclear Information System (INIS)

    Truebenbach, Jochen; Graepler, Florian; Pereira, Philippe L; Ruck, Peter; Lauer, Ulrich; Gregor, Michael; Claussen, Claus-D.; Huppert, Peter E.

    2000-01-01

    Purpose: For experimental studies investigating modalities and efficacy of transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC) an animal model resembling the human situation as closely as possible would be appropriate. Specifically, reproducible tumor growth characteristics with the capability for appropriate in vivo imaging to monitor treatment efficacy are required.Methods: Morris hepatoma 3924A was implanted into the liver of 30 ACI rats. Tumor growth was followed by angiography (n=10), ultrasound (US, n=30), native computed tomography (CT. n=16), and native magnetic resonance imaging (MRU n=30) between day 8 and day 36 after implantation. The radiological morphological characteristics were compared with the macroscopic and microscopic histological findings of the explanted tumors.Results: In all 30 animals a solitary liver tumor was found and macroscopically no signs of metastases, ascites, or peritoneal tumor were visible. On histopathological examination tumor sizes ranged between 27 ± 3 mm 3 (day 8) and 3468 ± 79 mm 3 (day 36). The first signs of tumor necrosis occurred at day 16. US allowed tumor visualization from day 8, MRI from day 8, angiography from day 10, and CT from day 14.Conclusions: The tumor model has the potential to be used for the visualization of tumor growth by MRI and US. The potential for monitoring therapeutic effects of TACE needs to be investigated.

  12. Chandra's Ultimate Angular Resolution: Studies of the HRC-I Point Spread Function

    Science.gov (United States)

    Juda, Michael; Karovska, M.

    2010-03-01

    The Chandra High Resolution Camera (HRC) should provide an ideal imaging match to the High-Resolution Mirror Assembly (HRMA). The laboratory-measured intrinsic resolution of the HRC is 20 microns FWHM. HRC event positions are determined via a centroiding method rather than by using discrete pixels. This event position reconstruction method and any non-ideal performance of the detector electronics can introduce distortions in event locations that, when combined with spacecraft dither, produce artifacts in source images. We compare ray-traces of the HRMA response to "on-axis" observations of AR Lac and Capella as they move through their dither patterns to images produced from filtered event lists to characterize the effective intrinsic PSF of the HRC-I. A two-dimensional Gaussian, which is often used to represent the detector response, is NOT a good representation of the intrinsic PSF of the HRC-I; the actual PSF has a sharper peak and additional structure which will be discussed. This work was supported under NASA contract NAS8-03060.

  13. The Ultra-fast Outflow of the Quasar PG 1211+143 as Viewed by Time-averaged Chandra Grating Spectroscopy

    Science.gov (United States)

    Danehkar, Ashkbiz; Nowak, Michael A.; Lee, Julia C.; Kriss, Gerard A.; Young, Andrew J.; Hardcastle, Martin J.; Chakravorty, Susmita; Fang, Taotao; Neilsen, Joseph; Rahoui, Farid; Smith, Randall K.

    2018-02-01

    We present a detailed X-ray spectral study of the quasar PG 1211+143 based on Chandra High Energy Transmission Grating Spectrometer (HETGS) observations collected in a multi-wavelength campaign with UV data using the Hubble Space Telescope Cosmic Origins Spectrograph (HST-COS) and radio bands using the Jansky Very Large Array (VLA). We constructed a multi-wavelength ionizing spectral energy distribution using these observations and archival infrared data to create XSTAR photoionization models specific to the PG 1211+143 flux behavior during the epoch of our observations. Our analysis of the Chandra-HETGS spectra yields complex absorption lines from H-like and He-like ions of Ne, Mg, and Si, which confirm the presence of an ultra-fast outflow (UFO) with a velocity of approximately ‑17,300 km s‑1 (outflow redshift z out ∼ ‑0.0561) in the rest frame of PG 1211+143. This absorber is well described by an ionization parameter {log}ξ ∼ 2.9 {erg} {{{s}}}-1 {cm} and column density {log}{N}{{H}}∼ 21.5 {{cm}}-2. This corresponds to a stable region of the absorber’s thermal stability curve, and furthermore its implied neutral hydrogen column is broadly consistent with a broad Lyα absorption line at a mean outflow velocity of approximately ‑16,980 km s‑1 detected by our HST-COS observations. Our findings represent the first simultaneous detection of a UFO in both X-ray and UV observations. Our VLA observations provide evidence for an active jet in PG 1211+143, which may be connected to the X-ray and UV outflows; this possibility can be evaluated using very-long-baseline interferometric observations.

  14. Imaging AGN Feedback in NGC 3393 with CHEERS

    Science.gov (United States)

    Paggi, Alessandro; Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2016-04-01

    The CHandra Extended Emission-line Region Survey (CHEERS) is the 'ultimate' resolution X-ray imaging survey of nearby far-IR selected AGN. By comparing deep Chandra observations with complementary HST and radio data, we investigate the morphology of the extended narrow-line region on scales of <100 pc. We present new results on the gas surrounding the compton-thick AGN NGC 3393. The luminous extended narrow-line X-ray emission from this gas allows us to study the role and extent of AGN feedback as sub-kpc jets interact with the surrounding ISM.

  15. IACHEC CROSS-CALIBRATION OF CHANDRA , NuSTAR , SWIFT , SUZAKU , XMM-NEWTON WITH 3C 273 ANDPKS 2155-304

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Kristin K.; Forster, Karl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Beardmore, Andrew P.; Page, Kim L. [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Guainazzi, Matteo [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1, Yoshinodai, Sagamihara, Kanagawa, 252-5201 (Japan); Marshall, Herman L.; Miller, Eric D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Stuhlinger, Martin [European Space Astronomy Centre (ESAC), P.O. Box 78, E-28691 Villanueva de la Caada, Madrid (Spain)

    2017-01-01

    On behalf of the International Astronomical Consortium for High Energy Calibration, we present results from the cross-calibration campaigns in 2012 on 3C 273 and in 2013 on PKS 2155-304 between the then active X-ray observatories Chandra , NuSTAR , Suzaku , Swift, and XMM-Newton . We compare measured fluxes between instrument pairs in two energy bands, 1–5 keV and 3–7 keV, and calculate an average cross-normalization constant for each energy range. We review known cross-calibration features and provide a series of tables and figures to be used for evaluating cross-normalization constants obtained from other observations with the above mentioned observatories.

  16. CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE 2011-APRIL GAMMA-RAY FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; Tennant, Allyn F.; O' Dell, Stephen L. [NASA Marshall Space Flight Center, Astrophysics Office (ZP12), Huntsville, AL 35812 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Blandford, Roger; Funk, Stefan; Romani, Roger W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Buehler, Rolf [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Caraveo, Patrizia; De Luca, Andrea [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Cheung, Chi C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Costa, Enrico [INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Ferrigno, Carlo [ISDC, Data Center for Astrophysics of the University of Geneva, chemin d' cogia 16, CH-1290 Versoix (Switzerland); Fu, Hai [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Habermehl, Moritz; Horns, Dieter [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Linford, Justin D. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131-0001 (United States); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Max, Claire [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mignani, Roberto [Mullard Space Science Laboratory, University College London, Holmbury St. Mary Dorking, Surrey RH5 6NT (United Kingdom); and others

    2013-03-01

    We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the {gamma}-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the 'inner knot', i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the {gamma}-ray flares and suggest that the most dramatic {gamma}-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.

  17. General Aviation Activity and Avionics Survey

    Science.gov (United States)

    1988-11-01

    0 us 4 U 0 ZN i s-~w-w 0 0 09 .j 04 1-. -w N 0I.. 0m Mo N 4% NO N 0 - 0 N MD N 0n0- 0- 0 -0. * 4. M - o* V* 0 0* v0 2j Ge 4cJ 0- ON l 0M M4t 4 0 isO ...0540 41530 RROYCETYNE 54510 FRNKLN4AC150 27002 LYC 0540 41531 RROYCEVIPER 10201 FRNKLN4ACISO 27003 LYC 0540 41533 FRNKLN4ACI5O 27004 LYC 0540 41534

  18. Chandra Snapshot Spectral Imaging of Comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR)

    Science.gov (United States)

    Lisse, Carey

    2003-09-01

    The highly favorable perigee passage of the very bright comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR) in late May 2004 provides an opportunity to study cometary x-ray emission in conjunction with the new CHIPS spectroscopic mission. In 10 ksec of on-target time for each comet, ACIS-S will obtain snapshot images of the comets in the heart of the CHIPS 0.05 0.150 keV spectroscopic monitoring period in late-May 2004. The combined observations have the potential of directly detecting for the first time the ultra-soft emission due to Mg, S, Si, and Fe predicted by McCammon et al. (2002) from soft x-ray background measurements and by Kharchenko et al. (2000, 2003) from models of solar wind minor ion charge exchange emission. New work by Wegmann, Dennerl, and Lisse (2004) allows a determination of the neutral gas production rate from the spatial scale of the emission, and an independent determination of the solar wind minor ion flux density using the x-ray surface brightness.

  19. Precocious Supermassive Black Holes Challenge Theories

    Science.gov (United States)

    2004-11-01

    after the Big Bang." There is general agreement among astronomers that X-radiation from the vicinity of supermassive black holes is produced as gas is pulled toward a black hole, and heated to temperatures ranging from millions to billions of degrees. Most of the infalling gas is concentrated in a rapidly rotating disk, the inner part of which has a hot atmosphere or corona where temperatures can climb to billions of degrees. Although the precise geometry and details of the X-ray production are not known, observations of numerous quasars, or supermassive black holes, have shown that many of them have very similar X-ray spectra, especially at high X-ray energies. This suggests that the basic geometry and mechanism are the same for these objects. Chandra X-ray Image of SDSSp J1306 Chandra X-ray Image of SDSSp J1306 The remarkable similarity of the X-ray spectra of the young supermassive black holes to those of much older ones means that the supermassive black holes and their accretion disks, were already in place less than a billion years after the Big Bang. One possibility is that millions of 100 solar mass black holes formed from the collapse of massive stars in the young galaxy, and subsequently built up a billion-solar mass black hole in the center of the galaxy through mergers and accretion of gas. To answer the question of how and when supermassive black holes were formed, astronomers plan to use the very deep Chandra exposures and other surveys to identify and study quasars at even earlier ages. The paper by Schwartz and Virani on SDSSp J1306 was published in the November 1, 2004 issue of The Astrophysical Journal. The paper by Duncan Farrah and colleagues on SDSS J1030 was published in the August 10, 2004 issue of The Astrophysical Journal. Chandra observed J1306 with its Advanced CCD Imaging Spectrometer (ACIS) instrument for approximately 33 hours in November 2003. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA

  20. RESOLVING THE ξ BOO BINARY WITH CHANDRA, AND REVEALING THE SPECTRAL TYPE DEPENDENCE OF THE CORONAL 'FIP EFFECT'

    International Nuclear Information System (INIS)

    Wood, Brian E.; Linsky, Jeffrey L.

    2010-01-01

    On 2008 May 2, Chandra observed the X-ray spectrum of ξ Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of ξ Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5%, respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for ξ Boo) leads to the surprising conclusion that ξ Boo B may dominate the wind from the binary, with ξ Boo A's wind being very weak despite its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of 'FIP effect' on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries, or extremely active stars with log L X >29, explaining why this correlation has not been recognized in the past.

  1. Resolving the xi Boo Binary with Chandra, and Revealing the Spectral Type Dependence of the Coronal "Fip Effect"

    Science.gov (United States)

    Wood, Brian E.; Linsky, Jeffrey L.

    2010-01-01

    On 2008 May 2, Chandra observed the X-ray spectrum of xi Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of ξ Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5% respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for xi Boo) leads to the surprising conclusion that xi Boo B may dominate the wind from the binary, with xi Boo A's wind being very weak despite its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of FIP effect on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries or extremely active stars with logLX 29, explaining why this correlation has not been recognized in the past.

  2. A COMPTON-THICK ACTIVE GALACTIC NUCLEUS AT z ∼ 5 IN THE 4 Ms CHANDRA DEEP FIELD SOUTH

    International Nuclear Information System (INIS)

    Gilli, R.; Comastri, A.; Su, J.; Norman, C.; Vignali, C.; Tozzi, P.; Rosati, P.; Mainieri, V.; Stiavelli, M.; Brandt, W. N.; Xue, Y. Q.; Luo, B.; Castellano, M.; Fontana, A.; Fiore, F.; Ptak, A.

    2011-01-01

    We report the discovery of a Compton-thick active galactic nucleus (AGN) at z = 4.76 in the 4 Ms Chandra Deep Field South. This object was selected as a V-band dropout in HST/ACS images and previously recognized as an AGN from optical spectroscopy. The 4 Ms Chandra observations show a significant (∼4.2σ) X-ray detection at the V-band dropout position. The X-ray source displays a hardness ratio of HR = 0.23 ± 0.24, which, for a source at z ∼ 5, is highly suggestive of Compton-thick absorption. The source X-ray spectrum is seen above the background level in the energy range of ∼0.9-4 keV, i.e., in the rest-frame energy range of ∼5-23 keV. When fixing the photon index to Γ = 1.8, the measured column density is N H = 1.4 +0.9 -0.5 x 10 24 cm -2 , which is Compton thick. To our knowledge, this is the most distant heavily obscured AGN, confirmed by X-ray spectral analysis, discovered so far. The intrinsic (de-absorbed), rest-frame luminosity in the 2-10 keV band is ∼2.5 x 10 44 erg s -1 , which places this object among type-2 quasars. The spectral energy distribution shows that massive star formation is associated with obscured black hole (BH) accretion. This system may have then been caught during a major coeval episode of BH and stellar mass assembly at early times. The measure of the number density of heavily obscured AGN at high redshifts will be crucial to reconstructing the BH/galaxy evolution history from the beginning.

  3. CORRELATION OF CHANDRA PHOTONS WITH THE RADIO GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Bilous, A. V.; McLaughlin, M. A.; Kondratiev, V. I.; Ransom, S. M.

    2012-01-01

    No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hr of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range of 1.5-4.5 keV. During the Crab pulsar periods with GPs, the X-ray flux in radio emission phase windows does not change more than by ±10% for main pulse (MP) GPs and ±30% for interpulse (IP) GPs. During GPs themselves, the X-ray flux does not change by more than two times for MP GPs and five times for IP GPs. All limits quoted are compatible with 2σ fluctuations of the X-ray flux around the sets of false GPs with random arrival times. The results speak in favor of changes in plasma coherence as the origin of GPs. However, the results do not rule out variations in the rate of particle creation if the particles that emit coherent radio emission are mostly at the lowest Landau level.

  4. Spatially resolving a starburst galaxy at hard X-ray energies: NuSTAR, CHANDRA, AND VLBA observations of NGC 253

    DEFF Research Database (Denmark)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.

    2014-01-01

    for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within...... is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the γ-ray emission detected with Fermi and H.E.S.S. If NGC...

  5. Adaptability-what it is and what it is not: Comment on Chandra and Leong (2016).

    Science.gov (United States)

    Martin, Andrew J

    2017-10-01

    Chandra and Leong (2016) propose a new model of adaptability: the diversified portfolio model (DPM) of adaptability. Further thought and research on adaptability is a welcome addition to the limited body of work conducted on this topic to date. However, in their discussion there is a lack of definitional clarity, and there is frequent conflation of adaptability and resilience. It is also the case that the hypothesized adaptability model is general and could apply to many psychological constructs and processes (not just adaptability). In addition, there are gaps in research suggested by the authors that have been addressed by other researchers and there is a good deal of contemporary adaptability research that is not cited. Addressing these limitations in future work is vital to the further development of theory, research, and practice in the area of adaptability. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and 99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  7. HDE 245059: A WEAK-LINED T TAURI BINARY REVEALED BY CHANDRA AND KECK

    International Nuclear Information System (INIS)

    Baldovin-Saavedra, C.; Audard, M.; Duchene, G.; Guedel, M.; Skinner, S.L.; Paerels, F. B. S.; Ghez, A.; McCabe, C.

    2009-01-01

    We present the Chandra High Energy Transmission Grating Spectrometer and Keck observations of HDE 245059, a young weak-lined T Tauri star (WTTS), member of the pre-main-sequence group in the λ Orionis Cluster. Our high spatial resolution, near-infrared observations with Keck reveal that HDE 245059 is in fact a binary separated by 0.''87, probably composed of two WTTS based on their color indices. Based on this new information we have obtained an estimate of the masses of the binary components; ∼3 M sun and ∼2.5 M sun for the north and south components, respectively. We have also estimated the age of the system to be ∼2-3 Myr. We detect both components of the binary in the zeroth-order Chandra image and in the grating spectra. The light curves show X-ray variability of both sources and in particular a flaring event in the weaker southern component. The spectra of both stars show similar features: a combination of cool and hot plasma as demonstrated by several iron lines from Fe XVII to Fe XXV and a strong bremsstrahlung continuum at short wavelengths. We have fitted the combined grating and zeroth-order spectrum (considering the contribution of both stars) in XSPEC. The coronal abundances and emission measure distribution for the binary have been obtained using different methods, including a continuous emission measure distribution and a multi-temperature approximation. In all cases we have found that the emission is dominated by plasma between ∼8 and ∼15 MK a soft component at ∼4 MK and a hard component at ∼50 MK are also detected. The value of the hydrogen column density was low, N H ∼ 8 x 10 19 cm -2 , likely due to the clearing of the inner region of the λ Orionis cloud, where HDE 245059 is located. The abundance pattern shows an inverse first ionization potential effect for all elements from O to Fe, the only exception being Ca. To obtain the properties of the binary components, a 3-T model was fitted to the individual zeroth-order spectra

  8. Living with a Red Dwarf: A Chandra Archival Study of dM Star Activity and Habitability

    Science.gov (United States)

    Engle, Scott

    2017-09-01

    We propose to analyze 6 archival Chandra visits, not pointed at, but serendipitously including 3 dM stars of known age. GJ 669 AB are a common proper motion pair, each are resolved and detected in 3 exposures, and LHS 373 is a much older dM star also detected on 3 exposures. Photometry (by us) of GJ 669 AB began 5 years ago, is ongoing, and has precisely determined rotation rates for both stars and evidence of frequent flaring from GJ 669 B. We will analyze the multiple exposures, derive an accurate mean level of X-ray activity from the targets, and also separate out and individually analyze and model any observed X-ray flares. This proposal will provide highly accurate coronal properties for the targets, but also very useful data for stellar evolution and planetary habitability studies.

  9. Titan Casts Revealing Shadow

    Science.gov (United States)

    2004-05-01

    diameter, which corresponds to the size of a dime as viewed from about two and a half miles. Illustration of Crab, Titan's Shadow and Chandra Illustration of Crab, Titan's Shadow and Chandra Unlike almost all of Chandra's images which are made by focusing X-ray emission from cosmic sources, Titan's X-ray shadow image was produced in a manner similar to a medical X-ray. That is, an X-ray source (the Crab Nebula) is used to make a shadow image (Titan and its atmosphere) that is recorded on film (Chandra's ACIS detector). Titan's atmosphere, which is about 95% nitrogen and 5% methane, has a pressure near the surface that is one and a half times the Earth's sea level pressure. Voyager I spacecraft measured the structure of Titan's atmosphere at heights below about 300 miles (500 kilometers), and above 600 miles (1000 kilometers). Until the Chandra observations, however, no measurements existed at heights in the range between 300 and 600 miles. Understanding the extent of Titan's atmosphere is important for the planners of the Cassini-Huygens mission. The Cassini-Huygens spacecraft will reach Saturn in July of this year to begin a four-year tour of Saturn, its rings and its moons. The tour will include close flybys of Titan that will take Cassini as close as 600 miles, and the launching of the Huygens probe that will land on Titan's surface. Chandra's X-ray Shadow of Titan Chandra's X-ray Shadow of Titan "If Titan's atmosphere has really expanded, the trajectory may have to be changed." said Tsunemi. The paper on these results has been accepted and is expected to appear in a June 2004 issue of The Astrophysical Journal. Other members of the research team were Haroyoski Katayama (Osaka University), David Burrows and Gordon Garmine (Penn State University), and Albert Metzger (JPL). Chandra observed Titan from 9:04 to 18:46 UT on January 5, 2003, using its Advanced CCD Imaging Spectrometer instrument. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra

  10. Chandra Studies of the X-ray gas properties of fossil systems

    Science.gov (United States)

    Qin, Zhen-Zhen

    2016-03-01

    We study ten galaxy groups and clusters suggested in the literature to be “fossil systems (FSs)” based on Chandra observations. According to the M500 - T and LX - T relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the fgas, 2500 - T relation and find that the FSs exhibit the same trend as ordinary systems. The gas densities of FSs within 0.1r200 are ˜ 10-3 cm-3, which is the same order of magnitude as galaxy clusters. The entropies within 01r200 (S0.1r200) of FSs are systematically lower than those inordinary galaxy groups, which is consistent with previous reports, but we find their S0.1r200 - T relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk and White model in (0.1 - 1)r200, and the relation between scale radius rs and characteristic mass density δc indicates self-similarity of dark matter halos of FSs. The ranges of rs and δc for FSs are also close to those of galaxy clusters. Therefore, FSs share more common characteristics with galaxy clusters. The special birth place of the FS makes it a distinct type of galaxy system.

  11. Annealing bounds to prevent further Charge Transfer Inefficiency increase of the Chandra X-ray CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Monmeyran, Corentin, E-mail: comonmey@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Patel, Neil S., E-mail: neilp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bautz, Mark W., E-mail: mwb@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Grant, Catherine E., E-mail: cgrant@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Prigozhin, Gregory Y., E-mail: gyp@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Agarwal, Anuradha, E-mail: anu@mit.edu [Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Kimerling, Lionel C., E-mail: lckim@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-12-15

    After the front-illuminated CCDs on board the X-ray telescope Chandra were damaged by radiation after launch, it was decided to anneal them in an effort to remove the defects introduced by the irradiation. The annealing led to an unexpected increase of the Charge Transfer Inefficiency (CTI). The performance degradation is attributed to point defect interactions in the devices. Specifically, the annealing at 30 °C activated the diffusion of the main interstitial defect in the device, the carbon interstitial, which led to its association with a substitutional impurity, ultimately resulting in a stable and electrically active defect state. Because the formation reaction of this carbon interstitial and substitutional impurity associate is diffusion limited, we recommend a higher upper bound for the annealing temperature and duration of any future CCD anneals, that of −50 °C for one day or −60 °C for a week, to prevent further CTI increase.

  12. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    International Nuclear Information System (INIS)

    Dehghan, S.; Johnston-Hollitt, M.

    2014-01-01

    We present a comprehensive structure detection analysis of the 0.3 deg 2 area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc 2 at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M 200 ≥ 4.9 × 10 13 M ☉ ) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally disrupted central galaxies

  13. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, S.; Johnston-Hollitt, M., E-mail: siamak.dehghan@vuw.ac.nz [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand)

    2014-03-01

    We present a comprehensive structure detection analysis of the 0.3 deg{sup 2} area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc{sup 2} at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M {sub 200} ≥ 4.9 × 10{sup 13} M {sub ☉}) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally

  14. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  15. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    Science.gov (United States)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  16. CHANDRA OBSERVATION OF THE RELATIVISTIC BINARY J1906+0746

    International Nuclear Information System (INIS)

    Kargaltsev, O.; Pavlov, G. G.

    2009-01-01

    PSR J1906+0746 is a young radio pulsar (τ = 112 kyr, P = 144 ms) in a tight binary (P orb = 3.98 hr) with a compact high-mass companion (M comp ≅ 1.36 M sun ), at the distance of about 5 kpc. We observed this unique relativistic binary with the Chandra Advanced CCD Imaging Spectrometer detector for 31.6 ks. Surprisingly, not a single photon was detected within the 3'' radius from the J1906+0746 radio position. For a plausible range of hydrogen column densities, n H = (0.5-1) x 10 22 cm -2 , the nondetection corresponds to the 90% upper limit of (3-5) x 10 30 erg s -1 on the unabsorbed 0.5-8 keV luminosity for the power-law model with Γ = 1.0-2.0, and ∼10 32 erg s -1 on the bolometric luminosity of the thermal emission from the neutrons star surface. The inferred limits are the lowest known for pulsars with spin-down properties similar to those of PSR J1906+0746. We have also tentatively detected a puzzling extended structure which looks like a tilted ring with a radius of 1.'6 centered on the pulsar. The measured 0.5-8 keV flux of the feature, ∼3.1 x 10 -14 erg cm -2 s -1 , implies an unabsorbed luminosity of 1.2 x 10 32 erg s -1 (4.5 x 10 -4 of the pulsar's E-dot) for n H = 0.7 x 10 22 cm -2 . If the ring is not a peculiar noise artifact, the pulsar wind nebula around an unusually underluminous pulsar would be the most plausible interpretation.

  17. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Randall, S.; Su, Y. [Harvard/Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Churazov, E. [MPI für Astrophysik, Karl-Schwarzschild-Str. 1, Garching D-85741 (Germany); Sheardown, A., E-mail: rkraft@cfa.harvard.edu [E. A. Milne Center for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom)

    2017-10-10

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  18. Chandra Studies of the X-ray gas properties of fossil systems

    International Nuclear Information System (INIS)

    Qin, Zhen-Zhen

    2016-01-01

    We study ten galaxy groups and clusters suggested in the literature to be “fossil systems (FSs)” based on Chandra observations. According to the M 500 − T and L X − T relations, the gas properties of FSs are not physically distinct from ordinary galaxy groups or clusters. We also first study the f gas, 2500 − T relation and find that the FSs exhibit the same trend as ordinary systems. The gas densities of FSs within 0.1r 200 are ∼ 10 −3 cm −3 , which is the same order of magnitude as galaxy clusters. The entropies within 01r 200 (S 0.1r200 ) of FSs are systematically lower than those inordinary galaxy groups, which is consistent with previous reports, but we find their S 0.1r200 − T relation is more similar to galaxy clusters. The derived mass profiles of FSs are consistent with the Navarro, Frenk and White model in (0.1 − 1)r 200 , and the relation between scale radius r s and characteristic mass density δ c indicates self-similarity of dark matter halos of FSs. The ranges of r s and δ c for FSs are also close to those of galaxy clusters. Therefore, FSs share more common characteristics with galaxy clusters. The special birth place of the FS makes it a distinct type of galaxy system. (paper)

  19. FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACS J1149.6+2223

    Energy Technology Data Exchange (ETDEWEB)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; Forman, W.; Andrade-Santos, F.; Murray, S. S.; Nulsen, P.; Bulbul, E.; Kraft, R.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dawson, W. A. [Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA 94550 (United States); Golovich, N. [University of California, One Shields Avenue, Davis, CA 95616 (United States); Roediger, E. [Astronomy and Astrophysics Section, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Zitrin, A.; Sayers, J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Goulding, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Mroczkowski, T. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Bonafede, A. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Churazov, E., E-mail: gogrean@cfa.harvard.edu [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); and others

    2016-03-10

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.

  20. Chandra and XMM-Newton Observations of the Abell 3395/Abell 3391 Intercluster Filament

    Science.gov (United States)

    Alvarez, Gabriella E.; Randall, Scott W.; Bourdin, Hervé; Jones, Christine; Holley-Bockelmann, Kelly

    2018-05-01

    We present Chandra and XMM-Newton X-ray observations of the Abell 3391/Abell 3395 intercluster filament. It has been suggested that the galaxy clusters Abell 3395, Abell 3391, and the galaxy group ESO-161 -IG 006 located between the two clusters, are in alignment along a large-scale intercluster filament. We find that the filament is aligned close to the plane of the sky, in contrast to previous results. We find a global projected filament temperature kT = {4.45}-0.55+0.89 keV, electron density {n}e={1.08}-0.05+0.06× {10}-4 cm‑3, and {M}gas}={2.7}-0.1+0.2 × {10}13 M ⊙. The thermodynamic properties of the filament are consistent with that of the intracluster medium (ICM) of Abell 3395 and Abell 3391, suggesting that the filament emission is dominated by ICM gas that has been tidally disrupted during an early stage merger between these two clusters. We present temperature, density, entropy, and abundance profiles across the filament. We find that the galaxy group ESO-161 may be undergoing ram-pressure-stripping in the low-density environment at or near the virial radius of both clusters, due to its rapid motion through the filament.

  1. Chandra X-Rays from the Redshift 7.54 Quasar ULAS J1342+0928

    Science.gov (United States)

    Bañados, Eduardo; Connor, Thomas; Stern, Daniel; Mulchaey, John; Fan, Xiaohui; Decarli, Roberto; Farina, Emanuele P.; Mazzucchelli, Chiara; Venemans, Bram P.; Walter, Fabian; Wang, Feige; Yang, Jinyi

    2018-04-01

    We present a 45 ks Chandra observation of the quasar ULAS J1342+0928 at z = 7.54. We detect {14.0}-3.7+4.8 counts from the quasar in the observed-frame energy range 0.5–7.0 keV (6σ detection), representing the most distant non-transient astronomical source identified in X-rays to date. The present data are sufficient only to infer rough constraints on the spectral parameters. We find an X-ray hardness ratio of { \\mathcal H }{ \\mathcal R }=-{0.51}-0.28+0.26 between the 0.5–2.0 keV and 2.0–7.0 keV ranges and derive a power-law photon index of {{Γ }}={1.95}-0.53+0.55. Assuming a typical value for high-redshift quasars of Γ = 1.9, ULAS J1342+0928 has a 2–10 keV rest-frame X-ray luminosity of {L}2-10={11.6}-3.5+4.3× {10}44 {erg} {{{s}}}-1. Its X-ray-to-optical power-law slope is {α }OX}=-{1.67}-0.10+0.16, consistent with the general trend indicating that the X-ray emission in the most bolometrically powerful quasars is weaker relative to their optical emission.

  2. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Schawinski, Kevin; Urry, C. Megan; Bonning, Erin W. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Oh, Kyuseok [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Cardamone, Carolin N. [Harriet W. Sheridan Center for Teaching and Learning, Brown University, P.O. Box 1912, Providence, RI 02912 (United States); Keel, William C. [Department of Physics and Astronomy, 206 Gallalee Hall, 514 University Boulevard, University of Alabama, Tuscaloosa, AL 35487-034 (United States); Simmons, Brooke D. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Treister, Ezequiel, E-mail: stacy.h.teng@nasa.gov [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  3. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes.

    Science.gov (United States)

    Moyer, Richard A; Hummer, Kim E; Finn, Chad E; Frei, Balz; Wrolstad, Ronald E

    2002-01-30

    Fruits from 107 genotypes of Vaccinium L., Rubus L., and Ribes L., were analyzed for total anthocyanins (ACY), total phenolics (TPH), and antioxidant capacities as determined by oxygen radical absorbing capacity (ORAC) and ferric reducing antioxidant power (FRAP). Fruit size was highly correlated (r = 0.84) with ACY within Vaccinium corymbosum L., but was not correlated to ACY across eight other Vaccinium species, or within 27 blackberry hybrids. Certain Vaccinium and Ribes fruits with pigmented flesh were lower in ACY, TPH, ORAC, and FRAP compared to those values in berries with nonpigmented flesh. ORAC values ranged from 19 to 131 micromol Trolox equivalents/g in Vaccinium, from 13 to 146 in Rubus, and from 17 to 116 in Ribes. Though ACY may indicate TPH, the range observed in ACY/TPH ratios precludes prediction of ACY from TPH and vice versa for a single genotype. In general, TPH was more highly correlated to antioxidant capacity than ACY was. This study demonstrates the wide diversity of phytochemical levels and antioxidant capacities within and across three genera of small fruit.

  4. 12 YEARS OF X-RAY VARIABILITY IN M31 GLOBULAR CLUSTERS, INCLUDING 8 BLACK HOLE CANDIDATES, AS SEEN BY CHANDRA

    International Nuclear Information System (INIS)

    Barnard, R.; Garcia, M.; Murray, S. S.

    2012-01-01

    We examined 134 Chandra observations of the population of X-ray sources associated with globular clusters (GCs) in the central region of M31. These are expected to be X-ray binary systems (XBs), consisting of a neutron star or black hole accreting material from a close companion. We created long-term light curves for these sources, correcting for background, interstellar absorption, and instrumental effects. We tested for variability by examining the goodness of fit for the best-fit constant intensity. We also created structure functions (SFs) for every object in our sample, the first time this technique has been applied to XBs. We found significant variability in 28 out of 34 GCs and GC candidates; the other 6 sources had 0.3-10 keV luminosities fainter than ∼2 × 10 36 erg s –1 , limiting our ability to detect similar variability. The SFs of XBs with 0.3-10 keV luminosities ∼2-50 × 10 36 erg s –1 generally showed considerably more variability than the published ensemble SF of active galactic nuclei (AGNs). Our brightest XBs were mostly consistent with the AGN SF; however, their 2-10 keV fluxes could be matched by <1 AGN per square degree. These encouraging results suggest that examining the long-term light curves of other X-ray sources in the field may provide an important distinction between X-ray binaries and background galaxies, as the X-ray emission spectra from these two classes of X-ray sources are similar. Additionally, we identify 3 new black hole candidates (BHCs) using additional XMM-Newton data, bringing the total number of M31 GC BHCs to 9, with 8 covered in this survey.

  5. The Evolution of Normal Galaxy X-Ray Emission Through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    Science.gov (United States)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.; hide

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  6. Campaign of AAVSO Monitoring of the CH Cyg Symbiotic System in Support of Chandra and HST Observations

    Science.gov (United States)

    Karovska, M.

    2013-06-01

    (Abstract only) CH Cyg is one of the most interesting interacting binaries in which a compact object, a white dwarf or a neutron star, accretes from the wind of an evolved giant or supergiant. CH Cyg is a member of the symbiotic systems group, and at about 250pc it is one of the closest systems. Symbiotic systems are accreting binaries, which are likely progenitors of a fraction of Pre-Planetary and Planetary Nebulae, and of a fraction of SN type Ia (the cosmic distance scale indicators). We carried out Chandra and HST observations of CH Cyg in March 2012 as part of a follow-up investigation of the central region of CH Cyg and its precessing jet, including the multi-structures that were discovered in 2008. I will describe here the campaign of multi-wavelength observations, including photometry and spectroscopy, that were carried out by AAVSO members in support of the space-based observations.

  7. A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Lehmer, B. D.; Jenkins, L. P.; Alexander, D. M.; Goulding, A. D.; Roberts, T. P.; Bauer, F. E.; Brandt, W. N.; Ptak, A.

    2010-01-01

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D H ∼ 20 cm -2 . The LIRGs in our sample have total infrared (8-1000 μm) luminosities in the range of L IR ∼ (1-8) x 10 11 L sun . The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M * ) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L gal HX ) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M * , respectively, we constrain the relation L gal HX = αM * + βSFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of α = (9.05 ± 0.37) x 10 28 erg s -1 M -1 sun and β = (1.62 ± 0.22) x 10 39 erg s -1 (M sun yr -1 ) -1 . This scaling provides a more physically meaningful estimate of L gal HX , with ∼0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M * ∼>5.9 x 10 -11 yr -1 , a factor of ∼2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M * ∼> 10 -9 yr -1 , appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions

  8. Analysis of abnormal findings observed on brain MRI T2 weighted image in a system for the detection of asymptomatic brain disease in 1,200 cases

    International Nuclear Information System (INIS)

    Horiguchi, Takashi; Yoshida, Kazunari; Sato, Syuzo; Kawase, Takeshi; Toya, Shigeo; Mizukami, Masahiro

    1998-01-01

    In this study we described the significance of asymptomatic cerebral infarction (ACI) and periventricular hyperintensity (PVH) observed on brain MRI in a system for detection of asymptomatic brain disease with 1,200 cases. The risk factors (RF), population in each age bracket of ACI and PVH, among groups with hypertension (HTG) and without RF (no-RFG), were investigated. The RF of ACI were hypertension (HT), diabetes mellitus (DM), and aging. Without DM, those are common RF of PVH. The population of PVH and ACI with PVH increased with aging in no-RFG. On the other hand, only the population of ACI with PVH increased with aging in HTG. The rate of these abnormal findings in HTG was significantly higher than that in no-RFG. In addition, HT accelerated the occurrence of these findings by 10-20 years. When patients were over 60 years old, ACI increased rapidly. Accordingly, we concluded that PVH and ACI had a common background. Long term follow up concerning the incidence of ACI in the group with only PVH was necessary. It was desirable that treatment for RF should be effected before the age of sixty. (author)

  9. Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys

    Science.gov (United States)

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; von der Linden, Anja

    2018-01-01

    The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. In this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (Lce), which previous work suggests correlates tightly with total mass. Our data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using Lce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. We also explore the potential impact of Chandra and XMM-Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.

  10. THE HOT INTERSTELLAR MEDIUM OF THE INTERACTING GALAXY NGC 4490

    International Nuclear Information System (INIS)

    Richings, A. J.; Fabbiano, G.; Wang Junfeng; Roberts, T. P.

    2010-01-01

    We present an analysis of the hot interstellar medium (ISM) in the spiral galaxy NGC 4490, which is interacting with the irregular galaxy NGC 4485, using ∼100 ks of Chandra ACIS-S observations. The high angular resolution of Chandra enables us to remove discrete sources and perform spatially resolved spectroscopy for the star-forming regions and associated outflows, allowing us to look at how the physical properties of the hot ISM such as temperature, hydrogen column density, and metal abundances vary throughout these galaxies. We find temperatures of >0.41 keV and 0.85 +0.59 -0.12 keV, electron densities of >1.87η -1/2 x 10 -3 cm -3 and 0.21 +0.03 -0.04 η -1/2 x 10 -3 cm -3 , and hot gas masses of >1.1η 1/2 x 10 7 M sun and ∼3.7η 1/2 x 10 7 M sun in the plane and halo of NGC 4490, respectively, where η is the filling factor of the hot gas. The abundance ratios of Ne, Mg, and Si with respect to Fe are found to be consistent with those predicted by theoretical models of type II supernovae (SNe). The thermal energy in the hot ISM is ∼5% of the total mechanical energy input from SNe, so it is likely that the hot ISM has been enriched and heated by type II SNe. The X-ray emission is anticorrelated with the Hα and mid-infrared emission, suggesting that the hot gas is bounded by filaments of cooler ionized hydrogen mixed with warm dust.

  11. SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT z = 5.7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Vieira, J. D.; Sreevani, J. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brandt, W. N. [Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Litke, K.; Marrone, D. P.; Spilker, J. S. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 37-582C, Cambridge, MA 02139 (United States); Murphy, E. J., E-mail: jingzhema@ufl.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2016-12-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST , Spitzer , Herschel , Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (∼4500 M {sub ☉} yr{sup −1}) and SFR surface density Σ{sub SFR} (∼2000 M {sub ☉} yr{sup −1} kpc{sup −2}) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 10{sup 13} L {sub ☉} originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest Σ{sub SFR} of any known galaxy. This high Σ{sub SFR}, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  12. SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT z = 5.7

    International Nuclear Information System (INIS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Vieira, J. D.; Sreevani, J.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Breuck, C. de; Gullberg, B.; Bothwell, M. S.; Brandt, W. N.; Carlstrom, J. E.; Chapman, S. C.; Hezaveh, Y.; Litke, K.; Marrone, D. P.; Spilker, J. S.; Malkan, M.; McDonald, M.; Murphy, E. J.

    2016-01-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST , Spitzer , Herschel , Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (∼4500 M ☉ yr −1 ) and SFR surface density Σ SFR (∼2000 M ☉ yr −1 kpc −2 ) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 10 13 L ☉ originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest Σ SFR of any known galaxy. This high Σ SFR , which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  13. Evaluación de los modelos de predicción del ACI-08, Eurocódigo 2 y EHE-08, para estimar las propiedades mecánicas del hormigón autocompactante

    Directory of Open Access Journals (Sweden)

    Agranati, G.

    2010-12-01

    Full Text Available The objective of this study is to evaluate the applicability of the ACI-08, EC-2, and EHE-08 models for the estimating of the mechanical properties of self-compacting concrete (SCC. The mechanical properties considered are the modulus of elasticity, tensile strength, and modulus of rupture. In order to statistically evaluate the applicability of the models it was necessary to compile an extensive database that included the experimental results for the various mechanical properties analyzed and the exact dosifications of the mixtures. The first part of the study includes an analysis of each one of the models, together with a regression analysis in order to evaluate the behavior and the adaptability to the different models. The specific characterization parameters for each concrete mixture were used to calculate the various mechanical properties applying the different estimation models. The second part of the analysis consisted in comparing the experimental results with the estimated results for all the mixtures in order to evaluate the applicability of these models to SCC.

    El presente trabajo de investigación tiene como finalidad estudiar la aplicabilidad de los modelos de cálculo del ACI-08, Eurocódigo 2 y de la EHE-08 utilizados para la estimar las propiedades mecánicas del hormigón convencional, en el hormigón autocompactante. Las propiedades mecánicas estudiadas han sido: el módulo de deformación, la resistencia a tracción y la resistencia a flexotracción. Para llevar a cabo la investigación fue necesario construir una extensa base de datos que permitiera albergar en ella una gran cantidad de dosificaciones de hormigón autocompactante y un amplio rango de valores de sus propiedades mecánicas para lograr una muestra lo más representativa posible. En primera instancia se comparó el comportamiento de cada uno de estos modelos normativos de cálculo, con la curva de regresión de los datos obtenidos para el hormig

  14. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    Science.gov (United States)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  15. Testing the Universality of the Stellar IMF with Chandra and HST

    Science.gov (United States)

    Coulter, D. A.; Lehmer, B. D.; Eufrasio, R. T.; Kundu, A.; Maccarone, T.; Peacock, M.; Hornschemeier, A. E.; Basu-Zych, A.; Gonzalez, A. H.; Maraston, C.; Zepf, S. E.

    2017-02-01

    The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be “bottom-heavy” for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g., Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m≲ 0.5 {M}⊙ ) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m≳ 8 {M}⊙ ) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. searched for evidence of this trend and found that the observed number of LMXBs per unit K-band luminosity (N/{L}K) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory and Hubble Space Telescope observations of seven low-mass ellipticals where N/{L}K is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/{L}K. We reproduce the result of Peacock et al., strengthening the constraint that the slope of the IMF at m≳ 8 {M}⊙ must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope ({α }1=3.84) for stars 0.5 {M}⊙ , and discuss its wider ramifications and limitations.

  16. Carbon emission intensity in electricity production: A global analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Su, Bin

    2016-01-01

    We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.

  17. Substructures in DAFT/FADA survey clusters based on XMM and optical data

    Science.gov (United States)

    Durret, F.; DAFT/FADA Team

    2014-07-01

    The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.

  18. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Pestka, Jan M; Kreuz, Peter C

    2008-01-01

    BACKGROUND: Although autologous chondrocyte implantation (ACI) is a well-established therapy for the treatment of isolated cartilage defects of the knee joint, little is known about typical complications and their treatment after ACI. HYPOTHESIS: Unsatisfactory outcome after ACI is associated...

  19. The radio-X-ray relation as a star formation indicator: results from the Very Large Array-Extended Chandra Deep Field-South

    Science.gov (United States)

    Vattakunnel, S.; Tozzi, P.; Matteucci, F.; Padovani, P.; Miller, N.; Bonzini, M.; Mainieri, V.; Paolillo, M.; Vincoletto, L.; Brandt, W. N.; Luo, B.; Kellermann, K. I.; Xue, Y. Q.

    2012-03-01

    In order to trace the instantaneous star formation rate (SFR) at high redshift, and thus help in understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4-Ms Chandra X-ray data and the deep Very Large Array radio data in the Extended Chandra Deep Field-South region. We find 268 sources detected both in the X-ray and radio bands. The availability of redshifts for ˜95 per cent of the sources in our sample allows us to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. With the aim of selecting sources powered by star formation in both bands, we adopt classification criteria based on X-ray and radio data, exploiting the X-ray spectral features and time variability, taking advantage of observations scattered across more than 10 years. We identify 43 objects consistent with being powered by star formation. We also add another 111 and 70 star-forming candidates detected only in the radio and X-ray bands, respectively. We find a clear linear correlation between radio and X-ray luminosity in star-forming galaxies over three orders of magnitude and up to z˜ 1.5. We also measure a significant scatter of the order of 0.4 dex, higher than that observed at low redshift, implying an intrinsic scatter component. The correlation is consistent with that measured locally, and no evolution with redshift is observed. Using a locally calibrated relation between the SFR and the radio luminosity, we investigate the LX(2-10 keV)-SFR relation at high redshift. The comparison of the SFR measured in our sample with some theoretical models for the Milky Way and M31, two typical spiral galaxies, indicates that, with current data, we can trace typical spirals only at z≤ 0.2, and strong starburst galaxies with SFRs as high as ˜100 M⊙ yr-1, up to z˜ 1.5.

  20. Improving Bridging from Informatics Practice to Theory.

    Science.gov (United States)

    Lehmann, C U; Gundlapalli, A V

    2015-01-01

    In 1962, Methods of Information in Medicine ( MIM ) began to publish papers on the methodology and scientific fundamentals of organizing, representing, and analyzing data, information, and knowledge in biomedicine and health care. Considered a companion journal, Applied Clinical Informatics ( ACI ) was launched in 2009 with a mission to establish a platform that allows sharing of knowledge between clinical medicine and health IT specialists as well as to bridge gaps between visionary design and successful and pragmatic deployment of clinical information systems. Both journals are official journals of the International Medical Informatics Association. As a follow-up to prior work, we set out to explore congruencies and interdependencies in publications of ACI and MIM. The objectives were to describe the major topics discussed in articles published in ACI in 2014 and to determine if there was evidence that theory in 2014 MIM publications was informed by practice described in ACI publications in any year. We also set out to describe lessons learned in the context of bridging informatics practice and theory and offer opinions on how ACI editorial policies could evolve to foster and improve such bridging. We conducted a retrospective observational study and reviewed all articles published in ACI during the calendar year 2014 (Volume 5) for their main theme, conclusions, and key words. We then reviewed the citations of all MIM papers from 2014 to determine if there were references to ACI articles from any year. Lessons learned in the context of bridging informatics practice and theory and opinions on ACI editorial policies were developed by consensus among the two authors. A total of 70 articles were published in ACI in 2014. Clinical decision support, clinical documentation, usability, Meaningful Use, health information exchange, patient portals, and clinical research informatics emerged as major themes. Only one MIM article from 2014 cited an ACI article. There

  1. PROBING X-RAY ABSORPTION AND OPTICAL EXTINCTION IN THE INTERSTELLAR MEDIUM USING CHANDRA OBSERVATIONS OF SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Foight, Dillon R.; Slane, Patrick O. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Güver, Tolga [Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, Istanbul (Turkey); Özel, Feryal [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-07-20

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) the model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.

  2. Uncovering extreme AGN variability in serendipitous X-ray source surveys

    Science.gov (United States)

    Moran, Edward C.; Garcia Soto, Aylin; LaMassa, Stephanie; Urry, Meg

    2018-01-01

    Constraints on the duty cycle and duration of accretion episodes in active galactic nuclei (AGNs) are vital for establishing how most AGNs are fueled, which is essential for a complete picture of black hole/galaxy co-evolution. Perhaps the best handle we have on these activity parameters is provided by AGNs that have displayed dramatic changes in their bolometric luminosities and, in some cases, spectroscopic classifications. Given that X-ray emission is directly linked to black-hole accretion, X-ray surveys should provide a straightforward means of identifying AGNs that have undergone dramatic changes in their accretion states. However, it appears that such events are very rare, so wide-area surveys separated in time by many years are needed to maximize discovery rates. We have cross-correlated the Einstein IPC Two-Sigma Catalog with the ROSAT All-Sky Survey Faint Source Catalog to identify a sample of soft X-ray sources that varied by factors ranging from 7 to more than 100 over a ten year timescale. When possible, we have constructed long-term X-ray light curves for the sources by combining the Einstein and RASS fluxes with those obtained from serendipitous pointed observations by ROSAT, Chandra,XMM, and Swift. Optical follow-up observations indicate that many of the extremely variable sources in our sample are indeed radio-quiet AGNs. Interestingly, the majority of objects that dimmed between ~1980 and ~1990 are still (or are again) broad-line AGNs rather than“changing-look” candidates that have more subtle AGN signatures in their spectra — despite the fact that none of the sources examined thus far has returned to its highest observed luminosity. Future X-ray observations will provide the opportunity to characterize the X-ray behavior of these anonymous, extreme AGNs over a four decade span.

  3. The 2-79 keV X-ray spectrum of the circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully compton-thick active galactic nucleus

    DEFF Research Database (Denmark)

    Arévalo, P.; Bauer, F. E.; Puccetti, S.

    2014-01-01

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical......-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering...

  4. A Deep Chandra ACIS Study of NGC 4151. II. The Innermost Emission Line Region and Strong Evidence for Radio Jet-NLR Cloud Collision

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Mundell, Carole G.; Karovska, Margarita; Zezas, Andreas

    2011-07-01

    We have studied the X-ray emission within the inner ~150 pc radius of NGC 4151 by constructing high spatial resolution emission line images of blended O VII, O VIII, and Ne IX. These maps show extended structures that are spatially correlated with the radio outflow and optical [O III] emission. We find strong evidence for jet-gas cloud interaction, including morphological correspondences with regions of X-ray enhancement, peaks of near-infrared [Fe II] emission, and optical clouds. In these regions, moreover, we find evidence of elevated Ne IX/O VII ratios; the X-ray emission of these regions also exceeds that expected from nuclear photoionization. Spectral fitting reveals the presence of a collisionally ionized component. The thermal energy of the hot gas suggests that >~ 0.1% of the estimated jet power is deposited into the host interstellar medium through interaction between the radio jet and the dense medium of the circumnuclear region. We find possible pressure equilibrium between the collisionally ionized hot gas and the photoionized line-emitting cool clouds. We also obtain constraints on the extended iron and silicon fluorescent emission. Both lines are spatially unresolved. The upper limit on the contribution of an extended emission region to the Fe Kα emission is <~ 5% of the total, in disagreement with a previous claim that 65% of the Fe Kα emission originates in the extended narrow line region.

  5. A DEEP CHANDRA ACIS STUDY OF NGC 4151. II. THE INNERMOST EMISSION LINE REGION AND STRONG EVIDENCE FOR RADIO JET-NLR CLOUD COLLISION

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.

    2011-01-01

    We have studied the X-ray emission within the inner ∼150 pc radius of NGC 4151 by constructing high spatial resolution emission line images of blended O VII, O VIII, and Ne IX. These maps show extended structures that are spatially correlated with the radio outflow and optical [O III] emission. We find strong evidence for jet-gas cloud interaction, including morphological correspondences with regions of X-ray enhancement, peaks of near-infrared [Fe II] emission, and optical clouds. In these regions, moreover, we find evidence of elevated Ne IX/O VII ratios; the X-ray emission of these regions also exceeds that expected from nuclear photoionization. Spectral fitting reveals the presence of a collisionally ionized component. The thermal energy of the hot gas suggests that ∼> 0.1% of the estimated jet power is deposited into the host interstellar medium through interaction between the radio jet and the dense medium of the circumnuclear region. We find possible pressure equilibrium between the collisionally ionized hot gas and the photoionized line-emitting cool clouds. We also obtain constraints on the extended iron and silicon fluorescent emission. Both lines are spatially unresolved. The upper limit on the contribution of an extended emission region to the Fe Kα emission is ∼< 5% of the total, in disagreement with a previous claim that 65% of the Fe Kα emission originates in the extended narrow line region.

  6. Where Are the r-modes? Chandra Observations of Millisecond Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodifar, Simin; Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-05-10

    We present the results of Chandra observations of two non-accreting millisecond pulsars, PSRs J1640+2224 (J1640) and J1709+2313 (J1709), with low inferred magnetic fields and spin-down rates in order to constrain their surface temperatures, obtain limits on the amplitude of unstable r -modes in them, and make comparisons with similar limits obtained for a sample of accreting low-mass X-ray binary (LMXB) neutron stars. We detect both pulsars in the X-ray band for the first time. They are faint, with inferred soft X-ray fluxes (0.3–3 keV) of ≈6 × 10{sup −15} and 3 × 10{sup −15} erg cm{sup −2} s{sup −1} for J1640 and J1709, respectively. Spectral analysis assuming hydrogen atmosphere emission gives global effective temperature upper limits (90% confidence) of 3.3–4.3 × 10{sup 5} K for J1640 and 3.6–4.7 × 10{sup 5} K for J1709, where the low end of the range corresponds to canonical neutron stars ( M = 1.4 M {sub ⊙}), and the upper end corresponds to higher-mass stars ( M = 2.21 M {sub ⊙}). Under the assumption that r -mode heating provides the thermal support, we obtain dimensionless r -mode amplitude upper limits of 3.2–4.8 × 10{sup −8} and 1.8–2.8 × 10{sup −7} for J1640 and J1709, respectively, where again the low end of the range corresponds to lower-mass, canonical neutron stars ( M = 1.4 M {sub ⊙}). These limits are about an order of magnitude lower than those we derived previously for a sample of LMXBs, except for the accreting millisecond X-ray pulsar SAX J1808.4–3658, which has a comparable amplitude limit to J1640 and J1709.

  7. Prolongation of rat heart allografts by donor-specific blood transfusion treated with ultraviolet irradiation

    International Nuclear Information System (INIS)

    Oluwole, S.F.; Iga, C.; Lau, H.; Hardy, M.A.

    1985-01-01

    The effect of donor-specific blood transfusion was compared to that of UVB-irradiated donor-specific blood transfusion on heart allograft survival in inbred rats with major histocompatibility differences. In one series ACI rats received heterotopic heart grafts from Lewis rats and 1 mL transfusion of donor-type blood at 1, 2, and 3 weeks prior to the transplantation. Fifty percent of the grafts were permanently accepted (survival greater than 200 days). Following UVB-irradiated donor-specific blood transfusion, 55% of the grafts survived indefinitely. In a mixed lymphocyte reaction ACI lymphocytes are weak responders to Lewis lymphocytes. In another series, Lewis rats received ACI hearts. Donor-specific transfusions at 1, 2, and 3 weeks prior to transplantation did not significantly alter the survival of heart allografts. Lewis lymphocytes react strongly to ACI stimulator cells in a mixed lymphocyte reaction. However, when the donor blood was UVB-irradiated prior to transfusion, the ACI allograft survival was significantly prolonged in this ACI-to-Lewis strain combination. When Lewis rats received W/F hearts following either donor-specific or UVB-irradiated donor-specific transfusions, the hearts' survival was similarly and significantly prolonged, but did not become permanent. Mixed lymphocyte reaction reveals that the stimulation index of Lewis lymphocytes against W/F lymphocytes is greater than that of ACI versus Lewis, but is less than that between Lewis responder cells against ACI stimulators

  8. The Chandra Dust-scattering Halo of Galactic Center Transient Swift J174540.7–290015

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, L. R. [Einstein Fellow, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI, 53706 (United States); Mon, B.; Haggard, D. [McGill Space Institute, McGill University, 3550 University Street, Montreal, QC, H3A 2A7 (Canada); Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Garmire, G. [Huntingdon Institute for X-ray Astronomy, 10677 Franks Road Huntingdon, PA, 16652 (United States); Degenaar, N. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Reynolds, M. [University of Michigan, 1085 S. University, 311 West Hall, Ann Arbor, MI 48109 (United States)

    2017-04-20

    We report the detection of a dust-scattering halo around a recently discovered X-ray transient, Swift J174540.7–290015, which in early 2016 February underwent one of the brightest outbursts ( F {sub X} ≈ 5 × 10{sup −10} erg cm{sup −2} s{sup −1}) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pile-up, we construct a point-spread function for each observation and compare it to the GC field before the outburst. We find residual surface brightness around Swift J174540.7–290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L {sub X} ∼ 10{sup 36} erg s{sup −1}. This behavior is consistent with the hypothesis that the object is a low-mass X-ray binary in the Galactic Center.

  9. OTELO SURVEY: DEEP BVRI BROADBAND PHOTOMETRY OF THE GROTH STRIP. II. OPTICAL PROPERTIES OF X-RAY EMITTERS

    International Nuclear Information System (INIS)

    Povic, M.; Perez GarcIa, A. M.; Bongiovanni, A.; Castaneda, H.; Lorenzo, M. Fernandez; Lara-Lopez, M. A.; Sanchez-Portal, M.; Cepa, J.; Alfaro, E.; Gallego, J.; Gonzalez-Serrano, J. I.; Gonzalez, J. J.

    2009-01-01

    The Groth field is one of the sky regions that will be targeted by the OSIRIS Tunable Filter Emission Line Object survey in the optical 820 nm and 920 nm atmospheric windows. In the present paper, public Chandra X-ray data with total exposure time of 200 ks are analyzed and combined with optical broadband data of the Groth field, in order to study a set of optical structural parameters of the X-ray emitters and its relation with X-ray properties. To this aim, we processed the raw, public X-ray data using the Chandra Interactive Analysis of Observations, and determined and analyzed different structural parameters, in order to produce a morphological classification of X-ray sources. We present the morphology of 340 X-ray emitters with optical counterpart detected. Objects have been classified by X-ray type using a diagnostic diagram relating X-ray-to-optical ratio (X/O) to hardness ratio. We did not find any clear correlation between X-ray and morphological types. We analyzed the angular clustering of X-ray sources with optical counterpart using two-point correlation functions. A significant positive angular clustering was obtained from a preliminary analysis of four subsamples of the X-ray sources catalog. The clustering signal of the optically extended counterparts is similar to that of strongly clustered populations like red and very red galaxies, suggesting that the environment plays an important role in active galactic nuclei phenomena. Finally, we combined optical structural parameters with other X-ray and optical properties, and we confirmed an anticorrelation between the X/O ratio and the Abraham concentration index, which might suggest that early-type galaxies have lower Eddington rates than those of late-type galaxies.

  10. La imagen proyectada por la Bética costera durante los siglos II a.C. a I d.C. : un análisis iconológico de su acuñación monetal

    Directory of Open Access Journals (Sweden)

    Elena Moreno Pulido

    2008-01-01

    Full Text Available Este trabajo tiene como objetivo el estudio de la iconografía monetaria de las cecas marítimas de la Bética, desde los inicios de su acuñación hasta el cierre de las mismas. El análisis sincrónico, iconográfico e iconológico conjunto de su numerario muestra las conexiones económicas y culturales entre estas ciudades, a la vez que presenta visualmente el avance de la romanización, así como la integración de estas comunidades, tradicionalmente púnicas, en la cultura latinaThis work takes as a target the study of the monetary iconography of the marine mints of the Baetica, from the beginnings of his coinage up to the closing of the same ones. The synchronous iconographic and iconologic analysis of his money shows the economic and cultural connections between these cities, simultaneously it presents visually the advance of the roman civilization, as well as the integration of these communities, phoenician traditionally, in the Latin culture.

  11. Chandra Detection of an Evolved Population of Young Stars in Serpens South

    Science.gov (United States)

    Winston, E.; Wolk, S. J.; Gutermuth, R.; Bourke, T. L.

    2018-06-01

    We present a Chandra study of the deeply embedded Serpens South star-forming region, examining cluster structure and disk properties at the earliest stages. In total, 152 X-ray sources are detected. Combined with Spitzer and 2MASS photometry, 66 X-ray sources are reliably matched to an IR counterpart. We identify 21 class I, 6 flat spectrum, 16 class II, and 18 class III young stars; 5 were unclassified. Eighteen sources were variable in X-rays, 8 exhibiting flare-like emission and one source being periodic. The cluster’s X-ray luminosity distance was estimated: the best match was to the nearer distance of 260 pc for the front of the Aquila Rift complex. The ratio of N H to A K is found to be ∼0.68 × 1022, similar to that measured in other young low-mass regions, but lower than that measured in the interstellar medium and high-mass clusters (∼(1.6–2) × 1022). We find that the spatial distribution closely follows that of the dense filament from which the stars have formed, with the class II population still strongly associated with the filament. There are four subclusters in the field, with three forming knots in the filament, and a fourth to the west, which may not be associated but may be contributing to the distributed class III population. A high percentage of diskless class IIIs (upper limit 30% of classified X-ray sources) in such a young cluster could indicate that processing of disks is influenced by the cluster environment and is not solely dependent on timescale.

  12. Diversity and Seasonal Dynamics of Actinobacteria Populations in Four Lakes in Northeastern Germany

    Science.gov (United States)

    Allgaier, Martin; Grossart, Hans-Peter

    2006-01-01

    The phylogenetic diversity and seasonal dynamics of freshwater Actinobacteria populations in four limnologically different lakes of the Mecklenburg-Brandenburg Lake District (northeastern Germany) were investigated. Fluorescence in situ hybridization was used to determine the seasonal abundances and dynamics of total Actinobacteria (probe HGC69a) and the three actinobacterial subclusters acI, acI-A, and acI-B (probes AcI-852, AcI-840-1, and AcI-840-2). Seasonal means of total Actinobacteria abundances in the epilimnia of the lakes varied from 13 to 36%, with maximum values of 30 to 58%, of all DAPI (4′,6′-diamidino-2-phenylindole)-stained cells. Around 80% of total Actinobacteria belonged to the acI cluster. The two subclusters acI-A and acI-B accounted for 60 to 91% of the acI cluster and showed seasonal means of 49% (acI-B) and 23% (acI-A) in relation to the acI cluster. Total Actinobacteria and members of the clusters acI and acI-B showed distinct seasonal changes in their absolute abundances, with maxima in late spring and fall/winter. In eight clone libraries constructed from the lakes, a total of 76 actinobacterial 16S rRNA gene sequences were identified from a total of 177 clones. The majority of the Actinobacteria sequences belonged to the acI and acIV cluster. Several new clusters and subclusters were found (acSTL, scB1-4, and acIVA-D). The majority of all obtained 16S rRNA gene sequences are distinct from those of already-cultured freshwater Actinobacteria. PMID:16672495

  13. New Panorama Reveals More Than a Thousand Black Holes

    Science.gov (United States)

    2007-03-01

    By casting a wide net, astronomers have captured an image of more than a thousand supermassive black holes. These results give astronomers a snapshot of a crucial period when these monster black holes are growing, and provide insight into the environments in which they occur. The new black hole panorama was made with data from NASA's Chandra X-ray Observatory, the Spitzer Space Telescope and ground-based optical telescopes. The black holes in the image are hundreds of millions to several billion times more massive than the sun and lie in the centers of galaxies. X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field Material falling into these black holes at high rates generates huge amounts of light that can be detected in different wavelengths. These systems are known as active galactic nuclei, or AGN. "We're trying to get a complete census across the Universe of black holes and their habits," said Ryan Hickox of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "We used special tactics to hunt down the very biggest black holes." Instead of staring at one relatively small part of the sky for a long time, as with the Chandra Deep Fields -- two of the longest exposures obtained with the observatory -- and other concentrated surveys, this team scanned a much bigger portion with shorter exposures. Since the biggest black holes power the brightest AGN, they can be spotted at vast distances, even with short exposures. Scale Chandra Images to Full Moon Scale Chandra Images to Full Moon "With this approach, we found well over a thousand of these monsters, and have started using them to test our understanding of these powerful objects," said co-investigator Christine Jones, also of the CfA. The new survey raises doubts about a popular current model in which a supermassive black hole is surrounded by a doughnut-shaped region, or torus, of gas. An

  14. High Spatial Resolution X-Ray Spectroscopy of the IC443 Pulsar Wind Nebula

    Science.gov (United States)

    Swartz, Douglas A.; Weisskopf, Martin C.; Bucciantini, Niccolo; Clarke, Tracy E.; Karovska, Margarita; Pavlov, George G.; van der Horst, Alexander; Yukita, Mihoko; Zavlin, Vyacheslav

    2014-08-01

    Deep Chandra ACIS observations of the region around the putative pulsar CXOU J061705.3+222127, in the supernova remnant IC443, reveal a ~5" radius ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar's location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic: There is no evidence for a strong bow shock; and the ring is not distorted by motion through the ambient medium. Comparing this observation with historical observations of the same target we set a 99-% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 310 km/s, with the best-fit (but not statistically significant) direction toward the west.

  15. THE EVOLUTION OF THE FAR-UV LUMINOSITY FUNCTION AND STAR FORMATION RATE DENSITY OF THE CHANDRA DEEP FIELD SOUTH FROM z = 0.2 TO 1.2 WITH SWIFT/UVOT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Lea M. Z.; Gronwall, Caryl; Wolf, Christopher; Siegel, Michael H.; Hagen, Alex [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Hoversten, Erik A. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Avenue, Chapel Hill, NC 27599 (United States); Page, Mathew, E-mail: lmz5057@psu.edu [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2015-08-01

    We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600–4000 Å) imaging of the Chandra Deep Field South to measure the rest-frame far-UV (FUV; 1500 Å) luminosity function (LF) in four redshift bins between z = 0.2 and 1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to construct and fit the LFs: the traditional V{sub max} method with bootstrap errors, and a maximum likelihood estimator. We observe luminosity evolution such that M* fades by ∼2 mag from z ∼ 1 to z ∼ 0.3, implying that star formation activity was substantially higher at z ∼ 1 than today. We integrate our LFs to determine the FUV luminosity densities and star formation rate densities (SFRDs) from z = 0.2 to 1.2. We find evolution consistent with an increase proportional to (1 + z){sup 1.9} out to z ∼ 1. Our luminosity densities and star formation rates are consistent with those found in the literature but are, on average, a factor of ∼2 higher than previous FUV measurements. In addition, we combine our UVOT data with the MUSYC survey to model the galaxies’ ultraviolet-to-infrared spectral energy distributions and estimate the rest-frame FUV attenuation. We find that accounting for the attenuation increases the SFRDs by ∼1 dex across all four redshift bins.

  16. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    International Nuclear Information System (INIS)

    Arévalo, P.; Bauer, F. E.; Puccetti, S.; Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K.; Koss, M.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Luo, B.; Brightman, M.; Christensen, F. E.; Comastri, A.; Gandhi, P.; Hailey, C. J.; Madejski, G.; Marinucci, A.

    2014-01-01

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 10 24 cm –2 , and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10 42 erg s –1 . These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L X versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  17. UV--Visible observations with HST in the JWST North Ecliptic Pole Time-Domain Field

    Science.gov (United States)

    Jansen, Rolf A.; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Royle, Patricia; Hathi, Nimish; Jones, Victoria; Cohen, Seth; Ashcraft, Teresa; Willmer, Christopher; Conselice, Christopher; White, Cameron; Frye, Brenda; HST-GO-15278 team; and the Webb Medium Deep Fields IDS GTO team.

    2018-01-01

    We report the first results from a UV–Visible HST imaging survey of the JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF). Using CVZ and near-CVZ opportunities we observed the first two out of nine tiles with WFC3/UVIS in F275W and with ACS/WFC in F435W and F606W. Over the course of the next 13 months, this survey is designed to provide near-contiguous 3-filter coverage of the central r ≤ 5‧ of this new community field for time-domain science with JWST. The JWST NEP TDF is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage), is devoid of sources bright enough to saturate the NIRCam detectors, has low Galactic foreground extinction, and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam — the JWST “windmill”). NIRISS slitless grism spectroscopy will be taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. Ancillary data across the electromagnetic spectrum will exist for this field when JWST science operations commence in the second half of 2019. This includes deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugriz photometry of this field and its surroundings from LBT/LBC and Subaru/HSC, JHK from MMT/MMIRS, VLA 3 GHz and VLBA 4.5 GHz radio observations, and Chandra/ACIS X-ray images. Proposals for (sub)mm observations and spectroscopy to mAB ~ 24 mag are pending.

  18. Physical properties of the interstellar medium using high-resolution Chandra spectra: O K-edge absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gatuzz, E.; Mendoza, C. [Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), P.O. Box 20632, Caracas 1020A (Venezuela, Bolivarian Republic of); García, J. [Harvard-Smithsonian Center for Astrophysics, MS-6, 60 Garden Street, Cambridge, MA 02138 (United States); Kallman, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bautista, M. A.; Gorczyca, T. W., E-mail: egatuzz@ivic.gob.ve, E-mail: claudio@ivic.gob.ve, E-mail: javier@head.cfa.harvard.edu, E-mail: manuel.bautista@wmich.edu, E-mail: thomas.gorczyca@wmich.edu, E-mail: timothy.r.kallman@nasa.gov [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = –2.90 and oxygen abundance of A{sub O} = 0.70. The latter is given relative to the standard by Grevesse and Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N{sub O} = 9.2 × 10{sup 17} cm{sup –2}) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  19. Quantitative X-ray CT analysis of calcification of the abdominal aorta and its relationship to obesity

    International Nuclear Information System (INIS)

    Shinagawa, Toshio; Hiraiwa, Yoshio; Mizuno, Seio; Kusunoki, Norio; Nitta, Yu; Matsubara, Takao; Iwainaka, Yoichi; Konishi, Hideo

    1992-01-01

    Quantitative analysis of abdominal aorta calcification by X-ray CT is useful method for non-invasive diagnosis of atherosclerosis. We recently examined the relationship between the X-ray CT measurement of abdominal aorta calcification and the degree of obesity. For this purpose, the body mass index (BMI) and the subcutaneous fat thickness (determined by X-ray CT at the umbilical level) were analyzed in relation to the abdominal aorta calcification index (ACI) in 845 patients (453 males and 392 females aged 40-79 years). Patients with BMI under 20 were classified as 'lean', those with BMI between 20-26 as 'normal' and those with BMI over 26 as 'obese'. 1. Among males, the ACI was highest in lean individuals and lowest in obese individuals. The difference in ACI between lean and obese males was significant in the middle aged group (40-65 years). Among females, no relationship was observed between the degree of obesity and ACI. 2. Among males, ACI was higher in individuals with low subcutaneous fat thickness and lower in individuals with greater subcutaneous fat thickness. The difference was significant in the middle aged group. Among females, no relationship was observed between the two parameters. 3. When the visceral fat to subcutaneous fat ratio (V/S) in 85 males and females aged 60-69 years was analyzed in relation to ACI, ACI tended to decrease as the V/S increased, in both males and females. 4. Relationships between BMI and subcutaneous fat thickness, between BMI and lipids and between lipids and ACI were also analyzed. (author)

  20. X-Ray Properties of AGN in Brightest Cluster Galaxies. I. A Systematic Study of the Chandra Archive in the 0.2 < z < 0.3 and 0.55 < z < 0.75 Redshift Range

    Science.gov (United States)

    Yang, Lilan; Tozzi, Paolo; Yu, Heng; Lusso, Elisabeta; Gaspari, Massimo; Gilli, Roberto; Nardini, Emanuele; Risaliti, Guido

    2018-05-01

    We present a search for nuclear X-ray emission in the brightest cluster galaxies (BCGs) of a sample of groups and clusters of galaxies extracted from the Chandra archive. The exquisite angular resolution of Chandra allows us to obtain robust photometry at the position of the BCG, and to firmly identify unresolved X-ray emission when present, thanks to an accurate characterization of the extended emission at the BCG position. We consider two redshift bins (0.2 soft (0.5–2 keV) or hard (2–7 keV) band is detected only in 14 and 9 BCGs (∼18% of the total samples), respectively. The X-ray photometry shows that at least half of the BCGs have a high hardness ratio, compatible with significant intrinsic absorption. This is confirmed by the spectral analysis with a power-law model plus intrinsic absorption. We compute the fraction of X-ray bright BCGs above a given hard X-ray luminosity, considering only sources with positive photometry in the hard band (12/5 sources in the low/high-z sample).

  1. FY 2000 report on the survey of geological structures overseas, etc. Volume 1. 'Tanjung Enim IV Coal Exploration Project between Japan and Indonesia'; 2000 nendo kaigai chishitsu kozo nado chosa hokokusho. 1. Nippon Indonesia sekitan kyodo tansa Tanjung Enim project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The paper summarized the results of the surveys in the final fiscal year (FY 2000) and in the past five years of the Tanjung Enim IV Coal Exploration Project between Japan and Indonesia. In FY 2000, conducted in the South Arahan area were the surface reconnaissance (50km+ACI-2), boring survey (11 holes, 1,847m), borehole physical logging (11 holes), reflection method seismic survey (3 traverse lines), pumping test, coal analysis (112 specimens), etc. As a result of the exploration/study made during 5 years, coal reserves in the South Arahan area were 223 million tons in north block (proved coal reserves: 213 million tons) and 332 million tons (proved coal reserves: 303 million tons) in south block. The coal in the area is in the depth of {+-}0m from surface, and the coal reserve is enough for large scale open pit mining. Further, coal reserves in the Banjarsari area were 442 million tons (proved coal reserves: 330 million tons) in the whole area and 223 million tons (proved coal reserves: 214 million tons) in the syncline part. About the syncline part promising as that for open pit mining, the overburden ratio was divided into three for calculation: 2:1, 3:1 and 4:1 or below. (NEDO)

  2. Autologous chondrocyte implantation: Is it likely to become a saviour of large-sized and full-thickness cartilage defect in young adult knee?

    Science.gov (United States)

    Zhang, Chi; Cai, You-Zhi; Lin, Xiang-Jin

    2016-05-01

    A literature review of the first-, second- and third-generation autologous chondrocyte implantation (ACI) technique for the treatment of large-sized (>4 cm(2)) and full-thickness knee cartilage defects in young adults was conducted, examining the current literature on features, clinical scores, complications, magnetic resonance image (MRI) and histological outcomes, rehabilitation and cost-effectiveness. A literature review was carried out in the main medical databases to evaluate the several studies concerning ACI treatment of large-sized and full-thickness knee cartilage defects in young adults. ACI technique has been shown to relieve symptoms and improve functional assessment in large-sized (>4 cm(2)) and full-thickness knee articular cartilage defect of young adults in short- and medium-term follow-up. Besides, low level of evidence demonstrated its efficiency and durability at long-term follow-up after implantation. Furthermore, MRI and histological evaluations provided the evidence that graft can return back to the previous nearly normal cartilage via ACI techniques. Clinical outcomes tend to be similar in different ACI techniques, but with simplified procedure, low complication rate and better graft quality in the third-generation ACI technique. ACI based on the experience of cell-based therapy, with the high potential to regenerate hyaline-like tissue, represents clinical development in treatment of large-sized and full-thickness knee cartilage defects. IV.

  3. Percentage-based Author Contribution Index: a universal measure of author contribution to scientific articles.

    Science.gov (United States)

    Boyer, Stéphane; Ikeda, Takayoshi; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Schmidt, Jason M

    2017-01-01

    Deciphering the amount of work provided by different co-authors of a scientific paper has been a recurrent problem in science. Despite the myriad of metrics available, the scientific community still largely relies on the position in the list of authors to evaluate contributions, a metric that attributes subjective and unfounded credit to co-authors. We propose an easy to apply, universally comparable and fair metric to measure and report co-authors contribution in the scientific literature. The proposed Author Contribution Index (ACI) is based on contribution percentages provided by the authors, preferably at the time of submission. Researchers can use ACI to compare the contributions of different authors, describe the contribution profile of a particular researcher or analyse how contribution changes through time. We provide such an analysis based on contribution percentages provided by 97 scientists from the field of ecology who voluntarily responded to an online anonymous survey. ACI is simple to understand and to implement because it is based solely on percentage contributions and the number of co-authors. It provides a continuous score that reflects the contribution of one author as compared to the average contribution of all other authors. For example, ACI(i) = 3, means that author i contributed three times more than what the other authors contributed on average. Our analysis comprised 836 papers published in 2014-2016 and revealed patterns of ACI values that relate to career advancement. There are many examples of author contribution indices that have been proposed but none has really been adopted by scientific journals. Many of the proposed solutions are either too complicated, not accurate enough or not comparable across articles, authors and disciplines. The author contribution index presented here addresses these three major issues and has the potential to contribute to more transparency in the science literature. If adopted by scientific journals, it

  4. NGC 3393: multi-component AGN feedback as seen by CHEERS

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Raymond, John C.; Storchi-Bergmann, Thaisa; Paggi, Alessandro; Wang, Junfeng; Risaliti, Guido

    2017-01-01

    Due to its low density, moderate ionization, and weak kinematics, the narrow line region (NLR) of active galactic nuclei (AGN) provides poweful diagnostics for investigating AGN feedback. The CHandra Extended Emission line Region Survey (CHEERS) is the ultimate investigation into resolved feedback in the NLR. We present results from our CHEERS investigations of NGC 3393. By imaging extended X-ray line emission of NGC 3393 with Chandra and optical line emission with Hubble's narrow-band filters, we are able to map out the simultaneous impact of photoionization, jets and an AGN disk-wind. When resolved on scales of ~10s of parsecs, the NLR of NGC 3393 shows a complex multi-component medium. Diagnostic line mapping indicates a Low-ionization Emmision Line Region (LINER) cocoon surrounding the outflow-evacuated cavities (in optical) and surrounding the supports the presence of collisional plasma (in X-rays). These physically distinct constituent regions can only be resolved by the high-resolution imaging that Chandra and HST enable.

  5. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    Science.gov (United States)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  6. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  7. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    International Nuclear Information System (INIS)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-01-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M ⊙ yr −1 . Deep polarimetry observations could confirm the reflection hypothesis

  8. Effects of enzymatic extraction on anthocyanins yield of saffron tepals (Crocos sativus along with its color properties and structural stability

    Directory of Open Access Journals (Sweden)

    Leila Lotfi

    2015-06-01

    Full Text Available An aqueous solution of Pectinex (containing cellulase, hemicellulase, and pectinase at 1%, 2.5%, 5%, 7%, and 10% concentrations and 40°C was used to extract anthocyanins (Acys of saffron tepals at 20, 40, 60, 120 and 180 min reaction times and compared with ethanol solvent under similar conditions. The Acys of the Pectinex solution reached 6.7 mg/g of tepal powder (∼40% more than the ethanol method when the enzyme concentrations and extraction times were, respectively, 5% and 60 min. The Acys of aqueous enzymes had three times slower degradation rates and 50% more attractive chroma color than the ones recovered by ethanol solution after 3 h of extraction time. Additionally, the Acys of the ethanol solution lost its content sharply (>45% and its chroma changed quickly (due to the browning and polymerization. High performance liquid chromatography (HPLC analysis showed that Acys extracted with mixed enzymes had about 80% more cyanidin 3-glucosides and 20% less pelargonidin 3,5-glucosides than with the ethanol method. Most probably, the high content of cyanidin 3-glycosides in enzyme-extracted Acys of saffron tepals was the key factor for its high stability.

  9. The XMM-SERVS survey: new XMM-Newton point-source catalog for the XMM-LSS field

    Science.gov (United States)

    Chen, C.-T. J.; Brandt, W. N.; Luo, B.; Ranalli, P.; Yang, G.; Alexander, D. M.; Bauer, F. E.; Kelson, D. D.; Lacy, M.; Nyland, K.; Tozzi, P.; Vito, F.; Cirasuolo, M.; Gilli, R.; Jarvis, M. J.; Lehmer, B. D.; Paolillo, M.; Schneider, D. P.; Shemmer, O.; Smail, I.; Sun, M.; Tanaka, M.; Vaccari, M.; Vignali, C.; Xue, Y. Q.; Banerji, M.; Chow, K. E.; Häußler, B.; Norris, R. P.; Silverman, J. D.; Trump, J. R.

    2018-04-01

    We present an X-ray point-source catalog from the XMM-Large Scale Structure survey region (XMM-LSS), one of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields. We target the XMM-LSS region with 1.3 Ms of new XMM-Newton AO-15 observations, transforming the archival X-ray coverage in this region into a 5.3 deg2 contiguous field with uniform X-ray coverage totaling 2.7 Ms of flare-filtered exposure, with a 46 ks median PN exposure time. We provide an X-ray catalog of 5242 sources detected in the soft (0.5-2 keV), hard (2-10 keV), and/or full (0.5-10 keV) bands with a 1% expected spurious fraction determined from simulations. A total of 2381 new X-ray sources are detected compared to previous source catalogs in the same area. Our survey has flux limits of 1.7 × 10-15, 1.3 × 10-14, and 6.5 × 10-15 erg cm-2 s-1 over 90% of its area in the soft, hard, and full bands, respectively, which is comparable to those of the XMM-COSMOS survey. We identify multiwavelength counterpart candidates for 99.9% of the X-ray sources, of which 93% are considered as reliable based on their matching likelihood ratios. The reliabilities of these high-likelihood-ratio counterparts are further confirmed to be ≈97% reliable based on deep Chandra coverage over ≈5% of the XMM-LSS region. Results of multiwavelength identifications are also included in the source catalog, along with basic optical-to-infrared photometry and spectroscopic redshifts from publicly available surveys. We compute photometric redshifts for X-ray sources in 4.5 deg2 of our field where forced-aperture multi-band photometry is available; >70% of the X-ray sources in this subfield have either spectroscopic or high-quality photometric redshifts.

  10. Half-megasecond Chandra spectral imaging of the hot circumgalactic nebula around quasar MRK 231

    International Nuclear Information System (INIS)

    Veilleux, S.; Teng, S. H.; Rupke, D. S. N.; Maiolino, R.; Sturm, E.

    2014-01-01

    A deep 400 ks ACIS-S observation of the nearest quasar known, Mrk 231, is combined with archival 120 ks data to carry out the first ever spatially resolved spectral analysis of a hot X-ray-emitting circumgalactic nebula around a quasar. The 65 × 50 kpc X-ray nebula shares no resemblance with the tidal debris seen at optical wavelengths. One notable exception is the small tidal arc ∼3.5 kpc south of the nucleus where excess soft X-ray continuum emission and Si XIII 1.8 keV line emission are detected, consistent with star formation and its associated alpha-element enhancement, respectively. An X-ray shadow is also detected at the location of the 15 kpc northern tidal tail. The hard X-ray continuum emission within ∼6 kpc of the center is consistent with being due entirely to the bright central active galactic nucleus. The soft X-ray spectrum of the outer (≳6 kpc) portion of the nebula is best described as the sum of two thermal components with temperatures ∼3 and ∼8 million K and spatially uniform super-solar alpha-element abundances, relative to iron. This result implies enhanced star formation activity over ∼10 8 yr, accompanied by redistribution of the metals on a large scale. The low-temperature thermal component is not present within ∼6 kpc of the nucleus, suggesting extra heating in this region from the circumnuclear starburst, the central quasar, or the optically identified ≳3 kpc quasar-driven outflow. The soft X-ray emission is weaker in the western quadrant, coincident with a deficit of Hα and some of the largest columns of neutral gas outflowing from the nucleus. Shocks may heat the gas to high temperatures at this location, consistent with the tentative ∼2σ detection of extended Fe XXV 6.7 keV line emission.

  11. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  12. Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow

    Science.gov (United States)

    Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.

    2018-01-01

    Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.

  13. Biodiversity and Indigenous Uses of Medicinal Plant in the Chandra Prabha Wildlife Sanctuary, Chandauli District, Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Maurya Santosh Kumar

    2015-01-01

    Full Text Available Conventional medicines are very important part of Indian culture. In this study the outcome of two-year study of ethnomedicinal uses of plants in Chandra Prabha Wildlife Sanctuary (CPWLS and nearby area is reported. Information related to different plants which are used by local community in the treatment of many common diseases and well-being in the area was collected. Data on the use of medicinal plants were collected using structured interview of about 122 participants and thorough observations and conversations with local communities. Approximately 100 plants belonging to 43 families used by the local healers were reported in this study. The plant species with the highest fidelity level (Fl were Holarrhena antidysenterica, Lawsonia inermis, Gymnema sylvestre, Dalbergia sissoo, Cassia fistula Linn., Butea monosperma (Lam. Kuntze., Boerhaavia diffusa Linn., Albizia lebbeck Benth., Aegle marmelos Correa., Sphaeranthus indicus Linn., and Solanum surattense Burm. f. The most frequent ailments reported were hepatitis, jaundice, constipation, and skin and urinary problems. The parts of the plants most frequently used were fruit, roots, and whole plants (17% followed by leaves (16% and bark (15%. This study presents new research efforts and perspectives on the search for new drugs based on local uses of medicinal plants.

  14. CHANDRA AND XMM-NEWTON X-RAY OBSERVATIONS OF THE HYPERACTIVE T TAURI STAR RY TAU

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [Center for Astrophysics and Space Astronomy (CASA), Univ. of Colorado, Boulder, CO 80309-0389 (United States); Audard, Marc [Dept. of Astronomy, University of Geneva, Ch. d’Ecogia 16, CH-1290 Versoix (Switzerland); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: marc.audard@unige.ch, E-mail: manuel.guedel@univie.ac.at [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2016-07-20

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton . We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau’s bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T {sub hot} ∼ 50 MK, but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O viii. X-ray light curves show complex variability consisting of short-duration (∼hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly varying (∼one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g., coronal) origin. Soft- and hard-band light curves undergo similar slow variability implying that at least some of the cool plasma shares a common magnetic origin with the hot plasma. Any contribution to the X-ray emission from cool shocked plasma is small compared to the dominant hot component but production of individual low-temperature lines such as O viii in an accretion shock is not ruled out.

  15. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan; Weeren, Reinout van [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buote, David A. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gastaldello, Fabio, E-mail: yuanyuan.su@cfa.harvard.edu [INAF-IASF-Milano, Via E. Bassini 15, I-20133 Milano (Italy)

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  16. Reliability of core test – Critical assessment and proposed new approach

    OpenAIRE

    Shafik Khoury; Ali Abdel-Hakam Aliabdo; Ahmed Ghazy

    2014-01-01

    Core test is commonly required in the area of concrete industry to evaluate the concrete strength and sometimes it becomes the unique tool for safety assessment of existing concrete structures. Core test is therefore introduced in most codes. An extensive literature survey on different international codes’ provisions; including the Egyptian, British, European and ACI Codes, for core analysis is presented. All studied codes’ provisions seem to be unreliable for predicting the in-situ concrete ...

  17. Eyewitness lineups: is the appearance-change instruction a good idea?

    Science.gov (United States)

    Charman, Steve D; Wells, Gary L

    2007-02-01

    The Department of Justice's Guide for lineups recommends warning eyewitnesses that the culprit's appearance might have changed since the time of the crime. This appearance-change instruction (ACI) has never been empirically tested. A video crime with four culprits was viewed by 289 participants who then attempted to identify the culprits from four 6-person arrays that either included or did not include the culprit. Participants either received the ACI or not and all were warned that the culprit might or might not be in the arrays. The culprits varied in how much their appearance changed from the video to their lineup arrays, but the ACI did not improve identification decisions for any of the lineups. Collapsed over the four culprits, the ACI increased false alarms and filler identifications but did not increase culprit identifications. The ACI reduced confidence and increased response latency. Two processes that could account for these results are discussed, namely a decision criterion shift and a general increase in ecphoric similarity.

  18. Acidosis and Correction of Acidosis Does Not Affect rFVIIa Function in Swine

    Science.gov (United States)

    2012-12-15

    acidosis ) with a decrease in respiration ( respiratory aci- dosis) successfully lowered arterial pH to 7.1 (Table 2). Bicarbonate infusion with...in normal, aci- dosis and acidosis -corrected swine for both HCl- and hemorrhage/ respiratory -induced aci- dosis (Figure 2). Infusions of rFVIIa led to...2). Infusion of FVIIa caused no change in aPTT in the Hemorrhage/ Respiratory Model, but deceased ACT in the control, acidosis and acidosis

  19. Feedback in Clinical Education, Part II: Approved Clinical Instructor and Student Perceptions of and Influences on Feedback

    Science.gov (United States)

    Nottingham, Sara; Henning, Jolene

    2014-01-01

    Context: Approved Clinical Instructors (ACIs; now known as preceptors) are expected to provide feedback to athletic training students (ATSs) during clinical education experiences. Researchers in other fields have found that clinical instructors and students often have different perceptions of actual and ideal feedback and that several factors may influence the feedback exchanges between instructors and students. However, understanding of these issues in athletic training education is minimal. Objective: To investigate the current characteristics and perceptions of and the influences on feedback exchanges between ATSs and ACIs. Design: Qualitative study. Setting: One entry-level master's degree program accredited by the Commission on Accreditation of Athletic Training Education. Patients or Other Participants: Four ACIs and 4 second-year ATSs. Data Collection and Analysis: Individual, semistructured interviews were conducted with participants and integrated with field notes and observations for analysis. We used the constant comparative approach to inductively analyze data and develop codes and categories. Member checking, triangulation, and peer debriefing were used to promote trustworthiness of the study. Results: Participants described that feedback plays an important role in clinical education and has several purposes related to improving performance. The ACIs and ATSs also discussed several preferred characteristics of feedback. Participants identified 4 main influences on their feedback exchanges, including the ACI, the ATS, personalities, and the learning environment. Conclusions: The ACIs and ATSs had similar perceptions of ideal feedback in addition to the actual feedback that was provided during their clinical education experiences. Most of the preferences for feedback were aligned with recommendations in the literature, suggesting that existing research findings are applicable to athletic training clinical education. Several factors influenced the

  20. Big Explosions, Strong Gravity: Making Girl Scouts ACEs of Space through Chandra Outreach

    Science.gov (United States)

    Hornschemeier, A. E.; Lochner, J. C.; Ganguly, R.; Feaga, L. M.; Ford, K. E. S.

    2005-12-01

    Thanks to two years of Chandra E/PO funding we have carried out a number of successful activities with the Girl Scouts of Central Maryland, focusing on girls in the 11-17 year age range. Our reasons for targeting this age range include the general decline in interest in math and science that occurs at or after children reach this critical age (meaning that we reach them early enough to have a positive effect). We initially target girls due to their underrepresentation in science, but the actitivities are all gender-neutral and highly adaptable to other groups. The program includes two components, in collaboration with Girl Scouts of Central Maryland. The first component is a well-established one-day Girl Scout patch activity entitled Big Explosions and Strong Gravity (BESG) where the girls earn a patch for their badge sash. The four BESG activities, mostly adapted from existing E/PO material, are available on the World Wide Web for use by others. The activities cover the electromagnetic spectrum as a tool for astronomy, the cosmic abundance of the elements and the supernova origin of many of the elements, black holes and their detection, and supernova explosions/stellar evolution. Thus far approximately 200 girls and their parents have participated in BESG and it has now become part of the council culture. The second activity is new and is part of the relatively new Girl Scout Studio 2B program, which is a girl-led program for the 11-17 year age range. Based on several meetings with small groups of girls and adults, we have formed a Studio 2B "club" called the ACE of Space Club (Astronomical Cosmic Exploration). We'll describe our experiences interacting with the Girl Scouts in this girl-led program.

  1. Additional cash incentive within a conditional cash transfer scheme: a 'controlled before and during' design evaluation study from India.

    Science.gov (United States)

    Lahariya, Chandrakant; Mishra, Ashok; Nandan, Deoki; Gautam, Praveen; Gupta, Sanjay

    2011-01-01

    Conditional Cash Transfer (CCT) schemes have shown largely favorable changes in the health seeking behavior. This evaluation study assesses the process and performance of an Additional Cash Incentive (ACI) scheme within an ongoing CCT scheme in India, and document lessons. A controlled before and during design study was conducted in Madhya Pradesh state of India, from August 2007 to March 2008, with increased in institutional deliveries as a primary outcome. In depth interviews, focus group discussions and household surveys were done for data collection. Lack of awareness about ACI scheme amongst general population and beneficiaries, cumbersome cash disbursement procedure, intricate eligibility criteria, extensive paper work, and insufficient focus on community involvement were the major implementation challenges. There were anecdotal reports of political interference and possible scope for corruption. At the end of implementation period, overall rate of institutional deliveries had increased in both target and control populations; however, the differences were not statistically significant. No cause and effect association could be proven by this study. Poor planning and coordination, and lack of public awareness about the scheme resulted in low utilization. Thus, proper IEC and training, detailed implementation plan, orientation training for implementer, sufficient budgetary allocation, and community participation should be an integral part for successful implementation of any such scheme. The lesson learned this evaluation study may be useful in any developing country setting and may be utilized for planning and implementation of any ACI scheme in future.

  2. An intergalactic absorbing cloud in the neighbourhood of the North galactic pole

    International Nuclear Information System (INIS)

    Murawski, W.

    1983-01-01

    The purpose of this investigation is to study the possibility that the lack of galaxies in the area between the Virgo and Coma clusters, to which OKROY (1965) drew attention, is due to an intergalactic cloud. Using Zwicky's Catalogue of Galaxies and Clusters of Galaxies, it is shown that there is a shortage of galaxies in the suspected area for all magnitude classes. The absorption of the cloud is calculated to be 0.45+-05 mag. A quantity called the areal colour index (ACI) is introduced and defined as ACI=a sub(b) b sub(b)/(a sub(r) b sub(r)) where a and b are the lengths of the major and minor axes of a galaxy, respectively, and the subscripts b and r respectively refer to measurements on the blue and red prints of the Palomar survey, given in the Uppsala Catalogue of Galaxies. The average ACI is found to be 1.25 for the control area, and 1.04 for the area covered by Okroy's alleged obscuring cloud. On the basis of this colour data an approximate map showing the shape of the cloud is given. The effect of the alleged cloud on the shape frequency of types of galaxies is discussed. It is found that the cloud significantly increases the ratio of elliptical and dwarf galaxies to SO's. The determination of the distance to the cloud and its density is discussed. (author)

  3. An X-ray study of the supernova remnant G20.0-0.2 and its surroundings

    OpenAIRE

    Petriella, Alberto; Paron, Sergio; Giacani, Elsa

    2013-01-01

    Aims. We study the supernova remnant G20.0-0.2 and its surroundings in order to look for the high energy counterpart of the radio nebula and to find evidence of interaction between the shock front and the interstellar medium. Methods. We used Chandra archival observations to analyze the X-ray emission from the supernova remnant. The surrounding gas was investigated using data extracted from the Galactic Ring Survey, the VLA Galactic Plane Survey, the Galactic Legacy Infrared Midplane Survey E...

  4. Preliminary follow-up study of military pilots with asymptomatic cerebral infarction

    Directory of Open Access Journals (Sweden)

    Xiao-min ZHANG

    2016-10-01

    Full Text Available Objective  To observe pilots with asymptomatic cerebral infarction (ACI for their short-term prognosis. Methods  Twenty-two pilots who were diagnosed having ACI by magnetic resonance imaging were enrolled in this study. When they returned to the hospital for regular reexamination, the number of ACI foci , the incidents of acute cerebrovascular disease and grounding of aircraft for any reasons were recorded. According to whether the ACI lesions increased, the patients were divided into two groups. The risk factors for cerebral vascular disease were compared between the two groups. Results  All the patients were followed for 6-42 months (mean 14.18±8.55 months, and 6(18.18% patients were found to have increase of lesions. No neurological deficit was seen in the two groups, although 3 flight crews were grounded for non-ACI reason. Age and flight time showed statistically significant differences between the lesions increased group and no lesion increased group. Conclusions  The number of ACI foci of some pilots may increase, which is affected by age and flight time. Further investigations on the long-term prognosis and the impacts on flight are needed. DOI: 10.11855/j.issn.0577-7402.2016.09.16

  5. DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection.

    Science.gov (United States)

    Jones, Andrew P; Hoffmann, Jeffrey W; Smith, Dennis N; Feeley, Thomas J; Murphy, James T

    2007-02-15

    Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal "above and beyond" the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166000/lb Hg removed.

  6. The Frequency of Intrinsic X-Ray Weakness among Broad Absorption Line Quasars

    Science.gov (United States)

    Liu, Hezhen; Luo, B.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.

    2018-06-01

    We present combined ≈14–37 ks Chandra observations of seven z = 1.6–2.7 broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band (2–8 keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS 1203+1530 and LBQS 1442–0011, show soft/steep spectral shapes ({{{Γ }}}eff}={2.2}-0.9+0.9 and {1.9}-0.8+0.9) and significant X-ray weakness in the hard band (by factors of ≈15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-ultraviolet spectral energy distributions of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak active galactic nuclei (AGNs) among HiBAL quasars to be ≈7%–10% (2/29–3/29), and we estimate it is ≈6%–23% (2/35–8/35) among the general BAL quasar population. Such a fraction is considerably larger than that among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.

  7. Isomerizations of the Nitromethane Radical Cation in the Gas Phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars; Elbel, Susanne

    1986-01-01

    The concurrent isomerizations of the nitromethane radical cation to its aci-nitromethane and methylnitrite isomers, respectively, has been established based on metastable ion studies and collision activation mass spectrometry. The energy diagram for the ionized nitromethane/aci-nitromethane tauto......The concurrent isomerizations of the nitromethane radical cation to its aci-nitromethane and methylnitrite isomers, respectively, has been established based on metastable ion studies and collision activation mass spectrometry. The energy diagram for the ionized nitromethane...

  8. Intralesional Osteophyte Regrowth Following Autologous Chondrocyte Implantation after Previous Treatment with Marrow Stimulation Technique.

    Science.gov (United States)

    Demange, Marco Kawamura; Minas, Tom; von Keudell, Arvind; Sodha, Sonal; Bryant, Tim; Gomoll, Andreas H

    2017-04-01

    Objective Bone marrow stimulation surgeries are frequent in the treatment of cartilage lesions. Autologous chondrocyte implantation (ACI) may be performed after failed microfracture surgery. Alterations to subchondral bone as intralesional osteophytes are commonly seen after previous microfracture and removed during ACI. There have been no reports on potential recurrence. Our purpose was to evaluate the incidence of intralesional osteophyte development in 2 cohorts: existing intralesional osteophytes and without intralesional osteophytes at the time of ACI. Study Design We identified 87 patients (157 lesions) with intralesional osteophytes among a cohort of 497 ACI patients. Osteophyte regrowth was analyzed on magnetic resonance imaging and categorized as small or large (less or more than 50% of the cartilage thickness). Twenty patients (24 defects) without intralesional osteophytes at the time of ACI acted as control. Results Osteophyte regrowth was observed in 39.5% of lesions (34.4% of small osteophytes and 5.1% of large osteophytes). In subgroup analyses, regrowth was observed in 45.8% of periosteal-covered defects and in 18.9% of collagen membrane-covered defects. Large osteophyte regrowth occurred in less than 5% in either group. Periosteal defects showed a significantly higher incidence for regrowth of small osteophytes. In the control group, intralesional osteophytes developed in 16.7% of the lesions. Conclusions Even though intralesional osteophytes may regrow after removal during ACI, most of them are small. Small osteophyte regrowth occurs almost twice in periosteum-covered ACI. Large osteophytes occur only in 5% of patients. Intralesional osteophyte formation is not significantly different in preexisting intralesional osteophytes and control groups.

  9. Feedback in Clinical Education, Part I: Characteristics of Feedback Provided by Approved Clinical Instructors

    Science.gov (United States)

    Nottingham, Sara; Henning, Jolene

    2014-01-01

    Context Providing students with feedback is an important component of athletic training clinical education; however, little information is known about the feedback that Approved Clinical Instructors (ACIs; now known as preceptors) currently provide to athletic training students (ATSs). Objective To characterize the feedback provided by ACIs to ATSs during clinical education experiences. Design Qualitative study. Setting One National Collegiate Athletic Association Division I athletic training facility and 1 outpatient rehabilitation clinic that were clinical sites for 1 entry-level master's degree program accredited by the Commission on Accreditation of Athletic Training Education. Patients or Other Participants A total of 4 ACIs with various experience levels and 4 second-year ATSs. Data Collection and Analysis Extensive field observations were audio recorded, transcribed, and integrated with field notes for analysis. The constant comparative approach of open, axial, and selective coding was used to inductively analyze data and develop codes and categories. Member checking, triangulation, and peer debriefing were used to promote trustworthiness of the study. Results The ACIs gave 88 feedback statements in 45 hours and 10 minutes of observation. Characteristics of feedback categories included purpose, timing, specificity, content, form, and privacy. Conclusions Feedback that ACIs provided included several components that made each feedback exchange unique. The ACIs in our study provided feedback that is supported by the literature, suggesting that ACIs are using current recommendations for providing feedback. Feedback needs to be investigated across multiple athletic training education programs to gain more understanding of certain areas of feedback, including frequency, privacy, and form. PMID:24143902

  10. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    International Nuclear Information System (INIS)

    Hou, Meicun; Li, Zhiyuan

    2016-01-01

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10 36 erg s −1 are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10 35 erg s −1 per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission

  11. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  12. THE 31 DEG{sup 2} RELEASE OF THE STRIPE 82 X-RAY SURVEY: THE POINT SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    LaMassa, Stephanie M.; Urry, C. Megan; Ananna, Tonima; Civano, Francesca; Marchesi, Stefano; Pecoraro, Robert [Yale Center for Astronomy and Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520 (United States); Cappelluti, Nico; Comastri, Andrea; Brusa, Marcella [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Böhringer, Hans; Chon, Gayoung [Max-Planck-Institut für extraterrestrische Physik, D-85748 Garching (Germany); Glikman, Eilat [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Richards, Gordon [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Cardamone, Carie [Department of Math and Science, Wheelock College, 200 Riverway, Boston, MA 02215 (United States); Farrah, Duncan [Department of Physics MC 0435, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061 (United States); Gilfanov, Marat [Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany); Green, Paul [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Komossa, S. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Lira, Paulina [Departamento de Astronomia, Universidad de Chile, Camino del Observatorio 1515, Santiago (Chile); Makler, Martin [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180 (Brazil); and others

    2016-02-01

    We release the next installment of the Stripe 82 X-ray survey point-source catalog, which currently covers 31.3 deg{sup 2} of the Sloan Digital Sky Survey (SDSS) Stripe 82 Legacy field. In total, 6181 unique X-ray sources are significantly detected with XMM-Newton (>5σ) and Chandra (>4.5σ). This catalog release includes data from XMM-Newton cycle AO 13, which approximately doubled the Stripe 82X survey area. The flux limits of the Stripe 82X survey are 8.7 × 10{sup −16} erg s{sup −1} cm{sup −2}, 4.7 × 10{sup −15} erg s{sup −1} cm{sup −2}, and 2.1 × 10{sup −15} erg s{sup −1} cm{sup −2} in the soft (0.5–2 keV), hard (2–10 keV), and full bands (0.5–10 keV), respectively, with approximate half-area survey flux limits of 5.4 × 10{sup −15} erg s{sup −1} cm{sup −2}, 2.9 × 10{sup −14} erg s{sup −1} cm{sup −2}, and 1.7 × 10{sup −14} erg s{sup −1} cm{sup −2}. We matched the X-ray source lists to available multi-wavelength catalogs, including updated matches to the previous release of the Stripe 82X survey; 88% of the sample is matched to a multi-wavelength counterpart. Due to the wide area of Stripe 82X and rich ancillary multi-wavelength data, including coadded SDSS photometry, mid-infrared WISE coverage, near-infrared coverage from UKIDSS and VISTA Hemisphere Survey, ultraviolet coverage from GALEX, radio coverage from FIRST, and far-infrared coverage from Herschel, as well as existing ∼30% optical spectroscopic completeness, we are beginning to uncover rare objects, such as obscured high-luminosity active galactic nuclei at high-redshift. The Stripe 82X point source catalog is a valuable data set for constraining how this population grows and evolves, as well as for studying how they interact with the galaxies in which they live.

  13. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice.

    Science.gov (United States)

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2016-11-01

    The objective of this study was to evaluate different antioxidants for anthocyanin (ACY) retention in vitamin C fortified cranberry juice and assess its quality. Cranberry juice was fortified with 40-80mg/100mL vitamin C and added hesperidin, catechin, and gallic acid at different concentrations. Juice was pasteurized at 85°C for 1min and stored at 23°C for 16days. ACYs, vitamin C, color intensity, and browning index (BI) were evaluated at 2-day intervals. Gallic acid was found to be the most effective antioxidant against ACYs degradation and significantly (p<0.05) increased red color intensity by 37% and ACY concentration by 41%, compared to the control. After 16-day storage, the BI of gallic acid-added juice was significantly lower (0.80 vs 1.00) than the control juice. The outcome of this research provided a potential solution of using gallic acid to preserve a health-beneficial component (ACYs), and endogenous red color in cranberry juice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. BeppoSAX and Chandra Observations of SAX J0103.2-7209 = 2E 0101.5-7225: A New Persistent 345 Second X-Ray Pulsar in the Small Magellanic Cloud.

    Science.gov (United States)

    Israel; Campana; Covino; Dal Fiume D; Gaetz; Mereghetti; Oosterbroek; Orlandini; Parmar; Ricci; Stella

    2000-03-10

    We report the results of a 1998 July BeppoSAX observation of a field in the Small Magellanic Cloud which led to the discovery of approximately 345 s pulsations in the X-ray flux of SAX J0103.2-7209. The BeppoSAX X-ray spectrum is well fitted by an absorbed power law with a photon index of approximately 1.0 plus a blackbody component with kT=0.11 keV. The unabsorbed luminosity in the 2-10 keV energy range is approximately 1.2x1036 ergs s-1. In a very recent Chandra observation, the 345 s pulsations are also detected. The available period measurements provide a constant period derivative of -1.7 s yr-1 over the last 3 years, making SAX J0103.2-7209 one of the most rapidly spinning up X-ray pulsars known. The BeppoSAX position (30&arcsec; uncertainty radius) is consistent with that of the Einstein source 2E 0101.5-7225 and the ROSAT source RX J0103.2-7209. This source was detected at a luminosity level of a few times 1035-1036 ergs s-1 in all data sets of past X-ray missions since 1979. The ROSAT HRI and Chandra positions are consistent with that of a mV=14.8 Be spectral-type star already proposed as the likely optical counterpart of 2E 0101.5-7225. We briefly report and discuss photometric and spectroscopic data carried out at the ESO telescopes 2 days before the BeppoSAX observation. We conclude that SAX J0103.2-7209 and 2E 0101.5-7225 are the same source: a relatively young and persistent X-ray pulsar in the SMC.

  15. Assessing the effect of patterns of cocaine and alcohol use on the risk of adverse acute cocaine intoxication.

    Science.gov (United States)

    Santos, Sara; Brugal, M Teresa; Barrio, Gregorio; Castellano, Yolanda; Domingo-Salvany, Antonia; Espelt, Albert; Bravo, M Jose; de la Fuente, Luis

    2012-06-01

    Although, in the laboratory, most acute adverse effects of cocaine are dose-dependent and alcohol potentiates some of these effects, there are few observational studies, and scarce awareness that the risk of acute cocaine intoxication (ACI) can increase as the amounts of cocaine and alcohol consumed increase. Our objectives were to assess if the risk of ACI increases with the level cocaine use, both in chronic and binge use; and also to determine whether it increases when a cocaine binge is combined with binge drinking or with regular excessive drinking. Hypotheses were evaluated using logistic regression and case-crossover analyses in a sample of 720 young regular cocaine users who did not regularly use heroin, recruited at drug scenes in 2004-2006. All data on ACI, predictor and confounding variables were obtained through a computer-assisted personal interview. The annual prevalence of ACI was 21%. In the last year 10.3% of the participants reported cocaine binges (≥ 0.5 g in 4 h). ACI risk increased considerably in the 4 h following a cocaine binge (odds ratio = 34.6; 95% confidence interval 11.5-170.8). Also, it increased with increases in the average level of cocaine used over a long period and when users regularly drank excessively. Finally, the results suggest that the high risk of ACI associated with cocaine binge may increase even more when combined with binge drinking. Awareness of the dose-dependent effect of cocaine on ACI risk, as well as the possible synergistic effect of alcohol, ought to be incorporated into preventive and care strategies. © 2012 Australasian Professional Society on Alcohol and other Drugs.

  16. Constraints on Dark Energy, Observable-mass Scaling Relations, Neutrino Properties and Gravity from Galaxy Clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    Using a data set of 238 cluster detections drawn from the ROSAT All-Sky Survey and X-ray follow-up observations from the Chandra X-ray Observatory and/or ROSAT for 94 of those clusters we obtain tight constraints on dark energy, both luminosity-mass and temperature-mass scaling relations, neutrin...

  17. Chandra X-ray Time-Domain Study of Alpha Centauri AB, Procyon, and their Environs

    Science.gov (United States)

    Ayres, Thomas R.

    2018-06-01

    For more than a decade, Chandra X-ray Observatory has been monitoring the central AB binary (G2V+K1V) of the α Centauri triple system with semi-annual pointings, using the High-Resolution Camera. This study has been extended in recent years to the mid-F subgiant, Procyon. The main objective is to follow the coronal (T~1MK) activity variations of the three stars, analogous to the Sun's 11-year sunspot cycle. Tentative periods of 20 yr and 8 yr have been deduced for α Cen A and B, respectively; but so far Procyon has shown only a slow, very modest decline in count rate, which could well reflect a slight instrumental degradation rather than intrinsic behavior. The negligible high-energy variability of Procyon sits in stark contrast to the dramatic factor of several to ten changes in the X-ray luminosities of α Cen AB and the Sun over their respective cycles. Further, although sunlike α Cen A has been observed by successive generations of X-ray observatories for nearly four decades, albeit sporadically, there are key gaps in the coverage that affect the determination of the cycle period. In fact, the most recent pointings suggest a downturn in A's count rate that might be signaling a shorter, more solar-like cycle following a delayed minimum in the 2005--2010 time frame (perhaps an exaggerated version of the extended solar minimum between recent Cycles 23 and 24). Beyond the coronal cycles of the three stars, the sequence of periodic X-ray images represents a unique time-domain history concerning steady as well as variable sources in the two 30'x30' fields. The most conspicuous of the variable objects -- in the α Cen field -- will be described here.

  18. The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV

    Science.gov (United States)

    Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.

    2017-09-01

    We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.

  19. Further constraints on the evolution of K-s-selected galaxies in the GOODS/CDFS field

    NARCIS (Netherlands)

    Caputi, KI; McLure, RJ; Dunlop, JS; Cirasuolo, M; Schael, AM

    2006-01-01

    We have selected and analysed the properties of a sample of 2905 K-s <21.5 galaxies in similar to 131 arcmin(2) of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of K-s-selected galaxies with respect to the results

  20. NCBI nr-aa BLAST: CBRC-GGOR-01-1354 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGOR-01-1354 ref|YP_003328481.1| hypothetical protein ACIS_00561 [Anaplasma centrale str. Israel...] gb|ACZ49167.1| hypothetical protein ACIS_00561 [Anaplasma centrale str. Israel] YP_003328481.1 0.002 28% ...

  1. NCBI nr-aa BLAST: CBRC-GGOR-01-1354 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGOR-01-1354 ref|YP_003328565.1| hypothetical protein ACIS_00677 [Anaplasma centrale str. Israel...] gb|ACZ49251.1| hypothetical protein ACIS_00677 [Anaplasma centrale str. Israel] YP_003328565.1 0.002 28% ...

  2. X-ray pulsars in nearby irregular galaxies

    Science.gov (United States)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison

  3. Seven Years after the Manifesto: Literature Review and Research Directions for Technologies in Animal Computer Interaction

    Directory of Open Access Journals (Sweden)

    Ilyena Hirskyj-Douglas

    2018-06-01

    Full Text Available As technologies diversify and become embedded in everyday lives, the technologies we expose to animals, and the new technologies being developed for animals within the field of Animal Computer Interaction (ACI are increasing. As we approach seven years since the ACI manifesto, which grounded the field within Human Computer Interaction and Computer Science, this thematic literature review looks at the technologies developed for (non-human animals. Technologies that are analysed include tangible and physical, haptic and wearable, olfactory, screen technology and tracking systems. The conversation explores what exactly ACI is whilst questioning what it means to be animal by considering the impact and loop between machine and animal interactivity. The findings of this review are expected to form the first grounding foundation of ACI technologies informing future research in animal computing as well as suggesting future areas for exploration.

  4. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Salzmann, Gian; Steinwachs, Matthias

    2010-01-01

    INTRODUCTION: Since introduction of autologous chondrocyte implantation (ACI), various factors have been described that influence the clinical outcome. The present paper investigates the influence of bone marrow edema at time of treatment on clinical function before and in the early clinical course...... after ACI. METHODS: 67 patients treated with ACI for cartilage defects of the knee joint were included. Presence of subchondral bone marrow edema was graded as absent (1), mild (2), moderate (3) or severe (4) using magnetic resonance (MR) imaging before surgery. All patients were assessed in terms...... of clinical function before surgery and 6 as well as 12 months after ACI using IKDC and Lysholm scores. Presence of subchondral edema was correlated with functional outcome. RESULTS: In 18 patients edema on initial MRI was graded as "absent", while 17 patients had grade 2 edema, 19 patients had grade 3 edema...

  5. MODELOS REALISTAS EN LA VERIFICACIÓN DEL ESFUERZO CORTANTE EN ELEMENTOS DE HORMIGÓN ARMADO

    Directory of Open Access Journals (Sweden)

    Francisco Aguirre

    2015-07-01

    En este artículo se proponen modelos basados en la TCCM y TCCMS y se muestra resultados de ejemplos aplicando estos modelos comparándolos con las normas ACI 318-11 y CAN23.3-04. En el cálculo de la armadura transversal, la variación entre la TCCM y las normas ACI 318-11 y CAN23.3-04 fue de 33% y 64% respectivamente y la variación entre la TCCMS y las normas ACI 318-11 y CAN23.3-04 fue de 2% y 25% respectivamente.

  6. XV and XVI SERC Main Schools in Theoretical High Energy Physics held at the Saha Institute of Nuclear Physics and Harish-Chandra Research Institute

    CERN Document Server

    2005-01-01

    Current research in High Energy Physics focuses on a number of enigmatic issues that go beyond the very successful Standard Model of particle physics. Among these are the problem of neutrino mass, the (as yet) unobserved Higgs particle, the quark-gluon plasma, quantum aspects of gravity, and the so--called hierarchy problem. Satisfactory resolution of these important questions will take much research effort in both theory and experiment. The Science & Engineering Research Council, Department of Science & Technology has sponsored a series of SERC Schools in Theoretical High Energy Physics over the past several years, to provide instruction and training to graduate students working for research degrees. This book is an outcome of the schools held at the Saha Institute of Nuclear Physics, Kolkata in 2000, and at the Harish-Chandra Research Institute, Allahabad in 2001. Based on lectures by active researchers in the field---Rajiv Gavai, Debashis Ghoshal, Dileep Jatkar, Anjan Joshipura, Biswarup Mukhopadhy...

  7. An expanded HST/WFC3 survey of M83: Project overview and targeted supernova remnant search

    Energy Technology Data Exchange (ETDEWEB)

    Blair, William P.; Kuntz, K. D. [The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Dopita, Michael A. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Ghavamian, Parviz [Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States); Hammer, Derek; Long, Knox S.; Whitmore, Bradley C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Soria, Roberto [Curtin Institute of Radio Astronomy, Curtin University, 1 Turner Avenue, Bentley WA 6102 (Australia); Frank Winkler, P., E-mail: wpb@pha.jhu.edu, E-mail: kuntz@pha.jhu.edu, E-mail: Rupali.Chandar@utoledo.edu, E-mail: Michael.Dopita@anu.edu.au, E-mail: pghavamian@towson.edu, E-mail: long@stsci.edu, E-mail: hammer@stsci.edu, E-mail: whitmore@stsci.edu, E-mail: roberto.soria@icrar.org, E-mail: winkler@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2014-06-10

    We present an optical/NIR imaging survey of the face-on spiral galaxy M83, using data from the Hubble Space Telescope Wide Field Camera 3 (WFC3). Seven fields are used to cover a large fraction of the inner disk, with observations in nine broadband and narrowband filters. In conjunction with a deep Chandra survey and other new radio and optical ground-based work, these data enable a broad range of science projects to be pursued. We provide an overview of the WFC3 data and processing and then delve into one topic, the population of young supernova remnants (SNRs). We used a search method targeted toward soft X-ray sources to identify 26 new SNRs. Many compact emission nebulae detected in [Fe II] 1.644 μm align with known remnants and this diagnostic has also been used to identify many new remnants, some of which are hard to find with optical images. We include 37 previously identified SNRs that the data reveal to be <0.''5 in angular size and thus are difficult to characterize from ground-based data. The emission line ratios seen in most of these objects are consistent with shocks in dense interstellar material rather than showing evidence of ejecta. We suggest that the overall high elemental abundances in combination with high interstellar medium pressures in M83 are responsible for this result. Future papers will expand on different aspects of the these data including a more comprehensive analysis of the overall SNR population.

  8. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    DEFF Research Database (Denmark)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.

    2016-01-01

    persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr. A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra...

  9. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted?

    Science.gov (United States)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian; Steinwachs, Mathias; Schmal, Hagen; Südkamp, Norbert P; Niemeyer, Philipp

    2014-01-01

    Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of cartilage defects of the knee at 36 months and to determine a time point after ACI-Cs at which success or failure can be estimated. Cohort study; Level of evidence, 3. A total of 80 patients with isolated full-thickness cartilage defects of the knee joint treated with ACI-Cs were prospectively assessed before surgery as well as postoperatively by use of the International Knee Documentation Committee (IKDC) score and Lysholm knee score. Preoperative IKDC and Lysholm scores increased from 49.6 and 59.5, respectively, to 79.1 and 83.5, respectively, at 36 months. Only half the patients (46.6%) with poor IKDC scores (ie, <70) at 6 months postoperatively showed continued poor or fair scores at 36 months' follow-up. The probability of poor scores at 36 months after surgery further increased to 0.61 and 0.81, respectively, when scores were persistent at 12 and 24 months. All 3 patients (100%) with good IKDC scores (ie, 81-90) at 6 months after surgery showed constant or even improved scores at 36 months' follow-up. Ninety-one percent of patients with good and excellent scores at 12 months and 83% of patients with good and excellent scores at 24 months (a total of 23 and 37 patients, respectively) were able to maintain these scores at 36 months' follow-up. Similar results were obtained for the Lysholm score. With regard to the improvements in functional outcomes after ACI-Cs at 36 months after surgery, the technique described here appears to lead to satisfying and stable clinical results. This study helps the treating physician to predict the likeliness of further clinical improvements or constant unsatisfactory results after ACI. In patients with good/excellent scores shortly after surgery

  10. Single-Stage Cell-Based Cartilage Regeneration Using a Combination of Chondrons and Mesenchymal Stromal Cells: Comparison With Microfracture

    NARCIS (Netherlands)

    Bekkers, J.E.J.; Tsuchida, A.I.; van Rijen, M.H.P.; Vonk, L.A.; Dhert, W.J.A.; Saris, Daniël B.F.

    2013-01-01

    Background: Autologous chondrocyte implantation (ACI) is traditionally a 2-step procedure used to repair focal articular cartilage lesions. With use of a combination of chondrons (chondrocytes in their own territorial matrix) and mesenchymal stromal cells (MSCs), ACI could be innovated and performed

  11. Is gender influencing the biomechanical results after autologous chondrocyte implantation?

    Science.gov (United States)

    Kreuz, Peter C; Müller, Sebastian; Erggelet, Christoph; von Keudell, Arvind; Tischer, Thomas; Kaps, Christian; Niemeyer, Philipp; Hirschmüller, Anja

    2014-01-01

    The influence of gender on the biomechanical outcome after autologous chondrocyte implantation (ACI) including isokinetic muscle strength measurements has not been investigated. The present prospective study was performed to evaluate gender-specific differences in the biomechanical function 48 months after ACI. Fifty-two patients (mean age 35.6 ± 8.5 years) that met our inclusion criteria, underwent ACI with Bioseed C(®) and were evaluated with the KOOS score preoperatively, 6, 12 and 48 months after surgery. At final follow-up, 44 out of the 52 patients underwent biomechanical evaluation with isokinetic strength measurements of both knees. All data were evaluated separately for men and women and compared for each time interval using the Mann-Whitney U test. Clinical scores improved significantly over the whole study period (p genders. Isokinetic muscle strength measures are significantly worse in women (p role for the explanation of gender-specific results after ACI.

  12. Never Before Seen: Two Supermassive Black Holes in Same Galaxy

    Science.gov (United States)

    2002-11-01

    is a prime example of a massive galaxy in which stars are forming at an exceptionally rapid rate due to a recent collision and subsequent merger of two smaller galaxies. Because of the large amount of dust and gas in such galaxies, it is difficult to peer deep into their central regions with optical telescopes. However, X-rays emanating from the galactic core can penetrate the veil of gas and dust. NGC 6240 Optical & X-ray Comparison of NGC 6240 "The detection of a binary black hole supports the idea that black holes can grow to enormous masses in the centers of galaxies by merging with other black holes," said Komossa. "This is important for understanding how galaxies form and evolve," she said. Over the course of the next few hundred million years, the two black holes in NGC 6240, which are about 3000 light years apart, will drift toward one another and merge to form an even larger supermassive black hole. Toward the end of this process an enormous burst of gravitational waves will be produced several hundred million years from now. These gravitational waves will spread through the universe and produce ripples in the fabric of space, which would appear as minute changes in the distance between any two points. NASA's planned space-based detector, LISA (Laser Interferometer Space Antenna), will search for gravitational waves from massive black-hole mergers. These events are estimated to occur several times each year in the observable universe. "This is the first time we see a binary black hole in action, the smoking gun for something that will become a major gravitational wave burst in the future," said Hasinger. Chandra observed NGC 6240 for 10.3 hours with the Advanced CCD Imaging Spectrometer (ACIS). Other members of the team are Vadim Burwitz and Peter Predehl of the Max Planck Institute, Jelle Kaastra of the Space Research Organization Netherlands and Yasushi Ikebe of the University of Maryland in Baltimore. NASA's Marshall Space Flight Center in Huntsville, Ala

  13. Predicting mercury retention in utility gas cleaning systems with SCR/ESP/FGD combinations or activated carbon injection

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Balaji; Naik, Chitralkumar V.; Niksa, Stephen [Niksa Energy Associates LLC, Belmont, CA (United States); Fujiwara, Naoki [Idemitsu Kosan Co., Ltd, Chiba (Japan). Coal and Environment Research Lab.

    2013-07-01

    This paper presents validations of the Hg speciation predicted by NEA's MercuRator trademark package with an American field test database for 28 full-scale utility gas cleaning systems. It emphasizes SCR/ESP/FGD combinations and activated carbon injection because these two applications present the best long- term prospects for Hg control by coal-burning utilities. Validations of the extents of Hg{sup 0} oxidation across SCRs and of Hg retention in wet FGDs gave correlation coefficients greater than 0.9 for both units. A transport-based FGD analysis correctly assessed the potential for Hg{sup 0} re-emission in one limestone wet FGD. Among the ten stations in the SCR/ESP/FGD validations, the simulations correctly identified 3 of 4 of the relatively high Hg emissions rates; all four of the sites with moderate emissions rates; and both sites with the lowest emission rates. The validations for ACI applications demonstrated that Hg removals can be accurately estimated for the full domain of coal quality, LOI, and ACI rates for both untreated and brominated carbon sorbents. The predictions for ACI depict the test-to-test variations in most cases, and accurately describe the impact of ACI configuration and sorbent type. ACI into FFs is the most effective configuration, although ACI into ESPs often removes 90% or more Hg, provided that there is sufficient residence time and Cl in the flue gas. Brominated sorbents perform better than untreated carbons, unless SO{sub 3} condensation inhibits Hg adsorption.

  14. Deep Chandra Observation and Numerical Studies of the Nearest Cluster Cold Front in the Sky

    Science.gov (United States)

    Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.; hide

    2015-01-01

    We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are approximately 10 per cent brighter than the surrounding gas and are separated by approximately 15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches approximately 5-10 per cent of the thermal pressure, reducing the gas density between the bright features.

  15. Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra

    Science.gov (United States)

    Sun, Xiao-Na; Yang, Rui-Zhi; Rieger, Frank M.; Liu, Ruo-Yu; Aharonian, Felix

    2018-05-01

    The X-ray emission from the jets in active galactic nuclei (AGN) carries important information on the distributions of relativistic electrons and magnetic fields on large scales. We reanalysed archival Chandra observations on the jet of M 87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore the X-ray emission characteristics along the jet. We investigated the variability behaviours of the nucleus and the inner jet component HST-1, and confirm indications for day-scale X-ray variability in the nucleus contemporaneous to the 2010 high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last few years consistent with its synchrotron interpretation. We extracted the X-ray spectra for the nucleus and all knots in the jet, showing that they are compatible with a single power law within the X-ray band. There are indications that the resultant X-ray photon index exhibit a trend, with slight but significant index variations ranging from ≃ 2.2 (e.g. in knot D) to ≃ 2.4-2.6 (in the outer knots F, A, and B). When viewed in a multiwavelength context, a more complex situation can be seen. Fitting the radio to X-ray spectral energy distributions (SEDs) assuming a synchrotron origin, we show that a broken power-law electron spectrum with break energy Eb around 1 (300 μG/B)1/2 TeV allows a satisfactory description of the multiband SEDs for most of the knots. However, in the case of knots B, C, and D we find indications that an additional high-energy component is needed to adequately reproduce the broad-band SEDs. We discuss the implications and suggest that a stratified jet model may account for the differences.

  16. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

    2016-04-28

    We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.

  17. Analysis of the 3C 445 soft X-ray spectrum as observed by Chandra high-energy gratings

    Science.gov (United States)

    Dong, Fu-Tong; Shao, Shu-Hua; Cheng, Yan; Zeng, Jiao-Long

    2018-05-01

    We present a detailed analysis of the soft X-ray emission of 3C 445 using an archival Chandra High Energy Transmission Grating (HETG) spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X radiative recombination continua (RRC) feature in the spectrum seems to prefer a photoionized environment. The spectrum is subsequently modeled with a photoionization model, and the results are compared with those of a collisional model. Through a detailed analysis of the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are {log} ξ ={3.3}-0.3+0.4 erg cm s‑1, {n}{{H}}={5}-4.5+15× {10}10 cm‑3 and {N}{{H}}={2.5}-1.7+3.8× {10}20 cm‑2. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred radial distance (6 × 1014 – 8 × 1015 cm), we suggest the emission lines originating from matter are located in the broad line region (BLR).

  18. Structural and spectroscopic features of lutein/butanoyl-β-cyclodextrin nanoassemblies

    DEFF Research Database (Denmark)

    Stancanelli, R.; Løjkner, L.D.; Larsen, Kim Lambertsen

    2012-01-01

    Lutein, the primary carotenoid present in the central area of the retina of eye appears to be associated with the protection against age-related macular degeneration (the leading cause of blindness in older adults). Its lipophilicity and consequently its scarce water solubility (1.3 × 10−9 M......-cyclodextrins (C4:7) form in water nanoaggregates with a average size of 250 nm and a ζ-potential of about −6 mV. They are able to entrap lutein at 1:6 Lut/ACyD molar ratio by yielding nanoassemblies of vesicular aspect (320 nm and −8 mV) such as observed by static, dynamic and electrophoretic light-scattering. UV......–vis measurements revealed that electronic properties of lutein were maintained when interact with ACyD nanoaggregates. The monitoring of the entapped carotenoid leaking from ACyD nanostructures was investigated suggesting the potential of Lut/ACyD nanoassemblies in drug delivery....

  19. From bench to bed: bridging from informatics theory to practice. An exploratory analysis.

    Science.gov (United States)

    Lehmann, C U; Haux, R

    2014-01-01

    In 2009, the journal Applied Clinical Informatics (ACI) commenced publication. Focused on applications in clinical informatics, ACI was intended to be a companion journal to METHODS of Information in Medicine (MIM). Both journals are official journals of IMIA, the International Medical Informatics Association. To explore, after five years, which congruencies and interdependencies exist in publications of these journals and to determine if gaps exist. To achieve this goal, major topics discussed in ACI and in MIM had to be analysed. Finally, we wanted to explore, whether the intention of publishing these companion journals to provide an information bridge from informatics theory to informatics practice and from practice to theory could be supported by this model. In this manuscript we will report on congruencies and interdependencies from practise to theory and on major topis in ACI. Further results will be reported in a second paper. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 from these journals were indexed and analysed. Hundred and ninety-six publications have been analysed (87 ACI, 109 MIM). In ACI publications addressed care coordination, shared decision support, and provider communication in its importance for complex patient care and safety and quality. Other major themes included improving clinical documentation quality and efficiency, effectiveness of clinical decision support and alerts, implementation of health information technology systems including discussion of failures and succeses. An emerging topic in the years analyzed was a focus on health information technology to predict and prevent hospital admissions and managing population health including the application of mobile health technology. Congruencies between journals could be found in themes, but with different focus in its contents. Interdependencies from practise to theory found in these publications, were

  20. [Evidence-based therapy for cartilage lesions in the knee - regenerative treatment options].

    Science.gov (United States)

    Proffen, B; von Keudell, A; Vavken, P

    2012-06-01

    The treatment of cartilage defects has seen a shift from replacement to regeneration in the last few years. The rationale behind this development is the improvement in the quality-of-care for the growing segment of young patients who are prone to arthroplasty complications because of their specific characteristics - young age, high level of activity, high demand for functionality. These days, two of the most popular regenerative treatments are microfracture and autologous chondrocyte implantation (ACI). Although these new options show promising results, no final algorithm for the treatment of cartilage lesions has been established as yet. The objective of this review is to describe and compare these two treatment options and to present an evidence-based treatment algorithm for focal cartilage defects. Microfracture is a cost-effective, arthroscopic one-stage procedure, in which by drilling of the subchondral plate, mesenchymal stem cells from the bone marrow migrate into the defect and rebuild the cartilage. ACI is a two-stage procedure in which first chondrocytes are harvested, expanded in cell culture and in a second open procedure reimplanted into the cartilage defect. Microfracture is usually used for focal cartilage defects osteophyte, and for the ACI patient, periosteal hypertrophy and the need for two procedures in ACI. Only a few studies provide detailed and evidence-based information on a comparative assessment. These studies, however, are showing widely similar clinical outcomes but better histological results for ACI, which are likely to translate into better long-term outcomes. Although evidence-based studies comparing microfracture and ACI have not found significant differences in the clinical outcome, the literature does show that choosing the treatment based on the size and characteristics of the osteochondral lesion might be beneficial. The American Association of Orthopedic Surgeons suggest that contained lesions < 4 cm2 should be treated by